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Invité : M. Jean-Marc Laget CEA-Saclay, Gif-sur-Yvette, FRANCE



Table des matières

2



Table des matières

Remerciements 7

Introduction 9

I Motivations physiques 13

1 Introduction théorique 15
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2.2.2 Théorie de Regge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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4.5 Sections efficaces différentielles (Q2, xB) . . . . . . . . . . . . . . . . . . . 128
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4.8 Sections efficaces différentielles (Q2, xB, −t, Φ) . . . . . . . . . . . . . . . 139
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2.2 Sections efficaces différentielles dσ/dt . . . . . . . . . . . . . . . . . . . . . 189

V Calibration des photomultiplicateurs du Détecteur Central
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1.1.3 Les calorimètres électromagnétiques . . . . . . . . . . . . . . . . . . 198
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Bon vent à Camille et Mohammad, qui terminent leur thèse en même temps que moi.
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Introduction

Nos connaissances actuelles en physique montrent l’existence de quatre interactions
fondamentales ; l’interaction gravitationnelle, l’interaction électromagnétique, l’interaction
faible et l’interaction forte. Les deux dernières, qui s’appliquent à une portée de 10−15 m,
càd à une taille inférieure à celle du noyau atomique, n’ont été mises en évidence qu’à partir
de la première moitié du XXème siècle. Aux premiers instants de l’Univers, où l’énergie est
très élevée (énergie de Planck 1019 GeV), il est attendu que ces quatre forces s’unifient en
une seule. Dans l’Univers actuel, elles apparaissent comme des forces distinctes qui agissent
par l’échange de particules médiatrices, selon le Modèle Standard.

L’interaction forte assure l’existence du noyau atomique et de ses constituants, les
nucléons. A eux seuls, les nucléons représentent 98% de la masse de la matière visible de
l’Univers. Les nucléons, et de manière générale les particules que l’on appelle les hadrons,
sont composés de particules élémentaires : les quarks et les gluons, également nommés
partons. Pourtant, la somme des masses de ces constituants élémentaires (leur masse a
pour origine le mécanisme de Higgs) ne contribue que de manière infime à la masse totale
de certains hadrons, en particulier du proton. C’est la dynamique des quarks et des gluons
qui, en génèrant de l’énergie, semble expliquer l’origine d’une large partie de la masse des
hadrons.

Les quarks interagissent entre eux par l’échange de gluons, qui eux-mêmes peuvent
interagir entre eux. L’une des caractéristiques principales de l’interaction forte est que
son intensité décrôıt à mesure que la distance entre les quarks se réduit, à l’inverse de
l’interaction électromagnétique. L’interaction est fortement attractive à grande distance,
confinant les quarks et gluons dans un volume de l’ordre de 1 fm, tandis qu’elle devient de
plus en plus faible à de plus courtes distances. Ce comportement caractéristique est appelé
la � liberté asymptotique �.

Dans le Modèle Standard, l’interaction forte est décrite complètement par la Chro-
modynamique Quantique (QCD), dont l’équation est bâtie sur la théorie quantique des
champs et des considérations de symétrie. Malheureusement, cette équation n’est pas sol-
vable de manière analytique, en dehors de quelques régimes cinématiques particuliers, car
il s’agit d’une équation différentielle non linéaire avec des degrés de liberté infinis. Face à
cette situation, nombre de phénomènes peuvent être approchés de différentes façons : soit
de manière numérique (� QCD sur réseau � ), mais la puissance de calcul reste un facteur
limitant, soit en les paramétrisant au sein de fonctions de structure contraintes par des
mesures expérimentales.

L’étude des caractéristiques des hadrons est cruciale pour comprendre l’interaction
forte. Les mésons, formés par une paire de quark-antiquark, sont les systèmes hadroniques
les plus simples, et offrent de ce fait des cas d’étude privilégiés.

Pendant longtemps, les mésons scalaires (de spin 0) et tenseur (de spin 2) ont été essen-
tiellement étudiés au travers des interactions hadroniques πN , collisions e+e− et γγ, ou de
la désintégration du J/Ψ notamment, pour étudier leurs caractéristiques spectroscopiques
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Introduction

(structure des résonances, nombres quantiques...).
Plus récemment, les réactions de production de mésons par diffusion de la sonde

électromagnétique sur cible fixe connaissent une plus grande investigation. Bien que le
taux de production de ce type de réaction soit relativement plus faible que la plupart des
autres canaux � historiques � (la diffusion πN notamment, de section efficace 300 fois plus
élevée), elle offre plusieurs avantages. D’abord, le calcul théorique de la réaction est plus
contrôlable que pour des réactions induites par un faisceau de hadrons, car une réaction de
diffusion d’électrons met en jeu l’interaction, calculable, d’une particule sans structure avec
un objet plus complexe. Enfin, ces réactions sont définies par des variables cinématiques
spécifiques, et la dépendance du taux de production selon ces variables peut donner de
nouveaux indices sur la nature du méson. Dans la production de méson par la diffusion
d’un faisceau d’électrons sur cible fixe, par exemple, l’électron agit comme une source de
photons virtuels dont les masses, négatives, permettent de renseigner sur la taille du méson.

Par ailleurs, la diffusion est une voie privilégiée pour étudier la structure du centre
diffuseur, comme a montré l’expérience de Rutherford de diffusion de particules α sur une
feuille d’or qui donna naissance à la physique nucléaire au début du XXème siècle. Dans
cet esprit, des années 1950 jusqu’aux années 1970, les expériences de diffusion élastique
(ep→ ep) et de diffusion profondément inélastique (Deep Inelastic Scattering, ep→ epX)
sur le proton ont révélé de nombreuses propriétés sur la structure du nucléon. Avec le
développement d’accélérateurs à haut cycle utile et de détecteurs de large couverture, il
est devenu alors possible d’étudier des réactions où l’état final de la réaction peut être
complètement déterminé. De telles réactions sont appelées � exclusives � et permettent, à
travers le formalisme théorique des Distributions de Partons Généralisées, d’explorer plus
profondément la structure du nucléon.

Le travail de cette thèse porte sur la mesure de sections efficaces de l’électroproduction
exclusive du méson f0(980) (ep → e′p′f0 ↪→ π+π−) et du méson f2(1270) (ep → e′p′f2 ↪→
π+π−) dans le canal de décroissance dominant, π+π−. Les sections efficaces de ces réactions
n’ont jamais encore été mesurées. Les mesures sont réalisées en analysant les données
de l’expérience e1-6 qui a eu lieu avec l’accélérateur d’électrons du Jefferson Laboratory
(situé à Newport-News, aux Etats-Unis) et avec le détecteur de grande acceptance CLAS.
L’expérience a fait l’objet d’une précédente analyse du canal ep → e′p′π+π−, que j’ai
poursuivie dans le même esprit. En parallèle à ce travail, j’ai également cherché à introduire
une technique d’analyse qui n’a pas encore été appliquée, à ma connaissance, sur ce canal :
l’analyse en ondes partielles. Enfin, j’ai pu contribuer en petite partie au développement du
détecteur central de neutron (CND) qui sera installé sur le successeur de CLAS (CLAS12).

Ce manuscrit de thèse s’organise en cinq parties :
– La première partie présente le contexte théorique de la production de mésons et de

la structure du nucléon.
– La deuxième partie donne une description de l’accélérateur d’electrons CEBAF, du

détecteur CLAS et de ses sous-systèmes.
– La troisième partie décrit l’analyse des données et ses résultats. Cette analyse com-

porte le calcul des sections efficaces σγ
∗p→pπ+π− , l’extraction des sections efficaces

du f0 et du f2, puis l’étude de faisabilité d’une analyse en ondes partielles pour
l’électroproduction.

– La quatrième partie fournit l’interprétation des résultats obtenus.
– La cinquième partie concerne la calibration des photomultiplicateurs du détecteur

central de neutron.
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Celui qui trouve sans chercher est celui qui a longtemps cherché sans trouver.

Gaston Bachelard (1884-1962)
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Chapitre 1

Introduction théorique

Dans ce chapitre, nous aborderons quelques notions générales de physique hadronique,
définissant le cadre de cette thèse.

1.1 L’interaction forte et la Chromodynamique Quan-

tique

L’interaction forte explique l’existence du noyau et des nucléons le constituant. Dans
le Modèle Standard, elle repose sur l’interaction de quarks et de gluons selon les postulats
suivants :

– L’interaction forte fait interagir des particules portant une charge dite de couleur.
On dénombre trois couleurs � rouge �, � vert � et � bleu �, ainsi que les anticouleurs
associées.

– Les quarks sont des particules de spin 1/2 (fermions), de charge électrique fraction-
naire. Les quarks sont porteurs d’une charge de couleur.

– Les gluons sont des particules sans masse de spin 0 (bosons). Ils sont les médiateurs
de l’interaction forte. Ils sont porteurs d’une charge de couleur.

– Les quarks interagissent entre eux par l’échange de gluons. Comme les gluons sont
eux-mêmes porteurs de couleur, ils peuvent également interagir entre eux.

– Seules les combinaisons de couleurs formant des singulets (état avec une charge totale
de couleur nulle) sont des états observables.

La chromodynamique quantique (Quantum Chromodynamics ou QCD) est la théorie
quantique de champ qui décrit l’interaction forte dans le Modèle Standard.

La dynamique d’un système physique est entièrement décrite par une quantité appelée
le lagrangien. En mécanique classique, le lagrangien obéit aux équations d’Euler-Lagrange
qui permettent de déduire les équations du mouvement du système.

Dans une théorie quantique de champ, le lagrangien est construit à partir de ses inva-
riances sous différentes transformations du champ. Chaque transformation du champ est
associée à la conservation d’une quantité physique, selon le théorème de Noether.

Il existe deux classes de transformations : les transformations globales et les transfor-
mations de jauges. Les transformations globales agissent sur un champ de la meme façon en
tout point de l’espace. Les transformations de jauges d’un champ, au contraire, dépendent
du point d’espace-temps considéré.

15



Première partie : Motivations physiques

L’interaction forte est décrite par un lagrangien qui obéit à la symétrie SU(3) 1 et à la
renormalisabilité 2. La densité du lagrangien de la QCD s’écrit :

LQCD =
∑
q

ψ̄q,a(iγ
µ∂µδab − gsγµtCabACµ −mqδab)ψq,b −

1

4
FA
µνF

Aµν , (1.1)

où :
– ∂µ désigne l’opérateur de dérivée partielle selon l’une des coordonnées de l’énergie

impulsion (E, px, py, pz) (∂0 = ∂
∂t

, ∂1 = ∂
∂px

, ∂2 = ∂
∂py

, ∂3 = ∂
∂pz

).

– γµ (avec µ = 0, 1, 2, 3) est l’une des 4 matrices de Dirac.
– ψq,a sont des spineurs 3 représentant le champ d’un quark de saveur q, de masse mq

et couleur a (rouge, vert ou bleu).
– ACµ représentent les champs des gluons.
– tCab désigne l’une des 8 matrices 3× 3 qui sont les générateurs du groupe SU(3).
– Le tenseur FA

µν est décrit par :

FA
µν = ∂µAAν − ∂νAAµ − gsfABCABµACν , (1.2)

où fABC sont les constantes de structure du groupe SU(3).

Les paramètres fondamentaux de la QCD, qui doivent être mesurés expérimentalement,

sont la constante de couplage gs (ou plus usuellement αs = g2s
4π

) et les masses des quarks
mq.

Une des propriétés fondamentales de la QCD est le confinement : les quarks et les
gluons ne sont pas observés isolément. Une manière d’illustrer le confinement est de
considérer deux quarks s’éloignant l’un de l’autre (figure 1.1) : l’interaction entre eux
s’accrôıt linéairement avec la distance.

Figure 1.1 – Illustration du phénomène de confinement en interaction forte. En éloignant
le quark 1 du quark 2, il arrive un point où l’énergie du système quark 1-gluon-quark 2 est
favorable à la création d’une nouvelle paire quark-antiquark, par la production des quarks
3 et 4.

Ainsi, la force de cette interaction, proportionnelle à αs, dépend de l’échelle de distance
λ dans lequel un système évolue. Les mesures de αs (figure 1.2) en fonction de la résolution
Q (proportionnelle à 1/

√
λ) montrent ce phénomène. La grande variabilité de αs oblige à

considérer deux régimes en QCD :

1. En mathématique, le groupe SU(3) désigne le groupe spécial unitaire de dimension 3. Le groupe est
représenté par l’ensemble des matrices 3x3 de déterminant égal à 1 et ayant M = M−1.

2. Une théorie quantique de champ est dite renormalisable lorsqu’un calcul aboutissant à une quantité
divergente peut etre réexprimé en terme d’une quantité physique finie.

3. Un spineur est une fonction vectorielle solution de l’équation de Dirac.
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– Le régime perturbatif αs << 1, où il est possible d’exprimer un processus comme un
développement limité en puissances de αs,

– Le régime non perturbatif αs ≥ 1, pour lequel le processus ne peut être calculé
de manière analytique. Dans ce dernier cas, l’ajout d’une puissance αns aurait une
contribution bien plus grande que le terme αn−1

s , ce qui rends l’expression du processus
en tant que série en puissance de αs divergente.

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  

0.1

0.2

0.3

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)
(–)

Figure 1.2 – Mesures de la constante de couplage αS en fonction de la résolution Q [1].

1.2 Le modèle des quarks

Suite à la découverte d’un nombre important de hadrons au début des années 1960, la
nécessité d’un modèle permettant de les classifier est apparue. Le premier modèle décrivant
les hadrons est le modèle des quarks constituants, développé de manière indépendante par
Zweig [3] et Gell-Mann [2]. Dans ce modèle, les hadrons sont construits à partir de quarks
massifs, de spin 1/2 et de charge électrique fractionnaire. Les baryons sont formés de 3
quarks constituants (qqq) et les mésons d’une paire quark-antiquark (qq̄). Un méson est
décrit de manière complète par une fonction d’onde rendant compte de l’ensemble des
nombres quantiques la caractérisant :

ψqq̄ = ψEspaceqq̄ (rq, rq̄)ψSpinqq̄ ψSaveurqq̄ ψCouleurqq̄ , (1.3)

avec :
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– ψqq̄ la fonction d’onde totale. D’après le principe de Pauli, elle doit être antisymétrique
par permutation de l’ensemble des nombres quantiques d’un quark sur l’autre :

ψq̄q = −ψqq̄ . (1.4)

– ψEspaceqq̄ (rq, rq̄) la fonction d’onde d’espace des quarks. Elle décrit le mouvement relatif
des quarks entre eux et est liée à la parité P .

– ψSpinqq̄ la fonction d’onde décrivant l’état de spin de la paire qq̄.
– ψSaveurqq̄ la fonction d’onde décrivant l’état de saveur de la paire qq̄. Il existe 5 nombres

quantiques de saveurs : la projection d’isospin Iz sur un axe z, l’étrangeté S, le charme
C, la beauté B, et le � top � T.

– ψCouleurqq̄ la fonction d’onde décrivant l’état de couleur. De symétrie SU(3), seul l’état
neutre de couleur est à considérer. Cette fonction d’onde a été incorporée pour te-
nir compte de la particule ∆++ (uuu). En effet, ψEspace∆++ ψSpin∆++ψ

Isospinf
∆++ est totalement

symétrique par permutation des quarks. Dans cette configuration, il faut introduire
une fonction d’onde régie par une symétrie SU(3) afin que la fonction d’onde totale
soit antisymétrique.

Les nombres quantiques d’un méson qq̄ sont déterminés à partir de la combinaison des
nombres quantiques des quarks q et q̄. En considérant que les deux quarks combinent leur
spin pour former une particule de spin total S = (0 ou 1) et qu’il peuvent avoir un moment
angulaire orbital relatif L, on établit les relations suivantes pour le moment angulaire total
J, la parité P et la conjugaison de charge C :

J = L⊕ S , (1.5)

P = (−1)L+1 , (1.6)

C = (−1)L+S . (1.7)

Les mésons sont classés selon la combinaison JPC à laquelle ils appartiennent. Les états
L = 0 sont appelés pseudoscalaires (JPC = 0−+) et vecteurs (1−−). Les états L = 1 sont
scalaires (0++), axiaux vecteurs (1++ et 1+−), et tenseurs (2++).

Le modèle original des quarks prévoyait 3 saveurs de quarks appelés � up � (u),
� down � (d) et � strange � (s). Le modèle est ainsi régi par la symétrie SU(3)f de sa-
veur, dans lequel les quarks appartiennent à la représentation 3 (3 étant le nombre de
saveurs disponibles) et les antiquarks à la représentation adjointe 3̄. La combinaison de
quark-antiquark suivant la symétrie SU(3)f de saveur s’écrit :

3⊗ 3̄ = 8 + 1 . (1.8)

La relation (1.8) signifie qu’un quark et un antiquark s’assemblent sous SU(3)f pour
former un singulet et un octet de saveur, représentant au total 9 combinaisons qq̄ possibles.
Ces multiplets sont représentés en les classant en fonction de leur charge et de l’étrangeté,
pour un état JPC fixé, comme le montre l’exemple 1.3.

Le modèle des quarks a permis de décrire et aussi prédire avec succès la plupart des
particules observées expérimentalement.

La table 1.4 récapitule le classement des mésons légers selon leur nombres quantiques
prédits par le modèle des quarks.

On peut y relever que le méson f0(980) est absent de ce classement. En effet, il y a plus
de mésons scalaires observés que ceux inclus dans le nonet prédit par le modèle des quarks.
Il s’ensuit que la plupart ne peuvent pas être décrits par une paire qq̄. Il n’y a pas à ce jour
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Figure 1.3 – Le nonet JPC = 1−− établi par le modèle des quarks, avec les particules
observées expérimentalement associés aux différents états.

de consensus quant à savoir lesquelles de ces particules sont des paires qq̄ ou d’une autre
nature : glueball (particule gg), molécule de paires qq̄, molécule KK̄...

La véritable nature des mésons scalaires constitue depuis près de 40 ans un des défis
majeurs de la spectroscopie des hadrons.
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Figure 1.4 – Table de correspondance des états qq̄ prédits par le modèle des quarks avec
les mésons légers observés expérimentalement. Les nombres quantiques n, s, l et J désignent
respectivement l’excitation radiale de la paire, le spin, le moment angulaire orbital et le
moment angulaire total de la paire qq̄.
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1.3 Les sections efficaces

La probabilité de produire un certain processus physique s’exprime en terme de section
efficace.

On considère une réaction 1 + 2→ 3 + 4 + ...+n+ 2 entre les particules 1 et 2 donnant
lieu à n particules dans l’état final.

La probabilité d’apparition d’un phénomène est souvent étudiée dans un domaine d’es-
pace de phase restreint. Il faut définir pour cela la section efficace différentielle dσ [1] :

dσ =
(2π)4|A|2

4
√

(p1.p2)2 −m2
1m

2
2

× dΦn(p1 + p2; p3, ..., pn+2) , (1.9)

avec :
– pi l’impulsion de la particule i,
– mi la masse de la particule i,
– dΦn(p1 + p2; p3, ..., pn+2) un volume infinitésimal de l’espace de phase (p3, ..., pn+2).
– |A|2 l’amplitude invariante au carré, avec A à valeur complexe (A ∈ C). Ce dernier

terme est spécifique d’un processus physique et se calcule à partir du diagramme
de Feynman associé. Ce diagramme se construit à partir de connections entre lignes
extérieures, qui représentent les particules de l’état initial ou de l’état final, et lignes
internes, appelées propagateurs, formant des points d’interaction ou vertex. Les règles
de Feynman, établies à partir du lagrangien, spécifient la contribution de chaque
élément de ce diagramme au calcul de l’amplitude.
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Chapitre 2

L’électroproduction de méson

Ce chapitre est consacré à la théorie de l’électroproduction de méson. Deux types de
mécanismes sont exposés : le mécanisme d’échange de particules et la production de méson
profondément virtuelle (Deeply Virtual Meson Production). Nous nous intéresserons ensuite
au cas de la production des mésons f0 et f2, en examinant l’état actuel des connaissances
sur ces deux particules.

2.1 Cinématique de la réaction

On distingue deux type de processus de diffusion : les processus inclusifs et les processus
exclusifs. Dans le premier cas, l’état final est connue partiellement. On désigne par X
la partie inconnue de l’état final. Dans un processus exclusif, la totalité des particules
constituant l’état final est déterminée.

La réaction étudiée dans ce travail est l’électroproduction exclusive d’un méson M de
masse mM sur un nucléon N de masse mN . Elle s’écrit symboliquement :

e(k) +N(p)→ e′(k′) +N ′(p′) +M(pM) , (2.1)

où les variables entre parenthèses désignent les quadrivecteurs associées aux particules.
L’interaction entre un électron et le nucléon s’effectue de manière dominante par l’échange
d’un photon virtuel γ∗ :

γ∗(q) +N(p)→ N ′(p′) +M(pM) (2.2)

q est la quadri-impulsion du photon virtuel :

q = k − k′ (2.3)

où k et k′ désignent les quadrivecteurs de l’électron du faisceau et de celui diffusé, respec-
tivement.

Ainsi, l’électroproduction γ∗N → N ′M est décrite par la réaction à deux corps (figure
2.1) :

1 + 2→ 3 + 4 (2.4)

où 1 désigne le photon virtuel, 2 le nucleon de cible N, 3 le méson M et 4 le nucléon de
recul N ′.

L’état final de l’électroproduction exclusive (équation (2.1)) est décrit par 5 variables
cinématiques indépendantes : 4 composantes du quadri-vecteur énergie-impulsion × 3 par-
ticules de l’état final, moins 3 équations de couches de masse (E2 = p2c2+m2c4) moins les 4
équations de conservation énergie-impulsion. Dans le cas où aucune polarisation particulière
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Figure 2.1 – Définitions des variables pour la réaction à deux corps 1 + 2→ 3 + 4.

de l’électron ou du nucléon n’est considérée, l’angle azimutal de l’électron diffusé n’est
plus qu’une variable muette. Il ne reste alors que 4 variables cinématiques indépendantes.
En privilégiant l’utilisation de quantités invariantes de Lorentz, on définit les variables
cinématiques suivantes, représentées dans la figure 2.2 :

– La virtualité du photon :

Q2 = −q2 = 4EE ′sin2(θ/2) , (2.5)

θ est l’angle polaire de diffusion de l’électron. E et E’ sont les énergies de l’électron
incident et diffusé, respectivement. Le principe d’incertitude d’Heisenberg (∆E∆t ≤
~/2) permet l’existence d’une particule virtuelle pendant une durée ∆t suffisamment
courte. Ici, le photon virtuel est doté d’une masseQ2 négative afin que la conservation-
énergie impulsion soit respectée.
Q2 définit la résolution de la sonde électromagnétique, qui s’exprime par la longueur
d’onde de de Broglie λ = h/

√
Q2. Plus Q2 est grand (λ petit), plus on sera sensible

au contenu en quarks et gluons du nucléon. A l’inverse, pour des petits Q2 (λ grand),
les quarks et les gluons ne peuvent plus etre distingués et le nucléon forme une entité
globale.

– L’énergie du photon virtuel ν :
ν = E − E ′ . (2.6)

– La variable de Bjorken :

xB =
Q2

2p · q =
Q2

2mNν
. (2.7)

xB est inversement proportionnelle à W, l’énergie du centre de masse du système
γ∗p :

W 2 = (p+ q)2 = m2
N +Q2(

1− xB
xB

) . (2.8)

Dans la réaction de diffusion inclusive Deeply Inelastic Scattering (DIS), ep → eX,
xB correspond à la fraction d’impulsion du nucléon portée par le quark qui interagit
avec le photon virtuel.

– Le carré du quadri-vecteur transfert d’impulsion entre le nucléon cible (de quadri-
impulsion p) et le nucléon de recul (de quadri-impulsion p′) :

t = (p′ − p)2 . (2.9)

t quantifie la dureté de l’impact. Un paramètre d’impact entre la sonde et le nucléon,
proportionnel à 1/

√−t, peut être défini. Les petites valeurs de t correspondent à
des collisions périphériques tandis que des grandes valeurs de t correspondent à des
collisions centrales.
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– L’angle Φ entre le plan leptonique, formé par les impulsions du photon virtuel γ∗ et
de l’électron diffusé e′, et le plan hadronique, formé par les impulsions de γ∗ et du
nucléon de recul N ′.

Si le méson décrôıt en une paire π+π− (comme c’est le cas du f0 et du f2), 3 variables
supplémentaires doivent être considérées. On choisit ici les variables suivantes :

– La masse invariante des deux pions :

Mπ+π− =
√

(pπ+ + pπ−)2 (2.10)

où pπ+ et pπ− désignent les quadrivecteurs du π+ et du π−, respectivement.
– θπ+ et φπ+ , les angles de décroissance du π+ dans le référentiel du méson au repos.
Dans ce travail, ces angles sont définis dans le référentiel d’hélicité ; il s’agit du référentiel

du méson au repos, dans lequel l’axe z est défini par la direction du méson dans le référentiel
du centre de masse du système γ∗N . Par la suite, on dénommera cos θHS et φHS les angles
du π+ de décroissance dans le référentiel d’hélicité.

Figure 2.2 – Cinématique de l’électroproduction du méson exclusif M sur le nucléon N
dans le référentiel d’hélicité. Les variables cinématiques en rouge repèrent celles utilisées
pour décrire la réaction.
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2.2 Degrés de liberté hadroniques

A faible Q2, la sonde électromagnétique ne permet pas de résoudre les interactions à
l’échelle d’un quark. Dans ce cadre, l’électroproduction est décrite en terme de mécanisme
d’échange de particules.

2.2.1 Mécanisme d’échange de particules

Plusieurs diagrammes de Feynman (figure 2.3) peuvent être formés à partir de la
réaction γ∗N → N ′M , correspondant aux différentes manières de connecter l’état initial
(γ∗, p) à l’état final (p′, M).

Figure 2.3 – Diagrammes d’échange de particules dans les voies t, u et s pour la réaction
d’électroproduction du méson.

Ces diagrammes décrivent l’interaction entre le photon virtuel γ∗ et le nucléon p par
l’échange de hadrons dans les voies t,u ou s. Les voies t, u et s se réfèrent aux variables de
Mandelstam. Il s’agit des variables invariantes de Lorentz qui définissent le quadrivecteur
du propagateur, connectant les particules de l’état final et de l’état initial :

t = (p1 − p3)2 = (q − pM)2 = (p′ − p)2 , (2.11)

u = (p1 − p4)2 = (q − p′)2 = (pM − p)2 , (2.12)

s = (p1 + p2)2 = (q + p)2 = (pM + p′)2 (2.13)

Les trois variables de Mandelstam satisfont la relation :

s+ t+ u =
∑
i

m2
i , (2.14)

où mi sont les masses des 4 particules impliquées dans la réaction. Donc seules 2 variables
de Mandelstam sont nécessaires pour décrire complètement la réaction. La conservation
des nombres quantiques (charge, spin, parité etc...) impose la nature des mésons échangés
dans la voie t et des baryons échangés dans les voies u et s.

L’amplitude A de chaque diagramme de la figure 2.3 peut se factoriser de la manière
suivante :

A ∝ gV Pg′V ′ , (2.15)

où
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– g et g′ sont des constantes de couplage électromagnétique et hadronique respective-
ment,

– V et V ′ sont les facteurs de vertex. Dans le cas de particules fondamentales, ces
facteurs dépendent des spins des trois particules au vertex et se calculent par les règles
de Feynman de la théorie de champs quantique décrivant l’interaction au vertex . Dans
le cas de particules non ponctuelles (comme le nucléon ou les mésons), un facteur de
forme dépendant de Q2 ou t peut être introduit.

– P est le propagateur qui correspond à la particule échangée.

Les constantes g et g′ sont des scalaires, tandis que V , V ′ et P sont des tenseurs d’ordre 1
(vecteurs) ou 2 (matrices). Nous allons examiner les propriétés des différentes voies.

Dans la voie s, le propagateur P est de la forme P ∝ 1
s−mN∗

, où mN∗ est la masse du ba-

ryon échangé. Lorsque s = m2
N∗ , l’amplitude est maximale, faisant apparâıtre un pic dans

le spectre de section efficace ; mN∗ est appelé un pôle de l’amplitude. Si le baryon forme une
résonance alors le propagateur devient P ∝ 1

s−mN∗+iΓmN∗
, où le terme iΓmN∗ tient compte

de la largeur de la résonance. Un tel propagateur génère des structures (� bosses �) dans la
section efficace totale en fonction de s. Dans la section efficace de photoproduction sur le
proton (figure 2.4), par exemple, on observe effectivement plusieurs résonances baryoniques
qui s’atténuent avec l’énergie jusqu’à disparâıtre à partir de

√
s ' 2 GeV, donnant lieu à

un continuum. Le seuil de production du f0 (respectivement f2) se situant à W ∼ 1.9 GeV
(W ∼ 2.2 GeV), la production de ces mésons est localisée dans la région du continuum de
s.

Figure 2.4 – Section efficace totale de photoproduction sur le proton en fonction de
l’énergie

√
s du proton dans le laboratoire [1].
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Dans la voie t, le propagateur de Feynman est de la forme P ∝ 1
t−µ2 où µ est la masse

du méson échangé. Les valeurs physiques accessibles pour t sont toujours négatives et
comprises entre deux valeurs limites tmin et tmax définies par :

tmin =
m4
M

4s
−
{
s−m2

N

2
√
s
−
√(s+m2

M −m2
N

2
√
s

)2

−m2
M

}2

, (2.16)

tmax =
m4
M

4s
+

{
s−m2

N

2
√
s
−
√(s+m2

M −m2
N

2
√
s

)2

−m2
M

}2

, (2.17)

où on rappelle que mM et mN sont les masses du méson et du nucléon respectivement.
Comme t est toujours négatif, le pôle µ2 n’est jamais atteint ; la voie t est toujours � hors
couche de masse �. Soit θ∗ l’angle de la particule échangée entre le méson produit et le
photon incident. Dans l’approximation où mM = mN = m, la relation entre t et θt s’écrit
[4] :

−2t

s− 4m2
= 1− cos θ∗ . (2.18)

Dans la région physique s ≥ 4m2, les petits t correspondent aux angles avants (cos θ∗ → 1)
et les grands t aux angles arrières (cos θ∗ → −1).

Dans la voie u, le propagateur est de la forme P ∝ 1
u−mN∗

, où mN∗ est la masse du
nucléon ou de la résonance baryonique échangée. Comme les masses des mésons échangés
sont plus faibles que celle des baryons, les pôles de la voie t sont plus proches de la région
physique (t < 0) que ne le sont ceux de la voie u. Par conséquent, on s’attend à ce que le
diagramme de la voie u contribue peu aux sections efficaces totales par rapport à la voie t.
Il parâıt donc légitime de ne garder que les diagrammes d’échange de mésons dans la voie
t dans le calcul de l’amplitude.

2.2.2 Théorie de Regge

L’approche théorique d’une réaction confère des contraintes particulières à son ampli-
tude. On considère les réactions suivantes :

1. La réaction de voie s 1 + 2→ 3 + 4 (figure 2.1), dont l’énergie de centre de masse au
carré vaut s. Son amplitude est notée As(s, t).

2. La réaction croisée de voie t, 1 + 3̄ → 2̄ + 4, dont l’énergie de centre de masse au
carré vaut t. Son amplitude est notée At(s, t).

3. La réaction croisée de voie u, 1 + 4̄ → 2̄ + 3, dont l’énergie de centre de masse au
carré vaut u. Son amplitude est notée Au(s, t).

D’après la propriété de croisement, les amplitudesAu(s, t),As(s, t) etAt(s, t) de réaction
sont décrites par une seule fonction analytique. L’amplitude invariante de la réaction peut
donc s’écrire A(s, t). Les processus physiques sont décrits par cette amplitude pour s et
t réels. Afin de rendre compte de la description des réactions croisées, il est nécessaire de
considérer l’amplitude A(s, t) comme fonction de variables s et t à valeur complexe. L’étude
de l’analyticité de A(s, t) est nécessaire, car le lien entre les différentes régions physiques
s’effectue par le passage dans un domaine complexe (non physique) du plan (s, t).
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La théorie de Regge [6] s’appuie sur ces propriétés fondamentales : l’analyticité et la
propriété de croisement. Il faut d’abord considérer le développement de l’amplitude selon
des ondes partielles dans la réaction croisée t :

A(s, t) ∝
∞∑
l=0

(2l + 1)fl(t)Pl(cos θt) , (2.19)

où l est le moment angulaire orbital, θl est l’angle formé entre les particules 1 et 2̄, Pl(cos θt)
est le polynôme de Legendre associé et fl(t) est défini par :

fl(t) =
1

2

∫ 1

−1

Pl(cos θt)A(s, t)dcos θt (2.20)

La région physique de cette réaction est t > 0 et s < 0. Pour respecter la propriété de
croisement, cette amplitude doit décrire également la réaction de voie s (s > 0). Cependant,
pour évaluer l’amplitude de la région t < 0 dans la région s > 0, le prolongement analytique
de (2.19) est requis. Dans la théorie de Regge, le moment orbital l est considéré comme un
paramètre complexe :

fl(t)→ f(l, t) . (2.21)

L’amplitude (2.19), avec la paramétrisation (2.21), peut être réecrite comme une
intégrale 1 dans le plan complexe l, par la transformation de Sommerfeld-Watson [7]. Dans
la limite s� t, l’amplitude s’écrit alors :

A(s, t) '
∑
n

βn(t)(−1)αn(t)

sin(παn(t))
(
s

s0

)αn(t) , (2.22)

Où s0 ' 1 GeV est l’échelle de masse hadronique, βn(t) est un facteur de couplage, lié
au résidu du n-ième pôle de f(l, t). Les fonctions complexes αn(t), qui donnent la position
du n-ième pôle en t, sont appelées les � trajectoires de Regge �. Quand la partie réelle αn(t)
prend une valeur entière J , cela correspond à une résonance physique de masse m2 = t et
de spin J . De fait, la théorie de Regge repose sur l’observation que les particules semblent
appartenir à des familles (� trajectoires de Regge �) ayant les mêmes nombres quantiques
sauf la parité et le spin. En effet, les observations (figure 2.5) établissent qu’il existe une
relation linéaire entre le spin et la masse carrée t des particules d’une même famille :
α(t) = α0 + α′t. C’est donc toute une trajectoire de particules qui est échangée dans un
processus et non pas des particules individuelles.

1. Il est plus facile d’analyser les prolongements analytiques de A(s,t) en tant qu’intégrale sur le plan
complexe que sur la série (2.19), où on risque de prolonger l’amplitude dans un domaine où la série ne
converge pas.
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Figure 2.5 – Les trajectoires de Regge associées aux mésons π, ρ et ω. Les trajectoires
sont approximées par des droites.

2.2.3 Le modèle JML

Compte tenu de la dominance du diagramme d’échange de voie t (figure 2.3) dans la
réaction γ∗N → N ′M , il est envisageable de calculer et sommer les diagrammes voie
t correspondant aux divers mésons échangés et ayant des nombres quantiques autorisés.
Cependant, les vertex de Feynman V de l’équation (2.15) ont une dépendance en énergie
selon (Eγ)

J où Eγ est l’énergie du photon incident et J le spin de la particule échangée.
Ainsi, lorsqu’il y a échange de méson de spin J ≥ 1, les sections efficaces augmentent
avec l’énergie

√
s (A ∝ |s|J), ce qui est clairement en contradiction avec les observations

expérimentales.

Pour résoudre ce problème, le modèle de Jean-Marc Laget (JML) [8] [9] propose d’in-
corporer la théorie de Regge (� reggéiser �) dans les calculs de diagrammes de la figure 2.3,
en prenant en compte l’invariance de jauge. L’échange de particules de grande masse et de
grand spin dans les voies t (et u) est naturellement pris en compte. Les fonctions de vertex
V de l’équation (2.15) sont alors calculées pour la particule de plus bas spin de la trajec-
toire. La théorie de Regge prédit que le propagateur P du diagramme est proportionnel à
sα(t). Par exemple, le propagateur de Regge du pion s’exprime par :

P π
Regge =

(
s

s0

)απ(t)
πα′π

sin(παπ(t))

Sπ + e−iπαπ(t)

2

1

Γ(1 + απ(t))
, (2.23)
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où απ(t) = 0.7(t − m2
π) est la trajectoire du pion, s0 est une échelle de masse, et la

signature S = ±1, qui caractérise les nombres quantiques des particules de la trajectoire.
Dans le modèle JML, le propagateur de Feynman évalué au pôle est égal au propagateur
de Regge. Dans l’équation (2.15), seules les constantes de couplages g et g′ aux vertex sont
des paramètres libres du modèle. La section efficace totale est proportionnelle à sα(0)−1.
En général, l’intercept α(0) est inférieur à 1 (figure 2.5), ce qui donne une dépendance en
énergie des sections efficaces décroissante, conformément à l’expérience.
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2.3 Degrés de liberté partoniques et distributions de

partons généralisés (GPDs)

A grand Q2, la sonde électromagnétique devient sensible aux interactions à l’échelle des
quarks ; l’électroproduction est décrite ici en termes de � degrés de liberté partoniques �.

2.3.1 Factorisation de l’électroduction de méson

Il a été démontré [11] que l’amplitude dominante pour l’électroproduction exclusive de

méson dans le régime de Bjorken ( Q2, ν → ∞ et xB = Q2

2pq
fixé), pour t � Q2 et pour

des photons virtuels polarisés longitudinalement, peut être factorisée selon le diagramme
du � sac à main �, illustré dans la figure 2.6.

Ce diagramme consiste en une partie � dure � (en haut à gauche de la figure), calculable
par QCD perturbative, qui décrit l’interaction l’interaction entre le photon virtuel et un
quark du nucléon, une partie � molle � qui décrit la structure non perturbative du nucléon
(en bas), et une autre partie non perturbative décrivant la production du méson (en haut
à droite).

Figure 2.6 – Diagramme du � sac à main � pour l’électroproduction de méson pro-
fondément virtuelle.

Le diagramme du � sac à main � se calcule dans le référentiel dit du � cône de lumière �,
illustré dans la figure 2.7. Le référentiel est défini par les composantes � + � et � - � :

a± = (a0 ± a3)/
√

2 . (2.24)
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Chapitre 2. L’électroproduction de méson

Figure 2.7 – Référentiel du cône de lumière pour la production exclusive de méson.
La coordonnée a0 est désignée ici par le temps t, et a3 par la coordonnée spatiale z. En
négligeant la masse des particules en jeu, les protons incident et de recul se déplacent
suivant les z positif à la vitesse de la lumière (axe � + � ). Le méson produit se déplace
à la vitesse de la lumière dans la direction des z négatifs (axe � - �). Le photon virtuel se
déplace dans la direction des z positifs à une vitesse supérieure à celle lumière, en raison de
sa masse Q2 négative : il est donc en dehors du cône de lumière et possède deux composantes
� + � et � - �.

Dans ce repère, le théorème de factorisation permet alors d’écrire l’amplitude longitu-
dinale de l’électroproduction exclusive de méson :

AL = −2ie

9

(∫ 1

0

dz
φ(z)

z

)
4παS(Q2)

Q

∫ +1

−1

dx

{[ 1

x− ξ + iε
+

1

x+ ξ − iε
]
F (x, ξ, t)

}
,

(2.25)
où

– x est la fraction d’impulsion, définie par [12] : k+ = xP+ = x(p + p′)/2 où k est
l’impulsion du quark provenant du nucléon cible et P = p+p′

2
.

– ∆ = p′ − p est le quadrivecteur de transfert d’impulsion du nucléon, comme défini
dans l’équation (2.9).

– ξ est définie par ∆+ = −2ξP+, où ∆+ est la composante + (longitudinale) du
transfert d’impulsion (p′ − p). Dans la limite de Bjorken et t << Q2, 2ξ → xB

1−xB/2
.

– La variable t = ∆2, est le carré du transfert d’impulsion entre le nucléon initial et le
nucléon final.

– 1
x−ξ+iε + 1

x+ξ−iε est la somme des propagateurs des quarks associés, respectivement,
au terme direct et croisé.

– La distribution d’amplitude φ(z) décrit la probabilité pour un quark et un antiquark
d’impulsions respectives zpM et (1 − z)pM de former un méson d’impulsion pM . Le

terme 4παS(Q2)
Q

provient de l’échange de gluon nécessaire pour former le méson.
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– F (x, ξ, t) représente la fonction de structure non perturbative du nucléon et se

décompose en terme de 4 fonctions HN
M ,H̃N

M ,EN
M ,ẼN

M appelées distributions de partons
généralisées (GPDs).

Pour les mésons vecteurs, la décomposition est [13] :

F (x, ξ, t) = HN
M(x, ξ, t)N̄(p′)γ+N(p) + EN

M(x, ξ, t)N̄(p′)iσκλ
nκ∆λ

2mN

N(p) , (2.26)

où nκ désigne les coordonnées du quadrivecteur du méson dans le référentiel du cône du
lumière.

Pour les mésons pseudoscalaires :

F (x, ξ, t) = H̃N
M(x, ξ, t)N̄(p′)γ+γ5N(p) + ẼN

M(x, ξ, t)N̄(p′)γ5 ∆+

2mN

N(p) . (2.27)

En ce qui concerne les mésons scalaires (comme le f0), la seule différence avec le cas
pseudoscalaire est l’absence de la matrice γ5 dans la distribution d’amplitude et la facto-
risation est encore applicable.

La situation pour les mésons tenseurs (comme le f2) est plus complexe, car la factori-
sation dépend de son état d’hélicité λ :

– Pour λ = 0, la situation est identique à l’électroproduction longitudinale d’un méson
vecteur.

– Pour λ = ±1, la factorisation n’est pas démontrée.
– Pour λ = ±2, la distribution d’amplitude a deux composantes : une composante qq̄

conventionnelle et une contribution à 2 gluons (voir figure 2.8 à gauche). Cela signifie
qu’il existe un autre type de diagramme de � sac à main � (figure 2.8 à droite) qui
domine celui illustré dans la figure 2.6, selon les références [15] et [16].

Figure 2.8 – A gauche : contribution gluonique à la distribution d’amplitude du f2. A
droite : diagramme dominant pour l’électroproduction exclusive sur le proton d’un f2 d’état
d’hélicité λ = ±2 sur le proton.

2.3.2 Propriétés des GPDs

Les GPDs HN
M ,H̃N

M ,EN
M ,ẼN

M sont elle-mêmes des combinaisons des GPDs Hq,H̃q,Eq,Ẽq,
où q désigne la saveur du quark. La production d’un méson M particulier est sensible à
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Chapitre 2. L’électroproduction de méson

une combinaison particulière de saveurs de quarks dans le nucléon. Ainsi, pour déterminer

les GPDs Hq,H̃q,Eq,Ẽq, il faut mesurer HN
M ,H̃N

M ,EN
M ,ẼN

M pour différents M produits afin
d’effectuer une séparation des saveurs.

Les GPDs Hq, H̃q, Eq, Ẽq(x, ξ, t) décrivent l’amplitude de probabilité de trouver un
quark du nucléon avec une fraction d’impulsion longitudinale x + ξ à l’état initial qui,
par rayonnement d’un gluon, forme à l’état final une paire qq̄ où q̄ porte une fraction
d’impulsion longitudinale x− ξ . Lors du processus, le nucléon a subit un recul d’impulsion
représenté par ∆2.

Les 4 GPDs se distinguent par la configuration d’hélicité du quark diffusé et du nucléon
avant et après interaction, comme l’illustre la figure 2.9.

E H̃ ẼH

+ −+ −

Figure 2.9 – Schéma des différentes configurations d’hélicité des GPDs. L’hélicité du
quark et du nucléon à l’état initial et à l’état final sont représentées respectivement dans
la partie haute et dans la partie basse de chaque diagramme.

Les GPDs Hq et H̃q correspondent à des configurations où l’hélicité du nucléon est
conservée entre l’état initial et l’état final, tandis que dans Eq et Ẽq il y a une inversion de
l’hélicité du nucléon. Ensuite, chaque GPD est la combinaison des différents états d’hélicité
pris par le quark 2.

Les GPDs sont riches en information sur la structure du nucléon.
Dans le plan (x,t), les transformées de Fourier de ces fonctions permettent d’établir une

corrélation ρ(x, b⊥) entre l’impulsion longitudinale x et la position transverse b⊥ du quark
(figure 2.10).

De plus, la règle de somme de Ji [12] établit une relation entre le premier moment des
GPDs et le moment angulaire des quarks de saveur q du nucléon :

∀ξ, lim
t→0

∫ +1

−1

dx x[Hq(x, ξ, t) + Eq(x, ξ, t)] = Jq , (2.28)

où le spin du nucléon est décomposé selon la relation :

1

2
= (

1

2
∆Σ + Lq) + Jg ≡ Jq + Jg , (2.29)

2. L’hélicité du quark est conservée entre l’état initial et l’état final pour les GPDs considérées. Une
factorisation plus avancée aboutit à l’apparition de GPDs dites de � transversité �, où l’hélicité du quark
est modifiée [17],[18].

35



Première partie : Motivations physiques

Figure 2.10 – La GPD Hu(x, ξ, t) en fonction de la fraction d’impulsion longitudinale x
et de la position transverse b⊥ à ξ = 0, d’après le modèle VGG [19].

où

– 1
2
∆Σ et Lq sont la contribution du spin intrinsèque des quarks et celle de leur moment

orbital au spin total du nucléon, respectivement. ∆Σ a été mesuré et est de l’ordre
de 20 à 30 % [20].

– Jg est la contribution du moment orbital total des gluons. La contribution du spin
des gluons ∆g a pu être mesurée et vaut ∆g ∼ 0 [22] [23] [24].

2.4 Les mésons f0(980) et f2(1270)

Dans cette section, les propriétés spectroscopiques connues du f0(980) et f2(1270) seront
détaillées et on réalisera une revue des résultats récents.

Les mésons f0(980) et f2(1270) sont des mésons légers sans saveur qui se désintègrent
tous deux dans le canal π+π− de manière dominante. Les propriétés spectroscopiques de
ces deux particules sont présentées dans la table 2.1.

f0 f2

JPC 0++ 2++

Masse (MeV) 990± 20 1275± 1.2
Largeur à mi-hauteur Γ (MeV) 40-100 185.1± 3
Canal de décroissance dominant π+π− π+π− (84.8 %)
Première observation 1973 1968

Table 2.1 – Propriétés spectroscopiques des mésons f0(980) et f2(1270) [1].
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Le f0(980) est probablement l’état le plus énigmatique des 2 considérés. Sa
détermination expérimentale est rendue difficile par sa proximité avec le seuil de pro-
duction KK̄. De fait, la détermination de sa largeur à mi-hauteur dépend fortement de
la manière d’ajuster la résonance, ce qui a pour conséquence une valeur variant du simple
au double selon les analyses [1]. De plus, un autre méson scalaire, le a0(980), est produit
exactement dans la même région de masse et partage certains canaux de désintégration
du f0(980). Plusieurs hypothèses ont été formulées quant à sa véritable nature, sans que
les résultats expérimentaux soient encore décisifs [21] : paire qq̄, molécule de quarks [25],
molécule KK̄ [27], glueball [26], voire une combinaison de ces derniers... Un modèle pour
la photoproduction γp→ pf0 du f0(980) basé sur l’échange de trajectoires de Regge dans
la voie t (échanges de mésons) a été développé [28] et aboutit à différentes dépendances
de la section efficace différentielle dσ/dt, selon la nature accordée au f0. L’extension de ce
modèle à l’électroproduction pourrait également montrer différentes dépendances en Q2 de
la production de f0 selon sa nature. Jusqu’ici, une telle extension pour le cas du f0 n’a pas
encore été examinée.

Le f2 est le méson tenseur le plus léger qui peut être produit. A l’inverse du f0 , le
f2 semble bien s’incorporer dans le modèle des quarks et la forme de la résonance semble
être bien décrite par une distribution de Breit-Wigner conventionnelle [29]. Pourtant, il
demeure quelques incertitudes selon lesquelles f2 n’est pas un état qq̄ mais plutôt un état
intermédiaire produit lors d’interactions méson vecteur-méson vecteur [30]. Jusqu’ici, les
deux particules ont été essentiellement étudiées au travers de diffusion πN , collisions e+e−

et γγ, ou de la désintégration du J/Ψ notamment.

Peu d’études approfondies ont encore été effectuées à l’aide de la sonde
électromagnétique.

Récemment, ces résonances ont été étudiées en photoproduction γp → pπ+π−, avec le
détecteur CLAS [31]. Les moments de la distribution angulaire du π+ de décroissance ont
été extraits par une analyse en ondes partielles des données expérimentales. Ces moments
permettent ensuite de déterminer les amplitudes aLM , qui sont liées à la probabilité de pro-
duire un π+ issu d’une particule de moment angulaire orbital L et d’hélicité M , conférant
une distribution angulaire caractéristique au π+. On parle d’onde S pour les π+ issus de
la décroissance d’une particule de spin 0, d’onde P pour une particule de spin 1, et d’onde
D pour une particule de spin 2. La figure 2.11 illustre par exemple l’onde S obtenue. On
peut y déceler une structure dans la région de masse M=980 MeV, correspondant bien à
la résonance f0(980) (car f0 est de spin 0 et seuls les états de spin 0 sont considérés dans
cette figure). Cependant, la forme de la résonance suggère qu’il existe encore des effets
d’interférence entre la résonance et un fond cohérent qui n’a pas pu être complétement
éliminé. Il s’agit de la première mesure du f0(980) réalisée en photoproduction. Enfin, les
figures 2.12 et 2.13 montrent les sections efficaces extraites de ces ondes dans la région du
f0 et celle du f2 respectivement.

Ici, on s’intéresse à la leptoproduction des mésons f0 et f2
3 . Il y a encore assez peu

d’études concernant la leptoproduction d’un méson ou de l’autre. La collaboration NO-
MAD, par exemple, a réalisé la mesure de la réaction inclusive νµN → νµX avec faisceau
de neutrinos muoniques produits à partir d’un faisceau de 450 GeV/c de protons du SPS

3. La leptoproduction lp→ l′pπ+π− dans l’approximation d’échange à un seul photon, se réécrit γ∗p→
pπ+π− où γ∗ est le photon virtuel échangé. Dans ce cadre, la photoproduction γp→ pπ+π− peut être vue
comme le cas limite Q2 = 0 de la leptoproduction.
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Figure 2.11 – Distribution de l’onde S (particule de spin 0 décroissant en π+π−) déduite
d’un ajustement des moments des distributions angulaires du π+ pour la photoproduction
de deux pions. L’intervalle cinématique est 3.2 < Eγ < 3.4 GeV et 0.5 < −t < 0.6 GeV2.
Les incertitudes sont représentées par les bandes grises [31].

Figure 2.12 – Section efficace différentielle dσ/dt de photoproduction pour les paires
de pions provenant de la décroissance d’une particule de spin 0, dans la région du f0

(Mπ+π− = 0.98± 0.04 GeV) et pour une énergie du photon Eγ = 3.0− 3.8 GeV. La ligne
continue correspond à l’ajustement AeBt, avec B = 3.7± 0.4 GeV−2 [31].
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Figure 2.13 – Section efficace différentielle dσ/dt de photoproduction pour les paires
de pions provenant de la décroissance d’une particule de spin 2, dans la région du f2

(Mπ+π− = 1.275±0.185 GeV) et pour une énergie du photon Eγ = 3.0−3.8 GeV. La ligne
continue correspond à l’ajustement AeBt, avec B = 1.8± 0.6 GeV−2 [31].

(CERN) [33]. Après soustraction de fond, l’analyse a permis de mettre en évidence les
résonances f0 et f2 et en tirer leur caractéristiques (voir la figure 2.14). Cependant, les
mesures portent directement sur les taux de comptage des données expérimentales et non
sur des sections efficaces.

Dans l’expérience HERMES, l’électroproduction semi-inclusive ep → ef0X a été
également mesurée [32]. Cette analyse a permis d’établir la dépendance en Q2 et en P 2

t

(l’impulsion transverse du méson au carré) du nombre d’évènements de f0 corrigé des inef-
ficacités de détection (acceptance) du détecteur, comme l’illustre la figure 2.15. La distribu-
tion en Q2 est ajustée par la dépendance (1/Q2)α, où α = 1.6±0.2. De même, la dépendance
e−bP

2
t en P 2

t a été déterminée, ce qui permet de déduire une pente b = 4.4±1.2 GeV−2, com-
patible dans les erreurs avec la mesure de la collaboration NOMAD (b = 5.3± 0.2 GeV−2

pour P 2
t < 0.5 GeV2).

Par ailleurs, la collaboration HERMES s’est également intéressée aux moments de Le-
gendre dans le canal ep → e′p′π+π− à Q2 = 3 GeV2, qui sont des quantités sensibles aux
interférences des ondes S-P et P-D [34]. Les résultats suggèrent que les interférences entre
les ondes S-P, et P-D, dans la région du ρ0, sont plus importantes que celles dans la région
du f0(980). En ce qui concerne le f2, l’étude semble indiquer que la contribution à la sec-
tion efficace du f2 des photons polarisés transversalement est aussi importante que celle
des photons polarisés longitudinalement. Rappelons que l’état de polarisation longitudinal
du photon virtuel permet une interprétation de la section efficace en terme de GPDs, pour
le f2 d’hélicité 0.

Pour résumer, les mesures d’électroproduction de f0 et f2 ont porté jusqu’ici sur les
données expérimentales brutes ou des données corrigées d’acceptance, qui est une correction
partielle dans la normalisation à une section efficace. Aucune mesure de sections efficaces
de l’électroproduction des mésons f0(980) et f2(1270) n’a encore été réalisée.
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Figure 2.14 – Spectre de masse invariante π+π− après soustraction du bruit combinatoire
et des projections des différents états de l’analyse inclusive réalisée par la collaboration
NOMAD [33].

Figure 2.15 – Distributions corrigées d’acceptance de l’électroproduction du f0, en fonc-
tion de Q2 (à gauche) et de P 2

t (à droite) (Collaboration HERMES, [32]).
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Chapitre 1

Le Jefferson Laboratory et
l’accélérateur CEBAF

Le Thomas Jefferson National Accelerator Facility, plus communément appelé JLab
(� Jefferson Laboratory �), est un centre de recherche fondamentale en physique nucléaire
situé à Newport-News, dans l’Etat de Virginie aux Etats-Unis.

Le laboratoire s’articule autour de l’accélérateur d’électrons Continuous Electron Beam
Accelerator Facility (CEBAF). Le site comprends également un groupe dédié à l’image-
rie médicale et un laboratoire de développement d’un laser à électrons libres (FEL, Free
Electron Laser). Le centre emploie 700 personnes, et près de 2000 scientifiques à travers le
monde participent aux expériences menées sur le site.

L’accélérateur CEBAF produisait un faisceau continu d’électrons polarisés avec un haut
cycle utile et une intensité pouvant atteindre 200 µA, ce qui équivaut à 1.25×1015 électrons
par seconde. La production de faisceaux polarisés (la polarisation maximale obtenue à
CEBAF étant de 83% en 2005) est une particularité de CEBAF et donne accès à une large
gamme d’observables. L’énergie du faisceau était modulable et pouvait atteindre une valeur
maximale de 6 GeV. Il était possible de délivrer simultanément trois faisceaux d’énergies et
d’intensités différentes dans 3 halls expérimentaux (A,B et C). Ainsi, plusieurs expériences
pouvaient être effectuées en parallèle dans le laboratoire.

Les premiers faisceaux de l’accélérateur CEBAF ont été délivrés en 1994. L’énergie visée
lors de la conception était de 4 GeV et a été atteinte au cours de l’année 1995. L’énergie de
6 GeV a été atteinte pour la première fois en 2000, après une amélioration de l’accélérateur.
Le programme expérimental à 6 GeV a pris fin au cours de l’année 2012, au profit d’une
montée en énergie du faisceau d’électrons de CEBAF allant jusqu’à 12 GeV pour le futur
hall D, et 11 GeV pour les autres halls. Cette énergie a été atteinte à la fin de l’année 2015.

Dans la suite de ce chapitre, l’émission, l’accélération et l’extraction des électrons de
CEBAF à 6 GeV seront détaillées.
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Figure 1.1 – Schéma de l’accélérateur CEBAF.

1.1 Injection et polarisation du faisceau d’électrons

La source d’électrons polarisés de l’accélérateur CEBAF était un cristal d’arséniure de
galium (GaAs), illuminé par trois sources laser polarisées circulairement. Chacun de ces
lasers était associé à un hall expérimental et pouvait opérer à une intensité qui lui est
propre. Le cristal était éclairé par une source de lumière différente chaque 2/3 de ns (soit à
une fréquence de 1497 MHz). L’excitation du cristal s’accompagne de l’émission d’électrons
polarisés. La polarisation des électrons émis se renverse avec une fréquence de 30Hz.

Les particules étaient ensuite accélérées par un champ électrostatique de 100 KeV. Les
électrons étaient déviés transversalement à l’aide d’un champ magnétique par un chopper
(interrupteur périodique) afin de les faire passer à travers l’une des trois ouvertures d’un
obturateur avec une fréquence de 499 MHz. Le paquet d’électrons passant par une ouverture
donnée étaient destinés à un hall expérimental particulier. L’intensité de chaque faisceau
séparé était modulée en ajustant la taille de l’ouverture correspondante. Tous les paquets
d’électrons étaient ensuite ramenés sur la même trajectoire par déviation magnétique.
Ces paquets d’électrons, d’une durée de 20 ps et distants de 20 cm, étaient séparés d’un
intervalle temporel de 2/3ns (fréquence 3*499=1497 MHz). Il en résultait la formation de
3 faisceaux distincts de fréquence 499 MHz dont chacun était lié à un hall expérimental
particulier (voir la figure 1.2). Chaque hall recevait un paquet d’électrons du faisceau
correspondant toute les 2 ns.

1.2 Accélération du faisceau

CEBAF était formé de 2 accélérateurs linéaires LINACs (LINear ACcelerators ) Nord
et Sud mis en parallèle, et de 9 arcs de recirculation en demi-cercle (5 au Nord et 4 au
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Figure 1.2 – Structure temporelle du faisceau d’électrons de CEBAF. Les paquets
d’électrons A, B et C sont associés au Hall expérimental correspondant. La hauteur des
surfaces hachurées indique l’intensité du faisceau.

Sud), ce qui permettait de dévier les électrons d’énergies croissantes vers les 2 LINACs
jusqu’à 5 passages (figure 1.1).

En sortant de l’injecteur, les électrons étaient accélérés par un premier LINAC jusqu’à
une énergie de 67 MeV.

L’accélération du faisceau était ensuite prise en charge par les LINACs Nord et Sud. A
partir de 2000, chacun d’entre eux était doté de 160 cavités accélératrices supraconductrices
en niobium refroidi par l’hélium liquide à 2◦ K.

Le nombre total de ces cavités était de 338 (2×160 pour les 2 LINACs et 18 pour le
LINAC en sortie de l’injecteur). Les cavités des LINACs Nord et Sud étaient réparties
dans 20 modules cryogéniques ; chaque module comportait donc 8 cavités. En général,
le métal constituant des cavités à radiofréquence entrâıne des effets résistifs, produisant
une grande quantité de chaleur qui empêche une accélération continue du faisceau. En
effet, les paquets d’électrons sont alors séparés par de longs intervalles de temps, ce qui
donne un cycle utile relativement bas. Les cavités supraconductrices ont la propriété de
réduire considérablement ces effets résistifs et permettent de ce fait d’accélérer le faisceau
de manière quasiment � continue �.

Une cavité possèdait un gradient d’accélération de 7.5 MeV/m. La longueur effective
d’une cavité étant de 0.5 m, les électrons acquéraient une énergie de (7.5 × 0.5) × 160 =
600 MeV à chaque passage dans un LINAC. Le faisceau, pouvant effectuer au maximum
5 passages à travers les deux LINACS, pouvait atteindre une énergie maximale de 6 GeV.
La dispersion en énergie du faisceau valait ∆E

E
≈ 10−4 et son intensité variait de 100 pA à

100 µA.

1.3 Distribution du faisceau aux 3 halls

expérimentaux

Les paquets d’électrons sont extraits à l’aide d’un séparateur à radiofréquence en sortie
du LINAC Sud selon leur énergie et leur hall de destination.

Le Hall C habritait le High Momentum Spectrometer (HMS) et le Short Orbit Spec-
trometer (SOS), qui mesuraient des régimes d’impulsions distincts, avec une impulsion
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maximale de 7 GeV/c pour le premier et 1.8 GeV/c pour le second. Leurs résolutions en
impulsion valaient δp

p
≈ 10−3.

Le Hall A était équipé de deux spectromètres à grande resolution en impulsion (High
Resolution Spectrometer ou HRS). Leurs résolutions valaient δp

p
≈ 10−4 et mesuraient des

impulsions allant jusqu’à p ≤ 4 GeV/c. Ces détecteurs étaient montés sur des bras pouvant
être pivotés autour de la cible où interagissait le faisceau.

Le Hall B contenait le détecteur CLAS, dédié à la mesure de canaux exclusifs et semi-
inclusifs à plusieurs particules.

L’intensité délivrée aux halls A et C pouvait atteindre 200 µA. Pour le hall B, l’in-
tensité était limitée à 20-30 nA. En effet, en raison de la grande acceptance du détecteur
CLAS installé dans ce hall et de la proximité de la cible du détecteur, un grand flux
d’électrons ne pourrait pas être complètement enregistré. De plus, ce flux pourrait noyer le
détecteur d’électrons Møller (e−e− → e−e−) et nuire au fonctionnement des différents sous-
détecteurs. Par conséquent, la luminosité (produit de l’intensité du faisceau, de l’épaisseur
et de la densité de la cible) du hall B (L = 1034 cm−2s−1) était 10000 fois plus faible que
celles du hall A et C (L = 1038 cm−2s−1).

La table 2.1 récapitule les caractéristiques du faisceau entrant dans le hall B.
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Chapitre 2

Le détecteur CLAS

Le détecteur CLAS (CEBAF Large Acceptance Spectrometer [35]) était un détecteur
de grande acceptance, permettant l’identification de particules -chargées ou neutres- dans
un large espace cinématique. Cette caractéristique est cruciale pour l’étude de canaux
exclusifs de désintégration. La cible placée au centre de CLAS pouvait recevoir directement
le faisceau d’électrons de CEBAF, ou un faisceau de photons produit par rayonnement de
freinage, après passage des électrons dans un radiateur. Les performances de CLAS sont
résumées dans le tableau 2.2. Il fut mis en service en 1997 dans le Hall B (figure 2.1) de
Jefferson Lab et démantelé en 2012 dans le cadre de la montée en énergie de CEBAF.

Grandeur Intervalle Precision Dispositif de Contrôle
Energie 0.8-6.0 GeV δE/E<0.1 % -
Polarisation 40-85 % δP/P<3 % Polarimètre Møller
Position +/− 3 mm du centre de la cible 100 µm Polarimètre Møller
Largeur σ < 250 µm 10 µm Wire scans
Courant 1-30 nA <1 % Cavité de Faraday

Table 2.1 – Caractéristiques du faisceau d’électrons dans le hall B.

D’un rayon d’environ 5 mètres, le détecteur était bâti autour de six bobines supra-
conductrices, délimitant six secteurs azimutaux. Chaque secteur contenait plusieurs sous-
détecteurs organisés en couches (figure 2.2) :

– 3 régions de chambres à dérive (ou Drift Chambers (DC), en bleu sur le schéma),
qui permettaient de reconstruire la trajectoire des particules chargées.

– Des compteurs Čerenkov (Cherenkov Counter (CC), en violet), placés aux angles
avants, qui aidaient à discriminer les électrons des pions.

– Des scintillateurs(Scintillator Counter (SC), en rouge) qui mesuraient le temps
de vol des particules et permettaient l’identification des particules chargées.

– Des calorimètres électromagnétiques (Electromagnetic Calorimeter (EC), en
vert ), qui mesuraient et localisaient les gerbes electromagnétiques engendrées par les
particules. Ils permettaient en particulier l’identification des électrons et la détection
des particules neutres.

Les éléments de CLAS sont décrits plus en détails dans les sections suivantes.
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Figure 2.1 – Plan général du Hall B en coupe.

Figure 2.2 – Le détecteur CLAS, vue en coupe ôtée d’un secteur.
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Propriété Valeur
Couverture
Angle polaire des électrons (EC, CC) 8◦ ≤ θ ≤ 45◦

Angle polaire des particules chargées (DC) 8◦ ≤ θ ≤ 140◦

Impulsion des particules chargées p ≥ 0.2 GeV/c
Energie des photons Eγ ≥ 0.1 GeV
Résolutions
Impulsion (θ ≤ 30◦) (particules chargées) σp/p ≈ 0.5 %
Impulsion(θ ≥ 30◦) (particules chargées) σp/p ≈ (1− 2) %
Angle polaire (particules chargées) σθ ≈ 1 mrad
Angle azimutal (particules chargées) σφ ≈ 4 mrad
Temps de vol (particules chargées) σt ≈ (100− 250) ps

Energie des photons σE
E
≈ 10 %√

E

Identifications des particules
π/K p ≤ 2 GeV/c
π/p p ≤ 3.5 GeV/c
Taux de contamination de π− parmi les e− ≤ 10−3

Luminosité
Faisceau d’électrons L ≈ 1034 cm−2s−1

Faisceau de photons L ≈ 5× 1031 cm−2s−1

Acquisition des données
Taux d’évènements 4 kHz
Taux d’enregistrement 25 Mo/s

Table 2.2 – Caractéristiques du détecteur CLAS.

2.1 L’aimant toröıdal

Les six bobines étaient des aimants supraconducteurs constitués chacun de 4 couches
de conducteurs NbTi/Cu, enroulés sur 54 tours par couche. Les aimants étaient refroidis à
4.5◦ K par de l’helium liquide. Chaque bobine mesurait 5 m de diamètre et 5 m le long de
l’axe faisceau.

Les bobines produisaient un champ magnétique toröıdal symétrique par rapport à l’axe
du faisceau, comme le montre le schéma B de la figure 2.3. Autrement dit, le champ est
contenu dans un plan transverse au faisceau, appelé plan azimutal. Sous l’effet de ce champ
magnétique, les trajectoires des particules chargées se courbent. Pour les particules suffi-
samment éloignées des aimants, celles-ci sont déviées uniquement dans le plan contenant
l’axe du faisceau, appelé ici plan polaire. Ceci facilitait considérablement la reconstruction
de la trajectoire, car la déviation dans le plan azimutal est négligeable. Chaque bobine
était en forme de � haricot �, ce qui confère aux particules émises à bas angle polaire un
passage dans une région de fort champ où elles seront fortement déviées. Les particules
émises à haut angle polaire passent dans une région de plus faible champ.

L’intensité du courant alimentant les bobines pouvait être réglée afin d’ajuster l’inten-
sité du champ, et en conséquence la déviation des particules. L’aimant pouvait fonctionner
jusqu’à 3860 A, bien que l’intensité usuelle était limitée à 3375 A. En changeant le sens du
courant alimentant les bobines, il est possible d’inverser la polarité du champ magnétique.
On pouvait de cette façon choisir de dévier les particules négatives tel que l’électron vers
l’axe du faisceau (in-bending field) ou l’éloigner de cet axe (out-bending field). En général,
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Figure 2.3 – A) Cartographie du champ magnétique dans un plan contenant le faisceau.
Les valeurs expriment l’intensité de lignes de champs en Gauss. B) Cartographie du champ
dans le plan transverse au faisceau.

la polarisation in-bending était choisie pour dévier l’électron vers la zone d’acceptance du
détecteur Čerenkov et du calorimètre electromagnétique (la couverture en angle polaire
pour ces détecteurs étant 8 < θ < 45◦).

2.2 Les chambres à dérive

La trajectoire d’un particule chargée courbée par un champ magnétique suit la loi :

Bρ =
p

q
, (2.1)

où B est l’amplitude du champ magnétique, ρ le rayon de courbure suivi par la particule,
p son impulsion et q sa charge.

Les chambres à dérive [36] permettaient de reconstruire la trajectoire de ces particules,
à partir de laquelle on pouvait déduire la courbure de sa trajectoire ρ puis son impulsion
p.
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Chaque secteur de CLAS comportait trois chambres à dérive situés dans des régions
radiales de plus en plus éloignées de la cible (voir figure 2.4). Elles couvraient un domaine
angulaire en θ (angle polaire) compris entre 8° et 142°.

Figure 2.4 – Coupe transversale de CLAS représentant la position des différentes
chambres à dérive. La mini-bobine toröıdale permettait de focaliser les électrons de Møller.

La première région � R1 � encadrait la cible dans une région de faible champ
magnétique ; on peut voir en effet dans la figure 2.3 un éloignement des lignes de champs
par rapport au centre de CLAS, où se trouvait la cible. La deuxième région � R2 � se
situait dans une région de fort champ. La troisième region � R3 � était placée à l’extérieur
des aimants.

Une chambre à dérive était une enceinte contenant un mélange gazeux Ar-CO2 avec les
proportions 88% - 12% et dans laquelle un ensemble de fils conducteurs étaient tissés dans
la direction du champ magnétique. La chambre était composée de deux réseaux de fils ;
un réseau de fils actifs polarisés négativement et un réseau de fils de potentiel polarisés
positivement. Ces réseaux étaient agencés en couches concentriques de fils, comme le montre
la figure 2.5.

Les deux réseaux formaient des cellules hexagonales dont chaque point correspond à un
fil de potentiel, avec un fil actif au centre de chaque cellule.

Dans chaque région, les fils étaient regroupés en deux � supercouches � distinctes.
Chaque supercouche incluaient 6 couches de fils actifs, à l’exception de la deuxième super-
couche dans la région R1 qui en comprenait 4. Dans la deuxième supercouche, la direction
des fils était tournée de 6 degrés par rapport à celle dans la première supercouche. Ce
décalage angulaire fournit des informations sur la composante azimutale de la trajectoire.
Au total, CLAS comptait environ 35000 fils.

Le passage d’une particule chargée dans l’enceinte ionise le gaz, créant des paires
électrons-ions. La différence de potentiel créee par les deux catégories de fils fait migrer les
électrons vers les fils de potentiel et les ions vers les fils actifs les plus proches. Un signal est
collecté dans les fils situés sur la trajectoire de la particule. Chaque fil actif était relié à un
TDC (Time-to-Digital Converter). L’information en temps obtenue permettait d’évaluer
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Figure 2.5 – Plan en coupe des fils constituants une couche d’une chambre à dérive. Les
fils de potentiel forment une structure en hexagone tandis que les fils actifs se situent au
centre de chacun de ces hexagones.

la distance entre la position du passage de la particule chargée et du fil actif le plus proche.
La trajectoire de la particule était ainsi reconstruite à partir des informations fournies par
les fils affectées (hits) par le passage de la particule (voir figure 2.6).

La reconstruction s’effectuait en deux étapes. La première, appelée Hit-Based Tracking,
utilisait la position des différentes cellules affectées par le passage d’une particule, puis
identifiait et regroupait les cellules compatibles à une table de trajectoires possibles, et
rejettait les autres.

La seconde étape, appelée Time-Based Tracking, utilisait l’information en temps de
chaque fil actif, puis, connaissant le temps de vol de la particule chargée (donné par le
détecteur SC), déterminait dans chaque cellule touchée ayant passée le Hit-Based Tracking
la distance entre le point de passage de la particule chargée et la position du fil actif.

Ainsi, connaissant la vitesse de dérive des ions dans le gaz des chambres à dérive, dans
une cellule donnée, la particule est localisée sur un cercle centré autour du fil actif et dont
le rayon correspond à la distance determinée. L’ajustement de la trajectoire sur ces cercles
permet une reconstruction précise de celle-ci.
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Figure 2.6 – Coupe montrant la section d’une chambre à dérive de la région 3. Les zones
en rouges correspondent aux fils affectés par le passage d’une particule chargée. En haut à
droite de la figure, des segments du détecteur Cherenkov sont représentés.

2.3 Le détecteur Čerenkov

Dans un milieu diélectrique, une particule chargée peut évoluer à une vitesse supérieur
à la vitesse de la lumière de ce milieu. Il en résulte une polarisation de celui-ci, qui s’accom-
pagne d’un cône d’émission lumineuse cohérente créee par les atomes du milieu. Il s’agit
de l’effet Čerenkov, caractérisé par la loi :

cosθ =
1

nβ
, (2.2)

où θ est l’angle d’émission du cône, n est l’indice de réfraction du milieu et β est la velocité
de la particule.

Une particule chargée de masse m est susceptible d’émettre un rayonnement Čerenkov
à des impulsions p > pseuil, avec

pseuil = mγseuilβseuilc =
mc√
n2 − 1

. (2.3)

Le détecteur Čerenkov à seuil de CLAS [37] avait deux fonctions : identifier distinc-
tement les électrons et les pions et déclencher l’acquisition à la détection d’un électron
diffusé. Un gaz de perfluorobutane (C4F10) d’indice de réfraction n = 1.00153 était utilisé.
Le seuil d’émission Čerenkov pour des particules π− dans ce gaz est de 2.5 GeV/c. En
dessous de ce seuil d’impulsion, seuls les électrons peuvent émettre un rayonnement ; les
électrons peuvent donc être discriminés des π− à basse impulsion.

Chaque compteur Čerenkov (figure 2.7) a été optimisé pour couvrir un domaine an-
gulaire en θ compris entre 8◦ et 45◦. Dans chaque secteur, le compteur était divisé en 18
segments polaires. La structure d’un segment est représentée dans la figure 2.8.
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Figure 2.7 – Schéma représentant un compteur Čerenkov équipant chacun des 6 secteurs
de CLAS.

Figure 2.8 – Schéma représentant un des 18 segments du compteur Čerenkov dans un
secteur de CLAS.

54



Chapitre 2. Le détecteur CLAS

Chaque secteur était constitué de deux modules symétriques par rapport au plan bissec-
teur du secteur. Dans un module donné, l’émission Čerenkov laissée par une particule était
focalisée au moyen d’un système de 3 miroirs ; un miroir elliptique, un miroir hyperbolique
et un miroir cylindrique. La lumière était enfin collectée à l’aide d’un cône de Winston et
puis mesurée par un photomultiplicateur (PhotoMultiplier Tube ou PMT). Les assemblages
cône de Winston-PMT étaient placés dans les régions en φ (angle azimutal) cachées par
les bobines supraconductrices.

Les compteurs Čerenkov fournissaient un signal au système de déclenchement de CLAS
lors de la détection d’un électron. Pour chaque segment en θ, les signaux des photomultipli-
cateurs des deux modules étaient additionnés. Les signaux obtenus de cette manière pour les
4 segments voisins étaient ensuite additionnés et forment un groupe. Les segments étaient
groupés de manière à ce que deux groupes voisins, comportant chacun quatre segments,
présentaient deux segments en commun. Ainsi, le premier groupe contenait les régions 1 à
4, le deuxième les régions 3 à 6 et ainsi de suite. Chaque segment était alors contenu dans
8 groupes différents. Il résulte d’un tel groupement une plus grande amplitude de signal,
ce qui permet de choisir un seuil de déclenchement plus élevé et ainsi réduire le bruit de
fond.

2.4 Le détecteur de temps de vol

Le temps de vol d’une particule est définie par :

t =
d

v
, (2.4)

avec d la distance parcourue par la particule de la cible au point d’interaction dans le
détecteur de temps de vol et v la vitesse de la particule. Les mesures de t par le détecteur
de temps de vol et de d par les chambres à dérive donne une mesure de v. Combinée à la
mesure de l’impulsion, cette information (applicable aux particules chargées uniquement)
permet de mesurer la masse de la particule (m = p

γv
), donc de l’identifier.

Dans le détecteur CLAS, la mesure du temps de vol s’effectuait à l’aide de scintillateurs
plastiques [38]. Chacun des six secteurs de CLAS comprenait 57 barreaux scintillateurs
Bicron BC-408 répartis sur 4 plans. Leur disposition est présentée sur la figure 2.9.

Ces barreaux étaient arrangés parallèlement à la direction du champ magnétique (direc-
tion azimutale). L’épaisseur des barreaux était de 5.08 cm, ce qui est suffisant pour mesurer
un signal produit par des particules au minimum d’ionisation, comme c’est le cas des pions
aux énergies que l’on trouvait typiquement dans CLAS. L’ensemble des scintillateurs d’un
secteur donné couvrait un domaine angulaire en θ (angle polaire) compris entre 8° et 142°.
La largeur des scintillateurs situés aux angles avant (θ < 45°) était de 15 cm, tandis que
celle des autres était de 22cm. La longueur des barreaux variait selon θ entre 32 cm et 450
cm.

La particule, chargée ou neutre, interagit avec le scintillateur en émettant un signal
lumineux. La lumière se propage dans le barreau et est collectée par deux photomultipli-
cateurs placés de part et d’autre du barreau. Le temps de vol est obtenu par la moyenne
des temps mesurés par les TDC associés à chaque photomultiplicateur, rapporté à l’ins-
tant du déclenchement. Cette valeur moyenne est indépendente de la position du point
d’interaction de la particule dans le barreau.

La résolution temporelle du détecteur varie en fonction de θ, en raison de l’augmentation
de la longueur des scintillateurs avec θ qui entrâıne la dégradation de la résolution. Ainsi,
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Figure 2.9 – Un détecteur de temps de vol parmi les 6 secteurs de CLAS.

la résolution pouvait atteindre 120 ps aux angles avant alors qu’elle était d’environ 250 ps
pour les angles arrières (θ > 90°).

Le détecteur de temps de vol fournissait un signal au système de déclenchement de
CLAS lorsque l’énergie déposée par une particule dans le scintillateur dépassait un certain
seuil. Un circuit électronique se chargeait de traiter les informations provenant des scin-
tillateurs. Ce circuit calculait la moyenne des signaux provenant des photomultiplicateurs
situés aux extrémités d’un scintillateur. Le détecteur de temps de vol pouvait être utilisé
pour mesurer le dépôt d’énergie d’une particule, dans les régions non couvertes par les
calorimètres électromagnétique.

2.5 Le calorimètre électromagnétique

Un calorimètre électromagnétique permet de localiser et mesurer les gerbes
électromagnétiques produites par les particules traversant le détecteur.

Dans le détecteur CLAS, les calorimètres électromagnétiques (Electromagnetic Calori-
meters ou ECs [39]) avaient pour fonctions :

– la détection des électrons diffusés d’une énergie supérieure à 0.5 GeV et le
déclenchement de l’acquisition ;

– la détection des photons d’une énergie supérieure à 0.2 GeV, qui permet la recons-
truction des mésons neutres décroissants en deux photons, comme les π0 et les η ;

– la détection des neutrons. L’efficacité de détection des neutrons par les calorimètres
de CLAS était d’environ 25-30%.

Chaque secteur était équipé d’un module couvrant un domaine angulaire en θ allant de
8° à 45°. La structure d’un module est présentée dans la figure 2.10.

Le calorimètre, en forme de triangle quasiment unilatéral, était composé de 39 couches.
Chaque couche était constituée d’une plaque de scintillateur plastique Bicron BC412 d’une
épaisseur de 1 cm et d’une plaque de plomb d’une épaisseur de 2.2 mm. Les plaques de scin-
tillateurs étaient larges de 10 cm, et leur longueur variait entre 15 cm et 4.2 m. L’épaisseur
totale du calorimètre représentait 16 longueurs de radiation. Chaque couche de scintillateur
se divisait en 36 bandes orientées parallèlement à un des côtés du triangle. D’une couche à
l’autre, l’orientation des bandes diffèrait de 120°. Les bandes de scintillateurs définissaient
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Figure 2.10 – Vue éclatée d’un des six calorimètres électromagnétiques de CLAS. Les
stries sur les plaques montrent l’orientation des scintillateurs selon la vue U,V ou W.

ainsi 3 orientations ou vues dénommées U,V et W. Un module EC comportait 13 couches
dans chaque orientation. Pour améliorer la séparation pions/électrons, le calorimètre a
été divisé en deux parties : la partie avant ou Inner, contenant les 5 premiers groupes
de scintillateurs U,V et W, et la partie arrière ou Outer, contenant les 8 groupes U,V,W
restant.

Chacun des 36 scintillateurs était reliée à un photomultiplicateur via une fibre op-
tique. Pour un numéro de bande donné (1-36) et une vue donnée (U,V ou W), un pho-
tomultiplicateur était associé à chacune des deux parties, Inner et Outer. Chacun des
6 calorimètres de CLAS comportait ainsi : 36(bandes)×3(vues)×2(parties)=216 photo-
multiplicateurs. On dénombre 1296 photomultiplicateurs et 8424 scintillateurs dans les 6
calorimètres électromagnétiques de CLAS.

Les calorimètres fournissaient un signal au système de déclenchement de CLAS lors de
la détection d’un électron, à partir de l’énergie totale déposée par celui-ci. Pour cela, les
signaux des 216 photomultipicateurs de chaque module EC étaient additionnés et plusieurs
combinaisons pouvait en résulter : somme totale, sommes partielles (partie Inner, partie
Outer, somme des vues). La résolution en énergie ∆E

E
était de l’ordre de 10%√

E
.

2.6 La cavité de Faraday

A la sortie du Hall B, le faisceau d’électrons était collecté par une cavité de Faraday
(figure 2.11). Ce dispositif permettait de mesurer directement la charge du faisceau. La
cavité, composée de 4000 kg de plomb -soit 75 longueurs de radiations- , agit comme un
piège à électrons. Le courant crée dans la partie conductrice est canalisé vers un dispositif
de conversion de courant en tension.
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Figure 2.11 – Schéma de la cavité de Faraday.

2.7 Le système de déclenchement

Au cours d’une expérience, le détecteur doit être en mesure de traiter et conserver
uniquement des évènements dans lequels les particules sont correctement mesurées. Pour
cela, les informations des modules ADCs (Analog to Digital Converter) et TDCs (Time to
Digital Converter) provenant des différents détecteurs étaient gérées par un coordinateur
de déclenchement (Trigger Supervisor ou TS).

Pour un faisceau d’électrons, le TS reposait sur un système de déclenchement hiérarchisé
à deux niveaux :

– Le premier niveau (L1) exploitait les informations provenants des PMTs des
différents détecteurs. Ces informations comprenaient notamment la localisation des
points d’interactions dans les modules de temps de vol, les signaux des compteurs
Čerenkov et l’énergie déposée dans le calorimètre. Les modules ADCs et TDCs des
différents détecteurs codaient ces informations sous forme de séquences binaires. Ces
séquences étaient comparées à une table prédéfinie de séquences qui décrivent ce
qu’une particule produirait dans le détecteur considéré.

– Le deuxième niveau (L2) prenait en considération les informations de trajecto-
graphie établies grâce aux chambres à dérive. Ce niveau de déclenchement permet-
tait en particulier de rejeter les rayonnements cosmiques. Le déclencheur tentait de
corréler les informations du premier niveau avec les trajectoires dans la chambre à
dérive. Si aucun candidat ne présentait une corrélation suffisament importante, le
Trigger Supervisor envoyait un signal de réinitialisation dit fast clear. L’acquisition
de l’évènement était alors annulée et le système de déclenchement se réactivait au
prochain évènement.

2.8 Le système d’acquisition

Lorsque le Trigger Supervisor acceptait un évènement, il envoyait un signal démarrant
la numérisation des informations ADC et TDC.

Les données numérisées étaient lues par 17 controleurs de lectures, appelés ROCs (Read
Out Controllers), qui les transmettaient par le réseau vers le � constructeur d’évènements�,
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Event Builder (EB sur la figure 2.12). Ce programme collectait les informations et les
transcrit au format BOS [40]. Pour chaque évènement, les données étaient rangées dans
des � banques � selon le détecteur d’origine, le type de données (simulation ou données
réelles), etc.

Ensuite, le programme Event Recorder (ER sur la figure 2.12) se chargeait d’écrire ces
banques d’informations dans des fichiers stockés temporairement sur des disques RAIDs
(Redundant Array of Inexpensive Disk). Finalement, ces fichiers étaient copiés sur un
� silo � de grande capacité pour un stockage permanent.

Le taux d’acquisition d’évènements pouvait atteindre 4 kHz et le taux d’enregistrement
était de 25 Mo/s, avec un temps mort inférieur à 10%.

Figure 2.12 – Schéma du système de déclenchement et d’acquisition de CLAS.
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Chapitre 1

L’expérience e1-6

Ce chapitre est consacré à l’expérience analysée dans ce travail de thèse. On décrira
dans un premier temps les conditions expérimentales, puis on s’intéressera à la mesure de
la charge intégrée du faisceau.

1.1 Les conditions expérimentales

Les expériences conduites dans le Hall B dépendent du type de faisceau délivré et de la
cible employée. L’expérience e1-6 était une expérience de diffusion du faisceau d’électrons
de CEBAF sur une cible de dihydrogène liquide refroidie à 4◦K.

Le faisceau était caractérisé par une énergie moyenne de 5.754 GeV et par une intensité
de 7 nA. La cible (figure 1.1), d’une longueur de 4.5 cm, était positionnée à -4 cm du centre
de CLAS, le long de l’axe du faisceau.

Figure 1.1 – Modélisation de la cible dans le programme de simulation de CLAS GSIM.

L’expérience s’est déroulée d’octobre 2001 à janvier 2002, divisée en 3 périodes de fais-
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ceau (voir figure 1.2). Au total, l’expérience représente environ 1000 heures de temps de
faisceau.

Le système de déclenchement de CLAS doit permettre l’acquisition d’évènements cor-
respondant à la diffusion d’un électron sur la cible considérée. Pour cela, il faut fixer des
seuils de déclenchement sur les signaux émis par les détecteurs Čerenkov et les calorimètres
electromagnétiques, impliqués dans le niveau L1 du système de déclenchement.

Un seuil de 20 mV a été imposé aux compteurs Čerenkov. Dans les calorimètres electro-
magnétiques, un seuil de 75 mV a été imposé pour le module Inner du calorimètre tandis
que ce seuil valait 175 mV pour la totalité du calorimètre. Avec un taux d’acquisition
de 1.5 kHz et un temps mort de 5 à 7%, 1.25 milliards d’évènements ont été enregistrés,
représentant 11 Téra-octets de données.

L’expérience est divisée en périodes de faisceaux appelées runs. Il peut arriver qu’un
élément de CLAS ou le faisceau lui-même voie ses performances réduites pendant une cer-
taine période. La mesure de quantités physiques peut en être compromise. Les précédentes
analyses réalisées avec cette expérience ont permis d’établir une liste de runs pour laquelle
une étude physique est fiable. Fort de cette expérience, une telle liste de runs [43] servira
de base pour la présente analyse de données.

Figure 1.2 – Données accumulées (en unité arbitraire) en fonction du jour de prise de
données.

1.2 Détermination de la luminosité intégrée

La luminosité intégrée est définie par :

Lint = ncible
Qint

e
=

2lcibleρHNA

MH2

Qint

e
, (1.1)
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où :

– ncible est le nombre d’atomes d’hydrogène par cm2 contenus dans la cible ;
– Qint est la charge totale accumulée pendant la durée de l’expérience ;
– lcible est la longueur de la cible (5 cm) ;
– ρH est la densité de l’hydrogène liquide (0.0711 g/cm3) ;
– e = 1.602× 10−19C est la charge de l’électron.

Pour déterminer la luminosité intégrée, il est nécessaire de mesurer la charge intégrée
Qint à l’aide de la cavité de Faraday. Le signal de la cavité est mesuré par deux échelles de
comptage (scalers) appelées FC et FCG. Avec le FCG, la charge d’un run est incrémentée
uniquement lorsqu’une acquisition est déclenchée. Par conséquent, la mesure de la charge
intégrée Qint avec cette échelle de comptage tient compte du temps mort de l’acquisition.
Le compteur FCG est lu toutes les 10 secondes. Par conséquent, pendant cette durée, les
évènements enregistrés sont associés à une même valeur de charge Qi, comme l’illustre la
figure 1.3. On désigne ce groupe d’évènements par une plage d’équicharge. Une fois les
10 secondes passées, la charge accumulée est incrémentée à la charge Qf et une nouvelle
plage d’équicharge est enregistrée. La quantité δQ = Qf −Qi correspond donc à la charge
apportée par la tranche d’équicharge i.

Figure 1.3 – Distribution de la charge lue par la cavité de Faraday en fonction du numéro
de l’évènement pour le run 30587.

Pour s’assurer que la charge a été correctement mesurée pour une équicharge donnée, la
chargeQf−Qi apportée par cette tranche doit etre mise en rapport au nombre d’évènements
contenus dans l’équicharge i. La figure 1.4 montre la distribution du nombre d’évènements
par équicharge N divisé par l’écart de charge Qf −Qi, intégrée sur tous les runs. La majo-
rité des valeurs N

Qf−Qi
forment une distribution gaussienne. Le centre de ce pic correspond

à la valeur N
Qf−Qi

mesurée la plus probable. Il existe cependant des équicharges dont la

valeur N
Qf−Qi

est considérablement plus faible. Cela indique un problème lié à l’acquisition

ou au faisceau à un instant donné de l’expérience. De plus, le compteur FCG n’est pas
synchronisé avec le début d’un run. Ainsi, la charge réelle de la première et de la dernière
équicharge d’un run ne correspondent pas à celles mesurées ; ces équicharges sont donc
rejetées. La réjection est définie par un ajustement gaussien du pic de la figure 1.4 et la
coupure est établie à 5σ autour de pic. Les délimitations de cette coupure sont représentées
dans la figure 1.5, en fonction du numéro de run.
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Figure 1.4 – Distribution N/(Qf −Qi) intégrée sur tous les runs.

Figure 1.5 – N
Qf−Qi

en fonction du numéro de run. Les lignes rouges pointillées délimitent

la coupure à 5σ appliquée aux équicharges.
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En définitive, la charge totale intégrée correspond à :

Qint =
∑

équicharges i à 5σ

Qi+1 −Qi (1.2)

et vaut Qint = 20.6 mC. On en déduit la luminosité intégrée :

Lint = 2.76× 1040 cm−2 ∼= 30 fb−1 . (1.3)
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Chapitre 2

Sélection des évènements
ep→ e′p′π+π−

La première étape de l’analyse consiste à sélectionner le canal exclusif ep → e′p′π+π−

dans les données enregistrées pendant l’expérience.

L’électron diffusé, le proton de recul et le π+ de décroissance sont directement identifiés
avec le détecteur CLAS. L’identification du π+ est privilégiée par rapport au π−, car la
polarité du champ magnétique de l’expérience fait dévier les particules de charges négatives
vers l’axe du faisceau, où l’acceptance de CLAS est limitée.

Le canal exclusif ep→ e′p′π+π− est déterminé par sélection sur la masse manquante X
du système e′p′π+X.

2.1 Identification de l’électron

2.1.1 Préselection

Dans l’optique de réduire la quantité de données à traiter, des conditions minimales à
l’identification de l’électron sont requises :

– Les particules de charge q = −1 sont considérées.
– Seuls les trajectoires ayant passé l’étape de reconstruction Time Based Tracking sont

conservées.
– La trajectoire doit passer dans les détecteurs DC, CC et EC d’un même secteur de

CLAS.
– En raison des fluctuations des signaux de déclenchement par rapport aux seuils fixés

pour EC et CC, une coupure sur l’impulsion est imposée : pe− ≥ 0.8 GeV/c.

2.1.2 Coupures sur la position du vertex Zvertex

Seuls les électrons ayant diffusé dans la cible de dihydrogène doivent être considérés.
Pour cela, il faut appliquer des coupures de sélection sur le point d’interaction (vertex ) de
l’électron avec un proton de la cible par rapport à l’axe du faisceau (axe Z). La figure 2.1
montre les distributions de la coordonnée Z du vertex pour les particules négatives detectées
dans chacun des 6 secteurs de CLAS. Chaque distribution montre deux structures : un
plateau centré à -4 cm et d’une largeur de 10 cm, correspondant à la cible, et un pic à 0
cm environ qui correspond à la feuille d’aluminium utilisée pour positionner précisément
la cible. Les distributions sont décalées d’un secteur à l’autre. Ce décalage provient d’un
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décentrement de la cible par rapport à la position transverse du faisceau. En conséquence,
les coupures de sélection doivent être adaptées selon le secteur considéré.
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Figure 2.1 – Distributions de la position en Z du vertex pour les particules de charge
négative détectées dans chacun des 6 secteurs de CLAS. Les lignes rouges pointillées
représentent les coupures de sélection.

2.1.3 Coupures fiducielles

Les différents détecteurs de CLAS présentent des régions où la détection des parti-
cules n’est pas fiable. Les détecteurs Čerenkov et les calorimètres électromagnétiques sont
particulièrement concernés par les inefficacités géométriques :

1. Les coupures fiducielles des détecteurs Čerenkov : L’efficacité de collection
de la lumière Čerenkov décrôıt en se rapprochant aux extrémités des miroirs du
détecteur.

Cela se produit notamment pour des particules traversant le détecteur à proximité
de ces extrémités. Pour éliminer ces zones de faibles efficacités, une étude [44] selon
l’impulsion de l’électron a permis d’établir la paramétrisation suivante pour e1-6 :

θ ≥ θcut, θcut = C1 +
C2

(p+ pshift)
(2.1)

|φS| ≤ C4sin(θ − θcut)C3pα , (2.2)

où φS est l’angle azimutal de la particule par rapport au centre du secteur par lequel
elle passe. Les valeurs numériques des paramètres sont : C1 = 12◦, C2 = 18.5◦ GeV−1,
C3 = 0.25 GeV−α, C4 = 25◦, α = 0.41667 et pshift = 0.14 GeV.
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Figure 2.2 – Distribution angulaires (θ, φ) des particules négatives avant (a) et après (b)
application des coupures fiducielles sur les détecteurs Čerenkov.

2. Les coupures fiducielles des calorimètres électromagnétiques : L’identifica-
tion d’une particule par un calorimètre électromagnétique nécessite la mesure de la
totalité de la gerbe créée par la particule. A proximité des bords d’un calorimètre,
une partie de la gerbe ne sera pas reconstuite. On estime qu’un électron initiant une
gerbe doit être détecté à au moins de 10 cm des bords d’une couche du calorimètre
pour être mesuré correctement. Les particules dont les points d’interactions dans
les coordonnées (U, V, W) sont trop proches des bords sont rejetées . La figure 2.3
montre les coupures dans chacune des vues U,V,W de l’EC.
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Figure 2.3 – Distributions des points d’interactions des particules de charge négative
selon les coordonnées U,V et W des calorimètres. Les coupures sont représentées par les
lignes rouges.
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2.1.4 Discrimination π−/e−

Les coupures fiducielles permettent de conserver des informations fiables pour identifier
les particules. Mais ces coupures seules ne suffisent pas pour l’identification. En effet, les
électrons et les pions chargés négativement peuvent tous deux interagir avec les calorimètres
electromagnétiques et produire de la lumière dans les compteurs Čerenkov (à partir d’une
impulsion p ≥ 2.5 GeV/c). Des pions chargés négativement peuvent alors être identifiés
par erreur comme des électrons. Pour réduire cette contamination, il faut imposer des
contraintes supplémentaires basées sur les propriétés d’interaction des particules avec les
détecteurs EC et CC.

Sélection sur la fraction d’énergie totale déposée dans les calorimètres EC Dans
les calorimètres électromagnétiques, un électron produit une gerbe électromagnétique dont
l’énergie déposée est proportionnelle à l’impulsion de la particule. Cette propriété se mani-
feste dans la figure 2.4 par une structure constante en Etot

p
selon l’impulsion de la particule.

La structure est caractérisée en évaluant le centre et la largeur pour différentes tranches
en impulsion.
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Figure 2.4 – Dépôt total d’énergie dans l’EC divisé par l’impulsion en fonction de l’im-
pulsion pour des particules chargées négativement. Les lignes rouges définissent la coupure
de sélection à 3σ sur la distribution des électrons. La ligne rouge pointillée définit le centre
de la distribution.

La coupure de sélection sur cette distribution est ainsi paramétrisée :

|E
p
− µ(p)| < 3σ(p) (2.3)

µ(p) = 0.240571 + 0.046972× p− 0.012609× p2 + 0.001081× p3

σ(p) = (
0.025913√

p
)2 + (0.021957)2 .

Les pions d’impulsions de l’ordre de p ≈ 1 GeV/c sont caractérisés par une perte
d’énergie minimale dans le matériau qu’ils traversent (Minimum Ionizing Particle). Ainsi,
ils déposent la même quantité d’énergie par épaisseur de matériau traversé (2 MeV/cm
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([45]) environ), indépendamment de leur impulsion. La partie des calorimètres qui collecte
l’énergie déposée par une particule est constituée de 39 couches de scintillateurs de 10mm
chacune. L’énergie totale déposée par un pion dans les calorimètres de CLAS peut alors
être calculée :

Etot = 39× 10 mm× 2 MeV/cm = 78 MeV. (2.4)

Rappelons que les calorimètres de CLAS sont groupés en deux parties : une partie
interne (Inner) est constituée des 15 premières couches, et la partie externe (Outer) des
24 autres couches. Il est alors possible de mesurer Einner et Eouter, les énergies deposées
dans chacune des deux parties. La figure 2.5 montre la distribution de Einner en fonction
de Eouter. Deux structures apparaissent : un pic localisé à des faibles valeurs de Einner et
Eouter et une plus large distribution à plus grandes valeurs de Einner. On s’attend à ce que
l’électron perde une grande partie de son énergie dans la partie interne du calorimètre en
raison du dépôt d’énergie proportionnel à son impulsion, par conséquent Einner est plus
important que Eouter. Quant aux pions , ils perdent la même quantité d’énergie par unité
de longueur, d’où la relation entre Einner et Eouter pour les pions :

Einner
15

=
Eouter

24
=
Etot
39

=
78

39
, (2.5)

d’où Einner = 30 MeV et Eouter = 48 MeV. La structure dans la partie Einner ≥ 60 MeV
est donc attribuée aux électrons.
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Figure 2.5 – Fraction d’énergie déposée dans la partie interne (Inner) en fonction de
celle déposée dans la partie externe (Outer) du calorimètre. La coupure Einner > 60 MeV
est représentée par la ligne rouge.

Correspondance en temps et en angle de la trajectoire avec les données
des Compteurs Čerenkov : Le rayonnement Čerenkov émis par des électrons
ultra-relativistes forme dans un photomultiplicateur une distribution poissonienne selon
le nombre de photoélectrons produit à la photocathode. Or, en examinant le spectre
d’émission (figure 2.6) des particules ayant passé les coupures de vertex, les coupures fidu-
cielles, et de fraction d’énergie déposée pour la selection de l’électron, deux structures sont
observées. La première est une large distribution poissonienne de valeur moyenne d’environ
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10 photoélectrons, à laquelle les électrons contribuent majoritairement. La deuxième est
un pic étroit à fort taux de comptage à 1-2 photoélectrons environ.

Figure 2.6 – Spectre d’émission de photoélectrons (x10) par les particules candidates à
être identifiées comme électrons.

Or, la corrélation du spectre d’émission des photoélectrons en fonction de la fraction
d’énergie déposée dans EC divisée par l’impulsion (figure 2.7) montre qu’une large part des
évènements dans la région du pic 1-photoélectron dépose une fraction d’énergie inférieure
à ce qui est attendu pour un électron (Etot

p
≈ 0.3) .
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Figure 2.7 – Fraction d’énergie déposée Etot
p

en fonction du nombre de photoélectrons

(x10).

De fait, le déclenchement de l’acquisition d’un évènement de CLAS repose sur la cöınci-
dence d’une particule avec les hits mesurés dans l’EC et le CC au sein d’une fenêtre de
150 ns. Or, cette cöıncidence repose uniquement sur une correspondance selon le secteur
des informations mesurées. Ainsi, un pion émis à grand angle polaire, hors de la couver-
ture angulaire des détecteurs Čerenkov, peut cöıncider dans la fenêtre de déclenchement
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(a) (b)

Figure 2.8 – Exemple de l’application de la procédure CC Matching pour le segment 7
du secteur 3 du détecteur Čerenkov : a) Distribution angulaire par rapport au centre du
segment des particules ayant passés les coupures fiducielles et les coupures sur la fraction
d’énergie déposée dans EC. b) Distribution du temps d’arrivée entre le compteur Čerenkov
et le détecteur de temps de vol. En vert, les particules ayant émis Nphe ≤ 2.5. En rouge,
celles ayant émis Nphe ≥ 2.5. En noir, les deux contributions. Les lignes verticales rouges
délimitent les coupures de sélection.

avec un signal de bruit d’un compteur Čerenkov dans le même secteur que le pion. Dans
ce cas de figure l’évènement est quand même acquis avec un signal à bas photoélectrons
correspondant à du bruit.

L’étude [46] propose de réduire le pic 1-photoélectrons en contraignant davantage la cor-
respondance de la trajectoire reconstruite dans les chambres à dérive avec les informations
mesurées par le compteur Čerenkov.

La stratégie (surnommée CC Matching) repose sur deux types de sélection : des cou-
pures de sélection géométrique de la trajectoire de la particule dans le détecteur Čerenkov
et de temps de vol entre le compteur Čerenkov et le détecteur SC touché par la particule.

Dans le premier cas, la trajectoire de la particule est prolongée au-delà des chambres
à dérive de manière à localiser la particule dans les détecteurs Čerenkov. Dans un secteur
donné, les segments Čerenkov sont modélisés par un plan sur lequel on repère le point
d’impact de la particule. Dans ce plan sont également projetées les coordonnées délimitant
les différents segments polaires du détecteur. On peut ainsi établir l’écart en angle polaire
de la particule par rapport au centre du segment Čerenkov par lequel passe cette particule.

Ensuite, pour chaque secteur et chaque segment Čerenkov donné, on examine comment
sont distribuées, selon l’écart polaire au centre du segment θ et le temps de parcours CC-
SC δtCC−SC , les particules ayant Nphe < 2.5, dominées par le bruit et les particules ayant
Nphe > 2.5, dominées par des électrons réels. La figure 2.8 illustre la procédure pour le
segment 7 du secteur 3 de CLAS. Dans la distribution de l’écart en angle polaire, on peut
constater une forte concentration des particules Nphe > 2.5 (en rouge) au voisinage du
centre du segment, tandis que les particules Nphe < 2.5 (en vert) sont distribuées plus
uniformément selon l’angle. Les régions où la distribution Nphe < 2.5 domine sont exclues,
car il s’agit de régions trop contaminées par le bruit. La distribution δtCC−SC montre un
pic dominé par les particules Nphe > 2.5. On rejette également ici les régions dominées par
le pic 1-photoélectron .

L’application de ces deux coupures permet de réduire considérablement le pic à 1-
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Figure 2.9 – Spectres d’émissions des photoélectrons dans les détecteurs CC pour les
particules candidates à être identifiées comme électrons. En noir, le spectre d’émission pour
les particules ayant passés les coupures fiducielles et les coupures sur la fraction d’énergie
déposée. En rouge, le spectre d’émission pour les mêmes conditions après application de la
procédure CC Matching.

photoélectron, comme le montre la figure 2.9.

2.2 Identification du proton et π+

2.2.1 Préselection

Une fois l’électron identifié, les conditions minimales requises pour l’identification du
proton et du π+ sont les suivantes :

– Les particules de charge q 6= 0 sont considérées.
– Seules les traces ayant passé l’étape de reconstruction Time Based Tracking sont

conservées.
– Une coupure sur l’impulsion est imposée : p ≥ 0.2 GeV/c.

2.2.2 Coupures fiducielles dues aux bobines toröıdales

Le détecteur CLAS présente des zones mortes en raison de l’espace occupé par les bo-
bines toroidales entre les différents secteurs. La coupure fiducielle est décrite de la manière
suivante :

φmin(S) ≤ φ(S) ≤ φmax(S) , (2.6)

avec :

– S le numéro de secteur de CLAS ;
– φmin(S) = −a0m(S)× (1− e−a1m(S)×(θ−a2m(s))) + a3m(S) ;
– φmax(S) = −a0p(S)× (1− e−a1p(S)×(θ−a2p(s))) + a3p(S).
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Les paramètres aim et aip pour l’expérience e1-6 ont été obtenus dans l’étude [47] par un
ajustement des distributions en φ pour les particules p, π+ et π−, selon différentes tranches
en θ. L’effet de la coupure fiducielle est visible dans la figure 2.10.
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Figure 2.10 – Distribution des particules positives avant (a) et après (b) coupures fidu-
cielles dues aux bobines toröıdales.

2.2.3 Coupures sur la position du vertex en Z

Une coupure sur la position Z du vertex reconstruit pour la particule chargée est ap-
pliquée selon le secteur traversé par la particule (figure 2.11). La largeur ∆VZ des coupures
(16 cm) est plus large que les coupures pour la sélection de l’électron (7 cm) pour tenir
compte des différences de résolutions dans la reconstruction.
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Figure 2.11 – Distributions de la position en Z du vertex pour les particules de charge
positive détectées dans chacun des 6 secteurs de CLAS, après coupures fiducielles dues aux
bobines toröıdales. Les lignes rouges pointillées représentent les coupures de sélection.

2.2.4 Sélection par mesure du temps de vol

L’identification du proton et du pion est réalisée à l’aide du temps de vol t donné par les
détecteurs SC, la longueur de trajectoire l et l’impulsion p reconstruites dans les chambres à
dérive. On peut alors calculer la vélocité β de la particule et la comparer à la vélocité d’une
particule candidate de masse m qui évoluerait à la même impulsion que celle mesurée :

∆βm = βmes − βcalc(m) =
l

ct
− p√

p2 +m2
. (2.7)

La figure 2.12 montre les distributions ∆β selon l’impulsion de la particule. On constate
l’existence de plusieurs structures, que l’on peut associer à différentes particules. Dans la
distribution ∆βproton (respectivement ∆βπ+), la distribution centrée à 0 corresponds aux
proton (π+).

Les protons et les pions sont sélectionnés avec les coupures :

|∆βproton| ≤ 0.05 (2.8)

|∆βπ+| ≤ 0.045 (2.9)

Notons qu’au-delà de 2-2.5 GeV/c, la plupart des particules peut présenter une valeur
de ∆βproton et de ∆βπ+ qui satisfait à la fois les critères de sélection pour le proton et pour
le pion. Dans ce cas, la résolution sur le temps de vol ne permet pas de déterminer sans
ambiguité la nature de la particule. De tels évènements sont donc rejetés de l’analyse.
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Figure 2.12 – Distributions de ∆β (a) calculé avec la masse du proton et (b) calculé avec
la masse du pion en fonction de l’impulsion p . Les coupures d’identification du proton
(respectivement du pion) sont représentées par les lignes noires continues.

2.3 Corrections d’impulsion au vertex

Les particules de l’état final perdent de l’énergie le long de leur parcours par interaction
avec les matériaux des détecteurs, ainsi que par rayonnement de freinage dû à la courbure
de la trajectoire par le champ magnétique de CLAS.

L’objectif est de retrouver la cinématique d’une particule à son origine. Les simulations
Monte Carlo permettent de retrouver la cinématique au vertex d’une particule recons-
truite par le programme de simulation de CLAS, GSIM (se réfèrer au chapitre 3 pour une
description détaillée des simulations Monte Carlo).

On peut alors comparer chacune des variables cinématiques (p, θ, φ) des particules
générées au vertex avec ce qui a été mesuré par CLAS. La figure 2.13 représente le rapport
de l’impulsion générée au vertex par rapport à l’impulsion reconstruite pour des protons
dans le canal exclusif epπ+π−. On constate un écart pouvant atteindre 10% environ vers
les faibles impulsions. Le centre de la distribution en fonction de l’impulsion reconstruite
est paramétrisé à partir des différentes projections de la distribution selon des tranches en
impulsion. Une fois déterminée, cette paramétrisation de pGEN

pREC
permet de calculer l’impul-

sion corrigée, définie par pcorr = p · pGEN
pREC

. Les paramétrisations obtenues dans cette analyse
pour l’électron, le proton et le pion sont les suivantes :

pcorr = p · (1.001 +
1.331× 10−3

p
− 4.32× 10−4

p2
) pour les électrons (2.10)

pcorr = p · (0.9947 +
3.425× 10−2

p
− 6.42× 10−2

p2
+

5.76× 10−2

p3

− 2.25× 10−2

p4
+

3.36× 10−3

p5
) pour les protons (2.11)

pcorr = p · (1.001 +
4.57× 10−4

p
+

5.1× 10−5

p2
) pour les π+. (2.12)

En ce qui concerne l’angle polaire θ et l’angle azimutal φ, l’écart relatif entre ce qui est
généré et ce qui est mesuré n’excède pas 0.2% . Par conséquent, aucune correction n’a été
appliquée sur les coordonnées angulaires.
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Figure 2.13 – pGEN
pREC

en fonction de l’impulsion (à gauche), de l ’angle polaire (au milieu),

et de l’angle azimutal (à droite) d’un proton reconstruit. La courbe rouge sur la figure à
gauche représente une fonction ajustée sur le centre de la distribution.

2.4 Sélection du canal ep→ e′p′π+π−

2.4.1 Sélection sur la masse manquante e′p′π+X

Une fois que l’électron diffusé, le proton de recul et le π+ ont été identifiés, l’exclusivité
de l’état final est déterminée par une sélection aux voisinage de la masse du pion dans le
spectre de masse manquante epπ+X. Le quadrivecteur pX de X est défini par :

pX = pp + pe − (pe′ + pp′ + pπ+) , (2.13)

où p désigne le proton de la cible, e l’électron du faisceau, e′ l’électron diffusé, p′ le proton
de recul et π+ le pion de décroissance identifié avec CLAS.

La figure 2.14 représente ce spectre. Le spectre montre un pic à la masse du pion
suivi par un continuum correspondant à la masse de multiples pions. La détermination des
valeurs des coupures a fait auparavant l’objet d’une étude systématique dans la note [48],
qui a permis d’établir le taux de comptage optimal pour le méson ρ0. Les valeurs obtenues
seront réutilisées dans ce travail :

− 0.05 ≤Mm2[epπ+X] ≤ 0.08 GeV2. (2.14)
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Figure 2.14 – Distribution de la masse carrée de X dans le système epπ+X. La largeur
à mi-hauteur du pic vaut Γ = 0.04 GeV2.

2.4.2 Coupure sur le pic 1-photoélectron

Malgré les coupures appliquées dans les détecteurs Čerenkov pour identifier les électrons,
le pic à 1-photoélectron subsiste après la coupure d’exclusivité sur la masse manquante
(2.14). La figure 2.15 montre que ce pic apparait surtout dans la région pe− ≤ 1.5GeV/c
et Nphe ≤ 2. N’étant pas en mesure de réduire la contamination dans cette région, tous les
évènements dans cette région sont rejetés.

2.4.3 Sélection sur le vertex Z

La position reconstruite du vertex le long de l’axe Z doit être la même pour l’électron,
le proton et le π+, aux effets de résolution près. Pour cela, on considère les distributions
∆V pe

z = V p
z − V e

z et ∆V πe
z = V π

z − V e
z , fonctions respectivement de l’impulsion du proton

et du π+. Pour ij = pe ou ij = πe, les coupures suivantes sont appliquées :

|∆V ij
z (pi)− µij(pi)| < 4.5× σij(pi) (2.15)

Dans chaque secteur les paramétrisations pour la valeur moyenne µij(p) et la largeur
σij(p) ont la forme :

µij(pi) = αij + βijpi + γ(pi)2 (2.16)

σij(pi) = αij + βijpi + γ(pi)2 . (2.17)

L’effet de ces coupures est visible dans la figure 2.16.
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photoélectrons émis, après application de la coupure d’exclusivité sur la masse manquante.
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Chapitre 3

Mesure des sections efficaces
γ∗p→ p′π+π−

Ce chapitre explique comment a été calculée la section efficace de la réaction γ∗p →
p′π+π−à partir de données expérimentales. C’est à partir des spectres de section efficace
en fonction de la masse invariante Mπ+π− des produits de décroissance en deux pions d’un
méson, que sont extraits les mésons ρ0(770), f0(980) et f2(1270), comme cela sera décrit
dans le chapitre suivant.

3.1 L’état final e′p′π+π−

La figure 3.1 montre la distribution des évènements ep → e′p′π+π− pour chacune des
7 variables cinématiques décrivant le processus, définies dans la partie I chapitre 2, ainsi
que selon l’énergie W du centre de masse du système (γ∗, p).

L’état final e′p′π+π− est le produit de différentes réactions possibles ; il peut provenir
aussi bien de la décroissance d’un méson (ep → epM ↪→ ππ) que de la décroissance d’un
état excité du nucléon (ep→ eπN∗ ↪→ pπ).

Outre la décroissance d’un méson en π+π−, il faut donc considérer les différentes combi-
naisons pπ pouvant former une résonance baryonique. Les diagrammes de Dalitz de la figure
3.2 permettent de les visualiser. On peut constater une importante contribution du canal
ep → eπ−∆++(1232) ↪→ pπ+, dont la structure vient fortement contaminer la région de
masse Mπ+π− du ρ0(770) et du f0(980). Les productions des résonances ∆0(1232) ↪→ pπ−,
D13(1520) ↪→ pπ− ainsi que F15(1680) ↪→ pπ− sont également observées.

La figure 3.3 illustre l’évolution de l’énergie du centre de masse W selon la masse
invariante de la paire π+π−. Elle permet de corréler la production des mésons aux éventuels
états excités du proton.

Une importante structure apparâıt dans la région de masse invariante Mπ+π−=770 MeV,
correspondant à la décroissance du méson ρ0.

A W=1.72 GeV, la production du ρ0 provient de l’excitation du proton vers l’état
N(1720) : γ + p→ N(1720)→ p+ ρ0 ↪→ π+ + π−. Cependant, dans la même région en W,
l’étalement de la structure en fonction de la masse invariante π+π− signe la présence des
états N(1700) et N(1710), qui décroissent en une paire π+π− non résonante.

Pour l’étude des mésons ρ0, f0 et f2, les contributions N(1700) et N(1710) sont rejetées.

Ainsi, seule la région cinématique W > 1.8 GeV, hors de la région des résonances, sera
considérée dans le reste de ce travail.
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Figure 3.1 – Distributions des variables cinématiques des évènements ep → e′p′π+π−

(données expérimentales).

84



Chapitre 3. Mesure des sections efficaces γ∗p→ p′π+π−

(GeV)-π+πM
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(G
eV

)
+π

p
M

1

1.5

2

2.5

3

0

100

200

300

400

500

600

700

800

(1232)++∆

(770)0ρ

(GeV)-π+πM
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(G
eV

)
-π

p
M

1

1.5

2

2.5

3

0

100

200

300

400

500

(1232)0∆

D13(1520)

F15(1680)

(770)0ρ

Figure 3.2 – Diagrammes de Dalitz pour les données expérimentales. Les résonances
mésoniques et baryoniques principales sont indiquées par les flèches.
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invariante Mπ+π− pour les données expérimentales. La ligne rouge marque la coupure W >
1.8 GeV.
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3.2 Calcul des sections efficaces différentielles

Dans le cadre de la production d’un méson par l’échange d’une seul photon entre
l’électron et le nucléon, la réaction ep→ e′p′M peut etre factorisée en une partie e→ e′γ∗

et γ∗p→ p′M . Ce dernier processus porte les informations liées à la structure du nucléon
et de la production de mésons. On parle alors de sections efficaces réduites qui s’écrivent :

σγ
∗p(Q2, xB) =

1

ΓV (Q2, xB)

d2σep

dQ2dxB
, (3.1)

où ΓV est le facteur de flux du photon virtuel. La probabilité d’émission d’un photon virtuel
par un électron est définie de manière conventionnelle. La convention de Hand [49] sera
employée pour le calcul de ce facteur. Le facteur de flux s’écrit alors :

ΓV =
α

8π

Q2

M2
pE

2

1− xB
x3
B

1

1− ε , (3.2)

avec

ε =
1

1 + 2Q
2+(E−E′)2
4EE′−Q2

, (3.3)

où α = 1
137

est la constante de couplage electromagnétique. E et E ′ designent respecti-
vement l’énergie de l’électron incident et celle de l’électron diffusé. Mp est la masse du
proton.

Une table d’intervalles est définie pour chacune des 7 variables cinématiques Q2, xB, −t,
Φ , cos θHS, φHS, Mπ+π− . En identifiant un certain intervalle d’une variable cinématique
par un numéro, on peut ainsi décrire complètement la cinématique du canal ep→ epπ+π−

par un ensemble de 7 coordonnées que l’on appelera bin 7-dimensionnels .

La présente analyse vise à établir les spectres de section efficace du processus γ∗p →
pπ+π− en fonction de la masse invariante Mπ+π− , dans des intervalles bidimensionnels
(Q2, xB), tridimensionnels (Q2, xB, τ) ou quadridimensionnels (Q2, xB, τ, ν). Les symboles
τ et ν désignent chacun une des 4 autres variables cinématiques : −t, Φ, cos θHS, ΦHS.

On considère l’intervalle (appelé aussi bin) multidimensionnel Ω = (Q2, xB, τ,Mπ+π−).
La section efficace réduite différentielle selon dτdM s’écrit :

dσγ
∗p→pπ+π−

dτdM
=

Nγ∗p→pπ+π−(Ω)

Lint∆ΩFCorrV ol(Ω)Fh(Ω)
(3.4)

où

– Lint est la luminosité intégrée ;
– ∆Ω = ∆Q2∆xB∆τ∆M est l’hypervolume du bin Ω. L’hypervolume est délimité par

une table d’intervalles pour les variables cinématiques dont dépend le bin Ω ;
– FCorrV ol est la correction du volume du bin Ω (section 3.7) ;
– Fh(Ω) est le � facteur de trou �, qui est une correction apportée à l’acceptance dans

le bin Ω (section 3.6) ;
– Nγ∗p→pπ+π−(Ω) est le nombre total d’évènements γ∗p→ pπ+π− corrigés des ineffica-

cités de détection et des effets radiatifs dans le bin Ω. Il est défini par :
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Nγ∗p→pπ+π−(Ω) =

Nepπ+π− (Ω)∑
k=1

fk

=

Nepπ+π− (Ω)∑
k=1

1

ΓV (Q2, xB)AccCorrRad(ω)EffCC(pe− , Q2, xB)
,

(3.5)

où
– N epπ+π−(Ω) est le nombre d’évènements epπ+π− détectés dans le bin Ω.
– k est l’indice sur les évènements epπ+π− detectés. Chaque évènement k est pondéré

par un facteur fk.
– ω = (Q2, xB,−t,Φ, cos θHS, φHS,Mπ+π−) est le bin 7-dimensionnel décrivant la

cinématique de l’évènement k.
– ΓV (Q2, xB) est le facteur de flux du photon virtuel (3.2). Il est calculé pour la

valeur de (Q2, xB) associée à l’évènement k.
– AccCorrRad(Q

2, xB,−t,Φ, cos θHS, φHS,Mπ+π−) est l’acceptance corrigée des effets
radiatifs (section 3.5). A chaque évènement k est associée une valeur d’acceptance
dans la table d’intervalle à 7 dimensions qui correspond à la cinématique ω de
l’évènement.

– EffCC(pe− , Q
2, xB) est l’efficacité des coupures de sélection des électrons dans les

compteurs Cerenkov (section 3.8).
Les évènements pondérés sont regroupés dans le bin cinématique 7-dimensionnel ω

associé. Nγ∗p→pπ+π− est alors la somme de l’ensemble des bins 7-dimensionnels contenus
dans Ω :

Nγ∗p→pπ+π−(Ω) =
∑
ωi⊂Ω

N(ωi) . (3.6)

L’erreur statistique dans chaque bin 7-dimensionnel ω est définie par :

(∆Nγ∗p→pπ+π−(ω))2 = (Nγ∗p→pπ+π−(ω))2

((∆N epπ+π−

N epπ+π−
(ω)
)2

+
(∆Acc

Acc
(ω)
)2
)

, (3.7)

avec ∆N epπ+π−(ω) =
√
N epπ+π−(ω) l’erreur sur le nombre d’évènements epπ+π− detectés

dans le bin ω, et ∆Acc(ω) l’erreur statistique sur l’acceptance, définie par la formule (3.21).
Dans ce travail, l’erreur statistique liée à EffCC est considérée négligeable. En effet,

cette quantité est évaluée à partir de l’échantillon e−X dans les données, ce qui représente
environ 100 millions d’évènements (contre 1.5 millions d’évènements e−pπ+π−).

L’erreur statistique de Nγ∗pπ+π−(Ω) devient :

(∆Nγ∗p→pπ+π−(Ω))2 = (Nγ∗p→pπ+π−(Ω))2
∑
ωi⊂Ω

(
∆Nγ∗p→pπ+π−

Nγ∗p→pπ+π−
(ωi)

)2

. (3.8)

3.3 Simulations Monte Carlo du canal ep→ e′p′π+π−

La mesure de la section efficace de la réaction ep → e′p′π+π− revient à se deman-
der comment et avec quelle probabilité cette réaction est produite. Or, les informations
détectées par CLAS ne dévoilent qu’un aspect incomplet de la physique de la réaction
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et ne suffisent donc pas à quantifier des sections efficaces. L’objectif est alors de simuler
l’expérience pour accéder aux informations manquantes. Celle-ci peut se résumer en deux
étapes. Tout d’abord, les particules de l’état final e′p′π+π− sont produites par la méthode
d’extraction/réjection de Monte Carlo ; la cinématique de chaque particule est générée de
manière aléatoire, et seuls les évènements respectant la conservation énergie-impulsion et
un éventuel modèle physique seront conservés. Les évènements ainsi générés passent en-
suite dans une simulation du détecteur. Ainsi, les informations sur le canal sont entièrement
connues de la source jusqu’à la détection. Dans cette thèse, les simulations Monte Carlo
ont plusieurs utilités :

– Evaluer l’efficacité de détection (acceptance) combinée au effets radiatifs ;
– Evaluer les pertes d’énergies des particules de la cible jusqu’aux détecteurs de CLAS ;
– Générer les spectres de fonds pour l’extraction des sections efficaces des mésons ρ0,
f0 et f2.

3.3.1 Le générateur d’évènements GENEV

Les évènements e′p′π+π− ont été produits avec le générateur d’évènements GE-
NEV, développé par le groupe de Gênes [50]. Il permet de générer différents canaux
d’électroproduction exclusive, en incluant leurs décroissances, sur une cible de protons
ou de neutrons. L’extraction d’évènements est basée sur une table de sections efficaces de
photoproduction des différents canaux, en fonction de W, l’énergie du centre de masse.
Pour extrapoler à l’électroproduction, le code normalise par le flux du photon virtuel ΓV et
introduit un facteur de forme électromagnétique ad-hoc, fonction de Q2. La section efficace
d’électroproduction prend la forme :

σγ∗p(Q
2,W ) = σγp(W )ΓV

1

(1 + Q2

0.7
)2

, (3.9)

où σγp(W ) est la section efficace de photoproduction du canal d’interêt en fonction de
W.

Le générateur permet également d’incorporer des effets radiatifs basés sur les calculs
de Mo et Tsai [51] (voir la section 3.5 pour plus de détails).

Dans ce travail, les réactions suivantes sont simulées :

1. e−p→ e−pρ0 ↪→ π+π− ;

2. e−p→ e−π−∆++ ↪→ pπ+ ;

3. e−p→ epπ+π− non résonant.

La réaction 1/ décrit le ρ0 décroissant en π+π− . La décroissance du ρ0 est décrite dans
la référence [52] (équation 92) en fonction des angles θHS et φHS d’un des pions dans le
référentiel d’hélicité.

La distribution des produits de décroissance s’exprime en fonction des éléments de
la matrice de densité de spin (Spin Density Matrix Elements ou SDME). Les valeurs
numériques implémentées dans le code sont prises des mesures de [53].

La réaction 2/ décrit la résonance baryonique principale décroissant en pπ+. Les
résonances baryoniques, dont le ∆++, forment un continuum en fonction la masse inva-
riante Mπ+π− . Les résonances baryoniques autres que le ∆++ sont modélisées de façon
approximée par le canal non résonant π+π−, dans lequel les particules de l’état final oc-
cupent l’ensemble de l’espace de phase accessible.

Les évènements Monte Carlo sont produits dans un domaine cinématique légèrement
plus étendu que celui des données, afin de tenir compte de la � migration de bins � (un
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évènement généré dans un bin cinématique peut être reconstruit dans un bin différent en
raison d’effets radiatifs ou d’effets de résolution du détecteur). Au final, les évènements
Monte Carlo sont générés avec les conditions suivantes :

– Energie du faisceau : Efaisceau = 5.754 GeV ,
– 1.4 < Q2 < 6.6 GeV2 ,
– 1.7 < W < 3.2 GeV ,
– 0.1 < ν

Efaisceau
< 0.95 .

3.3.2 Simulations avec GSIM

Les évènements Monte Carlo passent dans une simulation du détecteur CLAS appelée
GSIM.

Basée sur le programme GEANT3 développé par le CERN [54], GSIM contient les pro-
priétés géométriques et physiques des sous-détecteurs de CLAS, à l’exception des compteurs
Čerenkov, dont la géométrie complexe des miroirs est décrite de façon approximative.

GSIM se charge de simuler l’interaction de chaque particule avec les matériaux (com-
prenant scintillateurs et milieu gazeux) constituant les sous-détecteurs, puis de numériser
les informations de charges et de temps associées aux modules ADCs et TDCs de CLAS.

Cependant, les données réelles enregistrées par l’électronique de lecture de CLAS su-
bissent des fluctuations qui ne sont que partiellement décrites par GSIM. De plus, au
cours d’une expérience de CLAS, la plupart des détecteurs présentaient des imperfections,
dépendentes du run de l’expérience, dont GSIM ne tient pas compte.

Le programme GPP (GSIM Post Processing) permet de mieux rendre compte de ces
altérations pour reproduire les données réelles.

Pour cette analyse, les fils des chambres à dérive qui étaient � morts � pendant l’acqui-
sition des données sont également désactivés dans la simulation du détecteur.

Ensuite, GPP est utilisé pour altérer la résolution de chacune des 3 régions de chambres
à dérive (DC) et celle des détecteurs de temps de vol (SC), avec un paramètre pour chaque
composante (donc 3 paramètres pour DC, 1 pour chaque région, et 1 pour SC).

Pour les chambres à dérive, l’effet de GPP sur la résolution se manifeste notamment
sur la masse manquante Mm2[epπ+X], qui se calcule à partir des impulsions mesurées
par les DC. On détermine les paramètres GPP associés aux chambres à dérive en ajustant
la distribution des simulations Monte Carlo sur celle des données expérimentales, comme
l’illustre la figure 3.4a. On applique la même valeur pour les 3 paramètres de GPP.

Pour les détecteurs SC, la distribution ∆β (figure 3.4b), qui se calcule à partir du temps
de vol donné par les détecteurs SC, est ajustée sur les données.

L’effet des paramètres DC (respectivement SC) de GPP sur la distribution ∆β
(Mm2[epπ+X]) est négligeable.

En définitive, les paramètres GPP retenus valent 2.2 pour les 3 régions des chambres à
dérive et 0.9 pour les temps de vol.

Un autre programme (recsis) permet enfin de reconstruire les trajectoires à partir des
informations ADC et TDC brutes.

La sélection des données simulées est identique à la sélection des données réelles sauf
pour les coupures suivantes :

– Les coupures CC Matching ne sont pas appliquées. En effet, la description des comp-
teurs CC par GSIM est approximative et ne permet pas de reproduire fidèlement les
spectres d’émissions de photoélectrons observés dans les données expérimentales.
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Figure 3.4 – a) Distribution de masse manquante Mm2[epπ+X] de l’échantillon e−pπ+X.
b) Distribution de ∆βproton pour l’échantillon e−X . Les données expérimentales sont
représentées en noir, les données Monte-Carlo avant traitement GPP en vert et après en
rouge.

– La coupure Etot/p est adaptée aux données simulées. Dans GSIM, la fraction d’énergie
déposée Etot/p est définie à une constante additive près et ne correspond pas
nécessairement à celle mesurée dans les données.

– Les coupures ∆β sont adaptées aux données simulées, certaines caractéristiques des
données n’étant pas tout à fait reproduites par GPP (notamment un léger décalage
du centre de la distribution de ∆β).

3.3.3 Détermination du modèle Monte Carlo

En utilisant les réactions décrites dans la sous-section 3.3.1, il faut élaborer un modèle
qui reproduit les caractéristiques principales des données. Pour cela, les distributions
cinématiques des différentes réactions sont ajustées au mieux sur celles des données
expérimentales. La figure 3.5 montre le meilleur mélange Monte Carlo obtenu comparé
aux données. Le mélange retenu est constitué à 55% du canal non résonant, 23% de ∆++,
22% de ρ0.

La figure 3.6 montre la distributions des évènements Monte Carlo générés avec le modèle
précèdemment défini.

Les dépendances en Q2, −t, Φ et en Mπ+π− du Monte Carlo dans CLAS sont en bon
accord avec les données. La dépendance en Φ montre la présence de 7 bosses ; ces 7 bosses
correspondent aux effets d’acceptance des 6 secteurs de CLAS (un des 6 secteurs étant
séparé en deux avec notre choix de coordonnée angulaire).

Cependant, les distributions de xB, φHS, et cos θHS des évènements Monte Carlo re-
construits reproduisent moins bien les données expérimentales.

En particulier, la distribution cos θHS présente un pic étroit à l’avant (cos θHS = 1) dans
les données expérimentales alors que la distribution des simulations Monte Carlo est lisse.
En corrélant l’impulsion pπ+ du π+ à son angle cos θHS dans le référentiel d’hélicité (figure
3.7), on peut constater que les données expérimentales montrent un déficit d’évènements
dans la région d’impulsion p > 3 GeV/c par rapport aux simulations Monte Carlo. Cette
région corresponds au recouvrement des structures du proton et du π+ dans les distribu-
tions (∆β, p), qui permettent d’identifier ces particules. Dans cette région, la plupart des

90



Chapitre 3. Mesure des sections efficaces γ∗p→ p′π+π−

évènements doivent être rejetés car les particules ne peuvent être identifiées de manière dis-
tincte 1. Malgré la paramétrisation GPP des données Monte Carlo et le même algorithme
de sélection de particules entre les données réelles et les simulations, il existe un désaccord
entre les simulations et les données expérimentales à haute impulsion. Cela pourrait trou-
ver son origine dans une détérioration des données qui n’est pas fidèlement modélisée par
GPP.
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Figure 3.5 – Distributions des variables cinématiques des évènements ep → e′p′π+π−

reconstruites dans les données expérimentales en noir, dans l’ensemble des canaux MC en
magenta, dans le canal epπ+π− non résonant en bleu, le canal epπ+π− → eπ−∆++ en vert
et le canal epπ+π− → epρ0 en rouge. Les spectres MC sont mis à l’échelle de manière à ce
que l’ensemble des contributions MC (magenta) soit normalisé aux données.

1. En élargissant les coupures ∆βπ+ , le pic cos θHS = 1 est réduit. Mais cela se fait au prix d’une
réjection plus importante des protons et des pions dans la région de recouvrement. De plus, un élargissement
des coupures peut conduire à inclure d’autres structures associées à des particules différentes du pion
(comme le K, e+).
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Figure 3.6 – Distributions des variables cinématiques des évènements ep → e′p′π+π−

Monte Carlo générés . En noir, la contribution de l’ensemble des canaux pour le modèle
choisi, en bleu le canal epπ+π− non résonant (55 % du total), en vert le canal epπ+π− →
eπ−∆++ (23 %) et en rouge le canal epπ+π− → epρ0 (22 %).
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Figure 3.7 – Distributions cinématiques du π+ pour les données expérimentales (colonne
de gauche) et pour les données Monte Carlo reconstruites (colonne de droite). En haut :
distributions (pπ+ , cos θHS). En bas : distributions (pπ+ , θπ+).

3.4 Découpage de l’espace de phase

Le calcul de la section efficace de l’équation 3.2 requiert la définition d’une table d’inter-
valles pour chacune des 7 variables cinématiques décrivant l’électroproduction de mésons.

Le découpage de l’espace de phase (appelé par la suite binning) doit être suffisamment
fin pour que le calcul de l’acceptance soit le plus indépendant possible du modèle Monte
Carlo choisi. De plus, le binning ne peut pas être plus fin que la résolution du détecteur
sur chaque variable cinématique.

La table 3.1 montre le binning choisi pour cette analyse.

Variable Unité Intervalle Nombre de bins Largeur de bins
Q2 GeV2 1.50-2.80 4 0.325

2.80-5.10 3 0.76
xB - 0.15-0.55 6 0.06
−t GeV2 0.10-1.90 6 0.30

1.90-4.30 3 0.80
Φ degrés 0-360 7 51.42
cos(θHSπ+ ) - -1.00-1.00 7 0.28
ΦHS
π+ degrés 0-360 7 51.42

Mπ+π− GeV 0.26-2.00 45 0.04

Table 3.1 – Définition du binning.

En plus des limitations des 7 variables cinématiques décrites ci-dessus, les autres cou-
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pures cinématiques de l’analyse doivent être à nouveau précisées :

W > 1.8 GeV (3.10)

pe− > 0.8 GeV/c, 10◦ < θe− < 90◦ , (3.11)

0.1 <
ν

Efaisceau
< 0.95 (3.12)

La figure 3.8 permet de visualiser le binning pour chacune des variables cinématiques.
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Figure 3.8 – Distributions des variables cinématiques dans les données expérimentales,
avec les coupures (3.10), (3.11) et (3.12). Les lignes rouges définissent les limites du binning.

La variation de l’angle leptonique-hadronique Φ dans les données expérimentales est
dictée par l’acceptance des 6 secteurs de CLAS. Partant de cette observation, il faudrait
au moins 7 bins pour décrire correctement la dépendance en Φ de l’amplitude, car dans
la projection selon l’angle Φ des secteurs de CLAS sur [0,2π], un des 6 secteurs se trouve
séparé en deux. Un découpage particulièrement fin de la masse invariante a été défini, de
manière à rester sensible à la présence d’un signal du f0, dont la largeur est relativement
petite.
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La figure 3.9 illustre l’espace de phase (xB, Q2), (Q2, −t) et (Mπ+π− , xB) couvert par
l’état final e′p′π+π− par les données expérimentales. La grille noire représente le binning
pour les variables considérées.
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Figure 3.9 – Espaces de phases (xB, Q2), (Q2, −t) et (Mπ+π− , xB) pour les données
expérimentales, avec les coupures (3.10), (3.11) et (3.12). Dans l’espace de phase (xB, Q2),
les courbes W = 1.8 GeV2, pe− = 0.8 GeV/c et θe− = 10◦, représentent les coupures (3.10)
et (3.11), respectivement. La courbe θe− = 17◦ illustre une limite de l’acceptance de CLAS
pour l’angle polaire des électrons.

L’espace de phase est restreint à l’étude du f0 et du f2 ; le graphique (Mπ+π− , xB)
montre un signal significatif dans la région du f0 et du f2 uniquement pour xB < 0.55.

On peut remarquer que la plupart des cellules (Q2, xB) et (Q2, −t) sont vides ou
partiellement remplies par les évènements physiques.

Pour les cellules partiellement remplies, on se proposera d’apporter une correction au
calcul des sections efficaces différentielles sur l’intervalle cinématique effectivement occupé
(section 3.7).

Enfin, la figure 3.10 montre les spectres de masse invariante Mπ+π− des données
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expérimentales, disposés selon la grille en (Q2, xB).
Dans cette représentation, qui sera réutilisée par la suite, chaque cellule contenant un

spectre de masse est délimité par l’intervalle (Q2, xB) correspondant. L’intervalle en masse
invariante occupé dépend de l’intervalle (Q2, xB) considéré. En effet, à un intervalle Q2

fixé, de plus grandes valeurs de masses invariante sont occupés à des valeurs de xB de
plus en plus petites. Dit autrement, l’énergie W apportée par le photon virtuel au proton
est de plus en plus grande, donnant accès à des états de plus grandes masses. Dans cette
expérience, la masse invariante peut atteindre 1.8 GeV/c au maximum. On peut donc
constater l’existence d’un signal au delà du seuil du f2(1270) à bas xB (grand W), ainsi
que la présence d’une épaule près du pic du ρ0(770), suggérant l’apparition d’un pic de
résonance du f0(980).
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Figure 3.10 – Spectres de masse invariante Mπ+π− (en GeV) des données expérimentales
en fonction du bin (Q2,xB). Les lignes verticales localisent la masse du ρ0 en vert, du f0

en bleu et du f2 en rose.

96



Chapitre 3. Mesure des sections efficaces γ∗p→ p′π+π−

3.5 Acceptance et corrections radiatives

Dans cette section, l’acceptance et les corrections radiatives sont d’abord décrites
séparément. On montrera ensuite que ces deux effets peuvent être réunis en un seul terme
correctif dans le calcul de section efficace.

3.5.1 Acceptance

L’acceptance est définie comme l’efficacité de reconstruction d’un évènement dans un
certain intervalle cinématique. Cette efficacité doit être prise au sens large ; elle inclut
l’acceptance purement géométrique du détecteur ainsi que l’efficacité de détection des par-
ticules par CLAS. La simulation de CLAS tient compte de ces deux aspects ; les simulations
Monte Carlo permettent donc d’évaluer l’acceptance.

L’acceptance est calculée dans chaque intervalle à 7 dimensions qui corres-
pondent aux variables cinématiques (Q2, xB, −t, Φ , cos θHS, φHS, Mπ+π−) décrivant
complétement l’état final epπ+π−. On désigne parGen(Q2, xB,−t,Φ, cos θHS, φHS,Mπ+π−),
le nombre d’évènements Monte Carlo générés dans l’intervalle à 7 dimensions et
Rec(Q2, xB,−t,Φ, cosθHS, φHS,Mπ+π−) le nombre d’évènements reconstruits dans cet in-
tervalle. L’acceptance Acc(Q2, xB,−t,Φ, cos θHS, φHS,Mπ+π−) est définie par :

Acc(Q2, xB,−t,Φ, cos θHS, φHS,Mπ+π−) =
Rec(Q2, xB,−t,Φ, cos θHS, φHS,Mπ+π−)

Gen(Q2, xB,−t,Φ, cos θHS, φHS,Mπ+π−)
.

(3.13)
Bien que l’analyse porte sur l’étude des spectres de masse limités dans des intervalles

définis sur 2, 3 voire 4 variables cinématiques, il est nécessaire de calculer l’acceptance en
fonction des 7 variables cinématiques. En effet, dans un domaine cinématique τ pour lequel
une variable cinématique X est intégrée, les taux de comptages Gen(τ) et Rec(τ) pour ce
bin dépendent de la variation de l’acceptance selon la variable cinématique X. Le schéma
3.11 illustre ce problème.

Dans cet exemple, l’acceptance selon X est connue ; l’acceptance est parfaite dans
une première région en X, et vaut 0.5 dans une seconde région. On souhaite générer 200
évènements puis compter le nombre d’évènements total qui ont été reconstruits. Selon la
manière dont sont distribués ces 200 évènements dans les deux intervalles en X, le nombre
total (ou intégré) d’évènements reconstruits sera différent.

On en déduit que la manière dont est générée la variable cinématique X influence
l’acceptance dans un bin cinématique intégrée sur cette même variable.

Une telle dépendance du calcul d’acceptance selon le modèle Monte Carlo doit être
évitée, car cette quantité est censée représenter l’efficacité de reconstruction, qui est propre
au détecteur et non à la physique du processus considéré.

Par conséquent, pour limiter ce problème, l’acceptance doit être calculée dans chaque
bin 7 dimensionnel, en prenant soin que le découpage de chaque variable cinématique
décrive bien l’évolution de l’acceptance dans cette variable.
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Figure 3.11 – Calcul de l’acceptance Acc intégrée sur X avec une dépendance non uni-
forme de l’acceptance en fonction de cette variable. Différents modèles de générateur Monte
Carlo (histogrammes à gauche) aboutissent à des nombres d’évènements reconstruits to-
taux (à droite) différents, pour un nombre d’évènements générés fixé.

3.5.2 Corrections radiatives

En raison de leurs masses très faibles, les électrons peuvent rayonner facilement des
photons. La cinématique de l’électron peut s’en trouver fortement altérée. La section effi-
cace différentielle dans un intervalle cinématique (Q2 ou son angle polaire θ, par exemple)
donné de l’électron est également modifiée car les électrons ayant rayonné peuplent l’es-
pace de phase différemment des électrons dépourvus d’effets radiatifs. Les effets radiatifs
des électrons peuvent être distingués en deux catégories : les photons � durs � et les photons
�mous � . Les photons durs sont suffisament énergétiques pour être mesurés par CLAS. Les
autres photons, non détectés, sont appelés des photons mous ; la plupart sont des photons
immédiatement absorbés (polarisation du vide), ou des émissions à basses énergies.

Les effets radiatifs ont été introduits dans le générateur d’évènements Monte Carlo en
utilisant les calculs de Mo et Tsai [51]. Ces calculs sont effectués dans l’approximation du
processus élastique ep→ ep. Les diagrammes pris en compte dans le calcul des corrections
radiatives sont représentés dans la figure 3.12.

Les effets radiatifs se manifestent dans le calcul de la masse manquante Mm2[e′p′π+X]
par une queue à droite du pic du π−, comme le montre la figure 3.13.

Alors que les photons durs sont rejetés par la coupure en masse manquante, les pho-
tons mous demeurent parmi les évènements conservés. Ainsi, les données expérimentales
contiennent des photons mous venant de la réaction : ep→ e′p′π+π−γ.

Dans ces conditions, l’acceptance qui corrige ces données doit être calculée également
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Figure 3.12 – Diagrammes de Feynman des processus radiatifs pris en compte dans le
calcul de Mo et Tsai. (a)Diagramme de Born, (b)Radiation de l’électron de l’état initial, (c)
radiation de l’électron de l’état final, (d) boucle radiative entre les électrons d’état initial
et d’état final, et (e) polarisation du vide.

pour des évènements radiatifs mous : la coupure sur les photons durs doit s’appliquer aux
nombre d’évènements générés Gen.

Comme nous cherchons à mesurer la section efficace de la réaction ep → e′p′π+π−,
dénuée des effets radiatifs (on parle alors de section efficace de Born, figure 3.12 (a)), il
faut appliquer un facteur Frad qui corrige la section efficace de ces effets radiatifs. Le facteur
de correction Frad est calculé à l’aide des simulations Monte Carlo :

Frad =
Gennon rad
Genradmou

. (3.14)

Le facteur Frad n’a de sens que si Gennon rad et Genradmou sont correctement normalisés.
Pour cela, le générateur d’évènement Monte Carlo doit être exécuté deux fois avec le même
nombre d’essais : une première exécution avec effet radiatifs et la seconde sans. De cette
façon, la différence du nombre d’évènements extraits entre GenNonrad et Genradmou est
associée uniquement aux effets radiatifs du générateur qui modifient la section efficace.
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Figure 3.13 – Distribution en masse manquante Mm2[epπ+X] des évènements Monte
Carlo générés avec les effets radiatifs selon les calculs de Mo et Tsai. La ligne rouge
représente la coupure d’exclusivité imposée aux évènements reconstruits et indique la
séparation entre photons � mous � à gauche et � durs � à droite du spectre.

3.5.3 Acceptance corrigée des effets radiatifs

En suivant une procédure décrite par M. Ripani [57], la section efficace de Born dans
un intervalle cinématique Ω donné s’écrit :

σBorn = σRad · FRad , (3.15)

où :

– Le facteur de correction radiatif FRad est défini dans la formule (3.14) ;
– La section efficace radiative σRad est définie par :

σRad =
N

Lint · AccRad ·∆Ω
, (3.16)

où :
– N est le nombre d’évènements des données expérimentales dans le bin Ω ;
– Lint est la luminosité intégrée
– ∆Ω est le volume du bin Ω ;
– AccRad est l’acceptance pour les évènements radiatifs qui s’exprime par :

AccRad =
Recradmou
Genradmou

. (3.17)

En prenant en compte les relations (3.16), (3.14) et (3.17), la section efficace de Born
(3.15) devient :

σBorn =
N

Lint
Recradmou
Genradmou

∆Ω
· Gennon rad
Genradmou

. (3.18)
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Après simplification, la section efficace de Born s’exprime par :

σBorn =
N

LintAccCorr Rad∆Ω
, (3.19)

avec l’acceptance corrigée des effets radiatifs, définie comme :

AccCorrRad =
Recradmou
Gennon rad

. (3.20)

De manière analogue à la précédente section, pour que Recradmou et Gennon rad soient
correctement normalisés, les simulations Monte Carlo doivent être executées deux fois avec
le même nombre d’essais : une première fois avec les effets radiatifs, pour lesquels les
évènements générés passent dans GSIM puis dans la sélection d’évènement de l’analyse pour
comptabiliser Recradmou, puis une seconde sans les effets radiatifs. Il n’est pas nécessaire
de reconstruire le deuxième ensemble d’évènements, car (3.20) n’utilise que les évènements
génerés. Autrement dit, l’acceptance et les corrections radiatives sont incorporées dans un
seul terme correctif. Procéder ainsi offre un avantage pour les corrections radiatives. En
effet, si l’acceptance et Frad étaient évaluées séparément, il aurait fallu définir la quantité
Genradmou. Or, la frontière entre les photons durs et les photons mous est arbitraire. De
fait, c’est la coupure d’exclusivité sur la masse manquante qui définit cette limite, qui est
établie à partir des données expérimentales. Il faut garder à l’esprit que la largeur du pic du
pion dans un spectre de masse manquante Mm[epπ+X] est une convolution de la résolution
sur la cinématique des particules identifiées avec la queue radiative. Etablir une valeur de
coupure sur une telle distribution ne permet pas d’établir exactement une séparation des
photons durs des photons mous.

Afin de donner un ordre de grandeur de l’acceptance de CLAS corrigée des effets ra-
diatifs, la figure 3.14 représente l’acceptance en fonction de chaque variable cinématique
intégrée sur les autres variables. Ces acceptances intégrées sont de l’ordre de quelques
pourcents.

Au total, 240 millions d’évènements non radiatifs sont conservés pour le calcul de
l’acceptance.

Avec le binning choisi pour cette analyse, les simulations Monte Carlo doivent peupler
environ 6 millions de bins 7-dimensionnels. L’erreur statistique sur l’acceptance corrigée
des effets radiatifs 2 dans un bin 7-dimensionnel est calculée par la propagation quadratique
de l’incertitude sur Recradmou, ∆Recradmou, et sur Gennon rad, ∆Gennon rad :

∆Acc2
Corr Rad =

Gen2
non rad(∆Recradmou)

2 +Rec2
radmou(∆Gennon rad)

2

Gen4

=
Gen2

non radRecradmou +Rec2
radmouGennon rad

Gen4

(3.21)

La plupart des bins 7-dimensionnels présentent une erreur statistique très importante, ce
qui rend la correction d’acceptance peu fiable. Ainsi, il a été choisi de rejeter les bins dont
l’erreur relative est trop élevée (figure 3.15) :

∆Acc

Acc
< 0.8 (3.22)

2. L’erreur calculée pour AccCorr Rad diffère du calcul de l’acceptance définie dans l’équation (3.13).
Cette dernière correspond à la probabilité de reconstruire ou non un évènement généré ; cette probabilité

suit une loi binomiale et l’erreur vaut ∆Acc =
√

Acc(1−Acc)
Gen .

101



Troisième partie : Analyse des données

)2 (GeV2Q
1.5 2 2.5 3 3.5 4 4.5 5

%

0

1

2

3

4

5

6

Bx
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

%

0

1

2

3

4

5

6

)2-t (GeV
0.5 1 1.5 2 2.5 3 3.5 4 4.5

%

0

1

2

3

4

5

6

Φ
0 50 100 150 200 250 300 350

%

0

1

2

3

4

5

6

)
HS

θcos(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

%

0

1

2

3

4

5

6

HSΦ
0 50 100 150 200 250 300 350

%

0

1

2

3

4

5

6

 (GeV)-π+πM
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

%

0

1

2

3

4

5

6

Figure 3.14 – Acceptance corrigée des effets radiatifs intégrée, en fonction de chaque
variable cinématique. L’acceptance est exprimée en pourcentage.
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Figure 3.15 – Distribution de l’erreur relative ∆Acc/Acc sur l’acceptance des intervalles
7-dimensionnels. La région hachurée en rouge est exclue de l’analyse.

3.6 Les facteurs de trou

Dans cette analyse, les spectres de section efficace sont intégrées sur plusieurs variables
cinématiques. Il convient de s’assurer que notre correction d’acceptance 7-dimensionnelle
permette de récupérer les évènements générés pris dans un intervalle intégré sur la plupart
des variables cinématiques.

Considérons pour cela la distribution hCorrAcc7D(τ,M) en masse invariante, restreinte
à un intervalle multidimensionnel τ des évènements reconstruits corrigés par l’acceptance
7-dimensionnelle. Comparons cette distribution à celle des évènements générés hGen(τ,M)
dans le même intervalle τ en introduisant le facteur :

Fh(τ,M) =
hCorrAcc7D(τ,M)

hGen(τ,M)
. (3.23)

La figure 3.16 montre les distributions Fh dans les différents intervalles τ = (Q2, xB).
On peut constater que le facteur Fh diffère de 1 : la correction d’acceptance appliquée aux
évènements Monte Carlo reconstruits ne permet pas de récupérer la totalité des évènements
générés au départ.

Cette différence tient ici en deux raisons. Premièrement, avec la condition (3.22), cer-
tains bins 7- dimensionnels sont éliminés de la correction d’acceptance, et ne sont donc pas
inclus dans la distribution intégrée hCorrAcc7D(τ,M).

Deuxièment, même en l’absence de toutes coupures sur les bins 7-dimensionnels, le taux
de comptage de hCorrAcc7D(τ,M) est inférieur à celui de hGen(τ,M). En effet, certains bins
7-dimensionnels ont un nombre d’évènements générés insuffisant pour produire au moins
un évènement reconstruit dans ce bin. A cause de cette limitation statistique, l’acceptance
vaut 0 pour ce bin et les évènements générés ne sont pas recouverts. En principe, en l’ab-
sence de coupures au niveau de la correction d’acceptance 7-dimensionnelle et en générant
suffisamment d’évènements Monte Carlo, le facteur Fh doit valoir 1.
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La correction d’acceptance à 7 dimensions comporte donc des � trous � qui sont corrigés
par le facteur Fh, que l’on appellera par la suite � facteur de trou �.

Il faut remarquer que le facteur de trou est calculé uniquement à l’aide des simulations
Monte Carlo. Comme il est intégré sur la plupart des variables cinématiques décrivant
l’électroproduction, ce facteur de correction sur l’acceptance dépend du modèle Monte
Carlo choisi.

Avec la condition (3.22) et la statistique des simulations Monte Carlo de cette analyse,
la figure 3.16 comporte des intervalles (Q2, xB) où Fh est très faible. Ceci implique que la
correction apportée par le facteur de trou est très importante et considérablement asujet-
tie au modèle Monte Carlo. Dans ce genre de situation, la correction d’acceptance aura
d’importantes incertitudes systématiques. Ainsi, seuls les intervalles multidimensionnels τ
avec la condition suivante seront considérés dans le reste de l’analyse :

F̄h(τ) > 0.3 . (3.24)

Le facteur F̄h(τ) désigne la valeur de Fh(τ,M) intégrée sur la masse invariante. La condition
(3.24) a été choisie afin de rejeter les bins (Q2, xB) situés aux bords de l’acceptance de CLAS
sur ces variables (figure 3.9).
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Figure 3.16 – Facteurs de trou en fonction du bin (Q2, xB).
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Chapitre 3. Mesure des sections efficaces γ∗p→ p′π+π−

3.7 Les corrections de volumes de bins

Dans le calcul de la section efficace différentielle
dσγ∗p→pπ+π−

dτdM
(équation (3.4)), il faut

diviser par la largeur des intervalles cinématiques. Or, à cause de la limite de l’espace
de phase de notre réaction ainsi que des coupures cinématiques (3.10), (3.11) et (3.12)
imposées lors de la génération d’évènements MC, la plupart des bins cinématiques ne sont
pas entièrement remplis. On parle dans ce cas de bin � réduits �. Les variables cinématiques
Q2, xB et t sont particulièrement concernées par cet effet (voir figure 3.9).

La normalisation de la section efficace s’effectue donc en divisant par la taille du bin
� réduit � au lieu du bin entier. Le volume du bin cinématique � plein � est corrigé à l’aide
d’un facteur dénommé � correction de volume �, défini par :

FCorrV ol =
V ′

V
, (3.25)

où V et V’ désignent respectivement les volumes entier et � réduit � du bin (V ≥ V ′).
La procédure pour déterminer le volume réduit V ′ des bins à 3 dimensions (Q2, xB, t)

est décrite ci-dessous :

1. Chaque intervalle en Q2, xB et t est subdivisé en 100 sous-intervalles, ce qui cor-
respond à 100 × 100 × 100 volumes élémentaires pour chaque bin (Q2, xB, t). Les
volumes V et V ′ sont exprimés en unité de volume élémentaires (donc V = 104

volumes élémentaires).

2. En prenant les valeurs centrales de Q2, xB et t d’un bin élémentaire, il est possible
de calculer les variables cinématiques W , θe− et ν sur lesquelles des coupures sont
imposées. Notons que, à une énergie de faisceau, Q2 et xB fixés, l’espace de phase
accessible pour la variable t est limité entre une valeur tmin et tmax pour l’état final
epπ+π−. Ici, tmin a été calculé au seuil de production d’une paire de pions.

3. On compte le nombre de volumes élémentaires dont la cinématique satisfait les cou-
pures (3.10), (3.11), (3.12) et t > tmin. Le total correspond à V ′.

La procédure pour calculer le volume réduit des bins (Q2, xB) est similaire, la condition
t > tmin n’étant plus à être considérée. La figure 3.17 montre le résultat dans le binning
(Q2, xB) étudié. La distribution des évènements Monte Carlo générés est superposée aux
résultats pour illustrer l’espace de phase.
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Figure 3.17 – Correction de volume des bins (Q2, xB). La valeur est inscrite dans chaque
cellule en (Q2, xB) délimitée par la grille en noire.

3.8 Les efficacités de coupures de sélection des

électrons dans les compteurs Čerenkov

Pour discriminer les électrons des pions, des coupures sur les signaux des compteurs
Čerenkov ont dû être appliquées (voir chapitre 2, paragraphe 2.1.4). Ces coupures ne sont
valables que pour les données expérimentales, car la géométrie complexe des miroirs des
compteurs Ĉerenkov est décrite de façon approximative par la simulation de CLAS. Un
certain nombre d’électrons a été rejeté par les coupures de sélection. Il faut estimer combien
de bons évènements ont été rejetés, afin de corriger le taux de comptage des données
expérimentales pour le calcul des sections efficaces. Les coupures appliquées aux compteurs
Ĉerenkov diffèrent selon le régime d’impulsion de l’électron candidat. Les efficacités de
coupures de sélection seront donc spécifiques au régime d’impulsion considéré.

3.8.1 Régime pe− < 1.5 GeV/c

La procédure de réduction de la contamination électrons/pions n’a pas permis d’éliminer
le pic 1-photoélectron pour la région d’impulsion pe− < 1.5 GeV/c. Les particules chargées
négativement qui émettent 10×Nphe ≤ 25 sont rejetées.

Pour quantifier le nombre d’électrons dans cette région du spectre du nombre de photo-
électrons émis, celle-ci est ajustée par une distribution de Poisson généralisée qui est pro-
longée vers la région rejetée :
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y(
x

p
) = k

L
x
p e−L

Γ(x
p

+ 1)
, (3.26)

où k, L et p sont des paramètres à ajuster. L’intégrale de la fonction ajustée sur l’ensemble
de l’intervalle du nombre de photoélectrons émis permet d’estimer le nombre total de
� bons � photoélectrons avant coupure. L’ajustement des spectres 10 × Nphe est appliqué
pour chaque bin (Q2, xB).

L’efficacité des coupures sur les compteurs Čerenkov est définie par :

EffCC(Q2, xB) =

∫ 250

25
y(Nphe × 10)d(Nphe × 10)∫ 250

0
y(Nphe × 10)d(Nphe × 10)

. (3.27)

Les résultats des efficacités de coupures en fonction de (Q2, xB) sont représentés dans la
figure 3.18. La correction d’efficacité de coupure apportée à la section efficace est de 4% en
moyenne.
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Figure 3.18 – Efficacités de coupures EffCC en fonction du bin (Q2, xB) dans le régime
pe− < 1.5 GeV/c.

3.8.2 Régime pe− > 1.5 GeV/c

Pour des impulsions supérieures à 1.5 GeV/c, le pic à 1-Phe est supprimé par la
procédure CC Matching (voir chapitre 2, paragraphe 2.1.4). Cependant, cette procédure de
réduction conduit à l’exclusion de quelques bons électrons, y compris dans la région de la
structure poissonienne du spectre. Pour évaluer cette perte, il suffit de comparer l’intégrale
du spectre avant et après application de la procédure CC Matching dans la région du pic
poissonien :

EffCC(Q2, xB) =

∫ 400

40
hAprès coupures CC(Nphe × 10)d(Nphe × 10)∫ 400

40
hAvant coupures CC(Nphe × 10)d(Nphe × 10)

. (3.28)
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Les efficacités de coupures sont représentées dans la figure 3.19.La correction d’efficacité
de coupure apportée à la section efficace est de 5% en moyenne.
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Figure 3.19 – Efficacités de coupures EffCC en fonction du bin (Q2, xB) dans le régime
pe− > 1.5 GeV/c.

3.9 Sections efficaces réduites de γ∗p → pπ+π− dans

des bins (Q2,xB)

La totalité des termes impliqués dans les relations (3.4) et (3.5) est déterminée pour
des intervalles cinématiques différentiels en Q2, xB et M , la masse invariante des produits
de décroissance (Mπ+π− Mpπ+ ou Mpπ−). Les spectres des sections efficaces dσ

dM
, fonctions

de M, sont définis les intervalles (Q2, xB) de la table 3.1.
La figure 3.20 représente ces spectres, en fonction de la masse invariante Mπ+π− . Le pic

de la résonance du ρ0(770) domine l’ensemble des spectres dans l’espace de phase considéré.
La plupart des distributions présente une épaule sur le pic du ρ0(770) dans la région à 1
GeV, signant la présence de la résonance f0(980). Certains intervalles (Q2, xB) suggèrent
une large bosse dans la région du f2(1270), bien que son maximum soit légèrement décalé
par rapport à la masse attendue du f2.

Dans les spectres de Mpπ+ (figure 3.21), seule la résonance ∆++(1232) est clairement
visible.

Quant aux spectres de Mpπ− (figure 3.22), plusieurs pics peuvent être identifiés aux
résonances attendues ; le ∆0(1232) et les états excités N?(1520) et N?(1680).

Nous nous intéresserons par la suite à la section efficace du processus γ∗p → pπ+π−

pour chaque intervalle en (Q2, xB). Elle est définie par l’intégrale du spectre Mπ+π− de
l’intervalle (Q2, xB) considéré.
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éren
ts

b
in

s
(Q

2,
x
B

).
L

es
lign

es
verticales

lo
calisen

t,
d
an

s
ch

aq
u
e

sp
ectre

d
e

gau
ch

e
à
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Chapitre 3. Mesure des sections efficaces γ∗p→ p′π+π−
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à

d
ro

it
e,

la
m

as
se

d
u

∆
0
(1

23
2)

(e
n

ve
rt

cl
ai

r)
,

d
u
N
?
(1

52
0)

(e
n

b
le

u
cl

ai
r)

et
d
u
N
?
(1

68
0)

(e
n

ve
rt

fo
n
cé
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Troisième partie : Analyse des données

3.10 Estimation des erreurs systématiques

Les erreurs systématiques sur la section efficace σγ
∗p→pπ+π− ont été évaluées en étudiant

l’incertitude sur chacun des termes qui la compose.
Il y a d’abord les incertitudes liées à l’expérience e1-6, tels que la détermination des

caractéristiques de la cible, les efficacités de coupures CC, le choix des runs. Ces incertitudes
ont fait l’objet d’études détaillées dans le passé (voir par exemple [48]), dont on reprendra
ici les valeurs des erreurs.

Il y a ensuite les incertitudes liées à l’analyse du canal epπ+π− elle-même. On se foca-
lisera sur celles qui sont les plus importantes pour la mesure des sections efficaces.

La méthode de calcul de l’acceptance et des corrections radiatives contribue de manière
importante. Tout d’abord, le choix de la coupure (3.22) sur l’erreur relative des bin 7D
d’acceptance reste une convention ; l’analyse pourrait très bien se passer d’une telle coupure,
qui vient accrôıtre la correction d’acceptance par le facteur de trou et donc la dépendance
du modèle Monte Carlo. Les sections efficaces calculées sans la condition (3.22) montrent
un écart relatif de 8 à 30% par rapport aux mesures de référence, et une valeur moyenne de
15% sur l’ensemble des bins (Q2, xB). Ensuite, un autre binning de l’acceptance peut être
utilisé. Des écarts compris entre 3% et 18% ont été relevés après utilisation d’un binning
plus fin dans les variables (Φ,cos(θHS) et ΦHS), avec une valeur moyenne de 10%. A l’issue
de ces deux variations, une erreur systématique de 15% concernant le calcul d’acceptance
est retenue.

Le choix du modèle Monte Carlo pour calculer l’acceptance et les corrections radia-
tives est aussi déterminant. Pour tenir compte des caractéristiques principales des spectres
Mπ+π− il faut au moins le canal Monte Carlo π+π− non résonant pour couvrir l’ensemble
de l’espace de phase, et le canal ρ0 pour satisfaire une bonne correction radiative du pic
proéminent dans ces spectres. Avec un modèle Monte Carlo composé à 80% du canal non
résonant et 20% de ρ0, on aboutit à des écarts compris entre 1% et 7% par rapport aux
mesures de référence (dont le modèle est composé à 55% de non résonant, 23% de ∆++ et
22% de ρ0). Une valeur moyenne de 5% est retenue comme erreur systématique relative.

L’ensemble de ces sources d’erreurs, récapitulées dans la table 3.2, constitue une in-
certitude sur la normalisation des spectres Mπ+π−

3. L’erreur systématique totale corres-
pond à la somme quadratique des différentes sources d’erreurs. Il en résulte 17% d’erreur
systématique globale.

L’incertitude totale sur la section efficace est définie ici comme la somme quadratique
de l’erreur statistique sur la détermination de l’intégrale du spectre et l’erreur systématique
sur la normalisation globale.

Une manière de vérifier l’évaluation de cette incertitude sur la normalisation absolue est
de se référer à la mesure de la diffusion élastique ep→ ep dans CLAS. En effet, la section
efficace de cette réaction est connue. Par conséquent, la comparaison de la section efficace
mesurée avec la valeur attendue renseigne sur la qualité de la détermination expérimentale
d’une section efficace.

La figure 3.23 illustre les résultats obtenus dans ce travail de thèse : les mesures
expérimentales et la prédiction théorique montrent un désaccord d’environ 12%, stables
selon la cinématique Q2 de la réaction.

3. Dans cette analyse, l’erreur systématique est dominée par la procédure d’extraction des signaux du
f0 et du f2, comme nous allons le voir dans le chapitre suivant. Comme ce type d’erreur est en général bien
plus grande (plus de 25%) que les erreurs systématiques étudiées jusqu’ ici (30% au plus), ces dernières
sont approximées par une erreur systématique globale que nous qualifions d’erreur sur la normalisation.
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Chapitre 3. Mesure des sections efficaces γ∗p→ p′π+π−

Source d’erreur Erreur estimée
Acceptance 15%
Modèle Monte Carlo 5%
Trous des chambres à dérives 6%
Efficacités de coupures CC 1.5%
Epaisseur de la cible 2%
Densité de la cible 1%
Charge intégrée 2%

Somme en quadrature 17%

Table 3.2 – Erreurs systématiques sur la section efficace de γ∗p→ pπ+π−
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Figure 3.23 – Rapport entre la section efficace de la diffusion élastique σep→ep mesurée
et la section efficace théorique, en fonction de Q2.

3.11 Comparaison avec les données existantes

Les sections efficaces γ∗p→ pπ+π− sont présentées dans cette section, avec les erreurs
statistiques et systématiques sommées en quadrature.

D’autres mesures d’électroproduction ont été publiées à DESY en 1976 ([53]), avec un
faisceau de 7.2 GeV, à CORNELL en 1981 avec un faisceau de 11.5 GeV([58]), et avec le
détecteur CLAS sur la même expérience que la présente analyse, en 2009 ([55]).

Dans un souci de comparaison directe avec les précédentes mesures de CLAS, il a été
décidé de calculer les sections efficaces dans le même binning (Q2, xB) (table 3.3) que
l’analyse [55]. Cela offre l’avantage de couvrir la totalité de l’espace de phase. Les autres
variables cinématiques sont toujours binnées par la table 3.1. La table d’acceptance et les
efficacités des coupures CC ont été recalculées avec le nouveau binning.

La figure 3.24 représente l’ensemble des mesures de section efficaces σγ
∗p→pπ+π− , cal-

culées pour les valeurs Q2 et W associées aux intervalles (Q2, xB). Tout d’abord, notons
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Troisième partie : Analyse des données

Variable Unité Intervalle Nombre de bins Largeur de bins
Q2 GeV2 1.60-3.10 5 0.30

3.10-5.60 5 0.50
xB - 0.16-0.70 9 0.06

Table 3.3 – Définition du binning en Q2, xB de la référence [55].

que les sections efficaces étudiées se décomposent selon la relation :

σtot = σT + εσL , (3.29)

où σT est la section efficace γ∗Tp → pπ+π− avec un photon de polarisation trans-
verse, et σL avec un photon de polarisation longitudinale. Le facteur ε dépend de Q2,
xB et de l’énergie du faisceau. Par conséquent, à Q2 et xB fixé, les mesures de sec-
tion efficaces des différentes expériences ne peuvent pas être comparées directement. On
peut constater un bon accord avec les mesures de la précédente analyse de CLAS pour
W < 2.40 GeV, en tenant compte des barres d’erreurs systématiques. A plus haute énergie
W (plus bas xB), le désaccord devient plus important et peut atteindre 40%. Les mesures
sont systématiquement plus basses dans ce travail de thèse.

)2 (GeV2Q
0 1 2 3 4 5 6

b)µ
) 

(
- π

+ π
 p

→
*p

 
γ(

σ

-110

1

10

1.80 < W (GeV)< 2.00

)2 (GeV2Q
0 1 2 3 4 5 6

b)µ
) 

(
- π

+ π
 p

→
*p

 
γ(σ

-110

1

10

2.40 < W (GeV)< 2.60 )2 (GeV2Q
0 1 2 3 4 5 6

b)µ
) 

(
- π

+ π
 p

→
*p

 
γ(

σ

-110

1

10

2.00 < W (GeV)< 2.20

)2 (GeV2Q
0 1 2 3 4 5 6

b)µ
) 

(
- π

+ π
 p

→
*p

 
γ(

σ

-110

1

10

2.60 < W (GeV)< 2.80 )2 (GeV2Q
0 1 2 3 4 5 6

b)µ
) 

(
- π

+ π
 p

→
*p

 
γ(

σ

-110

1

10

2.20 < W (GeV)< 2.40

CORNELL

DESY

CLAS (4.2 GeV)

This work

CLAS (5.754 GeV) S.Morrow

Figure 3.24 – Données mondiales des sections efficaces de la réaction γ∗p → pπ+π− en
fonction de Q2, dans différents intervalles en W. Les données obtenues dans ce travail de
thèse sont représentées en rouge. Les points verts correspondent aux mesures de [55]. Les
barres d’erreurs incluent les erreurs statistiques et systématiques sommées en quadrature.

Une étude comparative entre la présente analyse de données et celle détaillée dans la
référence [48] a été effectuée pour tenter de comprendre ces différences.
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Les caractéristiques principales de deux analyses sont consignées dans le tableau 3.4.

Cette analyse Analyse du ρ0 [48]
Calibration des données pass 3 (2014) pass 2 (2003)
Corrections cinématiques
Correction sur le vertex Non Oui
Correction de pertes d’énergie Oui Oui
Corrections d’impulsions Non Oui
Sélection de l’électron
Coupure sur Vz Dépendante du secteur −8 ≤ Vz ≤ −0.8 cm
Coupures fiducielles CC Oui Oui
Coupures fiducielles EC Oui Oui
CC Matching Oui Oui

Nphe > 20 pour pe− > 1.5 Nphe > 20 pour tout pe−
Sélection p/π+

Coupures fiducielles DC Oui Oui
Sélection proton |βmes − βproton| < 2.5σ |βmes − βproton| < 5.7σ
Sélection π+ |βmes − βπ+ | < 2.5σ |βmes − βπ+| < 3.5σ
Coupures d’exclusivité
Mm2[epπ+X] −0.05 ≤Mm2 ≤ 0.08 GeV2 −0.05 ≤Mm2 ≤ 0.08 GeV2

∆V pe
z Oui (dépendant du secteur) Oui

∆V πe
z Oui (dépendant du secteur) Oui

Analyse de σγ
∗p→pπ+π−

Binning de l’acceptance 10× 9× 9× 7× 7× 7× 45 10× 9× 9× 9× 8× 8× 15
Modèle Monte Carlo 55% N.R, 23% ∆++, 22% ρ0 40% N.R, 20% ∆++, 40% ρ0

Variable de masse Masse invariante Mπ+π− Masse manquante Mm[epX]
Acceptance AccRadCorr = Recradmou

Gennonrad
Acc = Recradmou

Genrad

Corrections radiatives Inclues dans AccRadCorr FRad(Q
2, xB) = Gennonrad

Genrad

Dépendantes de la masse Intégrées sur la masse
Facteurs de trou Fh(Q

2, xB,M) Fh(Q
2, xB,M)

Table 3.4 – Comparaison des analyses des sections efficaces γ∗p→ pπ+π− dans les bins
(Q2,xB) dans ce travail de thèse et la référence [48].

La calibration des données dans ce travail de thèse (� pass 3 � ) bénéficie d’une cor-
rection des constantes de calibrations des détecteurs SC ; la résolution temporelle des SC
est 2 fois meilleure que la précédente calibration (� pass 2 � ), permettant une meilleure
identification des protons et des pions à p > 2.5 GeV/c. Dans l’analyse [48], une correction
sur la reconstruction du vertex a été appliquée, permettant d’éliminer le décalage des dis-
tributions du vertex z entre les différents secteurs. Cette correction n’est pas utilisée dans
cette analyse ; les coupures sont adaptées au secteur de CLAS considéré. Toujours dans
l’analyse [48], la reconstruction de l’impulsion des particules a été améliorée en corrigeant
des inexactitudes de la carte de champ magnétique de CLAS et du positionnement des
chambres à dérive. Cependant, l’effet de cette correction est très faible (< 0.8%) et à la
limite des erreurs systématiques de la méthode utilisée pour établir ces corrections. Par
conséquent, ce type de correction n’est pas considéré dans ce travail de thèse.

Une différence notable a été relevée concernant le calcul des corrections radiatives en
fonction de la masse. Dans l’analyse du ρ0, les spectres sont établis en fonction de la
masse manquante Mm[epX], tandis que la masse invariante Mπ+π− est utilisée dans ce
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travail. Le système manquant X peut inclure des états finaux autre que π+π−, comme
l’état π+π−γ. Cela est le cas en évaluant la masse manquante pour des évènements epπ+π−

Monte Carlo générés avec des effets radiatifs, qui sont utilisés pour calculer l’acceptance
pour l’électroproduction. En utilisant la masse invariante Mπ+π− , on s’assure que seuls les
produits de décroissance π+π− sont considérés.

Contrairement à cette analyse de données, les corrections radiatives dans [55] sont
appliquées séparément de la correction d’acceptance. Le facteur de correction radiative
FRad est calculé selon le bin (Q2, xB) uniquement. Dans ces conditions, le spectre de
section efficace est établi à partir du spectre de masse corrigé d’acceptance, multiplié par
le facteur de corrections radiatives, qui est ici un simple facteur d’échelle. Or, le calcul
du facteur de correction Fh = Gennon rad

Genrad
, à partir des données Monte Carlo, montre une

forte dépendance selon la masse Mπ+π− , comme le montre la figure 3.25. Lorsque ce facteur
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Figure 3.25 – Facteurs de corrections radiatives FRad dans l’intervalle 1.60 < Q2 <
1.90 GeV2, 0.16 < xB < 0.22, calculées avec le modèle Monte Carlo de cette analyse. A
gauche, le facteur est décrit en fonction de la masse invariante Mπ+π−et à droite, en fonction
de la masse manquante Mm[epX]. Les lignes rouges correspondent à l’ajustement d’une
constante sur la distribution, qui donne la valeur moyenne de FRad.

dépendant de la masse est appliqué au calcul de section efficace, le spectre résultant est
fortement déformé en comparaison à l’application d’un simple facteur indépendant de la
masse (figure 3.26).

Ainsi, la soustraction de fond pour extraire les signaux des mésons pourrait être sensible
aux corrections radiatives, à la lumière des déformations causées par ces corrections aux
spectres. En revanche, en se référant au calcul des sections efficaces intégrées sur la masse
de la figure 3.26, leur valeurs semblent elles-mêmes peu affectées par ces effets (moins de
5% de différence entre les intégrales des deux spectres).
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Figure 3.26 – Spectres de sections efficaces en fonction de la masse manquante Mm[epX],
obtenues pour différentes corrections radiatives. En haut à gauche, la correction radiative
dépend de la masse manquante. En bas à gauche, la correction dépend uniquement de Q2

et xB. Pour chaque spectre, la section efficace intégrée est présentée. En haut à droite, le
rapport des deux spectres. La ligne rouge indique un rapport égale à 1. L’espace de phase
considéré est 1.60 < Q2 < 1.90 GeV2, 0.16 < xB < 0.22.
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Chapitre 4

Extraction des sections efficaces
γ∗p→ p′(f0/f2)

Dans ce chapitre, la méthode pour extraire les sections efficaces des réactions γ∗p →
p′ρ0, γ∗p→ p′f0 et γ∗p→ p′f2 est détaillée.

Ensuite, les résultats des sections efficaces différentielles d’électroproduction de ces
mésons sont présentés.

4.1 Ajustement des spectres de masse Mπ+π−

L’extraction des sections efficaces σγ
∗p→pρ0 , σγ

∗p→pf0 et σγ
∗p→pf2 repose sur une sous-

traction du bruit de fond des spectres de section efficace réduite en fonction de la masse
invariante Mπ+π− . Pour cela, le spectre de masse doit être ajusté (ou fitté) par un modèle
qui décrit les résonances que l’on souhaite extraire. Ce modèle contient un ensemble de
paramètres libres Θ . L’ajustement est basé sur la méthode de minimisation du χ2, défini
par :

χ2 =
N∑
i=1

(x(Mi)− f(Mi,Θ))2

∆x(Mi)2
, (4.1)

où :
– i est le numéro de bin de masse invariante M du spectre,
– N est le nombre total de bins de masse inclus dans le spectre,
– Mi la valeur centrale de masse invariante du bin i,
– x(Mi) est la valeur de section efficace en un point Mi du spectre, et ∆x(Mi) son

erreur statistique,
– f(Mi,Θ) est la valeur prise par le modèle.
Le but de cette méthode est de déterminer les valeurs numériques de Θ qui permettent

de minimiser χ2, qui mesure l’écart entre le modèle et les données expérimentales. La
minimisation est effectuée par le programme MINUIT [59].

Il faut déterminer un modèle permettant de reproduire fidèlement un spectre dépendant
de Mπ+π− . Comme il a été expliqué dans le chapitre précédent, le spectre de section efficace
σγ
∗p→pπ+π− est formé par 3 types de processus :

1. La production de résonances mésoniques γ∗p→ pM ↪→ π+π−.

2. La production de résonances baryoniques γ∗p→ πB ↪→ pπ.

3. La production de paires de pions non résonantes.
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Malheureusement, il n’existe pas une paramétrisation théorique complète de la pro-
duction de paires de pions. En fait, la plupart des processus 2/ et 3/ ne sont pas bien
connus. Une description des amplitudes de production des canaux ep → e′πN? ↪→ pπ a
été développée [61], mais elle concerne un domaine cinématique différent de cette analyse.
De plus, l’amplitude carrée de production totale γ∗p → pπ+π− est la somme carrée des
amplitudes des différents processus. Les différentes réactions peuvent donc interférer entre
elles, ce qui complique considérablement l’élaboration d’un modèle.

In fine, en admettant que le modèle décrit entièrement la physique de production de
π+π−, le nombre de paramètres à considérer serait probablement trop important pour être
ajusté sur le seul spectre de masse invariante ; on a pu identifier 3 résonances mésoniques
(ρ0, f0, f2) et 4 résonances baryoniques (∆++, ∆0, D13 et F15), auxquelles il faudrait ajou-
ter les interférences de ces canaux entre eux. Par conséquent, il a été décidé d’utiliser un
modèle défini comme la somme incohérente des différentes résonances de mésons, incluant
les canaux de fonds jugés les plus significatifs.

4.1.1 Paramétrisation des résonances de mésons

Une résonance R de spin l décroissant en deux particules (ici une paire de pions) est
décrite par une distribution de Breit-Wigner asymétrique [62] [63] :

dσ

dMπ+π−
= BWR(Mπ+π−) = I

2

π

Mπ+π−MRΓ(Mπ+π−)

(M2
R −M2

π+π−)2 +M2
RΓ2(Mπ+π−)

, (4.2)

où I est l’intensité du pic, MR la valeur nominale du centre de la distribution et Γ sa
largeur à mi-hauteur. La largeur à mi-hauteur dépendante de l’énergie est définie par :

Γ(Mπ+π−) = ΓR

(
q

qR

)2l+1
MR

Mπ+π−
, (4.3)

où q est l’impulsion d’un des pions de décroissance dans le référentiel de R au repos, et qR
la valeur de q pour Mπ+π− = MR :

q =

√
M2

π+π− − 4M2
π

2
qR =

√
M2

R − 4M2
π

2
(4.4)

où Mπ est la masse du pion (139 MeV). Le ρ0 a fait l’objet de plusieurs études théoriques
permettant de décrire la forme de la résonance. Deux types de mécanismes ont été proposés
pour expliquer la forme observée du ρ0. Le premier mécanisme, décrit par Söding [64],
correspond à l’interférence de l’amplitude ρ0 avec les contributions π+π− non résonantes,
qui conduisent à un décalage vers les basses masses du centre du pic du ρ0. Le deuxième
mécanisme, proposé par Ross et Stodolsky [65], repose sur la dissociation d’un photon
en un méson vecteur selon le diagramme 4.1. Le calcul de Ross et Stodolsky aboutit à
l’introduction d’un facteur de correction de la distribution Breit Wigner (4.2) qui décale le
centröıde de la distribution :

BW sk.
R (Mπ+π−) = BWR(Mπ+π−)

(
MR

Mπ+π−

)nskew
, (4.5)

où nskew est le paramètre de distorsion (skewness en anglais). Il introduit en effet une
asymétrie vers les basses masses dans la distribution de la résonance, tandis que le terme

120



Chapitre 4. Extraction des sections efficaces γ∗p→ p′(f0/f2)

Figure 4.1 – Diagramme de dissociation pour la photoproduction du ρ0, selon Ross et
Stodolsky. Un couplage entre le photon et le ρ est introduit par le facteur phénoménologique
gγρ. Le ρ ainsi formé interagit avec le proton (lignes en bas de la figure) par diffusion
élastique ρp→ ρp.

(4.3) apporte une queue vers les hautes masses. Le calcul de Ross-Stodolsky prédit nskew = 4
pour le ρ0, mais cette quantité est laissée libre dans l’ajustement des spectres de masses
pour cette analyse.

Les mésons f0(980) et f2(1270) sont aussi paramétrisés par la distribution (4.5), où on
tient compte de leur spins respectifs (l = 0 et l = 2) dans la relation (4.3). Le facteur de
distorsion est maintenu pour tenir compte des possibles effets d’interférences. Cependant,
l’effet de ce facteur dépend du spin de la résonance, comme le montre la figure 4.2. Il
apparâıt par exemple, que la distribution décrivant une particule de spin 0 (comme c’est le
cas pour f0) forme une large structure non physique à basse masse en augmentant nskew.
Par conséquent, la distorsion pour le f0 doit être plus limitée que pour le ρ0 et le f2. Dans
l’ajustement, le paramètre de distorsion varie entre 0 et 1 pour le f0, et entre 0 et 5 pour
le ρ0 et f2.

Au final, les résonances ρ0(770), f0(980) et f2(1270) sont modélisées par la distribution
(4.5), où les paramètres I(Intensité du pic), MR (centröıde), ΓR (largeur à mi-hauteur)
et nskew sont à ajuster sur le spectre de masse invariante Mπ+π−Ėn principe, les seuls pa-
ramètres à ajuster sont I et nskew. Cependant, le centröıde et la largeur à mi-hauteur sont
laissés libres sur un intervalle très réduit (20 MeV environ), pour tenir compte d’un certain
nombre d’effets qui pourraient déformer la forme de la résonance ; corrections radiatives,
corrections d’acceptances, incertitudes des données du Particle Data Group. En particulier,
la largeur du f0 est mal connue, variant de 40 à 100 MeV [45].
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Figure 4.2 – Effet du paramètre de distorsion sur la distribution Breit Wigner (4.2) pour
une résonance de spin l=0 (colonne de gauche), de spin l=1 (colonne du milieu) et de spin
l=2 (colonne de droite). Les 4 lignes correspondent à 4 valeurs de nskew : 0, 1, 4 et 5.

4.1.2 Paramétrisation du bruit de fond

Dans cette analyse, deux contributions sont prises en compte pour modéliser le fond : le
canal epπ+π− non résonant et le canal epπ−∆++ ↪→ pπ+. Les distributions des fonds sont
établies à partir du générateur Monte Carlo GENEV : les distributions, dépendantes de
Mπ+π− , sont formées par l’accumulation d’évènements Monte Carlo générés dans un canal
de fond donné, sans effets radiatifs. Chaque évènement généré est pondéré par le facteur
de flux du photon virtuel de manière à rendre ces distributions équivalentes aux sections
efficaces réduites.

La forme des distributions étant fixée par le générateur Monte Carlo, le fond est ajusté
sur les spectres expérimentaux par un facteur d’échelle α. On souhaite que α ne dépende
pas du nombre d’évènements Monte Carlo générés pour créer les distributions de fonds.
Pour cela, celles-ci sont normalisées avant l’ajustement, de manière à ce que l’intégrale sur
Mπ+π− d’une distribution de fond soit égale à l’intégrale du spectre de section efficace à
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ajuster : ∫
Fond(Ω,Mπ+π−)dMπ+π− =

∫
dσ

dΩdMπ+π−
dMπ+π− , (4.6)

où Ω désigne un ensemble parmi les 7 variables cinématiques décrivant l’électroproduction.
Avec la condition (4.6), le facteur d’échelle α décrit la fraction de fond sur la totalité du
spectre de section efficace.

4.1.3 Commentaires sur la stratégie d’ajustement

Dans la soustraction de fonds, il faudrait en principe tenir compte de la totalité des
processus impliquant la production de baryons. Mais, comme il a été mentionné auparavant,
il n’existe pas de modèles permettant de décrire la production de tous les N∗. Dans l’analyse
[48], un ajustement simultané des spectres Mπ+π− , Mpπ+ et Mpπ− a été tenté, en incorporant
les contributions du ∆0, des N? et les projections des résonances ρ0, f0, f2. La distribution
de ces contributions suivant Mπ+π− Mpπ+ ou Mpπ− a été obtenue en utilisant GENEV, à
partir des canaux déjà existants dans le générateur : les ∆(1600) et ∆(1900) sont obtenus
à partir du ∆++, les N?(1520) et N?(1680) à partir du ∆0, et les projections du f0(980) et
du f2(1270) à partir du ρ0, en modifiant le centre et la largeur des résonances existantes
dans Genev. A l’issue de cette étude [66], il est apparu que :

– Le signal du ρ0 obtenu après ajustement simultané des spectres Mm[epX], Mpπ+ et
Mpπ− ne reproduit pas bien les données expérimentales. En fait, le signal obtenu par
l’ajustement du seul spectre Mm[epX] tient mieux compte du pic du ρ0 présent dans
le spectre Mm[epX] des données expérimentales.

– Les projections des résonances N? dans les spectres Mm[epX] montraient une forte
similarité avec la distribution du canal epπ+π− non résonant, et peuvent être ab-
sorbées dans ce dernier.

– Parmi les projections Mm[epX] non résonantes, seule la distribution du canal
epπ−∆++ ↪→ pπ+ montrait une différence notable avec celle du canal epπ+π− non
résonant.

Partant de ces conclusions, l’extraction des résonances ρ0, f0 et f2 dans ce travail de
thèse se fera par un ajustement sur le spectre Mπ+π−uniquement.

4.1.4 Ajustement de référence

A ce stade, l’ajustement du spectre Mπ+π− avec les 3 résonances et les deux distributions
de fond donne une contribution dominante, voire exclusive, du ∆++. Cette contribution
atteint jusqu’à α∆++=40 % dans certains bins (Q2, xB) où les régions de masse du f0 et
du f2 sont accessibles. Or, un ajustement sur le spectre Mpπ+ d’un même bin montre que
le ∆++, qui forme un pic dans ce spectre, apporte une contribution inférieure à 20% à la
section efficace totale, comme le montre par exemple la figure 4.3. Ainsi, l’ajustement du
seul spectre Mπ+π− ne donne pas une contribution réaliste du continuum ∆++ et nécessite
de contraindre l’ajustement.

De manière générale, la contribution du ∆++ au spectre Mpπ+ , dans les bins où le f0 et
le f2 sont susceptibles d’apparâıtre, n’excède pas 25% (figure 4.4).
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Figure 4.3 – A gauche, ajustement sur un spectre Mπ+π−avec les contributions du ρ0 en
vert, du f0 en bleu, du f2 en rose, de la projection du canal epπ+π− non résonant en marron,
et de la projection du ∆++ en gris. La résultante de ces contributions est représentée par
la courbe rouge. A droite, ajustement sur le spectres Mpπ+ avec la contribution du ∆++ en
gris, la projection du ρ0 en vert, le canal epπ+π− en marron. Les ajustements à gauche et
à droite sont indépendants. La fraction du ∆++ par rapport à la section efficace intégrée
est indiquée sur les deux spectres. L’espace de phase considéré est 1.5 < Q2 < 1.82 et
0.22 < xB < 0.28.

Par conséquent, pour avoir une soustraction du fond plus réaliste dans la région du
f0 et du f2, le facteur de normalisation du fond α∆++ a été limité entre 1% et 20% de la
section efficace totale. Le fond non résonant, quant à lui, est laissé entièrement libre (αNR
entre 1% et 100%).

Pour résumer, pour chaque spectre Mπ+π− délimité dans un intervalle (Q2, xB), (Q2,
xB, τ) ou (Q2, xB, τ , ν) (τ et ν étant chacun une des 4 autres variables cinématiques), le
modèle dépend de 14 paramètres :

– ρ0 : intensité du pic (Iρ0), masse (Mρ0), largeur à mi-hauteur (Γρ0), distorsion
(nskew ρ0) ;

– f0 : intensité du pic (If0), masse (Mf0), largeur à mi-hauteur (Γf0), distorsion
(nskew f0) ;

– f2 : intensité du pic (If2), masse (Mf2), largeur à mi-hauteur (Γf2), distorsion
(nskew f2) ;

– Normalisation (αN.R) de la projection Mπ+π− du canal epπ+π− non résonant ;
– Normalisation (α∆++) de la projection Mπ+π− du canal epπ−∆++ ↪→ pπ+.
Les limites utilisées pour ces paramètres dans l’ajustement sont détaillées dans le ta-

bleau 4.1.
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Figure 4.4 – Ajustements sur les spectres Mpπ+ avec la contribution du ∆++ en gris, la
projection du ρ0 en vert, le canal epπ+π− en marron . La résultante de ces contributions est
représentée par la courbe rouge. Sur chaque spectre figure la fraction de ∆++ par rapport
à la section efficace intégrée.

125



Troisième partie : Analyse des données

Paramètre Minimum Maximum Prédiction

Iρ0 (µb
Ω

) 0 10 -
Mρ0 (MeV) 750 790 770
Γρ0 (MeV) 140 170 150
nskew ρ0 0 5 4 ([65])

If0 (µb.GeV
Ω

) 0 10 -
Mf0 (MeV) 970 990 980
Γf0 (MeV) 40 120 40-100
nskew f0 0 1 -

If2 (µb.GeV
Ω

) 0 10 -
Mf2 (MeV) 1260 1280 1270
Γf2 (MeV) 170 200 185
nskew f2 0 5 -
αN.R 0.01 1. -
α∆++ 0.01 0.20 -

Table 4.1 – Tableau des valeurs limites des paramètres à ajuster, et leur prédictions.

4.2 Extraction des sections efficaces différentielles

La section efficace de production σγ
∗p→pM d’un méson M est l’intégrale de la dis-

tribution BWM(Mπ+π−) ajustée sur les données, divisée par le rapport de branchement
BRγ∗p→pM↪→π+π− de décroissance du méson en une paire π+π− :

σγ
∗p→pM =

∫ 2

0
BWM(Mπ+π−)dMπ+π−

BRγ∗p→pM↪→π+π−
. (4.7)

Les rapports de branchement sont pris de la référence [45] :
– Pour le ρ0(770), BRρ0↪→π+π−=100%, à 10−3 près.
– Pour le f0(980), il n’existe pas de valeur numérique pour le rapport de branchement.

La référence [45] mentionne que la décroissance en π+π− est � dominante �. En
l’absence de plus d’informations, on impose BRf0↪→π+π−=100%.

– Pour le f2(1270), BRf2↪→π+π−=84.8%.

4.3 Estimation des erreurs

L’erreur totale relative sur les sections efficaces est définie par :

∆σ

σ
=

√
∆σstat fit

σ

2

+
∆σsyst norm

σ

2

+
∆σsyst fit

σ

2

, (4.8)

avec :
– ∆σstat fit l’erreur statistique sur l’intégrale du signal. Elle est calculée à partir de la

matrice de covariance des paramètres d’ajustement, produite par MINUIT.
– ∆σsyst norm l’erreur systématique liée à la normalisation des spectres de section effi-

cace, discutée dans la section 3.10.
– ∆σsyst fit l’erreur systématique liée à la procédure d’ajustement.
Un certain nombre de choix doivent être faits pour établir la procèdure d’ajustement.

Un protocole différent aurait pu ainsi être envisagé. Pour évaluer ∆σsyst fit, on a considéré
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différentes variations par rapport à la procédure de référence, établie dans la section 4.1 et
paramétrisée par la table 4.1 :

1. Ajustement des spectres avec le paramètre de normalisation α∆++ laissé libre (0.01 ≤
α∆++ ≤ 1.).

2. Ajustement des spectres avec un fond décrit par le canal epπ+π− non résonant uni-
quement.

3. Ajustement du f0 et du f2 sans le paramètre de distorsion.

4. Ajustement des spectres avec une plage de variation des masses centrales et des
largeurs à mi-hauteur à ±15%, à l’exception de la largeur à mi-hauteur définie pour
le f0, qui va déjà du simple au double.

Ces variations sont reportées dans le tableau 4.2.
L’erreur ∆σsyst fit est définie par la variance de la valeur de référence σ par rapport aux

autres mesures σi obtenues dans les scénarii décrits précédemment :

∆σsyst fit =

√√√√1

4

4∑
i=1

(σ − σi)2 . (4.9)

Pour la mesure des sections efficaces σγ
∗p→pρ0 , σγ

∗p→pf0 et σγ
∗p→pf2 dans les intervalles

(Q2, xB), la variation 2/ (ajustement avec un seul spectre de fond) a le plus fort impact
parmi les 4 variations considérées. Pour la mesure du ρ0, cette variation crée un écart
moyen de 10 % environ par rapport à la valeur de référence. En revanche, pour le f0 et le
f2, cette même variation engendre de plus grands écarts, allant de 25 à plus de 100 % selon
le bin, par rapport à la mesure de référence. La soustraction du fond est donc une étape
critique qui apporte de fortes variations systématiques.

Scénario d’ajustement Nature de la variation

Référence -
Variation 1 0.01 ≤ α∆++ ≤ 1 .
Variation 2 Pas de contribution du fond ∆++.
Variation 3 nskewf0 = 0 et nskewf2 = 0.
Variation 4 Plage de variation des masses centrales Mρ0, f2

et des largeurs Γρ0, f2 à ±15 % .

Table 4.2 – Tableau récapitulatif des variations appliquées à l’ajustement des spectres
de masse invariante, pour étudier l’erreur systématique sur la soustraction de fond.

Dans le reste de ce travail, les points où l’erreur statistique ∆σstat fit vaut plus de 90%
de la valeur mesurée sont rejetés :

∆σstat fit

σ
≤ 0.9 . (4.10)

4.4 Sections efficaces différentielles (Q2, xB) du ρ0

Le ρ0(770) est la résonance mésonique proéminente de cette expérience. Comme la
résonance apparâıt dans un espace de phase plus étendu que celui défini pour le f0 et le
f2, on choisit d’étudier le ρ0 avec le même découpage que celui utilisé pour l’étude des
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sections efficaces intégrées σγ
∗p→pπ+π− (voir table 3.3). Cela permet aussi d’établir une

comparaison directe avec les données publiées [55]. Les résultats des ajustements sur les
spectres délimités en intervalles (Q2, xB) sont présentés sur la figure 4.5.

Globalement, le modèle choisi s’ajuste bien sur les données expérimentales, à l’exception
de quelques bins à haut xB où le pic du ρ0 est moins bien reproduit.

La figure 4.6 présente les sections efficaces du ρ0, extraites des spectre de la figure 4.5
par la formule (4.7), pour ce travail de thèse (en noir sur la figure) et l’analyse [55] (en
rouge).

La présence de points supplémentaires dans ce travail s’explique par le critère (3.24)
de réjection des mesures selon le facteur de trou, qui est plus restrictif dans la précédente
analyse. A bas xB, les sections efficaces obtenues sont en accord avec les précédentes mesures
en incluant les erreurs systématiques. Mais dans certains bins en Q2, la plupart des sections
efficaces à grand xB (xB > 0.4) sont plus élevées que les précédentes mesures, au delà des
incertitudes systématiques.

4.5 Sections efficaces différentielles (Q2, xB)

La figure 4.7 montre les ajustements sur les spectres délimités en intervalles (Q2,xB)
définis pour l’étude du f0 et du f2 (table 3.1).

Les sections efficaces des différentes résonances, extraites des ajustements, sont
représentées dans la figure 4.8, superposées avec la section efficace totale dans un intervalle
(Q2, xB).

La section efficace totale σγ
∗p→pπ+π− décrôıt d’un facteur 10 pour une augmentation

de 2 GeV2 en Q2. La section efficace σγ
∗p→pρ0 du ρ0 suit une tendance de décroissance

similaire. Les sections efficaces σγ
∗p→pf0 et σγ

∗p→pf2 contribuent en même proportion à la
section efficace totale, et représentent chacune moins de 10% de contribution. Le domaine
0.22 ≤ xB ≤ 0.35 semble le plus instructif concernant l’évolution des sections efficaces
du f0 et du f2 en fonction de Q2, grâce à une meilleure couverture cinématique. Pour
0.22 ≤ xB ≤ 0.28, la production des deux mésons décrôıt de façon similaire en fonction de
Q2.

4.6 Sections efficaces différentielles (Q2, xB, −t)
Dans cette section, les spectres de masse invariante sont délimités par des intervalles

en (Q2, xB, −t). Les ajustements sur les spectres sont présentés dans l’annexe A. Dans
une coordonnée (Q2, xB) fixée, l’allure des spectres varie fortement selon l’intervalle en
transfert d’impulsion −t. Pour t < 0.4 GeV2, les spectres sont fortement dominés par le
pic du ρ0, avec une contribution quasiment inexistante de la région du f0 et du f2. A mesure
que −t augmente, les contributions relatives des régions du f0 et du f2 deviennent de plus
en plus importantes ; à des valeurs intermédiaires en -t (typiquement entre 1 et 2 GeV2),
les pics du f0 et du f2 apparaissent clairement. L’extraction des mésons sur ces spectres
est par conséquent moins incertaine qu’elle ne l’était pour des spectres différenciés en Q2

et xB, au prix d’une statistique amoindrie. On extrait ensuite les section efficaces dσγ
∗p→pf0
dt

et dσγ
∗p→pf2
dt

pour chaque coordonnée (Q2, xB, −t). Les figures 4.9, 4.10 et 4.11 montrent la
dépendance en −t respectivement pour le ρ0, le f0 et pour le f2.

La forme générale des distributions à grand t est de type diffractif, c.à.d. ∼ e−bt. Cela
indique que le mécanisme d’échange d’une trajectoire de Regge dans la voie t est dominant
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Troisième partie : Analyse des données
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Figure 4.6 – Sections efficaces σγ
∗p→pρ0 en fonction de Q2 pour différents intervalles en xB.

En noir, les résultats obtenus dans cette analyse, et en rouge, ceux obtenus dans l’analyse
[55]. Les barres d’erreur représentent la somme quadratique des erreurs statistiques et
systématiques.
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Chapitre 4. Extraction des sections efficaces γ∗p→ p′(f0/f2)
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Figure 4.8 – Résultats des sections efficaces selon Q2, pour les différentes intervalles en
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Chapitre 4. Extraction des sections efficaces γ∗p→ p′(f0/f2)
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à grands t.
Dans le cas du f0, dans plusieurs bin (Q2, xB), dσ/dt présente une retombée vers les t

minimum de production du f0. Cela peut s’expliquer par une inversion de l’état d’hélicité
du nucléon d’état initial et d’état final dans le mécanisme d’échange de voie t. En effet,
dans ce cas, la production d’un méson aligné avec le photon virtuel (t = 0) est supprimé.

En tenant compte de cet effet, les sections efficaces dσ/dt sont ajustées, en incluant
l’erreur totale de chaque point, de la manière suivante :

dσ

dt
= Ae−bt pour le ρ0 et le f2, (4.11)

dσ

dt
= A(t− tmin)e−bt pour le f0, (4.12)

où A et b sont les paramètres à ajuster. La transformée de Fourier de b est un paramètre
d’impact lié à la taille transverse de la région d’interaction du système γ∗p. La quantité
tmin correspond à la valeur minimale de t pour produire le méson ρ0, f0 ou f2, à Q2 et xB
fixé.

La figure 4.12 montre les valeurs de la pente b en fonction de l’énergie du centre de
masse W . La pente du f0 évolue entre 1 et 3 GeV−2 en suivant la même évolution que le
ρ0 à grand W . La pente du f2 semble être constante sur l’intervalle en W considéré et vaut
0.5 GeV−2 environ.

W (GeV)
1.8 2 2.2 2.4 2.6 2.8 3

)
-2

b
 (

G
ev

0

0.5

1

1.5

2

2.5

3

3.5

4

  

Figure 4.12 – Paramètre d’impact b en fonction de l’énergie de centre de masse W des
mésons ρ0 (en vert), f0 (en bleu) et f2 en rose. Les barres d’erreur correspondent à l’erreur
donnée par l’ajustement des spectres dσ

dt
.
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Chapitre 4. Extraction des sections efficaces γ∗p→ p′(f0/f2)

4.7 Sections efficaces différentielles (Q2, xB, Φ)

Les résultats des ajustements sur les spectres de masse invariante sont présentés dans
l’annexe C. Le photon virtuel γ∗ a trois états d’hélicité (projection du spin sur la direction
du photon) possibles : λ = ±1, où la polarisation du photon est dite transverse (T), et
λ = 0, où la polarisation est longitudinale (L). La séparation des états de polarisation du
photon virtuel est cruciale pour l’étude des GPDs (voir partie I, chapitre 2, section 2.3).
La dépendance de la section efficace selon l’angle Φ entre le plan leptonique et hadronique
permet de renseigner sur la polarisation. Dans l’hypothèse de l’échange d’un seul photon
virtuel entre l’électron et le système hadronique, la formule prédite pour l’électroproduction
exclusive non polarisée d’un méson s’écrit :

dσ

dΦ
=

1

2π
(σT + εσL + εcos 2Φ σTT +

√
2ε(1 + ε)cos Φ σTL) , (4.13)

où σL, σT , σTT , σTL sont, respectivement, les fonctions de structure � longitudinale �,
� transverse �, d’interférence � transverse-transverse � et � transverse-longitudinale � . La
fraction de polarisation transverse et longitudinale ε est définie par l’équation (3.3). La
séparation des composantes longitudinale σL et transverse σT dépend du méson produit.
De façon générale, la technique de Rosenbluth est employée ; les sections efficaces sont
mesurées avec plusieurs énergies de faisceaux différentes. Dans un intervalle (Q2, xB) fixé,
seule la quantité ε diffère dans les différentes mesures. La combinaison des différentes
mesures de σT + εσL permet d’extraire σL et σT . Dans le cas des mésons vecteurs (spin 1),
dans l’hypothèse où le méson produit a le même état d’hélicité λ que le photon virtuel (on
parle de � s-channel helicity conservation �), il existe une relation directe entre le rapport
r04

00 (rapport entre les états de polarisation longitudinale et transverse du méson vecteur,
mesurable à partir des distributions angulaires cos θHS), et le rapport R = σL

σT
.

Les fonctions de structure σT + εσL, σTT et σTL, sont les paramètres à ajuster sur les
distributions dσ

dΦ
mesurées. La figure 4.13 montre ces distributions en fonction du bin (Q2,

xB) pour le f0, avec les résultats des ajustements. Les fonctions de structure σT + εσL, σTT
et σTL résultant des ajustements sont représentées dans la figure 4.14. Dans l’intervalle
0.22 ≤ xB ≤ 0.35, les interférences TT sont du même ordre de grandeur que la section
efficace non polarisée σT+εσL, tandis que l’interférence TL est proche de zéro, en particulier
pour le bin 0.28 ≤ xB ≤ 0.35. Une même tendance a été observée pour l’électroproduction
du méson pseudoscalaire π0 [67], où la contribution σTT est de signe opposé à la section
efficace totale σT + εσL. La figure 4.15 montre ces distributions en fonction du bin (Q2,
xB) pour le f2, avec les résultats des ajustements.

Les résultats, présentés dans la figure 4.16, semblent montrer cette fois une
prédominance de l’interférence σTL par rapport à la section efficace totale dans l’inter-
valle 0.22 ≤ xB ≤ 0.28.
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Figure 4.14 – Section efficace totale σT + εσL en noir, section efficace σTT en rouge, et
section efficace σTL en vert, pour le f0, en fonction de Q2 et pour différents bin en xB.

4.8 Sections efficaces différentielles (Q2, xB, −t, Φ)

Nous cherchons ici à établir la dépendance en −t des sections efficaces selon les
différentes polarisations du photon virtuel. Pour cela, il s’agira d’ajuster les distributions
de sections efficaces différentielles d2σ

dtdΦ
selon Φ dans les intervalles (Q2, xB, −t) par la

formule :

dσ

dtdΦ
=

1

2π
(
dσT
dt

+ ε
dσL
dt

+ εcos 2Φ
dσTT
dt

+
√

2ε(1 + ε)cos Φ
dσTL
dt

) (4.14)

Il faut préalablement extraire les signaux du f0 et du f2 des spectres de masse invariante.
Or, une différenciation des spectres selon 4 variables cinématiques (Q2, xB, −t et Φ) avec
un découpage de celles-ci selon la table 3.1 risque d’aboutir à une statistique très limitée
dans chaque spectre. Pour cette étude, le découpage de l’espace est redéfini en réduisant le
nombre d’intervalles Q2, xB et −t, décrits dans le tableau 4.3 :

Variable Unité Intervalle Nombre de bins Largeur de bins
Q2 GeV2 1.50-5.10 3 1.20
xB - 0.15-0.55 3 0.13
−t GeV2 0.10-1.90 2 0.90

1.90-4.50 2 1.30

Table 4.3 – Définition du binning pour l’étude des sections efficaces dσ
dtdΦ

.

La table des corrections d’acceptance et d’efficacité des coupures Čerenkov reste définie
par la table 3.1. Par conséquent, les intervalles (Q2, xB, −t, Φ ) utilisés pour la présente
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Figure 4.16 – Section efficace totale σT + εσL en noir, section efficace σTT en rouge, et
section efficace σTL en vert, pour le f2, en fonction de Q2 et pour différents bins en xB.

analyse sont plus grossiers que les intervalles définis pour l’acceptance. Malheureusement,
cela aboutit à une correction de facteur de trou (dont on rappelle la définition (3.23)) très
élevée. De ce fait, les spectres de certains intervalles cinématiques se retrouvent rejetés par
la condition (3.24).

Les ajustements des spectres Mπ+π− figurent dans l’annexe D.
La figure 4.17 montre les résultats des fonctions de structure en fonction de −t pour

le f0, après ajustement de la formule (4.14) sur les distributions dσ
dtdΦ

. Les larges barres
d’erreurs rendent difficiles l’établissement d’une tendance générale concernant les fonctions
de structure.

En ce qui concerne le f2, la contribution σTL domine devant σTT sur l’ensemble des
points en −t, en accord avec ce qui a été relevé dans la section précédente.
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4.9 Sections efficaces différentielles (Q2, xB, cos θHS)

Dans le cas d’un méson décroissant en une paire de pions (qui sont des particules de
spin 0), les distributions angulaires de décroissance d’un des deux pions (le π+ ici) dans le
référentiel du méson au repos permet de renseigner directement sur le spin du méson dont
il provient, comme il sera démontré dans le chapitre 5.

La distribution angulaire en θ et φ des produits de décroissance résulte d’une combi-
naison d’harmoniques sphériques. Les sections efficaces sont proportionnelles au carré de
cette combinaison, ce qui conduit à l’apparition de termes d’interférences. Négligeant ces
interférences pour le moment, les sections efficaces sont alors décrites par une combinai-
son des carrés des harmoniques sphériques, qui dépendent uniquement de l’angle polaire
cos θHS.

Les résultats des ajustements sur les spectres de masses invariantes sont présentés dans
l’annexe B.

Pour extraire les distributions angulaires cos θHS selon les bins (Q2, xB), la procédure
de soustraction de bruit de fond a été modifiée. En effet, d’après les simulations Monte
Carlo, les évènements générés du canal ∆++ (sans effets radiatifs) occupent une région
angulaire limité à cos θHS < −0.4. Par conséquent, la soustraction de bruit de fond dépend
de l’intervalle cos θHS délimitant le spectre de masse à ajuster :

– Pour l’intervalle cos θHS < −0.4 (soit les 2 premiers bins, comme défini par la table
3.1), les spectres sont ajustés avec les 2 contributions de fonds epπ+π− non résonant et
∆++. Les paramètres sont laissés entièrement libres à l’initialisation, pour permettre
une contribution potentiellement maximale du ∆++ ; 0.01 ≤ αNR ≤ 1. et 0.01 ≤
α∆++ ≤ 1.

– Sinon, les spectres sont ajustés par le fond epπ+π− non résonant uniquement.
L’évaluation de l’erreur systématique doit également être révisée ; la nouvelle procédure

de référence est comparée à un scénario d’ajustement avec le fond résonant uniquement pour
l’intervalle cos θHS < −0.4, avec l’absence de distorsion du f0 et du f2 et l’élargissement
des paramètres de centre et de largeur à mi-hauteur. Les variations systématiques sont
resumées dans le tableau 4.4.

Scénario d’ajustement Nature de la variation

Référence -
Variation 1 Pas de contribution du fond ∆++.
Variation 2 nskewf0 = 0 et nskewf2 = 0.
Variation 3 Plage de variation des masses centrales Mρ0, f2

et des largeurs Γρ0, f2 à ±15 % .

Table 4.4 – Tableau récapitulatif des variations systématiques appliquées à l’ajustement
des spectres de masse invariante, binnés selon cos θHS.

Les figures 4.19 et 4.20 montrent les dépendances selon cos θHS respectivement pour le
f0 et pour le f2, avec cette procédure adaptée.

Le f0 est un méson scalaire, donc de spin nul. Il en résulte que la distribution angulaire
cos θHS du π+ de décroissance doit être constante (polynôme de Legendre d’ordre 0). Or
les distributions angulaires de la figure 4.19 montrent des fluctuations significatives au delà
de l’erreur totale pour chaque point. En particulier, dans la région de cos θHS = −1, la
section efficace mesurée du f0 est systématiquement plus élevée. Pour le f2 (figure 4.20), la
distribution du π+ de décroissance est ajustée par un polynôme de Legendre d’ordre 4, qui
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caractérise la distribution angulaire des produits de décroissance d’une particule de spin 2.
On relève également que la section efficace est plus élevée dans la région de cos θHS = −1.

Or, en s’intéressant aux distributions angulaires avant soustraction de fond (figure 4.21),
la même asymétrie se manifeste dans la région cos θHS = −1. Deux causes peuvent alors
être avancées pour expliquer cela. Il pourrait s’agir d’une incompatibilité entre les simu-
lations et ce qui a été mesuré, donnant lieu à un calcul d’acceptance erroné. Cependant,
la figure 3.5 montre que les données Monte Carlo reconstruites par la simulation de CLAS
reproduisent la distribution des données expérimentales en fonction de cos θHS dans la
région considérée, ce qui écarte l’hypothèse avancée. La deuxième cause pourrait provenir
de la contribution du ∆++, qui occupe uniquement la région cos θHS problématique. Vu que
l’asymétrie subsiste après soustraction du fond, qui inclut la contribution du ∆++, il est
probable que la contribution du ∆++ donnée par l’ajustement sous-estime la contribution
réelle, ou que la contribution des autres résonances baryoniques qui ne sont pas prises en
compte dans la soustraction du fond devienne importante.
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Chapitre 5

Analyse en ondes partielles

Formellement, une résonance est définie comme un pôle de l’amplitude dans un es-
pace complexe des variables cinématiques. En pratique, les résonances sont nombreuses
et peuvent interférer entre elles. Seuls des états bien isolés conduisent à des structures
que l’on peut identifier comme des pics dans un spectre. Comme il a pu être constaté
dans le chapitre précédent, les mésons f0 (980) et f2 (1270) apparaissent dans une région
où la contribution relative du fond est particulièrement importante, rendant difficile leur
extraction.

L’identification précise de ces états nécessite l’extraction d’informations addition-
nelles, comme le moment angulaire, qui définit un nombre quantique caractéristique de
la résonance considérée.

La technique d’analyses en ondes partielles permet d’obtenir ces informations.

5.1 Analyse en termes d’amplitudes

5.1.1 Principe

La section efficace d’un processus est paramétrisée comme une somme cohérente de
sous-amplitudes (appelées ondes partielles) pouvant interférer entre elles. Cette somme est
appelée une intensité :

I(τ) = |A|2 , (5.1)

où τ désigne l’ensemble des variables cinématiques décrivant la réaction, et A est l’am-
plitude invariante du processus (partie I, équation 1.9). I(τ) est un poids affecté à un
évènement du processus considéré et varie selon sa cinématique τ .

Chaque onde partielle est caractérisée par un ensemble de nombres quantiques α. Une
onde partielle est factorisée en une amplitude de production, qui décrit dans notre cas celle
du méson, et en une amplitude de décroissance, qui décrit ici sa décroissance en une paire
π+π− [69, 70].

L’intensité s’écrit alors :

I(τ) = |
∑
α

VαAα(τ)|2 , (5.2)

où

– Vα ∈ C est l’amplitude de production.
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– Aα(τ) ∈ C est l’amplitude de décroissance. Il s’agit d’une fonction à valeur complexe
qui dépend de la cinématique τ d’un évènement donné.

L’analyse en ondes partielles consiste à ajuster la partie réelle et imaginaire de chaque
paramètre libre Vα (respectivement, l’intensité et la phase) de l’équation (5.2) sur les
données expérimentales.

L’ensemble des Aα(τ) constitue une base fonctionnelle : l’extension de l’intensité I(τ) à
une infinité d’ondes partielles (i.e. les valeurs prises par les nombres quantiques α tendent
vers l’infini) aboutit à une description complète de l’amplitude invariante.

La description de l’intensité en tant que carré d’une somme cohérente est à l’origine
des effets d’interférences. Ainsi, déterminer les Vα connaissant l’expression analytique de
l’intensité revient à résoudre un système d’équations quadratiques couplées des parties
réelles et imaginaires des Vα. Or, ces équations admettent plusieurs solutions ; il peut exister
des ambigüıtés quant à la valeur prise par Vα. La résolution numérique par un ajustement
ne peut suffire dans ce cas, et nécessite une analyse des amplitudes.

L’analyse en ondes partielles a été réalisée à l’aide du programme AmpTools, développé
par l’université d’Indiana [68]. AmpTools fournit un ensemble de librairies C++ adaptées
pour l’ajustement d’amplitudes complexes par le calcul d’un maximum de vraisemblance,
en laissant à l’utilisateur la liberté de paramétriser la base d’amplitudes.

5.1.2 Ajustement de l’intensité

Le maximum de vraisemblance est la quantité utilisée pour ajuster l’intensité (5.2) sur
les données, et en extraire les paramètres libres Vα. Le maximum de vraisemblance L est
défini comme le produit des probabilités Pi de détecter chaque évènement i :

L =
N∏
i

Pi(τi, ~x) , (5.3)

où le produit est calculé sur l’ensemble des N évènements mesurés. Chaque évènement
i possède une cinématique τi, et ~x sont l’ensemble des paramètres Vα que l’on cherche à
extraire. La probabilité de détection Pi de l’évènement i est proportionnelle au produit de
l’intensité multipliée par l’acceptance du détecteur εi pour cet évènement :

Pi(τi, ~x) ∝ I(τi, ~x) · ε(τi) . (5.4)

L’acceptance évènement par évènement, ε(τi), est définie de la manière suivante :

ε(τi) = 1 si l’évènement i est détecté

ε(τi) = 0 sinon.
(5.5)

A ce stade, la formule exacte de la probabilité est connue à une constante multiplicative
de normalisation près. La condition de normalisation est telle que l’intégrale de l’intensité
multipliée par l’acceptance du détecteur ε(τ) sur l’ensemble de l’espace de phase correspond
au nombre d’évènements détectés moyen µ au cours d’une expérience :

µ(~x) =

∫
I(τ, ~x) · ε(τ)dτ (5.6)

Pi(τi, ~x) =
I(τi, ~x) · ε(τi)∫
I(τ, ~x) · εidτ

. (5.7)
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Le nombre total d’évènements N est une variable statistique : en réalisant une
expérience plusieurs fois avec une même durée de faisceau, le nombre d’évènements de-
tectés fluctue autour de la valeur moyenne µ selon la loi de Poisson. Ainsi, la probabilité
de mesurer exactement N évènements doit être prise en compte dans la formule de vrai-
semblance, ce qui donne :

L =
µNe−µ

N !
·
N∏
i

I(τi, ~x) · ε(τi)∫
I(τ, ~x) · ε(τ)dτ

=
µNe−µ

N !
·
N∏
i

I(τi, ~x) · ε(τi)
µ(~x)

. (5.8)

Comme on considère le produit des évènements qui ont été detectés, ε(τi) vaut toujours
1. On en déduit :

L =
e−µ

N !

N∏
i

I(τi, ~x) . (5.9)

Pour le calcul numérique de L, il est préférable de minimiser la quantité −ln L, car sa
valeur s’accrôıt moins vite que L pour N de plus en plus grand. Son expression devient
[70] :

− ln L ∝
(
−

N∑
i

lnI(τi, ~x)
)

+ µ(~x) . (5.10)

Le premier terme de l’expression (5.10) est une somme sur les données expérimentales
et peut être calculé connaissant l’intensité, pour une combinaison définie de ~x. Le second
terme µ(~x) correspond à l’intégrale de normalisation de l’acceptance, définie par (5.6).
Ce terme permet de rendre compte de la correction d’acceptance nécessaire pour établir
l’intensité de production I. De manière générale, il est difficile sinon impossible d’établir
une formule analytique de ε(τ) pour calculer cette intégrale. Cette intégrale est calculée de
manière numérique, en générant NGEN évènements par la méthode de Monte Carlo puis en
les injectant dans une simulation du détecteur. Les évènements détectés NREC doivent être
reconstruits avec le même algorithme de sélection que pour les données expérimentales.
De cette manière, l’intégrale devient la somme

∑NGEN
i I(τi, ~x) · ε(τi), où l’acceptance ε(τi)

est cette fois-ci calculable par la relation (5.5). La valeur moyenne du nombre attendu
d’évènements mesurés s’écrit alors :

µ(~x) =
τ

NGEN

NREC∑
i

I(τi, ~x) , (5.11)

où le facteur τ représente le volume total d’espace de phase occupé par l’état final. Ce
facteur est une constante additive dans l’expression de −ln L : comme elle ne dépend pas
des paramètres ~x à extraire, elle peut être ignorée du calcul d’ajustement.

Dans AmpTools, la quantité −ln L est définie de manière à ce que le nombre
d’évènements attendus µ corresponde exactement au nombre N d’évènement mesurés :

µ(~x) =
1

NGEN

NREC∑
i

I(τi, ~x) = N . (5.12)

5.1.3 Application à l’électroproduction de deux pions

Dans ce travail, on souhaite extraire le moment angulaire total J d’un méson à partir
des spectres de masse invariante Mπ+π− . Dans le référentiel d’hélicité, le méson est au
repos, le moment angulaire orbital est nul, et donc J se confond avec le spin de la particule
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Troisième partie : Analyse des données

(J = S) 1. Le méson décrôıt en une paire π+π−. La décomposition du moment angulaire
total à partir des deux pions de décroissance s’écrit :

Jπ+π− = Lrel + Sπ+π− (5.13)

où Lrel est le moment orbital relatif des deux pions et Sπ+π− est la combinaison des spins
des deux pions. Comme le pion a un spin nul, il ne subsiste que le moment orbital relatif
dans la décomposition :

Jπ+π− = Lrel . (5.14)

Dans un référentiel où le méson est au repos, comme les deux particules de décroissance
ont la même masse, les deux pions s’éloignent de part et d’autre après la désintégration. Il
suffit donc de connâıtre la cinématique de l’un des deux pions pour établir le moment angu-
laire orbital relatif, puis déduire le spin de la résonance. Ici, le spin du méson est déterminé
par la décomposition du moment orbital du π+ dans le calcul d’intensité. L’intensité est
alors fonction des angles de décroissance θHS et φHS du π+ dans le référentiel d’hélicité.

L’intensité décrivant la décroissance du méson en deux pions s’écrit :

I(θHS, φHS) =
∣∣∣ Lmax∑
L=0

L∑
M=−L

VLMYLM(θHS, φHS)
∣∣∣2 , (5.15)

où :
– YLM(θHS, φHS) sont les harmoniques sphériques, dont les formules sont expli-

citées dans l’annexe E. Les harmoniques sphériques forment une base orthonormale
décomposant la distribution angulaire du pion de décroissance. L désigne le moment
angulaire et M sa projection selon l’axe z du référentiel d’hélicité.

– VLM sont les amplitudes de production.
L’électroproduction est décrite par 7 variables cinématiques indépendantes (Q2, xB, −t,

Φ, cos θHS, φHS, Mπ+π−). En principe, l’intensité doit dépendre de ces 7 variables pour
décrire complétement l’amplitude. Cela implique que l’amplitude de production doit être
fonction des variables (Q2, xB, −t, Φ, Mπ+π−) : VLM(Q2, xB,−t,Φ,Mπ+π−). Il y a trois
manières de prendre en compte cette dépendance :

1. En introduisant une amplitude VLM(Q2, xB,−t,Φ,Mπ+π−) paramétrée en fonction
de ses variables cinématiques. Dans AmpTools, la partie VLM(Q2, xB,−t,Φ,Mπ+π−)
doit être inclue dans l’amplitude de décroissance.

2. En introduisant la dépendance des variables cinématiques dans le générateur Monte
Carlo utilisé pour calculer l’intégrale d’espace de phase.

3. En ajustant l’intensité pour différents bins en (Q2, xB, −t, Φ, Mπ+π−).

Les deux premières méthodes, équivalentes l’une de l’autre, supposent que la
dépendance de la section efficace selon les variables mentionnées soit entièrement connue,
ce qui n’est pas le cas. Nous choisissons la troisième méthode, car aucune supposition ne
doit être faite sur la physique de la réaction.

Pour mettre en évidence les résonances dans un spectre Mπ+π− avec une analyse en
ondes partielles, sans présager leur forme, il est nécessaire d’effectuer un ajustement pour
chaque bin de masse Mπ+π− . Le binning doit être suffisamment fin pour prendre en compte
les possibles variations de l’amplitude.

En principe, la description des distributions angulaires de décroissance est complète
pour une infinité d’ondes L. En pratique, il est nécessaire de limiter le nombre d’ondes L

1. Par convention, J est toujours donné dans le référentiel de la particule au repos.
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pour pouvoir calculer l’intensité numériquement. De plus, pour une valeur maximale Lmax,
la formule (5.15) contient 2(Lmax + 1)2 paramètres à ajuster, le facteur 2 provenant des
parties réelle et imaginaire de chaque VLM . Par exemple, pour Lmax = 2, nécessaire pour
extraire la résonance f2, 18 paramètres doivent être ajustés.

En raison de la statistique limitée des données expérimentales dans un bin de masse,
il convient d’examiner quelles ondes sont susceptibles d’être significatives. Tout d’abord,
aucune résonance de spin 3 n’a été identifiée dans nos spectres expérimentaux. L’étude
est donc restreinte à Lmax = 2. En outre, les résultats de photoproduction sur le proton
suggèrent que les états M ≥ 2 contribuent peu dans la région de masse considéré [72]. On
décide donc de restreindre les états M à M ≤ 1.

Pour résumer, l’intensité suivante est calculée pour chaque bin de masse :

I(θHS, φHS) =
∣∣∣ 2∑
L=0

1∑
M=−1

VLMYLM(θHS, φHS)
∣∣∣2 . (5.16)

Une fois que les paramètres VLM sont déterminés après ajustement sur les données avec
la formule (5.10), plusieurs quantités seront examinées dans ce travail :

– L’amplitude VLM de production elle-même.
– Le nombre total d’évènements epπ+π− produits, qui est la somme des intensités sur

l’ensemble des évènements Monte Carlo générés :

µ̃ =

∫
I(θHS, φHS)dθHSdφHS =

1

NGEN

NGEN∑
i

Ii(θHS, φHS) . (5.17)

On peut voir que cette quantité provient du calcul d’une intégrale d’espace de phase
sans les effets d’acceptance du détecteur. Ainsi, µ̃ peut être vue comme le nombre
d’évènements corrigés d’acceptance.

– Le carré de l’amplitude d’une onde L fixée, définie par l’intensité :

IL =
∑
M

|VLM |2 . (5.18)

Les ondes L = 0, L = 1, L = 2 sont appelées les ondes S, P et D respectivement. On
peut en déduire le nombre d’évènement µ̃L crée par cette onde :

µ̃L =

∫
IL(θHS, φHS)dθHSdφHS =

1

NGEN

NGEN∑
i

IL,i(θHS, φHS) . (5.19)

5.1.4 Le générateur Monte Carlo d’espace de phase

Les intégrales d’espace de phase (5.12) et (5.17) sont calculées à partir d’évènements
epπ+π− générés par la méthode de Monte Carlo. Comme ces intégrales contiennent les
paramètres VLM à ajuster, le générateur Monte Carlo doit satisfaire plusieurs conditions :

1. L’ensemble de l’espace de phase disponible doit être couvert.

2. Les particules sont produites selon la conservation énergie-impulsion uniquement.
L’amplitude physique de production est décrite séparément par l’intensité.

3. Les distributions angulaires du π+ dans le référentiel d’hélicité doivent être uniformes.
Sinon, l’ajustement des ondes partielles aboutit à des contributions biaisées par les
distributions angulaires prises par le π+ dans le modèle Monte Carlo.
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Troisième partie : Analyse des données

Pour remplir ces conditions, un modèle Monte-Carlo de type ep → epX ↪→ π+π−,
illustrée dans la figure 5.1, a été élaboré. L’idée de base est de construire un modèle
décrivant la décroissance d’un méson quelconque X en une paire de pions. Le modèle
comporte deux étapes. La première consiste à générer l’électron, le proton et le méson X
ayant une masse aléatoire avec l’énergie W 2 = (cible+ faisceau)2 dans l’espace de phase,
en se basant sur l’algorithme de la référence [73]. Dans la deuxième étape, le modèle Monte
Carlo imite la décroissance du méson en une paire de pions dans l’espace de phase, avec
le même algorithme. On s’assure de cette manière que les pions sont générés de manière
uniforme selon leur angle de décroissance (voir figure 5.2).

Figure 5.1 – Modèle Monte Carlo pour générer l’état final epπ+π− dans l’espace de phase.
1/ L’électron, le proton et une particule X, qui représente le méson, de masse aléatoire,
sont générés avec l’énergie de centre de masse W 2 = (Mcible + Efaisceau)

2. 2/Le méson X
décrôıt en une paire π+π−.

Pour que le calcul des intégrales d’espace de phase soit satisfaisant pour un ajustement
sur les données, on estime qu’il faut au moins 10 fois plus d’évènements Monte Carlo
d’espace de phase par rapport aux données dans un bin fixé [31] [71].
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Figure 5.2 – Distributions des variables cinématiques générées avec le modèle Monte
Carlo d’espace de phase. Le domaine cinématique est W > 1.7 GeV2 et Q2 > 1.4 GeV2.
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5.1.5 Stratégie de détermination de la solution

Pour choisir la solution d’un ajustement en ondes partielles, il faut s’assurer de la qualité
mathématique et physique de l’ajustement.

Du point de vue mathématique, la meilleure solution est celle qui donne la valeur
absolue de | − ln L| la plus grande.

Du point de vue physique, la meilleure solution est celle dont les ondes extraites
présentent un comportement en fonction de la masse conforme à nos connaissances spectro-
scopiques. Par exemple, le pic proéminent du ρ0 (770) observé en électroproduction dans
les spectres de masse indique que l’onde P (décroissance équivalente à une particule de spin
1) va dominer dans la région de masse de 770 MeV environ.

Dans les données expérimentales, les différentes contributions des amplitudes dans
un bin de masse ne peuvent pas être complètement connues à priori. Il existe plusieurs
stratégies permettant d’extraire la meilleure solution d’ajustement.

La méthode la plus générale consiste à initialiser de manière aléatoire les parties réelles
et imaginaires VLM , effectuer l’ajustement dans un bin de masse et répéter à plusieurs
reprises cette procédure.

Il en résulte un ensemble de solutions d’ajustement parmi lesquelles on choisit de
conserver celle qui donne le résultat le plus satisfaisant. Dans les différentes analyses en
ondes partielles, la meilleure solution conservée est couramment celle donnant la valeur
de | − ln L| la plus grande. Le maximum de vraisemblance ln L pouvant admettre plu-
sieurs extréma locaux, procéder à une infinité d’essais permet de faire émerger la meilleure
solution mathématique. La méthode est appliquée pour chaque bin de masse de manière
indépendante. L’inconvénient de cette technique appliquée à notre intensité est qu’elle n’as-
sure pas la continuité des amplitudes en fonction de la masse. Il faudrait alors examiner
l’ensemble des résultats de chaque bin de masse, puis choisir celui qui assure à la fois une
décomposition en onde réaliste et une continuité de ces ondes d’un bin de masse à l’autre.

Une méthode alternative proposée ici est de déterminer la meilleure solution d’un bin de
masse pour lequel on a le plus d’informations à priori, puis utiliser cette solution comme
initialisation des paramètres d’ajustement des bins voisins. L’algorithme procède de la
manière suivante :

1. Ajustement du bin de masse du ρ0 (Mπ+π− = 770 MeV) par une initialisation
aléatoire des paramètres. L’ajustement est répété avec une initialisation distincte
à chaque fois.

2. En examinant les solutions par valeurs de |− ln L| décroissantes, la première solution
donnant une dominance de l’onde P est conservée.

3. Les paramètres VLM de la solution du pic du ρ0 servent à initialiser un ajustement
de ses bins voisins. Le premier ajustement utilise directement ces valeurs, et 7 autres
ajustements sont réalisés en faisant varier les valeurs initiales de ±40% par rapport
à celles de départ. La meilleure solution est celle aboutissant au meilleur −ln L.

4. La solution obtenue sert d’initialisation au bin suivant. Comme pour la procédure
3, plusieurs ajustements sont effectués autour des valeurs trouvées pour le précédent
bin (variation aléatoire de ±40% des paramètres), puis la solution avec le meilleur
−ln L est conservée. Cette étape est répétée de proche en proche sur l’ensemble des
bins.

La phase absolue d’une amplitude n’est pas une quantité mesurable. Par contre, la
phase relative entre différentes amplitudes l’est. Par conséquent, il est possible de fixer
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la phase d’une amplitude sans avoir d’effets sur la physique. Pour l’ajustement des ondes
partielles, la partie imaginaire V00 est fixée dans ce travail à 0 :

=(V00) = 0 . (5.20)

Dans un premier temps, il convient de vérifier que la méthode employée permet de
retrouver des données dont nous contrôlons le contenu, autrement dit des pseudo-données.
Ensuite, la méthode sera appliquée aux données réelles.

5.1.6 Analyse des pseudo-données ρ0

La première question est de savoir si la méthode permet de déterminer les ampli-
tudes VLM sans ambuigüıté. Pour cela, considérons la production d’une résonance formée
de l’interférence de 2 amplitudes. La totalité des évènements est détectée : on imagine
une expérience avec un détecteur d’acceptance parfaite. Les évènements sont produits par
méthode de réjection/extraction des données générés par le générateur d’espace de phase,
suivant l’amplitude :

I(θHS, φHS,Mπ+π−) = |BWρ0(Mπ+π−) · (V10Y10(θHS, φHS) + V11Y11(θHS, φHS))|2 , (5.21)

où V10 = 50, V11 = 50 et

BWρ0(Mπ+π−) =
1

(M2
π+π− −M2

ρ0) + iMρ0Γρ0
(5.22)

est l’amplitude de Breit Wigner de production du ρ0. Environ 75 000 évènements sont
générés de cette façon. Les paramètres VLM sont extraits du fit.

Nous appliquons la stratégie d’ajustement détaillée dans la section précédente.
Contrairement à un ajustement par la méthode de minimisation de χ2, la valeur −ln L

ne suffit pas à renseigner sur la qualité réelle de l’ajustement. Pour s’en assurer, il convient
de vérifier l’accord des distributions θHS et φHS entre les pseudo-données et celles produites
par l’intensité ajustée. Pour cette dernière, les distributions sont créees en appliquant la
méthode de réjection et d’extraction des évènements générés d’espace de phase suivant l’in-
tensité ajustée. Les différentes distributions sont présentées dans la figure 5.3, et montrent
un excellent accord entre les pseudo-données et l’ajustement.

L’ajustement de l’ensemble des bins de masse permet de déduire les contributions des
ondes S, P et D en fonction de la masse, comme le montre la figure 5.4.

L’onde P contribue de manière quasi-exclusive, avec quelques résidus d’ondes S et D. Ce
résultat est conforme au choix des amplitudes qui ont servi à générer les pseudo-données.

On cherche maintenant à savoir si cette analyse permet de retrouver les amplitudes VLM ,
la contribution L = 1 étant dominante. Après 50 essais d’ajustement sur le bin de masse
du ρ0, il s’avère que le maximum de vraisemblance −ln L ne prend que quelques valeurs
particulières. Il existe, en particulier, plusieurs solutions avec le meilleur −ln L trouvé. La
table 5.1 montre le résultat des carrés des amplitudes pour deux ajustements avec la même
valeur de −ln L. On peut constater qu’une des deux solutions donne une même contribution
relative de |V1 0|2 et |V1 1|2 par rapport à la paramétrisation des pseudo-données 2, tandis

2. Les valeurs numériques imposées pour générer les pseudo-données diffèrent des résultats de l’ajuste-
ment. En effet, les amplitudes ajustées sont normalisées par la condition (5.12), tandis que les valeurs pour
générer les pseudo-données sont normalisées par la simple somme des intensités pour la méthode d’extrac-
tion de Monte Carlo. Ce qui importe en revanche est la contribution relative des différentes amplitudes au
carré.
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Figure 5.3 – Résultats de l’ajustement dans la région de masse du ρ0 pour les pseudo-
données ρ0. En haut à gauche, la distribution angulaire cos θHS du π+ pour les pseudo-
données, en noir, et celle produite par l’intensité ajustée, en rouge. En haut à droite,
la distribution interpolée cos θHS donnée par l’intensité, illustrant la forme de l’intensité
projetée sur cos θHS. En bas à gauche, la distribution angulaire φHS des pseudo-données,
en noir, et celle produite par l’intensité ajustée, en rouge. En bas à droite, la distribution
interpolée φHS donnée par l’intensité.

que l’autre donne une contribution des amplitudes |V1 0|2 et |V1−1|2.
Bien que la méthode d’analyse permette de retrouver par un ajustement de l’intensité

(5.16) l’onde P générée, elle ne permet pas de déterminer sans ambigüıtés les contributions
des différents états d’hélicité M .
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Figure 5.4 – Décomposition en ondes S (en bleu), P (en vert), D (en rose) des pseudo-
données ρ0, déduite des paramètres ajustés de l’intensité. Les points en noir correspondent
au nombre d’évènements des pseudo-données générés.

Numéro d’ajustement 0 3
−ln L -106971 -106971
|V1−1|2 41984 4.08
|V1 0|2 40977 40885
|V1 1|2 4.08 41813

Table 5.1 – Valeurs numériques des amplitudes pour L = 1 dans la région du pic du ρ0.

5.1.7 Analyse des pseudo-données ρ0 et f0

Il faut s’interroger sur la possibilité de séparer les différentes ondes L. Pour cela, on se
propose d’étudier la superposition de deux résonances provenant de 2 ondes distinctes : le
ρ0 (J=1, ou onde P) et le f0 (J=0, ou onde S). Les pseudo-données sont paramétrisées par
la formule :

I(θHS, φHS,Mπ+π−) = |BWρ0(Mπ+π−)·V10Y10(θHS, φHS)+BWf0(Mπ+π−)·V00Y00(θHS, φHS))|2 ,
(5.23)

où V10 = 85, V00 = 15, BWρ0(Mπ+π−) et BWf0(Mπ+π−) définissent les pics des résonances
du ρ0 et du f0 respectivement. La largeur choisie pour le f0 est Γf0 = 70 MeV.

Cas avec une acceptance parfaite Il faut s’assurer que la méthode permette de séparer
les différentes ondes. Comme pour la section précédente, les pseudo-données sont produites
par extraction des évènements Monte Carlo d’espace de phase suivant l’intensité (5.23).
Environ 170000 évènements sont générés au total.

La décomposition en ondes partielles déduite des ajustements selon le bin de masse est
présentée dans la figure 5.5.

La décomposition montre la présence d’un pic majoritaire dans l’onde P, attribuable au
ρ0, et d’un pic de faible intensité dans l’onde S, correspondant au f0. De plus, les propriétés
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Figure 5.5 – Décomposition des ondes S (en bleu), P (en vert), D (en rose) des pseudo-
données ρ0 + f0, déduite des paramètres ajustés de l’intensité. Les points en noirs corres-
pondent au nombre d’évènements des pseudo-données générés.

des ondes déduites de l’ajustement semblent bien conserver la paramétrisation originelle.
En effet, la fraction de l’onde S sur la contribution totale est 5 % environ. D’après l’équation
(5.23), la fraction de l’amplitude V00 vaut 152

(85+15)2
= 2%. De plus, le pic de l’onde S présente

une largeur à mi-hauteur de 100 MeV environ, contre 70 MeV dans la paramétrisation de
départ.

Cas avec l’acceptance de CLAS Il faut maintenant s’assurer qu’une telle
décomposition est toujours possible avec un détecteur réaliste.

Pour cela, les pseudo-données doivent correspondre à des évènements d’un processus
physique détecté par CLAS. Ici, les pseudo-données sont obtenues en appliquant une ex-
traction des évènements Monte Carlo d’espace de phase reconstruits par CLAS, suivant
l’intensité (5.23). Les évènements Monte Carlo d’espace de phase reconstruits sont obte-
nus en injectant les évènements d’espace de phase générés dans la simulation GSIM du
détecteur CLAS, puis les données reconstruites sont dégradées à l’aide de GPP avec la
même paramétrisation que pour les données expérimentales de e1-6, et le même algorithme
de sélection de l’état final epπ+π− que les données est appliqué. Environ 98000 évènements
ont été produits de cette manière.

L’accord entre les pseudo-données mesurées et l’intensité ajustée peut être visualisé
en considérant les distributions angulaires de décroissance mesurées par CLAS et celles
qui seraient mesurées si le processus était décrit par l’intensité ajustée (figure 5.6). Ces
distributions sont produites en appliquant l’intensité ajustée sur les évènements Monte
Carlo reconstruits par CLAS.

Il apparâıt un très bon accord entre les pseudo-données reconstruites et l’ajuste-
ment de l’intensité. La distribution cos θHS corrigée d’acceptance montre une dépendance
en cos2(θHS) qui correspond exactement au comportement de l’amplitude |V10Y10|2 pa-
ramétrisant les pseudo-données d’origine.

Enfin, la figure 5.7 montre la décomposition en ondes L de l’intensité.

160



Chapitre 5. Analyse en ondes partielles

) +πθcos(
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

0

500

1000

1500

2000

2500

3000
/NDF = 0.52χ

) +πθcos(
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

0

10000

20000

30000

40000

50000

)° (+πΦ
0 50 100 150 200 250 300 350

0

200

400

600

800

1000

1200

1400

/NDF = 1.22χ

)° (+πΦ
0 50 100 150 200 250 300 350

0
2000
4000

6000
8000

10000

12000
14000
16000

18000
20000

22000

 (GeV) < 0.80-π+π0.76 < M

Figure 5.6 – Résultats de l’ajustement dans la région de masse du ρ0 pour les pseudo-
données ρ0 + f0 reconstruites avec le détecteur CLAS. En haut à gauche, la distribution
angulaire cos θHS des pseudo-données en noir et celle de l’intensité reconstruite par CLAS
en rouge. En haut à droite, la distribution cos θHS donnée par l’intensité, corrigée des effets
d’acceptance. En bas à gauche, la distribution angulaire φHS des pseudo-données en noir
et celle de l’intensité reconstruite par CLAS en rouge. En bas à droite, la distribution φHS
donnée par l’intensité, corrigée des effets d’acceptance.

Les résonances des pseudo-données apparaissent clairement dans les ondes correspon-
dantes.

Ces études sur les pseudo-données montrent qu’il est possible de séparer les ondes L avec
des pseudo-données mesurées avec CLAS, dans un cas physique simple où deux amplitudes
sont superposées.
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Figure 5.7 – Décomposition des ondes S (en bleu), P (en vert), D (en rose) déduite des
paramètres ajustés de l’intensité sur les pseudo-données ρ0 +f0 avec l’acceptance de CLAS.
Les points en noir correspondent au nombre d’évènements corrigés d’acceptance, obtenus
par l’application de l’intensité sur des évènements Monte Carlo d’espace de phase.

5.1.8 Analyse des données expérimentales

Une fois que la validité de l’analyse en ondes partielles a été vérifiée sur les pseudo-
données, on peut envisager son application aux données expérimentales.

Dans une situation réelle, les amplitudes de production VLM peuvent dépendre des
variables cinématiques Q2, xB, −t et Φ. En principe, il faudrait effectuer un ajustement
pour chaque bin (Q2, xB, −t, Φ, Mπ+π−), avec un binning suffisamment fin de chaque
variable pour tenir compte des possibles variations de l’amplitude.

Binner les variables Q2, xB et −t en 3 × 3 × 4 bins permet d’avoir une première idée
de l’évolution des amplitudes selon ces variables. Malheureusement, avec un découpage de
Φ en 7 bins, le plus grand nombre d’évènements disponible parmi les différents bins de
masse n’excède pas 300 évènements. Il est à craindre qu’une telle statistique ne soit pas
suffisante pour décomposer les distributions angulaires de manière satisfaisante. En effet,
on estime qu’il faut environ 100 évènements pour chaque onde partielle complexe comprise
dans l’intensité (référence [71], section 4.1). Avec notre intensité 5.16, avec 7 amplitudes
complexes, il faudrait 700 évènements par bin pour évaluer correctement l’intensité.

Par conséquent, l’analyse a été effectuée en intégrant sur la variable Φ pour chaque
bin de masse situé dans l’intervalle 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28 et 1 < −t <
1.90 GeV2.

Les données expérimentales epπ+π− incluent entre autres la production de méson
epM ↪→ π+π− et la production de baryons eπN∗ ↪→ pπ. Pour ce dernier type de réaction,
l’angle θHS du π+ dans le référentiel d’hélicité se projette sur une infinité d’harmo-
niques sphériques. En ajustant les données directement avec l’intensité (5.16), dont le
développement en ondes partielles est limité, les contributions des ondes partielles qui ne
sont pas inclues dans l’intensité vont être décrites par des mauvaises ondes partielles. Il est
possible d’exclure ces réactions de l’analyse par des sélections cinématiques. En effet, dans
le référentiel du centre de masse du système (cible, faisceau), les pions de décroissance de
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Figure 5.8 – Distributions de l’angle entre les deux pions cos(θπ+π−) en fonction de l’angle
cos(θpπ+) dans le référentiel du centre de masse du système (faisceau, cible). A gauche, la
distribution générée par des évènements Monte-Carlo du canal eπ−∆++ de GENEV et, à
droite, celle générée par le canal epρ0 de GENEV. La partie hachurée dans la distribution
de gauche correspond à la coupure cinématique (5.24).

la réaction epM ↪→ π+π− ont la tendance à être collinéaires, tandis que le p et le π ont la
tendance à l’être pour la réaction eπN∗ ↪→ pπ .

Les simulations Monte Carlo permettent de confirmer ce comportement, illustré dans
la figure 5.8.

En analysant la distribution (cos θpπ+ ,cos θπ+π−) de la réaction eπ−∆++, on peut établir
que sa contribution est non négligeable dans l’intervalle 0.2 ≤ cos θpπ+ ≤ 1., tandis que le
canal epρ0 occupe peu cet espace de phase. En supposant un comportement similaire pour
les réactions eπ+N∗ ↪→ pπ−, il est possible de réduire la contamination des données par les
résonances baryoniques avec les coupures suivantes dans le référentiel de centre de masse
du système (cible, faisceau) :

cos θpπ+ ≤ 0.2 ,

cos θpπ− ≤ 0.2 .
(5.24)

L’effet de ces coupures cinématiques sur le spectre de masse invariante est visible dans
la figure 5.9. Les régions du ρ0 et du f0 semblent peu affectées par cette coupure, alors
que le pic dans la région du f2 subit une plus forte suppression. Cela semble indiquer que
la présence des résonances baryoniques est plus forte dans la région des hautes masses
invariantes.

La procédure d’ajustement est appliquée pour chaque bin du spectre de masse inva-
riante. Le bin initial du ρ0 est ajusté 50 fois avec une initalisation aléatoire des paramètres
VLM . La solution donnant une composante de l’onde P dominante est également celle don-
nant le meilleur −ln L.

Les résultats de l’ajustement sont présentés dans la figure 5.10. L’accord entre les dis-
tributions angulaires des données et celles reconstituées par les données est très bon. L’in-
tensité (5.16) permet donc de bien décrire les données expérimentales.

A partir de ce résultat, on applique la procédure d’ajustement aux autres bins. L’en-
semble de ces ajustements, représentés dans l’annexe F, permet de déduire la contribution
de chaque onde en fonction de la masse. Les résultats, présentés dans la figure 5.11, ne sont
malheureusement pas satisfaisants.

Bien que la décomposition fasse bien apparâıtre un pic du ρ0 (770) dans l’onde P et un
pic du f0(980) dans l’onde S, la largeur du pic du ρ0 ne semble pas être en accord avec la
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Figure 5.9 – Spectres de masse invariante des données dans l’intervalle cinématique
1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28 et 1 < −t < 1.90 GeV2, avant (en noir) et après
(en rouge) application des coupures cinématiques (5.24).

largeur mesurée (Γ = 150 MeV). De même, dans la région de masse du f2( 1270), aucun
pic n’apparâıt pour l’onde D dans la région du f2.

Plusieurs raisons peuvent être avancées pour expliquer cet échec. Tout d’abord, la
stratégie d’ajustement présente des limites. En effet, la recherche de la solution dans un
bin différent du ρ0 (qui sert de point de départ dans l’ajustement) passe par la variation
à plus ou moins 40 % des amplitudes déterminées pour le bin voisin. Il est possible qu’il
existe des variations plus fortes d’une amplitude d’un bin de masse à un autre, qui ne
sont pas prises en compte dans notre procédure. Pour vérifier cette hypothèse, on applique
une procédure d’ajustement dans laquelle chaque bin est ajusté indépendemment 50 fois
avec une initialisation aléatoire des paramètres. Pour chaque bin, l’ajustement donnant le
meilleur −ln L est retenu. La décomposition en ondes partielles est donnée dans la figure
5.12.

Malheureusement, cette stratégie de détermination des solutions n’aboutit pas à des
meilleurs résultats ; les discontinuités apparentes des ondes sont importantes et l’onde D
ne forme toujours pas de pic dans la région du f2(1270).

Ensuite, les variations de l’amplitude en fonction de Φ ne sont pas prises en compte dans
cette analyse. Celles-ci peuvent être suffisamment importantes pour fausser les résultats.
Enfin, le nombre d’évènements par bin de masse est peut être insuffisant pour avoir les infor-
mations nécessaires permettant de résoudre la décomposition en harmoniques sphériques.
A titre de comparaison, 40 millions d’évènements γp → pπ+π− ont pu être collectés dans
l’expérience de photoproduction [31], contre 1.5 millions d’évènements ep→ epπ+π− dans
cette analyse.
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Figure 5.10 – Résultats de l’ajustement dans la région de masse du ρ0 pour les données
expérimentales dans l’intervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 <
−t < 1.90 GeV2. En haut à gauche, la distribution angulaire cos θHS des données, en noir, et
celle de l’intensité reconstruite par CLAS, en rouge. En haut à droite, la distribution cos θHS
donnée par l’intensité, corrigée des effets d’acceptance. En bas à gauche, la distribution
angulaire φHS des données, en noir, et celle de l’intensité reconstruite par CLAS, en rouge.
En bas à droite, la distribution φHS donnée par l’intensité, corrigée des effets d’acceptance.
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Figure 5.11 – Décomposition des ondes S (en bleu), P (en vert), D (en rose) déduite des
paramètres de l’intensité ajustée sur les données expérimentales. L’intervalle cinématique
est 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2. Les points en noir
correspondent au nombre d’évènements corrigé de l’acceptance de CLAS, obtenus par
l’application de l’intensité sur des évènements Monte Carlo d’espace de phase.

 (GeV)-π+πM
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 d
'a

cc
ep

ta
n

ce
/0

.0
4 

G
eV

e
T

au
x 

co
rr

ig

0

10000

20000

30000

40000

50000

60000

70000

Figure 5.12 – Décomposition des ondes S (en bleu), P (en vert), D (en rose) après
ajustement indépendant de chaque bin de masse par différentes initialisations aléatoires.
L’intervalle cinématique est 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2.
Les points en noir correspondent au nombre d’évènements corrigé de l’acceptance de CLAS,
obtenus par l’application de l’intensité sur des évènements Monte Carlo d’espace de phase.
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5.2 Analyse en termes de moments

Comme l’a montré la section 5.1, la détermination des amplitudes partielles est rendue
difficile par la présence de multiples solutions. Il est alors nécessaire de développer un
algorithme permettant de choisir parmi ces solutions, selon un certain modèle physique.

Cependant, il est possible de déterminer les amplitudes partielles de manière indirecte,
par l’analyse des moments des distributions angulaires d’un des produits de décroissance
d’un méson. Pour l’électroproduction exclusive d’un méson en deux pions, les moments
sont définis par [31] :

< YLM > (Q2, xB, t,Φ,Mπ+π−) =
√

4π

∫
dΩπ+

dσγ
∗p→p′π+π−

dtdΦdMπ+π−
Re(YLM(Ωπ+)) , (5.25)

où dσγ
∗p→p′π+π− est la section efficace différentielle réduite selon t, Φ et Mπ+π− , YLM sont

les fonctions d’harmoniques sphériques de degré L et d’ordre M (0 ≤ M ≤ L), et Ωπ+ =
(θπ+ , φπ+) sont les angles polaire et azimutal du π+ dans le référentiel d’hélicité.

Les moments peuvent être exprimés par une combinaison bilinéaire des amplitudes
partielles alm = alm(λ, λ′, λγ, Q

2, xB, t, Φ, Mπ+π−) :

< YLM >=
∑

l′m′, lm, λ, λ′

C(l′m′, lm, LM)× alma∗l′m′ , (5.26)

où l et l′ correspondent à des moments angulaires, m et m′ à des projections du moment
angulaire selon un axe z. Les facteurs C(l′m′, lm, LM) correspondent aux coefficients
de Clebsch-Gordan. λγ est l’hélicité du photon virtuel. λ et λ′ sont respectivement les
hélicités du nucléon à l’état initial et à l’état final. Les formes explicites des moments sont
données dans l’annexe G, avec la troncature m, m′ ≤ 1. Ainsi, les moments représentent
des quantités sensibles aux interférences entre amplitudes partielles. La combinaison des
différents moments, conjointe à des contraintes sur les amplitudes, permettent de déduire
ces dernières.

5.2.1 Paramétrisation

La méthode pour déterminer les moments est ici identique à celle élaborée dans le cadre
de l’analyse en amplitudes d’ondes partielles (section 5.1). Le logiciel AmpTools a été utilisé
pour réaliser l’analyse. Le processus physique étudié est caractérisé par l’intensité suivante :

I(θHS, φHS) =
√

4π
Lmax∑
L=0

L∑
M=0

< YLM > Re(YLM(θHS, φHS)) , (5.27)

Les moments < YLM > (Q2, xB, t,Φ,Mπ+π−) sont les paramètres libres de l’intensité (5.27),
à déterminer pour chaque bin (Q2, xB, t,Φ,Mπ+π−) indépendamment. Comme dans l’ana-
lyse en termes d’amplitudes, l’intensité est ajustée sur les données par la minimisation
de la formule (5.10). Le modèle Monte Carlo utilisé pour calculer les intégrales d’espace
de phase est décrit dans la section 5.1. Contrairement à l’intensité (5.15), paramétrisée
en termes d’amplitudes, la paramétrisation (5.27) en terme de moments ne contient pas
de termes quadratiques. Comme la base d’harmoniques sphériques est orthonormale, la
résolution numérique de (5.27) est sans ambiguité. D’après les expressions de l’annexe G,
pour bien prendre en compte l’onde D dans laquelle la production de f2 est attendue, il
est nécessaire d’étendre le développement de l’intensité (5.27) au moins jusqu’à L = 3. En
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effet, le moment < Y30 > contient les termes d’interférences entre l’onde P , responsable de
la production du méson dominant ρ0, et l’onde D. Dans ce travail, le développement est
porté à Lmax = 4, et aucune troncature n’est appliquée sur M .

5.2.2 Analyse des données expérimentales

Compte tenu des limitations statistiques des données expérimentales, il est nécessaire de
faire des compromis dans le choix du binning. La statistique n’est à priori pas suffisante pour
déterminer les moments dans un bin (Q2, xB, t,Φ,Mπ+π−). Nous choisissons dans ce travail
un domaine cinématique large en Q2 et xB, restreint en t, et intégré sur Φ. Le domaine
cinématique retenu est 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28 et 0.7 < −t < 1 GeV2.
Pour chaque bin de masse, on procède à 8 scénarii d’ajustement :

1. Un essai � témoin �, pour lequel tous les paramètres sont initialisés à 0.

2. 7 essais où les paramètres sont initialisés aléatoirement.

La solution avec le meilleur −ln L est retenue. Parmi ces ajustements, certains ne
convergent pas tandis que les autres donnent une même valeur de −lnL. Pour ces der-
niers, les valeurs des paramètres < YLM > extraits sont identiques d’un ajustement à
l’autre. La situation est différente de l’analyse en termes d’amplitudes, où différentes ini-
tialisations aboutissent à une multitude de résultats de −ln L distincts. Pour s’assurer de
la bonne qualité de l’ajustement, il suffit de considérer l’accord entre les données et l’inten-
sité ajustée sur les distributions angulaires (θπ+ ,φπ+). La figure 5.13 illustre par exemple
la qualité de l’ajustement dans la région du pic du ρ0. L’accord entre les données et les
distributions prédites par l’intensité est très bon. Il en est de même pour l’ensemble des
bins de masse considérés dans ce travail.

La figure 5.14 représente les différents moments en fonction des bins de masse invariante.
Avec la condition de normalisation (5.17), la valeur des moments correspond à un taux de
comptage corrigé de l’acceptance de CLAS.

Le moment < Y00 >, par définition de l’équation (5.26), est proportionnel à la section
efficace différentielle dσ/dt, aux corrections radiatives près 3. Cette grandeur montre le
pic dominant du ρ0, ainsi qu’une épaule dans la région du f0 et une bosse dans celle du
f2, signalant la présence de ces résonances dans l’intervalle considéré. Les autres moments
contiennent les interférences entres les différentes amplitudes (cf. Annexe G), ce qui permet
de déduire la présence ou non d’une amplitude dans une région de masse donnée (si un
terme d’interférence est nul, cela signifie qu’une des deux amplitudes formant ce terme est
nulle). Les moments < Y10 > (équation (G.3)) et < Y11 > (équation (G.4)) contiennent
notamment les termes d’interférences entres les ondes S et P. On peut constater que le pic
du ρ0 apparâıt principalement dans < Y10 >, autrement dit via les interférences entre S
et Pm=0. Cela semble indiquer que la production du ρ0 se fait majoritairement dans l’état
d’hélicité m = 0 de la particule. Dans la région de masse du f0 (980 MeV), on relève un
� creux � étroit dans les distributions < Y10 > et < Y11 >, occupant 1 à 2 bins de masses
(soit de 40 à 80 MeV). Cela conforte la présence de la résonance f0(980), caractérisée par

3. Dans l’analyse en terme d’amplitudes et en terme de moments de cette thèse, l’intensité est ajustée
sur les données réelles, affectées par des effets radiatifs mous, et on utilise un modèle Monte Carlo sans
effets radiatifs. On suppose ici que ces effets sont suffisamment négligeables pour considérer que les données
en soient dépourvues. Si tel est le cas, alors l’intensité appliquée à des évènements Monte Carlo générés
non radiatifs décrit correctement la section efficace du processus. Dans le cas contraire, il faudrait d’abord
ajuster l’intensité sur les données et un modèle Monte Carlo radiatif, effectuer l’extraction d’évènements
Monte Carlo générés avec des effets radiatifs mous selon cette intensité, puis appliquer les corrections
radiatives aux distributions physiques résultantes de cette extraction.
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une largeur très étroite dans la limite basse indiquée dans la référence [1]. La résolution de
masse invariante adoptée dans cette analyse (40 MeV par bin de masse) est probablement
limitante pour étudier le f0. Notons également que l’existence de cette structure est à
mettre sous réserve des erreurs systématiques sur les moments, qui ne sont pas évaluées ici.
Dans le moment Y11, on relève également la présence d’un pic dans la région du f2, signant
la formation de cette résonance dans l’intervalle cinématique considéré. Cette structure
apparâıt dans d’autres moments, tels que Y22, Y30 et Y30, ce qui implique la production du
f2 entre en jeu par l’interférence de l’onde D avec plusieurs amplitudes.

L’étape suivante consiste à extraire la contribution des amplitudes partielles à par-
tir de l’ensemble des moments mesurés. Les amplitudes doivent être paramétrisées par
une relation dite de dispersion, puis ajuster les paramètres libres de ces amplitudes sur
les équations 5.26. Il faut cependant s’assurer que la dépendance des moments selon les
différentes variables cinématiques de la réaction soit aussi précise que la dépendance des
amplitudes selon ces variables. Idéalement, l’ajustement des moments devrait être réalisé
dans des intervalles suffisamment fins pour chacune des variables cinématiques. Malheureu-
sement, la statistique de nos données expérimentales ne permet pas de procéder à une telle
analyse. En l’état actuel, il serait préférable de supposer la dépendance des amplitudes se-
lon certaines variables cinématiques connues et paramétriser celle-ci en conséquence. Cette
dépendance peut être introduite au sein du modèle Monte Carlo. La dépendance des sec-
tions efficaces σγ

∗p→p′π+π− en fonction d’une des différentes variables cinématiques Q2, xB,
−t ou Φ, fournit une paramétrisation de référence qui indique de quelle façon générer les
évènements du modèle Monte Carlo. Nous disposons déjà d’une méthode pour extraire ces
sections efficaces, exposée dans le chapitre 3.
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Figure 5.13 – Distributions angulaires (θπ+ ,φπ+) dans le référentiel d’hélicité. Le domaine
cinématique est 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 0.7 < −t < 1 GeV2 et 0.76 <
Mπ+π− < 0.80 GeV. Colonne de gauche : comparaison entre les données expérimentales
(en noir) et l’ajustement (en rouge). Colonne de droite : projections de l’intensité après
correction d’acceptance.
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Figure 5.14 – Moments des distributions angulaires du π+ dans l’intervalle cinématique
1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 0.7 < −t < 1 GeV2, en fonction de la masse
invariante Mπ+π− . Les lignes verticales vertes, bleues et roses indiquent respectivement
la masse du ρ0(770), du f0(980) et du f2(1270). Les barres d’erreurs sont statistiques
uniquement.
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Interprétation des résultats
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Chapitre 1

Comparaison avec le modèle JML

Dans ce chapitre, nous nous proposons de comparer les résultats de l’analyse de données
avec le modèle de Jean-Marc Laget (JML). Dans un premier temps, nous allons décrire la
paramétrisation du modèle. Ensuite, on examinera et interprétera les résultats du modèle
comparés aux spectres des sections efficaces expérimentales.

1.1 Photoproduction

Comme nous l’avons vu dans la partie I, la photo- et l’électro-production de méson au
dessus de la région des résonances peuvent être interprétées par l’échange de trajectoires
de mésons � réggéisés � dans la voie t.

Le modèle original � VGL � [9] a été d’abord développé pour la photoproduction des
mésons pseudo-scalaires, puis a été étendu aux mésons vecteurs [8]. Les équations des
trajectoires de Regge considérées dans le modèle JML sont les suivantes :

απ = 0.7(t−m2
π)

αf2 = 0.55 + 0.7t

ασ(t) = −0.175 + 0.7t

αP (t) = 1.08 + 0.25t

αρ(t) = 0.55 + 0.76t ,

(1.1)

où P désigne le Pomeron, une particule hypothétique ayant les nombres quantiques du vide
(ie de valeurs nulles). Dans sa version actuelle, le modèle tient compte de la production
des canaux suivants [74] :

– γp→ π∆, comprenant le ∆(1232) et ses états excités.
– γp→ πN∗.
– γp→ pρ0.
– γp→ pσ0.
– γp→ pf0.
– γp→ pf2.

L’amplitude de production du ∆(1232) est la somme invariante de jauge du terme d’échange
du pion, du terme de contact, du terme d’échange du nucléon et du terme d’échange du
∆(1232). Les diagrammes sont représentés dans la figure 1.1. La trajectoire saturante du
pion (figure 1.2) est utilisée pour décrire le propagateur de Regge. L’amplitude du ∆(1232)
est reggéisée en la multipliant par le propagateur P π

Regge et en la divisant par le propagateur
de Feynman [74].
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Figure 1.1 – Diagrammes d’échanges pour la photoproduction du ∆(1232), pris en compte
dans le modèle JML : (a) Echange du nucléon, (b) Echange du ∆, (c) Echange du π, (d)
Terme de contact.

Figure 1.2 – Les trajectoires saturantes du ρ0 et du π0. La saturation se manifeste vers
les t négatifs.
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L’amplitude de production des autres résonances ∆ et N∗ est décrite par le mécanisme
d’échange du pion.

Pour la production des mésons ρ0, f0, f2 et σ, les diagrammes considérés dans l’ampli-
tude de production sont présentés dans la figure 1.3.

Figure 1.3 – Diagrammes d’échanges principaux dans la voie t pour les réactions de
photoproduction des mésons ρ0, f0, f2 et σ.

L’amplitude de production du ρ0 est la somme du terme d’échange du Pomeron, du
terme d’échange du f2, du terme d’échange du σ0 et du terme d’échange du π (négligeable)
dans la voie t. Les amplitudes de production du σ, f0 et f2 sont basées sur l’échange de la
trajectoire de Regge saturante du ρ0 (figure 1.2) dans la voie t.

Les constantes de couplage gσργ, g
2
σNN/4π, g2

f2
/β2

0 , gρσγ, gρf0γ et gρf2γ, représentées dans
la figure 1.3, sont les paramètres libres du modèle. Elles sont ajustées en comparant le
résultat du modèle avec les données de photoproduction existantes. La figure 1.4 montre
les résultats pour la photoproduction des mésons vecteurs. Les valeurs des constantes de
couplage utilisées dans le modèle sont récapitulées dans le tableau 1.1.

Constantes de couplages Valeurs
gσργ 1

g2
σNN/4π 15
g2
f2
/β2

0 9

β2
0 4 GeV−2

gρσγ 3
gρf0γ 1.25
gρf2γ 7

Table 1.1 – Valeurs des constantes de couplage intervenant dans la production des mésons
ρ, σ, f0 et f2.
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Figure 1.4 – Sections efficaces de photoproduction des mésons vecteurs sur le proton,
en fonction de W. Les prédictions du modèle JML sont représentées par les courbes. La
région en jaune correspond à la région cinématique accessible par JLab à 6 GeV [75].
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1.2 Extension à l’électroproduction

Le modèle JML, développé à l’origine dans le cadre de la photoproduction, a été étendu
à l’électroproduction [10]. L’amplitude dans ce cas est proportionnelle à :

Jµj
µ = − ~J⊥ · ~j⊥ − Jzjz + J0j0 , (1.2)

où Jµ et jµ sont les quadrivecteurs de courant du proton (courant hadronique) et de
l’electron (courant leptonique) respectivement. Par l’invariance de jauge, chacun de ces
courants est conservé :

qµJµ = qµjµ = 0 , (1.3)

où qµ désigne le quadrivecteur du photon virtuel échangé. L’équation (1.3) permet de
réexprimer les composantes temporelles J0 et j0 par les relations :

νJ0 = |~q|Jz , (1.4)

et
νj0 = |~q|jz . (1.5)

On en déduit alors l’amplitude :

T ∝ Jµj
µ = − ~J⊥ · ~j⊥ +

Q2

ν2
jzJz . (1.6)

L’amplitude (1.6) fait intervenir les composantes longitudinales des courants JZ et jz.
Pour étendre le modèle JML à l’électroproduction, il faut introduire des facteurs de forme
électromagnétiques pour tenir compte de la taille finie du vertex (γ∗ −M −R), où M est
le méson échangé et R désigne le méson de l’état final :

Fγ∗MR =
1

1 + Q2

Λ2
0

, (1.7)

où Λ0 désigne l’échelle de masse du vertex γ∗MR. Pour tenir compte du fait qu’à grand t
on sonde des configurations du nucléon de plus en plus petites, une dépendance en t sur
l’échelle de masse Λ a été introduite [76] :

Fγ∗MR =
1

1 + Q2

Λ2
0

(
1+αM (t)
1+αM (0)

)2 . (1.8)

On rappelle que αM(t) est la trajectoire du méson échangé. Dans la version du modèle
utilisé dans ce travail, les paramètres Λ0 pour le σ, f0 et f2 sont identiques :

Λ2
0σ = Λ2

0f0
= Λ2

0f2
= 0.6 GeV2. (1.9)

1.3 Comparaison du modèle avec les données

Le modèle décrit dans les sections précédentes est comparé aux spectres de sections
efficaces γ∗p→ p′π+π− en fonction de la masse invariante Mπ+π− . Les spectres sont définis
dans les bins Q2, xB, t utilisés pour mesurer les sections efficaces des f0 et des f2 dans ce
travail de thèse. Dans le modèle, les distributions de sections efficaces sont générées par la

179



Quatrième partie : Interprétation des résultats

méthode d’extraction de Monte Carlo, en respectant les amplitudes de productions définies
précédemment.

Les figures 1.5 et 1.6 montrent les spectres des sections efficaces dσ
dtdMπ+π−

pour différents

bins en −t, dans un domaine cinématique à Q2 fixé (1.5 < Q2 < 1.8 GeV2) et à xB variable
(0.15 < xB < 0.22 et 0.22 < xB < 0.28 respectivement). Ces domaines cinématiques
diffèrent donc par leur énergie (W = 2.88 GeV pour la figure 1.5 contre W = 2.42 GeV
pour la figure 1.6) et par le rapport de polarisation du photon virtuel ε = σL

σT
(ε = 0.28

contre ε = 0.59).

Figure 1.5 – Spectres des sections efficaces dσ
dtdMπ+π−

des données expérimentales (points

noirs) et du modèle JML (histogrammes et courbes rouges), pour différents intervalles en
t. Le domaine cinématique est 1.5 < Q2 < 1.8 GeV2 et 0.15 < xB < 0.22. Figure de
Jean-Marc Laget [74].

Dans les deux figures, le modèle est en bon accord avec les spectres expérimentaux, dans
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Chapitre 1. Comparaison avec le modèle JML

Figure 1.6 – Spectres des sections efficaces dσ
dtdMπ+π−

des données expérimentales (points

noirs) et du modèle JML (histogrammes et courbes rouges), pour différents intervalles en
t. Le domaine cinématique est 1.5 < Q2 < 1.8 GeV2 et 0.22 < xB < 0.28 [74].
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Quatrième partie : Interprétation des résultats

les différents bin en −t. Cet accord entre le modèle et les données à la même valeur de Q2

pour différentes valeurs de ε est une indication que le rapport de polarisation longitudinal
et transverse est sous contrôle dans le modèle.

Figure 1.7 – Spectres des sections efficaces dσ
dtdMπ+π−

des données expérimentales (points

noirs) et du modèle JML (histogrammes et courbes rouges), pour différents intervalles en
t. Le domaine cinématique est 2.8 < Q2 < 3.6 GeV2 et 0.35 < xB < 0.42 [74].

En considérant les domaines cinématiques (Q2, xB) couverts par les figures 1.6 et 1.7,
l’énergie W y est fixée (W = 2.4 GeV) et Q2 est variable. Dans la figure 1.7, où Q2 est le
plus grand, le modèle prédit des spectres de sections efficaces plus élevés et les résonances
ρ0, f0 et f2 sont systématiquement surestimées au delà de −t = 1 GeV2. Ainsi, le modèle
reproduit bien les spectres de masses à grande énergie, et notamment leur dépendance en
t au point photon réel (Q2 = 0) et jusqu’à Q2 < 2 GeV2 environ. Au delà, et notamment
jusqu’au voisinage de Q2 = 3 GeV2, l’accord est correct jusqu’à −t = 2 GeV2 environ,
mais le modèle surestime les données à grand −t et à grand Q2.
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Chapitre 1. Comparaison avec le modèle JML

Par ailleurs, si on paramétrise le modèle par des facteurs de forme où l’échelle de
masse est constante (formule (1.7)), on obtient de moins bons résultats dans le domaine
cinématique 1.5 < Q2 < 1.8 GeV2 et 0.22 < xB < 0.28, comme l’illustre la figure 1.8.

Figure 1.8 – Spectres des sections efficaces dσ
dtdMπ+π−

des données expérimentales (points

noirs) et le modèle JML (histogrammes et courbes rouges) décrit par des facteurs de formes
avec une échelle de masse de coupure constante . Le domaine cinématique est 1.5 < Q2 <
1.8 GeV2 et 0.20 < xB < 0.28. [74]

On peut en déduire qu’avec des facteurs de forme électromagnétiques � clas-
siques � (échelle de masse constante), il n’est pas possible de reproduire l’amplitude des
distributions de masse à grand −t, dans le domaine des photons virtuels.

Le modèle JML permet également de prédire la section efficace pour chaque canal
individuellement. Dans ce cas, le méson M d’un canal γ∗p → pM donné est considéré
comme stable (il ne decrôıt plus en une paire π+π−), et seule l’amplitude de production

183



Quatrième partie : Interprétation des résultats

de cette réaction est prise en compte. Les figures 1.9 et 1.10 présente les dépendances en
−t des différents canaux, comparées aux sections efficaces différentielles mesurées dans ce
travail de thèse. Le domaine cinématique est fixé en Q2 et varie en W entre les deux figures.
A l’énergie la plus haute (figure 1.9), l’accord entre le modèle et les mesures de sections
efficaces est bon pour le ρ0 et le f2, et valide la méthode d’extraction de ces canaux pris
individuellement. En revanche, pour le f0, il existe un désaccord pouvant atteindre un
facteur 10 à bas −t. Notons cependant que l’erreur systématique de ces mesures est très
importante. A plus basse énergie (figure 1.10), l’accord pour le ρ0 se détériore quand t
augmente ; pour le bin 3.63 < −t < 4.5 GeV2, le désaccord est de l’ordre d’un facteur 2
entre la prédiction du modèle et la mesure. Le f0 est fortement sous-évalué (d’un facteur 10),
en comparaison avec nos mesures. Le f2 est en bon accord avec les résultats expérimentaux.

Sous réserve d’une meilleure dépendance selon −t, la description classique en termes
d’échanges de particules dans la voie t n’est pas bien adaptée dans un domaine de grand −t
et grand Q2. C’est là que les degrés de liberté associés aux quarks deviennent une nécessité,
mais à ce jour des modèles de GPDs décrivant l’électroproduction du f0 et du f2 n’ont pas
encore été développés.
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Chapitre 1. Comparaison avec le modèle JML

Figure 1.9 – Dépendances en −t des sections efficaces différentielles dσ
dt

pour la pro-
duction de π+π− (en vert), du ρ0 (en noir), du f0 (en bleu) et du f2 (en rouge). Les
distributions prédites par le modèle JML sont représentées par les lignes continues et les
mesures expérimentales par les points. La barre d’erreur sur chaque point corresponds à
l’erreur totale. Le domaine cinématique est 1.5 < Q2 < 1.8 GeV2 et 0.15 < xB < 0.22. [74]
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Figure 1.10 – Dépendances en −t des sections efficaces différentielles dσ
dt

pour la pro-
duction de π+π− (en vert), du ρ0 (en noir), du f0 (en bleu) et du f2 (en rouge). Les
distributions prédites par le modèle JML sont représentées par les lignes continues et les
mesures expérimentales par les points. La barre d’erreur sur chaque point corresponds à
l’erreur totale. Le domaine cinématique est 1.5 < Q2 < 1.8 GeV2 et 0.22 < xB < 0.28. [74]
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Chapitre 2

Comparaison avec les données
existantes

L’analyse des données de ce travail de thèse (partie III) a permis de mesurer des mésons
de nature différente : un méson vecteur (ρ0), un méson scalaire (f0) et un méson tenseur
(f2). Dans ce chapitre, ces mésons sont mis en rapport avec les données existantes. Pour
compléter l’étude de sections efficaces de production de mésons de différents spins, les
données d’électroproduction exclusive du pseudo-scalaire π0, extensivement mesuré par la
collaboration CLAS, sont également inclues dans cette comparaison.

2.1 Sections efficaces totales

Dépendance en W La figure 2.1 montre les sections efficaces des mésons ρ0, f0, f2 et
π0 en fonction de W pour différents domaines en Q2. La plupart des mesures du f0 et f2

montre des larges erreurs systématiques. Malgré cela, les mesures de ces particules dans les
intervalles (1.50 < Q2 < 1.82 GeV2) et (2.15 < Q2 < 2.48 GeV2) permettent d’examiner
des tendances. Les sections efficaces en fonction de W du ρ0, f0, f2 et π0 montrent un
même comportement aux énergies de JLab : elles diminuent toutes quand W augmente,
dans la limite des erreurs systématiques. Ce comportement peut être attribué au mécanisme
d’échange de méson dans la voie t. Les sections efficaces du f0 et du f2 sont similaires, et
sont 5 à 50 fois inférieures à celle du ρ0. A bas Q2, les sections efficaces du π0 sont également
proches de celles du f0 et f2. L’écart entre le π0 d’une part, et le f0 et le f2 d’autre part,
se creuse à mesure que Q2 s’accrôıt.

Dépendance en Q2 La figure 2.2 montre la dépendance en Q2 des mésons considérés,
dans les deux bins xB pour lesquels nous avons la meilleure couverture cinématique. Les
sections efficaces du f0 et du f2 décroissent en fonction de Q2 plus fortement que le ρ0.
A plus grand Q2, des interactions à plus petite échelle de distance sont mises en jeu. Ces
interactions de petites échelles semblent supprimer de manière importante la production
de f0 et de f2, ce qui suggére que ces mésons sont formés par des systèmes de plus grande
taille que pour le ρ0. Pour estimer cette dépendance, les points sont ajustés par l’expression
A/(Q2)α (figure 2.2). Les sections efficaces de production du ρ0 montrent une dépendance
en 1/Q6, tandis que le f0 et le f2 présentent tous deux une dépendance en 1/Q10. Dans
le cadre de l’interprétation partonique décrite dans la partie (partie I, chapitre 2, figure
2.6), la QCD prédit un comportement asymptotique σL ∼ 1/Q6 pour la production de
méson par des photons longitudinaux, et σT ∼ 1/Q8. Pour le ρ0, le rapport Rρ = σL/σT
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Figure 2.1 – Sections efficaces totales d’électroproduction exclusive sur le proton en
fonction de W pour des bins fixés en Q2, pour les mésons ρ0 (en vert), f0 (en bleu), f2 (en
rose), et π0 (triangles bleu) [67]. Les données mondiales de CORNELL, HERMES et E665
proviennent des réfèrences [58], [79] et [80]. Les barres d’erreurs comprennent les erreurs
statistiques et systématiques.
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188



Chapitre 2. Comparaison avec les données existantes

est évalué entre 1 et 2.5 dans un intervalle en Q2 compris entre 2 et 5 GeV2 [55]. Ainsi,
la composante longitudinale de la section efficace totale tend à être dominante à grand
Q2, ce que confirme la loi de puissance ajustée sur la section efficace totale. Par contre,
la loi de puissance ajustée pour le f0 et le f2 décrôıt en 1/Q10 et ne correspond pas à un
comportement asymptotique prédit dans le cadre de la QCD perturbative. Il est probable
que ces mesures de section efficace ne sont pas à des Q2 suffisamment élevés pour mettre
en évidence un comportement asymptotique.

2.2 Sections efficaces différentielles dσ/dt

Dans la région 0.5 < −t < 4 GeV2, les sections efficaces différentielles dσ/dt des
différents mésons présentent un comportement asymptotique que l’on peut ajuster par
la fonction Ae−bt. Comme il a été évoqué précédemment, le paramètre b peut être assimilé
à un paramètre d’impact et relié à la taille transverse du système γ∗−p. Dans la figure 2.3,
on constate une augmentation de b avec W pour les mésons ρ0, f0 et π0. L’augmentation
de b traduit ici le fait que la région d’interaction dans le nucléon augmente avec W. En
interprétant cela d’un point de vue partonique, les quarks de valence (bas W) sont localisés
au coeur du nucléon tandis que les quarks de la mer (haut W) s’étendent à la périphérie.
Pour le f2, en revanche, le paramètre b reste constant sur l’intervalle en W accessible.
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Figure 2.3 – Dépendance de la pente b en fonction de W pour les mésons ρ0, f0, f2 et
π0. Les données du ρ0 proviennent de Cornell [58] [81], HERMES [79], NMC [82], Fermilab
[83], E665 [80], H1 [84] et ZEUS [85].

La figure 2.4 montre la dépendance en Q2 de b. Les données de photoproduction (Q2 =
0) ont été ajoutées.

Dans le cas des mesures de photoproduction de f0 et de f2, les sections efficaces
différentielles dσf0/dt et dσf2/dt sont définies par l’intégrale de l’onde P dans la région
de masse M = 0.98 ± 0.04 GeV et par l’intégrale de l’onde D dans la région de masse
M = 1.275± 0.185 GeV, respectivement [31]. Pour les mesures de la pente b pour le ρ0, on
peut relever un désaccord entre les travaux de la référence [31] (b = 4± 0.3 GeV−2) et [72]
(b ∼ 6 GeV−2). Ce désaccord est attribué à la différence sur les intervalles en −t considérés
pour déterminer le paramètre d’impact (−t = 0.4−1 GeV2 pour [31], −t = 0.02−0.5 GeV2

pour [72] ), car un changement de pente est observé à −t ∼ 0.4 GeV2.

Le cas de la photoproduction du π0 est encore plus problématique : la dépendance
de la section efficace dσ/dt selon −t présente plusieurs pics (figure 2.5), qui restent pour
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Figure 2.4 – Dépendance de la pente b en fonction de Q2 pour les ρ0, f0, f2 et π0.
Les données de photoproduction du ρ0 proviennent de [72], [77] et [31]. Les données de
photoproduction du f0 et f2 sont issues de [31].

la plupart inexpliqués. Définir une décroissance exponentielle dans ce cas n’est donc pas
envisageable.

Pour l’ensemble des mésons considérés, la pente b semble diminuer quand Q2 augmente.
En d’autres termes, le système méson-nucléon sondé est de taille de plus en plus petite
quand Q2, la résolution de la sonde, augmente. On note également que le f2, le méson le
plus lourd considéré ici, présente un paramètre d’impact qui décrôıt plus faiblement avec
Q2.

Dans la figure 2.6 le paramètre d’impact est corrélé à un paramètre d’échelle µ2 =
(Q2 +M2

M)/4, où MM est la masse du méson produit. On observe une même diminution de
b pour le ρ0(770) et le J/ψ(3097). Si cette évolution est rapportée en fonction de l’échelle
Q2, les mesures de b du J/ψ, en raison de sa masse plus élevé, sont décalés vers des valeurs
de Q2 plus proches de 0 que celles du ρ0. En d’autres termes, le paramètre d’impact d’un
méson lourd en photoproduction est équivalent au paramétre d’impact d’un méson plus
léger produit à une valeur de Q2 plus élevée. La masse du méson joue donc le rôle d’échelle
de résolution au même titre que Q2. L’évolution du paramètre d’impact b mesuré pour le
f2 semble confirmer ce phénomène.
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Chapitre 2. Comparaison avec les données existantes

Figure 2.5 – dσ/dt en fonction de t pour la réaction γp → π0p à l’énergie (a) Eγ =
4.0 GeV et (b) Eγ = 5.0 GeV. La figure provient de la référence [86].
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Quatrième partie : Interprétation des résultats

Figure 2.6 – Evolution du paramètre d’impact b en fonction de l’échelle µ2 = (Q2 +
M2

M)/4, où MM est la masse du méson produit.
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Chapitre 1

Le détecteur CLAS12

Suite à la montée en énergie de CEBAF de 6 GeV à 11 GeV, le Hall B accueillera le
détecteur CLAS12 [41] qui remplaçera le détecteur CLAS. Ce nouveau dispositif a été conçu
pour réaliser des expériences de diffusion d’un faisceau d’électrons de haute énergie sur des
cibles polarisées ou non, à une luminosité pouvant atteindre 1035 cm2s−1. Les réactions
exclusives et semi-inclusives qui seront mesurées avec CLAS12 sont caractérisées par la
production d’un baryon à basse impulsion (à grand angle), et de une ou plusieurs particules
de haute impulsion (à bas angle). Pour couvrir ces régions cinématiques, CLAS12 est
constitué d’un détecteur aux angles avant (Forward Detector ou FD), et d’un détecteur
central (Central Detector ou CD) pour les angles arrières. Les performances attendues de
CLAS12 sont résumées dans le tableau 1.1.

Propriété Détecteur Avant Détecteur Central
Couverture
Angle polaire (particules chargées) 5◦ ≤ θ ≤ 35◦ 35◦ ≤ θ ≤ 125◦

Angle polaire (particules neutres) 5◦ ≤ θ ≤ 40◦ 40◦ ≤ θ ≤ 130◦ (neutrons)
Résolution
Angle polaire (particules chargées) δθ < 1 mrad δθ < 10 mrad à 20 mrad
Angle azimutal (particules chargées) δφ < 4 mrad δφ < 5 mrad

Impulsion (particules chargées) δp
p
< 1% à 5 GeV/c δp

p
< 5% à 5 GeV/c

Angle polaire (particules neutres) δθ < 4 mrad δθ < 10 mrad

Energie/Impulsion δE < 0.1/
√
E δp

p
< 1 GeV/c

Identification des particules
e/π Toute impulsion -
π/p Toute impulsion p < 1.25 GeV/c
K/π p < 3 GeV/c p < 0.65 GeV/c
K/p p < 4 GeV/c p < 1 GeV/c

Table 1.1 – Performances du détecteur CLAS12.

1.1 Le détecteur aux angles avant

Le détecteur aux angles avant (Forward Detector, FD) permet de mesurer et d’identifier
les particules chargées et neutres pour des angles polaires compris entre 5◦ et 35◦, dans
tout le domaine d’impulsion. Similairement au détecteur CLAS, le FD est construit autour
de 6 bobines supraconductrices arrangées autour de l’axe du faisceau, générant un champ
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de CLAS12

Figure 1.1 – Le détecteur CLAS12 et ses différents composants.

magnétique toröıdal. Ces bobines délimitent 6 secteurs contenant chacun un spectromètre.
Chaque spectromètre (figure 1.2) est équipé d’un trajectographe Micromégas, d’un comp-
teur Čerenkov à haut seuil (HTCC), de plusieurs chambres à dérive (FDC), d’un compteur
Čerenkov à bas seuil(LTCC), de détecteurs de temps de vol (FTOF) et de calorimètres
électromagnétiques (FEC et PCAL). La plupart des composants de CLAS sont réutilisées
dans le FD.

1.1.1 Le système de trajectographie

Les modules Micromégas avant (Forward Micromegas Tracker, FMT) et les chambres à
dérive à l’avant (Forward Drift Chambers, FDC), en conjonction avec les aimants supracon-
ducteurs, constituent le système de trajectographie du Forward Detector. La résolution en
impulsion, en fonction de l’angle polaire, varie de 0.3% pour θ = 5◦ à 1.0% pour θ = 30◦,
et est pratiquement constante en fonction de l’impulsion. La résolution prévue pour les
angles polaires et azimutaux sont respectivement de δθ = 1 mrad et δφ = 1 mrad/sinθ.

Les modules Micromégas (Micro Mesh Gaseous Structure) [42] sont des détecteurs
gazeux, mesurant l’ionisation induite par le passage d’une particule chargée dans le vo-
lume gazeux. Cet espace est divisé en deux parties par un micromaillage (micromesh)
métallique : l’espace de conversion, épais de 3 mm environ, et l’espace d’amplification,
épais de 25 − 100 µm. La particule passe dans le volume de conversion, engendrant des
paires electrons-ions par ionisation du gaz. Le champ électrique dans l’espace de conversion
fait dériver l’électron vers le micromaillage et l’ion vers la cathode. L’électron passe par
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Figure 1.2 – Le détecteur aux angles avant de CLAS12, en vue de coupe.

un des trous du micromaillage où il ressent un fort champ électrique ; l’électron est suf-
fisamment accéléré pour produire des paires électrons-ions secondaires qui initient à leur
tour une avalanche électronique. Le fort signal électrique résultant est collecté à l’anode,
puis est lu en passant par un circuit d’amplification. L’anode est segmentée en bandes pour
reconstruire la position de la particule traversant les Micromégas. Le Forward Micromegas
Tracker est constitué de 3 doubles couches de détecteurs en forme de disque. Pour chaque
double couche, la première est segmentée par des bandes de 500 µm de largeur, suivant la
direction transverse à celle du faisceau, et la seconde est tournée de 90◦, permettant de
mesurer la position du point d’interaction de la particule chargée. La résolution prévue est
de 144 µm dans les directions x et y.

Les Forward Drift Chambers permettent de reconstruire la trajectoire des particules
chargées sous l’effet du champ magnétique toröıdal, permettant d’en déterminer l’impul-
sion. La structure est très semblable à celle de CLAS, avec quelques modifications pour
une utilisation à plus haute luminosité et avec une meilleure résolution. Le détecteur est
constitué de 3 régions de chambres à dérive : la première est située devant les bobines, la
deuxième entre les bobines, et la troisième à l’extérieur de celles-ci. Comme pour CLAS,
chaque région est constituée de deux supercouches, avec des réseaux de fils formant un
angle stéréo de ±6◦ par rapport au champ toröıdal, afin de mesurer les angles polaire et
azimutal de la trajectoire.

1.1.2 Les détecteurs de temps de vol

Les détecteurs de temps de vol à l’avant (Forward Time-Of-Flight, FTOF) sont utilisés
pour mesurer la vélocité β des particules et identifier les particules chargées. Le système
FTOF a été conçu pour permettre la séparation des pions et des kaons jusqu’à une impul-
sion de 3 GeV/c. La résolution à bas angle, où sont émises les particules de haute impulsion,
vaut 60 ps et atteint 150 ps dans la région à grand angle. Dans chaque secteur de CLAS,
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un module FTOF est constitué de 3 ensembles de scintillateurs, appelés � panneaux �. Les
panneaux � 1a � et � 1b � couvrent les angles polaires de 5◦ à 36◦, tandis que le panneau
� 2 � couvre les angles de 36◦ à 45◦. Le panneau � 1a � comporte 23 scintillateurs plas-
tiques, épais de 5.08 cm et larges de 15 cm. La longueur des scintillateurs varie de 32 cm
aux petits angles à 275 cm aux angles les plus grands. Le panneau � 1b � comporte 58
scintillateurs, épais de 6 cm et larges de 6 cm, dont les longueurs correspondent à celles
du panneau � 1a �. Enfin, le panneau � 2 � est constitué des scintillateurs de CLAS, épais
de 5.08 cm et larges de 22 cm. La lumière est transférée aux photomultiplicateurs par des
guides de lumière plastiques.

1.1.3 Les calorimètres électromagnétiques

Les calorimètres électromagnétiques de CLAS12 (Forward Electromagnetic Calorime-
ters) ont 3 fonctions : la mesure et l’identification des électrons d’énergies supérieures à
0.5 GeV, la mesure des photons d’une énergie supérieure à 0.2 GeV, et l’identification des
photons et des neutrons. Les calorimètres electromagnétiques de CLAS sont réutilisés dans
CLAS12 et sont installés à environ 6 m de la cible. Cependant, ces calorimètres ne peuvent
pas absorber intégralement les gerbes électromagnétiques produites par les électrons et les
photons au delà de 5 GeV. Pour pallier à ce problème, un calorimètre de pré-gerbe (Pre-
shower CALorimeter, PCAL) est installé en amont du FEC. Ce calorimètre est constitué
d’une succession de 15 couches de scintillateurs et de plomb, où les couches consécutives
sont tournées d’un angle de 120◦. L’ensemble des deux calorimètres correspond à 5.5 lon-
gueurs de radiation, et la résolution en énergie prévue vaut σE

E
∼ 0.1/

√
E.

1.2 Le détecteur Central

Le détecteur central (Central Detector, figure 1.3) repose sur l’utilisation d’un aimant
solénöıdal supraconducteur de 5 T, à l’intérieur duquel se trouve un système de trajectogra-
phie et deux sous-détecteurs de temps de vol, les scintillateurs du Central Time-Of-Flight
(CTOF), et le détecteur central de neutrons (Central Neutron Detector, CND), que nous
détaillerons ci-après.

Le détecteur central a été conçu pour mesurer principalement les hadrons d’impulsions
p < 1.5 GeV/c, avec une couverture en angle polaire allant de 35◦ à 125◦, et une couverture
intégrale en angle azimutal. Le champ magnétique créé par le solénoide permet de courber
la trajectoire des particules chargées pour mesurer leur impulsion, et permet de focaliser
les électrons de Møller vers la ligne du faisceau. La cible utilisée dans CLAS12 est située
au milieu du détecteur central.

1.2.1 Le système central de trajectographie

Le système central de trajectographie (Central Tracker) est un détecteur hybride
constitué de bandes de silicium et de détecteurs Micromégas. Le système est formé de
2 double couches de détecteurs à Silicium appelés Silicon Vertex Tracker, eux-mêmes en-
tourés par 3 double couches de détecteurs Micromégas. Cette combinaison aboutit, d’après
les simulations, à une meilleure résolution en impulsion qu’en utilisant un seul type de
détecteur.
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Figure 1.3 – Le détecteur central de CLAS12.

1.2.2 Le détecteur Central Time-Of-Flight (CTOF)

Le CTOF est constitué de 48 scintillateurs plastiques, long de 66 cm chacun et avec une
section de 3.4×3 cm2. Les scintillateurs sont positionnés à l’intérieur du solénöıde à 25 cm
environ de l’axe du faisceau. Ils sont couplés à des photomultiplicateurs par des guides de
lumière plastiques. Les performances d’un photomultiplicateur sont fortement dégradées
en présence d’un champ magnétique. Celui du solénöıde de CLAS12 étant considérable,
les photomultiplicateurs doivent être éloignés de son champ. Cependant, les photomul-
tiplicateurs situés en aval du faisceau ne peuvent être éloignés suffisamment à cause de
l’encombrement du détecteur aux angles avant. Ils sont alors placés à l’extérieur du retour
de fer du solénoide à l’aide de guides de lumière courbés (figure 1.4). La résolution en
temps imposée dans le cahier des charges est de 50 ps, ce qui permet une séparation à 4σ
des pions et des kaons jusqu’à 0.64 GeV/c d’impulsion, et une séparation des pions et des
protons jusqu’à 1.25 GeV/c.

1.2.3 Le Détecteur Central de Neutron

Dans la conception originale de CLAS12, le détecteur central présentait un espace radial
inoccupé de 10 cm entre le CTOF et le solénöıde. Or, dans cette configuration, l’efficacité
de détection des neutrons par le seul CTOF est limité à 2-3% environ.

Le détecteur central de neutron (Central Neutron Detector, CND) est le détecteur à
scintillation qui occupera cet espace vide. Il est dédié à l’étude de la réaction nDVCS
(en → e′n′γ), avec un domaine d’impulsion de 0.2 à 1 GeV/c pour les neutrons. Les
spécifications techniques du détecteur sont résumées dans le tableau 1.2.
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Figure 1.4 – Vue en coupe du détecteur central, montrant le CTOF (en bleu) et le CND
(en noir).

A une énergie de faisceau d’électrons de 11 GeV, le neutron de recul du nDVCS va
principalement interagir avec les protons composant le scintillateur par diffusion élastique.
L’énergie fournie par le neutron est suffisante pour éjecter hors de son cortège électronique
un proton, qui peut alors entrer en collision avec d’autres atomes et les ioniser, produisant
de la lumière. La détection d’un neutron est donc indirecte. Pour un neutron d’impulsion de
500 MeV/c, typique d’un évènement nDVCS (figure 1.5), la probabilité d’interaction d’un
neutron est de 1% pour chaque centimètre de scintillateur plastique traversé. En remplissant
l’interstice entre le CTOF et le solénöıde (∼ 10 cm) par des couches de scintillateurs,
l’efficacité de détection du neutron dans cet espace est de ∼ 10%. La combinaison du CTOF
et des scintillateurs additionnels du CND porte l’efficacité de détection des neutrons par
le CD à 12%.

Le CND possède une géométrie cylindrique et est constitué de 3 couches radiales de
scintillateurs, chacune segmentée en 48 secteurs azimutaux (figure 1.6).

La mesure du temps de vol d’un neutron nécessite de localiser son point d’interac-
tion dans un des scintillateurs. Ceci est possible par la mesure du temps d’arrivée de la
lumière de scintillation à deux photomultiplicateurs situés de part et d’autre d’un bar-
reau de scintillateur. Cependant, par manque de place à l’avant du détecteur central, les
photomultiplicateurs ne peuvent être disposés que du côté arrière. Dans chaque couche,
les scintillateurs sont couplés deux à deux par un guide de lumière semi-circulaire (appelé
U-Turn ) servant à faire circuler le signal lumineux se propageant vers l’avant de CLAS12
(le sens est appelé indirect) dans le barreau adjacent. Comme le montre la figure 1.7, la
lumière de scintillation émise dans le sens indirect circule dans le scintillateur voisin dans
la direction opposée, ce qui permet de recueillir le signal par le photomultiplicateur associé
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Couverture angulaire 40◦ ≤ θ ≤ 120◦

Nombre de couches radiales 3
Nombre de segments azimutaux 48
Scintillateur Plastique (ELJEN 200)
Longueur d’onde du maximum d’émission du scintillateur ∼ 430 nm
Guides de lumière en amont 144, longueur 1.2 mètres, inclinés de 30◦

Guides de lumière en aval 72 � U-turns �

Lecture du signal 144 photomultiplicateurs Hamamatsu R10533 en amont
Blindage des PMs 1 mm de µ-métal, 5 mm d’acier mou
Efficacité de détection du neutron ∼10%
Résolution temporelle ∼ 130 ps
Identification du neutron 0.2 < p < 1 GeV/c2

Résolution en angle polaire ∆θ = 2◦

Résolution en angle azimual ∆Φ = 2◦

Table 1.2 – Caractéristiques techniques du CND.

Figure 1.5 – Impulsion du neutron en fonction de son angle polaire, pour des évènements
nDVCS simulés.

(PM indirect). Ainsi, le CND présente un photomultiplicateur par barreau scintillateur,
soit au total 48× 3 = 144 photomultiplicateurs.

Comme pour le CTOF, les photomultiplicateurs sont éloignés le plus possible du champ
du solénöıde ; la lumière de scintillation est transférée du barreau aux photomultiplicateurs
via un guide de lumière de 1.50 mètres de long.

Les simulations du processus nDVCS ont montré que la résolution temporelle nécessaire
pour distinguer un neutron nDVCS (d’impulsion 0.2 < pN < 1 GeV/c) d’un photon doit
être, au maximum, de 150 ps.
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Figure 1.6 – Vue d’ensemble du détecteur central de neutron.

Figure 1.7 – Propagation de la lumière de scintillation dans une couche du CND.
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Mesures de calibration

Dans le CND, la lumière produite dans les scintillateurs est collectée par des photo-
multiplicateurs situés aux extrémités des guides de lumière. Afin de rendre possible la
mesure du signal de scintillation, chacun des 144 photomultiplicateurs du CND doit être
caractérisé.

Deux caractéristiques des photomultiplicateurs revêtent un intérêt particulier pour la
détection du neutron : le gain, c’est-à-dire la réponse d’amplification électronique du pho-
tomultiplicateur, et la résolution temporelle de l’appareil. Le faible dépôt d’énergie laissée
par l’interaction d’un neutron avec le scintillateur requiert une sensibilité suffisante de la
part des photomultiplicateurs. Ensuite, l’identification des neutrons sur ce détecteur re-
posant sur une mesure du temps de vol, la résolution temporelle doit être suffisante pour
séparer le temps d’arrivée d’un photon et d’un neutron.

Nous nous intéressons ici à la mesure du gain en fonction de la tension d’alimentation.
Celle-ci est d’autant plus importante dans CLAS12 car les photomultiplicateurs seront
ajustés pour avoir une même valeur de gain.

2.1 Le photomultiplicateur

Le photomultiplicateur (PM) est un tube à vide qui permet de collecter la lumière,
de la convertir en courant électronique puis d’accélérer et amplifier ce dernier. La réponse
du PM est proportionnelle à l’intensité de la lumière incidente. Un PM est constitué de
plusieurs éléments successifs :

– La fenêtre : La fenêtre d’entrée du photomultiplicateur a pour but de limiter le
domaine spectral d’émission photoélectrique de la photocathode.

– La photocathode : La photocathode est une couche mince de matériaux semi-
conducteurs photoémissifs déposés sur la face interne de la fenêtre d’entrée par va-
porisation sous-vide. La lumière incidente interagit à la surface de celle-ci, dans la-
quelle les photons incidents sont convertis en électrons par effet photoélectrique. Cette
conversion s’effectue avec un certain rendement (appelé efficacité quantique) et est
optimale dans une certaine plage de longueur d’onde, selon le matériau constituant
la photocathode.

– L’optique d’entrée : Les photoélectrons émis par la photocathode sont dirigés vers
la première dynode et accélérés à l’aide d’électrodes focalisatrices ou accélératrices.

– La châıne de dynodes : Les électrons sont ensuite attirés vers une succession
d’électrodes amplificatrices appelées dynodes. En interagissant avec chacune d’elles,
les électrons arrachent des électrons secondaires, amplifiant le flux proportionellement
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Figure 2.1 – Un exemplaire de photomultiplicateur Hamamatsu R10533.

au gain de la dynode. Le gain gi de la dynode i est lié au nombre d’électrons secon-
daires δi produits par un seul électron sur la dynode, ainsi qu’au taux de collection
d’électrons incidents sur la surface d’interaction ηi :

gi = ηiδi . (2.1)

Le flux résultant est accéléré et amplifié par la dynode suivante et ainsi de suite.
Un circuit de ponts diviseurs assure l’application d’un potentiel croissant le long des
dynodes, permettant une accélération graduelle et le transport du courant d’électrons
d’une dynode à l’autre jusqu’à l’anode (voir figure 2.1).

– L’anode : Le courant d’électrons amplifié est collecté à l’anode. Il en résulte la
formation d’une courte impulsion de courant dont on mesure la charge intégrée à
l’aide d’un condensateur.

Le gain total d’un photomultiplicateur G est défini par le rapport du courant Ik de
photoélectrons produits à la photocathode sur le courant mesuré à l’anode Ia :

G =
Ik
Ia

. (2.2)

Pour un tube à N étages d’amplifications, le gain G sera le produit des contributions
de chaque étage :

G = η

N∏
i=1

ηiδi = η

N∏
i=1

gi , (2.3)

avec η le taux de collection de la première dynode et gi le gain de la i-ème dynode. Le
gain dépend de la tension appliquée aux différents étages d’amplifications. Ainsi, si il n’y
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a aucune perte de collection des électrons, le gain s’écrit :

G =
N∏
i=1

kiV
α
i , (2.4)

avec ki une constante multiplicative, Vi la différence de potentiel entre 2 dynodes et α
le coefficient d’absorption du matériau, de valeur typique comprise entre 0.6 et 0.8. En
considérant que Vi représente une fraction k′i de la tension d’alimentation VHT , l’expression
(2.4) devient :

G =
N∏
i=1

ki(k
′
iVHT )α = KV Nα

HT . (2.5)

Le photomultiplicateur permet ainsi d’obtenir des gains élevés : pour un tube à 10
étages d’amplifications, un gain de 106 peut être atteint pour une tension de 800 à 1200 V.

Dans le détecteur central de neutrons de CLAS12, le choix du photomultiplicateur est
contraint par la conjonction d’un gain élevé, d’une bonne résolution temporelle et d’un
coût modéré compte tenu du nombre total de PM sur le CND. Le photomultiplicateur
Hamamatsu R10533 a été finalement retenu. Il s’agit d’un photomultiplicateur à réponse
temporelle rapide, comportant 10 étages d’amplifications. Le gain typique donné par le
fabricant est de 4, 2 × 106 à une tension de 1700V (figure 2.2). L’appareil est muni d’un
fenêtre en verre de borosilicium qui transmet une lumière entre une longueur d’onde de 300
nm à 600 nm (la lumière produite par les scintillateurs du CND étant de 430 nm environ).

Figure 2.2 – Courbe de gain du photomultiplicateur Hamamatsu R10533, donnée par le
fabricant.
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2.2 Le dispositif expérimental

L’approche suivie pour mesurer le gain du photomultiplicateur est d’évaluer la réponse
d’amplification de l’appareil éclairé par une source lumineuse : on parle de � méthode
impulsionnelle �. Le photomultiplicateur doit être isolé de toute autre source lumineuse
parasite ; pour cela le photomultiplicateur est situé dans une salle obscure du laboratoire.

Le PM est connecté à une embase pour l’alimenter avec un générateur haute tension
et pour transmettre son signal vers le système d’acquisition de données (Data Acquisition
System ou DAQ). Pour les mesures de calibration, un support d’embase pouvant accueillir
jusqu’à 8 PMs à la fois a été utilisé.

La source lumineuse utilisée est une diode bleue pulsée. Les conditions d’éclairement
doivent être suffisament faibles pour provoquer sporadiquement un signal dans le PM.

On mesure en coincidence avec le signal lumineux le signal du PM pour associer la
réponse de l’appareil à la bonne impulsion lumineuse. Ainsi, un générateur d’impulsions
de fréquence 1 kHz déclenche l’émission d’impulsion lumineuse de la diode. Le signal du
générateur déclenche d’autre part la création d’une fenêtre temporelle (porte) de 120 ns, au
cours de laquelle la charge accumulée par le photomultiplicateur est enregistrée sur un canal
du convertisseur analogique numérique de charge (ADC) CAEN N843. Dans ce modèle,
l’ADC code la charge parmi 1024 canaux (codage sur 10 bits) avec une calibration de 0.25
pC/canal. La charge maximale mesurable est de 256 pC. Les informations de l’ADC sont
acquises par un module CAMAC relié à un ordinateur. Le signal issu du PM est préamplifié
avec un gain de 5.

Figure 2.3 – Schéma du système d’acquisition des données pour la calibration des PMTs
du CND.
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2.3 La méthode de calibration

Le spectre de charge d’un PM éclairé par une LED se décompose en plusieurs structures :

– Le piédestal : en se placant à des conditions d’éclairement suffisamment faibles, il se
peut qu’aucune charge n’ait été créée dans le photomultiplicateur après l’émission
d’un signal lumineux par la source. Dans ce cas, on mesure un pic -le piédestal- qui
sert de réfèrence pour définir la charge nulle.

– Le signal d’émission photoélectrique : Il se décompose en plusieurs pics correspondant
chacun à l’émission d’un certain nombre de photoélectrons. Chaque pic suit une loi de
Poisson paramétrée par la proportion de coups non nuls. Une telle distribution résulte
de la fluctuation de production d’électrons secondaires aux dynodes. L’ensemble des
contributions de ces pics forme dans le spectre d’émission photoélectrique une large
distribution décrite elle-même par la loi de Poisson.

Le centre de cette distribution poissonienne correspond à la valeur de charge engendrée
par l’émission de NPhe photoélectrons la plus probable. Le gain G à la tension d’alimen-
tation V donnée peut s’exprimer à partir des données du spectre de charge ADC de la
manière suivante :

G(V ) =
(pic− ped) ∗ 0.25 pC/canal

Gpreamp ∗ e ∗Nphe

, (2.6)

où � pic � représente la valeur du centröıde en unité de canal ADC, � ped � celle du
piédestal, Gpreamp la valeur de gain du préamplificateur de charge et e la charge d’un
électron. La mesure de gain est réalisée dans le régime d’émission d’un photoélectron unique
à la photocathode, ce qui permet de fixer NPhe = 1 dans la formule (2.6). Pour s’assurer
que ce régime est bien atteint, la luminosité de la source lumineuse est réduite de manière
à ce que 9 impulsions sur dix en moyenne produisent une charge nulle, ce qui se traduit par
une incrémentation du piédestal dans le spectre. La tension d’alimentation maximale (U =
1900 V) de l’appareil est appliquée pour avoir une sensibilité optimale au photoélectron
unique.

Figure 2.4 – Spectre de charge ADC du PM WA0322 mesuré dans le régime du
photoélectron unique (V=-1900 V). L’échelle de comptage est logarithmique pour rendre
visible le piédestal et le pic d’émission photoélectrique (qui représente 10% des coups dans
ce spectre).
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Dans ces conditions, la détermination du pic permet de connâıtre le gain du PM. A
des tensions d’alimentation de moins en moins élevées, le PM devient moins sensible au
signal du photoélectron unique. Ce signal produit alors un plus faible courant électronique,
plus difficile à mesurer en raison du bruit. Ainsi, l’éclairement de la LED est accru. Le pic
d’émission photoélectrique se décale vers des valeurs de charge plus élevées. Connaissant
le gain, on calcule alors le nombre de photoélectrons moyen NPhe émis à la photocathode
en mesurant le nouveau pic. Ensuite, on impose une tension V ′ < V et on calcule le gain
G(V ′) à l’aide de la formule (2.6) et de NPhe évalué à la tension V.

En procèdant de la sorte, le gain est déterminé pour 4 valeurs de tension : -1900 V,
-1700 V, -1500 V et -1300 V. Attendu que le gain évolue avec la tension en loi de puissance,
les points sont ajustés de la manière suivante :

G(V ) = A · V B , (2.7)

où A et B sont les paramètres libres de l’ajustement.
Cet ajustement permet de prédire quelle tension est nécessaire pour que le PM fonc-

tionne à une valeur de gain souhaitée. En principe, pour avoir une valeur de gain uniforme
pour l’ensemble des PMs du CND, il faudrait appliquer une valeur de tension spécifique à
chaque PM d’après sa calibration avec la loi (2.7).

2.4 Résultats

Sur un total de 150 PMs R10533 commandés, j’ai pu en calibrer 144, les 8 autres ayant
déjà été calibrés et/ou utilisés sur un autre banc de test. La prise des données est effectuée
par série de 8 PMs installés sur le support d’embases. Sur la figure 2.5 sont représentés les
spectres de charge ADC pour différents points de mesures. Le centröıde du pic d’émission
photoélectrique est déterminé en ajustant par une gaussienne le spectre. On déduit la
courbe de gain de chaque PM (par exemple ceux de la 12ème série de mesures, dans la
figure 2.6). La loi de puissance théorique (2.7) s’ajuste très bien aux données : le coefficient
de corrélation est meilleur que 98% pour tous les PMs calibrés (figure 2.7). La qualité de
l’ajustement de la loi théorique sur le photomultiplicateur WA0167 montre un écart plus
important que les autres PMs mesurés. Aussi, il apparâıt un coefficient plus faible pour
tous les PMs de la série 15 relativement aux autres séries. Toutefois, la corrélation reste
très bonne (supérieure à 99%).

Pour un gain de 1×106, le fabricant annonce une tension d’alimentation de -1400V. La
tension d’alimentation des PMs étudiés pour parvenir à cette valeur de gain montre une
grande variabilité : la tension est comprise entre -1250V et -1650V. D’un PM à un autre,
le gain peut évoluer d’un facteur 2 à 4 à une tension donnée.
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Figure 2.5 – Spectres de charge ADC du PM WA0322.

Figure 2.6 – Courbes de gains (échelle logarithmique) en fonction de la tension d’alimen-
tation pour une série de 8 PMs. Les tensions sont indiquées en valeur absolue.

209



Cinquième partie : Calibration des photomultiplicateurs du Détecteur Central de Neutron
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Figure 2.7 – Coefficients de corrélations selon la série de PMs mesurée. Chaque série
comprend 8 PM chacun représenté par un point dans cette figure.

Figure 2.8 – Tension d’alimentation à appliquer selon le numéro de PM pour obtenir un
gain de 1× 106.
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Conclusions

Ce travail de thèse a permis de mesurer les sections efficaces totales et différentielles de
l’électroproduction exclusive du f0(980) et du f2(1270), dans un vaste domaine cinématique
jamais exploré jusqu’à présent pour ces deux mésons (1.8 < Q2 < 4.3 GeV2 et 0.15 < xB <
0.55). Ces mesures ont été réalisées en analysant des données de diffusion d’un faisceau
d’électrons de 5.754 GeV sur une cible de protons. La prise des données de l’expérience e1-
6 a eu lieu en 2001 dans le Hall B du Jefferson Laboratory (Etats-Unis), avec le détecteur
CLAS.

Dans la première partie du manuscrit, nous avons introduit deux approches permettant
de décrire l’électroproduction exclusive de méson selon la � dureté � (Q2) de la réaction :
d’une part, une approche, basée sur des degrés de liberté hadroniques, qui se traduit par
le mécanisme d’échange de particules et la théorie de Regge et, d’autre part, une approche
partonique s’appuyant sur la notion de factorisation, qui permet d’interpréter la structure
du nucléon en termes de GPDs et la structure du méson en terme d’une Distribution
d’Amplitude.

La deuxième partie décrit le dispositif expérimental de cette analyse, plus précisément
l’accélérateur d’électrons CEBAF et le détecteur CLAS. Ce détecteur, par sa grande ac-
ceptance, constitue un excellent outil pour la mesure de canaux exclusifs tels que celui de
cette analyse (ep→ e′p′π+π−), ayant 4 particules dans l’état final.

La troisième partie a été consacrée à la châıne d’analyse des données aboutissant à la
mesure des sections efficaces de γ∗p→ p′f0 et γ∗p→ p′f2. La mesure d’une section efficace
passe en premier lieu par la détermination de la luminosité intégrée de l’expérience. Il
faut pour cela sélectionner les données pour lesquelles la mesure de charge du faisceau est
fiable. Ensuite, on sélectionne les évènements de l’état final exclusif e′p′π+π−, en appliquant
des coupures sur les données provenant des différents sous-détecteurs de CLAS. Un effort
particulier sur la sélection de l’électron a été fait, pour conserver le plus grand nombre
d’évènements possible. La cinématique de certaines particules, en particulier le proton, est
affectée par des pertes d’énergie qu’il faut corriger pour obtenir la cinématique au point
d’interaction : cela a été accompli à l’aide de simulations Monte Carlo.

Le calcul des sections efficaces réduites de Born γ∗p→ p′π+π− nécessite de normaliser
les données. Pour cela, chaque évènement est pondéré par l’acceptance du détecteur, les
effets radiatifs et les efficacités de coupures. L’acceptance et les effets radiatifs peuvent
être décrits de manière effective par un seul terme correctif. Ce terme a été calculé à
partir de simulations Monte Carlo du détecteur CLAS pour chaque bin 7-dimensionnel,
correspondant au nombre de variables indépendantes décrivant notre réaction. L’évaluation
des corrections radiatives en fonction de la totalité des variables indépendantes constitue
une amélioration significative de leur traitement par rapport aux travaux précédents. Elle a
permis de mettre en évidence l’effet important des processus radiatifs durs sur les spectres
de masse corrigés d’acceptance. Par conséquent, au lieu d’appliquer la correction radiative
au seul processus qui nous intéresse (comme ce fut la cas dans l’analyse publiée du ρ0 avec
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CLAS), nous appliquons une correction adaptée à la totalité d’un spectre de masse.
Après application des corrections de trous de l’acceptance, les sections efficaces totales

ou différentielles de Born γ∗p→ p′π+π− sont organisées en spectres fonctions de la masse
invariante Mπ+π− , pour différents intervalles cinématiques.

Les sections efficaces totales et différentielles du f0 et du f2 sont extraites de ces spectres
par une soustraction du fond. La dépendance en φ des sections efficaces a permis de mettre
en évidence la contribution des différents états de polarisation du photon virtuel au f0 et
au f2. Pour le f0, il apparâıt que l’interférence TT est non négligeable. Pour le f2, c’est l’in-
terférence TL qui se manifeste, confirmant les observations de la collaboration HERMES
selon lesquelles la contribution transverse est aussi importante que la contribution longitu-
dinale. L’interprétation en termes de GPDs des deux réactions nécessite de déterminer la
composante longitudinale de la section efficace. La technique de séparation de Rosenbluth
est requise pour l’extraire. Cela pourra être accompli en combinant nos données avec celles
qui seront prises avec CLAS12 et le nouveau faisceau à 11 GeV de CEBAF.

La procédure d’extraction du f0 et du f2 est sans doute l’étape la plus critique de cette
analyse. Le f0 et le f2 se situent dans une région parfois dominée par le bruit de fond. Là
où les variations systématiques de la procédure de soustraction ont un effet modéré sur
l’extraction du ρ0, elles sont considérables pour le f0 et le f2. Une explication possible pour
ce constat est notre description du fond. La forme de chacune des deux contributions au
fond que nous avons introduit (π+π− non résonants et ∆++) est générée par la méthode
de Monte Carlo et son échelle est un paramètre dans l’ajustement du spectre de section
efficace. Avec deux paramètres libres, il y a moins de souplesse pour modifier la forme du
fond que si l’on décrivait le fond par une fonction analytique. Cependant, dans notre cas,
la forme du fond est dictée par des critères physiques (comme l’espace de phase), qui ne
peuvent pas être aisément paramétrisés dans une fonction analytique. Plusieurs alterna-
tives peuvent être envisagées. La première consiste à ajuster simultanément les spectres
Mπ+π− , Mpπ+ , Mpπ− , dans lesquels résident l’ensemble des résonances mésoniques (Mπ+π−)
et baryoniques (Mpπ+ et Mpπ−). Pour réaliser un tel ajustement, il est nécessaire de projeter
chaque contribution sur les trois spectres, et que ces projections aient la même contribution
relative dans ces spectres. La méthode de Monte Carlo permet de générer ces différentes
contributions. Cependant, l’ajustement peut conduire à modifier la forme de ces projec-
tions, nécessitant de regénérer les spectres du fond à nouveau. Cette procédure a déjà été
tentée, et aboutit malheureusement à un ajustement de moins bonne qualité du ρ0 sur le
spectre Mπ+π− que la procédure d’ajustement sur le seul spectre Mπ+π− . L’autre solution
consiste à réaliser une analyse en ondes partielles. Cette technique permet de décomposer
les spectres de masse selon le spin du méson produit, à partir d’amplitudes partielles.
Son application étant inédite pour la réaction ep → e′p′π+π−, nous avons développé une
procédure d’analyse qui s’applique avec succès sur des pseudo-données. La procédure d’ana-
lyse en ondes partielles a été ensuite employée sur les données réelles, mais les résultats
actuels ne sont pas concluants. L’analyse en ondes partielles repose sur l’ajustement de
paramètres complexes, ce qui conduit à l’examen de multiples solutions. La détermination
de la solution nécessite des considérations physiques qui rendent difficile une détermination
automatisée. Toutefois, les amplitudes partielles peuvent être déterminées indirectement,
par la mesure des moments des angles d’un des produits de décroissance. La détermination
de ces quantités, contrairement aux amplitudes partielles, a l’avantage d’être univoque.
Ensuite, en paramétrisant les amplitudes partielles par une relation de dispersion, les am-
plitudes peuvent être déduites en ajustant les paramètres des amplitudes dans les relations
liant les amplitudes et les moments. Cependant, la détermination des amplitudes par-
tielles nécessite une grande précision des moments en fonction de l’ensemble des variables
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cinématiques. Avec la statistique de nos données expérimentales, une analyse de ce type ne
peut pas être pleinement réalisée, à moins de connâıtre la dépendance de certaines variables
cinématiques. Ainsi, la détermination du f0 et du f2 par ce type d’analyse est principale-
ment limitée par la statistique, tandis qu’une détermination par soustraction incohérente
du bruit de fond est limitée par nos connaissances sur les processus en jeu, notamment la
production de baryons. Le futur détecteur CLAS12, avec une luminosité 10 fois supérieure
à son prédecesseur CLAS, pourrait offrir des données de plus grande statistique, autorisant
peut-être une analyse des moments plus précise.

La quatrième partie du manuscrit est consacrée à l’interprétation des résultats. Nos
données ont été comparées au modèle de Jean-Marc Laget qui permet d’interpréter les
résultats selon des degrés de liberté hadroniques. Il apparâıt que le modèle est en accord
avec les données à bas Q2, là où s’appliquent à plus forte raison les mécanismes d’échanges
de particules dans la voie t. Cependant, dans sa paramétrisation actuelle, le modèle entre
en désaccord à grand Q2, où une interprétation en terme de partons peut être envisagée. Il
est probable que la paramétrisation des facteurs de forme électromagnétiques, qui permet
l’extension du modèle de la photoproduction à l’électroproduction, doive être réexaminée
pour le canal d’électroproduction exclusive de méson décroissant en deux pions. Le travail
de cette thèse permet également de comparer des mésons de différents spins : scalaire (f0),
pseudo-scalaire (π0), vecteur (ρ0) et tenseur (f2). La dépendance du paramètre d’impact
b en fonction de Q2 permet de confirmer le phénomène pour lequel la masse du méson
agit comme une échelle de résolution. La dépendance en Q2 du f0 et du f2 montre un
comportement qui n’est pas prédit dans le cadre d’une interprétation en termes de GPDs.
Cependant, il est possible que le comportement asymptotique ne soit pas atteint. L’aug-
mentation en énergie de JLab jusqu’à 12 GeV permettra d’éclaircir cette problématique en
sondant un plus grand domaine en Q2.

La dernière partie concerne la calibration des photomultiplicateurs du détecteur central
de neutron qui sera installé dans CLAS12. Ce détecteur permettra de mesurer la réaction
n-DVCS, qui apportera de nouvelles contraintes sur les GPDs, notamment leur séparation
selon la saveur des quarks.
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Annexe A

Soustraction de fond pour chaque bin
(Q2, xB, −t)
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Figure A.1 – Soustraction de fond pour 0.10 < −t < 0.40 GeV2.
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Figure A.2 – Soustraction de fond pour 0.40 < −t < 0.70 GeV2.
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Figure A.3 – Soustraction de fond pour 0.70 < −t < 1.00 GeV2.

216



Annexe A. Soustraction de fond pour chaque bin (Q2, xB, −t)

 (GeV)-π+πM
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

- π
+ π

/d
M

σd

0

0.5

1

 (GeV)-π+πM
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

- π
+ π

/d
M

σd

0

0.5

1

 (GeV)-π+πM
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

- π
+ π

/d
M

σd

0

1

2

 (GeV)-π+πM
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

- π
+ π

/d
M

σd

0

0.5

1

 (GeV)-π+πM
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

- π
+ π

/d
M

σd

0

1

2

 (GeV)-π+πM
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

- π
+ π

/d
M

σd

0

2

4

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

0.5

1

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

1

2

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

2

4

6

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

5

10

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

0.2

0.4

0.6

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

0.5

1

1.5

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

2

4

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

5

10

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

0.5

1

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

1

2

3

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

5

10

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

10

20

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

0.5

1

 (GeV)-
π

+

π
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-
π

+
π

/d
M

σ
d

0

1

2

3

0.2 0.3 0.4 0.5
 Bx

1.5

2

2.5

3

3.5

4

4.5

5

2 GeV2Q 2 -t <1.30 GeV≤1.00 

 (GeV)-π+πM

)3b/GeVµ (
-π+πdtdM

σd

0.3 2.0

Figure A.4 – Soustraction de fond pour 1.00 < −t < 1.30 GeV2.
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Figure A.5 – Soustraction de fond pour 1.30 < −t < 1.60 GeV2.
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Annexe A. Soustraction de fond pour chaque bin (Q2, xB, −t)
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Figure A.6 – Soustraction de fond pour 1.60 < −t < 1.90 GeV2.
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Figure A.7 – Soustraction de fond pour 1.90 < −t < 2.77 GeV2.
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Annexe A. Soustraction de fond pour chaque bin (Q2, xB, −t)
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Figure A.8 – Soustraction de fond pour 2.77 < −t < 3.63 GeV2.
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Figure A.9 – Soustraction de fond pour 3.63 < −t < 4.50 GeV2.
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Annexe A. Soustraction de fond pour chaque bin (Q2, xB, −t)
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Annexe B

Soustraction de fond pour chaque bin
(Q2, xB, cos θHS)
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Figure B.1 – Soustraction de fond pour −1.00 < cos θHS < −0.71.
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Annexe B. Soustraction de fond pour chaque bin (Q2, xB, cos θHS)
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Figure B.2 – Soustraction de fond pour −0.71 < cos θHS < −0.43.
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Figure B.3 – Soustraction de fond pour −0.43 < cos θHS < −0.14.
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Annexe B. Soustraction de fond pour chaque bin (Q2, xB, cos θHS)
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Figure B.4 – Soustraction de fond pour −0.14 < cos θHS < 0.14.
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Figure B.5 – Soustraction de fond pour 0.14 < cos θHS < 0.43.
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Annexe B. Soustraction de fond pour chaque bin (Q2, xB, cos θHS)
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Figure B.6 – Soustraction de fond pour 0.43 < cos θHS < 0.71.
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Figure B.7 – Soustraction de fond pour 0.71 < cos θHS < 1.00.
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Annexe C

Soustraction de fond pour chaque bin
(Q2, xB, Φ)
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Figure C.1 – Soustraction de fond pour 0.0◦ < Φ < 51.4◦.
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Annexe C. Soustraction de fond pour chaque bin (Q2, xB, Φ)
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Figure C.2 – Soustraction de fond pour 51.4◦ < Φ < 102.9◦.
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Figure C.3 – Soustraction de fond pour 102.9◦ < Φ < 154.3◦.
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Annexe C. Soustraction de fond pour chaque bin (Q2, xB, Φ)
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Figure C.4 – Soustraction de fond pour 154.3◦ < Φ < 205.7◦.
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Figure C.5 – Soustraction de fond pour 205.7◦ < Φ < 257.1◦.
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Annexe C. Soustraction de fond pour chaque bin (Q2, xB, Φ)
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Figure C.6 – Soustraction de fond pour 257.1◦ < Φ < 308.6◦.
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Figure C.7 – Soustraction de fond pour 308.6◦ < Φ < 360.0◦.
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Annexe D

Soustraction de fond pour chaque bin
(Q2, xB, −t, Φ)
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Figure D.1 – Soustraction de fond pour 0.10 < −t < 1.00 GeV2 et 0.0◦ < Φ < 51.4◦.
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Annexe D. Soustraction de fond pour chaque bin (Q2, xB, −t, Φ)
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Figure D.2 – Soustraction de fond pour 0.10 < −t < 1.00 GeV2 et 51.4◦ < Φ < 102.9◦.
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Figure D.3 – Soustraction de fond pour 0.10 < −t < 1.00 GeV2 et 102.9◦ < Φ < 154.3◦.
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Annexe D. Soustraction de fond pour chaque bin (Q2, xB, −t, Φ)
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Figure D.4 – Soustraction de fond pour 0.10 < −t < 1.00 GeV2 et 154.3◦ < Φ < 205.7◦.
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Figure D.5 – Soustraction de fond pour 0.10 < −t < 1.00 GeV2 et 205.7◦ < Φ < 257.1◦.
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Figure D.6 – Soustraction de fond pour 0.10 < −t < 1.00 GeV2 et 257.1◦ < Φ < 308.6◦.
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Figure D.7 – Soustraction de fond pour 0.10 < −t < 1.00 GeV2 et 308.6◦ < Φ < 360.0◦.
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Figure D.8 – Soustraction de fond pour 1.00 < −t < 1.90 GeV2 et 0.0◦ < Φ < 51.4◦.
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Figure D.9 – Soustraction de fond pour 1.00 < −t < 1.90 GeV2 et 51.4◦ < Φ < 102.9◦.
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Figure D.10 – Soustraction de fond pour 1.00 < −t < 1.90 GeV2 et 102.9◦ < Φ < 154.3◦.
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Figure D.11 – Soustraction de fond pour 1.00 < −t < 1.90 GeV2 et 154.3◦ < Φ < 205.7◦.
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Figure D.12 – Soustraction de fond pour 1.00 < −t < 1.90 GeV2 et 205.7◦ < Φ < 257.1◦.
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Figure D.13 – Soustraction de fond pour 1.00 < −t < 1.90 GeV2 et 257.1◦ < Φ < 308.6◦.
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Figure D.14 – Soustraction de fond pour 1.00 < −t < 1.90 GeV2 et 308.6◦ < Φ < 360.0◦.
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Figure D.15 – Soustraction de fond pour 1.90 < −t < 3.20 GeV2 et 0.0◦ < Φ < 51.4◦.
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Figure D.16 – Soustraction de fond pour 1.90 < −t < 3.20 GeV2 et 51.4◦ < Φ < 102.9◦.
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Figure D.17 – Soustraction de fond pour 1.90 < −t < 3.20 GeV2 et 102.9◦ < Φ < 154.3◦.
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Figure D.18 – Soustraction de fond pour 1.90 < −t < 3.20 GeV2 et 154.3◦ < Φ < 205.7◦.
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Figure D.19 – Soustraction de fond pour 1.90 < −t < 3.20 GeV2 et 205.7◦ < Φ < 257.1◦.
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Figure D.20 – Soustraction de fond pour 1.90 < −t < 3.20 GeV2 et 257.1◦ < Φ < 308.6◦.
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Figure D.21 – Soustraction de fond pour 1.90 < −t < 3.20 GeV2 et 308.6◦ < Φ < 360.0◦.
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Figure D.22 – Soustraction de fond pour 3.20 < −t < 4.50 GeV2 et 0.0◦ < Φ < 51.4◦.
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Figure D.23 – Soustraction de fond pour 3.20 < −t < 4.50 GeV2 et 51.4◦ < Φ < 102.9◦.
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Figure D.24 – Soustraction de fond pour 3.20 < −t < 4.50 GeV2 et 102.9◦ < Φ < 154.3◦.
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Figure D.25 – Soustraction de fond pour 3.20 < −t < 4.50 GeV2 et 154.3◦ < Φ < 205.7◦.
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Figure D.26 – Soustraction de fond pour 3.20 < −t < 4.50 GeV2 et 205.7◦ < Φ < 257.1◦.
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Figure D.27 – Soustraction de fond pour 3.20 < −t < 4.50 GeV2 et 257.1◦ < Φ < 308.6◦.
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Figure D.28 – Soustraction de fond pour 3.20 < −t < 4.50 GeV2 et 308.6◦ < Φ < 360.0◦.
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Annexe E

Table d’harmoniques sphériques

YLM(θ, φ) = (−1)M

√
(2L+ 1).(L−M)!

4π.(L+M)!
PLM(cos θ)eiMφ , (E.1)

Où PLM(x) est le polynôme de Legendre associé.

Y0 0(θ, φ) =

√
1

4π
(E.2)

Y1−1(θ, φ) =

√
3

8π
sin(θ)e−iφ (E.3)

Y1 0(θ, φ) =

√
3

4π
cos(θ) (E.4)

Y1 1(θ, φ) = −
√

3

8π
sin(θ)eiφ (E.5)

Y2−2(θ, φ) =

√
15

32π
sin2(θ)e−i2φ (E.6)

Y2−1(θ, φ) =

√
15

8π
sin(θ)cos(θ)e−iφ (E.7)

Y2 0(θ, φ) =

√
5

16π
(3cos2(θ)− 1) (E.8)

Y2 1(θ, φ) = −
√

15

8π
sin(θ)cos(θ)eiφ (E.9)

Y2 2(θ, φ) =

√
15

32π
sin2(θ)ei2φ (E.10)
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Annexe F

Ajustement des ondes partielles par
bin de masse dans les données
expérimentales
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Figure F.1 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.45 < Mπ+π− < 0.49 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Annexe F. Ajustement des ondes partielles par bin de masse dans les données
expérimentales
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Figure F.2 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.49 < Mπ+π− < 0.53 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.3 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.53 < Mπ+π− < 0.57 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.4 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.57 < Mπ+π− < 0.61 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.5 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.61 < Mπ+π− < 0.65 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.6 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.65 < Mπ+π− < 0.69 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.7 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.69 < Mπ+π− < 0.72 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.8 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.72 < Mπ+π− < 0.76 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.9 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.76 < Mπ+π− < 0.80 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.10 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.80 < Mπ+π− < 0.84 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.11 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.84 < Mπ+π− < 0.88 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.12 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.88 < Mπ+π− < 0.92 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.13 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.92 < Mπ+π− < 0.96 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.

253



Annexe F. Ajustement des ondes partielles par bin de masse dans les données
expérimentales

) +πθcos(
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

120

140

160

180 /NDF = 0.42χ

) +πθcos(
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

0

500

1000

1500

2000

2500

3000

3500

)° (+πΦ
0 50 100 150 200 250 300 350

0

20

40

60

80

100

120

140

160

180
/NDF = 0.62χ

)° (+πΦ
0 50 100 150 200 250 300 350

0

500

1000

1500

2000

2500

 (GeV) < 0.99-π+π0.96 < M

Figure F.14 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.96 < Mπ+π− < 0.99 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.15 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 0.99 < Mπ+π− < 1.03 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.16 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.03 < Mπ+π− < 1.07 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.17 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.07 < Mπ+π− < 1.11 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.18 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.11 < Mπ+π− < 1.15 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.19 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.15 < Mπ+π− < 1.19 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.20 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.19 < Mπ+π− < 1.23 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.21 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.23 < Mπ+π− < 1.27 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.22 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.27 < Mπ+π− < 1.30 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.23 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.30 < Mπ+π− < 1.34 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.24 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.34 < Mπ+π− < 1.38 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.25 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.38 < Mπ+π− < 1.42 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.26 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.42 < Mπ+π− < 1.46 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.27 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.46 < Mπ+π− < 1.50 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Annexe F. Ajustement des ondes partielles par bin de masse dans les données
expérimentales
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Figure F.28 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.50 < Mπ+π− < 1.54 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.29 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.54 < Mπ+π− < 1.57 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Figure F.30 – Distributions angulaires (θπ+ , φπ+) dans le référentiel d’hélicité dans l’in-
tervalle cinématique 1.5 < Q2 < 2.7 GeV2, 0.15 < xB < 0.28, 1 < −t < 1.90 GeV2

et 1.57 < Mπ+π− < 1.61 GeV. Colonne de gauche : comparaison entre les données
expérimentales (en noir) et l’ajustement (en rouge). Colonne de droite : projections de
l’intensité après correction d’acceptance.
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Annexe G

Relations entre amplitudes partielles
et moments

< YLM >=
∑

l′m′, lm,

C(l′m′, lm, LM)× alma∗l′m′ , (G.1)

Où l et l′ correspondent à des moments angulaires, m et m′ à des projections du moment
angulaire selon un axe z. Les facteurs C(l′m′, lm, LM) correspondent aux coefficients de
Clebsch-Gordan. Les formules ci-dessous sont les dévelopements explicite de la série G.1
avec la troncature m, m′ ≤ 1. Dans les expressions ci-dessous, les symboles S, P , D et F
désignent les amplitudes de moment angulaire l = 0, 1, 2, 3, respectivement. Les symboles
−, 0 et + sont associés aux états m = −1, m = 0, m = +1 respectivement.

〈Y00〉 = |S|2 + |P−|2 + |P0|2 + |P+|2 + |D−|2 + |D0|2 + |D+|2 + |F−|2 + |F0|2 + |F+|2
(G.2)
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Résumé
Dans ce travail de thèse est présentée l’analyse de l’électroproduction exclusive des mésons f0(980)
et f2(1270) sur le proton. Les données ont été acquises pendant l’expérience e1-6 (2001-2002) avec
le détecteur CLAS du Jefferson Lab aux Etats-Unis, en utilisant un faisceau de 5.754 GeV et une
cible de dihydrogène. Nous avons mesuré pour la première fois au monde les sections efficaces
réduites différentielles de ces deux processus, dans le domaine cinématique 1.5 < Q2 < 4.33 GeV2

et 0.15 < xB < 0.55. Nous proposons une interprétation de nos résultats sur une approche basée
sur des degrés de libertés hadroniques et la théorie de Regge. Une analyse des données en termes
d’amplitudes d’ondes partielles et en terme de moments des distributions angulaires a également
été tentée. Enfin, nous avons effectué la calibration des photomultiplicateurs du détecteur central
de neutron (CND) pour le détecteur CLAS12. Le CND a été optimisé pour l’étude du processus
n-DVCS (Diffusion Compton Profondément Virtuelle du neutron).

Mots-clés : Spectroscopie des mésons, méson scalaire, méson tenseur, f0(980), f2(1270), sonde
électromagnétique, processus exclusifs, formalisme de Regge, analyse en ondes partielles, Jefferson
Lab, CEBAF, Hall B, détecteur CLAS, détecteur CLAS12, détecteur central de neutron.

Abstract
We present in this report our results for the exclusive electroproduction of f0(980) and f2(1270)
off the proton. The data were taken during the e1-6 experiment (2001-2002) with the CLAS de-
tector of Jefferson Laboratory, using a 5.754 GeV beam and a liquid hydrogen target. We have
measured for the first time the reduced differential cross sections for these two processes, in the
kinematical region 1.5 < Q2 < 4.33 GeV2 and 0.15 < xB < 0.55. We propose an interpretation
of our results according to a Regge-based model. An alternative analysis of the data in terms
of partial waves amplitudes as well as in terms of moments of the decay angular distributions
has also been attempted. Finally, we have performed the calibration of the photomultipliers of
the Central Neutron Detector (CND), to be installed in the CLAS12 detector. The CND has
been optimised for the study of the n-DVCS process (Deeply Virtual Compton Scattering off the
neutron).
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