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Introduction 

Although electromagnetic spin-orbit effects are 

typically very small, of the order of one part in 105 in 

the spacing of atomic levels, it is not strong enough to 

support adequate changes in nuclear level spacing, 

required to generate the observed magic numbers. 

Therefore, we adopt the similar form as for the atomic 

spin-orbit concept but to nuclear potential. One gluon 

exchange (OGE) can be regarded as a viable source 

for velocity-dependent potential like spin-orbit 

coupling, which is exhibited by the strong polarization 

found in the scattering of nucleons by nuclei as well as 

by the substantial splitting between levels of a doublet 

explained in terms of a shell model. The precise 

dynamical origin of the strong nuclear spin-orbit force 

is not fully resolved, but the atomic physics analogy of 

the force hints to being a relativistic effect. Empirical 

data implies the dominance of static-type (velocity-

independent) nuclear potentials at somewhat low 
energies for the incident particles.  

The expectation value of the spin-orbit 

interaction is proportional to 

     1112  SSLLJJSL where the 

notations L , S  and J  stand for the orbital angular 

momentum, spin angular momentum and the total 

angular momentum respectively. Although 

traditionally the spin-orbit potential is a surface term 

and is proportional to  dsdVs1 , as its effect is 

piqued at the edge of the nucleus, and the spin density 

vanishes inside the nucleus. However, we adapt the 

Pöschl–Teller [1, 2] like spin-orbit term, added with 

the central Pöschl–Teller potential, hypothesizing that 

it will take care of the varying effects of the interior 

and surface of the nucleus with suitable 

parameterization of the potential. It is also well known 

that the form of the potential in spin-orbit term 

  SLrVSO   is not that vital, but it is the  SL   

factor which contributes significantly to reordering the 

levels. A significant spin-orbit coupling potential 

appears to be advantageous in explaining high-energy 
data. 

 

Methodology: 
The phase-function method (PFM) [1] is a powerful 

numerical technique that works well as an alternative 

to the traditional Schrödinger equation approach. 

Recent works by our group deal with this 

methodology in a somewhat lower energy region. The 

methodology is based on the possible reduction of 

second-order linear homogeneous equations to first-

order nonlinear Riccati equations or phase equations, 

as given below. 
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where )(ˆ qsj  and )(ˆ qs  are the Riccati–Bessel 

functions. The resulting Phase equations for 

2&1,0 read as 
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Where “ q ” stands for centre of mass momentum and 

is related to the centre of mass energy E as 

/2mEq  . The term ),( sq is called the 

phase function, which satisfies the phase equation 

given by Eq. (1). With the initial 

condition 0)0,( q , phase equations given by 

Eqs. (2-4) are solved numerically for the potential 

under consideration to adjust the phase shifts of the 

scattering in different states in line with the 

established data.  
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The effective Pöschl–Teller potential [1, 2] in all 

partial waves is written as 
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and the effective spin orbit coupling is taken as 
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The effective equivalent nuclear potential under 

investigation for uncharged hadrons is thus 

)()()( sVsVsV SOPT  .                                (7)  

Result and Discussion: 
To determine the standard phase parameters [3] 

of various states in the (n-p) system, we will 

parameterize the nuclear Pöschl-Teller potential, as 

given in Eq. (7), and solve the differential equations 

(2)-(4) numerically. For the numerical computations 

involving the (n-p) system, the parameters listed in 

Table 1 accurately reproduce the correct phase 

parameters up to a laboratory energy of 50 MeV. Our 

results align with those of Arndt et al. [3]. Using our 

phase parameters, we compute the scattering cross 

sections and analyzing powers for the system and 

compare these calculations with the existing data [4, 

5] in the literature. Figure 1 displays the differential 

scattering cross sections for the (n-p) system at 

incident energies of 42.5 and 47.5 MeV, alongside the 

standard results from [4]. We present the analyzing 

powers for the (n-p) systems at 

MeVELab 0.17 in Table 2 and compare them 

with the experimental data reported by J. Wilczynski 

et al. [5]. 

                                                                                                                        

Table 1:  List of parameters for the potential. 

States 

(n-p) 

  
1V  2V  

'

1V  
'

2V  

3P0 0.82 5.02 2.85 0.32 1.02 

3P1 1.32 8.01 3.86 3.62 0.33 

3P2 0.82 6.05 2.88 1.65 0.99 

3D1 1.03 8.65 2.02 5.01 0.85 

3D2 1.05 5.05 11.32 2.36 6.33 

3D3 1.05 5.06 8.33 1.96 4.75 

 

As observed in Table 2, the yA peak becomes higher 

and shifts backward with increasing energy. 

Additionally, both the peak height and the minimum 

of the cross section change gradually with energy. The 

discrepancy in the peak position may be attributed to 

the limitations of the PJ state nucleon-nucleon 

interaction within the model potential used for this 

calculation. Nevertheless, the overall agreement with 

our results remains satisfactory. 
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Fig. 1: Angular distributions for (n-p) scattering at 

energies of 42.5 and 47.5 MeV are presented, with 

standard data provided in Ref. [4]. 

 

Table 2: Neutron-proton (n-p) elastic analyzing power 

data    at MeVELab 0.17 . 

 

(deg)

..MCq
 

(Neutron-proton) 

MeVELab 0.17  

(Present work) 

yA  

Wilczynski et al. 

[5] 

33.1 1.892440 1.90  0.022 

50.9 2.692307 2.43  0.023 

69.1 3.020172 2.95  0.028 

87.1 4.536850 4.52  0.048 

105.4 3.826081 2.99  0.029 

122.9 1.650562 1.34  0.016 
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