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Introduction

Although electromagnetic spin-orbit effects are
typically very small, of the order of one part in 10° in
the spacing of atomic levels, it is not strong enough to
support adequate changes in nuclear level spacing,
required to generate the observed magic numbers.
Therefore, we adopt the similar form as for the atomic
spin-orbit concept but to nuclear potential. One gluon
exchange (OGE) can be regarded as a viable source
for velocity-dependent potential like spin-orbit
coupling, which is exhibited by the strong polarization
found in the scattering of nucleons by nuclei as well as
by the substantial splitting between levels of a doublet
explained in terms of a shell model. The precise
dynamical origin of the strong nuclear spin-orbit force
is not fully resolved, but the atomic physics analogy of
the force hints to being a relativistic effect. Empirical
data implies the dominance of static-type (velocity-
independent) nuclear potentials at somewhat low
energies for the incident particles.

The expectation value of the spin-orbit
interaction is proportional to
2(LeS)=J(J +1)-L(L+1)-S(S+1)where  the

notationsL, S and J stand for the orbital angular
momentum, spin angular momentum and the total
angular momentum respectively. Although
traditionally the spin-orbit potential is a surface term

and is proportional to]/S(dV/dS), as its effect is

piqued at the edge of the nucleus, and the spin density
vanishes inside the nucleus. However, we adapt the
Poschl-Teller [1, 2] like spin-orbit term, added with
the central Pdschl-Teller potential, hypothesizing that
it will take care of the varying effects of the interior
and surface of the nucleus with suitable
parameterization of the potential. It is also well known
that the form of the potential in spin-orbit term

Vgo(r)LeS) is not that vital, but it is the (LeS)

factor which contributes significantly to reordering the
levels. A significant spin-orbit coupling potential
appears to be advantageous in explaining high-energy
data.

Methodology:

The phase-function method (PFM) [1] is a powerful
numerical technique that works well as an alternative
to the traditional Schrddinger equation approach.
Recent works by our group deal with this
methodology in a somewhat lower energy region. The
methodology is based on the possible reduction of
second-order linear homogeneous equations to first-
order nonlinear Riccati equations or phase equations,
as given below.

5, (d,5)=—q 7V (s)
[coss, (a.5) ], (as) - sina, (a, )3, (s)]

o (D
where J,(qgs) and 77,(QS) are the Riccati-Bessel
functions. The resulting Phase equations for

¢ =0,1&2read as

8, (A,5) = -9V (5) [sin(5, (q,5) + as)[*,
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S, (q,8) = —

[sin(5,(a,s) +as)—gscos(5,(q,s) + gs)]?
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and

5 (09 =—qV(s) qu’sz—ljsin(éz(q, $)+qs)—

2

% cos(5,(q, s) + qs)}
: - (4
Where (] ” stands for centre of mass momentum and
is related to the centre of mass energy E as
g=+2mE /. The term &,(q,S)is called the

phase function, which satisfies the phase equation
given by Eq. (1). With the initial
condition &, (0,0) = 0, phase equations given by
Eqs. (2-4) are solved numerically for the potential
under consideration to adjust the phase shifts of the

scattering in different states in line with the
established data.
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The effective POschl-Teller potential [1, 2] in all
partial waves is written as

V, -V, cosh(as) ¢(¢+1)
VPT(S): : sinth(aS) + SZ

®)

and the effective spin orbit coupling is taken as

Ve, () = (Vl -V, cosh(es) ](L . S). ©)

sinh? (as)
The effective equivalent nuclear potential under
investigation for uncharged hadrons is thus

V(s) =Ver (5) +Vs0 (5).

Result and Discussion:

To determine the standard phase parameters [3]
of various states in the (n-p) system, we will
parameterize the nuclear Pdschl-Teller potential, as
given in Eq. (7), and solve the differential equations
(2)-(4) numerically. For the numerical computations
involving the (n-p) system, the parameters listed in
Table 1 accurately reproduce the correct phase
parameters up to a laboratory energy of 50 MeV. Our
results align with those of Arndt et al. [3]. Using our
phase parameters, we compute the scattering cross
sections and analyzing powers for the system and
compare these calculations with the existing data [4,
5] in the literature. Figure 1 displays the differential
scattering cross sections for the (n-p) system at
incident energies of 42.5 and 47.5 MeV, alongside the
standard results from [4]. We present the analyzing
powers for the (n-p) systems at

E,., =17.0MeV in Table 2 and compare them

with the experimental data reported by J. Wilczynski
etal. [5].

0]

Table 1: List of parameters for the potential.

S(':?tlg)S “ Vi v, Vi |V,
3p, | 082 | 502 | 285 |032]|1.02
sp, | 132 | 801 | 386 |3.62 033
3p, | 082 | 6.05 | 2.88 | 165|099
sp, | 103 | 865 | 202 | 501|085
sp, | 1.05 | 5.05 | 11.32 | 2.36 | 6.33
sp, | 1.05 | 5.06 | 833 | 196|475

As observed in Table 2, the Ay peak becomes higher

and shifts backward with increasing energy.
Additionally, both the peak height and the minimum
of the cross section change gradually with energy. The
discrepancy in the peak position may be attributed to
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the limitations of the PJ state nucleon-nucleon
interaction within the model potential used for this
calculation. Nevertheless, the overall agreement with
our results remains satisfactory.
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Fig. 1: Angular distributions for (n-p) scattering at
energies of 42.5 and 47.5 MeV are presented, with
standard data provided in Ref. [4].

Table 2: Neutron-proton (n-p) elastic analyzing power
data atE , =17.0MeV .

‘9c.M ' (Neutron-proton)
E ., =17.0MeV
(deg) (Present work) |  Wilczynski et al.
A, [5]
331 1.892440 1.90 %+ 0.022
50.9 2.692307 2.431+0.023
69.1 3.020172 2.95+ 0.028
87.1 4.536850 4,521 0.048
105.4 3.826081 2.99 + 0.029
122.9 1.650562 1.3410.016
References

[1] P. Sahoo and U. Laha, Can. J. Phys.
101, 9 (2023).
[2] P. Sahoo, Braz. J. Phys. 54, 23 (2024).
[3] R. A. Arndt et. al., Phys. Rev. D 28, 97 (1983).
[4] J. P. Scanlon, Nucl. Phys. 41, 401 (1963).
[5] J. Wilczynski et. al., Nucl. Phys. A 425, 458
(1984).

Available online at www.sympnp.org/proceedings



