
1.9

On Spacelike Hypersurfaces in
Generalized Robertson–Walker
Spacetimes

Norah Alessa and Mohammed Guediri

Special Issue
Advances in Differential Geometry and Mathematical Physics

Edited by

Dr. David D. McNutt

Article

https://doi.org/10.3390/axioms13090636

https://www.mdpi.com/journal/axioms
https://www.mdpi.com/journal/axioms/stats
https://www.mdpi.com/journal/axioms/special_issues/0Y0GIZ99I1
https://www.mdpi.com
https://doi.org/10.3390/axioms13090636


Citation: Alessa, N.; Guediri, M. On

Spacelike Hypersurfaces in

Generalized Robertson–Walker

Spacetimes. Axioms 2024, 13, 636.

https://doi.org/10.3390/

axioms13090636

Academic Editor: David D. McNutt

Received: 16 August 2024

Revised: 12 September 2024

Accepted: 16 September 2024

Published: 17 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

On Spacelike Hypersurfaces in Generalized
Robertson–Walker Spacetimes

Norah Alessa † and Mohammed Guediri *,†

Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;

437203671@student.ksu.edu.sa

* Correspondence: mguediri@ksu.edu.sa
† These authors contributed equally to this work.

Abstract: This paper investigates generalized Robertson–Walker (GRW) spacetimes by analyzing

Riemannian hypersurfaces within pseudo-Riemannian warped product manifolds of the form (M, g),

where M = R× f M and g = ϵdt2 + f 2(t)gM. We focus on the scalar curvature of these hypersurfaces,

establishing upper and lower bounds, particularly in the case where (M, g) is an Einstein manifold.

These bounds facilitate the characterization of slices in GRW spacetimes. In addition, we use the

vector field ∂t and the so-called support function θ to derive generalized Minkowski-type integral

formulas for compact Riemannian and spacelike hypersurfaces. These formulas are applied to

establish, under certain conditions, results concerning the existence or non-existence of such compact

hypersurfaces with scalar curvature, either bounded from above or below.

Keywords: GRW spacetimes; spacelike hypersurfaces; Minkowski-type integral formulas; scalar and

mean curvatures; minimal and maximal hypersurfaces

MSC: 53A10; 53C40; 53C42; 53C65

1. Introduction

The existence of a conformal vector field on a pseudo-Riemannian manifold plays an
important role in both Riemannian and Lorentzian geometry, as it signifies a symmetry in
the metric tensor. In the context of general relativity, this symmetry is often employed to
obtain exact solutions to the Einstein field equations.

Let (M, gM) be an n-dimensional Riemannian manifold, n ≥ 2, I an open interval of
R, and f a positive smooth function defined on I. By equipping I with the metric ±dt2,
we obtain an (n + 1)-dimensional pseudo-Riemannian warped product manifold (M, g),
where M = I × M and

g = ±dt2 + f 2gM. (1)

It is evident that (M, g) can be either Riemannian or Lorentzian. In the Lorentzian case,
(M, g) is referred to as a generalized Robertson–Walker (GRW) spacetime, which extends
the concept of Robertson–Walker (RW) spacetimes where the fiber M is three-dimensional
with a constant sectional curvature. In a GRW spacetime (M, g), the vector field ∂t is a
unit vector field that is globally defined on M, which is timelike in the Lorentzian case,
thereby providing a time orientation for M. We should note that, in general relativity theory,
GRW spacetimes are also called FRWL spacetimes after Friedmann, Robertson, Walker
and Lemaitre.

Many investigations have focused on the geometry of Riemannian warped product
manifolds and GRW spacetimes, such as those in [1–7], and others.

A natural and interesting problem in pseudo-Riemannian warped product manifolds
(particularly GRW spacetimes) is characterizing their Riemannian (or spacelike in the
GRW case) hypersurfaces and determining under what conditions such a hypersurface is
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completely umbilical or, ideally, a slice in the ambient warped product. This area has been
extensively researched by mathematicians for a long time. Some studies have focused on
complete Riemannian and spacelike hypersurfaces having constant mean curvature, while
others have investigated how the scalar curvature of the hypersurface relates to that of the
ambient manifold (see, for example, [1,8–17]).

Research has been conducted on compact Riemannian hypersurfaces within pseudo-
Riemannian warped product manifolds, with a particular focus on spacelike hypersurfaces
in GRW spacetimes. This research often examines aspects such as the volume of the fiber,
the warping function f , and the hyperbolic angle function, which is the inner product of the
unit normal to the hypersurface and the conformal vector field f ∂t, where ∂t is tangent to
the one-dimensional base. For example, under various geometric and physical conditions,
spacelike slices are recognized as the only spacelike hypersurfaces that achieve both upper
and lower volume bounds [18]. See also [19,20].

Several results characterize compact spacelike hypersurfaces of Lorentzian manifolds
admitting a timelike conformal vector field (particularly a Killing vector field) using gener-
alized Minkowski-type integral formulas, extending those first used by H. Minkowski [21].
See [17,22–26] for compact hypersurfaces in Riemannian manifolds, and [1,8–13,18,22–29]
for recent references on compact spacelike hypersurfaces in Lorentzian manifolds.

This paper is organized as follows. Section 2 provides the fundamental concepts and
definitions necessary for the subsequent sections, providing definitions and necessary formu-
las concerning hypersurfaces in pseudo-Riemannian manifolds, especially Riemannian hy-
persurfaces in Riemannian manifolds and spacelike hypersurfaces in Lorentzian manifolds.

In Section 3, we define Riemannian warped product manifolds and generalized
Robertson–Walker (GRW) spacetimes, presenting necessary formulas for the Levi-Civita
connection and the Ricci curvature at horizontal and vertical tangent vectors. We establish
the necessary and sufficient conditions, in terms of the warping function, for such spaces to
be Einstein manifolds, showing that a warped product is Einstein if and only if the fiber
manifold is Einstein.

Section 4 estimates the relationship between the scalar curvature of the hypersurface
and that of the ambient warped product manifold or GRW spacetime. We derive results
concerning scalar curvature bounds based on the Ricci curvature and scalar curvature of
the base manifold, considering the behavior of the warping function f and properties of
the vector field ∂t tangent to the one-dimensional base, and sometimes, the inner product
of ∂t with the unit normal to the hypersurface. For instance, the fact that f ∂t is a closed
conformal vector field and the nice properties of the height both help to deduce several
interesting results about the hypersurface’s scalar curvature.

Section 5 serves as the main focus of the paper, concentrating on Riemannian (or
spacelike) hypersurfaces within Riemannian warped product manifolds (or GRW space-
times). We derive three Minkowski-type integral formulas for these hypersurfaces and
use them to formulate several theorems regarding the characterization of both compact
and non-compact spacelike hypersurfaces in GRW spacetimes. For example, we show that
in a GRW spacetime, no compact spacelike hypersurface can have a mean curvature H
satisfying f ′H < 0. Additionally, we prove that if the fiber is Einstein and the hypersurface
Σ is compact with constant mean curvature, then Σ is an extrinsic hypersphere, which is
a totally umbilical hypersurface with a non-zero constant mean curvature. Furthermore,
we show that, given regular conditions such as the convexity of the function −Log f , there
cannot be a compact spacelike hypersurface in a GRW spacetime with non-negative mean
curvature and a scalar curvature exceeding that of the base manifold.

For minimal (or maximal) hypersurfaces, we show that if Log f (resp. −Log f ) is
convex and the Ricci curvature of the base M is non-negative at the tangential part of the
unit normal, then Σ is a slice, meaning it takes the form Σ = {t0} × M.
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2. Preliminaries

Let (M, g) be a pseudo-Riemannian manifold of dimension n ≥ 2 with the Levi-Civita
connection ∇, and let X(M) denote the collection of all vector fields on M. The curvature
tensor of (M, g) is defined as the (1, 3)-tensor field given by

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z,

for all vector fields X, Y, Z ∈ X(M).
The Ricci curvature Ric is the trace of R. It is the symmetric bilinear form defined as

follows. If {e1, . . . , en} is an orthonormal basis of the tangent space Tp M of M at the point
p and ϵi = g(ei, ei), then

Ric(X, Y) =
n

∑
i=1

ϵig(R(X, ei)ei, Y),

for all X, Y ∈ Tp M.
The scalar curvature Sc is obtained by taking the trace of the Ricci tensor Ric. It is a

function on M defined by

Sc(p) =
n

∑
i=1

ϵiRic(ei, ei)

For a function f on M, the gradient is defined as the vector field ∇ f ∈ X(M) satisfying

g(∇ f , X) = X · f , (2)

for all X ∈ X(M).
If {e1, . . . , en} is a local orthonormal frame of vector fields, then the divergence of

X ∈ X(M) is defined as the function

div(X) =
n

∑
i=1

ϵig(∇ei
X, ei) (3)

The divergence of a tensor B of type (1, 1) on M is defined as the vector field

div(B) = trace(∇B) =
n

∑
i=1

(∇ei
B)(ei),

where the covariant derivative ∇B of B is given here by the formula

(∇XB)(Y) = ∇XB(Y)− B(∇XY),

for all X, Y ∈ X(M).
The Hessian Hess f of a smooth function f is the symmetric covariant (0, 2)-tensor

given by
Hess f (X, Y) = g(∇X(∇ f ), Y)

for all X, Y ∈ X(M).
The Laplacian ∆ f of f is simply

∆ f = div(∇ f ) (4)

Now consider a pseudo-Riemannian manifold (M, g) of dimension (n + 1), n ≥ 2,
which may be either Riemannian or Lorentzian (that is, g has signature (0, n + 1) or (1, n),
respectively). Additionally, (Σ, g) denotes a Riemannian manifold of dimension n, which
we isometrically immerse into (M, g). Consequently, we will treat (Σ, g) as a Riemannian
hypersurface within (M, g), and it will be considered spacelike if (M, g) is Lorentzian.
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Let V ∈ X(M) be a vector field on M that we assume to be timelike when (M, g) is
Lorentzian. In this case, we can select a globally defined unit timelike vector field N that is
normal to Σ and aligns with the time orientation of V. This implies that g

(

V, N
)

< 0 holds
everywhere on Σ.

When (M, g) is Riemannian, we assume that Σ is a two-sided hypersurface, which
implies the existence of a globally defined unit vector field N normal to Σ.

Let V represent the restriction of V to Σ. Then, a smooth function Θ on Σ, called the
support function of V, is naturally defined by Θ = g(V, N).

In the Lorentzian case, on Σ, we have the below inequality:

Θ ≤ −
√

−g(V, V) < 0. (5)

Let V⊤ denote the tangential component of V to Σ. Then, we have

V = V⊤ + ϵΘN, (6)

where ϵ = g(N, N).
Let ∇ and ∇ represent the Levi-Civita connections on (Σ, g) and (M, g), respectively.

Let X(Σ) and X(M) denote the sets of all tangent vector fields on Σ and M, respectively, and
let X(Σ) be the set of all vector fields on M restricted to Σ. If A represents the shape operator
of Σ with respect to N, then the formulas of Gauss and Weingarten for the hypersurface Σ

in M are given by

∇XY =∇XY + ϵg(A(X), Y)N

A(X) = −∇X N,

where X, Y ∈ X(Σ).
The Gauss equation relates the curvature tensor R of (Σ, g) to the tangential component

if the curvature tensor R of (M, g) and the shape operator A via the so-called Gauss equation

R(X, Y)Z =
(

R(X, Y)Z
)⊤

+ ϵ(g(A(Y), Z)A(X)− g(A(X), Z)A(Y)), (7)

for all X, Y, Z ∈ X(Σ).
The Codazzi equation for (Σ, g) provides a formula for the normal part of R(X, Y)Z,

which is given by the following expression

R(X, Y)N = (∇Y A)X − (∇X A)Y, (8)

for all X, Y ∈ X(Σ).
The mean curvature of (Σ, g) is given by

H =
ϵ

n
trace(A). (9)

The hypersurface (Σ, g) is considered totally umbilical if A = ϵHI, where I is the
identity operator. It is said to be totally geodesic if A = 0, and it is known as an extrinsic
hypersphere of (M, g) if it is totally umbilical with a non-zero constant mean curvature H.
For instance, if (M, g) has a constant sectional curvature c, then extrinsic hyperspheres are
isometric to round spheres.

When H = 0, the hypersurface (Σ, g) is called minimal if (M, g) is Riemannian, and
maximal if (M, g) is Lorentzian.

Equation (7) establishes a connection between the Ricci curvature Ric of Σ and the
Ricci curvature Ric of M. This connection is expressed by the equation

Ric(X, Y) = Ric(X, Y)− ϵg(R(N, X)Y, N) + g(A(X), nHY − ϵA(Y)), (10)
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for all X, Y ∈ X(Σ).
Additionally, by taking the trace of Equation (10), we establish the relationship be-

tween the scalar curvature Sc of Σ and the scalar curvature Sc of M, as given by the
following equation:

Sc = Sc − 2ϵRic(N, N) + ϵ(n2H2 − ∥A∥2). (11)

3. Pseudo-Riemannian Warped Products: The Case of GRW Spacetimes

From this point forward, we will regard M as a warped product manifold of the form
M = R× f M, with the pseudo-Riemannian metric

g = ϵdt2 + f 2(t)gM,

where (M, gM) is an n-dimensional Riemannian manifold, f is positive smooth function on
R, and ϵ = ±1.

If ϵ = 1, then (M, g) is simply a warped product of two Riemannian manifolds. How-
ever, if ϵ = −1, then (M, g) becomes a warped product of the Lorentzian one-dimensional
manifold (R,−dt2) and a Riemannian n-dimensional manifold (M, gM).

In this context, (M, g) is called a generalized Robertson–Walker spacetime (GRW).
This generalizes the Robertson–Walker spacetime (M,−dt2 + f 2(t)gM), where (M, gM) is
a 3-dimensional Riemannian manifold with constant curvature.

Let ∂t denote the coordinate vector field on R and W⊥ represent the normal component
to M of the vector field W ∈ X

(

M
)

. For the following lemmas, we refer to [30] (see
also [31]).

Lemma 1. On (M, g), we have the following for all X, Y ∈ X(M), where the symbol ⊥ indicates
the component orthogonal to M, which is the tangent component along the R factor:

(i) ∇∂t
X = ∇X∂t =

f ′

f X;

(ii) (∇XY)⊥ = −ϵg(X, Y) f ′

f ∂t.

Lemma 2. On (M, g), we have the following for all X, Y ∈ X(M), where RicM denotes the Ricci
curvature of (M, gM):

(i) Ric(∂t, ∂t) = −n
f ′′

f ;

(ii) Ric(∂t, X) = 0;

(iii) Ric(X, Y) = RicM(X, Y)− ϵ
(

f ′′

f + (n − 1) ( f ′)2

f 2

)

g(X, Y).

The scalar curvature Sc of (M, g) is related to the scalar curvature ScM of (M, gM) and
is given by

Sc =
ScM

f 2
− 2ϵn

f ′′

f
− ϵn(n − 1)

( f ′)2

f 2
. (12)

The following lemma describes how the Ricci curvature of (M, g) relates to the Ricci
curvature of (M, gM).

Lemma 3. For every vector fields U and V on M, with U∗ and V∗ being their respective components
tangent to M, we have

Ric(U, V) = RicM(U∗, V∗)− ϵ
(

f f ′′+ (n − 1)( f ′)2
)

gM(U∗, V∗)− ng(U, ∂t)g(V, ∂t)
f ′′

f
. (13)
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Proof. By virtue of Lemma 2, and since g(U∗, V∗) = f 2gM(U∗, V∗), we have

Ric(U, V) = Ric(U∗, V∗) + g(U, ∂t)g(V, ∂t)Ric(∂t, ∂t)

= RicM(U∗, V∗)− ϵ

(

f ′′

f
+ (n − 1)

( f ′)2

f 2

)

g(U∗, V∗)− ng(U, ∂t)g(V, ∂t)
f ′′

f

= RicM(U∗, V∗)− ϵ
(

f f ′′+ (n − 1)( f ′)2
)

gM(U∗, V∗)− ng(U, ∂t)g(V, ∂t)
f ′′

f
.

The following proposition establishes that (M, g) is Einstein if and only if (M, gM) is
Einstein as well.

Proposition 4. Under the notation and assumption mentioned above, (M, g) is an Einstein
manifold, meaning that Ric = λg, if and only if (M, gM) is Einstein with RicM = λgM where

λ = −ϵn
f ′′

f and λ = −ϵ(n − 1)
(

f f ′′− ( f ′)2
)

.

Proof. If (M, g) is Einstein with Ric = λg, then

Ric(U, V) = λ
(

ϵg(U, ∂t)g(V, ∂t) + f 2gM(U∗, V∗)
)

,

for all U, V ∈ X
(

M
)

.
Substituting this into (13), and considering that U, V are arbitrary in X

(

M
)

, we
deduce that

λ = −ϵn
f ′′

f
and RicM(U∗, V∗) =

(

λ f 2 + ϵ( f f ′′+ (n − 1)( f ′)2
)

gM(U∗, V∗).

Therefore, M is Einstein with RicM = λgM, where λ = −ϵ(n − 1)
(

f f ′′− ( f ′)2
)

. The
converse is also true, as we can easily verify.

Remark 5. If ϵλ > 0, then by setting ω2 = ϵλ, we see that f takes the form

f = A cos ωt + B sin ωt, for some A, B ∈ R.

If ϵλ < 0, then by setting ω2 = −ϵλ, we see that f takes the form

f = A cosh ωt + B sinh ωt, for some A, B ∈ R.

In terms of the constants A and B, it follows that

λ =

{

(n − 1) (A2 + B2) λ, if ϵλ > 0.

(n − 1) (A2 − B2) λ, if ϵλ < 0.

4. Estimating the Scalar Curvature of a Spacelike Hypersurface in a GRW Spacetime

We will now assume that (Σ, g) is a connected Riemannian manifold, isometrically
immersed as a hypersurface in the warped product manifold (M, g).

Given that ∂t establishes an orientation for M, let N be a globally defined unit normal
vector field to Σ. We will refer to θ as the support function of ∂t, a smooth function on Σ

defined by θ = g(∂t, N).
Using the notation mentioned earlier, we have Θ = f θ, and it is clear from (5) that if

(M, g) is Lorentzian (i.e., a GRW spacetime), then on Σ, we have the inequality

θ ≤ −1. (14)
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If ∂⊤t denotes the component of ∂t that is tangent to Σ, then we can express

∂t = ∂⊤t + ϵθN, (15)

where ϵ = g(N, N).
It is straightforward to observe that ζ = f ∂t meets the following condition:

∇U( f ∂t) = f ′U, (16)

for any U ∈ X(M). In other words, ζ is a vector field on (M, g) that is closed conformal.
According to (15), ζ can be expressed as

ζ = ζT + ϵ f θN, (17)

where ζT is the tangential component of ζ.
By using (16), together with the Weingarten and Gauss formulas, we derive

∇XζT = f ′X + ϵ f θA(X), (18)

and

A(ζT) = − f∇θ − ϵ
f ′

f
θζT , (19)

for all X ∈ X(Σ).
From (18), we derive that

div(ζT) = n( f ′ + f θH). (20)

We can also find the divergence of the vector field ∂tT . This will turn out to be the
Laplacian of the important function on Σ called the height function (see Lemmas 6 and 7
below).

The height function h of Σ is given by h = πR ◦ Ψ, with πR representing the projection
from M onto its R factor, and Ψ is the isometric immersion of Σ into M. The next two
lemmas provide the gradient, norm, and Laplacian of h.

Lemma 6. The gradient of h on Σ can be expressed as

∇h = ϵ∂⊤t ,

with the norm (i.e., length) expressed as

∥∇h∥2 = ϵ(1 − θ2) (21)

Proof. Given that ∇πR = ϵ∂t, it follows that

∇h = ϵ∂⊤t ,

and from the decomposition (15), we obtain

∥∇h∥2 = g(∇h,∇h)

= g(ϵ∂⊤t , ϵ∂⊤t )

= g(∂t − ϵθN, ∂t − ϵθN)

= ϵ(1 − θ2).
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Lemma 7. The Laplacian of h is

∆h = ϵn(
f ′

f
+ H θ)− ϵ(1 − θ2)

f ′

f
. (22)

Proof. Since the vector field f ∂t is closed conformal, applying (15), (16), and the Weingarten
formula leads to

∇X∇h = ∇X

(

ϵ∂⊤t

)

=
(

ϵ∇X∂t − θ∇X N
)⊤

= ϵ
(

∇X∂t

)⊤
+ θA(X)

= ϵ

(

∇X(
1

f
f ∂t)

)⊤

+ θA(X)

= ϵ
f ′

f
X − ϵ

1

f
X( f ) ∂⊤t + θA(X).

Therefore, if {e1, . . . , en} forms a local orthonormal frame on Σ, we obtain

∆h = ϵn
f ′

f
−

ϵ

f

n

∑
i=1

g(ei( f )∂⊤t , ei) + ϵnH θ

= ϵn
f ′

f
−

ϵ

f

n

∑
i=1

g(∇ei
( f ∂⊤t ), ei) + ϵ

n

∑
i=1

g(∇ei
∂⊤t , ei) + ϵnH θ

= ϵn
f ′

f
−

ϵ

f
div( f ∂⊤t ) + ϵ div(∂⊤t ) + ϵnH θ

= ϵn
f ′

f
−

ϵ

f
∂⊤t ( f ) + ϵnH θ

= ϵn
f ′

f
−

ϵ

f
g
(

∇ f , ∂⊤t

)

+ ϵnH θ

= ϵn
f ′

f
−

ϵ

f
g
(

ϵ f ′∂⊤t , ∂⊤t

)

+ ϵnH θ.

Since g
(

∂⊤t , ∂⊤t
)

= ∥∇h∥2 = ϵ(1 − θ2), then we obtain (22).

The following result highlights the relationship between the scalar curvature of a
Riemannian hypersurface (Σ, g) and that of the factor (M, gM), while implicitly involving

the scalar curvature of
(

M = R× f M, g
)

.

Proposition 8. Consider (Σ, g) as a Riemannian hypersurface within (M, g). Then, with the
notations previously defined, the scalar curvature Sc of (Σ, g) is given by

Sc =
ScM

f 2
− 2ϵ

[

RicM(N∗, N∗) + (n − 1)(1 − θ2)

(

f ′′

f
−

( f ′)2

f 2

)]

− ϵn(n − 1)

(

( f ′)2

f 2
− H2

)

− ϵ
(

∥A∥2 − nH2
)

.

(23)

Proof. By Lemma 3, we have

Ric(N, N) = RicM(N∗, N∗)− (1 − θ2)

(

f ′′

f
+ (n − 1)

( f ′)2

f 2

)

− n θ2 f ′′

f
. (24)
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By taking the trace of (24) and applying (11) and (12), we deduce that

Sc =
ScM

f 2
− 2ϵn

f ′′

f
− ϵn(n − 1)

( f ′)2

f 2
+ 2ϵn θ2 f ′′

f
− 2ϵRicM(N∗, N∗)

+ 2ϵ(1 − θ2)

(

f ′′

f
+ (n − 1)

( f ′)2

f 2

)

+ ϵ
(

n2H2 − ∥A∥2
)

=
ScM

f 2
− 2ϵ

[

RicM(N∗, N∗) + (n − 1)(1 − θ2)

(

f ′′

f
−

( f ′)2

f 2

)]

− ϵn(n − 1)

(

( f ′)2

f 2
− H2

)

− ϵ
(

∥A∥2 − nH2
)

.

If (M, g) is an Einstein manifold, then the following is a consequence of Proposition 8.

Theorem 9. Let (Σ, g) be a Riemannian hypersurface in (M, g) with (M, gM) being an Einstein
manifold. Using the previously mentioned notations, the scalar curvature Sc of Σ is expressed as

Sc = −ϵn(n − 1)(
f ′′

f
− H2)− ϵ(∥A∥2 − nH2). (25)

In particular, if we additionally assume that f ′′ ≥ f H2 everywhere, then ϵS ≤ 0.

Proof. If (M, gM) is Einstein with RicM = λgM, then, according to Proposition 4, we have
λ = −ϵ(n − 1)

(

f f ′′− ( f ′)2
)

. Consequently, we obtain

ScM = −ϵn(n − 1)
(

f f ′′− ( f ′)2
)

,

RicM(N∗, N∗) = −ϵ(n − 1)
(

f f ′′− ( f ′)2
)

gM(N∗, N∗),

where N∗ represents for the component of N tangent to M.
On the other hand, we have

ϵ = g(N, N) = g(N∗, N∗) + ϵg(N, ∂t)2

= g(N∗, N∗) + ϵθ2.

Since g(N∗, N∗) = f 2gM(N∗, N∗), the above equation leads to the conclusion that

gM(N∗, N∗) =
ϵ

f 2
(1 − θ2).

Consequently, we obtain

RicM(N∗, N∗) = −(n − 1)(1 − θ2)
1

f 2

(

f f ′′− ( f ′)2
)

= −(n − 1)(1 − θ2)(
f ′′

f
−

( f ′)2

f 2
).

By substituting these values into (23), we deduce that

Sc = −ϵn(n − 1)(
f ′′

f
− H2) +−ϵ(∥A∥2 − nH2).
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The following result follows from Proposition 8. It demonstrates that for a spacelike
hypersurface in a GRW spacetime, if the warping function f is logarithmically concave,
then the scalar curvature of that hypersurface is bounded from below.

Theorem 10. Using the previously defined notations, let (Σ, g) be a spacelike hypersurface in a
GRW spacetime (M, g) with −Log f being convex. Then, the scalar curvature Sc of Σ satisfies the
following inequality:

Sc ≥
ScM

f 2
+ 2RicM(N∗, N∗)− n(n − 1)H2 (26)

In particular, if (M, gM) is Einstein, then, necessarily, ScM ≤ 0 and

Sc ≥

(

1 +
2θ2

n

)

ScM

f 2
− n(n − 1)H2. (27)

Proof. Given that (M, g) is now a Lorentzian manifold, Equation (23) transforms into

Sc =
ScM

f 2
+ 2

[

RicM(N∗, N∗) + (n − 1)(1 − θ2)

(

f ′′

f
−

( f ′)2

f 2

)]

+ n(n − 1)

(

( f ′)2

f 2
− H2

)

+ (∥A∥2 − nH2).

Given that −Log f is convex, it follows that f f ′′ − ( f ′)2 ≤ 0. Using (14) and the
condition ||A||2 − nH2 ≥ 0, the above equation leads to inequality (26).

Assuming that (M, gM) is Einstein, Proposition 4 implies that

ScM = n(n − 1)( f f ′′− ( f ′)2) ≤ 0.

Additionally, we easily see that

RicM(N∗, N∗) =

(

θ2 − 1

n

)

ScM

f 2
,

and hence, inequality (27) can be directly derived from (26).

Likewise, the following result that also follows from Proposition 8 shows that if the
ambient warped product is Riemannian with a concave warping function, then the scalar
curvature of the hypersurface is bounded from above.

Theorem 11. Consider a warped product manifold M = R× f M endowed with the Riemannian

metric g = dt2 + f 2(t)gM with a convex Log f . Using the previously defined notations, if (Σ, g)
is a hypersurface in (M, g), then the scalar curvature Sc of Σ satisfies the following inequality:

Sc ≤
ScM

f 2
− 2RicM(N∗, N∗) + n(n − 1)H2 (28)

In particular, if (M, gM) is Einstein, then, necessarily, ScM ≤ 0 and

Sc ≤ −

(

2

n

)

ScM

f 2
+ n(n − 1)H2 (29)

Remark 12. We observe that, unlike inequality (27), inequality (29) is independent of the function θ.
This distinction arises because when (M, g) is Riemannian, θ is bounded (specifically, |θ| ≤ 1).
However, when (M, g) is Lorentzian, the condition |θ| ≥ 1 holds.
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5. Characterizing Compact Spacelike Hypersurfaces in GRW Spacetimes

In this section, we seek to derive generalized integral formulas of Minkowski-type
for compact Riemannian hypersurfaces within a pseudo-Riemannian warped product
manifold of the form (M, g), where M = R× f M and g = ϵdt2 + f 2(t)gM. Our focus is
particularly on compact spacelike hypersurfaces in GRW spacetimes. Using these integral
formulas, we will characterize these spacelike hypersurfaces, identifying conditions under
which they become extrinsic hyperspheres or slices. Additionally, some of these formulas
extend existing ones related to conformal and Killing vector fields.

The first integral formula we present is general and not limited to spacelike hypersur-
faces in GRW spacetimes. It is derived by integrating (20).

Theorem 13. Under the previously defined notations, let (Σ, g) be a compact Riemannian hyper-
surface in the pseudo-Riemannian warped product manifold (M, g). Then, we have

∫

Σ
( f ′ + f Hθ) dV = 0, (30)

where dV denotes the volume form of (Σ, g).

In the case where (M, g) is Riemannian, we can derive the following result from
Theorem 13.

Theorem 14. Under the previously defined notations, consider a warped product manifold
M = R× f M with a Riemannian metric g = dt2 + f 2(t)gM. Then, there is no compact hy-

persurface (Σ, g) in (M, g) where θ is non-zero and does not change sign, and for which the mean
curvature H satisfies f ′H < 0 when θ < 0 or f ′H > 0 when θ > 0.

Proof. Given that θ is non-zero and does not change sign, we can assume without loss of
generality that θ < 0. We also assume that f ′H < 0. The opposite case can be addressed in
a similar manner. Consequently, this implies that either f ′ < 0 and H > 0 or f ′ > 0 and
H < 0. Since θ < 0, we deduce that either f ′ + f Hθ < 0 or f ′ + f Hθ > 0. However, this
leads to a contradiction with (30), thus establishing the desired conclusion.

Similarly, in the case of a spacelike hypersurface in a GRW spacetime, we obtain the
below theorem.

Theorem 15. In a GRW spacetime (M, g), there is no compact spacelike hypersurface (Σ, g) for
which the mean curvature H satisfies f ′H < 0.

Proof. If f ′H < 0, it is evident that either f ′ < 0 and H > 0 or f ′ > 0 and H < 0. Given
that θ < 0 and H remains constant in sign, we conclude that either f ′ + f Hθ < 0 or
f ′ + f Hθ > 0. This contradicts (30), thereby proving the desired claim.

Our second integral formula, which is of the Minkowski-type, relates to spacelike
hypersurfaces in GRW spacetimes.

Proposition 16. Let (Σ, g) be a compact Riemannian hypersurface in a pseudo-Riemannian warped
product manifold of the form (M, g), where M = R× f M and g = ϵdt2 + f 2(t)gM. Using the
previously defined notations, we have

∫

Σ
f
(

θ(∥A∥2 − nH2) + (n − 1)∂⊤t (H)− ϵRic(N, ∂⊤t )
)

dV = 0. (31)
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Proof. If e1, . . . , en is a local parallel orthonormal frame on Σ, then utilizing the Codazzi
Equations (8) and (18), noting that ∇X A is self-adjoint because A is self-adjoint, and
observing that the vector R(ei, ∂⊤t )N lies to the tangent space of Σ, we derive

div
(

A(ζ⊤)
)

=
n

∑
i=1

g
(

∇ei
A(ζ⊤), ei

)

=
n

∑
i=1

g
(

(∇ei
A)ζ⊤, ei

)

+
n

∑
i=1

g
(

A(∇ei
ζ⊤), ei

)

=
n

∑
i=1

g
(

(∇ζ⊤ A)ei, ei

)

−
n

∑
i=1

g
(

R(ei, ζ⊤)N, ei

)

+
n

∑
i=1

g
(

f ′ei + ϵ f θA(ei), A(ei)
)

.

Therefore,

div
(

A(ζ⊤)
)

=
n

∑
i=1

g
(

∇ζ⊤ A(ei), ei

)

−
n

∑
i=1

g
(

R(N, ei)ei, ζ⊤
)

+
n

∑
i=1

f ′g(A(ei), ei)

+
n

∑
i=1

ϵ f θg(A(ei), A(ei))

=
n

∑
i=1

ζ⊤ · g(A(ei), ei)− Ric(N, ζ⊤) + f ′trace(A) + ϵ f θ∥A∥2

= ϵn f ∂⊤t (H)− Ric(N, ζ⊤) + ϵn f ′H + ϵ f θ∥A∥2.

Thus, by adding and subtracting the term ϵn f θH2, applying Equation (20), and using
the fact that div(Hζ⊤) = Hdiv(ζ⊤) + ζ⊤(H), we can deduce the following:

div
(

A(ζ⊤)
)

= ϵ(n − 1) f ∂⊤t (H)− Ric(N, ζ⊤) + ϵ f θ(∥A∥2 − nH2) + ϵdiv(Hζ⊤). (32)

Now, recalling that ζ⊤ = f ∂⊤t , Equation (31) is obtained by integrating (32) over Σ.

The following result, which directly follows from Proposition 16, provides a charac-
terization of Riemannian hypersurfaces with constant mean curvature in Einstein pseudo-
Riemannian warped product manifolds.

Theorem 17. With the notations previously defined, let (Σ, g) be a compact Riemannian hy-
persurface in a pseudo-Riemannian warped product manifold (M, g), where M = R× f M and

g = ϵdt2 + f 2(t)gM. Assume that (M, gM) is Einstein, the mean curvature H is constant and
non-zero along the integral curves of ∂⊤t , and when (M, g) is Riemannian, θ is non-zero and
maintains a constant sign. Then, (Σ, g) is an extrinsic hypersphere in (M, g).

Proof. Given that H is constant and Ric(N, ∂T
t ) = λ g(N, ∂T

t ) = 0, we deduce from (31) that

∫

Σ
f θ(∥A∥2 − nH2)dV = 0.

Given that f > 0, θ ≤ −1 if (M, g) is a GRW spacetime, and θ is non-zero, does not
change sign, and is not identically zero if (M, g) is Riemannian, and since ∥A∥2 − nH2 ≥ 0,
we can deduce from the integral above that ∥A∥2 = nH2. This implies that (Σ, g) is totally
umbilical, and because H is constant and non-zero, it follows that (Σ, g) is an extrinsic
hypersphere.

In particular, for compact spacelike hypersurfaces of GRW spacetimes, since θ ≤ −1
everywhere, we have the following theorem:

Theorem 18. Given the previously defined notations, let (Σ, g) be a compact spacelike hypersurface
with non-zero constant mean curvature H in a GRW spacetime (M, g), where M = R× f M,
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(M, gM) is an Einstein manifold, and g = −dt2 + f 2(t)gM. Then, (Σ, g) is an extrinsic hyper-
sphere in (M, g).

Our third integral formula of Minkowski-type is the following:

Proposition 19. Let (Σ, g) be a compact Riemannian hypersurface in a pseudo-Riemannian warped
product manifold of the form (M, g), where M = R× f M and g = ϵdt2 + f 2(t)gM. Using the
previously defined notations, we have

∫

Σ
f θ
(

Sc − Sc + ϵRic(N, N)
)

dV = ϵn
∫

Σ
f ′′θdV − ϵn(n − 1)

∫

Σ
f ′HdV. (33)

Proof. Let e1, . . . , en be a local parallel orthonormal frame on Σ. We extend this frame such
that ∇Nei = 0, for i = 1, · · · , n. Thus,

R(ei, N)ζ = ∇ei
∇Nζ −∇N∇ei

ζ −∇∇ei
Nζ

= ∇ei
( f ′N)−∇N( f ′ei) +∇A(ei)

ζ

= f ′∇ei
N + ei( f ′)N − N( f ′)ei + f ′A(ei)

= ei( f ′)N − N( f ′)ei.

It follows that

Ric(N, ζ) =
n

∑
i=1

g
(

R(ei, N)ζ, ei

)

= −nN( f ′)

= −ng
(

∇ f ′, N
)

= −ng
(

ϵ f ′′∂t, N
)

= −ϵn f ′′θ.

Since Ric(N, ζ) = Ric(N, ζ⊤) + ϵ f θRic(N, N), we deduce that

Ric(N, ζ⊤) = −ϵn f ′′θ − ϵ f θRic(N, N). (34)

Based on (11), and utilizing (32) and (34), we obtain

f θ
(

Sc − Sc + ϵRic(N, N)
)

= f θ
(

−ϵRic(N, N) + ϵ(n2H2 − ∥A∥2)
)

= ϵn f ′′θ + Ric(N, ζ⊤) + ϵ f θ(n2H2 − ∥A∥2)

= ϵn f ′′θ − div
(

A(ζ⊤)
)

+ ϵ(n − 1) f ∂⊤t (H)

+ ϵ f θ(∥A∥2 − nH2) + ϵdiv(Hζ⊤) + ϵ f θ(n2H2 − ∥A∥2)

= −div
(

A(ζ⊤)
)

+ ϵdiv(Hζ⊤) + ϵn f ′′θ + ϵ(n − 1) f ∂⊤t (H)

+ ϵn(n − 1) f θH2

= −div
(

A(ζ⊤)
)

+ ϵdiv(Hζ⊤) + ϵn f ′′θ

+ ϵ(n − 1)
(

f ∂⊤t (H) + n f θH2
)

.

On the other hand, considering that

div(Hζ⊤) = Hdiv(ζ⊤) + ζ⊤(H)

and using (20), we have

div(Hζ⊤) = nH( f ′ + f θH) + f ∂⊤t (H).
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Thus,

f ∂⊤t (H) + n f θH2 = div(Hζ⊤)− n f ′H.

By substituting this result into the previous aligned equation, we obtain

f θ
(

Sc − Sc + ϵRic(N, N)
)

= −div
(

A(ζ⊤)
)

+ ϵdiv(Hζ⊤) + ϵn f ′′θ

+ ϵ(n − 1)
(

div(Hζ⊤)− n f ′H
)

= −div
(

A(ζ⊤)
)

+ ϵndiv(Hζ⊤) + ϵn f ′′θ − ϵn(n − 1) f ′H.

Finally, integrating both sides of this equation over Σ, we achieve (33).

The following result concerning spacelike hypersurfaces in Einstein GRW spacetimes
is one of the consequences of Proposition 19. It demonstrates that a compact spacelike
hypersurface in an Einstein GRW spacetime cannot have scalar curvature Sc ≤ n

n+1 Sc while
also having positive mean curvature H > 0.

Theorem 20. Let (M, g) be an Einstein GRW spacetime as previously defined, where f is a non-
constant function that is concave and decreasing. Given these conditions, if (Σ, g) is a compact
spacelike hypersurface in (M, g) with non-negative mean curvature H ≥ 0, then (Σ, g) is either
maximal or has a scalar curvature Sc ≥ n

n+1 Sc.

Proof. Assume, for contradiction, that (Σ, g) is a compact spacelike hypersurface in (M, g)
with non-negative mean curvature H ≥ 0 and scalar curvature Sc ≤ n

n+1 Sc.

Since (M, g) is an Einstein spacetime, we have by Proposition 4 the following relation:

Ric(N, N) = −
Sc

n + 1
= −n

f ′′

f
. (35)

Given that f is concave and decreasing, and noting that θ ≤ −1 and H ≥ 0, the
right-hand side of Equation (33) becomes non-positive (since ϵ = −1 in this case). However,
since Sc ≤ n

n+1 Sc, we can conclude from (35) that

Sc − Sc − Ric(N, N) ≤ 0.

Given that f > 0 and θ ≤ −1, it follows that the left-hand side of (33) is non-negative.
Thus, we deduce that f ′′ = 0, f ′H = 0, and Sc = 0 by (35). Since f is not constant, we
conclude that H = 0, meaning that (Σ, g) is maximal. This completes the proof.

We conclude this paper with two significant results derived from Theorem 10 and
Theorem 11 for the case where the hypersurface has zero mean curvature. These results
characterize a particular class of spacelike hypersurfaces known as slices of the pseudo-
Riemannian warped product manifold (M, g). In the context of a GRW spacetime, spacelike
slices are of particular interest in physics and general relativity as they serve as reference
frames for special observers.

A Riemannian slice (or simply slice) in a pseudo-Riemannian warped product man-
ifold (M, g) is a Riemannian hypersurface (Σ, g) where the height function h, defined in
Section 4, is constant on Σ. Equivalently, according to Formula (21), (Σ, g) is a slice if and
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only if the function θ is identically 1 when (M, g) is Riemannian, and θ = −1 when (M, g)
is Lorentzian. Consequently, the shape operator A of the slice t0 × M is given by

A = ϵ

(

f ′(t0)

f (t0)

)

I.

Thus, slices are totally umbilical with constant mean curvature H = − f ′(t0)
f (t0)

.

Theorem 21. Let (Σ, g) be a maximal spacelike hypersurface in an Einstein GRW spacetime
(M, g) with −Log f being convex and ScM ̸= 0. Assume that RicM(N∗, N∗) ≥ 0 and the scalar

curvature Sc of (Σ, g) satisfies Sc ≤ ScM

f 2 . Then, (Σ, g) is a spacelike slice in (M, g).

Proof. Under the assumptions of the theorem, it follows from (26) that RicM(N∗, N∗) = 0.
However,

RicM(N∗, N∗) =

(

θ2 − 1

n

)

ScM

f 2
.

Given that ScM ̸= 0 and θ ≤ −1, we conclude that θ = −1. Hence, (Σ, g) is a spacelike
slice in (M, g).

We have observed that if (Σ, g) is a spacelike hypersurface in a generalized Robertson–
Walker (GRW) spacetime, it is always possible to choose N such that the function θ is
globally defined and negative. In the case where (M, g) is Riemannian, we can assume that
(Σ, g) is a two-sided hypersurface, ensuring that θ is globally defined. To prevent θ from
changing sign, a more restrictive condition would be to assume that Σ is locally a graph
over M. However, this condition is quite limiting, so we adopt the weaker assumption that
θ does not change sign.

Theorem 22. Consider a warped product manifold M = R× f M with the Riemannian metric

g = dt2 + f 2(t)gM, where Log f is a convex function and (M, gM) is Einstein with ScM ̸= 0. Let
(Σ, g) be a minimal Riemannian hypersurface in (M, g), where the function θ does not change sign.

If RicM(N∗, N∗) ≥ 0 and the scalar curvature Sc of (Σ, g) satisfies Sc ≥ ScM

f 2 , then (Σ, g) is a

Riemannian slice in (M, g).

Proof. The proof is similar to that of Theorem 21. Under the assumptions of the current
theorem, we deduce from (28) that RicM(N∗, N∗) = 0. However, we have now

RicM(N∗, N∗) =

(

1 − θ2

n

)

ScM

f 2
.

Given that ScM ̸= 0 and θ remains constant in sign, we conclude that θ = ±1. Hence,
(Σ, g) must be a slice in (M, g).

6. Conclusions

This paper explores generalized Robertson–Walker (GRW) spacetimes by analyzing
Riemannian hypersurfaces in pseudo-Riemannian warped product manifolds. We es-
tablished scalar curvature bounds for these hypersurfaces, focusing on Einstein ambient
manifolds, and used generalized Minkowski-type integral formulas to address the exis-
tence and non-existence of compact hypersurfaces with bounded scalar curvatures. For
future research, we intend to extend our results to more general warped product manifolds
and specific GRW spacetime models. We will investigate implications for cosmological
models and universe structure and explore other functions, such as the height function,
to derive new Minkowski-type integral formulas. Additionally, we will analyze how
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bounds on scalar curvature interact with other geometric properties of Riemannian or
spacelike hypersurfaces.
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