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We give a review of infinite-dimensional Lie groups and algebras and show some applications
and examples in mathematical physics. This includes diffeomorphism groups and their natural
subgroups like volume-preserving and symplectic transformations, as well as gauge groups and
loop groups. Applications include fluid dynamics, Maxwell’s equations, and plasma physics.
We discuss applications in quantum field theory and relativity (gravity) including BRST and
supersymmetries.

1. Introduction

Lie groups play an important role in physical systems both as phase spaces and as symmetry
groups. Infinite-dimensional Lie groups occur in the study of dynamical systems with
an infinite number of degrees of freedom such as PDEs and in field theories. For such
infinite-dimensional dynamical systems, diffeomorphism groups and various extensions
and variations thereof, such as gauge groups, loop groups, and groups of Fourier integral
operators, occur as symmetry groups and phase spaces. Symmetries are fundamental for
Hamiltonian systems. They provide conservation laws (Noether currents) and reduce the
number of degrees of freedom, that is, the dimension of the phase space.

The topics selected for review aim to illustrate some of the ways infinite-dimensional
geometry and global analysis can be used in mathematical problems of physical interest. The
topics selected are the following.

(1) Infinite-Dimensional Lie Groups.

(2) Lie Groups as Symmetry Groups of Hamiltonian Systems.

(3) Applications.
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(4) Gauge Theories, the Standard Model, and Gravity.

(5) SUSY (supersymmetry).

2. Infinite-Dimensional Lie Groups

2.1. Basic Definitions

A general theory of infinite-dimensional Lie groups is hardly developed. Even Bourbaki [1]
only develops a theory of infinite-dimensional manifolds, but all of the important theorems
about Lie groups are stated for finite-dimensional ones.

An infinite-dimensional Lie group G is a group and an infinite-dimensional manifold
with smooth group operations

m : G × G −→ G, m
(
g, h
)
= g · h, C∞, (2.1)

i : G −→ G, i
(
g
)
= g−1, C∞. (2.2)

Such a Lie group G is locally diffeomorphic to an infinite-dimensional vector space. This can
be a Banach space whose topology is given by a norm ‖ · ‖, a Hilbert space whose topology
is given by an inner product 〈·, ·〉, or a Frechet space whose topology is given by a metric but
not by a norm. Depending on the choice of the topology on G, we talk about Banach, Hilbert,
or Frechet Lie groups, respectively.

The Lie algebra g of a Lie group G is defined as g = {left invariant vector fields on
G} � TeG (tangent space at the identity e). The isomorphism is given (as in finite dimensions)
by

ξ ∈ TeG 	−→ Xξ ∈ g, Xξ

(
g
)
:= TeLg(ξ), (2.3)

and the Lie bracket on g is induced by the Lie bracket of left invariant vector fields [ξ, η] =
[Xξ,Xη](e), ξ, η ∈ TeG.

These definitions in infinite dimensions are identical with the definitions in finite
dimensions. The big difference although is that infinite-dimensional manifolds, hence Lie
groups, are not locally compact. For Frechet Lie groups, we have the additional nontrivial
difficulty of the question how to define differentiability of functions defined on a Frechet
space; see the study by Keller in [2]. Hence the very definition of a Frechet manifold is not
canonical. This problem does not arise for Banach- and Hilbert-Lie groups; the differential
calculus extends in a straightforward manner from R

n to Banach and Hilbert spaces, but not
to Frechet spaces.

2.2. Finite- versus Infinite-Dimensional Lie Groups

Infinite-dimensional Lie groups areNOT locally compact. This causes some deficiencies of the
Lie theory in infinite dimensions. We summarize some classical results in finite dimensions
which are NOT true in general in infinite dimensions as follows.

(1) There is NO Implicit Function Theorem or Inverse Function Theorem in infinite
dimensions! (except Nash-Moser-type theorems).
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(2) If G is a finite-dimensional Lie group, the exponential map exp : g → G is defined
as follows. To each ξ ∈ g, we assign the corresponding left invariant vector field
Xξ defined by (2.3). We take the flow ϕξ(t) of Xξ and define exp(ξ) = ϕξ(1). The
exponential map is a local diffeomorphism from a neighborhood of zero in g onto a
neighborhood of the identity in G; hence exp defines canonical coordinates on the
Lie group G. This is not true in infinite dimensions.

(3) If f1, f2 : G1 → G2 are smooth Lie group homomorphisms (i.e., fi(g · h) = fi(g) ·
fi(h), i = 1, 2) with Tef1 = Tef2, then locally f1 = f2. This is not true in infinite
dimensions.

(4) If f : G → H is a continuous group homomorphism between finite-dimensional
Lie groups, then f is smooth. This is not true in infinite dimensions.

(5) If g is any finite-dimensional Lie algebra, then there exists a connected finite-
dimensional Lie group G with g as its Lie algebra; that is, g � TeG. This is not
true in infinite dimensions.

(6) IfG is a finite-dimensional Lie group andH ⊂ G is a closed subgroup, thenH is a Lie
subgroup (i.e., Lie group and submanifold). This is not true in infinite dimensions.

(7) If G is a finite-dimensional Lie group with Lie algebra g and h ⊂ g is a subalgebra,
then there exists a unique connected Lie subgroupH ⊂ G with h as its Lie algebra;
that is, h � TeH. This is not true in infinite dimensions.

Some classical examples of finite-dimensional Lie groups are the matrix groups GL(n),
SL(n), O(n), SO(n),U(n), SU(n), and Sp(n) with smooth group operations given by matrix
multiplication andmatrix inversion. The Lie algebra bracket is the commutator [A,B] = AB−
BA with exponential map given by exp(A) =

∑∞
i=0(1/i!)A

i = eA.

2.3. Examples of Infinite-Dimensional Lie Groups

2.3.1. The Vector Groups G = (V,+)

Let V be a Banach space and take G = V with m(x, y) = x + y, i(x) = −x, and e = 0, which
makes G into an Abelian Lie group; that is,m(x, y) = m(y, x). For the Lie algebra we have g �
TeV � V . For u ∈ TeV the corresponding left invariant vector field Xu is given by Xu(v) = u,
∀v ∈ V ; that is, Xu = const. Hence the Lie algebra g = V with the trivial Lie bracket [u, v] = 0
is Abelian. For the exponential map we get exp : g = V → G = V, exp = idV .

2.3.2. The General Linear Group G = (GL(V ), ◦)
Let V be a Banach space and L(V, V ) the space of bounded linear operators A : V → V .
Then L(V, V ) is a Banach space with the operator norm ‖A‖ = sup‖x‖≤1‖A(x)‖, and the group
G = GL(V ) of all invertible elements is open in L(V, V ). So GL(V ) is a smooth Lie group with
m(f, g) = f ◦ g, i(f) = f−1, and e = idV . Its Lie algebra is g = L(V, V ) with the commutator
bracket [A,B] = AB − BA and exponential map expA = eA.
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2.3.3. The Abelian Gauge Group G = (C∞(M),+)

LetM be a finite-dimensional manifold and let G = C∞(M) (smooth functions onM). With
group operation being addition, that is,m(f, g) = f + g, i(f) = −f , and e = 0. G is an Abelian
C∞ (addition is smooth) Frechet Lie group with Lie algebra g = TeC

∞(M) � C∞(M), with
trivial bracket [ξ, η] = 0, and exp = id. If we complete these spaces in the Ck-norm, k < ∞
(denoted by Gk), then Gk is a Banach-Lie group, and if we complete in theHs-Sobolev norm
with s > (1/2)dimM then Gs is a Hilbert-Lie group.

2.3.4. The Abelian Gauge Group G = (C∞(M,R − {0}), ·)
Let M be a finite-dimensional manifold and let G = C∞(M,R − {0}), with group operation
being multiplication; that is, m(f, g) = f · g, i(f) = f−1, and e = 1. For k < ∞, Ck(M,R − {0})
is open in C∞(M,R), and if M is compact, then Ck(M,R − {0}) is a Banach-Lie group. If
s > (1/2)dimM, then Hs(M,R − {0}) is closed under multiplication, and if M is compact,
thenHs(M,R − {0}) is a Hilbert-Lie group.

2.3.5. Loop Group G = (Ck(M,G), ·)
We generalize the Abelian example (see Section 2.3.4) by replacing R − {0} with any finite-
dimensional (non-Abelian) Lie group G. Let G = Ck(M,G) with pointwise group operations
m(f, g)(x) = f(x) · g(x), x ∈ M, and i(f)(x) = (f(x))−1, where “·” and “(·)−1” are the
operations in G. If k < ∞ then Ck(M,G) is a Banach-Lie group. Let g denote the Lie algebra
of G, then the Lie algebra of G = Ck(M,G) is g = Ck(M,g), with pointwise Lie bracket
[ξ, η](x) = [ξ(x), η(x)], x ∈M, the latter bracket being the Lie bracket in g. The exponential
map exp : g → G defines the exponential map EXP : g = Ck(M,g) → G = Ck(M,G),
EXP(ξ) = exp ◦ξ, which is a local diffeomorphism. The same holds for Hs(M,G) if s >
(1/2)dimM.

Applications of these infinite-dimensional Lie groups are in gauge theories and
quantum field theory, where they appear as groups of gauge transformations. Wewill discuss
these in Section 5.

Special Case: G = (Ck(S1, G), ·)
As a special case of example mentioned in Section 2.3.5 we takeM = S1, the circle. Then G =
Ck(S1, G) = Lk(G) is called a loop group and g = Ck(S1, g) = lk(g) is its loop algebra. They find
applications in the theory of affine Lie algebras, Kac-Moody Lie algebras (central extensions),
completely integrable systems, soliton equations (Toda, KdV, KP), and quantum field theory;
see, for example, [3] and Section 5. Central extensions of loop algebras are examples of
infinite-dimensional Lie algebras which need not have a corresponding Lie group.

Certain subgroups of loop groups play an important role in quantum field theory as
groups of gauge transformations. We will discuss these in Section 2.4.4.

2.4. Diffeomorphism Groups

Among the most important “classical” infinite-dimensional Lie groups are the diffeomor-
phism groups of manifolds. Their differential structure is not the one of a Banach Lie group
as defined above. Nevertheless they have important applications.
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Let M be a compact manifold (the noncompact case is technically much more
complicated but similar results are true; see the study by Eichhorn and Schmid in [4]) and
let G = Diff∞(M) be the group of all smooth diffeomorphisms on M, with group operation
being composition; that is,m(f, g) = f ◦ g, i(f) = f−1, and e = idM. For C∞ diffeomorphisms,
Diff∞(M) is a Frechet manifold and there are nontrivial problems with the notion of smooth
maps between Frechet spaces. There is no canonical extension of the differential calculus from
Banach spaces (which is the same as for R

n) to Frechet spaces; see the study by Keller in [2].
One possibility is to generalize the notion of differentiability. For example, if we use the so-
calledC∞Γ differentiability, thenG = Diff∞(M) becomes aC∞Γ Lie groupwithC∞Γ differentiable
group operations. These notions of differentiability are difficult to apply to concrete examples.
Another possibility is to complete Diff∞(M) in the Banach Ck-norm, 0 ≤ k < ∞, or in
the Sobolev Hs-norm, s > (1/2)dimM. Then Diffk(M) and Diffs(M) become Banach and
Hilbert manifolds, respectively. Then we consider the inverse limits of these Banach- and
Hilbert-Lie groups, respectively:

Diff∞(M) = lim
←

Diffk(M) (2.4)

becomes a so-called ILB- (Inverse Limit of Banach) Lie group, or with the Sobolev topologies

Diff∞(M) = lim
←

Diffs(M) (2.5)

becomes a so-called ILH- (Inverse Limit of Hilbert) Lie group. See the study by Omori in
[5] for details. Nevertheless, the group operations are not smooth, but have the following
differentiability properties. If we equip the diffeomorphism group with the Sobolev Hs-
topology, then Diffs(M) becomes a C∞ Hilbert manifold if s > (1/2)dimM and the group
multiplication

m : Diffs+k(M) ×Diffs(M) −→ Diffs(M) (2.6)

is Ck differentiable; hence for k = 0,m is only continuous on Diffs(M). The inversion

i : Diffs+k(M) −→ Diffs(M) (2.7)

is Ck differentiable; hence for k = 0, i is only continuous on Diffs(M). The same
differentiability properties ofm and i hold in the Ck topology.

The Lie algebra of Diff∞(M) is given by g = TeDiff∞(M) � Vec∞(M) being the space
of smooth vector fields onM. Note that the space Vec(M) of all vector fields is a Lie algebra
only for C∞ vector fields, but not for Ck orHs vector fields if k <∞, s <∞, because one loses
derivatives by taking brackets.

The exponential map on the diffeomorphism group is given as follows. For any vector
field X ∈ Vec∞(M), take its flow ϕt ∈ Diff∞(M), then define EXP : Vec∞(M) → Diff∞(M) :
X 	→ ϕ1, the flow at time t = 1. The exponential map EXP is NOT a local diffeomorphism; it is
not even locally surjective.

We see that the diffeomorphism groups are not Lie groups in the classical sense, but
what we call nested Lie groups. Nevertheless they have important applications as we will see.
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2.4.1. Subgroups of Diff∞(M)

Several subgroups of Diff∞(M) have important applications.

2.4.2. Group of Volume-Preserving Diffeomorphisms

Let μ be a volume onM and

G = Diff∞μ (M) =
{
f ∈ Diff∞(M) | f∗μ = μ

}
(2.8)

the group of volume-preserving diffeomorphisms. Diff∞μ (M) is a closed subgroup of
Diff∞(M)with Lie algebra

g = Vec∞μ (M) =
{
X ∈ Vec∞(M) | divμX = 0

}
(2.9)

being the space of divergence-free vector fields on M. Vec∞μ (M) is a Lie subalgebra of
Vec∞(M).

Remark 2.1. We cannot apply the finite-dimensional theorem that if Vec∞μ (M) is Lie algebra
then there exists a Lie group whose Lie algebra it is; nor the one that if Diff∞μ (M) ⊂ Diff(M)
is a closed subgroup then it is an Lie subgroup.

Nevertheless Diff∞μ (M) is an ILH-Lie group.

2.4.3. Symplectomorphism Group

Let ω be a symplectic 2-form onM and

G = Diff∞ω (M) =
{
f ∈ xDiff∞(M) | f∗ω = ω

}
(2.10)

the group of canonical transformations (or symplectomorphisms). Diff∞ω (M) is a closed
subgroup of Diff∞(M)with Lie algebra

g = Vec∞ω (M) = {X ∈ Vec∞(M) | LXω = 0} (2.11)

being the space of locally Hamiltonian vector fields on M. Vec∞ω (M) is a Lie subalgebra of
Vec∞(M). Again Diff∞ω (M) is an ILH-Lie group.

2.4.4. Group of Gauge Transformations

The diffeomorphism subgroups that arise in gauge theories as gauge groups behave nicely
because they are isomorphic to subgroups of loop groups which are not only ILH-Lie groups
but actually Hilbert-Lie groups.

Let π : P → M be a principal G bundle with G being a finite-dimensional Lie group
(structure group) acting on P from the right p ∈ P , g ∈ G, and p · g ∈ P .
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The Gauge group G is the group of gauge transformations defined by

G =
{
φ ∈ Diff∞(P); φ

(
p · g) = φ(p) · g, π(φ(p)) = π(p)}. (2.12)

G is a group under composition, hence a subgroup of the diffeomorphism group Diff∞(P).
Since a gauge transformation φ ∈ G preserves fibers, we can realize each such φ ∈ G via
φ(p) = p · τ(p), where τ : P → G satisfies τ(p · g) = g−1τ(p)g, for p ∈ P , g ∈ G. Let

Gau(P) =
{
τ ∈ C∞(P,G); τ(p · g) = g−1τ(p)g

}
. (2.13)

Gau(P) is a group under pointwise multiplication, hence a subgroup of the loop group
C∞(P,G) (see Section 2.4.3), which extends to a Hilbert-Lie group if equipped with the Hs-
Sobolev topology. We give Gau(P) the induced topology and extend it to a Hilbert-Lie group
denoted by Gaus(P). Another interpretation is that Gau(P) is isomorphic to C∞(AdP) the
space of sections of the associated vector bundle Ad(P) = P × GG. Completed in the Hs

Sobolev topology, we get Gaus(P) � Hs(AdP).
Let g denote the Lie algebra ofG. Then the Lie algebra gau(P) of Gau(P) is a subalgebra

of the loop algebraHs(P,g) under pointwise bracket in g, the finite-dimensional Lie algebra
of G; that is, for any ξ, η ∈ Hs(P,g) the bracket is defined by [ξ, η]gau(P)(p) = [ξ(p), η(p)]g,
p ∈ P . Then gaus(P) is the subalgebra of Ad-invariant g-valued functions on P ; that is,

gau(P) =
{
ξ ∈ C∞(P,g); ξ(p · g) = Adg−1ξ

(
p
)}
. (2.14)

The Lie algebra lie G (running out of symbols) of the gauge group G is the Lie
subalgebra of X∞(P) consisting of all G-invariant vertical vector fields X on P ; that is,

lieG =
{
X ∈ X∞(P); R∗gX = X, X

(
p
) ∈ g, g ∈ G, p ∈ P

}
(2.15)

with commutator bracket [X1, X2] = X1X2 −X2X1 ∈ lie G.
On the other hand, the Lie algebra of C∞(AdP) is C∞(ad(P)) being the space of

sections of the associated vector bundle ad(P) ≡ (P×Gg) → M with pointwise bracket.
We have three versions of gauge groups: G,Gau(P), and C∞(AdP). They are all group

isomorphic. There is a natural group isomorphism Gau(P) → G : τ 	→ φ defined by φ(p) =
p ·τ(p), p ∈ P , which preserves the product τ1 ·τ2 	→ φ1◦φ2. Identifying Gwith Gau(P), we can
avoid the troubles with diffeomorphism groups and we can extend G to a Hilbert-Lie group
Gs. So Gs is actually a Hilbert-Lie group in the classical sense; that is, the group operations
are C∞. Also the three Lie algebras lieG, gau(P), and C∞(ad P) are canonically isomorphic.
Indeed, for s ∈ C∞(ad P) define ξ ∈ gau(P)ξ : P → g by ξ(p · a) := Ada−1ξ(p); and for
ξ ∈ gau(P) define s ∈ C∞(ad P) by s(π(p)) := [p, ξ(p)].

On the other hand, for ξ ∈ gau(P) define Zξ ∈ lieG by

Zξ

(
p
)
=
d

dt
|t=0R

(
p, exp tξ

(
p
)) (

= ξ
(
p
)∗(

p
))
, (2.16)

that is, Zξ is the fundamental vector field on P , generated by ξ ∈ g. Zξ is invariant if and only
if ξ(p · g) = Adg−1ξ(p).
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To topologize lie G, we complete C∞(ad P) in the Hs-Sobolev norm. If s >
(1/2)dimM, then lieGs � Hs(ad P) � gaus(P) are isomorphic Hilbert-Lie algebras.

There is a natural exponential map Exp : gau(P) → Gau(P), which is a local
diffeomorphism. Let exp : g → G be the finite-dimensional exponential map. Then define

Exp : gaus(P) → Gaus(P) :
(
Exp ξ

)(
p
)
= exp

(
ξ
(
p
))
, ξ ∈ gaus(P). (2.17)

Or in terms of G, Exp : lie Gs → Gs : (Exp ξ)(p) = p · exp(ξp).
We have the following theorem (Schmid [6]).

Theorem 2.2. For s > (1/2)dimM,

Gs � Gaus(P) � Hs(AdP) (2.18)

is a smooth Hilbert-Lie group with Lie algebra

lieGs � gaus(P) � Hs(ad P) (2.19)

and smooth exponential map, which is a local diffeomorphism,

EXP : lieGs −→ Gs : (EXP ξ)(p) = p · exp(ξ(p)). (2.20)

See [1–5, 7–19].

3. Lie Groups as Symmetry Groups of Hamiltonian Systems

A short introduction and “crash course” to geometric mechanics can be found in the studies
by Abraham and Marsden [20], Marsden [21], as well as Marsden and Ratiu [22]. For the
general theory of infinite-dimensional manifolds and global analysis, see, for example, the
studies by Bourbaki [9], Lang [14], as well as Palais [18].

3.1. Hamilton’s Equations on Poisson Manifolds

A Poisson manifold is a manifold P (in general infinite-dimensional) equipped with a bilinear
operation {·, ·}, called Poisson bracket, on the space C∞(P) of smooth functions on P satisfying
the following.

(i) (C∞(P), {·, ·}) is a Lie algebra; that is, {·, ·} : C∞(P) × C∞(P) → C∞(P) is
bilinear, skew symmetric and satisfies the Jacobi identity {{F,G},H}+{{H,F}, G}+
{{G,H}, F} = 0 for all F,G,H ∈ C∞(P).

(ii) {·, ·} satisfies the Leibniz rule; that is, {·, ·} is a derivation in each factor: {F ·G,H} =
F · {G,H} +G · {F,H}, for all F,G,H ∈ C∞(P).

The notion of Poisson manifolds was rediscovered many times under different names,
starting with Lie, Dirac, Pauli, and others. The name Poisson manifold was coined by
Lichnerowicz.
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For anyH ∈ C∞(P)we define the Hamiltonian vector field XH by

XH(F) = {F,H}, F ∈ C∞(P). (3.1)

It follows from (ii) that indeed XH defines a derivation on C∞(P), hence a vector field on
P . Hamilton’s equations of motion for a function F ∈ C∞(P) with Hamiltonian H ∈ C∞(P)
(energy function) are then defined by the flow (integral curves) of the vector field XH ; that
is,

Ḟ = XH(F) = {F,H}, where ˙ =
d

dt
. (3.2)

We then call F a Hamiltonian system on P with energy (Hamiltonian function)H.

3.2. Examples of Poisson Manifolds and Hamilton’s Equations

Poisson manifolds are a generalization of symplectic manifolds on which Hamilton’s
equations have a canonical formulated.

3.2.1. Finite-Dimensional Classical Mechanics

For finite-dimensional classical mechanics we take P = R
2n with coordinates (q1, . . . ,

qn, p1, . . . , pn) with the standard Poisson bracket for any two functions F(qi, pi), H(qi, pi)
given by

{F,H} =
n∑

i=1

∂F

∂pi

∂H

∂qi
− ∂H
∂pi

∂F

∂qi
. (3.3)

Then the classical Hamilton’s equations are

q̇i =
{
qi,H

}
=
∂H

∂pi
, ṗi =

{
pi,H

}
= −∂H

∂qi
, (3.4)

where i = 1, . . . , n. This finite-dimensional Hamiltonian system is a system of ordinary
differential equations for which there are well-known existence and uniqueness theorems;
that is, it has locally unique smooth solutions, depending smoothly on the initial conditions.

Example 3.1 (Harmonic Oscillator). As a concrete example we consider the harmonic
oscillator. Here P = R

2 and the Hamiltonian (energy) is H(q, p) = (1/2)(q2 + p2). Then
Hamilton’s equations are

q̇ = p, ṗ = −q. (3.5)
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3.2.2. Infinite-Dimensional Classical Field Theory

Let V be a Banach space and V ∗ its dual space with respect to a pairing 〈·, ·〉 : V ×V ∗ → R (i.e.,
〈·, ·〉 is a symmetric, bilinear, nondegenerate function). On P = V × V ∗ we have the canonical
Poisson bracket for F,H ∈ C∞(P), ϕ ∈ V , and π ∈ V ∗, given by

{F,H} =
〈
δF

δπ
,
δH

δϕ

〉
−
〈
δH

δπ
,
δF

δϕ

〉
, (3.6)

where the functional derivatives δF/δπ ∈ V , δF/δϕ ∈ V ∗ are the “duals” under the pairing
〈·, ·〉 of the partial gradients D1F(π) ∈ V ∗, D2F(ϕ) ∈ V ∗∗ � V . The corresponding Hamilton’s
equations are

ϕ̇ =
{
ϕ,H

}
=
δH

δπ
, π̇ = {π,H} = −δH

δϕ
. (3.7)

As a special case in finite dimensions, if V � R
n, so that V ∗ � R

n and P = V × V ∗ �
R

2n, and the pairing is the standard inner product in R
n, then the Poisson bracket (3.6) and

Hamilton’s equations (3.7) are identical with (3.3) and (3.4), respectively.

Example 3.2 (Wave Equations). As a concrete example we consider the wave equations. Let
V = C∞(R3) and V ∗ = Den(R3) (densities) and the L2 pairing 〈ϕ, π〉 = ∫ ϕ(x)π(x)dx. We take
the Hamiltonian to beH(ϕ, π) =

∫
((1/2)π2 + (1/2)|∇ϕ|2 +F(ϕ))dx, where F is some function

on V . Then Hamilton’s (3.7) become

ϕ̇ = π, π̇ = ∇2ϕ − F ′(ϕ), where ′ =
d

dϕ
, (3.8)

which imply the wave equation ∂2ϕ/∂t2 = ∇2ϕ − F ′(ϕ). Different choices of F give different
wave equations; for example, for F = 0 we get the linear wave equation ∂2ϕ/∂t2 = ∇2ϕ.
For F = (1/2)mϕ we get the Klein-Gordon equation ∇2ϕ − ∂2ϕ/∂t2 = mϕ. So these wave
equations and the Klein-Gordon equation are infinite-dimensional Hamiltonian systems on
P = C∞(R3) ×Den(R3).

3.2.3. Cotangent Bundles

The finite-dimensional examples of Poisson brackets (3.3) and Hamilton’s (3.4) and the
infinite-dimensional examples (3.6) and (3.7) are the local versions of the general case where
P = T ∗Q is the cotangent bundle (phase space) of a manifold Q (configuration space). If Q
is an n-dimensional manifold, then T ∗Q is a 2n-Poisson manifold locally isomorphic to R

2n

whose Poisson bracket is locally given by (3.3) and Hamilton’s equations are locally given by
(3.4). IfQ is an infinite-dimensional Banach manifold, then T ∗Q is a Poisson manifold locally
isomorphic to V × V ∗ whose Poisson bracket is given by (3.6) and Hamilton’s equations are
locally given by (3.7).
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3.2.4. Symplectic Manifolds

All the examples above are special cases of symplectic manifolds (P,ω). That means that P is
equipped with a symplectic structure ω which is a closed (dω = 0), (weakly) nondegenerate
2-form on the manifold P . Then for any H ∈ C∞(P) the corresponding Hamiltonian vector
field XH is defined by dH = ω(XH, ·) and the canonical Poisson bracket is given by

{F,H} = ω(XF,XH), F,H ∈ C∞(P). (3.9)

For example, on R
2n the canonical symplectic structure ω is given by ω =

∑n
i=1 dpi ∧ dqi =

dθ, where θ =
∑n

i=1 pi ∧ dqi. The same formula for ω holds locally in T ∗Q for any finite-
dimensional Q (Darboux’s Lemma). For the infinite-dimensional example P = V × V ∗, the
symplectic form ω is given by ω((ϕ1, π1), (ϕ2, π2)) = 〈ϕ1, π2〉 − 〈ϕ2, π1〉. Again these two
formulas for ω are identical if V = R

n.

Remark 3.3. (A) If P is a finite-dimensional symplectic manifold, then P is even dimensional.
(B) If the Poisson bracket {·, ·} is nondegenerate, then {·, ·} comes from a symplectic

form ω; that is, {·, ·} is given by (3.9).

3.2.5. The Lie-Poisson Bracket

Not all Poisson brackets are of the form given in the above examples (3.3), (3.6), and (3.9);
that is, not all Poisson manifolds are symplectic manifolds. An important class of Poisson
bracket is the so-called Lie-Poisson bracket. It is defined on the dual of any Lie algebra. Let G
be a Lie group with Lie algebra g = TeG � {left invariant vector fields on G}, and let [·, ·]
denote the Lie bracket (commutator) on g. Let g∗ be the dual of a g with respect to a pairing
〈·, ·〉 : g∗ × g → R. Then for any F,H ∈ C∞(g∗) and μ ∈ g∗, the Lie-Poisson bracket is defined by

{F,H}(μ) = ±
〈
μ,

[
δF

δμ
,
δH

δμ

]〉
, (3.10)

where δF/δμ, δH/δμ ∈ g are the ”duals” of the gradients DF(μ), DH(μ) ∈ g∗∗ � g under
the pairing 〈·, ·〉. Note that the Lie-Poisson bracket is degenerate in general; for example, for
G = SO(3) the vector space g∗ is 3 dimensional, so the Poisson bracket (3.10) cannot come
from a symplectic structure. This Lie-Poisson bracket can also be obtained in a different way
by taking the canonical Poisson bracket on T ∗G (locally given by (3.3) and (3.6)) and then
restricting it to the fiber at the identity T ∗eG = g∗. In this sense the Lie-Poisson bracket (3.10)
is induced from the canonical Poisson bracket on T ∗G. It is induced by the symmetry of left
multiplication as we will discuss in Section 3.3.

Example 3.4 (Rigid Body). A concrete example of the Lie-Poisson bracket is given by the rigid
body. Here G = SO(3) is the configuration space of a free rigid body. Identifying the Lie
algebra (so(3), [·, ·]) with (R3,×), where × is the vector product on R

3, and g∗ = so(3)∗ � R
3,

the Lie-Poisson bracket translates into

{F,H}(m) = −m · (∇F × ∇H). (3.11)
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For any F ∈ C∞(so(3)∗), we have (dF/dt)(m) = ∇F · ṁ = {F,H}(m) = −m · (∇F × ∇H) =
∇F · (m×∇H); hence ṁ = m×∇H. With the HamiltonianH = (1/2)(m2

1/I
2
1 +m

2
2/I

2
2 +m

2
3/I

2
3)

we get Hamilton’s equation as

ṁ1 =
I2 − I3
I2I3

m2m3, ṁ2 =
I3 − I1
I3I1

m3m1, ṁ3 =
I1 − I2
I1I2

m1m2. (3.12)

These are Euler’s equations for the free rigid body.

3.3. Reduction by Symmetries

The examples we have discussed so far are all canonical examples of Poisson brackets,
defined either on a symplectic manifold (P,ω) or T ∗Q, or on the dual of a Lie algebra g∗.
Different, noncanonical Poisson brackets can arise from symmetries. Assume that a Lie group
G is acting in a Hamiltonian way on the Poisson manifold (P, {·, ·}). That means that we have
a smooth map ϕ : G×P → P : ϕ(g, p) = g ·p such that the induced maps ϕg = ϕ(g, ·) : P → P
are canonical transformations, for each g ∈ G. In terms of Poisson manifolds, a canonical
transformation is a smooth map that preserves the Poisson bracket. So the action of G on
P is a Hamiltonian action if ϕ∗g{F,H} = {ϕ∗gF, ϕ∗gH}, for all F,H ∈ C∞(P), g ∈ G. For any
ξ ∈ g the canonical transformations ϕexp(tξ) generate a Hamiltonian vector field ξF on P and a
momentum map J : P → g∗ given by J(x)(ξ) = F(x), which is Ad∗ equivariant.

If a Hamiltonian system XH is invariant under a Lie group action, that is,H(ϕg(x)) =
H(x), then we obtain a reduced Hamiltonian system on a reduced phase space (reduced
Poisson manifold). We recall the following Marsden-Weinstein reduction theorem [23].

Theorem 3.5 (Reduction Theorem). For a Hamiltonian action of a Lie group G on a Poisson
manifold (P, {·, ·}), there is an equivariant momentum map J : P → g∗ and for every regular
μ ∈ g∗ the reduced phase space Pμ ≡ J−1(μ)/Gμ carries an induced Poisson structure {·, ·}μ (Gμ

being the isotropy group). Any G-invariant Hamiltonian H on P defines a Hamiltonian Hμ on the
reduced phase space Pμ, and the integral curves of the vector field XH project onto integral curves of
the induced vector field X̂Hμ on the reduced space Pμ.

Example 3.6 (Rigid Body). The rigid body discussed above can be viewed as an example
of this reduction theorem. If P = T ∗G and G is acting on T ∗G by the cotangent lift of the
left translation lg : G → G, lg(h) = gh, then the momentum map J : T ∗G → g∗ is given
by J(αg) = T ∗eRg(αg) and the reduced phase space (T ∗G)μ = J−1(μ)/Gμ is isomorphic to
the coadjoint orbit Oμ through μ ∈ g∗. Each coadjoint orbit Oμ carries a natural symplectic
structure ωμ, and in this case, the reduced Lie-Poisson bracket {·, ·}μ on the coadjoint orbit
Oμ is induced by the symplectic form ωμ on Oμ as in (3.9). Furthermore T ∗G/G � g∗ and the
induced Poisson bracket {·, ·}μ on Oμ are identical with the Lie-Poisson bracket restricted to
the coadjoint orbit Oμ ⊂ g∗. For the rigid body we apply this construction to G = SO(3).

See [1, 8, 10, 17, 19–31].

4. Applications

We now discuss some infinite-dimensional examples of reduced Hamiltonian systems.
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4.1. Maxwell’s Equations

Maxwell’s equations of electromagnetism are a reduced Hamiltonian system with the Lie
group G = (C∞(M),+) discussed in Section 2.3.3 as symmetry group.

Let E, B be the electric and magnetic fields on R
3, then Maxwell’s equations for a

charge density ρ are

Ė = curlB, Ḃ = − curlE, (4.1)

divB = 0, divE = ρ. (4.2)

Let A be the magnetic potential such that B = − curl A. As configuration space we take V =
Vec(R3), vector fields (potentials) on R

3, so A ∈ V , and as phase space we have P = T ∗V �
V × V ∗ � (A,E), with the standard L2 pairing 〈A,E〉 = ∫ A(x)E(x)dx, and canonical Poisson
bracket given by (3.6), which becomes

{F,H}(A,E) =
∫(

δF

δA

δH

δE
− δH
δA

δF

δE

)
dx. (4.3)

As Hamiltonian we take the total electromagnetic energy

H(A,E) =
1
2

∫(
|curlA|2 + |E|2

)
dx. (4.4)

Then Hamilton’s equations in the canonical variables A and E are Ȧ = δH/δE =
E ⇒ Ḃ = − curlE and Ė = −δH/δA = −curl curlA = curlB. So the first two equations of
Maxwell’s equations (4.1) are Hamilton’s equations; we get the third one automatically from
the potential divB = −div curlA = 0 and we obtain the 4th equation divE = ρ through
the following symmetry (gauge invariance). The Lie group G = (C∞(R3),+) acts on V by
ϕ ·A = A+∇ϕ, ϕ ∈ G, A ∈ V. The lifted action to V ×V ∗ becomes ϕ · (A,E) = (A+∇ϕ, E), and
has the momentum map J : V × V ∗ → g∗ � {charge densities}:

J(A,E) = divE. (4.5)

With g = C∞(R3) and g∗ = Den(R3), we identify elements of g∗ with charge densities. The
Hamiltonian H is G invariant; that is, H(ϕ · (A,E)) = H(A + ∇ϕ, E) = H(A,E). Then the
reduced phase space for ρ ∈ g∗ is (V × V ∗)ρ = J−1(ρ)/G = {(E, B) | divE = ρ,divB = 0} and
the reduced Hamiltonian is

Hρ(E, B) =
1
2

∫(
|E|2 + |B|2

)
dx. (4.6)

The reduced Poisson bracket becomes for any functions F,H on (V × V ∗)ρ

{F,H}ρ(E, B) =
∫(

δF

δE
· curl δH

δB
− δH
δE
· curl δF

δB

)
dx, (4.7)
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and a straightforward computation shows that

Ḟ = {F,Hρ}ρ ⇐⇒
⎧
⎨

⎩

Ė = curlB, Ḃ = − curlE,
divB = 0, divE = ρ.

(4.8)

So Maxwell’s equations (4.1), (4.2) are an infinite-dimensional Hamiltonian system on this
reduced phase space with respect to the reduced Poisson bracket.

4.2. Fluid Dynamics

Euler’s equations for an incompressible fluid

∂u

∂t
+ u · ∇u = −∇p, divu = 0 (4.9)

are equivalent to the equations of geodesics on Diff∞μ (M). See the study by Marsden et al. in
[15] for details.

4.3. Plasma Physics

The Maxwell-Vlasov’s equations are a reduced Hamiltonian system on a more complicated
reduced space. See the study by Marsden et al. in [32] for details.

Maxwell-Vlasov’s equations for a plasma density f(x, v, t) generating the electric and
magnetic fields E and B are the following set of equations:

∂f

∂t
+ v · ∂f

∂x
+ (E + v × B)∂f

∂v
= 0,

∂B

∂t
= − curlE,

∂E

∂t
= curlB − Jf, Jf = current density,

divE = ρf , ρf = charge density,

divB = 0.

(4.10)

This coupled nonlinear system of evolution equations is an infinite-dimensional Hamiltonian
system of the form Ḟ = {F,H}ρf on the reduced phase space

MV =
(
T ∗Diff∞ω

(
R

6
)
× T ∗V

)
/C∞

(
R

6
)

(4.11)



Advances in Mathematical Physics 15

(V being the same space as in the example of Maxwell’s equations) with respect to the
following reduced Poisson bracket, which is induced via gauge symmetry from the canonical
Poisson bracket on T ∗Diff∞ω (R

6) × T ∗V :

{F,G}ρf
(
f, E, B

)
=
∫
f

{
δF

δf
,
δG

δf

}
dx dv

+
∫(

δF

δE
· curl δG

δB
− δG
δE
· curl δF

δB

)
dx dv

+
∫(

δF

δE
· ∂f
∂v

δG

δf
− δG
δE
· ∂f
∂v

δF

δf

)
dx dv

+
∫
fB ·

(
∂

∂v

δF

δf
× ∂

∂v

δG

δf

)
dx dv,

(4.12)

and with Hamiltonian

H
(
f, E, B

)
=

1
2

∫
v2f(x, v, t)dv +

1
2

∫(
|E|2 + |B|2

)
dx. (4.13)

More complicated plasma models are formulated as Hamiltonian systems. For
example, for the two-fluid model the phase space is a coadjoint orbit of the semidirect
product (�) of the group G = Diff∞(R6) � (C∞(R6) × C∞(R6)). For the MHD model,
G = Diff∞(R6) � (C∞(R6) ×Ω2(R3)).

4.4. The KdV Equation and Fourier Integral Operators

There are many known examples of PDEs which are infinite-dimensional Hamiltonian
systems, such as the Benjamin-Ono, Boussinesq, Harry Dym, KdV, KP equations, and others.
In many cases the Poisson structures and Hamiltonians are given ad hoc on a formal level.
We illustrate this with the KdV equation, where at least one of the three known Hamiltonian
structures is well understood [33].

The Korteweg-deVries (KdV) equation

ut + 6uux + uxxx = 0 (4.14)

is an infinite-dimensional Hamiltonian system with the Lie group of invertible Fourier
integral operators as symmetry group. Gardner found that with the bracket

{F,G} =
∫2π

0

δF

δu

∂

∂x

δG

δu
dx (4.15)

and Hamiltonian

H(u) =
∫2π

0

(
u3 +

1
2
u3x

)
dx (4.16)
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u satisfies the KdV equation (4.14) if and only if

u̇ = {u,H}. (4.17)

The question is where this Poisson bracket (4.15) and Hamiltonian (4.16) come from?
We showed [33–35] that this bracket is the Lie-Poisson bracket on a coadjoint orbit of Lie
group G = FIO of invertible Fourier integral operators on the circle S1. We briefly summarize
the following.

A Fourier integral operators on a compact manifoldM is an operator

A : C∞(M) −→ C∞(M) (4.18)

locally given by

A(u)(x) = (2π)−n
∫∫

eiϕ(x,y,ξ)a(x, ξ)u
(
y
)
dy dξ, (4.19)

where ϕ(x, y, ξ) is a phase function with certain properties and the symbol a(x, ξ) belongs
to a certain symbol class. A pseudodifferential operator is a special kind of Fourier integral
operators, locally of the form

P(u)(x) = (2π)−n
∫ ∫

ei(x−y)·ξp(x, ξ)u
(
y
)
dy dξ. (4.20)

Denote by FIO and ΨDO the groups under composition (operator product) of invertible
Fourier integral operators and invertible pseudodifferential operators onM, respectively. We
have the following results.

Both groups ΨDO and FIO are smooth infinite-dimensional ILH-Lie groups. The
smoothness properties of the group operations (operator multiplication and inversion) are
similar to the case of diffeomorphism groups (2.6), (2.7). The Lie algebras of both ILH-Lie
groups ΨDO and FIO are the Lie algebras of all pseudodifferential operators under the
commutator bracket. Moreover, FIO is a smooth infinite-dimensional principal fiber bundle
over the diffeomorphism group of canonical transformations Diff∞ω (T

∗M−{0})with structure
group (gauge group) ΨDO.

For the KdV equation we take the special case where M = S1. Then the Gardner
bracket (4.15) is the Lie-Poisson bracket on the coadjoint orbit of FIO through the Schrodinger
operator P ∈ ΨDO. Complete integrability of the KdV equation follows from the infinite
system of conserved integral in involution given by Hk = Trace(Pk); in particular the
Hamiltonian (4.16) equalsH = H2.

See the study by Adams et al. in [34, 35] for details.
See [10, 15, 31–40].

5. Gauge Theories, the Standard Model, and Gravity

Here we will encounter various infinite-dimensional Lie groups and algebras such as diffeo-
morphism groups, loop groups, groups of gauge transformations, and their cohomologies.
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5.1. Gauge Theories: Yang-Mills, QED, and QCD

Consider a principal G-bundle π : P → M, withM being a compact, orientable Riemannian
manifold (e.g., M = S4, T4) and G a compact non-Abelian gauge group with Lie algebra g.
LetA be the infinite-dimensional affine space of connection 1-forms on P . So eachA ∈ A is a
g-valued, equivariant 1-form on P (also called vector potential) and defines the covariant
derivative of any field ϕ by DAϕ = dϕ + (1/2)[A,ϕ]. The curvature 2-form FA (or field
strength) is a g-valued 2-form and is defined as FA = DAA = dA + (1/2)[A,A]. They are
locally given byA = Aμdx

μ and F = (1/2)Fμνdxμ ∧ dxν, where Fμν = ∂μAν − ∂νAμ + [Aμ,Aν].
In pure Yang-Mills theory the action functional is given by

S(A) =
1
2
‖FA‖2 = 1

2

∫

M

Tr
(
FμνF

μν), (5.1)

and the Yang-Mills equations become globally

d ∗ FA = 0. (5.2)

With added fermionic field ψ interaction, the action becomes

S
(
A,ψ

)
=

1
2
‖FA‖2 +

〈
�∂Aψ, ψ

〉
, (5.3)

where ψ is a section of the spin bundle Spin±(M) and, �∂A : Spin±(M) → Spin∓(M) is the
induced Dirac operator.

5.1.1. Gauge Invariance

In gauge theories the symmetry group is the group of gauge transformations. The
diffeomorphism subgroups that arise in gauge theories as gauge groups behave nicely
because they are isomorphic to subgroups of loop groups, as discussed in Section 2.4.4.

The group G of gauge transformations of the principal G-bundle π : P → M is given
by

G =
{
φ ∈ Diff∞(P); φ

(
p · g) = φ(p) · g, πφ(p) = π(p)}

∼= {τ ∈ C∞(P,G); τ(p · g) = g−1τ(p)g} = Gau(P)
(5.4)

which is a smooth Hilbert-Lie group with smooth group operations [6].
We only sketch here what role this infinite-dimensional gauge group G plays in these

quantum field theories. A good reference for this topic is the study by Deligne et al. in [41, 42].
The gauge group G acts on A via pullback φ ∈ G, A ∈ A, φ · A = (φ−1)∗A ∈ A, or

under the isomorphism (see Section 2.4.4) G ∼= Gau(P), φ ⇔ τ we have Gau(P) acting on A
by τ · A = τAτ−1 + τdτ−1. Hence the covariant derivative transforms as Dτ ·A = τDAτ

−1, and
the action on the field is τ · FA := Fτ ·A = τFAτ−1.

The action functional (the Yang-Mills functional) is S(A) = ‖FA‖2, locally given by
‖FA‖2 = (1/2)

∫
M Tr(FμνFμν). This action is gauge invariant S(φ · A) = S(A), φ ∈ G, so the
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Yang-Mills functional is defined on the orbit spaceM = A/G. The spaceM is in general not
a manifold since the action of G on A is not free. If we restrict to irreducible connections,
then M is a smooth infinite-dimensional manifold and A → M is an infinite-dimensional
principal fiber bundle with structure group G.

For self-dual connections FA = ∗FA (instantons) on a compact 4-manifold, the moduli
space M = {A ∈ A;A self-dual}/G is a smooth finite-dimensional manifold. Self-dual
connections absolutely minimize the Yang-Mills action integral

YM(A) =
∫

Ω
‖FA‖2, Ω ⊂M compact. (5.5)

The Feynman path integral quantizes the action and we get the probability amplitude

W
(
f
)
=
∫

A/G
e−S(A)f(A)D(A) (5.6)

for any gauge-invariant functional f(A).
Let G be the group of gauge transformations. So φ ∈ G ⇔ φ : P → P is a

diffeomorphism over idM; that is, φ(p · g) = φ(p) · g, p ∈ P , g ∈ G. Then G acts on A
and Spin±(M) by φ · A = (φ−1)∗A and φ · ψ = (φ−1)∗ψ. The action functionals S are gauge
invariant:

Yang-Mills: S
(
φ ·A) = S(A), A ∈ A, φ ∈ G, (5.7)

QED: S
(
φ ·A,φ · ψ) = S(A,ψ), A ∈ A, ψ ∈ Spin±(M), φ ∈ G. (5.8)

5.1.2. Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD)

In classical field theory, one considers a Lagrangian L(φi, ∂μφi) of the fields ϕi : R
n → R,

i = 1, . . . , k, and ∂μ = ∂/∂xμ and the corresponding action functional S =
∫ L(φi, ∂μφi)dnx.

The variational principle δS = 0 then leads to the Euler-Lagrange equations of motion

∂L
∂φi
− ∂μ ∂L

∂
(
∂μφi

) = 0. (5.9)

In QED and QCD the Lagrangian is more complicated of the form

L(A,ψ, ϕ) = − 1
4g2

TrFμνFμν − iψ
[
γμ
(
∂μ + ieAμ

)
+m
]
ψ +
(
D
μ

Aϕ
)†(

D
μ

Aϕ
)
−m2ϕ†ϕ, (5.10)

where Aμ(x) is a potential 1-form (boson), and the field strength F is given by Fμν = ∂μAν −
∂νAμ + [Aμ,Aν]. In QED the gauge group of the principal bundle is G = U(1), and in QCD

we have G = SU(2). The Dirac γ-matrices are γi =
(

0 −σi
σi 0

)
, where σi are the Pauli matrices

(canonical basis of su(2)) and ψ = ψ†γo is the Pauli adjoint with γo =
(
0 1
1 0

)
, m is the electron

mass, e is the electron charge, and g is a coupling constant.
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5.1.3. The Equations of Motion

The variational principle of the Lagrangian (5.10) with respect to the fields A,ψ, and ϕ
gives the corresponding Euler-Lagrange equations of motion. They describe, for instance,
the motion of an electron ψ(x) (fermion, spinor) in an electromagnetic field F, interacting
with a bosonic field ϕ. We get, from the variational principle, δS/δAμ = 0 ⇒ ∂μF

μν = eψγνψ,
which are Maxwell’s equations for G = U(1).

In the free case, that is, when ψ = 0, we get ∂μFμν = 0, the vacuumMaxwell equations.
For G = SU(2) these equations become DμFμν = 0, the Yang-Mills equations.

Moreover, δS/δψ = 0 ⇒ i(�∂A − m)ψ = 0, which are Dirac’s equations, where �∂A =
γμ(∂μ + ieAμ) = γμD

μ

A. In the free case, that is, when A = 0, we get i(�∂A − m)ψ = 0, the
classical Dirac equation.

5.1.4. Chiral Symmetry

The chiral symmetry is the symmetry that leads to anomalies and the BRST invariance. In
QCD the chiral symmetry of the Fermi field ψ is given by ψ 	→ eiβγ5ψ, where β is a constant
and γ5 = iγoγ1γ2γ3. The classical Noether current of this symmetry is given by Jμ = ψγμγ5ψ
which is conserved; that is, ∂μJμ = 0.

This conservation law breaks down after quantization; one gets

∂μJμ = 2imψγ5ψ −
g2

8π2
TrFμνFμν ≡ ω/= 0. (5.11)

This value ω is called the chiral anomaly.

5.2. Quantization

The quantization is given by the Feynman path integral:

∫

A/G

∫

×Spin

eiS(A,ψ)F(A,ψ)DADψ =
〈F(A,ψ)〉 (5.12)

which computes the expectation value 〈F(A,ψ)〉 of the function F(A,ψ). This is an integral
over two infinite-dimensional spaces: the gauge orbit space A/G and the fermionic Berezin
integral over the spin space Spin±(M). These integrals are mathematically not defined but
physicists compute them by gauge fixing; that is, fixing a section σ : A/G → A, (e.g., σ(A) =
∂μA

μ = 0, the Lorentz gauge) and then integrating over the section σ. Such a section does not
exist globally, but only locally (Gribov ambiguity!). The effect of such a gauge fixing is that
one gets extra terms in the Lagrangian (gauge-fixing terms) and one has to introduce new
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fields, so-called ghost fields η via the Faddeev-Popov procedure. The such obtained effective
Lagrangian is no longer gauge invariant. This effective Lagrangian has the form in QCD:

Leff
(
A,ψ, η

)
=

1
2
Tr
(
FμνF

μν) kinetic energy

+
1
2α

Tr (∂μAμ)2 gauge-fixing term

− g∂μηDμ

Aη ghost term

+ · · · interaction terms.

(5.13)

We can write this globally as

Leff =
1
2
‖FA‖2 + 1

2
‖σ(A)‖2 + ηMη + · · · , (5.14)

where M = (δ/δφ)(σ(φ · A)) is the Faddeev-Popov determinant, acting like the Jacobian
of the global gauge variation δ/δφ over the section σ. Writing this term in the exponent of
the action functional like a “fermionic Gaussian integral” leads to the Faddeev-Popov ghost
fields η, η in the form detM =

∫
e−ηMηdη dη.

The effective Lagrangian Leff is NOT gauge invariant but has a new symmetry, called
BRST symmetry.

5.3. BRST Symmetry

Named after Becchi et al. [43] and Tyutin who discovered this invariance in 1975-76, the BRST
operator s is given as follows:

sA = dη +
[
A, η
]

sη = −1
2
[
η, η
] Leff is BRST invariant. (5.15)

Note that the BRST operator s mixes bosons (A) and fermions (η). This is an example of
supersymmetry which we will discuss in Section 6. Also, the BRST operator s is nilpotent;
that is, s2 = 0. The question arises whether this operator s is the coboundary operator of
some kind of cohomology. The affirmative answer is given by the following theorem (Schmid
[6, 44]).

Theorem 5.1. Let Cq,p(lieG,Ωloc) be the Chevalley-Eilenberg complex of the Lie algebra lieG of
infinitesimal gauge transformations, with respect to the induced adjoint representation on local forms
Ωloc, with boundary operator

δloc : Cq,p(lieG,Ωloc) −→ Cq+1,p(lieG,Ωloc), δ2loc = 0. (5.16)
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Then with s := (−1)p+1/(q + 1)δloc, one has s2 = 0 and the following.

(1) For q = 0, p = 1, A ∈ A ⊂ C0,1, then sA = dη + [A, η].

(2) For q = 1, p = 0, η ∈ C1,0, then sη = −(1/2)[η, η], the Maurer-Cartan form.

(3) The chiral anomaly ω (given by (5.11)) is represented as cohomology class of this complex
[ω] ∈ H1,0

BRST(lieG,Ωloc).

5.3.1. The Chevalley-Eilenberg Cohomology

We are now going to explain the previous theorem, in particular the general definition of the
Chevalley-Eilenberg [45] complex and the corresponding cohomology.

Let G be a Lie group with Lie algebra g and let σ be a representation of g on the
vector space W . Denote by Cq(g,W) the space of W-valued q-cochains on g and define the
coboundary operator δ : Cq(g,W) → Cq+1(g,W) by

δΦ
(
ξo, . . . , ξq

)
=

q∑

i=0

(−1)iσ(ξi)Φ
(
ξo, . . . , ξ̂i, . . . , ξq

)

+
∑

i<j

(−1)i+jΦ
(
σ(ξi)ξj , . . . , ξ̂i, . . . , ξ̂j , . . . , ξq

)
.

(5.17)

We have δ2 = 0, and define the Lie algebra cohomology of g with respect to (σ,W) as
H∗(g,W) = ker δ/im δ. This is called the Chevalley-Eilenberg cohomology [45] of the Lie
algebra g with respect to the representation σ.

5.3.2. Anomalies

The Noether current induced by the chiral symmetry (after quantization) for the free case
(ψ = 0), that is, for pure Yang-Mills becomes

∂μJμ = − g2

8π2
εμνρτ TrFμνFρτ

= −1
4
π2εμνρτ Tr ∂μ

(
Aν∂ρAτ +

2
3
AμAρAτ

)

= ω/= 0 anomaly.

(5.18)

See (5.11).
Note the similarity with the Chern-Simon Lagrangian

L(A) =
∫

M

Tr
(
AdA +

2
3
A3
)
. (5.19)

We are going to derive a representation of the chiral anomaly ω in the BRST
cohomology that is [ω] ∈ H1,0

BRST(lieG,Ωloc).
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The question is “if sω = 0, does there exist a local functional F(A), such that ω =
s(F(A))? That is, is ω BRST s-exact? The answer in general is NO; that is, ω represents a
nontrivial cohomology class. This class is given by the Chern-Weil homotopy.

Let Ã = A + η ∈ C0,1 × C1,0 and F̃ ≡ sÃ + Ã2 = FÃ. For t ∈ [0, 1], let F̃t = tF̃ + (t2 − t)Ã2

and define the Chern-Simons form

ω2q−1 ≡ q
∫1

0
Tr
(
ÃF̃

q−1
t

)
dt, (5.20)

we get

sω2q−1 = Tr F̃q. (5.21)

We write ω2q−1 as sum of homogeneous terms in ghost number (upper index) and degree
(lower index) ω2q−1 = ω0

2q−1 +ω
1
2q−2 +ω

2
2q−3 + · · · +ω

2q−1
0 . Let ω(X,A) =

∫
Mω1

2q−2(X).

Theorem 5.2 (see Schmid [46]). The form ω(X,A) =
∫
M

∫1
0 ÃF̃

q−1
t (X)dt satisfies the Wess-

Zumino consistency condition (sω)(X0, X1, A) = 0 and represents the chiral anomaly [ω] ∈
H1,0

BRST(lieG,Ωloc).

We have an explicit form of the anomaly in (2q − 2) dimensions:

ω1
2q−2 = q

(
q − 1)

∫1

0
(1 − t)Tr

(
ηδloc

(
ÃF̃

q−2
t

))
dt. (5.22)

So for q = 2 the non-Abelian anomaly in 2 dimensions becomesω1
2 = Tr(ηδlocÃ), and for q = 3

the non-Abelian anomaly in 4 dimensions becomes

ω1
4 = Tr

(
ηδloc

(
ÃδlocÃ +

1
2
Ã3
))

. (5.23)

5.4. The Standard Model

The standard model is a Yang-Mills gauge theory. Recall that the free Yang-Mills equations
are D∗AF = 0, where A is a connection 1-form (vector potential), and F is the associated
curvature 2-form (field) on the principal bundle P . The connection A defines the covariant
derivative DA and the curvature F given by F = DAA = dA + (1/2)[A,A], or locally Fμν =
∂μAν − ∂νAμ + [Aμ,Aν], and DμFμν = 0. Again the connection A is the fundamental object.

For different choices of the gauge Lie group G, we obtain the 3 theories that make
up the standard model. For G = U(1) on a trivial bundle (i.e., global symmetry, which
gives charge conservation) the curvature 2-form F is simply the electromagnetic field, and
the Yang-Mills equations D∗AF = 0 are Maxwell’s equations dF = 0, locally ∂μF

μν = 0. For
G = U(1) as local gauge group we get the quantum mechanical symmetry and the equations
of motion are Dirac’s equations. Combing the two, we get QED as a U(1) gauge theory. For
G = SU(N)we get the full non-Abelian Yang-Mills equationsD∗AF = 0. For weak interactions
withG = SU(2) and combining the two (spontaneous symmetry breaking, Higgs), we get the
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Glashow-Weinberg-Salammodel as SU(2)×U(1) Yang-Mills theory of electroweak interactions.
For G = SU(3) we obtain the Yang-Mills equations D∗AF = 0 for strong interactions and the
equations of motion for QCD. Finally that standard model is a SU(3) × SU(2) ×U(1) gauge
theory governed by the corresponding Yang-Mills equations D∗AF = 0. Recall that F is the
curvature in the corresponding principal bundle determined by the connection A.

For interactions, all the relevant fields involved can be considered as sections of
corresponding associated vector bundles induced by representations of the gauge groups,
for example, the Dirac operator on the associated spin bundle (induced by the spin
representation of SU(2)) acting on spinors (sections of this bundle). The vector potentials
are the corresponding connection 1-forms and the Yang-Mills fields are the corresponding
curvature 2-forms on these bundles over spacetime.

Again we do not need the metric and the curvature is determined by the potential, so
the potential is the fundamental object.

5.5. Gravity

5.5.1. Stop Looking for Gravitons

Stop looking for the graviton, not because it had been found but because it does not exist.
The graviton is supposed to be the particle that communicates the gravitational force. But the
gravitational force is not a fundamental force. Gravity is geometry. One might as well search
for the Corioliston for the coriolis force or the Centrifugiton for the centrifugal force.

Since Einstein in the 1920s, physicists have tried to unify what are considered the
four fundamental forces, namely, electromagnetism, weak and strong nuclear forces, and the
gravitational force. In the 1970s, the three nongravitational forces were unified in the standard
model. At high enough energy (about 1015 GeV) they become the same force.

Since then, with all the string theory, SUSY, branes, and extra dimensions, the
gravitational force could not be incorporated into GUT that includes all 4 forces and no
graviton has been found experimentally. The reason is simple: not many people, including
Einstein himself, take/took the general theory of relativity seriously enough, according to
which we know that the gravitational force does not exist as fundamental force but as
geometry! We do not feel it. What we feel is the resistance of the solid ground on which
we stand. In general relativity, free-falling objects follow geodesics of spacetime, and what
we perceive as the force of gravity is instead a result of our being unable to follow those
geodesics because of the mechanical resistance of matter. Newton’s apple falls downward
because the spacetime in which we exist is curved. The “gravitational force” is not a force but
it is the geometry of spacetime as Einstein observed in [47, page 137]:

“Die Koeffizienten (gμν) dieser Mertik beschreiben in Bezug auf das gewählte Koordi-
natensystem zugleich das Gravitationsfeld.”

(“The coefficients (gμν) of this metric with respect to the chosen coordinate system describe
at the same time the gravitational field”) [47, page 146]:

“Aus pysikalischen Gründen bestand die Überzeugung, dass das metrische Feld zugleich
das Gravitationsfeld sei.”

(“For physical reasons there was the conviction that the metric field was at the same time the
gravitational field”).
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Therefore GUT, the grand unified theory had been completed since the 1970s with the
standard model. Since the gravitational force does not exist as a fundamental force, there is
nothing more to unify as forces. If we want to unify all four theories, then it has to be done
in a geometric way. The equations governing gravity as well as the standard model are all
curvature equations, Einstein’s equation, and the Yang-Mills equations.

5.5.2. Einstein’s Vacuum Field Equations

Let (M,g) be spacetime with Lorentzian metric g. Then Einstein’s vacuum field equations are

Ric = 0, (5.24)

where Ric is the Ricci curvature of the Lorentz metric g. These are the Euler-Lagrange
equations for the Lagrangian L(g) =

∫
R(g)μ(g), where μ(g) =

√−det gd4x and R(g) is
the scalar curvature of g.

Or in general, locally, in terms of the stress-energy tensor Tμν, Einstein’s equations are
Gμν = κTμν with the Einstein tensor Gμν = Rμν − (1/2)gμνR. The stress-energy tensor Tμν is the
conserved Noether current corresponding to spacetime translation invariance.

The Levi-Civita connection Γ of the Riemannian metric g is given by

Γλμν =
1
2
gλσ
(
∂gσμ

∂xν
+
∂gσν
∂xμ

− ∂gμν
∂xσ

)

. (5.25)

The curvature tensor R and the Ricci curvature Ric in Einstein’s field equations are
completely determined by the connection Γ.

First the curvature tensor R is locally given by

Rλ
μνκ =

(
∂Γλμν
∂xκ

−
∂Γλμκ
∂xν

)

+
(
ΓημνΓλκη − ΓημκΓλνη

)
. (5.26)

Taking its trace, we get the Rici tensor Ric as (Ric)μν = Rλ
μλν

.
So we can express Einstein’s equations completely in terms of the connection

(potential) Γ; we do not need the metric g; also the curvature R is determined by the potential
Γ. So the potential Γ is the fundamental object.

The free motion in spacetime is along geodesic curves γ(t) which again are expressed
in terms of the connection by

γ̈ α + Γαβνγ̇
βγ̇ν = 0. (5.27)

5.5.3. Symmetry

In general relativity the diffeomorphism group plays the role of a symmetry group of
coordinate transformations. Then the vacuum Einstein’s field equations Ric(g) = 0 are
invariant under coordinate transformations, that is, under the action of Diff∞(M). Denote
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by M the space of all metrics g on M. Then, Einstein’s field equations Ric(g) = 0 are a
Hamiltonian system on the reduced space P =M/Diff∞(M); see the study by Marsden et al.
in [15] for details.

5.6. Conclusions

The relation between the connection Γ occurring in Einstein’s equations and the connection
A in Yang-Mills equations is as follows. A is a Lie algebra-valued 1-form on a principal
G-bundle (P, π,M) over spacetime (M,g) (or any associated vector bundle given by
representations of G). The Levi-Civita connection Γ is a connection 1-form in this sense on
the tangent bundle TM (frame bundle) with G = GL(n). So in this sense general relativity
and the standard model are Yang-Mills gauge theories.

Therefore all four theories, electromagnetism, weak interaction, strong interaction,
and gravity, are unified as curvature equations in vector bundles over spacetime. Different
interactions require different bundles.

There is no hierarchy problem because there is no fundamental gravitational force.
The question why gravitational interaction is so much weaker than electroweak and strong
interactions is meaningless, comparing apples with oranges. Why are so many physicists still
talking about gravitational force? It is like as if we are still talking about “sun rise” and “sun
set”, 500 years after Copernicus! only worse; these are serious scientists trying to unify all
four “forces” to a TOE.

I am not saying that there are no open problems in physics. Of course there is still
the problem of unifying quantum mechanics and general relativity on a geometric level
(not as forces). The question is “how does spacetime look at the Planck scale? Do we
have to modify spacetime to incorporate quantum mechanics or quantum mechanics to
accommodate spacetime, or both? We need a theory of quantum gravity. There are several
theories in the developing stage that promise to accomplish this.

(i) Superstring theory by E. Witten et al.

(ii) Discrete spacetime at Planck length by R. Loll in ”Causal dynamical triangulation”
and by J. Ambjorn, J. Jurkiewicz, and R. Loll in ”The Universe from Scratch” [arXiv:
hep-th/0509010].

(iii) Spacetime quantization: loop quantum gravity by L. Smolin in “Three Roads to
Quantum Gravity” (London: Weidenfeld and Nicholson, 2000) and by S. O. Bilson-
Thompson, F. Markopoulou, and L. Smolin in “Quantum Gravity and the Standard
Model”, preprint 2006.

(iv) Geometric formulation of quantum mechanics by A. Ashtekar and T. A. Schilling
[arXiv: gr-qc/9706069].

(v) Deterministic quantum mechanics at Planck scale by G. t’Hooft in “Quantum
Gravity as a Dissipative Deterministic System.”

(vi) Branes and new dimensions: parallel universes by L. Randell et al., D. Deutsch, PS.
In the brane world, gravity is again singled out as the only force not confined to one
brane.

(vii) Noncommutative Geometry. A. Connes describes the standard model form general
relativity.
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(viii) The most recent new development is by Verlinde [48]. He agrees that gravity is not
a fundamental force, but explains it as an emergent force (entropic force) caused by
a change in the amount of information (entropy) associated with the positions of
bodies of matter.

See [6, 11, 27, 36, 41–59].

6. SUSY (Supersymmetry)

Supersymmetry (SUSY) is an important idea in quantum filed theory and string theories.
The BRST symmetry we described in Section 5.3 is an example of SUSY. Now we give a
summary of a mathematical description of super Hamiltonian systems on supersymplectic
supermanifolds, state a generalization of the Marsden-Weinstein reduction theorem in
this context, and illustrate the method with examples. This is a very technical topic, so
we only give a brief sketch; for details see the studies Glimm in [60] and Tuynman in
[61].

The classical Marsden-Weinstein reduction theorem is a geometrical result stating that
if a Lie group G acts on a symplectic manifold P by symplectomorphisms and admits an
equivariant momentum map J : P → g∗, then, for any regular value μ ∈ g of J , the quotient
Pμ = J−1(μ)/Gμ of the preimage J−1(μ) by the isotropy groupGμ of μ has a natural symplectic
structure. A dynamical interpretation of the Marsden-Weinstein reduction theorem gives the
following. If a given Hamiltonian H ∈ C∞(P) is invariant under the action of the group G,
then it projects to a reduced Hamiltonian Hμ on the reduced space Pμ. The integral curves
of the Hamiltonian vector field XH project to the integral curves of XHμ . In this sense, one
has reduced the system by symmetries. This reduction procedure unifies many methods and
results concerning the use of symmetries in classical mechanics, some dating back to the time
of Euler and Lagrange.

In [60], Glimm generalizes this result to the setting of supermanifolds, using the
analytic construction of supercalculus and supergeometry due to DeWitt [62] and Tuynman
[61]. The general idea of supermanifolds and superanalysis is to do geometry and analysis
over a graded algebra of even supernumbers rather than R. In “supermathematics,” we
have even and odd variables. Two variables a, b are called even, or commuting, or bosonic
if a · b = b · a, whereas ξ, χ are called odd, or anticommuting, or fermionic if ξ · χ = −χ · ξ. The
problem is doing analysis with even and odd variables.

Many classes of differential equations have extensions that involve odd variables.
These are called superized versions, or supersymmetric extensions. An active area of research is
in particular the construction of supersymmetric integrable systems.

As an example, consider the Korteweg-de Vries equation ut = −uxxx +6uux. A possible
supersymmetric extension is the following system of an even variable u(t, x) and an odd
variable ξ(t, x):

ut = −uxxx + 6uux − 3ξξxx,
ξt = −ξxxx + 3uξx + 3ξux.

(6.1)

There is a different way of writing system (6.1). For this, one considers the so-called
2|1-dimensional superspace. This is a space with coordinates (x, t, ϑ), where x and t are even
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numbers as before and ϑ is an odd number. We can now gather the components u(x, t) and
ξ(x, t) into a superfield Φ(t, x, ϑ) defined on superspace via

Φ(t, x, ϑ) = ξ(t, x) + ϑ · u(t, x). (6.2)

The function Φ(t, x, ϑ) takes as values odd numbers; it is thus called an odd function. Note
how the right-hand side can be seen as a Taylor series in ϑ; indeed, all higher powers of ϑ are
zero because ϑ is anticommuting. One defines the odd differential operator D = ∂/∂ϑ + ϑ ·
(∂/∂x), acting on superfields. A computation yields that system (6.1) is equivalent to

Φt = −D6Φ + 3D2ΦDΦ. (6.3)

(Note that D2 = ∂x.) System (6.1) is called the component formulation; (6.3) is called the
superspace formulation. In our example at hand, a justification for calling the system an
“extension” of KdV would be that if one takes (6.3) and writes it in component form (6.1),
one recovers the “usual” KdV by setting ξ to zero. Also, it can be shown that (6.3) is invariant
under transformations Φ(t, x, ϑ) 	→ Φ(t, x − ηϑ, ϑ + η), where η is an odd parameter. The
infinitesimal version of this transformation is δΦ = η(∂ϑ − ϑ∂x)Φ. This transformation is
called a “supersymmetry” in the present context. In components, it reads

δu = ηξx, δξ = ηu. (6.4)

These equations illustrate a characterization of supersymmetries: supersymmetries (as
opposed to regular symmetries) “mix” even and odd variables.

One needs some concept of supermanifold even if one only works with the component
formulation. For example, one has implicitly in system (6.1) the space of all (u(t, x), ξ(t, x))
on which the equations are defined; this is some kind of superspace itself. Also, there is some
kind of supersubmanifold of those (u, ξ) which solve the equations.

In [60], Glimm proves a comprehensive result on supersymplectic reduction. He uses
an analytic-geometric approach to the theory of supermanifolds, and not the Kostant theory
of graded manifolds [49]. The Poisson bracket induced by odd supersymplectic forms is not
a super Lie bracket on the space of supersmooth functions. This stands of course in contrast
to both the usual ungraded case and the super case with even supersymplectic forms. While
this makes the algebraic approach conceptually more difficult, no such problems arise in the
analytic approach. Also, we do not require that the action be free and proper, but have the
weaker requirement that the quotient space only has a manifold structure.

There are different approaches to supermanifolds. TheAlgebraic approach (Kostant [49],
Berezin-Leı̆tes, late 1970s) takes “superfunctions” as fundamental object. A graded manifold is
a pair (M,A), where M is a conventional manifold and U 	→ A(U) is the following sheaf
overM:

A(U) � C∞(U) ⊗
∧

R
n, U ⊆M. (6.5)
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So a superfunction f ∈ A(U) can be written as

f = f∅ +
∑

i

f{i}ϑi +
∑

i<j

f{i,j}ϑiϑj + · · · . (6.6)

The Geometric approach (DeWitt [62]) takes points as fundamental objects. Let A be
the ring generated by L generators θ1, θ2, . . . , θL (Grassmann numbers) with relations θiθj =
−θjθi.

An element is written as

a = a∅︸ ︷︷ ︸
=Ba (“Body”)

+
∑

i

a{i}θi +
∑

i<j

a{i,j}θiθj + · · ·
︸ ︷︷ ︸

nilpotent part

(aω ∈ R),

a ∈ A0 ⇐⇒ a = a∅ +
∑

a{i,j}θiθj + terms with even # of θs,

a ∈ A1 ⇐⇒ a =
∑

a{i}θi +
∑

a{i,j,k}θiθjθk + terms with odd # of θs.

(6.7)

For calculus we “replace” reals R by Grassmann numbers A. A DeWitt supermanifold

is a topological spaceM which is locally superdiffeomorphic toAm|n def= (Am⊕n)0 = Am
0 ×An

1 .
The two approaches are equivalent. There is a one-to-one correspondence between

isomorphism classes of m|n-dimensional DeWitt supermanifolds whose body is a fixed
smooth m-dimensional manifold X and isomorphism classes of m|n-dimensional graded
manifolds over X.

The DeWitt topology ofAm|n is defined as follows.

U ⊆ Am|n is open if and only if B(U) is open in BAm⊕n = R
m, U = B−1(B(U)).

Smooth functions Am|n → A are defined as follows. Let U ⊆ Am|n be an open set. A
function f : U → A is called smooth if there is a collection of smooth real functions defined
on BU ⊆ R

m:

fi1...in : BU → R, for i1, . . . , in = 0, 1 (6.8)

such that

f(x1, . . . , xm, ξ1, . . . , ξn) =
1∑

i1,...,in=0

ξi11 . . . ξ
in
n · Zfi1...in(x1, . . . , xm), (6.9)

where Zg is defined as follows. If x ∈ Am|0 has the decomposition x = Bx + n, then

Zg(x) =
∞∑

k=1

1
k!
Dkg(Bx)[n, . . . ,n]. (6.10)

Note. Smooth functions map the body to the body!
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Superdifferential Geometry

Versions of the inverse function theorem and implicit function theorem are still valid.
Concepts of tangent space, vector fields, flows, and Lie groups can be developed as in the
ungraded case.

Lie Supergroups

A Lie supergroup is a supermanifold G that is a group and for which the group operations
of multiplication and inversion are smooth. If a Lie supergroup G acts freely and properly on
a supermanifold M, then the quotient M/G can be given the structure of a supermanifold
such that the projection π :M → M/G is a surjective submersion. The structure of T(M/G)
is given by the following.

Theorem 6.1. Let ϕ :M ×G → M be an action. Suppose thatM/G has a supermanifold structure
such that π : M → M/G is a surjective submersion; that is, Tπ(p) is onto for every p ∈ M. For
any p ∈M, one has

ker Tπ
(
p
)
=
{
XM

(
p
) | X ∈ g

}
(6.11)

and this is a proper subspace of TpM. In particular,

T[p](M/G) � TpM/
{
XM

(
p
) | X ∈ g

}
. (6.12)

Remark 6.2. There are examples where M/G does not have a supermanifold structure and
{XM(p) | X ∈ g} fails to be a free submodule.

Supersymplectic Structures

A supersymplectic supermanifold (M,ω) is a supermanifold M together with a closed (i.e.,
dω = 0) nondegenerate homogeneous left 2-form ω ∈ Ω2

L(M).

Examples 6.3. (1)A2m|n with coordinates (qi, pi, ξj),

ω =
∑

dqi ∧ dpi + 1
2

∑
dξj ∧ dξj (6.13)

defines an even supersymplectic form.
(2) OnAm|m with coordinates (xi, ξj),

ω =
∑

dxi ∧ dξi (6.14)

defines an odd supersymplectic form.

Let ω ∈ Ω2
L(M) be a 2-form on the supermanifold M and p ∈ M. Then ω(p) ∈

Alt2L(TpM) is nondegenerate if and only if the real 2-form Bω(Bp) = ω(Bp)|B(TBpM) ∈
Alt2(B(TBpM)) is nondegenerate.
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Hamiltonian Supermechanics

A smooth vector field X ∈ X(M) is called (globally) Hamiltonian if there is some function
H ∈ C∞(M,A) such that iXω = dH. For f, g ∈ C∞(M,A) define the Super-Poisson bracket
by

{
f, g
}
=
〈
Xf ,Xg | ω

〉 ∈ C∞(M,A). (6.15)

Fact. If ω is even, then C∞(M,A) is a Lie superalgebra with respect to {·, ·}. This is false if ω
is odd.

Momentum Maps

Let ϕ : M × G → M be an action of the Lie supergroup G on the supersymplectic manifold
(M,ω)which preservesω. Recall that, in the ungraded case, a momentummap is an R-linear
map Ĵ : g → C∞(M) such that XĴ(X) = XM.

Superversion. Ĵ ∈ C∞(g ×M,A) is a momentum map for the action of G on M if Ĵ is
leftlinear in the first argument and

〈
(0, v) | dĴ(X, x)

〉
= 〈v,XM(x) | ω(x)〉 (6.16)

for all x ∈ M, for all v ∈ TxM. Instead of Ĵ ∈ C∞(g ×M,A), one can consider J : M → g∗

defined through 〈X | J(x)〉 = Ĵ(X, x).

Theorem 6.4. LetH ∈ C∞(M,A) be a Hamiltonian with vector field XH such that [XH,XH] = 0.
IfH is G-invariant, then J is preserved by the flow φ of XH ; that is,

J ◦ φt,τ = J ∀(t, τ) ∈ A1|1 (where defined). (6.17)

Suppose that the momentummap isAd∗-equivariant. Let μ ∈ Bg∗
p(ω) be a regular value

of J. Let Gμ be the isotropy group of μ. Suppose that the quotient space Pμ = J−1(μ)/Gμ can
be given a supermanifold structure such that the projection πμ : J−1(μ) → Pμ is a surjective
submersion.

Superreduction Theorem

The supermanifold Pμ has a unique supersymplectic form ωμ ∈ Ω2
L(Pμ)with the property

π∗μωμ = ı∗μω, (6.18)

where πμ : J−1(μ) → Pμ is the projection and ıμ : J−1(μ) → M is the inclusion. The form ωμ

has the same parity as ω.
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Example 6.5 (The Bose-Fermi Oscillator). We consider the phase space P = A2|2 with
supersymplectic form ω = dp ∧ dq + (1/2)(dξ1 ∧ dξ1 + dξ2 ∧ δξ2). The Hamiltonian
H(q, p, ξ1, ξ2) = (1/2)(p2 + q2) − ξ1ξ2 defines the Hamiltonian vector field XH = p∂q − q∂p −
ξ2∂ξ1 + ξ1∂ξ2 .

The SUSY algebra of the Bose-Fermi oscillator is given as follows. The Lie supergroup
of invertible 2|2-supermatrices acts onA2|2 via

A2|2 ×GL(2|2 ) −→ A2|2, (q,G) 	−→ qSTG. (6.19)

The algebra of Bose-Fermi supersymmetry is the intersection of the Lie superalgebras
of the stabilizer of ω and the stabilizer ofH:

bf(2|2) = stab(H) ∩ stab(ω). (6.20)

The SUSY algebra of the Bose-Fermi oscillator bf(2|2) is generated by A1, A2, C1, C2,
where

Ai =

⎛

⎝
0 0 eTi γ

0

0 0 −eTi
ei −γ0ei 0

⎞

⎠ for i = 1, 2,

C1 =
1
2

(−γ0 0
0 γ0

)
, C2 =

1
2

(
γ0 0
0 γ0

)
, γ0 =

(
0 −1
1 0

)
.

(6.21)

Momentum Map and Quotient

The action of BF(2|2) onA2|2 admits a momentum map

Ĵ : bf(2|2) ×A2|2 −→ A, (X,q) 	−→ 1
2
qSTXΩq. (6.22)

In components, we write X =
∑

i=1,2 aiAi + ciCi. Then

Ĵ
(
X, q, p, ξ

)
= (c2 − c1)14

(
p2 + q2

)
− (c2 + c1)14ξ

Tγ0ξ − aT
(
pI2 − qγ0

)
ξ, (6.23)

where a = (a1, a2)
T .

Now let μ ∈ B(bf(2|2)∗0) � R
2. The isotropy group of μ is the whole group BF(2|2). The

action of BF(2|2) on J−1(μ) is transitive; that is, the quotient space J−1(μ)/BF(2|2) is a single
point.
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Example 6.6 (Wess-ZuminoModel in 2+1-Dimensional Spacetime). LetS(A) be the Schwartz
space of functions R

2 → A. Consider the phase space S(A)2|2 = [S(A)0] × [S(A)0] ×
[S(A)1]

2 � (φ, π, ψ)with supersymplectic formω = dπ∧dφ+(1/2)dψ∧dψ and Hamiltonian

H(φ, π, ψ) = 1
2

∫

R2

(∥
∥∇φ∥∥2 + π2 + ψgidiψ

)
d2x, (6.24)

where g1 =
(
0 1
1 0

)
, g2 =

(
1 0
0 −1
)
, and ψ = ψTγ0.

Then Hamilton’s equations are the following:

φ̇ =
δH
δπ

= π, π̇ = −δH
δφ

= Δφ, ψ̇ =
δH
δψ

= g0gi∂iψ. (6.25)

This is equivalent to (∂20 − ∂21 − ∂22)φ = 0, gμ∂μψ = 0 which are the massless Klein-Gordon and
Dirac equations in 2 + 1-dimensional spacetime.

Remark 6.7. The well-known SUSY algebra from the Lagrangian description can be
“exported” to the Hamiltonian setup.

We reduce by an Abelian subgroup of the SUSY group:

S(A)2|2 ×A2|0 −→ S(A)2|2,

(Φ, r) 	−→ [Sr(Φ)](x) =
∑

k

1
k!
DkΦ(x + Br)[n, . . . , n],

(6.26)

where r = Br + n, is a “superspatial shift”. The momentum map becomes

J(Φ) =
(∫(

π∂iΦ +
1
2
ψT∂iψ

))

i=1,2
. (6.27)

We determine the reduced phase space. The center of mass of Φ = (φ, π, ψ) ∈ S(A)2|2 is
C(Φ) = (1/M(Φ))

∫
R2 x · |Φ|2d2x ∈ A2|0, whereM(Φ) =

∫ |Φ|2d2x ∈ A0.We may identify the
quotient space J−1(μ)/A2|0 with the subset

Pμ =
{
Φ̃ ∈ J−1

(
μ
) | C

(
Φ̃
)
= 0
}
⊆ S(A)2|2. (6.28)
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Finally the reduced equations become

φ̇ =π + Fi
(
φ, π, ψ

)
∂iφ,

π̇ =Δφ + Fi
(
φ, π, ψ

)
∂iπ,

ψ̇ =g0gi∂iψ + Fi
(
φ, π, ψ

)
∂iψ,

(6.29)

where Fi(Φ) = (1/M(Φ))
∫
xi · (φπ + πΔφ − ψTgj∂jψ)d2x.

See [41, 42, 49, 60–63].
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