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Variational fast forwarding for quantum simulation beyond

the coherence time

Cristina Cirstoiu

126, Zoé Holmes'**%, Joseph losue'?, Lukasz Cincio’, Patrick J. Coles'® and Andrew Sornborger®™

Trotterization-based, iterative approaches to quantum simulation (QS) are restricted to simulation times less than the coherence
time of the quantum computer (QC), which limits their utility in the near term. Here, we present a hybrid quantum-classical
algorithm, called variational fast forwarding (VFF), for decreasing the quantum circuit depth of QSs. VFF seeks an approximate
diagonalization of a short-time simulation to enable longer-time simulations using a constant number of gates. Our error analysis
provides two results: (1) the simulation error of VFF scales at worst linearly in the fast-forwarded simulation time, and (2) our cost
function’s operational meaning as an upper bound on average-case simulation error provides a natural termination condition for
VFF. We implement VFF for the Hubbard, Ising, and Heisenberg models on a simulator. In addition, we implement VFF on Rigetti’s
QC to demonstrate simulation beyond the coherence time. Finally, we show how to estimate energy eigenvalues using VFF.
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INTRODUCTION

Quantum simulation (QS) was the earliest proposed example of a
quantum algorithm that could outcompete the best classical
algorithm’. Accelerated QS would impact fields, including
chemistry, materials science, and nuclear and high-energy physics.
Current approaches include quantum emulation (or analogue
QS)>™%, Suzuki-Trotter-based methods” ™', and Taylor expansion-
based QSs using linear combinations of unitaries''™'>. Quantum
emulation and Suzuki-Trotter-based QSs have seen proof-of-
principle demonstrations®%'4, while Taylor expansion-based QSs
have the best asymptotic scaling and will likely have application
for fault-tolerant quantum computers (QCs) of the future.

In the current noisy intermediate-scale quantum (NISQ) era,
variational quantum simulation (VQS) methods are expected to be
important. Variational algorithms have been introduced for
finding ground and excited states'>"'®, and for other applica-
tions'?%. In addition, some variational algorithms simulate
system dynamics?®>™%°, Of the variational dynamical simulation
methods, some are based on knowledge of low-lying excited
states®®, and some are iterative in time”>>~>. Both approaches have
the potential to outperform Suzuki-Trotter-based methods in the
NISQ era.

Simulating the dynamics of a quantum system for time T
typically requires Q(T) gates so that a generic Hamiltonian
evolution cannot be achieved in sublinear time. This result is
known as the “no fast-forwarding theorem”, and holds both for a
typical unknown Hamiltonian®” and for the query model setting?®.
However, there are particular Hamiltonians that can be fast-
forwarded, which means that the quantum circuit depth does not
need to grow significantly with simulation time. Hamiltonians that
allow fast-forwarding are precisely those that lead to violations of
time-energy uncertainty relations and equivalently allow for
precise energy measurements®’. For example, commuting local
Hamiltonians?’, quadratic fermionic Hamiltonians®’, and
continuous-time quantum walks on particular graphs®® can all
be fast-forwarded. In addition, ref. *° exploited the exact solvability

of the transverse Ising model to formulate a quantum circuit for its
exact diagonalization, allowing for fast-forwarding. This circuit was
used to simulate the Ising model on Cloud QCs®'. A subspace-
search variational eigensolver was employed in ref. ?; to fast-
forward low-lying states in a quantum system. In ref. 32, a
Hamiltonian whose diagonalization is constructed out of IQP
circuits is shown to give a quantum advantage for the task of
energy sampling. More generally, it remains an open problem to
determine the precise form for Hamiltonians that do and do not
allow fast-forwarding.

Previous results analyze fast-forwarding of Hamiltonians mostly
in a computational complexity setting??®33*34 in which the
asymptotic scaling of the runtime of quantum circuits implement-
ing a large-scale simulation is important. However, near-term
devices are constrained to simulating intermediate-scale systems
using finite depth circuits. The behavior of an algorithm to
simulate large systems and long times may not be indicative of its
behavior in smaller scale regimes. Therefore, as discussed further
in Supplementary Note 5, whether or not asymptotic fast-
forwarding is possible for a particular Hamiltonian has limited
impact on the simulations that may be performed using near-
term QGs.

The advantage of fast-forwarding, if possible, for near-term QCs
is that the simulation time T can be much longer than the
coherence time 1 of the QC performing the simulation. This is
because T is just a parameter that is set “by hand” in a fixed-depth
quantum circuit*®*°. Therefore we ask the following core question:
Can we fast forward the evolution of a Hamiltonian beyond the
coherence time of a near-term device using a variational
algorithm?

In this paper, we introduce a variational, hybrid quantum-
classical algorithm that we call variational fast forwarding (VFF).
We envision it to be most useful for implementing QSs on near-
term, NISQ computers. However, it could also have uses in fault-
tolerant QS. It is distinct from SVQS?® in that our method searches
for an approximate diagonalization of an entire QS unitary, rather
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Fig. 1 The concept of VFF. a A Trotterization-based quantum
simulation with N=5 timesteps. This simulation runs past the
coherence limit of the quantum architecture. b A VFF-based
quantum simulation. An approximate diagonalization of a short-
time simulation is found variationally. Using the eigenvector W and
diagonal D unitaries that were learned, an arbitrary length
simulation is implemented by modifying the parameters in D. As
long as VFF results in few enough gates that the circuit does not
exceed the coherence time, longer simulations can be performed
than the standard method in a.

than for a finite set of low-lying states. Most importantly, we
analyze the simulation errors produced by VFF and guarantee a
desired accuracy for the simulation once a termination condition
is achieved. This is possible due to the operational meaning of our
cost function. In contrast, low-energy subspace approaches as in
SVQS may not be able to guarantee a desired simulation error,
since the cost function (i.e., the energy) does not carry an obvious
operational meaning.

The basic idea of VFF is depicted in Fig. 1. The “Results” section
presents our main results including an overview of the algorithm,
the cost function, error analysis, and implementations of VFF on a
simulator and on Rigetti’s QC. The “Discussion” section discusses
these results, and the “Methods” section elaborates on our ansatz
and training methods.

RESULTS
The VFF algorithm

Overview. Given a Hamiltonian H on a d = 2" dimensional Hilbert
space (i.e, on n qubits) evolved for a short time At with the
simulation unitary e "', the goal is to find an approximation that
allows the simulation at later times T to be fast-forwarded beyond
the coherence time. Figure 2 schematically shows the VFF
algorithm, which consists of the following steps:

1. Implement a unitary circuit U(At) to approximate e ", th

simulation at a small timestep.

2. Compile U(At) to a diagonal factorization V= WDW' = e~ At
with circuit depth L.

3. Approximately fast-forward the QS at large time T= NAt
using the same circuit of depth L: e "= WD"W!,

e

Typically U(At) will be a single-timestep Trotterized unitary
approximating e~"**!, We variationally search for an approximate
diagonalization of U(At) by compiling it to a unitary with a
structure of the form
V(a,At) := W(0)D(y, At)W (), Q)

with a= (6, y) being a vector of parameters. Here, D(y, At) is a
parameterized unitary composed of commuting unitaries that
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encode the eigenvalues of U(At), while W(0) is a parameterized
unitary matrix consisting of corresponding eigenvectors. In the
“Methods” section, we describe layered structures that provide
ansatze for the circuits W(6) and D(y, At), and we detail our
gradient-descent optimization methods for training 6 and y.

To approximately diagonalize U(At), the parameters a= (6, y)
are variationally optimized to minimize a cost function C yst(U(At),
V) that can be evaluated using a short-depth quantum circuit
called the Local Hilbert-Schmidt Test (LHST)** shown in Fig. 2c.
The compilation procedure we employ to approximate U(At) by V
(a, At) makes use of the quantum-assisted quantum compiling
(QAQQ) algorithm®, that was later shown to be robust to
quantum hardware noise®®. The “Cost function and cost evalua-
tion” section below elaborates on our cost function.

If we can find such an approximate diagonalization for U(At)
then, for any total simulation time, T= NAt, we have:

e M — ( e—iHAt)"” )
~ (U(at), €)
~ W(8)D(y, At)" W ()", 4)
= W(6)D(Ny, At)W(8)'. )

Hence, a QS for any total time, T, may be performed with a
fixed-quantum circuit structure as depicted in Fig. 2d. In
“Simulation error analysis”, we perform an error analysis to
investigate how the approximate equalities in Eqs. (3) and (4)
affect the overall simulation error.

Cost function and cost evaluation. For the variational compiling
step of VFF (shown in Fig. 2c), we employ the cost function
Ciust(U, V) introduced in ref. *°. This is defined as

TN
Cst(U, V) =1 ==Y F
thst(U, V) n e (6)

where the FY are entanglement fidelities and hence satisfy

0< Fé’) < 1. Specifically, FE’ is the entanglement fidelity for the

quantum channel obtained from feeding into the unitary UV', the

maximally mixed state on j and then tracing over j at the output of

UV', where j contains all qubits except for the j-qubit. We

elaborate on the form of C yst(U, V) in Supplementary Note 1.
This function has several important properties.

1. It is faithful, vanishing if and only if V=U (up to a global
phase).

2. Nonzero values are operationally meaningful. Namely,
Ciust(U, V) upper bounds the average-case compilation
error as follows:

d+1 _
Td“ - F(U,V)), @

where F(U, V) is the average fidelity of states acted upon by
V versus those acted upon by U, with the average being over
all Haar-measure pure states.

3. The cost function appears to be trainable, in the sense that it
does not have an obvious barren plateau issue (i.e.,
exponentially vanishing gradient, see refs. 3>°7).

4. Estimating the cost function is DQC-1 hard and hence it
cannot be efficiently estimated with a classical algorithm®>.

5. There exists a short-depth quantum circuit for efficiently
estimating the cost and its gradient.

Cinst(U, V) >

Regarding the last point, each Fg) term in Eq. (6) is estimated
with a different quantum circuit, and then one classically sums
them up to compute C yst(U, V). An example of such a circuit is
depicted in Fig. 2c. It involves 2n qubits, with the top (bottom) n
qubits denoted A (B). The probability of the 00 measurement
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Fig.2 The VFF algorithm. a An input Hamiltonian is transformed into b a gate sequence associated with a single-timestep Trotterized unitary,
U(A?). ¢ The unitary is then variationally diagonalized by fitting a parameterized factorization, V(a, At) = W(B)D(y, A)W'(6). This variational
subroutine employs gradient descent to minimize a cost function C yst, whose gradient is efficiently estimated with a short-depth quantum
circuit called the Local Hilbert-Schmidt Test (LHST). The variational loop is exited when a termination condition given by Eq. (18) is reached,
which guarantees that a user-defined bound on the average fidelity F(T) is achieved. d After the termination condition is reached, the optimal
parameters (B, Vopt) are used to implement a fast-forwarded simulation, with the fast-forwarding error growing sublinearly in the simulation
time (see Eq. (14)). The fast-forwarding is performed by modifying the parameters of the diagonal unitary, D(yopt At) = D(Nyopr At), producing

a quantum simulation unitary, W(8,p0) D(NYopt ADW (Bopy)-

outcome on qubits A;B; in this circuit is precisely the entanglement
fidelity Fé’). Therefore 2n single-qubit measurements are required
to compute C yst(U, V), a favorable scaling compared to, for
example, the O(n*) measurements that are naively required for
VQE'>38% We also remark that C_psr(U, V) was recently shown to
have noise resilience properties, in that noise acting during the
circuit in Fig. 2c tends not to affect the global optimum of this
function®®.
For simplicity, we will often write our cost function as

C\L/}’-:I};T(T) = CLHST(Ué7 Vé)7 (8)

with U= U(At) and V=Wa, Ab), and note that C/f5 (At) is the
quantity that we directly minimize in the optimization loop of VFF.

Simulation error analysis

Linear scaling in N: In practice, each of the steps in the VFF
algorithm above will generate errors. This includes the algorithmic
error from the approximate implementation, U(At), of the
infinitesimal time evolution operator e "2 and error from the
approximate compilation and diagonalization of U(At) into V(a,
At). These two error sources bound the overall error via the
triangle inequality:

ezF(At) < egs(At) + epM"(At). (9)

Here, ¢/ (At) is the overall simulation error for time At, e7°(At)
is the Trotterization error (note that this error may always be
reduced using higher-order Trotterizations at the cost of more
gates), and e;‘,"L(At) is the “machine learning” error associated with

Published in partnership with The University of New South Wales

the variational compilation step. These quantities are defined as

eff (At) = [le” ™ — V(a, At)]|,, (10)

ey (Bt) = [l —u(at)||,, (1

NS (at) = [|U(At) - V(a, A, (12)
where ||M||, = (ijf)”p is the Schatten p-norm, with {m} the
singular values of M.

Ultimately, we are interested in fast-forwarding and hence we
want to bound €ff(T) with T=NAt. For this purpose, we prove a

lemma in Supplementary Note 2 stating that

lUY = U3ll, < NI|Uv = Ual|,,

for any two unitaries U; and U,. Combining this lemma with the

triangle inequality in Eq. (9) gives

ef (T) < N(e)* (At) + ey (At)).
Equation (14) implies that the overall simulation error scales at

worst linearly with the number of timesteps, N.

We remark that, for the special case of p=2, Eq. (13) can be
reformulated in terms of our cost function as:

Clist(T) <n N* Cligr (A1),

(13)

(14)

(15)

with C/f&; given by Eq. (8). The approximation in Eq. (15) holds
when the cost function C\f5;(At) is small, which is the case after a
successful optimization procedure. See Supplementary Note 2 for
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the non-approximate version of Eq. (15). Thus, we find that the VFF
cost function scales at worst quadratically in N under fast-
forwarding.

Certifiable error and a termination condition: Equation (14)
holds for all Schatten norms, but of particular interest for our
purposes is the Hilbert-Schmidt norm, p = 2, from which we can
derive certifiable error bounds on the average-case error. In
addition, the operator norm, p = oo, quantifies the worst-case error
and is often used in the QS literature*’*2. For our numerical
implementations (“Implementations” section), we will consider
both worst-case and average-case error. On the other hand, for
our analytical results presented here, we will focus on average-
case error since it is naturally suited to providing a termination
condition for the optimization in VFF.

As an operationally meaningful measure of average-case error,
we consider the average gate fidelity between the target unitary
e ™M and the approximate simulation V(a, T), arising from the VFF
algorithm:

F(T) = /w IV (a, ) e () 2dy,

where the integral is over all states |) chosen according to the
Haar measure.

In Supplementary Note 2, we show that one can lower bound
F(T) based on the value of the VFF cost function,

(16)

_ d 2
F(T)>1 —mNZ (elg(At) + nc‘L’,ﬁng(At)) . (17)
This inequality holds to a good approximation in the limit that

C/f5;(At) is small, as is the case after a successful optimization

procedure. See Supplementary Note 2 for the exact lower bound
on F(T), from which Eq. (17) is derived.

In addition, Eq. (17) provides a termination condition for the
variational portion of VFF. If one has a desired threshold for F(T),

then this threshold can be guaranteed provided that C\{;(At) is

below a certain value. Once C\f5 (At) dips below this value, then
the variational portion of VFF can be terminated. Specifically, the

termination condition is CT5(At) < Crpreshold, Where

2
1(1 /d+1 —
Cthreshold = " (N\/dm - F(T)) - 612(“)) ;

with the approximation holding when C\L/EET(AI‘) is small. Again, for

the exact expression for Crpreshola, S€€ Supplementary Note 2.

(18)

Implementations
Here, we present results simulated classically and on quantum
hardware. We refer the reader to the “Methods” section for details
about our ansatz and optimization methods.

For our results below, it will be convenient, for a given
simulation error tolerance §, to define fast-forwarding as the case
whenever R§ >1, where

REF = T /77t (19)

is the ratio of the simulation time achievable with VFF, T§, to the
simulation time achievable with standard Trotterization, T"*". We
note that T(TSrOt is a good empirical measure of the coherence time,
since it can account for both decoherence and gate infidelity, and
hence the condition R§>1 intuitively captures the idea of
simulation beyond the coherence time.

Comparing VFF to Trotterization and compiled Trotterizations.
Here, we compare the performance of VFF to that of two other
simulation strategies. One of these strategies is the standard
Trotterization approach depicted in Fig. 1a. Another strategy is to
first optimally compile the Trotterization step to a short-depth
gate sequence, and use this optimal circuit (in place of the
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Trotterization step) for the approach in Fig. 1a. We refer to this as
the QAQC strategy, since one can use the QAQC algorithm*® to
obtain the optimal compilation of the Trotterization step. With the
QAQC strategy, when finding the optimal short-depth compila-
tion, we make no assumptions about the structure of the
compiled circuit, which is in contrast with Trotterization, where
the structure of the circuit is dictated by interactions in the
Hamiltonian.

For concreteness, we consider the task of simulating the XY
model, defined by the Hamiltonian
HXY - _ foxi+1 + nyH—‘l7 (20)

1
where X' and Y’ are Pauli operators on qubit i. We consider a five-
qubit system with open boundary conditions. From the analytical
diagonalization of the XY model®, it follows that the ansatz for the
diagonal matrix D can be truncated at the first nontrivial term, as
described in the “Methods” section (see Eq. (26)).

Figure 3 summarizes our results. Figure 3a shows how the C\ff;
cost function is iteratively minimized during the optimization
procedure. We selected four approximate diagonalizations corre-
sponding to different cost values denoted by VFF,, n=1, ..., 4,
depicted by colored circles in Fig. 3a. Note that the colors match
those used in other panels. Figure 3b compares these diagonaliza-
tions with different QS methods: Trotterization (dashed line),
QAQC-compiled (dashed-dotted line), and VFF at different stages
of optimization. We compare simulated time evolution governed
by the XY model and observe how the fidelity decays with
evolution time. The fidelity is given by Tr(|¢(T))(w(T)|p(T)),
where |¢(T)) is the exact evolved state and p(7) is the state
obtained with a noisy simulator. The initial state |¢(0)) was chosen
randomly such that it has nonvanishing overlap with every
eigenstate of the Hamiltonian. The circuits were simulated using a
noisy trapped-ion simulator with error model from ref. **. We took
error rates, as specified in their Fig. 14 in ref. ** and reduced them
by a factor of five for clearer demonstration of VFF's capabilities.

Results shown in Fig. 3b indicate that QAQC performed better
than Trotterization, which is expected as QAQC optimizes in a
circuit space larger than that given by Trotterization. Both
approaches give better results than VFF, (red curve). This confirms
the intuition that at early stages of the VFF optimization (large
values of C\L/EET), the error of the diagonalization is too big to
outperform other methods. As the cost function is decreased, the
length of time one can simulate using VFF increases. Indeed, as
one can see from the green, blue, and purple curves (which are
associated with cost values $1072), VFF dramatically outperforms
both Trotterization and QAQC.

One can see another important feature in Fig. 3b. For short
simulations, Trotterization and QAQC are always more accurate
than VFF, no matter how accurate the diagonalization is. That is
because for small T, there are just a few timesteps taken by
Trotterization and QAQC implementations, and the resulting
circuits are shorter than VFF circuits implementing W, D, and W".
This disadvantage rapidly diminishes since VFF circuits do not
grow with T and the only error that impacts the fidelity comes
from imperfect diagonalization. On the other hand, Trotter and
QAQC circuits grow linearly with T and as a result, fidelity is
dominated by noise (and not imperfections in the decomposition).

Figure 3c shows how the fast-forwarding factor R§" and the
error in the eigenvalue approximation (pertinent if VFF is used for
eigenvalue estimation as discussed in the “Estimating energy
eigenvalue” section) depend on the cost function C\f;. The data
suggest power-law dependence in both cases. Bringing the cost
function down to 107> allows us to reduce the eigenvalue error
<0.1 and reach a fast-forwarding factor of ~30. Note that for VFF to
be more efficient than Trotterization (R§ > 1), one has to lower the
cost function below ~0.04. For this case, 6 is defined as 1 —
Tr(|w(T)){(@(T)|p(T)) and we considered 6=0.2. Figure 3d
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Fig. 3 Comparing different quantum simulation strategies. a The

VFF cost function as it is iteratively minimized. Various quality

diagonalizations are indicated in the colored circles. b Simulation fidelity as a function of time simulated. ¢ Summed eigenenergy error and
fast-forwarding as a function of the VFF cost. d Eigenenergy errors for the set of diagonalizations.

presents a more detailed analysis of the eigenvalue error, showing
how the error of individual eigenvalues is reduced as the cost
function is minimized.

Using VFF to fast-forward models across a range of parameters.
Here, we show how to use VFF to efficiently find diagonalizations
for new models that are nearby in parameter space, from
previously diagonalized models.

Hubbard model: We applied VFF to Trotterized QS unitaries,
U(At) = e Huwbt of the Fermi-Hubbard model

N
Hiub = —T Z(C{gcj,a + C,T_acf,o) +ud migniy.
i=1
.

ij,o
Here, ¢/, and ¢, are electron creation and annihilation
operators (resp.) for spin o€{|, 1} at site i and n;; = czgci,o is
the electron number operator. The parameters T and u are the
hopping strength and on-site interaction (resp.). We studied a
two-site, two-qubit Fermi-Hubbard model®®, which, after transla-
tion via the Jordan-Wigner transform, takes the form

Huwpy = —TX @1+ 10 X)+uZ® Z.

@21

(22)

We took T = 1 for our initial diagonalization, then perturbatively
increased u from 0 to 0.1 in increments of 0.01. For U(At), we used
a first-order Trotterization of exp(—iHuup24At). We set a threshold
for optimization of 107, We used a three-layer ansatz for W and a
two-layer ansatz for D, which we describe in the “Ansatz” section.

In representative results shown in Fig. 4a, b, we see that, after
an initial optimization taking a number of iteration steps, VFF
reached the optimization threshold. Then, as we perturbed away
from u = 0, VFF rapidly found new parameters that diagonalized
exp(—iHuub 2At) to below the cost threshold. For all approximate
diagonalizations, for an error tolerance of § = 102, the simulation
error remained below this tolerance for T= 30At. The diagonaliza-
tion used nine single-qubit gates and seven two-qubit gates. The
Trotterization used two single-qubit gates and one two-qubit gate.
Thus, the fast-forwarded simulations used nine single-qubit layers
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and seven two-qubit gates, but the equivalent Trotterized
simulations used 60 single-qubit gates and 30 two-qubit gates.
Thus, VFF gave significant depth compression versus the
Trotterized simulations, particularly with respect to entangling
gates.

Heisenberg model:
model,

Next, we applied VFF to the Heisenberg

HHeis _ ijzizf+1 -‘rjxXiXHJ +Jyyiyf+1 +hzi7 (23)
i

where X, ¥, and Z are Pauli spin matrices acting on qubit j, and h,
Ju Jy, and J, are parameters.

Here, we took h=1.0 and investigated the model acting on
three qubits (whose Hamiltonian we denote Hyeis3). We used a
first-order Trotterization of exp(—iHueis3At). We set an optimiza-
tion threshold of 107° and used a ten-layer ansatz for W and a
two-layer ansatz for D. From J,=1.0 (a noninteracting Hamilto-
nian), we increased J, to 5.0 in increments of 1.0. For these
parameter values, Hyes is an antiferromagnetic classical
Ising model.

Next, we kept h=1.0 and J,=5.0 fixed, and increased J,=J,
from 0.0 to 8.0 in increments of 2.0. When J, = J,, these are often
called XXZ Heisenberg models.

Finally, we kept h=1.0, J,=5.0, J,= 8.0 and varied J, from 0.0
to 10.0 in increments of 1.0 (XYZ Heisenberg models).

As may be seen in the representative results plotted in Fig. 4c, d,
VFF rapidly found new diagonalizations WDW' = exp(—iHpeis 3AAt)
for all models considered. We performed additional searches for
diagonalizations of ferromagnetic models (J,, J,, and J, < 0) with
similar results. For all approximate diagonalizations, the simulation
error remained below an error tolerance of §=10"2 up to T=
100At. For this simulation time, each diagonalization used 40 two-
qubit gates and 71 single-qubit gates (111 total), whereas each
Trotterization used 1200 two-qubit gates and 2500 single-qubit
gates (3700 total).
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Fig. 4 Finding successive diagonalizations across a range of parameters. a, b VFF of a two-site, two-qubit Hubbard quantum simulation
unitary (four-qubit circuit). a Optimization error. Here, cost estimates were made with ng,me = 10% and At=0.1. We plot Cf5;(At) versus
optimization step for a sequence of parameters (see text). In this plot, red crosses depict the initial costs for each parameter before
optimization. Each optimization was terminated after reaching Crpresnoia = 10~°. After taking some time to diagonalize the initial unitary with

u =0, subsequent optimizations took just a few iterations. b Simulation error. Here, we plot

CVFF

ttier(T) versus N for all u. For this level of

optimization, and taking Ty to be one Trotter step, fast-forwardings of ~30 timesteps were achieved. ¢, d VFF of a three-qubit Heisenberg

quantum simulation unitary (six-qubit circuit). ¢ Optimization error. Estimates were made with ng,mp = 10° and At=0.1. We plot

CVFF

thst (At)

versus optimization step for a sequence of parameters (see text). In this plot, red crosses depict the initial costs for each parameter before
optimization. Each optimization was terminated after reaching Crireshola = 10~ °. d C/f&+(T) versus N plotted for all values of J,, J,, and Jj. Here,

fast-forwardings of ~70-100 timesteps were achieved.

VFF implemented on quantum hardware. We implemented VFF
on 1+ 1 qubits (i.e, diagonalizing a random single-qubit unitary)
on the Rigetti Aspen-4 QC (Fig. 5). Here, we considered the first-
order Trotterization of the Hamiltonian H = a,0,+ a,0, + a,0,,
where a was a randomly chosen unit vector, at the time At =0.5.
We used W = R,(6,)R(6,) and D = R,(y,). The VFF cost function, as
evaluated on the QC with ngmp= 10, was optimized to
Clisr(At) ~ 107"

With this system, we investigated how well VFF performed by
classically computing the true, noiseless, cost for the parameters
found on the Rigetti QC. This true cost converged to two orders of
magnitude below the QC-evaluated cost, demonstrating signifi-
cant robustness of VFF to the noise on the Rigetti QC.

We next simulated single-qubit evolutlon on the QC by (1)
iterating the original Trotterization, U(A)", and (2) using the VFF
diagonalization (5). We then used process tomography to
compare the resultant noisy process resulting from the Trotteriza-
tion, and the process resulting from VFF to the exact process U
(A" calculated classically.

In this single-qubit case, the Trotterized simulation unitary could
have been compiled to a circuit with many fewer gates; however,
this would not be true for higher-dimensional unitaries and for
this reason we did not compile the iterated gate sequence here.

In Fig. 5b, we show that VFF performed much better than the
iterated Trotterization, giving a high-fidelity simulation. In these
results, the entanglement fidelity between the process imple-
mented using VFF and the exact process remained high until at
least Nygr = 150 and never reached a value <0.7. On the other
hand, the fidelity of the iterated Trotterization approach was
already 0.586 by N = 25.

These results demonstrate that VFF on current QCs can allow for
simulations beyond the coherence time. For example, taking an
entanglement infidelity of 0.3 as our error tolerance 6, it follows
from the table in Fig. 5b that we obtained a fast-forwarding
beyond the coherence time of at least Ry = 6.

Estimating energy eigenvalues. We primarily foresee VFF being
used to study the long-time evolution of the observables of a
system. But one may also use VFF to reduce the gate complexity
of eigenvalue estimation algorithms, such as quantum phase
estimation®® or time series analyses*’*®, Such algorithms require
simulating a Hamiltonian up to time T=0O(l) to obtain
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eigenvalue estimates of accuracy o. Due to the constant depth
circuits produced by VFF, we can therefore reduce the number of
gates required for these algorithms by a factor of O(l;), increasing
the viability of eigenvalue estimation on noisy QCs.

The eigenvalues of the Hamiltonian simulated via VFF are not
directly accessible from the diagonal unitary D, since they are
encoded in a set of Pauli operators. However, these can be
extracted using the time series analysis in ref. *%, This method does
not require large ancillary systems nor large numbers of
controlled-unitary operations, and thus is a promising avenue
for eigenvalue estimation in the NISQ era.

To demonstrate the practical utility of VFF for eigenvalue
estimation, we numerically computed the spectrum of a two-site
Hubbard model in Fig. 6a-c and in Fig. 6d, we show eigenenergy
estimates for a five-qubit XY model. Specifically, we used a one-
clean-qubit (DQC-1) quantum circuit to discretely sample the

function
g(t) =Tr(|g)(w e™) Zew\t 4)
where |¢) := (|0> + |1>)°C” and then used classical time series

analysis to estlmate the eigenvalues. This is achieved by
computing each spectral estimate S(A) with respect to a discrete
number of values for time variable, t; = {0, ... ,tma} in incre-
ments of 0.2At. A higher number of discrete points results in a
better resolution of S(A). The signal processing uncertainty
principle constrains the spectral widths (variance in the estimate
of A) to obey 0y tmax > ¢, where ¢ is a constant of order 1. In Fig.
6a-c, we show three examples with successively better optimiza-
tion and, hence, longer integration times, tmn.. We plot
eigenenergy estimates of diagonalized two-site Hubbard models
with parameters T=1 and u€{0.0, 0.2, ..., 1.0} ranging from
weakly to strongly coupled models.

The time series analysis extracts an estimate for the spectrum of
energies corresponding to V, the approximate unitary given by
VFF of the target unitary U, up to a global phase. The
Hoffman-Wielandt theorem™® gives a bound on the total variation
distance between spectra of U and V, in terms of the two-norm
that in turn is directly related to the VFF cost function. For the
concrete bounds we refer to Supplementary Note 3. This illustrates
that the estimated spectral differences resulting from classical
time series analysis give better approximations to the energy
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Fig. 5 VFF on quantum hardware. a Training results for single-qubit VFF implemented on the Rigetti Aspen-4 quantum computer. Here, the
quantum circuit acted on two qubits, one with a random single-qubit unitary, U, and the second with the diagonal ansatz, V= WDW"
Optimization was performed using gradient descent of the VFF cost function. Results from four optimizations are shown. The plot shows the
cost function evaluated on the QC (solid line) and the true (noiseless) cost function evaluated classically (dashed line), using the parameters
found on the Rigetti QC via VFF. The table in a provides the optimal noisy cost values from the Rigetti QC and the equivalent true cost value for
the given set of optimized parameters. b Process tomography for single-qubit VFF implemented on the Rigetti Aspen-4 quantum computer.
Real (left) and imaginary (right) parts of the exact, classically computed process matrix of a first-order Trotterized quantum simulation (Exact
Trotter) compared with a quantum simulation using an optimal diagonalization from the VFF shown in a (VFF on QC) and the first-order
Trotterization (Trotter on QC), both computed on the Rigetti QC. The number of timesteps for the simulation are shown to the left. Note that for
the VFF simulation, we used the optimization angles corresponding to the best cost from the noisy cost function, i.e, what was actuaISy
measured on the QC. To quantify the accuracy of the fast-forwarded simulation, we include a table in b containing the entanglement fidelity®®
between the exact unitary and either the noisy process implemented by VFF or Trotterization, respectively, on the Rigetti QC.
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Fig. 6 Estimating energy eigenvalues using VFF. a—c S(A) estimates from a VFF diagonalization of a two-site Hubbard model with u/T = {0.0,

, 1.0}. Only positive eigenenergies are shown. For each of a, b, and ¢, we chose t. to be TF0 ., the simulation time achievable with a cost
<10 2, With tmax = ng,z = 500At, 1000At, 5000At in a, b, and ¢, respectively. The resolution of S(A) scales inversely with T’ 0 , causing the width
of the spectral peaks to get successively narrower as tn.x = ng,z is increased. d S(A) estimate from a VFF diagonalization of a five-qubit

Heisenberg XY model. The different spectral heights are due to degenerate eigenvalues (e.g., the multiplicity of the peak at an energy of 2 is
twice that at 1.4).

DISCUSSION

We presented a new variational method for QS called VFF. Our
results showed that, once a diagonalization is in hand, one could

differences of the target Hamiltonian, when decreasing our VFF
cost function. In Fig. 3¢, d, we provide additional numerical
analysis supporting this feature.
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form an approximate fast-forwarding of the simulation that
allowed for QSs beyond the coherence time. We compared VFF
simulation fidelities for a range of optimization errors with
Trotterized and compiled-Trotterized simulations and showed
that, as long as the VFF optimization error was sufficiently small,
VFF could indeed fast-forward QSs. For the particular models,
ansdtze, and thresholds that we studied, we were able to fast-
forward simulations by factors of ~30 (Hubbard) and ~80
(Heisenberg) simulation timesteps. In addition, a fast-forwarding
of a factor of at least six, relative to a Trotterization approach, was
found experimentally on Rigetti's quantum hardware. We also
explored the use of VFF for simplifying eigenenergy estimates and
showed that the variance of eigenenergy estimates is reduced
commensurately with the cost function. Essentially, the more
accurate the diagonalization step of VFF is (i.e., the lower the cost
function value), the longer is the achievable fast-forwarding
simulation time and the better the eigenenergy estimate.

A crucial feature of VFF is the operational meaning of its cost
function as a bound on average-case simulation error. Hence, any
reduction in the cost results in a tighter bound on the simulation
error. We used this feature to define a termination condition for
the variational portion of VFF, such that once the cost is below a
particular value, one can guarantee that the simulation error will
be below a desired threshold. This is arguably the most important
feature that distinguishes VFF from prior work on SVQ5%%, whose
cost function does not have an obvious meaning in terms of
simulation error. In addition, since VFF is not targeting a low-
energy subspace, it is capable of simulating systems at moderate
to high-temperature or more dramatic dynamics, such as
quenches. The trade-off is that the diagonalization step of VFF
can be more difficult than that of SVQS, since one is diagonalizing
over the entire space rather than a subspace. This tradeoff will be
important to study in future work.

In the NISQ era, the minimum value of the VFF cost function
that can be achieved will be limited by quantum hardware noise.
On the one hand, this will result in loose bounds on the simulation
error obtained from Eq. (17). On the other hand, we have seen
from our implementation of VFF on Rigetti's quantum hardware
that the true (noiseless) cost is often orders of magnitude lower
than the noisy cost, implying that we learned the correct optimal
parameters despite the noise. This noise resilience is analogous to
analytical and numerical results recently reported in ref. *. Hence,
an important direction of future research would be to tighten our
bound Eq. (17) for specific noise models, which would allow for
tight simulation error bounds in the presence of noise.

Finally, a possible limitation of the scalability of VFF is the no
fast-forwarding theorem, which is stated in a variety of
forms?’?833 but basically says that there exist some families of
Hamiltonians for which asymptotically the number of gates
needed for QS must grow roughly in proportion to the simulation
time. Thus, VFF may not work for large-scale and/or long-time
simulations of these Hamiltonians, perhaps because the circuit
depth needed to achieve an accurate diagonalization will be long
or perhaps because the cost landscape will be difficult to optimize.
Nonetheless, there are many physically interesting Hamiltonians
that are fast-forwardable or close to (i.e., perturbations of) models
that are known to be fast-forwardable. Moreover, fast-forwardable
Hamiltonians can generate highly nonclassical behavior®2. Hence,
future work needs to explore the class of Hamiltonians that are
approximately fast-forwardable.

METHODS
Ansatz

As with many variational quantum-classical algorithms, it is natural to
employ a layered gate structure for W(B) and D(y, At), with the number of
layers being a refinement parameter.
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Ansatz for D. Let us first consider an ansatz for D. The problem of
constructing quantum circuits for diagonal unitaries, D, is equivalent to
finding a Walsh series approximation®

291
D= ¢ — H eiy,@;f,(zkw’ (25)
j=0
where g=n, G, and Z; are diagonal operators with the Pauli operator Z
acting on the kth qubit, and ji is the kth bit in a bitstring j. Efficient
quantum circuits for minimum depth approximations of D may be
obtained by resampling the function on the diagonal of G at sequencies
lower than a fixed threshold, with g = k and k < n. The resampled diagonal
takes the same form as Eq. (25), but with g = k. The error after resampling
is ex < sup,|G'(x)|/2¥, where we have introduced a coordinate along the
diagonal, x. While we do not know G, we can assume a particular ansatz for
terms to include in the expansion.
In all of our implementations, we use a re-ordering of terms in Eq. (25).
Namely, we take

D= 12[ H eiy,&le(zk)/k ,

m=0 jeS,,

(26)

where S, is a set of all indices j such that >_;_, j, = m. Note that the /Hocal

terms, ®f_, (Zk)*, Y_p_1jx = I, in Eq. (26) are organized in increasing order.
We truncate the above product to a small number (up to /= 2) of initial /-
local terms. The accuracy of the approximation is controlled by truncating
the expansion in Eq. (26). The above expansion may be more suited than
Eq. (25) for quantum many-body Hamiltonians. For instance, it is known
that the quantum Ising model in a transverse field can be diagonalized
exactly by keeping only one-local terms.

Ansatz for W. Let us now consider an ansatz for W(B). With the
Baker-Campbell-Hausdorff formula, we may generate any eigenvector
unitary, W(6), by appropriately interleaving non-commuting unitaries”. In
general, this requires order d* parameterized operations. Here, we briefly
discuss two approaches to make its generation tractable.

The first approach is to use a fixed, layered ansatz for W(@). By
alternating sets of single- and two-qubit unitaries, we construct a
polynomial number of non-commuting layers capable of generating a
rich set of parameterized unitaries. Translational invariance of the system
Hamiltonian may be incorporated into the ansatz for W(6). In this case, all
gates in a given layer may be chosen to be the same. As a result, the
number of variational parameters is reduced by a factor of n.

Another approach is to employ a randomized ansatz, in which
parameterized gates are randomly placed. This approach may be more
suitable for irregular Hamiltonians H, where the optimal form of W(8) is not
easily deducible from H. The randomized approach may potentially find a
shorter W(B) that contains fewer gates, which is beneficial for near-term
applications. Reference '° discusses further details of both methods.

Growing the Ansatz and parameter initialization. We use the method of
growing the ansatz in order to mitigate the problem of getting trapped in local
minima during the optimization'®”". This technique can be used with both
ansdtze mentioned above. The optimization is initiated with a shallow circuit
containing only a few variational parameters. After a local minimum is found,
we add a resolution of the identity to the ansatz for W(6). This takes a form of a
layer of unitaries (for a layered ansatz) or a smaller block of parameterized
gates (for a randomized ansatz) that evaluates to the identity. Adding such
structures to W(6) does not change the value of the cost function, but it
increases the number of variational parameters. In the enlarged space, local
minima encountered in previous steps may be turned into saddle points and
the cost function may be further minimized toward the global minimum. The
technique of systematically growing the ansatz to improve the quality of the
result and mitigate the problem of local minima is described in detail in ref. .

In order to approach the issue of initializing the parameters 6 and y, we
often use a perturbative method'®*?, in which we pretrain these parameters
for a slightly different Hamiltonian. Namely, we begin a VFF search for a unitary
diagonalization with a known short-depth, readily diagonalizable, unitary. We
then modify the Hamiltonian by adding successively perturbed terms in an
attempt to guide the previously learned diagonalization from known initial
parameters toward an unknown diagonalization of interest.

Ansatz for implementations. General ansatz considerations were discussed

above, and now we discuss the specific ansatze used in our implementations.
For our implementations, W consists of successive layers, each formed of
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three sublayers: (i) an initial sub-layer of single-qubit gates, (ii) a second sub-
layer of entangling two-qubit gates acting on neighboring even-odd qubit
pairs, and (iii) a third sub-layer of two-qubit gates acting on odd-even qubit
pairs. The two-qubit gates are typically CNOTSs, but equivalently we have used
Z7(6) = CNOT(I ® R,(0))CNOT or XX(0) gates. The layers are appended
successively always with a final layer of single-qubit gates.

In addition, our implementations use a set of layers consisting of various
commuting operators for D. For the first layer, we use a set of single-qubit Z-
rotations, R,(y), acting on all qubits. The second layer is a set of two-qubit ZZ
(y) gates acting on all pairs of qubits. The third layer would be a set of three-
qubit gates Z® Z® Z(y) acting on all triplets of qubits. However, for the
threshold used, we did not need a third layer for the results in the
“Implementations” section.

Optimization via gradient descent

Gradient-based approaches can improve convergence of variational
quantum-classical algorithms®3, and the optimizer performance can be
further enhanced by judiciously adapting the shot noise for each partial
derivative®®. Furthermore, the same quantum circuit used for cost
estimation can be used for gradient estimation®>. Therefore, we
recommend a gradient-based approach for VFF, in what follows.

With the ansatz in Eq. (1), we denote the VFF cost function as
C/FEL := Clust(U, WDWT). The partial derivative of this cost function with
respect to 6y, a parameter of the eigenvector operator W(@), is

VFE )

P54 = 3 (Cusr (U, WE DWY)
— Cuust(U, WX DWT)

+ Cupst (U, WD(WH )

— Cust(U, WD(WK)")).

The operator Wi (W) is generated from the original eigenvector
operator W(6) by the addition of an extra 7 (—7) rotation about a given
parameter’s rotation axis:

(27)

wh = w(6.) with (65),= 6% gai_k. (28)

Similarly, the partial derivative with respect to y,, a parameter of the
diagonal operator D(y), is

Wi 1 (Cunst (U, WD, W)

oy, 2 (29)
— Cuust (U, WDEWT))
with
D, = D(y,) with (), ==y gém. (30)
35

Equation (29) is derived in ref.
Note 4.

Using Egs. (27) and (29), we can evaluate the gradient of C\ff; directly
and use a simple gradient-descent iteration

and we derive Eq. (27) in Supplementary

JCVFF
9(f+1) _ e(f) _ LHST (31)
k k n aek
VFF
(t+1) _ (0 _ 9Cipst (32)
Yo Yo ay[ 5

s VFF
to minimize C/\j;.
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