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The quantum interpretation of classical radiation reaction coming from the near electromagnetic self-
force (the so-called “Schott term”) is given for the first time. The analysis is based on the Landau-
Lifshitz equation for classical ultrarelativistic motion including radiation reaction effects for the case of
channeling radiation in oriented crystals in the wide region of electron energies from few MeV and
up to hundreds GeV. This type of radiation is unique in that sense that it has a pronounced quantum
character in two extreme cases of low and high energies. We show that quantum transitions between
the transverse energy states of channeling particles represent the quantum analog of the classical Schott
term. The impetus for this work was the recent reports on the feasibility of detecting experimentally the
effects of the action of classical radiative self-force on the motion of electrons (positrons) channeled in
oriented crystals at the CERN Secondary Beam Areas (SBA) beamlines, although the basic results of this

work are valid for arbitrary ultrarelativistic motion.
© 2019 Kabardino-Balkarian State University. Published by Elsevier B.V. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It has recently been shown that classical radiation reaction ef-
fects, predicted by the Landau-Lifshitz equation (LL) [1], can be
measured using presently available facilities at the CERN Secondary
Beam Areas (SBA) beamlines [2], [3]. The authors of these papers
adopted perspectives and presently feasible experimental setup to
measure classical radiation reaction (RR) effects on the photon
emission, generated in the interaction of ultrarelativistic electrons
with an oriented crystal (the so-called channeling radiation).

Crystallographic axes and planes provide electrostatic fields
strong enough (~ 10'1 =10!2 V/cm) to make the RR effects visible.
Channeling radiation turns out to be promising to study the cor-
respondence between the classical and quantum theories because
quantum effects appear in the limits of relatively low electron en-
ergies of few MeV and at high energies above 100 GeV with pure
classical nature of motion and radiation in between [4], [5]. Quan-
tum effects appear at low energies in the form of well-pronounced
discrete levels of transverse energy, and at high energies in the
form of quantum recoil of a photon during radiation and the effect
of electron spin on radiation. In the present letter this correspon-
dence is analyzed.
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All results of this work are valid for arbitrary ultrarelativistic
motion but, as is mentioned above, we consider in detail the par-
ticular case of channeling radiation because it has a pronounced
quantum character with individual lines in the emission spectrum
at relatively low electron energies, and because channeling radi-
ation can be handled theoretically in a comparatively simple way.
In what follows we shall talk about electrons, while all conclusions
are valid for positrons as well (see materials A and B for more de-
tails).

When an electron beam is incident on the crystal nearly parallel
to an atomic axis (or plane), the successive correlated small-angle
deflections that determine the transverse trajectory of the parti-
cle become important. In order to describe this type of scattering,
Linhard introduced a continuous potential for an atomic axis (axial
channeling) or atomic plane (planar channeling) [6]. Such contin-
uous potential depends only on the coordinates transverse to the
axis (plane). As a result, the transverse energy and angular mo-
mentum with respect to the axis (for axial electron channeling) are
preserved being integrals of the transverse motion. The continuum
potential approximation is valid when the initial angle of particle
incidence with respect to the atomic string (plane) is smaller or of
the same order of magnitude than some critical channeling angle
01 = (2Ug/E)'/2, where Uy is a continuous potential depth and E
is the electron energy. For axial channeling Ug ~ 2Ze?/d ~ 102 eV,
Z is the atomic number of crystal atoms, d is a distance between
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atoms in the atomic string, e is the electron charge. In the pla-
nar case Ugp >~ 20-30 eV. The influence of radiation on the motion
of multi - GeV electrons and positrons incident on single oriented
crystals was studied both experimentally and theoretically about
two decades ago, [7], [8], [9], under conditions when this influ-
ence is completely due to the hard photon emission corresponding
to the irreversible energy loss term in classical radiation self-force
expression (the so-called “Liénard term”). In the present Letter we
shall mainly concentrate our attention on the opposite limit of
relatively low energies when the influence of the reversible con-
tribution to the radiative self-force is dominating.

The secondary effects of incoherent multiple scattering by ther-
mal vibrations of crystal atoms and radiation damping lead to the
change in transverse energy. To study the effects of RR on electron
motion we will take this change in transverse energy and angular
momentum due to radiation as the basis of consideration. Mul-
tiple scattering will not be considered here although for realistic
calculations this factor should be taken into account (see Supple-
mentary materials, B).

Electromagnetic waves produced by powerful lasers can result
in effect of intense radiation coming from relativistic electrons
moving in the field of this waves [10], [11], [12]. This provides
perspectives for possible measurements of laser-based classical RR
[13], [14]. In addition to the analysis of such perspectives in com-
parison with oriented crystals given in [3], we emphasize that,
in contrast with channeling, formation of the observable discrete
quantum states in the transverse phase space of the electron mov-
ing in the laser field is not possible in principle. From this point
of view the crystal-based tests of the so-called “Schott term” in
the classical radiation reaction theory turn out to be more promis-
ing. On the other hand, the quantum strong field effects (like recoil
and spin-flip) for peta-watt lasers can take place already at elec-
tron energies of few GeV, whereas in oriented crystals the energies
above 100 GeV are required.

2. The Landau-Lifshits equation in the static electric field

The LL equation for electron moving in a static electric field E
is (Eq. 76.3 in [1])

f= %roey(ﬂV)E + %r?)(ﬂE)E — %réyzﬂ [E2 — (ﬁE)z], (1)
where § =v/c, v is the velocity of an electron, c is the velocity
of light, m is the mass of an electron, ro = e?/mc? is a classical
electron radius, ¥ = (1 — g2)~1/2 is the Lorentz factor, E = |E|, V =
(0/0x,0/0y,d/0z) is the spatial gradient.

It is convenient to rewrite Eq. (1) in the form with a total time
derivative

— 2yt g (Y @
=30 c \dt )

where (dW /dt)q = (2/3)ce®g? represents energy losses due to the
radiation per unit time, g2 is a square of the 4-acceleration

g2 =gg' =—C—2y4 [ﬁ2+y2(ﬂﬂ)2], 3)

where g! = du'/ds, u' are components of the dimensionless
4-velocity, u? =1, i=1(0,1,2,3), ds =cdr is a proper interval,
7 is a proper time, B = dB/dt is a 3-acceleration divided by the
velocity of light. It has been taken into account in the above equa-
tions that dE/dt = c(BV)E, since the field is static, i.e. 9E/dt =0,
and that acceleration is expressed in terms of the external field
as

p=——[E—B(BE)]. 4)
mcy

The self-force does the work which per unit time is equal to
the product fv and defines the reversible and irreversible emitted
radiation power. In the case considered it can be expressed in the
form containing the total time derivative

2 d dw
fV—Berodt[V(ﬂE)H( = )d. (5)
The energy radiated throughout the entire trajectory is determined
only by the second term, since the external field vanishes at infin-
ity such that the integral of the first term over time is zero. The
second term being a Lorentz invariant represents the irreversible
energy loss and is called the “Liénard term”, whereas the term
with a total time derivative is called “the acceleration term” (page
253 in ([15])), or the “Schott term”. By analogy the first term in
Eq. (2) may also be called the “Schott term”. This definition is jus-
tified by the fact that after multiplying Eq. (2) by the velocity, the
extra addend that appears from the first term and contributes to
the second term in Eq. (5) is proportional to y~2, and becomes
negligible when y > 1. The second term in Eq. (2) is always nega-
tive, directed opposite to the electron’s velocity and represents the
“Liénard term” in the self-force formula.

The LL equation is an approximate equation, when the trajec-
tory quantities in the more accurate Lorentz-Abraham-Dirac (LAD)
formula (Eq. 76.2 in [1]) are expressed in terms of the external
electromagnetic field that is not perturbed by the field of radia-
tion. The separation of the radiative self-force and the radiation
power into the Schott and Liénard contributions takes place also
in the general case of the LAD equation. The total time deriva-
tives in Egs. (2) and (5) correspond to the spatial and time com-
ponents of the total derivative term in LAD equation, equal to
(2/3)e2dg! /ds.

It may seem that the first term in Eq. (5) is not observable,
since for all realistic trajectories it vanishes when integrated over
time. This is true if the movement of an electron occurs along a
trajectory known a priori. The form of this trajectory, however, de-
pends on whether the Schott term has been taken into account in
the equations of motion with account of the radiation self-force in
Eq. (2). This idea is the basis of experimental verification of the
classical radiation self-force effects [3]. As it will be shown below,
such effects appear in channeling of relativistic electrons in ori-
ented crystals in the form of radiative damping of their transverse
energy.

3. Radiation self-force in channeling

Relativistic electrons moving nearly parallel to the crystallo-
graphic axis or planes generate strong electromagnetic radiation
in the X-ray or gamma range [4], [5]. The motion of an elec-
tron is governed by the electrostatic potential depending only on
the distance to the axis (plane) U(ry), where in the axial case
r; = (x,y) is two-dimensional transverse coordinate perpendic-
ular to the atomic axis. In the case of planar channeling it is
one-dimensional, such that U = U(x), where x is the distance to
the atomic plane. The longitudinal coordinate z coincides with
the atomic axis (plane). Typical values of the axis potential are
U ~ 2Ze%/d ~ 10% eV. The electric field strength acting on the
electron is eE= -V U, V| = (8/9dx,9/9y). The longitudinal com-
ponent of this field is absent E; = 0.

Classical radiation power emitted by the channeled electron is

dw 2c
COpr—
Cl
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The transverse and longitudinal components of the self-force in
Eq. (1) for channeled electrons are

2 2
f = iroey(lﬁVL)E + —ré(ﬂLE)E + (7)
dw
+B8. (?> *To)’ 28 (B E)?,
dw
fzzﬂz <F>cl. (8)

Let us estimate the relative contribution of four terms in Eq. (7)
for ultrarelativistic motion y >> 1. The force acting on an electron
is |V U| ~ Ug/aF, ar is the Thomas-Fermi screening parameter,
ar ~(0.1-0.2) A, Ug is the potential depth. The transverse velocity
B1 < 1 is equal to the angle of deflection of an electron by the
atomic string 6,. It is of the same order of magnitude as the criti-
cal channeling angle 6y, i.e. B, ~ 6y, 6, = (4Ze?/dE)'/2, E = ymc?
is electron’s energy (not to be confused with the notation for the
electric field E). We see, therefore, that dominating are the first
and the third terms in Eq. (7), which define the relative contribu-
tion of the Schott and Liénard terms

Liénard term Up
==Y 9)

chott term mc
The second and the last terms in Eq. (7) are ¥ and 9[2 times less
than the third one, correspondingly. In the case of axial channel-
ing n ~ 1 at energies of 10-30 GeV. At smaller energies, when the
dipole approximation is valid, i.e. 01y < 1, the first term (Schott
term) in Eq. (7) dominates, whereas at higher energies dominating
is the Liénard term. The longitudinal component of the velocity for
arbitrary ultrarelativistic motion is expressed through the trans-
verse velocity B (t) ~1—y~2/2 — B3 (t)/2, where the terms ~ g4

and y~* are neglected.

The equations of motion of channeled electrons can be written
as

dp.

— =—-V,U+f 10
i LU+ (10)
d dw
dbe _ Pz (AW (11)
dt at /4

where p = ymcp is electron momentum and

2 dw

f, = —rpe V.1)E — ) . 12

L 3oJ/(ﬂ¢ L) +ﬁL(cdt>c, (12)

The first term in this formula agrees with Eq. (3) in [3] written for
planar channeling.

All expressions given above are valid for arbitrary ultrarelativis-
tic motion, y > 1, with additional condition that electron’s energy
must sufficiently exceed the potential of its interaction with an ex-
ternal field E > |U|. This case is usually of practical interest. The
channeling angle 6; in above formulas should be replaced by the
angle of deflection of an electron by the external field 6, 6 — e,
such that the transverse velocity always remains non-relativistic
,BJ_ ~ 96 <1

4. Transverse energy damping in channeling

In the absence of the radiation and multiple scattering the
transverse energy of an electron becomes an integral of the trans-
verse motion, since the continuum atomic string (plane) potential
does not depend on the longitudinal coordinate. Multiple scatter-
ing is of stochastic nature and will not be considered in what
follows. The transverse energy ¢ of an electron is

pi

+ U(ry). (13)
T 2my

The radiation leads to the transverse energy change with time.
The transverse momentum is a rapid function of time and varies
with the frequency of transverse oscillations, while the total en-
ergy varies with time adiabatically due to the radiation. The total
time derivative of Eq. (13) with account of the equations of motion

(10) and Eq. (12) give
de 2 daw

V.1)E — . 14
T 31’06)/Cﬂi(ﬂi DE+ ﬂJ_( i )d (14)

The second “Liénard” term in this equation is always negative and
dominates at high energies when 7 > 1. The first “Schott” term
can be both negative and positive. Further it will be clear that the
first term in Eq. (14) becomes also always negative being averaged
over the transverse motion period.

Consider the simplest case of one dimensional transverse mo-
tion during the planar channeling. In this case Eq. (14) gives

de 2 2o 1 o (AW
T g"o)’cﬂxu + Eﬂx (W)Cla (15)
where U”(x) =d?U/dx?, and x is a transverse coordinate.

Eq. (15) should be averaged over the equilibrium distribution of
channeled particles with transverse energy & over the transverse
coordinate distribution function dw(x) = 2dx/(vxT), which coin-
cides with averaging over the period of the transverse motion T

( >=27M< Y= /( ) (16)
YT ' BTN s—U(x)
with
VIE T dx
=] Fow (17)

where Xpnin and xpnex are solutions of the equation & = U(x) (turn-
ing points).

Integration by parts gives for the average value of ﬂfU” in
Eq. (15)

Xmax

(pro)=-2 [val. (18)

Xmm

It has been taken into account here that the transverse veloc-
ity vanishes in the turning points Vx(Xmin) = Vx(Xmax) = 0. With
a good approximation we can assume also that according to
the equations of the transverse motion without radiation vy =
—U'/(my). This gives (B2U") = ((U")?)/E.

The Schott term contribution in Eq. (15) averaged over the
transverse motion period becomes

<gr c 2U”>—l< aw > (19)
3707 <Px _V2<dt)cl.

This term is always negative.
Finally for the mean value of the transverse energy change due
to the channeling radiation we obtain

de\ 1 aw (e-U) (dW
)= l(@) ) )) =




284 M.Kh. Khokonov / Physics Letters B 791 (2019) 281-286

where we have taken into account that ﬁf(x) = 2[e — U(X)]/E.
Eq. (20) for planar channeling was derived at the dawn of the
channeling radiation physics [16].

Axial channeling of electrons can be considered as a motion
in axially symmetric field of the atomic string with the potential
U(r), where r is the transverse distance to the string r = |ry|. In
this case one more integral of the transverse motion exists. It is
the angular momentum of an electron with respect to the string
M =Xpy — ypx =MyTVy, ¢ is the azimuth angle of an electron in
the transverse plane, vy =rdp/dt = wc®/(Er) is the corresponding
component of the transverse velocity, the radial part of which is
vp =dr/dt, v = v} + vZ. It can be shown that Eq. (20) is valid in
this case too, where the averaging is over the period of the radial
transverse oscillations

Tmax

D= | W=

Tmin
where Ugsf(r) = U(r) + u?c?/2Er? is an effective potential; rpin
and rmgx are radial turning points defined by the equation & =
Uesr ().
For the angular momentum damping in axial electron channel-
ing one can obtain

()= 5o ()0, )

where the first and second terms in the square brackets represent
Schott and Liénadr contributions. The latter one is always negative,
while the first one can be both - positive and negative.

We have considered channeled electrons whose transverse tra-
jectories are finite and transverse energy is negative ¢ < 0. Eq. (20)
is valid for quasi-channeled electrons as well (¢ > 0), where the
angle brackets for planar channeling does mean the averaging ac-
cording to the Eq. (16) with Xmin, Xmax = £dp/2, dp is the distance
between the atomic planes. For axially quasi-channeled electrons
we must average over the whole transverse trajectory around a
single atomic string, where T becomes the time of the interaction.

In real crystals, electrons experience strong multiple scattering
by thermal vibrations of atoms [17], [18]. This leads to a stochas-
tic change in the transverse energy and angular momentum. The
corresponding terms should be added to the right hand side of the
Egs. (20) and (22). In what follows we shall disregard this factor.

(21)

5. Correspondence to the quantum theory

At electron energies of several MeV, their transverse wave-
length, A, ~ 2mwhc/E6f;, is comparable with the distance between
atomic planes (axes), which leads to the appearance of several
quantum transverse energy levels [19]. The number of levels in-
creases with an increase in the electron energy, so that at ener-
gies above several tens of MeV, the transitions between individual
levels are no longer distinguishable and the emission spectrum
is described by classical electrodynamics. The formulas for radia-
tion probabilities are especially simple in the dipole approximation
when the angle of the deflection of an electron by the external
field is much less than the characteristic radiation angle 6, ~y 1,
i.e. when 1y <1 (or n <« 1).

The frequency distribution of the probability of the channeling
radiation due to the transition from the state with transverse en-
ergy &; to the state with final transverse energy ¢y is (see, for
example, Eq. (123) in [4])
dw f;

L 2 g P QZiF(ﬁ), ® < om, (23)

c W

dow

where o = 1/137 is a fine structure constant, (rp)f; = (&f|rL|e;)
is a matrix element of the transverse coordinate, Q; = (¢; —&5)/h,
om =2y2Qyi, F(x) =1—2x+2x? is a dipole radiation frequency
factor, x < 1.

The rate of the transverse energy change due to the photon
emission is

de dw

— = hQ i dw. 24

dt Z/ I ae (24)
f<i

Making use of Eq. (23) we obtain

de  4e?

=33V 2l (25)

f<i

In the same way we obtain the rate of the total energy change due
to the dipole radiation

dE dei
@& _ hw I g
dt ;/ “dw

4¢?
=3V @l P (26)
f<i
Comparison of Egs. (25) and (26) leads to the result

de _ 1 dE -
dt  y2dt

The quantum dipole result Eq. (27) exactly coincides with that
given by the classical Schott term in Eq. (20). Detail correspon-
dence of quantum formulas given by the Egs. (23) - (26) to the
classical theory is given in Supp. A. Consequently, we can con-
clude that the Schott term is nothing but the classical analogue
of the phenomena associated with quantum transitions between
transverse energy levels. The same consideration is valid for quasi-
channeled electrons with infinite transverse classical trajectories.
In this case quantum transitions occur between the states of a con-
tinuous spectrum.

Consider a more general case beyond the dipole approximation.
The energy and longitudinal momentum conservation laws due
to the photon emission are: Ef = E; — hw, p;i = Pz, 5 + hkcosé;
where k = w/c, 6 is the angle between z-axis and the direction of
the photon emission. These equations give the following result for
the transverse energy change due to the photon emission

hQpi=A ho B p 28

fi= E(w)—ﬁm'i‘ a)?, (28)
where terms ~ 64 and y ~* have been neglected. Eq. (28) has been
derived for axial case. All subsequent conclusions are valid for the
planar case as well.

Eq. (28) written in different forms was obtained earlier [20]
(see also Eq. (99) in [4]). If w(w)dw is a differential probability
of photon emission per unit time, then the rates of the transverse
and total energy change are

Z—i = —/As(a))w(w)da), (29)
dE
= —/ha) w(w)dw. (30)

In the case opposite to the dipole approximation, when 6y >
1, the probability w(w) is defined by the well known quantum
synchrotron-like constant field approximation formula [21]. For
non-uniform fields w(w) is given in [22]. Since Ae can depend
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also on angles of the photon emission, the integration in Eq. (29)
should be preformed over the angular variables as well.

For relatively small energies when the dipole approximation is
valid, i.e. ;¥ « 1, and emitted photons are soft, hiw < E, the first
term in Eq. (28) is approximately equal to fw/(2y?). In the sec-
ond term we can replace § ~ 1/y. We therefore obtain formula
(27) from Egs. (29) and (30). In this limit both terms in Eq. (28)
give equal contribution to the Schott-like term. In the opposite
limit when the angle 6, of the deflection of an electron by the
external field is much larger than the angle of photon emission,
i.e. 6, > 1/y (n> 1), we can disregard the first term in Eq. (28)
(for photon energies not very close to the energy of the electron)
and replace, 6 ~ 6, = 8., in the second term. Le. in this limit we
assume that photon is emitted exactly in the direction of electron
motion. This gives the transverse energy change due to the emis-
sion of the photon with the energy hw

As(w) = —%hw. (31)

After the averaging over the radiation probability, Eq. (31) becomes
in agreement with the second term in formula (20). We see, that
in the limit, 6,y > 1, the second term in Eq. (28) corresponds
to the Liénard-like contribution to the radiation damping. In the
computer simulations of channeling radiation of above 100 GeV
electrons only the term Eq. (31) was usually taken into account
[20], [23].

A special case happens for hard emitted photons when fiw — E.
According to the Eq. (28) the transverse energy change in this
case becomes infinite due to the first term. In reality, however,
the probability of photon emission w(w) falls down exponentially
when hw — E, and the integral in Eq. (29) remains finite. The
effect of the first term in Eq. (31) is not significant for electron
energies achieved in laboratory at present time. For above TeV
energies, however, this factor can be important because at such
energies the probability of the spin-flip radiation becomes quite
strong for photons with hiw ~ E [24], [25].

The present analysis of the Eq. (28) permits one to generalize
the classical Egs. (20) and (22). For example, to take into account
the quantum recoil due to the hard photon emission and influ-
ence of spin we can replace (dW/dt)gq — (dW /dt)quanc, Where
(dW /dt)quant is defined by the Eq. (30) with some general expres-
sion for radiation probability w, given in [24] and [25].

6. Summary and concluding remarks

If the entire electron trajectory is completely defined, then the
total energy of electromagnetic radiation from this trajectory is de-
termined exclusively by the second term in Eq. (5), that is, the
Liénard contribution. The role of the radiation self-force is that it
affects the trajectory. Taking this force into account in the equa-
tions of motion leads to a difference in the trajectory from that
which would be without taking this force into consideration, and
therefore the emission spectrum will also differ. At relatively low
energies, when 1 « 1, the influence of the radiative self-force on
the trajectory is completely due to the first term in Eq. (2), that
is, the Schott term. In the opposite limit, when 7 > 1, everything
is determined by the second term in Eq. (2) (Liénard term). The
condition 1 « 1 coincides with the condition of dipole radiation,
when the angle of electron deflection by the external field is much
less than the characteristic angle of radiation.

It is convenient to study the effects of radiation on the motion
for ultrarelativistic electrons, y > 1, since in this case the radiation
is quite intense, significantly affects the motion and is measurable
with high accuracy.

Channeling of MeV electrons (positrons) is unique in that sense
that it has pronounced quantum levels. It occurs for ultrarelativis-
tic light particles only in channeling. The radiation in this case is
due to the dipole quantum transitions with well-pronounced lines
in the emission spectrum. These transitions are a quantum ana-
log of the classical Schott term, i.e. the first term with the total
time derivative in Eq. (2). Note that it is wrong to say that the
radiation is due to the Schott term. Schott term affects the trajec-
tory and, through this, the emission spectrum. At electron energies
of several MeV, the change in the transverse energy due to the
quantum transitions is a significant fraction of the transverse po-
tential barrier. This fraction decreases with increasing the energy
of an electron when the role of the second term in Eq. (2) (Lié-
nard term) becomes dominating. This term describes a decrease
in transverse energy, approximately proportional to a decrease in
total energy, i.e. Ag/e ~ AE/E. At low energies, the role of this
factor is negligible, but it becomes decisive when 7 > 1. In this
limit, at electron energies above 100 GeV, the quantum effects of
photon recoil and influence of electron spin on the radiation prob-
ability begin to dominate.

The author is grateful to J.U. Andersen and U.l. Uggerhgj for
useful discussions and interest in this work.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi.org/10.1016/j.physletb.2019.02.034.
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