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Abstract. Loop Quantum Gravity has become one of the alternative solutions to quantum
gravity. This formulation introduced geometrical operators which successfully used to model
that in the quantum scale, the space is actually discretized in the order of Planck length. These
operators are area and volume operator. The regularization process of these operators came
from the classical definition of area and volume, thus, the eigenvalues of area operator and
volume operator are respectively the area and volume of the space. However, there exists two
types of volume operator, the Ashtekar-Lewandowski operator and the Rovelli-Smolin operator.
The significant difference between these two operators is the fact that Ashtekar-Lewandowski
operator is sensitive to the direction of the spin networks link, while Rovelli-Smolin operator
is not. This difference will produce different spectral. In this article, we compare the resulting
spectral of the two volume operators, where both of them is used to calculate the volume of the
monochromatic 4-valent and 6-valent spin network for the kinematical case.

1. Introduction
One of the most challenging problem in physics is the formulation of quantum gravity. There
is a lot of attempts to solve this problem and Loop Quantum Gravity (LQG) acts as one of
those alternative solutions. This approach combines quantum mechanics with gravity using two
different formulations, the canonical and the covariant formulations. In this article, we consider
the canonical formulation. It uses the 3+1 decomposition and tetrad formulation to rewrite the
Einstein-Hilbert action [1]. From this formulation, one will reach one of the biggest achievement
in LQG, which is the ability to model that space is actually discrete in the quantum scale [2, 3, 4].
This is a consequence of the introduction of the geometric operators, area and volume, which
have discrete eigenvalues. The first attempt to build this operator had been done by Rovelli
and Smolin [2]. They showed that by using the classical definition of area and volume, one
could create quantum geometric operators. Ashtekar and Lewandowski also constructed these
operators with different regularization and produced the same area operator but a different
volume operator [[3, 4]]. Nevertheless, these operators are built through the loop representation
in Hilbert space L2[SU(2)]. Since the regularization of these operators starts from the classical
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definition of area and volume, the eigenvalues will represent the size of area and volume of a
space. Therefore, a space in a manifold Σ is discretized and formed by quanta of space [2, 3, 4].

In this article, we will calculate the volume of a monochromatic 4-vertex spin network and
a monochromatic 6-vertex spin network using the Rovelli-Smolin volume operator V̂RS and
Ashtekar-Lewandowski volume operator V̂AL. We use j = 1

2 and j = 1 for the 4-vertex spin

network and j = 1
2 for 6-vertex spin network. We will compare the spectral of V̂RS and V̂AL to

see the difference between them. The scope of this article is restricted to the kinematical case,
where we only consider the Gauss constraint and neglecting the two remaining constraints [1, 5].

2. Volume Operator
There are two types of volume operator, the Rovelli-Smolin volume operator (V̂RS) [2, 6, 7, 8]

and the Ashtekar-Lewandowski volume operator V̂AL [4, 9]. These operators came from the
same classical definition of volume. However, the differences in the regularization process yield
different forms of the operator. The differences between these two operators can be seen in the
appearance of the sign factor in V̂AL, the coefficient in front of the operator, and the way the
operator sums up the value for each link.

The classical definition of a volume of a region R in 3 dimensional Σ is defined as

VR(x) =

∫
R
d3x
√
q(x) (1)

with q is the determinant of the spatial metric qab. Using the fact that qab is the inverse of qab,
we can write q in terms of densitized triad’s determinant E as follows:

q = E (2)

Thus, equation (1) can be rewritten into:

VR(x) =

∫
R
d3x
√
E(x)

=

∫
R
d3x

√∣∣ 1

3!
εijkεabcE

a
i (x)Ebj (x)Eck(x)

∣∣ (3)

In LQG, we can promote E to be an operator, so that we can rewrite equation (3) as follows:

V̂R(x) =

∫
R
d3x

√∣∣ 1

3!
εijkεabcÊ

a
i (x)Êbj (x)Êck(x)

∣∣ (4)

This operator acts on an n-vertex spin network. However, the operator can not be
diagonalized by the spin network state on the standard basis i.e., the direct-sum basis of SU(2)
representation. Each operators for different spin network is diagonalized by different state vector.
Therefore, the eigenvalue of this operator can not be expressed in a general form [2, 4].

2.1. Rovelli-Smolin Volume Operator
Rovelli and Smolin introduced the first version of this operator [2]. The development of this
operator leads us to two types of operator [6, 7]. In this article, we will use the one introduced
in [7]. After applying some regularization processes, one obtains the volume operator as:

V̂RS =
∑

I<J<K

3!

√∣∣∣∣Zq̂IJK∣∣∣∣ (5)
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q̂IJK = εijkJ
i
IJ

j
JJ

k
K =

i

4

[
(JIJ)2, (JJK)2

]
(6)

with JIJ = JI + JJ ,
[
(JIJ)2, (JJK)2

]
=
∑3

i,j=1

[
(J iI + J iJ)2, (J jJ + J jK)2

]
and Z = i

192 .

2.2. Ashtekar-Lewandowski Volume Operator
On the other hand, the V̂AL goes through different regularization. In this article, we used the
derivation presented in [9]. In his article, Thiemman introduced a cube in the beginning of
the regularization. However, each cube acts on different densitized triad, hence, one has three
different cubes, each accompanied by a characteristic function. This approach will give different
result although the angular momentum operator part inside the operator is equal [9]. Moreover,

the operator will be slightly different than the V̂RS . It contains a new factor called the sign
factor ε(eI , eJ , eK) , where the value is determined by the cross product of three tangent vectors

of the link at a vertex. Again, using the identity from (6), the V̂AL can be written as

V̂AL =

√√√√∣∣∣∣3!Z
∑
I,J,K

ε(I, J,K)q̂IJK

∣∣∣∣ (7)

Notice that there is a regularization coefficient Z in each operators (V̂RS and V̂AL). The
value of this coefficient varies depending on the regularization process. Nevertheless, Giesel
and Thiemann [7, 8] found that there is a fixed value for Z, considering the consistency of the

volume operator, triad, and flux quantizations. The value is Z = iβ3

4 Creg with β is the Immirzi

parameter and Creg = 1
3!8 . However, it has been proved that V̂RS is not consistent if one consider

the dynamical part of the theory. Nevertheless, it is still very useful for the kinematical case.
In the following calculation, we will consider the value of Z = 1 to simplify the calculation.

3. Spectral of Volume Operator
In this section, we will calculate the spectral of volume operator in monochromatic 4-vertex
and 6-vertex spin network using the Rovelli-Smolin volume operator (V̂RS) and the Ashtekar-

Lewandowski volume operator (V̂AL). Since the form of these operators is different, the
eigenvalue will also be different. Our calculation follows the steps introduced in [10, 11].

3.1. Spectral of 4-vertex
The direction of links in this spin network are chosen outwards such that it represents a
real tetrahedron. We label each link with spin j1, j2, j3, j4. However, since we deal with
monochromatic spin network, all links will have the same spin, j. Moreover, since we consider
the kinematical case, the gauge invariance condition is imposed:

Ĵ1 + Ĵ2 + Ĵ3 + Ĵ4 = 0 (8)

With this condition, the total value of spin j1234 will become 0 and the value of spin j123 will
equal to j4. This condition also create a new identity from eq. (6), that is:

q̂IJJ + q̂IJI = q̂IJJ − q̂JII
= 0 (9)

Using eq. (8) and eq. (9), the volume operator will become:
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Figure 1 The Tetrahedron

q̂124 = −(q̂121 + q̂122 + q̂123) = −q̂123
q̂134 = −(q̂131 + q̂132 + q̂133) = −q̂132
q̂234 = −(q̂231 + q̂232 + q̂233) = −q̂231 (10)

Therefore, the only combination of links which needs to be calculated is I, J,K = 1, 2, 3.
The calculation of the eigenvalues of volume operator starts from finding the matrix form of

the operator for the 4-vertex. This calculation uses the standard bases and the completeness
properties. The matrix form can be calculated as follows:

〈~g(12)|q̂123|~g′(12)〉 = 〈~g(12)|
[
J2
12, J

2
23

]
|~g′(12)〉

=
[
g2(12)(g2(12) + 1)− g′2(12)(g′2(12) + 1)

]∑
~g(23)

g2(23)(g2(23) + 1)

〈g2(j2, j3), g3(g2, j1) = j4|g′2(j1, j2), g′3(g′2, j3) = j4〉
〈g2(j2, j3), g3(g2, j1) = j4|g′2(j1, j2), g′3(g′2, j3) = j4〉 (11)

Then, using the properties of the 6j symbols, eq. (11) will become:

〈~g(12)|q̂123|~g′(12)〉 =
[
g2(12)(g2(12) + 1)− g′2(12)(g′2(12) + 1)

]∑
~g(23)

g2(23)(g2(23) + 1)
[
(2g2(12) + 1)(2g2(23) + 1)

] 1
2
[
(2g′2(12) + 1)(2g2(23) + 1)

] 1
2

(−1)j1+j2+j3+j(−1)j1+j2+j3+j4
{
j1 j2 g2(12)
j3 j4 g2(23)

}{
j2 j3 g2(23)
j1 j4 g′2(12)

}
(12)

with g2(12) = j12, g
′
2(12) = j′12 and g2(23) = j23.

3.1.1. The j = 1
2 Case. In this case, we will evaluate the eigenvalue of volume operator for

4-vertex using j1 = j2 = j3 = j4 = 1
2 . This condition gives us the possible value of j12 and j23

which will be used in the calculation.

0 ≤ j12 ≤ 1 , 0 ≤ j23 ≤ 1 (13)

Using this possible value and eq. (12), therefore, the matrix of the volume operator of 4-vertex
is:
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Q
j12j′12
123 =

(
0

√
3

−
√

3 0

)
(14)

The matrix’s eigenvalue is λ = ±i
√

3. Then, the matrix will be used to calculate the operator
V̂RS and V̂AL. First, using eq. (5), we will calculate the operator V̂RS as follows:

V̂RS = 3!(
√
|q123|+

√
|q124|+

√
|q134|+

√
|q234|)

= 4× 3!
√
|q123|

(15)

For the next step, the eigenvalue of V̂AL will be calculated. Using eq. (7), we have:

V̂AL =
√

3!(|ε123q̂123 + ε124q̂124 + ε134q̂134 + ε234q̂234|)
=
√

3!|(ε123 − ε124 + ε134 − ε234)q̂123|
(16)

By using the direction of the link which has been determined in the beginning of the calculation,
we have:

V̂AL =
√

3!|(1− (−1) + 1− (−1))q̂123|
= 2
√

3!|q̂123|
(17)

Hence, the eigenvalue of V̂RS and V̂AL for this case are:

vRS = 24

√√
3 = 31.586 (18)

vAL = 2

√
3!
√

3 = 6.447 (19)

3.1.2. The j = 1 Case. In this case, we use j1 = j2 = j3 = j4 = 1, so that

0 ≤ j12 ≤ 2 , 0 ≤ j23 ≤ 2 (20)

With this condition, first, we will calculate the condition for j12=1,j′12=0:

Q10
123 = 12

√
3

{
1 1 1
1 1 1

}{
1 1 1
1 1 0

}
+ 60
√

3

{
1 1 2
1 1 0

}
=

8
√

3

3
(21)

After that, for j12 = 2, j′12 = 0

Q20
123 = 36

√
5

{
1 1 2
1 1 1

}{
1 1 1
1 1 0

}
+ 180

√
5

{
1 1 2
1 1 2

}{
1 1 2
1 1 0

}
= 0 (22)

Then, for j12 = 2, j′12 = 1

Q21
123 = 24

√
15

{
1 1 2
1 1 1

}{
1 1 1
1 1 1

}
+ 120

√
15

{
1 1 2
1 1 2

}{
1 1 2
1 1 1

}
=

4

3

√
15 (23)
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For j12 = j′12, the matrix’s element will become 0 and if we switch the value of j12, j
′
12, the

matrix’s elements will have the same value but with different sign. Therefore, we have:

Q
j12j′12
123 =

 0 8
3

√
3 0

−8
3

√
3 0 4

3

√
15

0 −4
3

√
15 0

 (24)

The eigenvalues of the matrix are λ = 0,±i6.928. Hence, the eigenvalues of V̂RS and V̂AL are:

vRS = 24
√

6.928 = 63.171 (25)

vAL = 2
√

3!× 6.928 = 12.895 (26)

3.2. Spectral of 6-vertex
In this case, we define a monochromatic 6-vertex spin network with all of its links’ direction
are chosen outward. We label each link with j1, j2, j3, j4, j5, j6. For this case, we only calculate
j = 1

2 . Using the gauge invariance condition, we have:

Ĵ1 + Ĵ2 + Ĵ3 + Ĵ4 + Ĵ5 = −Ĵ6 (27)

Figure 2 Two Tetrahedrons Glued Together

so the total spin j = 0 and g5(12) = j12345 = j6. Then, with the properties of q̂IJK from eq.
(9), the volume operator which works to the 6-vertex will become:

q̂126 = −(q̂121 + q̂122 + q̂123 + q̂124 + q̂125) = −q̂123 − q̂124 − q̂125
q̂136 = −(q̂131 + q̂132 + q̂133 + q̂134 + q̂135) = q̂123 − q̂134 − q̂135
q̂146 = −(q̂141 + q̂142 + q̂143 + q̂144 + q̂145) = q̂124 + q̂134 − q̂145
q̂156 = −(q̂151 + q̂152 + q̂153 + q̂154 + q̂155) = q̂125 + q̂135 + q̂145

q̂236 = −(q̂231 + q̂232 + q̂233 + q̂234 + q̂235) = −q̂123 − q̂234 − q̂235
q̂246 = −(q̂241 + q̂242 + q̂243 + q̂244 + q̂245) = −q̂124 + q̂234 − q̂245
q̂256 = −(q̂251 + q̂252 + q̂253 + q̂254 + q̂255) = −q̂125 + q̂235 + q̂245

q̂346 = −(q̂341 + q̂342 + q̂343 + q̂344 + q̂345) = −q̂134 − q̂234 − q̂345
q̂356 = −(q̂351 + q̂352 + q̂353 + q̂354 + q̂355) = −q̂135 − q̂235 + q̂345

q̂456 = −(q̂451 + q̂452 + q̂453 + q̂454 + q̂455) = −q̂145 − q̂245 − q̂345 (28)
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In the same way as before, the calculation of eigenvalues starts by calculating the element
of the operator. Since the operator depends on 6 different indices, it will become a tensor with
6 indices Q(g2g3g4g′2g

′
3g

′
4). To find the eigenvalues, we can use the tensor unfolding process, thus

the 6-rank tensor will become a matrix [12]. The calculation of this case will follow this matrix:

111111 111112 111121 111122 111211 111212 111221 111222
112111 112112 112121 112122 112211 112212 112221 112222
121111 121112 121121 121122 121211 121212 121221 121222
122111 122112 122121 122122 122211 122212 122221 122222
211111 211112 211121 211122 211211 211212 211221 211222
212111 212112 212121 212122 212211 212212 212221 212222
221111 221112 221121 221122 221211 221212 221221 221222
222111 222112 222121 222122 222211 222212 222221 222222


(29)

The index 1 and 2 show the possible components of the g2 = j12, g3 = j123 and g4 = j1234 as
well as g′2 = j′12, g

′
3 = j′123 and g′4 = j′1234. Then, we use Brunnemann and Thiemann’s general

formula in [10] to calculate the matrix element of the volume operator. Therefore, using this
general formula and the method from [12], we will have

vRS = 46.723, 146.302, 149.542, 161.200, 181.366 (30)

vAL = 7.406, 9.460; (31)

4. Conclusion
Calculations in the previous section give a result that in 4-vertex case, the eigenvalues of V̂RS are
always larger than the eigenvalues of V̂AL, as can be seen from eq. (15) and (17). The eigenvalues
of 6-vertex spin network which is calculated in the previous section also gives the same result,
that V̂RS ’s eigenvalues are bigger than V̂AL. However, this result may vary depending on the
link’s orientation, and moreover, this conclusion needs to be validated by other choices of link
orientation.

Another fact that can be seen from the calculation is that for j = 1
2 , the smallest

eigenvalue of 6-vertex and all of 4-vertex’s eigenvalues which are calculated by using V̂RS satisfies
v4−vertex + v4−vertex > v6−vertex inequality. However, others eigenvalues of 6-vertex satisfies
v4−vertex + v4−vertex < v6−vertex inequality. Thus, although the classical geometric shape of 6-
vertex is actually the same as two tetrahedron added together, the volume of those two shapes is
not equivalent. The calculation of V̂AL’s eigenvalues shows similar result with a difference. The
eigenvalue of 4-vertex and 6-vertex satisfies v4−vertex + v4−vertex > v6−vertex inequality. These
results show that 4-vertex and 6-vertex are unique in the sense that we can not form 6-vertex’s
volume from 4-vertex’s. Thus, the choice of the discretization of space affects the volume of
the actual space. Moreover, the results are not in accordance with classical conditions. In the
classical geometry, two tetrahedron which are glued together on one side will have the same
volume as two tetrahedron with the same size. However, in this case, we get the inequality
v4−vertex + v4−vertex > v6−vertex for V̂AL, also the inequality v4−vertex + v4−vertex > v6−vertex for
the smallest eigenvalue of 6-vertex and v4−vertex + v4−vertex < v6−vertex for the rest of 6-vertex’s
eigenvalues from V̂RS . Nonetheless, this condition only applies for j = 1

2 . This might be an
effect of the quantum fluctuation of geometries arising from the uncertainty principle. It might
be interesting to carry out the research on this subject further.
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