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Zusammenfassung
In dieser Dissertationsschrift werden Amplituden in Quantenfeldtheorien und konformen
Feldtheorien (CFTs) studiert. Zunächst wird mittels der »double copy«-Methode gezeigt,
inwiefern Integranden von Gravitationsamplituden aus Integranden von Eichtheorien gewon-
nen werden können. Um diese Methode anzuwenden, bedarf es einer konkreten Darstellung
der Eichtheorieintegranden, sodass die kinematischen Faktoren des Integranden die gleichen
algebraischen Relationen erfüllen wie die Strukturkonstanten der Eichtheorie; insbesondere
muss die Jacobiidentität erfüllt sein. Mithilfe dieser Methode werden Vierpunktsamplituden
in N = 0 Supergravitation gekoppelt mit Yang-Mills in erster Ordnung der Störungsreihe
berechnet, welche als asymptotische Zustände Gravitonen oder Gluonen positiver Helizität
enthalten. Weiterhin ist es möglich die virtuellen Axionen und Dilatonen in Spezialfällen zu
entfernen, sodass einige Resultate in reiner Einstein-Yang-Mills präsentiert werden können.

Das Analogon der Amplituden in konform invarianten Theorien, genannt Mellinampli-
tuden, wird anschließend im zweiten Teil diskutiert. Nicht nur durch ihre Beschreibung als
Funktionen »lorentzinvarianter« Variablen, welche durch eine Art »LSZ-Reduktion« gewon-
nen werden, weisen Mellinamplituden eine formal heuristische Ähnlichkeit zu Amplituden
auf, sondern auch können alle physikalischen Größen einer CFT aus ihnen berechnet werden.
D.h., ebenso wie Amplituden einen Streuprozess vollständig charakterisieren, ist eine CFT
eindeutig über ihre Mellinamplituden festgelegt. Fermionische Mellinamplituden wurden
zum ersten Mal, in der Veröffentlichung worauf diese Dissertationsschrift basiert, studiert.
Jede Komponente der fermionischen Mellinamplituden ist einer bestimmen Tensorstruktur
zugeordnet, deren Polstruktur im einzelnen diskutiert wird. Es werden die analytische Eigen-
schaften der fermionischen Mellinamplituden der gemischten Vierpunktskorrelationsfunktion
von zwei Fermionen und Skalaren, sowie von vier Fermionen studiert und darauffolgend
werden diese Resultate durch störungstheoretische Rechnungen bei schwacher und starker
Kopplung bestätigt.
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Abstract
In this thesis, amplitudes in quantum field theory (QFT) and conformal field theory (CFT)
are studied. In the first chapter a modern technique to obtain integrands for gravity theories
from gauge theory integrands is discussed. This formalism is called the doubly copymethod
and it can be applied if the gauge theory integrand is given in a specific representation where
the kinematic numerator factors obey the same algebraic relations as the colour factors,
e.g. the Jacobi identity. This method is applied to obtain the positive helicity sector of
amplitudes in N = 0 supergravity coupled to Yang-Mills with external gravitons and gluons
at one loop. Only the special case of four external particles is studied. Partial results are
also obtained for pure Einstein-Yang-Mills amplitudes, where the axion and dilaton as virtual
particles have been removed.

In the second chapter, the natural analogue of amplitudes in CFTs is studied. These
mathematical objects are called Mellin amplitudes. Mellin amplitudes can be understood
as the CFT analogue of QFT amplitudes, because they are functions of “Lorentz invariant”
quantities of their “momenta”. In addition all the CFT data is encoded in the Mellin ampli-
tudes as all the data of a scattering process is included in usual amplitudes. The study of
fermionic Mellin amplitudes has been carried out for the first time in the associated publica-
tion. These Mellin amplitudes have several components each associated to a certain tensor
structure. The analytic properties of fermionic Mellin amplitudes corresponding to mixed
four fermion-scalar conformal correlators and four fermion conformal correlators are deduced
and finally these general results are confirmed by explicit perturbative calculations at weak
and strong coupling.
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Chapter 1

Introduction

Physics describes the phenomena of nature in mathematical terms and verifies its claims
by experiments. The mathematical formulation of these phenomena is realized by abstract
models. The modelling process is reductionistic and it assigns a quantity to the phenomena
which also appears in the mathematical equations. E.g. in the solar system the force of
gravity is assigned to the planet which pulls it towards the sun, but exactly this force also
appears in Newton’s second law. In this sense the model can also be seen as an interpretation.
Ideally the construction is based on a theory which includes fundamental principles and
instructions on how to use these principles to apply them to the observed empirical data.
However, the empirical data is not sufficient to uniquely specify a theory. Therefore different
theories which model the same class of phenomena can predict the same observables [6,
p. 76] [7, p. 168f]. There are plenty of examples like string dualities, particle-wave duality,
Bohmian and Kopenhagener quantum mechanics etc. which illustrate this. This is well
studied in [6]. It is important to note that the ontology of these theories might be very
different [6, p. 101f, 206f]. Therefore a physicist has the freedom to choose the kind of
theory to model a certain natural phenomenon. The chosen model has to satisfy at least two
requirements to be useful in physics: Firstly the dynamics of the system should be formulated
in such a way that it can be solved (analytically or numerically, completely or perturbatively
etc.). Secondly all the essential features of the phenomenon have to be describable within
this model.

Nowadays local quantum field theory (QFT) is the most efficient framework to incorpo-
rate these ideas in high energy physics and it is also frequently used for condensed matter
and statistical systems. In this thesis the focus lies in the realm of high energy physics.
The importance of QFT stems from two observations: Firstly, the fundamental principles
of quantum mechanics, Lorentz invariance and cluster decomposition necessarily imply the
possible description of relativistic phenomena by a QFT [8, 9]. Although this description
might break down at high energies, it is still useful to model low energy physics according
to the folk theorem given by S. Weinberg: “It is very likely that any quantum theory that
at sufficiently low energy and large distances looks Lorentz invariant and satisfies the cluster
decomposition principle will also at sufficiently low energy look like a quantum field theory
[9, p. 8].” Secondly, it combines the two aforementioned necessary requirements to construct
models. The basic principles and the mathematical methods of QFT provide a description of
processes at a characteristic energy scale such that the essential features of it are described.
This is established by constructing the most general Lagrangian consistent with the symme-

1



2 CHAPTER 1. INTRODUCTION

tries of the process which allows to calculate expectation values at least perturbatively. In
addition, this Lagrangian defines the fundamental degrees of freedomat each scale, because
the fields which appear in the Lagrangian are elementary [9]. The success of this approach
is evident in particle physics, e.g. collision experiments are well described by perturbative
methods of QFT. The mathematical object to study these collision experiments is the uni-
tary S-matrix S = 1 + iT which maps in-states to out-states [10–13]. The non-trivial part
of a scattering process is included in the transfer matrix T and its matrix elements are am-
plitudes. Hence, the art of calculating these amplitudes is a very crucial part in theoretical
high energy physics to test the validity of specific models constructed using QFT.

The need for a detailed and accurate theoretical comprehension of collision experiments
is based on the facts that these experiments are among the most conducted ones in the
current field of high energy physics and that in general the success of experimental physics
is intertwined with the theoretical development of the field itself. These experiments paved
the way to the most significant theoretical model constructed by quantum field theorists:
the Standard Model of particle physics. Its development started by successfully combining
the electromagnetic and weak interaction by Glashow [14] and its inclusion of the Higgs-
Englert-Brout-mechanism [15, 16] by Weinberg and Salam [17, 18]. Among other things
the importance of scattering experiments results from the fact that the last elementary
constituents of the Standard Model were experimentally verified in colliders, like the top
quark [19], the tau neutrino [20] and the Higgs boson [21, 22].

Weinberg’s definition of QFT as the description of low energy physics combines well with
Wilson’s notion of QFT as a way to parametrize the effective degrees of freedom of a system
only in form of an effective field theory (EFT). This concept along with the renormalization
group method has shaped the modern understanding of QFT and it paves the way to under-
stand QFT beyond perturbation theory [23–25]. This idea is implemented by constructing
the most general Lagrangian consistent with the symmetries of the system and integrating
out high momentum fluctuations. The different coupling constants of the Lagrangian may
start to grow and become relevant at a certain energy scale. At each scale the system is
described by an EFT. A change in scale is obtained by a so-called renormalization group
transformation (RGT). It is interesting to note that many high energy EFTs may lead to the
same low energy EFT. Hence, in the process of integrating out high momentum fluctuations
information about the system is lost. Contrary to a Feynman diagrammatic expansion, Wil-
son’s approach does not treat all wave lengths the same way, because it integrates out high
energy modes [26].

This approach is well suited to describe physical systems at criticality (for example phase
transitions) near the fixed point of the RGT. At the critical surface the correlation length
diverges such that there is no natural scale associated to the model any more; hence the
system is scale invariant and does only depend on universal properties, but not on the
details of the interaction. Critical exponents which describe physical quantities near phase
transitions are universal. Close to the fixed point the RGTs can be used to determine
the critical exponents of the system [26, 27]. If scale invariance is enhanced to conformal
invariance, systems at criticality can be described by conformal field theory (CFT) [28]. For
example this is the case if the energy momentum tensor of the model can be made traceless
[29]. Thus CFTs can be used to study non-perturbative phenomena like phase transitions.

Not only is the goal of physics to simply describe physical systems, but also to under-
stand the fundamental principles and laws which govern them. Hence, the construction of
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a coherent and all-encompassing theory which unifies all four known interactions is one of
the major aims in theoretical physics. The next step to achieve this goal is the unification
of gravity with the strong, weak and electromagnetic interaction in a theory of quantum
gravity. So far there is no satisfying theory of quantum gravity, the best current candidate
can be found in the framework of string theory. Especially, in the early 90th Maldacena
conjectured that superconformal gauge theories in the large N limit, N being the number of
colours, can be used to describe supergravity in anti de Sitter (AdS) space which is the low
energy limit of string theory [30]. This idea, developed further by [31, 32], is one of most
active research areas in high energy physics nowadays. It is intriguing that the conjectured
AdS/CFT correspondence can be used to define quantum gravity with asymptotically AdS
boundary conditions by a CFT. This highlights the importance of CFTs again, because it
implies that quantum gravity in AdS can be seen as emerging from a boundary CFT. It has
to be emphasized that both theories describe the same observables. The AdS/CFT corre-
spondence is a strong/weak duality which implies that strongly coupled systems in the CFT
are weakly coupled in the dual gravity theory and vice versa. Especially, in the classical limit
where the gravity theory can be solved, this duality enables one to study the dual CFT at
strong coupling in the planar limit. Perturbatively the strong coupling regime of a CFT can
be studied by Witten diagrams due to this duality [32–34]. Even though this correspondence
is not proven yet, it has led to a lot of insight into current physical research problems, like the
black hole information paradox [35, 36], holography [37, 38], the emergence of (approximate)
symmetries [39] etc.

Therefore, to understand physics on a fundamental level as well as for phenomenology
the study of amplitudes in QFT and to find an appropriate description for CFTs is of
great importance and demands further investigation. These two aspects are diverse fields of
research in their own right and have developed massively in the recent years as it is discussed
in the following.

The study of amplitudes has a long history. Nowadays, the canonical algorithm to com-
pute these amplitudes perturbatively is based on Feynman diagrams which are the graph-
theoretical building blocks in this perturbative expansion. Although, in principle, this algo-
rithm works to all orders in perturbation theory, it is, in general, not very efficient. E.g. in
quantum electrodynamics the number of diagrams grows rapidly in terms of its loop order
L. Asymptotically it is of the order O(L!) [40]. Therefore, physicists have developed various
tools to obtain the amplitude by different, more efficient methods. To name a few, the meth-
ods are ranging from standard techniques like colour decomposition [41, 42], spinor-helicity
formalism [43, 44], supersymmetric identities [45, 46], Berends-Giele recurrence relations [47]
and generalized unitarity [48–50] to more modern approaches, e.g. twistor space methods
[51, 52], BCFW recurrence relations [53, 54], the amplituhedron [55, 56], CHY formalism
[57–59] and the double copy method [60, 61]. However, all of this methods lack some sort of
completeness. Either they can only be applied to special kind of particle types, to particular
dimensions, to a limited order in perturbation theory or they still need information which is
obtained from Feynman diagrams. Therefore it can be said that, although a lot of technical
progress has been made in the calculation of amplitudes, Feynman diagrams still form the
basis of this field.

In this thesis the focus is on the calculation of gravity amplitudes. The computation of
gravity amplitudes using conventional Feynman diagrams is even harder than it is for the
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other three fundamental interactions, because for gravity it is already difficult to construct
the Feynman integrand [62]. An efficient method to determine the gravity integrand has
been proposed by Bern, Carrasco and Johansson in [60, 61]. The general idea is to construct
gravity integrands from gauge theory integrands where the latter are much easier to build.
This method has triggered a broad field of interest: It has made the direct calculation of
many gravity amplitudes possible or easier [63–70] and it has been extended to classical
physics too [71–79] like to the study of perturbative black hole solutions.

Concretely, in this thesis all amplitudes in N = 0 supergravity coupled to Yang-Mills
with four external positive-helicity gluons and gravitons are calculated at one-loop order
using the aforementioned double copy method [2]. This extends the work done in [80] where
pure Einstein-Yang-Mills amplitudes with four external particles have been calculated at
one-loop in leading order of the Einstein constant.

Even though there are doubts about a graviton being detectable [81, 82], there are still
experimental reasons to study gravity scattering amplitudes. Recently, there has been a
growing interest in relating amplitudes to classical, perturbative solutions of gravity theories
[83–89] which extends earlier approaches [90–92]. The interest has been enhanced due to the
recent detection of gravitational waves by LIGO and VIRGO [93, 94].

In order to solve a concrete physical problem, a formulation of it in appropriate mathe-
matical terms which concisely incorporate the dynamics of the system, is even more impor-
tant than the different calculation techniques. An adequate choice of language can simplify
or even trivialize physical statements like the covariant formulation of Maxwell’s equations
shows. Here it is argued that the Mellin-Barnes representation, notably the Mellin ampli-
tude, provides an efficient formalism to study CFTs in dimensions higher than two.

Recall that the complete information to construct any n-point correlation function in
a CFT is given by the CFT data. The CFT data is the combined knowledge of all the
operator product expansion (OPE) coefficients and the spectrum of local primary operators,
i.e. their scaling dimensions and their Lorentz representations [95–98]. A mathematical
formalism which makes this data manifest is a proper way to describe CFTs; and the Mellin-
Barnes representation provides such a formalism. This representation has been studied by
Mack in [99, 100] systematizing earlier ideas presented by Symanzik [101]. In the Mellin-
Barnes representation of conformal correlation functions the complete spectrum and the OPE
coefficients are encoded in the analytic structure of the Mellin amplitude. The location of
its poles gives the twist of the exchanged operators and its residues at these poles give the
OPE coefficients as well as their Lorentz representations.

Moreover the formal structure of Mellin amplitudes is very similar to massive momen-
tum space scattering amplitudes. According to this analogy the Mellin variables become
products of fictitious momenta and the scaling dimensions of the exchanged single trace op-
erators play the role of the masses in massive QFTs. This observation has stimulated many
research ideas: It has been argued that Mellin amplitudes are the proper object to define
scattering amplitudes in AdS. These ideas were further developed by constructing perturba-
tive “Feynman rules” in Mellin space in the weakly interacting gravity theory which is dual
to the strongly coupled CFT [102, 103]. “Feynman rules” in the weak coupling regime of
the CFT have been determined in [104]. This shows that the Mellin-Barnes representation
is in particular fruitful in studying the AdS/CFT correspondence. Further progress in this
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direction has been achieved by investigating Regge theory in AdS [105] and the flat-space
limit in AdS which relates Mellin amplitudes to QFT amplitudes in flat space. The flat-space
limit refers to a scattering process where all length scales are much smaller than the radius
of AdS [106–108]. Further, the flat-space limit has shed some light on a broader field of
applications of Mellin amplitudes. It has been used to derive bounds on the cubic coupling
constants of the flat-space scattering matrix of massive QFTs in two dimensions by com-
bining it with the program of numerical conformal bootstrap [109]. In general the Mellin
amplitude is not a meromorphic function, because the spectrum of a generic CFT contains
“double twist” operators which accumulate for increasing spin l →∞ [110, 111] and the lo-
cation of the poles of a Mellin amplitude is dictated by the twist of the exchanged operators
which implies that the location of the poles of the Mellin amplitude accumulate. Hence it
cannot be meromorphic [112]. However, in the large N limit of conformal gauge theories
the analytic structure of a Mellin amplitude simplifies drastically, because it describes the
spectrum of single trace operators only whose values of twist do not accumulate. Thus the
Mellin amplitude is meromorphic in the large N limit. The nice analytic structure of Mellin
amplitudes in this limit is reminiscent of the structure of tree-level amplitudes as manifest
in the BCFW recursion relations [53, 54]. In BCFW recursion relations the amplitude (as a
complex function) is described by a sum over simple poles. The residues at these poles are
given by lower-point amplitudes. Thus it is a tempting challenge to prove similar recursion
relations for Mellin amplitudes. Even though this similarity is striking, there is still no proof.
A first step to analyze the factorization properties of Mellin amplitudes more closely has been
taken in [113]. Another field of current interest is to rephrase the conformal bootstrap ideas
stated by Polyakov [96] in Mellin-Barnes representation [114, 115]. This is one of the most
promising applications of Mellin amplitudes [116–122].

However, most of these research ideas have been applied to scalar Mellin amplitudes only.
There has been less progress in studying spinning Mellin amplitudes [113, 123]. Especially
tackling the problem of fermionic Mellin amplitudes had not been considered thus far. But
to obtain information about fermionic CFT data using Mellin amplitudes, it is necessary
to define Mellin amplitudes for fermionic operators and to examine their analytic structure.
This is discussed in chapter 3 based on the paper [1].

This thesis has two main chapters. In chapter 2, it is explained how to obtain amplitudes
in N = 0 supergravity coupled to Yang-Mills at one-loop in the all-plus helicity sector using
the double copy method. This chapter starts with the definition and different properties
of amplitudes in QFT. Afterwards, in section 2.2, the regularization procedure of these
quantities is discussed. In section 2.3 it is shown how tensorial Feynman diagrams can be
decomposed into a basis of scalar Feynman diagrams. In the present case this procedure
reduces all Feynman integrals of section 2.5 to known scalar integrals. In section 2.4 the
double copy method is introduced. The concrete realization of this double copy method
for N = 0 supergravity coupled to Yang-Mills is stated in 2.5. In the last section the
corresponding amplitudes at one-loop are calculated. This chapter is also supplemented by
two appendices: In appendix A.1 more properties of the spinor-helicity formalism are studied
and appendix A.2 contains further details of the calculations done in section 2.5.

In chapter 3, Mellin amplitudes for fermionic conformal correlation functions are studied.
Section 3.1 is a short summary of general properties of CFTs. This discussion is followed
by presenting a method to determine a basis of tensor structures of conformal correlators
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in section 3.2. Furthermore, a concrete basis for three- and four-point correlators in three
dimensions is given. In subsection 3.3.1 scalar Mellin amplitudes are introduced. A general
definition for spinning Mellin amplitudes is stated in subsection 3.3.2. In the following
subsections the pole structure of fermionic Mellin amplitudes is analyzed in three dimensions.
The results of this analysis are confirmed by perturbative calculations in terms of Witten
diagrams and conformal Feynman diagrams which are computed in section 3.4. More details
about the conformal algebra are spelled out in appendix B.1. To construct a basis of tensor
structures a concrete representation of the Lorentz algebra has to be given. This is done in
appendix B.2. In appendix B.3 it is illustrated how to calculate the Mellin amplitudes of
scalar contact diagrams at weak and strong coupling. In the last appendix B.5 the spinor
exchange Witten diagram is calculated in detail.

Remark: The signature of the metric is chosen like it is common in the respective re-
search fields. I.e. in chapter 2 the signature reads (+,−,−, . . .) except the general analysis
of dimensional regularization and in chapter 3 general properties of CFTs are explained
in Euclidean signature (+,+,+, . . .) whereas the concrete analysis of Mellin amplitudes is
performed in Lorentzian signature (−,+,+).



Chapter 2

Amplitudes

In this chapter the signature of Minkowski space R1,3 is (+,−,−,−). Thus a scalar product
of four-vectors q, p ∈ R1,3 can be decomposed into p · q = p0q0 − p · q. Further, Euclidean
vectors q ∈ Rd are denoted in bold whereas Minkowskian vectors are not typographically
emphasized and therefore they are written like scalar quantities.

In section 2.1 the notion of amplitudes is defined and the relevant properties of them
are explained. The next section 2.2 explains dimensional regularization, which is needed
to obtain finite, physical results from divergent expressions. The general concept of dimen-
sional regularization for scalar amplitudes is discussed in Euclidean signature in section 2.2.1,
whereas the four-dimensional-helicity scheme is described in Minkowskian signature in sec-
tion 2.2.2. An important concept to calculate amplitudes of non-scalar fields at one-loop is
the technique of Veltman-Passarino which is explained in section 2.3. The remaining sections
deal with the calculation of amplitudes in N = 0 supergravity coupled to Yang-Mills using
the double copy method.

2.1 Basics of Amplitudes

A classical Klein-Gordon scalar field theory described by the Lagrangian L(φ, ∂µφ) shall be
quantized by foliating the four-dimensional spacetime R1,3 along the isometry ∂t in three-
dimensional hypersurfaces Σt

∼= R3. Each Σt is endowed with a Hilbert space where canonical
commutation relations on the fields φ and Π = ∂L

∂∂tφ
are imposed: [φ(x),Π(y)] = iδ3 (x− y).

Π is called the canonical momentum of the field φ. The unitary time evolution operator

U(t2 − t1) = e−iH(t2−t1) : V1 → V2 (2.1)

evolves states {|φ1;i〉 ∈ V1} from one Hilbert space to another {U(t) |φ1;i〉 := |φ2;i〉 ∈ V2},
where H(φ,Π) =

∫
d3xH is the Hamiltonian of the theory which is the conserved quantity

with respect to time translation symmetry. Since all Hilbert spaces Vi are related by a
symmetry transformation U , they are isomorphic [98, 124].

The probability that an initial vacuum state |0〉 ∈ Vin evolves to a final vacuum state
|0〉 ∈ Vout is given by the transition amplitude

〈0|U(tout − tin) |0〉 =
∫
D [φ]D [Π] ei

∫
d4x(∂tφΠ−H(φ,Π)) =

∫
D [φ]D [Π] eiSH , (2.2)

7
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where (2.2) integrates over all classical field configurations with the boundary conditions
that φ(tin,x), φ(tout,y) match onto free fields. These boundary values define the correct iε-
prescription of the Feynman propagator [125, sec. 14.4.1]. Equation (2.2) can be derived by
calculating the transition amplitude for infinitesimal time steps ε̃ successively and inserting
a complete set of eigenstates for Π at each hypersurface Σti . The path integral measure D [φ]
is defined by the formal limit ε̃→ 0, i.e. in the continuous limit where the time intervals tend
to zero. This is the Hamiltonian path integral, i.e. the sum over phase space paths weighted
by eiSH . If the Hamiltonian does only depend quadratically on the conjugate momentum Π
the integral over D [Π] is Gaussian and can be performed which leads to the Lagrangian
path integral ∫

D [φ] eiSL =
∫
D [φ] ei

∫
d4xL(φ,∂µφ), (2.3)

i.e. the path integral over all paths in configuration space weighted by eiSL . The Lagrangian
is related to the Hamiltonian density by L = ∂tφ Π−H [8, 126].

The path integral (2.3) shall be taken as the definition of any interacting theory and the
theory is completely specified by its action SL. All physical information can be deduced from
the path integral. The time-ordered correlation functions can be obtained by

〈φ(x1) . . . φ(xn)〉 = 〈0 |Tφ(x1) . . . φ(xn)| 0〉 =
∫
D [φ] eiSLφ(x1) . . . φ(xn)∫

D [φ] eiSL
, (2.4)

where the state |0〉 is the vacuum of the Hilbert space on the given hypersurfaces Vin and
Vout.1

By introducing a source term J(x) (2.3) is generalized to the generating functional

Z [J ] =
∫
D [φ] eiSL+i

∫
d4xJ φ with Z [0] =

∫
D [φ] eiSL (2.5)

such that (2.4) can be rewritten as

〈φ(x1) . . . φ(xn)〉 = (−i)nZ [0]−1 δnZ [J ]
δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (2.6)

Z [J ] can be solved exactly for free field theory, however, for an interacting theory this
is not possible in general. But (2.5) can be computed perturbatively using the free field
theory result. This expansion is usually translated into a graph-theoretical language and
each algebraic expression can be represented by a Feynman graph or Feynman diagram
which, among other things, is an mnemonic device to construct this perturbative series of the
generating functional [125]. Feynman graphs can be constructed by Feynman rules which
are completely fixed by the Lagrangian. Calculating perturbatively the generating functional
Z [J ] amounts to the sum of all non-vanishing Feynman graphs where the external lines are
attached to the sources J . But Z [0] generates all possible vacuum diagrams (diagrams
without external lines) and subtracts them from the numerator of (2.4) which implies that
in (2.6) all, possible disconnected, graphs which include vacuum diagrams drop out of the
sum. In particular (2.6) contains all non-vacuum Feynman graphs which can be constructed

1Note that on the left hand side the field φ are quantum operator insertions whereas on the right hand
side the functional integral is over classical fields φ, i.e. the eigenvalues of the quantum operators. However,
notationally it shall not be distinguished between these two cases.
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from the Feynman rules. The disconnected parts, however, factorize in a neat way such that
the generating function can be written as

Z [J ] = eiW [J ]

where iW [J ] is the sum over all connected graphs omitting vacuum diagrams [127, 128].

The correlation function generates all kinds of single- and multi-particle states. But to
calculate the probability that a certain set of one-particle states evolves into another set
of one-particle states it is necessary to project onto the latter one.2 Let the interaction
be short-ranged such that the initial set of one-particle states |i〉 = |p1 . . .pk〉∞ ∈ V∞ is
an asymptotic state at time t = ∞ . In the same way the final set of one-particle states
|f〉 = |pk+1 . . .pn〉−∞ ∈ V−∞ is defined at t = −∞. Since it is assumed that the interaction
is short ranged the Hilbert spaces V∞, V−∞ are isomorphic to free Hilbert spaces. Therefore
the asymptotic states satisfy the on-shell condition p2 = m2. Next the correlation function
(2.6) shall be projected onto these states which can be carried out by the Lehmann-Symanzik-
Zimmermann (LSZ) reduction formula [130]. This procedure defines the important concept
of matrix elements

〈f |S |i〉=

 k∏
j=1

i

∫
d4xje

−ipj ·xj 2j +m2
√
Z

 n∏
j=k+1

i

∫
d4xje

ipj ·xj 2j +m2
√
Z

〈φ(x1) . . . φ(xn)〉 (2.7)

of the scattering matrix S. Thus the S-matrix maps the initial state |i〉 ∈ V∞ into the Hilbert
space V−∞ 3 S |i〉 such that the overlap with the state |f〉 ∈ V−∞ can be computed. Here
2j = ∂j,µ∂

µ
j is the D’Alembertian and Z is the wave function renormalization constant.3

Note that the k incoming asymptotic states have the exponential factor −ipx whereas the
n − k outgoing states have the factor ipx [125]. Therefore, an incoming particle can be
transformed into an outgoing particle simply by p → −p which also changes the helicity
h → −h, i.e. the spin projection onto the three-momentum p. This implies that for the
S-matrix an incoming particle with quantum numbers p and h is equivalent to an outgoing
antiparticle with quantum numbers −p and −h. This property is called crossing symmetry
and it can be used to describe a scattering process with outgoing particles only, which is the
convention used in this thesis [131]. However, the helicity h is only a quantum number for
massless particles.

The S-matrix is the central object in scattering theory because the entire information
of a scattering process is encoded in it. To see that the LSZ reduction formula projects
onto one-particle states it is useful to analyze its pole structure and the on-shell condition

2Mathematically a particle is defined to transform in an irreducible unitary representation of the Poincaré
group. The representation has to be irreducible, because any observer (in any Poincaré frame) should be able
to measure one (and only one) particle and unitarity is required to leave the matrix elements (2.7) invariant.
This classification has been done by Wigner [129] and is well explained in [8, 125] .
The Poincaré group is non-compact which makes all unitary representations infinite dimensional. These
representations can be found by studying the little (stabilizer) group of the Poincaré group. The little group
for the massive case is SO(3) and has therefore finite dimensional unitary representations. The irreducible
representations are labelled by the spin. In the massless case the little group can be effectively described by
the two helicity states.

3The wave function renormalization arises from the on-shell pole of the two point function 〈φ(x1)φ(x2)〉
in momentum space, i.e. in the limit p2

j → m2 the Fourier transform of 〈φ(x1)φ(x2)〉 is given by ∼ iZ
p2

j
−m2+iε .
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of the particles: On the one hand propagators of asymptotic particles which satisfy the on-
shell condition p2

j = m2 have poles of the form ∼ 1
p2
j−m2 and on the other hand the Fourier

transform of 2j + m2 is −p2
j + m2 which vanishes on-shell. Hence, only terms with poles

of the form ∼ 1
p2
j−m2 shall be non-zero and the S-matrix elements (2.7) are given by the

residues of these poles. For spinning asymptotic particles the LSZ formula also multiplies
the corresponding polarization vectors to project out the desired spin state [125].

Diagrammatically the LSZ reduction can be carried out by amputating all external ex-
ternal lines which means that they are cut off until they begin to interact with other fields.
Thus only amputated diagrams contribute to (2.7). In general there is a certain probability
that the in- and out-state are the same 〈f |S |i〉 = 〈i|S |i〉 6= 0 which means that no scattering
at all occurred. To describe scattering processes only it is common to define the interacting
part, the transfer matrix T , of the scattering matrix by the relation S = 1 + iT [125].

An important axiom of QFT is the so-called cluster decomposition principle which states
that distant uncorrelated experiments do not affect each other. This principle is automat-
ically satisfied if the Lagrangian is constructed out of fields or rather the Hamiltonian is
made of creation and annihilation operators. To make this property manifest on the level of
the scattering matrix it is useful to partition it into connected (sub-)parts, i.e. to group the
particles into clusters. For the four-point S-matrix element ∞〈k1k2|S |p1p2〉−∞ = Sk1k2;p1p2

this principle states

Sk1k2;p1p2 = Sck1k2;p1p2 + Sck1;p1S
c
k2;p2 + Sck1;p2S

c
k2;p1

which clusters the particles into a proper 2→ 2 scattering process Sck1k2;p1p2
and two different

1 → 1 processes which correspond to a free propagation of the particles. However, if the
particles k2 and p2 are separated from the other two the only contributing element is given
by

Sck1;p1S
c
k2;p2

because these two particles cannot interact with k1 and p1 any more, respectively. For
a scattering process involving more external particles the S-matrix can be partitioned in
the same way. This shows that the general S-matrix factorizes into connected S-matrix
elements. In the language of Feynman graphs the connected S-matrix element is constructed
by connected Feynman graphs only. Another important property is that each connected part
of the S-matrix contains a single four-momentum conserving δ-distribution. This property
is also manifest using Feynman graphs [8].

The partitioning of the S-matrix elements shows that it is enough to consider their
connected part only, because the full matrix element is a sum of products of connected S-
matrix elements. Expanding the S-matrix in a series S = 1+ g iT 0 + g2 iT 1 + . . . in terms of
its coupling constant g and applying this expansion to (2.7) leads to the important concept
of (n-point) amplitudes

〈f |1 |i〉+ g i 〈f |T 0 |i〉+ g2 i 〈f |T 1 |i〉+O
(
g3
)

=free part + i(2π)4δ4
( n∑
j=1

pj
) (
gA0

n + g2A1
n +O

(
g3
))
.

(2.8)

The overall momentum-conserving δ-distribution, which follows from the cluster decompo-
sition theorem, has been explicitly written out on the r.h.s. The amplitude iAmn can be
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constructed from momentum-space Feynman rules and the superscript m denotes the order
in perturbation theory. To evaluate iAmn at order gm+1 all connected Feynman graphs with
m-loops have to be evaluated and summed up. Hence, amplitudes contain the non-trivial
contribution to the scattering process.

There are two kind of particle experiments to carry out: Either the decay of one particle
into n > 1 particles or a collision experiment in which two particles scatter into n > 1
particles, since it is very unlikely that more than two particles collide at an instant of time.

To show how the theoretical framework of QFT is used to make predictions the second
process, 2 → n scattering, is outlined. The mathematical quantity which describes this
process is the differential cross section dσ/dΩ. It yields the number of particles which
scatter into an area described by the solid angle dΩ. It is defined by the quantum mechanical
normalized probability

P = |〈f |S |i〉|2

〈i | i〉 〈f | f〉

that a scattering process occurs normalized by the elapsed time t and volume V where the
event happens, divided by the particle densities %i and the relative velocity vr of the beams.
In the center-of-mass frame p1 = −p2 it is given by

dσ = 1
tV

1
%1%2vr

dP = 1
tV

V 2

|v1 − v2|
dP = V

t

1
|v1 − v2|

dP (2.9)

because the velocities are collinear.4 The particle densities are normalized such that one
particle per unit volume occurs, i.e. %i = V −1.

dP = |〈f |S |i〉|2

〈i | i〉 〈f | f〉

n∏
j=1

V

(2π)3d
3pj

is the probability to detect the outgoing particle j in the momentum range d3pj .5 Free
particle states |p〉 (in a box) are normalized such that 〈p | p〉 = EpV which fixes the norm of
|i〉 = |k1k2〉∞ and |f〉 = |p1 . . .pn〉−∞. If it is assumed that a pure scattering is happening,
the overlap is given by 〈f |S |i〉 = i 〈f |T |i〉 = (2π)4δ4(

∑
i pi)iA where in the last step the

cluster decomposition principle has been used to extract the δ-distribution.6 Hence, the
differential cross section for a 2→ n scattering reads

dσ = V

t

1
|v1 − v2|

|〈f |S |i〉|2

〈i | i〉 〈f | f〉

n∏
j=1

V

(2π)3d
3pj = 1

|v1 − v2|
|A|2

4Ek1Ek2

dΠLIPS (2.10)

4Actually, it is coincidence that the non-relativistic formula for the relative velocity appears in (2.9). The
general formula for the relativistic velocity is vrel =

√
(v1 − v2)2 − (v1 × v2)2√1− v1 · v2

−1 [132]. Thus the
flux of the particle beams reads Φ = %1%2

√
1− v1 · v2vrel = %1%2vr [133].

5The prefactor follows from the normalization that one particle is detected after integrating over a certain
range: 1 =

∫
d3nj = V

(2π)3

∫
d3pj . The last equality states the simple fact that a particle in the box V = L3

with momentum pj =
(

2π
L

)3 nj is quantized with the momentum quantum numbers nj ∈ Z3.
6A includes the connected as well as the disconnected S-matrix elements. Even though the disconnected

S-matrix elements do not come with an overall momentum conserving δ-distribution, the identity δ(x)δ(y) =
δ(x+ y)δ(y) can be used to obtain one.
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with the Lorentz-invariant phase space (LIPS) measure

dΠLIPS = (2π)4δ4
(∑

i

pi

)
n∏
j=1

d3pj
(2π)3

1
2Epj

= (2π)4 δ4
(∑

i

pi

)
n∏
j=1

d4pj

(2π)4 (2π) δ
(
p2
j +m2

)
Θ
(
p0
)
.

(2.11)

In the last step the identity δ(x + y)δ(x) = δ(y)δ(x) has been used as well as the fact that
in the box the δ-distribution obeys (2π)4δ4(0) =

∫
d4x = tV which follows from Fourier

analysis. The total cross section is obtained by integrating this expression in the region
where the particles pj are measured. Note that the final expression is independent of t and
V . [125, 127].

Due to probability conservation 〈i | i〉 = 〈f | f〉 = 〈i|S†S |i〉 the S-matrix has to be
unitary SS† = S†S = 1 which implies that the transfer matrix T obeys the generalized
optical theorem

TT † = −i
(
T − T †

)
= 2=(T ) . (2.12)

The generalized optical theorem is a very powerful statement, because it allows to determine
the imaginary part of the T -matrix at a given order from results of lower order in perturbation
theory. This is easy to see by expanding the (connected part of the) T -matrix in a power
series T = gT 0 +g2T 1 +O(g3) of the coupling constant g.7 Applying this expansion to (2.12)
and inserting a complete set of state8 1 =

∑
a

∫
dΠa |a〉 〈a| gives

2=
(
〈f |T 1 |i〉

)
=
∑
a

∫
dΠa 〈f |T 0 |a〉 〈a|

(
T 0
)†
|i〉 . (2.13)

The sum runs over all (on-shell) single- and multi-particle states |a〉, i.e. all non-kinematic
quantum numbers which label distinguished particles [125]. For example in SU(N) Yang-
Mills theory there is only one particles species (the gluon) which can have the two helicity
configurations ±1 and N2 − 1 different colour labels. Thus one has to sum over all of these
quantum numbers. The integration measure is proportional to the Lorentz-invariant phase
space measure (2.11)

dΠLIPS = (2π)4 δ4
(∑

i

pi

)
dΠa.

The unitarity requirement of the S-matrix manifests itself in terms of a Feynman diagram-
matic expansion in terms of the cutting equations [48, 135] which state that the imaginary
part of a loop amplitude comes from setting propagators on-shell, i.e. a cut is given by the
prescription

i

p2 −m2 + iε
→ 2πδ(p2 −m2)Θ(p0),

7The analytic S-matrix program tried to bootstrap the S-matrix by obtaining the real part of the T -matrix
from the imaginary part by so-called dispersion relations. However, the program did not succeed [134].

8The completeness relation is defined in analogy to the non-relativistic quantum mechanical completeness
relation 1 = (2π)−3 ∫ d3p |p〉 〈p| where the states are simply labelled by their momenta.
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which can be seen by comparing (2.11) and (2.13) on a diagrammatic level.

Nowadays this method has been refined and allows to decompose a loop-level amplitude
into a finite basis of master integrals {Ik}. This method of generalized unitarity cuts is
one of the most efficient ways to determine loop-level integrands by studying the analytical
structure of loop-integrands which are rational functions of Lorentz invariant quantities. The
idea is to find a basis {Ik} (i.e. a spanning set of cuts) in which the n-pointm-loop amplitude
Amn can be expressed

Amn =
∑
k

ckIk (2.14)

where the coefficients ck are given by manifest gauge invariant functions of Lorentz invariants.
It can be rather difficult to construct a good basis, however, in general a basis can be found
by making use of different constraints on the amplitude like power counting. Due to the fact
that the final form of the amplitude (2.14) depends on the chosen basis, it is important to
choose a suitable basis. The method of prescriptive unitarity [49] suggest that a good basis
is given if every coefficient ck is determined by a single field-theory cut. The next step is to
make an ansatz for the integrand and to determine all the unknown coefficients ck using linear
algebra by the criterion that the residues match the field theory [49, 50, 136].9 Whenever
a decomposition of the form (2.14) is possible using generalized unitarity the integrand is
solely determined by its residues.10 However, not all amplitudes are cut-constructable. In
particular the rational terms as functions of Lorentz invariant quantities in the amplitude
cannot be obtained by cuts, because these do not have any discontinuities (and therefore
no imaginary part). There are different methods to overcome this obstacle like using d-
dimensional unitarity cuts [137], because functions which are rational in four dimensions are
not rational in generic dimensions d and therefore former rational functions develop branch
cuts.

A further advantage of this method is that properties of tree-level amplitudes can be
carried over to loop-level if the property is basically unchanged if a propagator is cut [136].
In section 2.3 the method of Veltman-Passarino reduction is explained which also uses the
idea that a certain one-loop amplitude can be decomposed in a set of basis integrals.

2.1.1 Supersymmetric Ward-Identities

The generating functional (2.5) is independent of the integrated fields. Hence, applying an
infinitesimal shift φ(x)→ φ(x) + δφ(x) does not change the generating functional:

Z[J ] =
∫
D [φ] eiSL[φ+δφ,∂µφ+∂µδφ]+i

∫
d4xJ (φ+δφ)

=
∫
D [φ] eiSL[φ,∂µφ]+i

∫
d4xJ φ

(
1 + i

∫
d4x

(
δSL
δφ(x) + J(x)

)
δφ(x) + . . .

)
= Z[J ] + δZ[J ] + · · ·

9In the light of generalized unitarity this is done by cutting a certain number of internal propagators
and calculating their contributions using the generalized optical theorem (2.13) (or Cutkosky rules). This
expression has to be matched with the basis {Ik} to find the coefficients ck.

10Residues of the integrand manifest itself in discontinuities of the integrated amplitude, e.g. the rational
function 1

z
has a pole at z = 0 but its integrated expression ln z has a branch cut along the negative real axis.

Thus one can either talk about the discontinuities of the amplitude or the residues of the integrand.
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where it has been assumed that the measure D [φ] is invariant under the shift.11 In particular
this implies that δZ[J ] = 0, because this relation has to hold order by order in δφ. Taking
functional derivatives of δZ[J ] yields

0 = (−i)n δn

δJ(x1) . . . δJ(xn)δZ[J ]
∣∣∣∣
J=0

=
∫
D [φ] eiSL

∫
d4x

[
i
δSL
δφ(x)φ(x1) . . . φ(xn) +

n∑
k=1

φ(x1) . . . φ̂(xk) . . . φ(xn)δ4(x− xk)
]
δφ(x).

The hat denotes that this quantity is omitted in the sum. Since the variation δφ is arbitrary
this equation has to hold independently of it and also prior of the integration. This leads to
the famous Schwinger-Dyson equations〈

δSL
δφ(x)φ(x1) . . . φ(xn)

〉
= i

n∑
k=1

δ4(x− xk)
〈
φ(x1) . . . φ̂(xk) . . . φ(xn)

〉
(2.15)

which indicate how a quantum theory deviates from the corresponding classical theory by
the additional contact terms that are proportional to the δ-distribution.12

The Schwinger-Dyson equations can be seen as the QFT-analogue to the classical
equations of motions. However, in a classical theory not only the equations of motions
are important, but also the conserved charges and currents which can be derived from a
continuous symmetry of the action according to Noether’s theorem. The QFT-analogue
to Noether’s theorem is given by the famous Ward-Takahashi identities. They can be
derived by the following considerations. The assumption that δφ is the infinitesimal change
of a symmetry transformation implies that the Lagrangian changes by a total derivative only,
i.e.

δL(x) = ∂L(x)
∂φ(x) δφ(x) + ∂L(x)

∂(∂µφ(x))∂µδφ(x) = ∂µK
µ(x).

Using the equation of motions

δSL
δφ(x) =

∫
d4y

δL(y)
δφ(x) = ∂L(x)

∂φ(x) − ∂µ
∂L(x)

∂(∂µφ(x))

this can be rewritten as

0 = ∂µ

(
∂L(x)

∂(∂µφ(x))δφ(x)
)
− δL(x) + δSL

δφ(x)δφ(x) := ∂µj
µ(x) + δSL

δφ(x)δφ(x) (2.16)

with the Noether current

jµ(x) =
(

∂L(x)
∂(∂µφ(x))δφ(x)−Kµ(x)

)
(2.17)

11Hamilton’s principle δSL
δφcl(x) = 0 holds for classical field configurations φcl only, but the path integral

integrates over all field configurations.
12 For a massless scalar free-field theory L = 1

2φ2φ, the equation of motions are δSL
δφ(x) = −2xφ(x) such

that (2.15) reproduces the fact that the two-point correlator is the Green’s function of the free-field theory:
2x 〈φxφx1〉 = −iδ4(x− x1).
However, one has to take care that the operator 2 is outside of the path integral such that it also appears
outside the correlation function. This subtlety of the relation between canonical and path integral quantization
is explained in [125] in chapter 14.7.
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which is conserved for a classical field configuration δSL
δφcl(x) = 0 according to (2.16). In

addition if the coordinates change too, which corresponds to a global space-time symmetry
xν → x′ν = xν − ξν , the energy-momentum tensor Tµν(x)ξν has to be added to the r.h.s. of
(2.17) as well. Plugging (2.16) into the Schwinger-Dyson equation (2.15) yields the Ward-
Takahashi identities

∂µ 〈jµφ(x1) . . . φ(xn)〉 = −i
n∑
k=1

δ4(x− xk)
〈
φ(x1) . . . φ̂(xk) . . . φ(xn)

〉
. (2.18)

Thus a Noether current is conserved in a QFT upto contact terms. Note that the partial
derivative has to be written outside the correlation function (see footnote 12) [127].

The identities (2.18) are very powerful. They imply that in a theory invariant under global
supersymmetry transformations certain amplitudes vanish identically to all loop-orders. If for
a purely bosonic amplitude the helicity configuration of all particles is identical or identical
except one particle the amplitudes vanish. In particular this implies that in a theory where
Yang-Mills is coupled to Einstein gravity (see (2.65)) the amplitudes satisfy

M(1+, . . . , n+, 1++, . . . ,m++) = 0
M(1−, 2+, . . . , n+, 1++, . . . ,m++) =M(1+, . . . , n+, 1−−, 2++, . . . ,m++) = 0

(2.19)

where n and m are the numbers of gluons and gravitons, respectively. This result also holds
for non-supersymmetric theories at tree-level, because the scalars and the fermions couple
at least quadratically to the gluon and graviton in the supersymmetric Lagrangian. This
statement can also be visualized diagrammatically: If at tree-level a graph contains internal
fermionic or scalar lines, the graph has to have external fermionic or scalar lines, too [45].

2.1.2 Spinor-Helicity Formalism

In physics the descriptive power of a given formalism is always based on the effectiveness
and conciseness of the language in use. Well-known examples are the covariant formula-
tion of Maxwell’s equations and the bra-ket formalism of Dirac for non-relativistic quantum
mechanics.

A very efficient language for massless scattering processes in four dimensions is provided
by the spinor-helicity formalism [43, 44]. The key point is that this formalism unifies the
description of the on-shell degrees of freedommomentum and helicity into a single object.
Since in spinor-helicity formalism all the operators transform under the double cover of the
Lorentz group SO+(1, 3) which is given by SL(2,C), it is best to start with the massless
Dirac equation to introduce this formalism:

0 = i/∂ψ(x) := iγµ∂µψ(x) =
(

0 iσµ∂µ
iσ̄µ∂µ 0

)(
ψL(x)
ψR(x)

)
=
(
iσµ∂µψR(x)
iσ̄µ∂µψL(x)

)
(2.20)

where σµ = (12, σ) , σ̄µ = (12,−σ). In (2.20) the Weyl representation (A.2) of the γ-
matrices has been chosen. The defining property of the γ-matrices is that they obey the
Clifford algebra {γµ, γν} = 2ηµν 14. The Dirac spinor ψ(x) can be decomposed into a pair
of two-component Weyl spinors ψL and ψR, because the spinor representation of the Lorentz
group is reducible which is shown in the appendix A.1. The vector σ contains the three
Pauli matrices, which are given in (A.1). The corresponding conjugate spinor ψ̄ = ψ†γ0 is
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defined such that ψ̄ψ transforms as a Lorentz scalar. Furthermore, for the massless Dirac
equation the two Weyl spinors decouple, hence there are only two instead of four independent
solutions to (2.20).

Since ψ obeys the massless Klein-Gordon equation /∂ /∂ψ = ∂2ψ = 0, it can be constructed
by a superposition of plane waves ψp(x) = u(p)e−ipx+v(p)eipx of positive, u(p), and negative,
v(p), energy solutions which obey the following set of equations:13

/pu(p) =
(

(Ep − σ · p)uR(p)
(Ep + σ · p)uL(p)

)
= 0 = −/pv(p) =

(
(−Ep + σ · p) vR(p)
(−Ep − σ · p) vL(p)

)
.

This confirms that there are only two independent solutions, since the two positive energy
solutions coincide with the two negative energy solutions. Thus one can identify uL(p) =
vL(p) := λ(p) and uR(p) = vR(p) = λ̄(p). Hence the massless fermion shall be described
by a two-component left- or right-chiral Weyl spinor:

χw =
(
χα
0

)
(left-chiral), or ξw =

(
0
ξ̄α̇

)
(right-chiral). (2.21)

The indices α, α̇ = 1, 2 distinguish between the fundamental 2 and anti-fundamental 2 rep-
resentation of SL(2,C). Writing the indices explicitly (2.20) reads

0 =
(
i (σµ)αα̇ ∂µψα̇R(x)
i (σ̄µ)α̇α ∂µψL,α(x)

)
=
(
i (σµ∂µ)αα̇ ξ̄

α̇(x)
i (σ̄µ∂µ)α̇α χα(x)

)
. (2.22)

Indices are raised and lowered with the SL(2,C)-invariant tensor ε = iσ2, i.e. χα := (εχ)α =
εαβχβ and ξ̄α̇ := (εξ̄)α̇ = εα̇β̇ ξ̄

β̇ . Thus in momentum space the lower component of (2.22)
reads

pα̇αλα(p) = 0 with pα̇α = pµσ̄α̇αµ =
(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
, (2.23)

where the plane wave decomposition of the free Weyl fermion is given by

χα(x) =
∫

d3p

(2π)3
1√
2p0λα(p)

(
ap e

−ipx + b†p e
ipx
)
. (2.24)

Next it shall be shown that the momentum can be represented in terms of these com-
muting Weyl spinors. Solving (2.23) and the complex conjugated equation pαβ̇λ̄β̇ = 0 in the
Lorentz frame pE = (E0, 0, 0, E0) gives

λα(pE) =
(

0√
2E0

)
and λ̄α̇(pE) =

(√
2E0
0

)
.

Comparing their product with (2.23) implies

λ̄α̇(pE)λα(pE) =
(

2E0 0
0 0

)
= pα̇αE

13For the negative energy solutions instead of considering p0 = Ep < 0 the sign of the exponential has been
changed.
In this section the vectors u and v are written in the chiral eigenbasis. However, it is common to write them
in the helicity eigenbasis, which is equivalent for massless particles and opposite for massless antiparticles. In
particular, it holds uR = u+, uL = u−, vR = v− and vL = v+ (see [127, 138, 139] for more information).
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for the frame (E0, 0, 0, E0). This expression can be boosted into an arbitrary Lorentz frame
which yields λ̄α̇λα = pα̇α. To obtain a Lorentz invariant quantity constructed from λα and
λ̄α̇ one has to contract pairs of these or concatenate them with momenta:

〈ij〉 = 〈λiλj〉 := λαi λj α = −〈ji〉, [ij] = [λiλj ] := λ̄i α̇λ̄
α̇
j = − [ji] ,

〈1 |2| 3] := λα2
1 p2α2α̇2 λ̄

α̇2
3 = 〈12〉 [23] , [1 |2| 3〉 := λ̄1 α̇2p

α̇2α2
2 λα2

3 = [12] 〈23〉.
(2.25)

These elements are the arguments of any gluon amplitude viewed as a function of Lorentz
invariant quantities in four dimensions.

In order to obtain an explicit representation of the polarization vectors εα̇α± = (σ̄µ)α̇αεµ± in
terms of momentum spinors, it is also instructive to choose the Lorentz frame (E0, 0, 0, E0).
One possible choice of the polarization vectors such that they are orthogonal to the momen-
tum is given by the circular polarized vectors (helicity eigenstates) which read

εµ±(pE) := εµ±,pE = 1√
2


0
1
±i
0

 .
They satisfy ε±,pE · ε±,pE = 0, ε+,pE = (ε−,pE )∗, pE · ε±,pE = q0 · ε±,pE = 0 with the reference
vector q0 = (1, 0, 0,−1). The corresponding spinors of the reference momentum are defined
by qα̇α := r̄α̇rα. Due to the antisymmetric metric tensor ε, identical pairs of spinor products
vanish: λαλα = λ̄α̇λ̄

α̇ = rαrα = r̄α̇r̄
α̇ = 0. Hence if the numerator of εα̇α±,pE is of the form

r̄α̇λα or λ̄α̇rα the orthogonality relations are trivially obeyed. Further λα (λ̄α̇) has -1/2
(+1/2) helicity because it is the momentum spinor of the left (right) handed Weyl spinor
from (2.24). On the other hand the polarization vectors εα̇α+ (εα̇α− ) carry helicity +1 (-1)
which implies, after a suitable normalization, that the polarization vectors are given by

εα̇α+,pE = −
√

2 λ̄
α̇(pE)rα(q0)
〈λ(pE)r(q0)〉 , εα̇α−,pE =

√
2 r̄

α̇(q0)λα(pE)
[λ(pE)r(q0)] .

These expression can be boosted into an arbitrary Lorentz frame, too. Therefore it can be
concluded that

λ̄α̇λα = pα̇α, εα̇α+ = −
√

2 λ̄
α̇rα

〈λr〉
, εα̇α− =

√
2 r̄

α̇λα

[λr] , (2.26)

which proves that the momentum Weyl spinors are the basic building blocks of the scattering
amplitudes in four dimensions. It can be checked that

εα̇α± (p, q′) = εα̇α± (p, q) + s±p
α̇α with s+ = s∗− =

√
2 〈rr′〉
〈λr〉〈λr′〉

.

Thus the freedom of choosing the reference vector q encodes the gauge freedom of massless
scattering processes and it has to be chosen such that q 6= p [131].

The power of this formalism relies on the fact that it is easy to manipulate these spinor
products. Consider for example

−〈12〉 [41] [23] 〈34〉 = 〈14〉〈23〉 [12] [34]
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which implies that

〈12〉〈34〉
[12] [34] = 〈14〉〈23〉

[14] [23] . (2.27)

This identity shall be useful later on to calculate amplitudes in N = 0 supergravity coupled
with Yang Mills.

2.1.3 Colour-Ordering

One of the advantages of Feynman diagrams is that they represent complicated algebraic
expressions in a mnemonic, diagrammatic manner. However, they do not describe physical
quantities or processes because amongst other things they are not gauge invariant. Generally,
it is desirable to have gauge invariant building blocks for an amplitude, since they are easier
to control.

Hence, one would like to write an amplitude as a linear combination of gauge invariant
objects. The authors of [41] proposed such a form for an n-gluon tree-level amplitude which
is called its colour decomposition:

A0
n

(
1h1
a1 , . . . , n

hn
an

)
= gn−2 ∑

σ∈Sn−1

Tr (T aσ(1) · · ·T aσ(n))A0
n;1

(
σ(1h1), . . . , σ(nhn)

)
. (2.28)

Here g is the coupling constant and khkak represents the kth particle with momentum pk,
helicity hk and colour factor ak. The kinematic information of the amplitude A0

n is contained
in the gauge invariant partial amplitudes A0

n;1, whereas the colour information is separated
into the traces Tr (T aσ(1) · · ·T aσ(n)) of fundamental generators (T a) j̄i of the gauge group
SU(N) = {U ∈ GL(N,R)|U †U = 1 and detU = 1}, which are normalized such that

Tr(T aT b) = δab (2.29)

holds. The partial amplitudes are gauge invariant because the traces form a linear indepen-
dent basis in colour space. Due to the cyclic invariance of the trace the sum runs only over
all non-cyclic permutations Sn−1. Hence, the colour degrees of freedomhave been completely
decoupled from the kinematic degrees of freedom . Any SU(N) tree-level amplitude whose
particles transform in the adjoint representation can be written in the form (2.28)14 which
can be easily confirmed by decomposing the adjoint generators

fabc = − i√
2
Tr
(
T a
[
T b, T c

])
(2.30)

which appear in the Feynman diagrams of gluon scattering into fundamental generators T a.
Therefore a tree-level Feynman diagram for an n-particle scattering amplitude is given by
products of traces which contain three fundamental generators. Schematically the colour
structure is of the form:

fa1a2b1f b1a3b2 . . . f bn−2an−1an ∼ Tr(T a1T a2T b1)Tr(T b1T a3T b2) . . .Tr(T bn−2T an−1T an)
± other traces.

14This decomposition works for other gauge groups, too.
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Note that in each trace some of the adjoint indices a1, a2, . . . , b1, b2, . . . are contracted with
the adjoint indices of other traces. Therefore one can combine these traces to form one trace
by using the completeness relations

N2−1∑
a=1

(T a) j̄1i1 (T a) j̄2i2 = δ j̄2i1 δ
j̄1
i2
− 1
N
δ j̄1i1 δ

j̄2
i2

for SU(N)

which can be proven from fact that every Hermitian matrix B can be written as a linear
combination of the traceless Hermitian matrices T a and the unit matrix: B = c01+ caT

a. It
turns out that c0 = N−1TrB and ca = TrBT a which implies that 0 = −B ī1

j1
((T a) j̄1i1 (T a) ī2i2 +

δ j̄2i1 δ
j̄1
i2
− 1

N δ
j̄1
i1
δ j̄2i2 ). However, if all particles charged under the gauge group transform in the

adjoint representation the simpler completeness relation of U(N) can be used:

N2−1∑
a=0

(T a) j̄1i1 (T a) j̄2i2 = δ j̄2i1 δ
j̄1
i2

for U(N). (2.31)

Due to an isomorphism U(N) ∼= SU(N) × U(1) one can add the additional U(1)-generator
(T 0) j̄i := 1√

N
δ j̄i to the SU(N)-generators. However, this generator commutes with all other

generators which implies that f0ab = 0.

Since the partial amplitudes A0
n;1

(
1h1 , . . . , nhn

)
are the coefficients of certain colour

traces Tr (T a1 · · ·T an) they just receive contributions from a fixed ordering of the external
particles. Hence their analytic structure is much simpler than the full amplitude. For example
they can develop poles in channels of adjacent momenta (pi + pi+1 + · · · + pi+j)2 only. By
defining colour-ordered Feynman rules which are obtained from the usual Feynman rules by
removing the colour degrees of freedom , this property is manifest, because with these rules
only planar diagrams w.r.t. a fixed ordering of the external momenta have to be drawn to
calculate a certain partial amplitude [138].

Colour decomposition of loop-amplitudes can be determined in a similar fashion. The
authors of [42] explained that for one-loop amplitudes, in addition, new kind of trace products
can appear where two pairs of generators are contracted if one closes a loop. Thus one shall
eventually obtain trace products of the form:

Tr(T a1 · · ·T amT alT alT am+1 · · ·T an), or Tr(T a1 · · ·T amT alT ai · · ·T alT am+1 · · ·T an).

If two generators are positioned next to each other they produce (T alT al) j̄i = Nδ j̄i due to
(2.31), which is the quadratic Casimir operator of U(N) in the fundamental representation.
Similarly, one obtains two traces if the operators are not adjacent. Hence, the general one-
loop colour decomposition can be written as:

A1
n

(
1h1
a1 , . . . , n

hn
an

)
= gn

[ ∑
σ∈Sn−1

N Tr (T aσ(1) · · ·T aσ(n))A1
n;1

(
σ(1h1), . . . , σ(nhn)

)
bn2 c+1∑
c=2

∑
σ∈Sn/Sn;c

Tr (T aσ(1) · · ·T aσ(c−1))Tr (T aσ(c) · · ·T aσ(n))

× A1
n;c

(
σ(1h1), . . . , σ(nhn)

) ]
,

(2.32)

where A1
n;c are the partial amplitudes and Sn;c are the subsets of permutations which leave

the double traces invariant. bnc is the greatest integer less than or equal to n. The primitive
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amplitudes A1
n;1, which are also colour-ordered because they are the coefficients of the single

trace structures, can be calculated by drawing all planar diagrams. On the other hand the
remaining partial amplitudes A1

n;c for c > 1 can be determined from the primitive amplitudes
A1
n;1. For example four n = 4 they satisfy the simple relation:

A1
4,3

(
1h1 , . . . , 4h4

)
=
∑
σ∈S3

A1
4;1

(
σ(1h1), . . . , σ(4h4)

)
, (2.33)

where S3 is the sum over all non-cyclic permutations.

2.2 Regularization

In this thesis a perturbative approach to QFT is described by the expansion in the coupling
constants of the amputated correlators as described in section 2.1. The common tool to
calculate this series are the former mentioned Feynman graphs. However, a straight forward
calculation of many diagrams is not possible, because they may diverge when the loop mo-
menta go to infinity for fixed external momenta. These ultraviolet divergences are caused
by large fluctuations of the fields at short distances. To obtain sensible physical results one
has to remove these divergences systematically: This program goes under the name reg-
ularization and renormalization. The general idea of regularization is to introduce a
regulator and to evaluate the regularized expression in the region where it converges. After
the calculation the expression can be continued back to the region of interest. Technically,
this procedure is very delicate, because on the one hand divergent expressions cannot be
manipulated in a meaningful way and on the other hand a regulator may break some of the
theory’s symmetries like Poincaré or gauge symmetries.

2.2.1 Dimensional Regularization

In this thesis both of these problems are handled by dimensional regularization (DR). The
basic concept is to consider the integrals in generic dimensions d and do all the manipulations
in the region of convergence, i.e. for the dimension for which the integral converges. After
the expression is computed it is continued back to the dimension of interest: d = 4. Since
the expression is regularized, the integral is finite. A further advantage of this regularization
procedure is that neither Poincaré nor gauge symmetries are broken. The following discussion
is in the line of [140].

A sensible definition for integrals in non-integer d ∈ C\N∗ dimensions has been given
by Wilson [23]. It turns out that the dimension of this vector space Vd has to be infinite
dimensional for generic d.15 To obtain a vector space in n ∈ N∗ dimensions a δ-distribution
is introduced effectively, which localizes the integral on an n-dimensional hyperplane. The
integration is defined such that it obeys general properties of radial symmetric Euclidean

15Vd has to be infinite dimensional, because one can regulate any integer dimensional vector space Vn with
n ∈ N∗ with it, which implies that ∀n ∈ N∗ : Vn ⊂ Vd has to be a vector subspace.
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integrals, like linearity and scaling as well as translation and rotation invariance∫
ddL [af(L) + b g(L)] = a

∫
ddL f(L) + b

∫
ddL g(L)∫

ddL f(aL) = a−d
∫
ddL f(L)∫

ddL f(L + q) =
∫
ddL f(L)

for a, b ∈ C and any vector q. Integrals defined over Minkowski space are obtained by a
Wick rotation. The uniqueness of d-dimensional integrals can be proven by showing that the
integral is unique for a set of basis functions fa,q(L) = exp

(
−a2(L + q)2) due to linearity.

The radial basis functions are chosen to be Gaussian. Requiring that the integral of the basis
function matches the result of integer-dimensional integrals∫

ddL fa,q(L) = a−d
∫
ddL e−L2 = a−dπd/2 (2.34)

fixes the integral uniquely. Further it is demanded that∫
dd1L1 d

d2L2 e
−L2

1−L2
2 =

∫
dd1+d2L e−L2

.

The next step is to construct a concrete formula to evaluate d-dimensional integrals. To
do so, it is useful to separate the finite n-dimensional subspace containing all the external
momenta qj ∈ Rn from the remaining (infinitely many orthogonal) components.

L = (L1, L2, . . . , Ln, Ln+1, . . .) = L‖ + L⊥ with
L‖ = (L1, L2, . . . , Ln, 0, . . .) and L⊥ = (0, . . . , Ln+1, Ln+2, . . .) .

(2.35)

Finally the d-dimensional integral is defined to be∫
ddL f(L) :=

∫
dL1dL2 · · · dLn

∫
dd−nL⊥ f(L), (2.36)

where the ordinary n-dimensional integral is performed after the integral over dd−nL⊥. Since
only rotational invariant functions are considered, the integral over dd−nL⊥ shall be defined
by general spherical coordinates∫

dd−nL⊥ f(L) := Vol(Sd−n−1)
∫ ∞

0
dL⊥ L

d−n−1
⊥ f(L) with Vol(Sm−1) = 2 π

m/2

Γ
(
m
2
) .(2.37)

Vol(Sd−n) is the volume of the hypersphere Sd−n.

Hence the d-dimensional integral reads∫
ddL f(L) = 2π(d−n)/2

Γ
(
d−n

2

) ∫ dL1dL2 · · · dLn
∫ ∞

0
dL⊥ L

d−n−1
⊥ f(L). (2.38)

The convergence of (2.38) depends on the dimension d. At L⊥ =∞ the convergence improves
for smaller d, but at L⊥ = 0 it improves for greater d. Next the formula (2.38) has to be
extended to regularize potentially divergent integrals, i.e. a generalized formula should hold
for all values of d. To do so (2.38) is manipulated in a dimension where it converges and then
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it is analytically continued to smaller values of d by explicitly subtracting and adding the
singularities. In the following it shall be assumed that the function f(L) does not depend
on external momenta such that the parallel space can be set to zero. Since the function has
to be invariant under rotations it has to be a function of L2 effectively. It is assumed that
f(L2) is analytic in L and that the integral∫

ddp f(L2) = 2πd/2

Γ
(
d
2

) ∫ ∞
0

dL Ld−1f(L2). (2.39)

converges for 0 < < (d) < dmax. Note that (2.39) is analytic in d, because Γ(x)−1 is analytic
in x. Now one can analytically continue the range of convergence of this integral to the range
−2 < < (d) < dmax by rewriting (2.39) in the following way
∫
ddL f(L2) = 2πd/2

Γ
(
d
2

) [∫ ∞
r

dL Ld−1f(L2) +
∫ r

0
dL Ld−1

[
f(L2)− f(0)

]
+ f(0)r

d

d

]
(2.40)

for any r > 0 which follows from power counting. Due to the analyticity of f(L2) the function
can be Taylor expanded f(L2) = f(0) + L2f ′(0) + · · · and the most divergent part f(0) for
small d is simply subtracted. Further it immediately follows from (2.40) that
∫
d0L f(L2) = lim

d→0

2πd/2

Γ
(
d
2

) [∫ ∞
r

dL Ld−1f(L2) +
∫ r

0
dL Ld−1

[
f(L2)− f(0)

]
+ f(0)r

d

d

]

=2f(0) lim
d→0

1
d Γ

(
d
2

) = f(0).

If one is only interested in the range −2 < < (d) < 0 the formula can be further simplified
by taking the limit r →∞ to obtain the simple formula∫

ddL f(L2) = 2πd/2

Γ
(
d
2

) ∫ ∞
0

dL Ld−1
[
f(L2)− f(0)

]
.

Hence continuing this procedure for simple poles which are polynomials in L2 the di-
vergence can be systematically subtracted (and added) to obtain a finite integral for any
dimension d with∫

ddL f(L2) = 2πd/2

Γ
(
d
2

) ∫ ∞
0

dL Ld−1
[
f(L2)− f(0)− L2f ′(0)− · · · −

(
L2
)l f (l)(0)

l!

]
,

∫
d−2lL f(L2) = (−π)−l f (l)(0). (2.41)

The first formula is valid in the range −2l − 2 < < (d) < −2l for any integer l > 0 and
the second one for any integer l ≥ 0. So far (2.41) has been derived for a function which
converges at least for <(d) > 0, but from now on (2.41) shall serve as a definition for
general d-dimensional integrals even though if the integral does not converge for any d.
This definition is sensible as long as the divergence is polynomial in L2 at L = ∞. This
is important. DR has been introduced to regulate Feynman graphs, however, these graphs
may posse ultraviolet divergences in d = 4 which implies they diverge at L = ∞ for any
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<(d) > 0. Thus the continuation process is not valid, but if (2.41) is taken as a definition of
the integral, one can always find a region of convergence for some d such that the integral is
finite, i.e. (2.41) gives a regulated well-defined definition of Feynman graphs.

The explicit continuation forces∫
ddL (L2)a = 0 for a ∈ C, (2.42)

because the integrals are regulated by subtracting powers of L2 to render them finite.

To show the power of the formalism this discussion shall be finished by an example.
Consider the function

g(L2) =
(
L2)α

(L2 +M2)β
=
(
L2
)α 1

Γ (β)

∫ ∞
0

du

u
uβe−u(L2+M2).

In the last expression the generalized propagator has been Schwinger parametrized which is
valid for < (β) > 0. This function can be integrated in general dimension using (2.41)∫

ddL g(L2) = πd/2

Γ (β) Γ (d/2)

∫ ∞
0

du

u
uβe−uM

2
∫ ∞

0

dL2

L2

(
L2
)α+d/2

e−uL
2

= πd/2
Γ (d/2 + α) Γ (β − α− d/2)

Γ (β) Γ (d/2) M2α+d−2β .

(2.43)

The integral of g(L2) converges (absolutely) for < (β − α− d/2) > 0 and < (α+ d/2) > 0.
However, the final result of (2.43) is valid for any value as long as the Γ-functions in the
numerator are regular. Observe that Γ(m) only has simple poles at −m ∈ N. Thus the
(possible) divergence of the integral (2.43) now resides in the simple poles of the Γ-function.
Hence, even if the integral of the function L2/

(
L2 +M2) had been considered which does not

converge for any positive d, (2.43) gives a regularized version of this integrated expression.

Therefore the actual quantity which has to be evaluated for Feynman graphs is given by
(2.41). Generally this integral is convergent for some region such that the integral can be
evaluated.

2.2.2 Four-Dimensional-Helicity Regularization

So far it has been discussed how to regularize scalar integrals. Tensor integrals shall be reg-
ularized in the same way, whereas the regularization is done for each component separately.
But for particles transforming under a non-trivial representation of the Lorentz group like
gluons which transform in the vector representation an additional subtlety arises. What
happens to the helicity degrees of freedom? Are they continued to d = 4− 2ε dimensions as
well or can one keep them in four dimensions?

There are at least three DR schemes which enables one to regularize integrals for vector
particles [141, 142].

1. It is possible to continue the polarization vectors of the observed and unobserved
particles to 4− 2ε dimensions such that a gluon has 2− 2ε helicity states. This scheme
is called conventional dimensional regularization [140].
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Conventional ’t Hooft and Veltman FDH

momentum observed particles 4− 2ε 4 4
unobserved particles 4− 2ε 4− 2ε 4− 2ε

helicity states observed particles 2− 2ε 2 2
unobserved particles 2− 2ε 2− 2ε 2

Table 2.1: Summarizing the three different regularization schemes.

2. Another scheme is that only the unobserved polarization vectors are continued to 4−2ε
dimensions but the observed polarization vectors are kept in four dimension. This
scheme is known as the ’t Hooft and Veltman scheme [143].

3. The four-dimensional-helicity scheme (FDH) keeps the polarization vectors of the
observed and unobserved particles in four dimensions.

The defining properties of the three different regularization schemes are listed in table 2.1.
Each scheme has its advantages and disadvantages: For example the conventional regular-
ization scheme is conceptually most appealing since it treats all quantities in a uniform way.
On the other hand it is incompatible with the spinor-helicity formalism which cannot be
defined in 4 − 2ε dimensions. However, the FDH scheme keeps the external helicity states
and momenta fixed; hence it is compatible with spinor-helicity variables. It can be shown
that at one-loop all regularization schemes are equivalent [144–146].

Later the calculations shall be done with spinor-helicity variables, hence to regularize
Feynman integrals the FDH scheme is used in 4 − 2ε dimensions with ε < 0. Thus one
separates the d-dimensional Minkowskian vector

L := (l, µ) ∈ R1,3 × R−2ε, (2.44)

where the two vector spaces are orthogonal l · µ = 0. Therefore the momentum squared
is given by L2 = l2 − µ2 using the mostly minus convention (+,−,−, . . .). Thus a higher
dimensional vector can be viewed as a lower dimensional vector whose mass-squared is shifted
by µ2.16 In particular a scalar product with a four-dimensional vector projects always onto
the four-dimensional vector space e.g. ε4 · L = ε4 · l. This implies one can treat the loop
integration with “massless” loop momentum L in d dimensions as a massive loop momentum
l in four dimensions.

Following the conventions of [80] the d-dimensional scalar Feynman integrals at one loop
are defined by the expression

i

(4π)2−ε In
[
µ2r
]

:=
∫

d4l

(2π)4

∫
d−2εµ

(2π)−2ε
µ2r

D0 · · ·Dn−1
, (2.45)

where

Di = Q2
i + iε = (qi + L)2 + iε = (qi + l)2 − µ2 + iε, qj =

j∑
i=1

pi (2.46)

16Note that L2 = l2 − µ2 due to the mostly minus signature. This implies that if L2 = M2 then l2 =
L2 + µ2 = M2 + µ2. Furthermore the elements of the vector space R−2ε are defined in (2.35).



CHAPTER 2. AMPLITUDES 25

and the pi are the massless external momenta. Thus the dependence on the non-integer
integration dimension (−2ε) is fully encoded in µ2. It serves as mass term. Hence the FDH
scheme can be viewed as integrating a fictitious mass term.

The expressions for the scalar bubble I2 [1;S], the one-mass triangle I3 [1;S] and the zero-
mass box I4 [1;S, T ] are known.17 They are simple functions of the Mandelstam invariants
S = 〈12〉 [21], T = 〈14〉 [41], and U = 〈13〉 [31].

I2 [1;S] = rΓ
(−S)−ε

ε (1− 2ε) , with rΓ := Γ (1 + ε) Γ2 (1− ε)
Γ (1− 2ε) ,

I3 [1;S] = −rΓ
ε2

(−S)−1−ε , (2.47)

I4 [1;S, T ] = rΓ
2
ST

[
(−S)−ε

ε2
2F1

(
1,−ε, 1− ε; 1 + S

T

)
+ (−T )−ε

ε2
2F1

(
1,−ε, 1− ε; 1 + T

S

)]
.

These expressions are exact for any ε. Thus they are valid in any dimension. This can be
made manifest by a shift of ε, e.g.

d = 6− 2ε is obtained by ε→ ε− 1, d = 8− 2ε is obtained by ε→ ε− 2.

One the other hand the µ2 dependence can be removed by shifting the dimension of the
integral under consideration using the formula

Id=4−2ε
n

[
µ2r
]

= −ε (1− ε) (2− ε) · · · (r − 1− ε) Id=4+2r−2ε
n [1] . (2.48)

Hence, this formula solves all the integrals of the form (2.47) for any µ2 factor, because (2.48)
removes the dependence on the fictitious mass µ2r parameter by shifting the dimension of
the integration variable to 4 + 2r − 2ε. The formula (2.48) can be derived by using (2.41)

∫
d4−2εL

(2π)4−2ε

(
µ2
)r
f
(
p, µ2

)
=
∫

d4l

(2π)4

∫
d−2εµ

(2π)−2ε

(
µ2
)r
f
(
p, µ2

)
= Vol(S−2ε−1)

∫
d4l

(2π)4

∫ ∞
0

dµ2

2(2π)−2ε

(
µ2
)−1−ε+r

f
(
p, µ2

)
= (2π)2r Vol(S−2ε−1)

Vol(S2r−2ε−1)

∫
d4l

(2π)4

∫
d2r−2εµ

(2π)2r−2ε f
(
p, µ2

)
= (4π)r Γ(r − ε)

Γ(−ε)

∫
d4l

(2π)4

∫
d2r−2εµ

(2π)2r−2ε f
(
p, µ2

)
= −ε(1− ε) · · · (r − 1− ε)(4π)r

∫
d4+2r−2εL

(2π)4+2r−2ε f
(
p, µ2

)
.

For the particular case f
(
p, µ2) = 1 the desired relation is obtained [137]. Later the following

17Even if the theory under consideration is massless (p2
i = 0) the triangle diagram depends on an additional

(mass-like) parameter since on one of the three legs two momenta are attached which do not square to zero,
e.g. (p1 + p2)2 = S 6= 0.
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explicit expressions are used in four dimensions:

I2
[
µ2;S

]
= −S6 +O(ε), I2

[
µ4;S

]
= −S

2

60 +O(ε),

I2
[
µ6;S

]
= − S3

420 +O(ε),

I3
[
µ2;S

]
= 1

2 +O(ε), I3
[
µ4;S

]
= S

24 +O(ε),

I3
[
µ6;S

]
= S2

180 +O(ε),

I4
[
µ2;S, T

]
= O(ε), I4

[
µ4;S, T

]
= −1

6 +O(ε),

I4
[
µ6;S, T

]
= −S + T

60 +O(ε), I4
[
µ8;S, T

]
= − 1

840
(
2S2 + ST + 2T 2

)
+O(ε).

(2.49)

2.3 Veltman-Passarino Reduction

Evaluating Feynman integrals is a daunting task. Thus different methods have been de-
veloped to rewrite unknown integrals in terms of known ones. A widely used method for
computing Feynman integrals at one-loop order is the integral reduction invented by Velt-
man and Passarino called Veltman-Passarino reduction [147, 148]. The idea is to reduce
a generic one-loop integral TN,N (L) with N external points and numerator factor N (L) to a
linear combination of one-loop scalar integrals which provide a basis for the tensor integrand.
In this thesis only the integral reduction of four-point massless amplitudes is discussed, since
these are the type of integrals which shall appear in section 2.6. For further information
the reader is referred to [149] and [138]. The following discussion is based on the second
reference.

It shall be shown that for a massless theory any four-point tensor integral T4,N (L) with
a numerator N (L) which is polynomially bounded in the loop momentum La, a ≤ 4 can be
written as a linear combination of scalar integrals I(jN )

N with N ≤ 4 external particles:

T4,N (l) = i

(4π)2−ε

∑
j4

c4,j4I
(j4)
4 +

∑
j3

c3,j3I
(j3)
3 +

∑
j2

c2,j2I
(j2)
2

 . (2.50)

The summations jN are taken over the different possible distributions of the external mo-
menta on the N ≤ 4 legs of I(jN )

N and the coefficients cN,jN are algebraic four-dimensional
quantities which depend on external data i.e. momenta and polarizations. The definition of
the scalar integrals is given in (2.45) and they are diagrammatically listed in table 2.2. Note
that no tadpole scalar integral appears in the decomposition of (2.50). The reason is that
for a massless theory the tadpole integral is of the form (2.42); hence it has to vanish in DR.
It is instructive to separate the integration measure into the region of physical dimensions
dp and the transverse dimensions dt such that d = dp + dt. Due to momentum conservation
there are only N − 1 independent momenta for an amplitude with N ≤ 4 external points.
Thus it can be concluded that dp = N − 1. To perform the reduction it is appropriate to
use a dual basis {vi ∈ R1,3|1 ≤ i ≤ dp} to the region momenta qi =

∑i
j=1 pj which satisfies

vi · qj = δij . This basis is called the Neerven-Vermaseren basis. The explicit construction of
vi(q1, . . . , qdp) can be found in [138]. For the following discussion it shall be remarked that
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Bubbles: �
p1

p2

p4

p3

i
(4π)2−ε I2 [1;S] =

∫
ddL

(2π)d
1

D0D2

Triangles: �
p1

p2

p4

p3

i
(4π)2−ε I3 [1;S] =

∫
ddL

(2π)d
1

D0D1D2

Boxes: �
p1

p2

p4

p3

i
(4π)2−ε I4 [1;S, T ] =

∫
ddL

(2π)d
1

D0D1D2D3

Table 2.2: Scalar integral basis for tensor integrals with four external legs. The inverse
propagators are defined by Di = (L+ qi)2 + iε and qi =

∑i
j=1 pj . S and T are Mandelstam

variables. In this basis it has already been anticipated that only cubic and quartic vertices
shall appear in the theory which is considered later on.

the basis exists and posses the following properties:

nr · ns = δrs, vi · nr = 0, qi · nr = 0 and vi · qj = δij , (2.51)

where {nr ∈ R1,d−1|1 ≤ i ≤ dt} is the dual basis of the transverse dimension.18 The first
condition states simply orthonormality of this basis whereas the second and third condition
imply that this vector space is orthogonal to the physical (dual) vector space. Therefore the
loop momentum decomposes into

Lµ =
dp∑
i=1

(L · qi) vµi +
dt∑
r=1

(L · ni)nµi .

In general, the loop momentum L is contracted with vectors of external data ui in the
numerator N (L). In particular if L is contracted with the region momenta qi one can rewrite
this scalar product in terms of inverse propagators:

(L · qi) = 1
2
([

(L+ qi)2 + iε
]
−
[
L2 + iε

]
− q2

i

)
= 1

2
(
Di −D0 − q2

i

)
. (2.52)

This reduces the degree of L in N (L) because this substitution re-expresses any tensor
integral TN,N (L) as a linear combination of integrals with N ′ ≤ N legs.

18Regarding the discussion of chapter 2.2.1 the dual transverse space has to be infinite dimensional since
d = 4 − 2ε; hence the vector space V−2ε has infinitely many basis vectors. However, only the dual vector nε
to l−2ε is needed which satisfies L · nε = l−2ε · nε = 1. The notation (2.44) has been used.
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After these preliminary considerations the reduction procedure of a four-point tensor
integral can be applied straight forwardly. The tensor integral is of the form

T4,N (L) =
∫

ddL

(2π)d
Nr(L)

D0D1D2D3
with Nr(L) =

r∏
i=1

ui · L, (2.53)

where ui is a vector which depends on physical momenta and polarization vectors. Since a
four-point amplitude is considered, the physical space has dimension dp = 3 spanned by q1,
q2 and q3 and the transverse space has dimension dt = 1− 2ε. Thus

Lµ =
3∑
i=1

(L · qi)vµi + (L · n4)nµ4 + (L · nε)nµε ,

uj · L =
3∑
i=1

(L · qi)(uj · vi) + (L · n4)(uj · n4)
(2.54)

by using uj · nε = 0. This follows from the fact that nµε is orthogonal to all vectors of the
physical space. Inserting (2.52) into (2.54) gives

uj · L = (L · n4)(uj · n4) +O(Di) + const,

where O(Di) and const refer to terms proportional to inverse propagators and independent
of L, respectively. These steps already decrease the L dependence of the numerator:

Nr(L)
D0D1D2D3

=
∏r
i=1 ui · L

D0D1D2D3
=

r∑
i=1

ci
(L · n4)i

D0D1D2D3
+ const

D0D1D2D3
+ lower point integrands.

It follows from (2.54) that the coefficients ci depend on external data.

It can be seen that the second and third term have been successfully reduced to scalar
integrals or tensor integrals with less external points (one, two or three), respectively.19

Further simplifications can be achieved by squaring the first equation in (2.54) and using the
relations (2.51) and L2 + iε = D0 as well as (2.52) to rewrite the factor

(L · n4)2 = −(L · nε)2 + const+O(Di) = −µ2 + const+O(Di),

where the decomposition L = (l, µ) has been used. Hence the numerator is of the form

Nr(L) = b0 + b1(L · n4) + b2µ
2 + b3(L · n4)µ2 + b4µ

4 + lower point integrands (2.55)

with the coefficients bj depending on external polarization vectors and momenta.

The same reduction procedure works for tensor integrals with two or three external
points. However, for tensor integrals with two (three) external points the physical space has
dimension dp = 1 (dp = 2) and therefore the decomposition of Lµ is different.

Now it shall be shown that T4,N (L) can be written as a linear combination of scalar
integrals and lower point tensor integrals. Plugging into (2.53) the numerator representation
(2.55) gives

T4,N (L) =
∫
ddp+dtL

(2π)d
1

D0D1D2D3

(
b0 + b1(L · n4) + b2µ

2 + b3(L · n4)µ2 + b4µ
4
)
, (2.56)

19Removing a propagator implies that two external legs are fused together. This product only counts as
one external point after the fusion process.
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where the lower point integrals have been neglected. Due to rotational invariance of the
transverse space all terms proportional to (L · n4) shall vanish. This can be seen by decom-
posing the loop momentum

Lµ‖ =
3∑
i=1

(L · qi)vµi ∈ R1,3, and Lµ⊥ = (L · n4)nµ4 + (L · nε)nµε ∈ R1,d−1

which implies that the denominators of the propagators are of the form

Di = (L+ qi)2 + iε = L2
⊥ + (L‖ + qi)2 + iε.

Hence they are rotational invariant in the transverse dimension. The numerator Nr(L) is
of the order L4

⊥ such that a general integral can be of the form of any of the following
components

∫
ddtL⊥
(2π)dt

1
D0D1D2D3


Lµ1
⊥

Lµ1
⊥ L

µ2
⊥

Lµ1
⊥ L

µ2
⊥ L

µ3
⊥

Lµ1
⊥ L

µ2
⊥ L

µ3
⊥ L

µ4
⊥



=
∫
ddtL⊥
(2π)dt

1
D0D1D2D3


0

d−1
t ηµ1µ2L2

⊥
0

(d2
t + 2dt)−1 (L4

⊥η
µ1µ2ηµ3µ4 + perm

)


because the first and third component are odd functions. Applying this argument to (2.56)
simplifies the integral schematically to

T4,N (L) = i

(4π)2−ε

(
b0I4[1] + b2I4[µ2] + b4I4[µ4]

)
+ lower point integrals,

where the notation of (2.45) has been used. Similarly this technique can be applied to tensor
integrals with two or three external points. This shows that any tensor integral can be
written as a linear combination of scalar integrals. Since the scalar integrals are analytically
known the computation of tensor integrals is reduced to a problem in linear algebra, i.e.
finding the coefficients ck,jk .

2.4 Double Copy Method

In the last section it has been shown that the evaluation of certain integrals can be trivialized
by rewriting them as a linear combination of known scalar integrals. However, not only is it
difficult to compute the integrals which appear in perturbation theory but also to construct
the integrand of a certain amplitude can be quite challenging. In particular this holds true
for integrands which are derived from a gravity action. For example DeWitt has shown
that the cubic and quartic vertex of Einstein gravity contain 171 and 2850 separate terms,
respectively. The reason is that the vertices have to be invariant under arbitrary permutations
of the external momentum indices [62]. Furthermore linearizing Gµν = ηµν+hµν the Einstein-
Hilbert action

SEH = 1
2κ

∫
d4x
√
−G R, (2.57)
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around the Minkowskian background metric ηµν yields infinitely many interaction vertices
due to the Taylor expansion of the square root of the determinant of the metric

√
−G. The

kinetic term of the fluctuation hµν is contained in the Ricci scalar R. In a quantized theory
hµν is interpreted as the graviton. κ is the Einstein constant.

Hence, it is not advisable to calculate gravity amplitudes using standard Feynman dia-
grammatic methods. In comparison building integrands in a gauge theory is much simpler
since their Lagrangians have a better structure for the purpose of quantum field theoretic
calculations. The famous Yang-Mills (YM) Lagrangian

LYM = −1
4F

µν,aF aµν −
1
2ξ
(
∂µAaµ

)
, (2.58)

with the field strength tensor F cµν = ∂µA
c
ν−∂νAcµ+gfabcAaµA

b
ν is an example of this, because

it posses a cubic and quartic vertex only. The last term is the gauge fixing term which is
necessary to invert the free equations of motions, i.e. to obtain the propagator. g is the
coupling constant of the vertices and fabc is the gauge group structure constant under which
the gauge field Aaµ is charged. In the following the gauge group is given by SU(N). The
Feynman rules for this theory are given in appendix A.2.1.

Due to this observation it might be tempting to determine gravity integrands from gauge
theory integrands. The first realization of this idea has been developed by Kawai, Lewellen
and Tye (KLT) who derived a formula which relates closed string amplitudes to a sum
of products of open string amplitudes at tree-level [150]. Taking the point-particle limit
where the string becomes point-like their formula expresses tree-level gravity amplitudes
as a sum of products of tree-level gauge theory amplitudes. Combining this method with
generalized unitarity even loop-level gravity integrands can be derived from gauge theory
tree-level amplitudes [151]. Furthermore, the KLT formula has been generalized to one-loop
amplitudes as well [152, 153].20

A similar but different method to generate the gravity integrand is simply given by
fusing two gauge theory integrands together. A decade ago Bern, Carrasco and Johansson
[60] have argued that this is possible if at least one set of gauge theory numerators obeys
certain properties. If one represents the gauge theory integrands with trivalent vertices only
such that all kinematic numerators are arranged to obey a Jacobi-like relation mirroring the
property of the colour degrees of freedom, then the numerators of a gravity amplitude follow
by simply multiplying pairs of kinematic numerators of two gauge theories.

To apply this technique it is necessary to express an n-loop amplitude in a trivalent
fashion, which shall be illustrated for a SU(N) gauge theory amplitude with all particles
transforming in the adjoint representation. Such an amplitude can be written in the following
way

Anm = in−1gm−2+2n∑
Sm

∑
j∈Γ

∫
ddnL

(2π)dn
1
Sj

cjnj∏
αj Dαj

, (2.59)

where the amplitude consists of three main ingredients:

• The colour dependence is encoded in the colour factors cj which are a chain of the
20Note that the generalization at one loop needs the inverse of all but one propagator to be linear in the

loop momentum.
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adjoint generators ifabc.21 They obey the Jacobi identity, which for the four particle
case may be sketched as cs = ct+cu with cs := ifabe

′
if e
′cd, ct := −ifade′if e′bc and cu :=

−iface′if e′db. Furthermore, the adjoint generators ifabc are antisymmetric in their
indices which implies that the colour factors are antisymmetric under transposition.
ci = −cj .

• The set of all reduced Feynman propagators 1/(L2 −m2) associated to the jth graph
are denoted by the inverse of the product

∏
αj Dαj .

• The numerators nj account for the remaining kinematic dependence of the amplitude.
Note that the factors ±i of the Feynman propagators are also absorbed in nj .

The second sum runs over all distinct, non-isomorphic, trivalent graphs Γ and the first
one over all |Sm| = m! permutations of the external legs. Any over-counting of the jth

diagram is removed by the symmetry factor Sj (including these of internal automorphism
symmetries with external legs fixed). Note that by using the identity 1 = Dαj/Dαj any
graph in a diagrammatic expansion can be made trivalent formally.

Representing the amplitude in the form given in (2.59) reveals the parallel treatment of
colour degrees of freedom cj and kinematic degrees of freedom nj and is especially powerful
if one arranges the kinematic numerators in such a way that they obey the same algebraic
relations as the corresponding colour factors

cs = ct + cu
ci = −cj

}
=⇒

{
ns = nt + nu
ni = −nj

. (2.60)

This relation is called colour-kinematics duality (CKD).

It has been conjectured by Bern, Carrasco and Johanson [60, 61] and shown at tree-level
(n = 0) in refs. [154–159] that it is always possible to arrange all the numerators ni of a
diagram in such a way that they obey (2.60).

To illustrate this property the simple example of a four-point tree-level amplitude of YM
theory in four dimensions shall be calculated with this method [60]. According to (2.59) the
(+,+,−,−) helicity amplitude can be written in the following way:

A0
4 = −ig2

(
csns
S

+ ctnt
T

+ cunu
U

)
To obtain a simple result the numerators are expressed in spinor-helicity variables. A suitable
gauge choice for the four polarization vectors εi(pi) is given by r1 = r2 = p4 and r3 =
r4 = p1 such that the four-point vertex gives no contribution, because at least two pairs of
polarization vectors are contracted. A straightforward calculation of this amplitude with the
Feynman rules (A.1) leads to

ns = 2〈12〉2 [34]2

T
, nu = 2〈12〉2 [34]2

T
and nt = 0, (2.61)

which shows that (2.60) is satisfied. However, this is only one particular gauge choice and
there is an entire family of CKD representations. For the numerators (2.61) CKD holds

21This coincides with the conventions given in [64] which differ from the conventions in [63].
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for any reparametrization of the form nS → nS + S ∆(pi, εi) and nj → nj − j ∆(pi, εi) for
j ∈ {, T, U}, because the colour factors cj obey the Jacobi relation cs = ct + cu. These
kind of transformations are called generalized gauge transformations and they correspond to
shifting the contribution of the quartic vertex into different channels.

A map of the form nj → nj + ∆j(pi, εi) is a generalized gauge transformation if it leaves
the integrand of (2.59) invariant. I.e. any choice of ∆i such that the constraint∑

j∈Γ

1
Sj

∆jcj∏
αj Dαj

= 0 (2.62)

is satisfied is a valid generalized gauge transformation [154].

It is a striking feature of CKD that integrands for gravity amplitudes can be easily con-
structed from integrands of gauge theories if at least one set of the gauge theory numerators
nj or ñj satisfies (2.60):

Mn
m = in−1

(
κ

4

)m−2+2n∑
Sm

∑
j∈Γ

∫
ddnL

(2π)dn
1
Sj

ñjnj∏
αj Dαj

. (2.63)

The reason that only one of the numerators has to satisfy the duality stems from the relation
(2.62). Assuming that the sets {ni} and {ñi} satisfy CKD while the numerators nCKD

i =
ni + ∆i do not obey CKD the double copied amplitude (2.63) is still the same. This feature
is due to the generalized gauge transformations (2.62) because the part ∆i which does not
satisfy the duality is simply projected out:

∑
j∈Γ

1
Sj

ñjn
CKD
j∏

αj Dαj

=
∑
j∈Γ

1
Sj

ñjnj∏
αj Dαj

+
∑
j∈Γ

1
Sj

ñj∆j∏
αj Dαj

=
∑
j∈Γ

1
Sj

ñjnj∏
αj Dαj

,

since the numerators ñi inherit the same algebraic properties as the colour factors and
therefore satisfy (2.62) with cj replaced by ñj . Furthermore, gauge invariance of both gauge
theory amplitudes implies invariance of the corresponding double copied amplitude under
linearized diffeomorphisms, i.e. (2.63) is an amplitude of some gravity theory [64]. The
unitarity method motivates an extension of this feature to loop-level by reducing amplitudes
containing loops to tree-level amplitudes and demanding that CKD holds for all cuts. This
feature of obtaining gravity amplitude integrands has been proven at tree-level for pure
gravity using BCFW recursion relations [54] in four dimensions [154]. However, a general
proof is still missing. The double copy (DC) construction can be viewed as a generalization
of the Kawai-Lewellen-Tye relations [150] and a loop generalization thereof.

If a gravity integrand of theory G is constructed according to (2.63) from the integrands
of the gauge theories Qi the notation G = Q1 ⊗DC Q2 is used.

However, in general it might be quite challenging to find a CKD representation of a
certain gauge theory. Therefore a modified DC construction has been developed where the
numerators do not have to satisfy CKD. To compensate for the failure of the Jacobi identity
of the numerators, contact terms have to be added to the gravity integrand. This method
has been successfully used to obtain the five-loop N = 8 supergravity integrand for four
external points [67, 68].

Since gauge theory integrands are much easier to calculate than gravity integrands, the
DC prescription gives a powerful tool to build gravity integrands. In particular, it is enough to
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construct a certain number of master integrands, because all other integrands are determined
by the relation (2.60). Diagrammatically this can be sketched for four points as

n

�l

1

2

4

3
 = n

�l
1

2

4

3
− n

�l
1

2

3

4
 , (2.64)

where n(. . .) represents the numerator of the corresponding graph in brackets.

Applying the same reasoning the bubble graphs may be re-expressed as the difference of
triangle graphs. Therefore the master numerators for four points at one-loop are given by
the numerators of the box diagrams since all other numerators can be obtained by applying
the kinematic Jacobi identity (2.60).

2.5 Computing Amplitudes in N = 0 Supergravity Coupled
to Yang-Mills

2.5.1 Equivalence of the Antisymmetric Bµν-Field and the Axion χ

It has been shown that N = 0 supergravity (SUGRA) can be obtained by double copying
YM: SUGRA = YM ⊗DC YM [154]. This theory contains the graviton, the Kalb-Ramond
field B and the dilaton ϕ. But classically B is dual to a scalar, called axion χ, in four
dimension. This is explained in [160]. A short review about this relation between both
theories has been given in the appendix of [79].

However, this duality only proves classical but not quantum equivalence. On the one hand
in the literature there have been arguments that both theories are different at the quantum
level [161]. It is for example known that they differ by topological terms. On the other hand
it has been argued that this duality transformation even holds quantum mechanically, at least
for expectation values [162–165]. In addition, perturbative calculations at two loops have
shown that even though the ultraviolet behaviour of both theories differ their expectation
values of the observables are identical [166]. Although not conclusive there are many reasons
which support the claim that N = 0 supergravity is quantum equivalent to axion-dilaton
gravity. In this work one-loop amplitudes are calculated only. It has been shown that at one-
loop order the effective actions of both theories differ only by a topological term which does
not affect perturbation theory. This implies that both theories yield the same amplitudes at
one-loop [167].

An analysis of the spectrum of YM ⊗DC YM+φ3 shows that this theory equals N = 0
supergravity coupled to YM, but in accordance with the evidence of the aforementioned
references this theory is equivalent to Einstein-Yang-Mills theory coupled to a dilaton and
axion in the regime of interest. Hence, in this thesis YM ⊗DC YM+φ3 shall be referred as
Einstein-Yang-Mills theory coupled to a dilaton and axion (EYM). For pure gravity coupled
to YM the name “pure EYM” is used. Therefore removing the dilaton and axion in EYM
leads to pure EYM.
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2.5.2 Double copy of YM and YM+φ3

Four-point positive helicity amplitudes at one-loop in EYM are of relative simple form
because they are given by rational functions of the external data. This follows from the su-
persymmetric Ward-Takahashi identities (2.19) which imply that all positive and all-but-one
positive helicity amplitudes in EYM vanish at tree-level. Thus the one-loop amplitude has
vanishing unitarity cuts in four dimensions so that the amplitude cannot have any disconti-
nuities in the Mandelstam invariants. Thus it can be concluded that they have to be rational
functions of these.

In this section all relevant contributions at one-loop order of EYM for particles with
identical helicities are established in four dimensions. The theory is defined by the Lagrangian

LEYM=
√
−G
κ2

(
−2 R+ ∂µϕ∂

µϕ+ e2ϕ∂µχ∂
µχ
)
−
√
−G
4

(
e−ϕF aµνF

µν,a + iχF aµνF̃
µν,a

)
(2.65)

where G is the determinant of the metric Gµν , the scalar curvature is encoded in the Ricci
scalar R and F̃ aµν = i

2
√
−Gεµν%σF %σ,a represents the dual field strength tensor. The scalars

ϕ and χ are the dilaton and axion, respectively. Comparing (2.65) with pure Einstein gravity
(2.57) and YM (2.58) reveals that EYM is basically given by gravity coupled to YM and
the two scalars, the axion and the dilaton.

Obviously the structure of the Lagrangian (2.65) reveals that it is rather tedious to
calculate amplitudes by the standard method of Feynman diagrams. However, an efficient
method to compute amplitudes in this theory is established by the following algorithm:

1. Construct the gravity integrand using the DC method.

2. Veltman-Passarino reduce the gravity integrand to a linear combination of scalar inte-
grands.

3. Evaluate the known scalar integrals.

The 2. and 3. step shall be automatized which makes the algorithm very efficient. The
Veltman-Passarino reduction is implemented by the Mathematica package FeynCalc [3, 4]
and re-expresses the amplitude in terms of scalar integrals of the form (2.45), which can
immediately be written as rational functions of Mandelstam invariants (2.49). Hence, the
only non-trivial step is to build the integrand of an amplitude. It shall be shown that this
can be easily done using the double copy method described in section 2.4.

The authors of ref. [63, 64, 66] confirmed at tree level that the DC procedure of YM
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defined in (2.58), and Yang-Mills coupled to a biadjoint scalar (YM+φ3)22

LYM+φ3 = LYM + 1
2
(
Dµφ

A
)a (

DµφA
)a
− g2

4 f
abef ecdφAaφBbφAcφBd

+ 1
3!λgF

ABCfabcφAaφBbφCc
(2.66)

with the definitions
F cµν = ∂µA

c
ν − ∂νAcµ + gfabcAaµA

b
ν ,(

Dµφ
A
)a

= ∂µφ
Aa + gfabcAbµφ

Ac.

give the same amplitudes as the one derived from (2.65). Here FABC are the structure
constants of the global group and it is simply demanded that they shall obey the Jacobi
identity and that they are antisymmetric in all of their indices A,B,C, . . .. After double
copying the integrands the global group is promoted to the local gauge group SU(N) of
EYM. Dimensional analysis reveals that the coupling constant λ is of mass dimensions one.

After discussing the relevant Lagrangians of the theories, the first step is to determine
both numerators nYM and nYM+φ3 which can be extracted from the corresponding one-
loop integrands of pure YM and YM+φ3. It turns out that the four-point YM numerator
nYM

1+2+3+4+ at one-loop for an identical helicity amplitude is very simple because it is exclu-
sively given by graphs with box topology.23

This is easy to verify using the trace-base representation of one-loop amplitudes (2.32).
The primitive amplitude A1

4;1 has been calculated in several papers to all orders in ε [137,
141, 168, 169] and is given by

A1
4;1(1+, 2+, 3+, 4+) = 2i

(4π)2−ε
[12] [34]
〈12〉〈34〉I4

[
µ4;S, T

]
, (2.67)

where I4
[
µ4;S, T

]
is the scalar box integral and µ is the fictitious mass of the propagating

complex scalar field in the loop which needs to be integrated over in order to emulate 4− 2ε
dimensions. This implies that the integrand of A1

4;1 reads

aYM
1+2+3+4+ = 2iµ4 [12] [34]

〈12〉〈34〉 . (2.68)

The remaining partial amplitudes A1
4;n with n > 1 can be obtained from the primitive

amplitude A1
4;1. Note that the partial amplitude A1

4;2 cannot contribute because SU(N)
generators are traceless. So there is only the partial amplitude A1

4;3 left and this one can be
determined by the relation (2.33). This relation gives A1

4;3 = 6A1
4;1 by assuming that for all

orderings of the external momenta, the primitive amplitude (2.67) is the same. It is easy to
22In particular this has been worked out in [63, 64]. To show this they have studied the Abelian and non-

Abelian case. For example the Abelian Maxwell-Einstein theory is uniquely defined by its spectrum and its
cubic interaction if the theory has N = 4 and N = 2 supersymmetry and can be lifted to five dimensions. A
consistent truncation of this theory to N = 0 transfers this uniqueness property to it. Since N = 4 super YM
(SYM) can be consistently truncated to YM it follows from the DC procedure that N = 4 Maxwell-Einstein
(which is (N = 4 SYM) ⊗DC

(
YM+φ3) ) can be truncated to N = 0 Maxwell-Einstein. Hence, the Abelian

theory is uniquely determined by its spectrum and interaction. By promoting the Abelian field strength to
the non-Abelian generalization this claim can be extended to EYM.

23This property follows from maximal cuts [53], because only box type diagrams of YM theory are consistent
with its analytic structure and all other diagrams shall cancel.
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show that all primitive amplitudes (2.67) for any particular ordering of the external particles
are the same. This follows from the fact that the integral gives a constant and that the
numerator factor aYM

1+2+3+4+ is invariant under permutations, which shall be shown below.

The next step is to transform the integrand (2.68) into the structure constant basis. A
general box colour factor reads

ca1a2a3a4 := fa
′a1b′f b

′a2c′f c
′a3d′fd

′a4a′

= 1
4
[
N Tr (T a1T a2T a3T a4) +N Tr (T a1T a4T a3T a2)

+ 2 δa1a2δa3a4 + 2 δa1a3δa2a4 + 2 δa1a4δa2a3
]
,

(2.69)

where (2.30) and the normalization condition (2.29) as well as the completeness relation
(2.31) have been used. The basis elements of the box colour structure can be chosen as

ca1a2a3a4 , ca1a2a4a3 and ca1a4a2a3 . (2.70)

Using (2.32) and the fact that all primitive amplitudes are the same the full amplitude
is given by

A1
4 = g4

[ ∑
σ∈S3

N Tr (T aσ(1) · · ·T aσ(4)) + 6
∑

σ∈S4/S4;3

δaσ(1)aσ(2) δaσ(3)aσ(4)
]
A1

4;1(1+, 2+, 3+, 4+)

= 4 g4 [ca1a2a3a4 + ca1a2a4a3 + ca1a4a2a3 ]A1
4;1(1+, 2+, 3+, 4+)

= g4∑
S4

∑
j∈Γ

∫
ddL

(2π)d
1
Sj

cjn
YM
j∏

αj Dαj

In the second line the full amplitude has been rewritten in the basis (2.70) which can be done
using the decomposition (2.69). In the last line it is simply demanded that this amplitude can
be written in the form (2.59). It can be inferred from these arguments that the numerator
of the box colour structure basis is given by

nYM
1+2+3+4+ = 4aYM

1+2+3+4+ . (2.71)

Furthermore the numerators obey the following symmetry properties

nYM
i+j+k+l+ = nYM

i+j+l+k+ ,

nYM
i+j+k+l+ = nYM

k+l+i+j+ , (2.72)
nYM
i+j+k+l+ = nYM

j+k+i+l+ = nYM
k+i+j+l+ .

which can be proven in the same lines as (2.27). These properties imply that for all 24
positions of the external legs the numerator reads as (2.71). Once the symmetries of the
numerator are known it is trivial to prove that they obey CKD. CKD demands the relation
(2.60) to hold which in this case translates into

ca1a2a3a4 − ca1a2a4a3 = ctriangle := fa
′a1b′f b

′a2c′f c
′a′d′fd

′a4a3

=⇒ nYM
1+2+3+4+ − nYM

1+2+4+3+ = nYM
triangle.

(2.73)

It has been discussed that nYM
triangle = 0. Besides, it has been shown that all numerators with

box topology are the same nYM
i+j+k+l+ = nYM

1+2+3+4+ . These facts imply that (2.73) is trivially
obeyed.
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Thus, in restricting to the all-plus sector, only the colour structures (2.70) appear for
the YM amplitudes and their numerators satisfy CKD automatically. Therefore to obtain
integrands of amplitudes in EYM all numerators of YM+φ3 theory have to be collected
which have the same colour structures as (2.70) and multiply the two numerators divided by
the stripped propagators.

A general one-loop amplitude of YM+φ3 is of the form

A1
4

∣∣∣
g4λn

= g4λn
∑
Sm

∑
j∈Γ

∫
ddL

(2π)d
1
Sj

cjn
YM+φ3

j∏
αj Dαj

. (2.74)

It follows from the Lagrangian (2.66) that the φ3 interaction in YM+φ3 is proportional to
the coupling constants gλ. Thus the exponent n ≤ 4 indicates how often the φ3-interaction
appears in the Feynman diagrammatic decomposition of the amplitude. nYM+φ3

j shall be
computed by Feynman diagrams generated from the Feynman rules of the theory given in
appendix A.2.1.

Once both gauge theory numerators are calculated the gravity amplitude reads

M1
4

∣∣∣
κ4−ngnYM

=
(
κ

4

)4−n
gnYM

∑
Sm

∫
ddL

(2π)dn
YM ∑

j∈Γg

1
Sj

nYM+φ3

j∏
αj Dαj

. (2.75)

according to (2.63). The set Γg only includes all the numerators nYM+φ3

j which have a colour
structure of the form (2.70) and gYM is the YM coupling constant in EYM. In [63, 64] it
has been deduced how the global colour structure constant FABC of YM+φ3 maps into the
local one fabc of EYM. Furthermore, it follows from (2.74) and (2.75) that the mapping of
the coupling constants from the gauge theories to EYM is given by

FABC → fabc, (g2, gλ)→
(
κ

4 , 4
gYM
κ

)
.

2.6 Amplitudes

In this section the missing step to obtain the amplitudes in EYM is accomplished: All the
integrands of YM+φ3 are evaluated and in the end of this section the full result for the EYM
amplitudes is presented. New results are obtained for 〈1+2+3+4++〉 and 〈1+2+3++4++〉 at
order κ3 and κ4, respectively. Furthermore, the κ-corrections at order κ2 and κ4 for the
four-gluon amplitude 〈1+2+3+4+〉 are also shown. Note that a DC expression of these
integrands for arbitrary helicity configurations has been given in [63] by using the results of
[170], however, the integrated amplitude has not been published yet. In the last part of this
section the result for 〈1++2++3++4++〉 is evaluated [2]. The relevant integrands of YM+φ3

which shall be used in the DC prescription are collected in appendix A.2.2. In the following
Feynman diagrams curly lines represent the gluon and the dashed lines sketch the real scalar.

2.6.1 Amplitudes: 〈1+2+3+4+〉

First the κ2 correction to 〈1+2+3+4+〉
∣∣
κ2 is computed with the DC method introduced in

the previous section. Therefore in YM+φ3 all Feynman graphs which are proportional to λ2
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have to be calculated according to equ. (2.75). It has also been pointed out that only the box
diagrams are non-vanishing for the all-plus YM amplitude. Hence, only the diagrams which
carry the same colour structure as the box diagrams have to be determined in YM+φ3. A
careful analysis shows that only the graph topologies shown in figure 2.1 contribute. The
integrands in figure 2.1 have a very simple form and can be obtained by the Feynman rules
given in appendix A.2.1. For example the integrand of the first graph in figure 2.1 reads:

�
1A
a

2B
b

4D
d

3C
c

= g4λ2cabcd

D0D1D2D3
FABE

′
FE

′CD
[
(p3 + q3 + l) · (q1 + l − p2)− µ2

]
.

The factors in the denominator Di := Q2
i + iε = (l + qi)2 − µ2 + iε are the denominators of

the Feynman propagators. The colour structure reads cabcd = fa
′ab′f b

′bc′f c
′cd′fd

′da′ and the
global SU(N) group information is encoded in FABE

′
FE

′CD, which shall be mapped into
the adjoint gauge group generators of EYM after double coping.

The amplitude representation (2.74) only contains cubic graphs, however, it can be seen
that in figure 2.1 Feynman graphs with quartic vertices also appear, e.g. the first graph in
the second line of figure 2.1 reads

�
1A
a

2B
b

4D
d

3C
c

= g4λ2

D0D1D2

[
cabcd

(
FACE

′
FE

′DB − δCDFA′AB′FB′BA′
)

+cabdc
(
FADE

′
FE

′CB − δCDFA′AB′FB′BA′
)

+ ctriangle . . .
]
.

This expression can be simplified using the Jacobi identity cabdc ≡ cabcd + ctriangle of (2.73)
which implies that the first two terms add up. However, it has also been extensively discussed
that all numerators in YM theory associated to colour structures different from (2.70) vanish.
This implies that the parts of the integrand which effectively contribute to EYM are

�
1A
a

2B
b

4D
d

3C
c

eff= g4λ2

D0D1D2
cabcd

(
FACE

′
FE

′DB + FADE
′
FE

′CB

−2δCDFA′AB′FB′BA′
)
.

The next step is to insert D3
D3

which makes the graph trivalent formally such that the gravity
integrand can be obtained by (2.75).

After collecting all the non-vanishing contributions and building up the complete inte-
grand, the amplitude is Veltman-Passarino-reduced with the Mathematica package FeynCalc
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Figure 2.1: Graphs of these topologies are the only ones that have to be considered in YM+φ3

at order λ2g4 . The other graphs do not contain the colour structures (2.70). Curly lines
represent propagating gluons and dashed lines represent scalar fields. The internal momenta
Qi are d-dimensional.

[3, 4].Thus the full amplitude at order κ2 reads

M1
4 (1+2+3+4+)

∣∣∣
κ2g2

YM
= − i

(4π)2

(
κgYM

4

)2 4
3

[12] [34]
〈12〉〈34〉

×
(
4fabe′f e′cd (U − T ) + 4fade′f e′bc (S − U) + 4face′f e′db (T − S)

+NS δabδcd +NT δadδcb +NU δacδbd
)

= −iκ
2g2

YM
192π2

[12] [34]
〈12〉〈34〉

(
4fabe′f e′cd (U − T ) +NS δabδcd + perm

)
,

where perm indicates the permutations of the legs two and three as well as two and four.
The kinematic dependence is encoded in the spinor brackets and the Mandelstam variables
S = 〈12〉 [21], T = 〈23〉 [32] and U = 〈13〉 [31].

The next correction term 〈1+2+3+4+〉
∣∣
κ4 can be obtained by the same technique as for

〈1+2+3+4+〉
∣∣
κ2g2

YM
. All the graphs which contribute are depicted in figure 2.2. The numer-

ators are fairly simple and are listed in the appendix A.2.2. A straight forward calculation
gives the following integrated amplitude

M1
4 (1+

a , 2+
b , 3

+
c , 4+

d )
∣∣∣
κ4

= i

(4π)2
κ4

44
4
15

[12] [34]
〈12〉〈34〉

(
δabδcd

(
40 TU − (2 +Ng)S2

)
+δacδbd

(
40 ST − (2 +Ng)U2

)
+ δadδbc

(
40 SU − (2 +Ng)T 2

))
= i

(16π)2
κ4

60
[12] [34]
〈12〉〈34〉

[
δabδcd

(
40 TU − (2 +Ng)S2

)
+ perm

]
.

where again perm indicates the permutations of legs two and three as well as two and four
and Ng = δa

′a′ = N2 − 1 is the number of adjoint generators of the Lie algebra.

2.6.2 Amplitudes: 〈1+2+3+4++〉

It has been explicitly shown that 〈1+2+3+4++〉
∣∣
κg3

YM
vanishes in four dimensions [80] us-

ing both generalized unitarity and the DC method. Therefore the DC calculation is not
reproduced in this thesis.
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Figure 2.2: At order g4 these box, triangle and bubble topologies are non-vanishing after
double copying.

The next contribution is at order κ3. The corresponding graphs are drawn in figure 2.3
and the first integrand is of the form

�
1A
a

2B
b

4+
d

3C
c

= −ig4λ

D0D1D2D3
cabcdFABC (p2 +Q2) · (Q0 − p1) 〈r4 |q0 + q3 + 2l| 4]√

2〈r44〉
,

where four-dimensional spinor-helicity variables are used to represent the polarization vector,
which is defined in (2.26). Compared to the previous two amplitudes there is an additional
gauge freedom that is encoded in the reference vector r4 which can be chosen arbitrarily
but not such that it is proportional to p4. The full calculation has been done for the gauge
choices r4 ∈ {p1, p2, p3}. Since the amplitude has to be invariant under different gauges, this
is a powerful crosscheck for the final result.

After all integrands of YM+φ3 have been determined one can construct the gravity
integrand using (2.75). Evaluating and reducing this expression yields the simple result

M1
4(1+

a , 2+
b , 3

+
c , 4++)

∣∣∣
gYMκ3

= −κ
3gYM

(8π)2
fabc√

2
[41] [42] [43] [12]

〈34〉 . (2.76)

2.6.3 Amplitudes: 〈1+2+3++4++〉

The leading order in κ2 for the amplitude 〈1+2+3++4++〉
∣∣
κ2g2

YM
has been determined in

[80] using the unitarity based two-cut method. Here it shall be shown that with the DC
prescription (2.75) this result is much easier obtained. Only the graph topologies drawn in
figure 2.4 have to be evaluated on the YM+φ3 side. Besides, the calculation can even further
be simplified by choosing the reference momenta ri for the gluon polarization vectors at the
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Figure 2.3: To obtain 〈1+2+3+4++〉
∣∣
κ3gYM

these type of graphs in YM+φ3 have to be
analyzed.
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Figure 2.4: This pair of graph topologies represent graphs which appear at leading order in
λ2g2 which contribute to 〈1+2+3++4++〉.

legs three and four to be the same such that the integrands containing the quartic vertex
give zero identically.24

Thus only the first type of graph from figure 2.4 has to be determined. The resulting
amplitude is given by

M1
4(1+

a , 2+
b , 3

++, 4++)
∣∣∣
g2

YMκ
2

= i

(4π)2

(
κ gYM

2

)2
fa
′ab′f b

′ba′ S

6
[12] [34]2

〈12〉〈34〉2 . (2.77)

This result agrees with the expression given in [80] if one inserts into their results the pair
of coupling constants (gYMκ/2)2 and the colour structure N Tr

(
T aT b

)
= N δab = fa

′ab′f b
′ba′

following from the decomposition of a one-loop amplitude into partial amplitudes (2.32).
Since the result stated in [80] is the only partial amplitude which contributes, both expression
coincide.

The κ4 contribution can be determined by the graphs given in figure 2.5. Applying the
same steps as before the result reads

M1
4(1+

a , 2+
b , 3

++, 4++)
∣∣∣
κ4

= i
κ4

(16π)2
[21]2 [43]3

〈34〉
2 +Ng

90 δab. (2.78)

HereNg represents again the dimension of the adjoint representation of the gauge group. This
result has been calculated for the following choices of reference momenta r3 ∈ {p1, p2, p4},
r4 ∈ {p1, p2, p3} yielding identical results.

24This follows from ε+3 · ε
+
4 ∼ 〈r3r4〉.
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Figure 2.5: At g4 these graph topologies shall contribute to the gravity amplitude
〈1+2+3++4++〉
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2.6.4 Amplitude: 〈1++2++3++4++〉

The remaining all-plus amplitude of EYM only contains gravitons as asymptotic states. In
principle all the diagrams given in figure 2.6 contribute to the integrand. It can be seen
that the graphs in the first row arise from pure YM theory. It has been discussed in section
2.5 that the calculation of these diagrams simplifies by choosing an appropriate gauge such
that the graphs with box topology are the only non-vanishing ones, i.e. the only integrand
which survives is exactly given by (2.71). For example this has been demonstrated in [169]
using unitarity cuts. To simplify their analysis, the propagating gluon has been replaced by
a complex scalar which is possible due to the supersymmetric Ward–Takahashi identities.
They relate the amplitudes which inherit a circulating gluon to amplitudes with a circulating
complex scalar in the following way

M1,gluon
4 (1++, 2++, 3++, 4++) =M1,scalar

4 (1++, 2++, 3++, 4++).

The superscripts “scalar” and “gluon” refer to the particle types which are circulating in the
loop. Since a complex scalar has two degrees of freedom this relation can be represented
diagrammatically by

& = 2)
This immediately shows that the graphs in the first and second row are intimately related.
Hence one can write the amplitude as the sum of three scalar boxes in 4 − 2ε dimensions,
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Figure 2.6: These topologies in YM+φ3 have to be evaluated to obtain 〈1++2++3++4++〉
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which are defined in equation (2.45):

M1
4(1++, 2++, 3++, 4++) = i

(4π)2−ε
κ4

4

( [12] [34]
〈12〉〈34〉

)2

×
(
I4
[
µ8;S, T

]
+ I4

[
µ8;T, U

]
+ I4

[
µ8;U, S

])(
1 + Ng

2

)
.

In four dimensions the result simply reduces to

M1
4(1++, 2++, 3++, 4++) = − i

(4π)2κ
4
( [12] [34]
〈12〉〈34〉

)2 S2 + T 2 + U2

1920 (2 +Ng) . (2.79)

According to [65] the dilaton and axion can be removed by subtracting twice the contribution
generated by the adjoint scalar circulating in the loop. For the all-plus amplitude the scalar
part is given by

M1,scalar
4 (1++, 2++, 3++, 4++) = − i

(4π)2κ
4
( [12] [34]
〈12〉〈34〉

)2 S2 + T 2 + U2

3840 . (2.80)

This result implies that the pure EYM (i.e. without the axion and dilaton) amplitude reads

M1
4,pEYM(1++, 2++, 3++, 4++) = − i

(4π)2κ
4
( [12] [34]
〈12〉〈34〉

)2 S2 + T 2 + U2

1920 (1 +Ng) . (2.81)

The result for the pure gravity part of (2.81) agrees with [151, 171] which can be seen using
the identity

[12] [34]
〈12〉〈34〉 = − ST

〈12〉〈23〉〈34〉〈41〉 .

2.6.5 Final Results

In this chapter all four-point amplitudes with positive helicity configuration have been cal-
culated at one-loop order for EYM. As expected the amplitudes are rational functions and
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read:

M1
4(1+

a , 2+
b , 3

+
c , 4+

d ) = i

(4π)2
[12] [34]
〈12〉〈34〉

([
− 4

3 g
4
YM fa

′ab′f b
′bc′f c

′cd′fd
′da′

− κ2g2
YM

12
(
4fabe′f e′cd (U − T ) +NS δabδcd

)
+ κ4

960δ
abδcd

(
40 TU − (2 +Ng)S2

) ]
+ perm

)
,

M1
4(1+

a , 2+
b , 3

+
c , 4++) = −κ

3gYM
(8π)2

fabc√
2

[41] [42] [43] [12]
〈34〉 ,

M1
4(1+

a , 2+
b , 3

++, 4++) = i

(4π)2 δ
ab [12]2 [34]2

〈34〉2
(
− κ2g2

YM
24 N + κ4

1440S (2 +Ng)
)
,

M1
4(1++, 2++, 3++, 4++) = − i

(4π)2κ
4
( [12] [34]
〈12〉〈34〉

)2 S2 + T 2 + U2

1920 (2 +Ng) .

Moreover, this result can be extended to arbitrary helicity configurations at four points.
These amplitudes can be obtained by using the DC method in the same way as it has
been discussed in this thesis because the authors of [170] constructed a CKD satisfying
representation for four-point YM amplitudes at one-loop for arbitrary helicity configurations.
However, using their numerators the calculation is much more tedious since these are non-zero
for all possible graph topologies which increases the number of diagrams to be calculated
in YM+φ3 enormously. Hence, it might be more efficient to use a different technique to
compute these amplitudes.

2.6.6 Pure Einstein-Yang-Mills Amplitudes

Generally, it would be very interesting to be able to obtain the pure EYM results from the
amplitudes calculated in this paper. An analysis of possible interaction terms generated by
the Lagrangian (2.65) shows that the axion and dilaton cannot contribute at one loop for
a four-point amplitude if the number of asymptotic gluon states matches the power of the
coupling constant gYM. The reason is that in this case only the gauge fields can propagate
in the loop, because all fields couple at least quadratically to it.

Further for the four-point graviton amplitudeM1
4(1++, 2++, 3++, 4++) it has been possi-

ble to separate the axion and dilaton contributions from the gluon and graviton contributions
to obtain the pure EYM result. This has been achieved by subtracting the unwanted particle
types circulating in the loop according to [65].

The authors of [65] have motivated and illustrated on several examples that pure gravity
theories can be directly obtained by considering a generalized double copy procedure in
which particles transforming in the (anti-)fundamental and adjoint representation of the
gauge group are studied. The reason is that the dilaton ϕ and the axion χ on-shell states do
not only appear in the spectrum of the tensor product of two on-shell gluon states Aµ, but
also in the tensor product of fundamental and anti-fundamental Weyl fermions ψ+ and ψ−,
respectively. Thus subtracting the latter contribution from the former is supposed to yield a
pure gravity theory.25 Consider the following decomposition into irreducible representations

25This implies that the fundamental Weyl fermions have to have opposite statics. Otherwise both contri-
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of the Poincaré group

Aµ ⊗Aν = hµν ⊕ φ+− ⊕ φ−+,

where the graviton on-shell state hµν has two degrees of freedomand the states φ+− ∼ ϕ+ iχ
and φ−+ have one each. In comparison the on-shell Weyl fermions tensor product can be
written as

ψ+ ⊗ ψ− = φ+− and ψ− ⊗ ψ+ = φ−+.

Using the generalized DC method of two YM theories coupled to (opposite statistic)
fundamental Weyl fermions yields an amplitude in a pure gravity theory. The authors of [65]
could conclude that by studying the internal degrees of freedomof the loop amplitudes and
by applying generic unitarity cuts of the gravity amplitude in four dimensions. This analysis
has revealed that the only internal propagating states are gravitons. Hence the resulting
amplitude has to be a pure gravity amplitude.

However, the four-point graviton amplitude M1
4(1++, 2++, 3++, 4++) and the analysis

of [65] have in common that only one particle type is circulating in the loop. But all the
remaining amplitudes computed in this thesis contain a mixed type of particles circulating
in the loop, which makes a subtraction of the axion and dilaton rather difficult.

butions would add up.
In general the subtraction has to be performed by the fundamental Weyl fermions, however, in the case of
a four-point pure gravity amplitude at one-loop the authors of [65] have shown that this is equivalent to
subtracting twice the contribution (2.80).
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Chapter 3

Mellin Amplitudes

Comments about the Signature

It is common to study several properties of conformal field theories (CFTs) in Euclidean
spacetime. However, Euclidean and Lorentzian CFTs contain the same information, i.e. the
CFT data is identical. They are related by analytic continuation which is established by a
Wick rotation from Euclidean time τj to Lorentzian time ti. The choice of contour of this
Wick rotation is important, because it dictates the time ordering of the correlator, e.g. if it
is time-ordered, anti-time-ordered or of mixed ordering. A neat way to implement this choice
of contour is by fixing the iε-prescription. This result is known as the Osterwalder-Schrader
reconstruction theorem which states that well-behaved Euclidean correlation functions can be
analytically continued to Wightman functions [172–174]. This is nicely reviewed in [175, 176]
and more mathematically in the standard textbook [177, Theorem 3-5].

To illustrate this take the simple example of an Euclidean two-point correlator

〈φE(τ1,x1)φE(τ2,x2)〉 = 1(
τ2

12 + x2
12
)∆ . (3.1)

This function is analytic for non-coincident points (τ1,x1) 6= (τ2,x2). (3.1) can be analyti-
cally continued to a Wightman function by setting τi = εi + iti with ε1 > ε2. The inequality
ε1 > ε2 fixes the ordering of the operators. This leads to

〈φE(ε1 + it1,x1)φE(ε2 + it2,x2)〉 = 1(
−t212 + x2

12 + 2iε12t12 + ε212
)∆ .

Finally one sends ε12 := ε > 0 to zero which gives the Lorentzian correlator

〈φL(t1,x1)φL(t2,x2)〉 = lim
ε→0

1(
x2

12 + 2iεt12
)∆ = lim

ε→0

1(
x2

12 + iε
)∆ = 1∣∣x2

12
∣∣∆ e−iπ∆ (3.2)

with x2
12 = −t212 + x2

12. This is the result for a time-ordered correlator, e.g. (t1 > t2).
For an anti-time-ordered correlator (t2 > t1) the phase would have opposite sign. The
difference in both time orderings corresponds to crossing the branch cut along the real
negative axis. Hence the iε-prescription defines the choice of contour uniquely. This analysis
can be generalized to n-point correlators.

47
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In both correlators (3.1) and (3.2) the same conformal dimension is encoded which im-
plies they carry the same information. Therefore the signature can be chosen either way. In
this thesis the choice of signature is mostly the same as it is in the literature, e.g. parts of
the introduction to CFTs (section 3.1), the definition of the Mellin amplitude (section 3.3)
and the perturbative calculations (section 3.4) shall be presented with the metric signature
(+, . . . ,+). To obtain the definition for the Mellin amplitude in Lorentzian spacetime the
correct iε-prescription is included. Since the final results in this thesis shall be presented
in Lorentzian spacetime all the three-dimensional tensor structures in section 3.2 are con-
structed for the metric signature (−,+,+). The conformal group/algebra in section 3.1 is
studied in Lorentzian spacetime, too.

3.1 Conformal Symmetry

Generally symmetries are generated by Killing vector fields, because these are the (infinites-
imal) generators of isometries

g′µν(x′) = ∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) isometry= gµν(x) (3.3)

of the metric g, i.e. they generate distance preserving transformations of the metric. The
indices can take the values 0 ≤ µ, ν, . . . ,≤ d − 1. Since the metric is invariant under the
flow of Killing vector fields, the action posses a symmetry according to Noether’s theorem.
Mathematically, the flow of a Killing vector field X has to vanish along the metric g

LXg = 0, (3.4)

where the Lie derivative LX evaluates the change of the metric g along the flow of the vector
field X. In local coordinates (3.4) translates into the Killing equations1

∇µXν +∇νXµ = 0 with the covariant derivatives ∇µ. (3.5)

However, if one is interested in the class of phenomena invariant under conformal trans-
formations

g′µν(x′) = Ω2(x)gµν(x), (3.6)

symmetries are given by conformal Killing vectors fields ε = εµ∂µ which change the
metric under the flow of ε only by a local rescaling Ω(x) and satisfy locally the conformal
Killing equations

Lεg = Ω2(x)g or locally ∇µεν +∇νεµ = 2
d
∇ρερgµν .

Assuming that the metric is the constant Minkowskian metric g = η with the signature
(−,+, . . . ,+) and considering the subclass of transformations that rescale the Minkowskian
metric η only, the conformal Killing equations take the simple form

∂µεν + ∂νεµ = 2
d
∂ρε

ρηµν . (3.7)

1Locally an isometry (3.3) yields the Killing equation for the infinitesimal displacement x′µ = xµ + Xµ

and Xµ has to obey the Killing vector equation (3.5) which can be checked by δgµν(x) = g′µν(x)− gµν(x) =
g′µν(x′ −X)− gµν(x).
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The most general vector in d > 2 dimensions which satisfies (3.7) is given by

ε = εµ∂µ = iaµPµ + iλD + i

2w
µνMµν + ibµKµ (3.8)

where the corresponding generators are defined by

Pµ := −i∂µ generates translations,
Mµν := i (xµ∂ν − xν∂µ) generates rotations,
D := −ixµ∂µ generates dilatations,

Kµ := −i
(
2xµxν∂ν − x2∂µ

)
generates special conformal transformations.

(3.9)

These generators characterize the conformal algebra and obey the following (non-vanishing)
commutation relations

[Mµν , Pρ] = i (ηνρPµ − ηµρPν) ,
[Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ − ηνσMµρ − ηµρMνσ) ,

[D,Pµ] = iPµ,

[D,Kµ] = −iKµ,

[Kµ, Pν ] = 2i (ηµνD −Mµν) ,
[Mµν ,Kρ] = i (ηνρKµ − ηµρKν) .

(3.10)

The conformal algebra includes the Poincaré algebra as a subalgebra, since the first two com-
mutation relations of (3.10) form a closed subalgebra. In fact the conformal algebra acting
on R1,d−1 is isomorphic to SO(2, d). The isomorphism is given by mapping the generators
(3.9) to the generators

Jµν = Mµν , Jµ,d = −1
2 (Pµ +Kµ) , Jµ,d+1 = 1

2 (Kµ − Pµ) , Jd+1,d = D. (3.11)

It can be verified that in this representation the conformal algebra satisfies

[JMN , JRS ] = i (ηNRJMS + ηMSJNR − ηNSJMR − ηMRJNS) , (3.12)

where the diagonal metric ηMN has the signature (−,+, . . . ,+,−). The coordinates can take
the following values 0 ≤M,N,R, S ≤ d+ 1 [29, 98, 124].

In a quantum theory one is interested in calculating observables which, in a conformal
theory, can be obtained from local operators. Hence, it is important to analyze how the
conformal symmetry acts on operators. In CFTs it is useful to distinguish two types of local
operators: primaries and descendants. Primary operators O∆(x) are of special interest
because all descendant operators can be obtained from them, and they satisfy very simple
transformation rules at the origin x = 0, i.e. they are eigenvectors of the dilatation operator
and transform in irreducible representations of the Lorentz group2

[Mµν ,O∆(0)] = SµνO∆(0), [D,O∆(0)] = −i∆O∆(0), [Kµ,O∆(0)] = 0. (3.13)
2If the set {O∆i (0)|i ∈ I} forms a basis of an invariant subspace of the representation space of the Lorentz

group (i.e. the representation of the Lorentz group is irreducible), then every generator that commutes with
generators of the Lorentz group have to be proportional to the identity by Schur’s lemma. This implies that
O∆(0) is an eigenvector of the (matrix-) representation of the dilatation operator D, since [D,Mµν ] = 0.
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∆ is called the scaling dimension of the operator and it gives information about physical data
like critical exponents. Sµν is a matrix-valued representation of (Lorentz-)rotations Mµν .
Further details can be found in the appendix B.1. The last commutator [Kµ,O∆(0)] = 0
follows from the fact that the matrix-representation of D is proportional to the unit matrix
combined with the commutation relations (3.10). In addition this commutation relation
suggest that there is a lowest weight state of D from which all other states of a conformal
multiplet can be constructed by applying conformal transformations, i.e. the irreducible
representation space can be constructed in similar way as the algebra of SU(2). Let O∆(0)
denote the primary operator which satisfies [D,O∆(0)] = −i∆O∆(0). Using [D,Pµ] = iPµ
one can deduce

O∆(0) P
µ1→ Oµ1

∆+1(0) P
µ2→ Oµ1µ2

∆+2 (0) P
µ3→ . . . (3.14)

by applying the Jacobi identity. Thus the entire ladder of dilatation eigenvalues can be walked
up by applying the operator Pµ. Note that these operatorsOµ1

∆+1(0) do not commute withKµ;
hence they are not primaries but descendants. In general a descendant can be constructed
from a primary by applying the operator Pµ as can be checked with the commutation relations
(3.10). It can be proven that all local operators in a CFT are a linear combination of primaries
and descendants [124].

3.1.1 Operator-State-Correspondence and Operator-Product-Expansion

In section 2.1 it has been pointed out that spacetime should be quantized along one of its
isometries. As shall be shown, for CFTs it is useful to choose the direction of quantization
along scale transformations. This implies that the d-dimensional spacetime is foliated into
spheres Sd−1 where each of these is equipped with its own Hilbert space V. To act on V,
operators have to be inserted on the spheres. To map an operator from one Hilbert space to
another the Euclidean evolution operator3

U(r2 − r1) = e−D(ln r2−ln r2) : V1 → V2 (3.15)

can be used.4 It follows from the comparison of (3.15) and (2.1) that the dilatation operator
D plays the role of the Hamiltonian in a radially quantized theory. The origin shall be placed
at x = 0, however, any other point is equally fine. This quantization scheme is sketched in
3.1.

Radial quantization is a very convenient quantization-scheme for CFTs. In particular,
this scheme is useful to prove the operator-state-correspondence which states that every
state in the CFT can be created by operators locally acting at a small neighbourhood close
to the origin. This means that the entire Hilbert space can be constructed from one, single
point. As usual in quantum mechanics, states are classified by its quantum numbers, i.e. in
CFTs they are given by its scaling dimension ∆ and its SO(d) representation denoted by

3This and the next subsection are explained in Euclidean signature.
4Scale transformations become an isometry (i.e. they obey (3.3)) if a Weyl rescaling is performed which

maps Rd → R × Sd−1. On the cylinder R × Sd−1, scale transformations are an isometry and the “time
evolution operator” is given as in (3.15). Both metrics are related by

ds2
Rd = dr2 + r2ds2

Sd−1 = e2τ (dτ2 + ds2
Sd−1

)
= e2τds2

R×Sd−1 and r = eτ .

In particular, radial quantization on the plane is equivalent to usual quantization on the cylinder [124].
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t

Σd−1
t

r

Sd−1
r

Figure 3.1: On the l.h.s. spacetime is quantized along the time direction t. Each hypersurface
Σd−1
t is equipped with a Hilbert space. On the r.h.s. spacetime is quantized radially, each

sphere Sd−1
r is endowed with its own Hilbert space.

its spin l. Hence, a state is uniquely characterized by |∆, l〉i, where the index i is given in
the appropriate SO(d) representation under which the state transforms, e.g. scalar, tensor,
spinor etc. representation. However, in the following discussion the SO(d) spin value l and
index i shall not be written explicitly, i.e. the short-hand notation |∆, l〉i := |∆〉 is used.
This notional simplification is not relevant for the proof.

Each local operators constructs a state

It has been pointed out, in a CFT the complete basis of operators is given by primaries and
descendants. Further, it has been shown that each descendant can be created from primaries
by acting with the momentum operator. Thus, to construct a state from an operator, it is
best to start to map primary operators inserted at the origin x = 0 to primary states. This
is established by

O∆(0) −→ O∆(0) |0〉 := |∆〉 (3.16)

with the conformal invariant vacuum state |0〉. This implies that the state |∆〉 and the
operator O∆(0) obey the same commutation relations (3.13). A general primary operator
O∆(x) inserted at any point but the origin can be written as a linear combination of local
operators O∆ inserted at x = 0 (or rather the identified state |∆〉). Hence,

O∆(x) |0〉 = eP ·xO∆(0)e−P ·x |0〉 = eP ·x |∆〉 =
∞∑
n=0

( P · x)n

n! |∆〉 , (3.17)

which is a linear combination of the basis vectors (3.16) [98, 124].

In comparison descendant operators can be generated by (3.14), but due to the identifi-
cation (3.16) their construction works the same way, e.g.

DPµ |∆〉 = [D, [Pµ,O∆]] |0〉 = ([[D,Pµ] ,O∆]− [Pµ, [D,O∆]]) |0〉
= ([D,P µ]− PµD) |∆〉 ∼ (∆ + 1)Pµ |∆〉

=⇒ Pµ |∆〉 ∼ |∆ + 1〉 .
(3.18)
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Therefore acting with all possible operators on the vacuum constructs a state in the
Hilbert space which is uniquely characterized by both of its quantum numbers ∆ and l.

Each state constructs a local operator

The converse direction holds also in a CFT. I.e. to each state a local operator can be
constructed. E.g. to the primary state |∆〉 the corresponding local primary operator O∆(0)
can be created by its action onto conformal correlation functions.

〈O∆1(x1) . . .O∆n(xn)O∆(0)〉 := 〈0| O∆1(x1) . . .O∆n(xn) |∆〉 (3.19)

Due to the identification (3.16) both sides of the equation obey the same transformation
properties under conformal transformations. Hence, (3.19) defines to each state an appro-
priate local operator such that both conformal correlation functions yield the same result.
Therefore the state and the so-defined operator can be identified [98]. This generalizes (3.16)

O∆(0)←→ |∆〉

to a one-to-one map.

This shows that in radially quantized CFT, the operator-state correspondence is easy to
prove since the vacuum is located at a single point. Due to this isomorphism between local
operators and states, an arbitrary state |ψ〉 state can be decomposed into the basis |∆k〉. In
particular,

|ψ〉 = O1(x1)O2(x2) |0〉 =
∑
k=0

λ̃12kC12k (x12, x23, P ) |∆k〉 , (3.20)

where the sum runs over all primary states and the function C12k (x12, x23, P ) generates all
possible descendants by acting with the momentum operator Pµ on primaries. The OPE
coefficient λ̃12k is a simple constant.5 It is an important fact that the form of the function
C12k is completely fixed by conformal symmetry. But implicitly C12k depends on the scaling
dimension ∆i of the involved operators. Using the operator-state-correspondence, equ. (3.20)
can be written as an operator equation

O1(x1)O2(x2) =
∑
k=0

λ̃12kC12k (x12, x23, ∂3)O∆k
(x3) (3.21)

which holds inside any correlation function. The operator-product-expansion (OPE)
(3.21) can be used to reduce the calculation of n-point functions to the computation of n-1-
point functions, because it fuses a pair of operators into a sum of local operators. The initial
value to solve this recurrence relation is fixed by dimensional analysis to be

〈O(x)〉 =
{

1, if O is the unit operator 1
0, else.

Due to the operator-state-correspondence the set of operators which are included in a ball
create a state on its boundary. Hence, (3.21) does not just hold asymptotically, it has
a finite radius of convergence. It converges if it is possible to encircle the two operators
O1(x1), O2(x2) without any other operator as it is shown in figure 3.2 [98, 124, 178, 179].

5For notational simplicity spin indices have been omitted.



CHAPTER 3. MELLIN AMPLITUDES 53

O1

O2

|ψ〉

O3
O4

=
∑
k C12kO∆k

O3
O4

Figure 3.2: The operators O1 and O2 can be enclosed by a sphere separating it from other
operator insertions. Hence, they produce a state |ψ〉 on the dashed sphere. The state |ψ〉 is
of the form (3.20).

3.1.2 Conformal Correlators

Conformal symmetry imposes very strong constraints on correlation functions. For example
the form of the two- and three-point functions cannot contain any dynamical information,
i.e. their form is completely fixed by its symmetry. For symmetric traceless tensor operators
with integer spin l ≥ 0 the two-point function is given by〈

Oµ1...µl(x1)O′ν1...νl(x2)
〉

= δOO′
Iµ1...µlν1...νl(x12)
|x12|2∆O

with Iµ1...µlν1...νl(x) =
∑

symµi, νj

Iµ1ν1(x) . . . Iµlνl(x)
|x|2∆ − traces,

Iµν(x) = δµν − 2x
µxν

x2 and x12 = x1 − x2.

(3.22)

The summation symmetrizes the expression in the indices µi and νj , respectively and the
subtraction of traces corresponds to removing terms of the form δµiµj and δνiνj such that the
two-point function is traceless in its µi and νj indices separately, however, it does not have
to be traceless in µi-νj-contractions. In (3.22) the operators have been normalized according
to δOO′ [180].

Equivalently, the form of the three-point function is fully dictated by conformal symmetry.
In case of three scalar operators φi the three-point function reads

〈φ1(x1)φ2(x2)φ3(x3)〉 = λ123

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x31|∆3+∆1−∆2
, (3.23)

where the constant λ123 is not determined by symmetry. Alternatively, the three-point
correlator can be reduced to a two-point correlator using the OPE (3.21):

〈φ1(x1)φ2(x2)φ3(x3)〉 =
∑
k

λ̃12kC12k (x12, ∂x2)
〈
O∆k

(x2)φ3(x3)
〉
.

=λ̃123C123 (x12, ∂x2) 1
|x23|2∆3

!= λ123

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x31|∆3+∆1−∆2

=λ123
1

|x12|∆1+∆2−∆3
(1 + . . .) 1

|x23|2∆3

(3.24)
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Due to the diagonal nature of the two-point correlator (3.22) the sum in (3.24) has one
non-vanishing term only such that this expression reduces to the second line. In the second
line is the two-point function (3.22) of a pair of scalar primaries and all the descendants of
the conformal multiplet are generated by the function C123. In the third line the explicit
form (3.23) of the three-point correlator has been plugged in. And in the last line a Taylor
expansion around x12 = 0 has been performed. The derivation (3.24) is quite important.
Firstly, it determines the function Cijk by Taylor expanding (3.23) around x12 = 0 and
secondly, it shows that according to the normalization used in this thesis the relation λijk =
λ̃ijk holds [98].

A simple analysis of the number of conformal invariant terms made of the arguments
xi with 1 ≤ i ≤ 4 demonstrates that the four-point correlator has to be a function of two
independent variables, e.g. u and v. The scalar four-point correlator can be written as

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
∣∣∣∣x24
x14

∣∣∣∣∆1−∆2
∣∣∣∣x14
x13

∣∣∣∣∆3−∆4 A(u, v)
|x12|∆1+∆2 |x34|∆3+∆4

with the conformal cross ratios u = x12x34
x13x24

, v = x14x23
x13x24

.

(3.25)

The conformal invariant reduced correlator A is only a function of the two cross ratios u and
v. Applying the OPE (3.21) and using the diagonal nature of the two-point correlator, the
four-point correlator can be written as

〈φ1(x1) . . . φ4(x4)〉 =
∑
k,k′

λ12kλ34k′C
al
12k (x12, ∂x2)Cbl′34k′ (x34, ∂x4)

〈
Oal(x2)O′bl′ (x4)

〉

=
∑
k

λ12kλ34kC
al
12k (x12, ∂x2)Cbl34k (x34, ∂x4) I

albl(x24)∣∣x2
24
∣∣∆k

:=
∣∣∣∣x24
x14

∣∣∣∣∆1−∆2
∣∣∣∣x14
x13

∣∣∣∣∆3−∆4
∑
k λ12kλ34kg∆k,lk(u, v)
|x12|∆1+∆2 |x34|∆3+∆4

(3.26)

with the multi-indices al = µ1 . . . µl and bl = ν1 . . . νl.6 g∆k,lk is the conformal block. Its
definition shows that its form is completely fixed by the conformal symmetry, since Cijk and
Iab are determined by it. Hence, the reduced correlator is given by

A(u, v) =
∑
k

λ12kλ34kg∆k,lk(u, v). (3.27)

In (3.26) the pairs of operators (12) and (34) have been fused together to build the
conformal block which can be diagrammatically depicted by

〈φ1(x1) . . . φ4(x4)〉 =
∑
k

λ12kλ34k

φ1

φ2 φ3

φ4O∆k

.

This fusion process is called the s-channel. But it is also possible to fuse the operators (13)
and (24), which is called the t-channel. However, independent of the fusing process the result
has to be the same. This requirement, called OPE associativity, is an non-trivial constraint

6Note that in the summation over all primary operators denoted by k, l is the spin of the kth operator.
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∑
k λ12kλ34k

φ1

φ2 φ3

φ4O∆k

=
∑
k λ12kλ34k

φ1 φ4

φ2 φ3

O′∆k

Figure 3.3: OPE associativity requires that in either case the summation over all exchanged
operators represents the same four-point correlator. This condition imposes non-trivial con-
straints on the scaling dimensions and the OPE coefficients of the CFT data.

on the CFT which is actively used in the conformal bootstrap program to obtain information
about the operator content and the possible interactions of the CFT [181–190]. Even though
this line of research is quite modern, the main idea has already been stated in [95–97]. The
OPE associativity is sketched in figure 3.3. To impose the constraints derived from OPE
associativity, it is important to determine the exact form of the conformal block [191–202].

This example shows an interesting feature of CFTs. The four-point correlator is fixed by
the knowledge of its lower-point correlators. Whereas the conformal block is theory inde-
pendent and its form depends merely on the conformal symmetry, the OPE coefficients and
the scaling dimensions depend on the operators which are included in the theory. Therefore
it seems tempting to define CFTs by its CFT data and the requirement that its data is
consistent with OPE associativity [95–98]. The CFT data is the combined physical input of
all scaling dimension of the operators including their SO(d) representation and the knowl-
edge of all kinds of possible interactions which is encoded in the OPE coefficients of the
non-vanishing three-point functions.

3.1.3 Embedding Space Formalism

The local isomorphism (3.12) is quite intriguing because it linearizes the action of the confor-
mal algebra acting on an auxiliary space R2,d which is called embedding space [203]. The
coordinates on the embedding space shall be written as XM and the action of the conformal
algebra on it is given by

XM → ΛMNXN , ηMNΛMKΛNL = ηKL, det Λ = 1

where ΛMN is a finite Lorentz transformation generated by (3.11) given in the vector repre-
sentation. However, to connect the embedding space R2,d to the physical space R1,d−1 one
has to choose a d-dimensional submanifold of R2,d which respects the symmetry. Since the
action of SO(2, d) transformations leaves the lightcone

X2 = XMXNηMN = 0

invariant one degree of freedom is removed by restricting to it. This can be seen by describing
the hypersurface in appropriate lightcone coordinates X0, . . . , Xd−1, X+, X− with X+ =
Xd +Xd+1 and X− = Xd+1 −Xd . Thus on the lightcone one coordinate can be expressed
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XM = xµ

X ′M = (ΛX)M

Ω(x′)X ′M = x′µ

Figure 3.4: The physical space is represented by the section (orange line). After an SO(2, d)
transformation XM is mapped to X ′M = ΛMNXN which is generally not on the section.
However, a scale transformation X ′M → ΩX ′M moves the point again onto the section.

in terms of the others

X− = −(X0)2 + (X1)2 + . . .+ (Xd−1)2

X+ .

The second coordinate X+ is removed by restricting to the section of the lightcone defined
by

xµ = Xµ

Xd +Xd+1 = Xµ

X+ , and X+ = const.

such that the d-dimensional section of R2,d is parametrized by

XM = (X+, X−, Xµ) section= X+(1, x2, xµ). (3.28)

The action of (3.11) on R1,d−1 can be analyzed in two steps:

1. The embedding coordinate is mapped from the lightcone onto the lightcone by a Lorentz
transformation XM → ΛMNXN .

2. If XM has been on the section (3.28), the point X ′M = ΛMNXN is generally not on
the section, but just on the lightcone. However, the point X ′M can be rescaled to the
section by

X ′M =
(
c(x′), d(x′), x̃′µ(x′)

)
→ Ω(x′)X ′M = X+(1, x′2, x′µ)

where Ω(x′) = c(x′)−1X+, d(x′)Ω(x′) = X+x′2 and x̃′µΩ(x′) = X+x′µ. This corre-
sponds exactly to a Weyl transformation of the induced metric on R1,d−1, which is
drawn in figure 3.4.

To prove the second statement, it is best to analyze the infinitesimal line element

ds2 = dXMdXM = −(dX0)2 +
d−1∑
i=1

(dX i)2 − dX+dX−

section= −(dX0)2 +
d−1∑
i=1

(dX i)2 =
(
X+

)2
ηµνdx

µdxν
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since X+ is constant. Plugging into ds2 the rescaled variable Ω(x)XM the line element
transforms as

ds2 = dX ′MdX ′M = ηMNd(Ω(x)X)Md(Ω(x)X)N = Ω2(x)ηMNdX
MdXN

=
(
X+

)2
Ω2(x)ηµνdxµdxν

(3.29)

which is exactly a Weyl transformation. In the second step of the computation it has been
used that X2 = ηMNX

MdXN = 0 and in the last step the parametrization of the section
(3.28) has been applied.7

Thus one has traded the complicated action of the conformal generators (3.9) on the
simple manifold R1,d−1 with the linearized action of the generators of SO(2, d) on the manifold
parametrized by (3.28) which is the projective lightcone [33, 98, 204].

To describe conformal field theories in embedding space it is also necessary to define
operators in it. The easiest type of operators to analyze are scalar primary operators φ(x).
Spinning operators shall be treated in a similar fashion afterwards. The corresponding
embedding space operator to φ(x) is Φ(X). Φ(X) has to be homogeneous to be well-defined
on the lightcone, i.e. for XM ∼ λXM it follows that Φ(X) ∼ Φ(λX) = λcΦ(X) for some
c ∈ R\{0}.

This implies the operator in embedding space has to be related to the operator in physical
space by8

Φ(X)
∣∣∣
section

= Φ(X+(1, x2, x)) = (X+)−cΦ(1, x2, x) = (X+)−cφ(x)

Comparing the action of a conformal transformation on φ(x), which is given in the appendix
B.1, and the corresponding rescaling on Φ(X) leads to c = ∆ because

φ(x)→ φ′(x′) = Ω−∆(x)φ(x), Φ(X)→ Φ′(X ′) = Φ(λX) = λ−cΦ(X).

To scale the operator Φ back to the section, λ = Ω(x) has to hold according to the previous
analyses (3.29). This implies the aforementioned made statement that c = ∆. Thus scalar
operators in embedding space have to satisfy:

Φ(X)
∣∣∣
section

= 1
(X+)∆φ(x) is the section condition,

Φ(λX) = λ−∆Φ(X) is the homogeneity condition.
(3.30)

(Fermionic) Tensor operators contain tensor indices in addition. Thus to construct
fermionic operators in embedding space one has to project these spinor indices onto the
physical coordinates as well. An elegant way to deal with these spinor indices is to introduce

7Actually, this proves that the lightcone is a projective space. Two points on the lighcone XM (x) and
Ω(x)XM (x) with Ω(x) ∈ R\{0} which are related by a scale transformation differ in physical space by a
conformal transformation. Since points related by a conformal transformation are equivalent, points on the
lightcone related by a scale transformation are equivalent. Hence, the points XM (x) and Ω(x)XM (x) belong
to the same equivalence class.

8This follows from (3.28) and Φ(λX) = λcΦ(x), because Φ(1, x2, x) depends neither on X+ nor on X− it
is demanded that Φ(1, x2, x) = φ(x).
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an auxiliary spinor sα which transforms in the anti-fundamental spinor representation and
is a primary of vanishing dimension. Thus one can write

ψ(x, s) = sαψ
α(x) with ψα(x) = ∂

∂sα
ψ(x, s). (3.31)

Since ψ(x, s) and ψα(x) are in one-to-one correspondence ψ(x, s) contains the entire infor-
mation of the spinor operator ψα(x). Similarly an auxiliary spinor SI can be introduced for
the embedding spinor ΨI(X) which shall be defined by

Ψ(X,S) = SIΨI(X). (3.32)

In (3.31) and (3.32) all spinor indices are contracted; hence these objects transform like
scalar operators (3.30):

Ψ(X,S)
∣∣∣
section

= 1
(X+)∆ψ(x, s) (3.33)

and obey the homogeneity property

Ψ(λ1X,λ2S) = λ
−∆− 1

2
1 λ2Ψ(X,S), (3.34)

which follows from the transformation behaviour of fermions under conformal transforma-
tions and the fact that Ψ(X,S) depends linearly on SI . This analysis can be generalized to
arbitrary fermionic tensors.

To be concrete, consider physical primary spinor operators ψα(x) in three dimensions
with signature (−,+,+) which transform in a representation of the double cover of SO(2,1),
i.e. SP(2,R) = {M ∈ GL(2,R)|MTωM = ω}. This implies that ψα(x) is a Majorana spinor
because the representation is real. The operator ΨI(X,S) transforms in the fundamental
representation of SP(4,R) = {M ∈ GL(4,R)|MTΩM = Ω} which is the double cover of
SO(3,2). The corresponding symplectic forms (to raise and lower indices) are defined by

ωαβ = ωαβ =
(

0 1
−1 0

)
, ΩIJ = ΩIJ =

(
0 12
−12 0

)
. (3.35)

However, the embedding spinor Ψ(X,S) does still have the double amount of components
compared to the physical spinor ψ(x, s). The correct identification of Ψ(X,S) and ψ(x, s) is
obtained by the transversality condition

SIX
I
J = 0 with XI

J := XA (ΓA)IJ . (3.36)

It can be checked that this requirement yields the correct conformal transformation for the
physical operators if and only if the embedding space operators transform covariantly under
Lorentz transformations. The transversality condition (3.36) identifies the auxiliary spinors
in the following way

SI =
√
X+

(
sα

−xαβsβ

)
with xαβ := xµ (γµ)αβ (3.37)

where the matrices {γµ|0 ≤ µ ≤ 2} satisfy the Clifford algebra.
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This analysis completes the study of fermionic operators in embedding space. More
information about the concrete algebra and the matrix-representation of the γ-matrices can
be found in the appendix B.2.

The advantage of the embedding space formalism is that it is more suitable to construct
correlation functions in it than in physical space. For example the two point function is given
by

〈Ψ(X1, S1)Ψ(X2, S2)〉 = i
〈S1S2〉

X
∆+ 1

2
12

,

which follows from the homogeneity property (3.34) and Lorentz invariance. To simplify
the notation 〈S1X2X3 . . . Sn〉 = (S1)I(X2)IJ(X3)IJ . . .ΩLM (Sn)M and Xij = −2Xi · Xj =
(xi − xj)2 is used at the Poincaré section X+ = 1.9 The correlation function in physical
space reads

〈ψα1(x1)ψα2(x2)〉 = i
(x12)α1

α2(
x2

12
)∆+1

with x12 = x1 − x2. This follows from (3.37) and (3.33).

Another advantage of the embedding space formalism is that constructing tensor struc-
tures is easier to handle in it than in physical space because one has to build Lorentz invariant
quantities only. This shall be important in section 3.2 [199, 204]. But before doing that it
is useful to study the appearance of tensor structure of correlation functions in embedding
space.

An operator O of spin l has 2l auxiliary vectors Si [199, 205, 206] which leads to a
generalization of the homogeneity property (3.34) in a straightforward manner

O(aX, bS) = a−∆−lb2lO(X,S). (3.38)

Therefore, an n-point conformal correlator of operators Oi with dimension ∆i and spin li
obeys the following homogeneity property,

〈O1 (a1X1, b1S1) · · · On (anXn, bnSn)〉 =
n∏
i=1

a−∆i
i

(
b2lii
alii

)
〈O1 (X1, S1) · · · On (Xn, Sn)〉(3.39)

For example, an n-point correlator of 2K spin one-half fermionic and M scalar operators,
which shall be of interest in section 3.3.2, has to satisfy

〈Ψ1 (a1X1, b1S1) · · ·Ψ2K (a2KX2K , b2KS2K) Φ2K+1 (a2K+1X2K+1) · · ·Φn (anXn)〉

=
n∏
i=1

a−∆i
i

2K∏
j=1

bj√
aj
〈Ψ1 (X1, S1) · · ·Ψ2K (X2K , S2K) Φ2K+1 (X2K+1) · · ·Φn (Xn)〉

with 2K +M = n.

Tensor structures Tk for a generic spinning correlator shall be defined such that they
entirely account for the factor

∏n
i=1

b
2li
i

a
li
i

in the homogeneity relation (3.39). Concretely, the

9Alternatively one can also rescale the factor X+ since the lightcone is a projective space, but in this thesis
the representative of the equivalence class shall be at X+ = 1 for all coordinates.
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tensor structures Tk are chosen such that they obey

Tk (b1S1, · · · , bnSn; a1X1, · · · , anXn) =
n∏
i=1

b2lii
alii

Tk (S1, · · · , Sn; X1, · · · , Xn) . (3.40)

For illustration it is useful to give two examples. The three-point conformal correlator of
two spin one-half and one scalar operator is given, schematically, by

〈Ψ1 (X1, S1) Ψ2 (X2, S2) Φ(X3, S3)〉 =
∑
k

Tkλk123

X
∆1+∆2−∆3

2
12 X

∆1+∆3−∆2
2

13 X
∆2+∆3−∆1

2
23

, (3.41)

where λk123 are the OPE coefficients of the components of this three-point correlator. k labels
the independent tensor structures. In the same way, any four-point conformal correlator has
the generic form

〈O1 (X1, S1) · · · O4 (X4, S4)〉 =
(
X24
X14

)∆1−∆2
2

(
X14
X13

)∆3−∆4
2

∑
k TkAk(u, v)

(X12)
∆1+∆2

2 (X34)
∆3+∆4

2

(3.42)

where Ak(u, v) are components of the reduced correlator which is a function of the cross-
ratios u and v.

The three-point (3.41) and the four-point correlator (3.42) do not seem to explicitly
depend on the spin of the operators. The reason is that in this thesis the tensor structures
are defined such that they include the entire spin dependence. Obviously, this follows from
the normalization of the tensor structures which is given in (3.39) and (3.40). The spin
dependence

∏n
i=1

b
2li
i

a
li
i

of the conformal correlator is absorbed into Tk.

3.2 Tensor Structures

3.2.1 Constructing an Independent Basis of Tensor Structures

It has already been stressed in section 3.1.3 that the embedding space formalism is very handy
to construct tensor structures for correlation functions which contain fermionic operators.
In embedding space one has to build Lorentz invariant quantities only which also satisfy the
homogeneity property (3.34) and the transversality condition (3.36). However, the problem
is that not all of these tensor structures are linearly independent, because there are algebraic
relations between different tensor structures. One option to resolve this redundancy is to
make use of Fierz identities or γ-matrix relation to relate the dependent tensor structures to
each other, but in general it is difficult to know which identities should be applied.

A different way to count independent tensor structures and construct the web of relations
among them is to gauge fix the conformal symmetry and to analyze the correlation function
in a conformal frame. A conformal frame for an n-point function is any fixed configuration
of points to which one can always map any n points using conformal transformations and
exhausting all the symmetry [207]. A common conformal frame for a four-point correlator is
drawn in 3.5. This removes all the ambiguity and a unique basis of tensor structures can be
built. The following analysis is independent of the particular choice of the conformal frame.
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x1 = (0, 0, . . .)

x4

x2 = (1, 0, . . .)

x3 →∞

Figure 3.5: A conformal frame for a four-point correlator can be chosen such that the first
three points are fixed by conformal symmetry and the remaining point x4 can be rotated
such that the plane spanned by x1, x2, x4 is at the appropriate position.

The authors of [207] prove that there is a relationship between singlets of the stabilizer
group and independent tensor structures. In particular they show that the singlets of the
stabilizer group (or little group) Gx = {g ∈ G | g.x = x} that leave the configuration of
points xi invariant are in one-to-one correspondence to the independent tensor structures of
an n-point function. xi are the positions of the operators of the conformal correlator for a
chosen conformal frame. Therefore, to construct the basis of tensor structures for a correlator
〈O1(X1, S1) . . .On(Xn, Sn)〉 explicitly, the singlets of a group G under the stabilizer subgroup
H ⊆ G can be studied. G is the rotation group under which the operators Oi transform,
e.g. for integer-spin operators G is given by O(·) (if parity is conserved) or SO(·) and for
half-integer-spin operators the corresponding double cover has to be chosen, i.e. Pin(·) or
Spin(·). This shall be denoted by

(
ResGH

n⊗
i=1

ρi

)H
, (3.43)

where ResGH denotes the restriction of a representation of G to H ⊆ G. The operator Oi
transforms in the representation ρi of the Lorentz group and ρHi denotes the H-singlets in ρi.
In this thesis fermionic correlation functions of a parity symmetric theory in three dimensions
are studied which specifies the groups of (3.43) to be G = Pin(3) and H = Pin(5− n).

Further, in the following analysis it is assumed that all operators have different scaling
dimensions such that there are no further reductions in the number of independent tensor
structures. Because, in general for identical operators the number of independent tensor
structures is further reduced due to permutation symmetry.

The authors of [207] calculated the number of independent tensor structures in three
dimensions for a theory of definite parity. For three-point functions it is given by

N±3d = N3d (l1, l2, l3)± κ
2 , with κ =

{
1, if all operators are bosonic,
0, otherwise.

N3d = (2l1 + 1)(2l2 + 1)− p(p+ 1), p = max (l1 + l2 − l3, 0) , l1 ≤ l2 ≤ l3.
(3.44)

where li is the spin of the operator Oi. The superscript ± denotes the parity of the corre-
sponding tensor structure. The number of independent n-point tensor structures for n ≥ 4
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reads

N3d (l1, l2, l3, l4) =
n∏
i=1

(2li + 1).

It can be seen from (3.44) that if there is at least one half-integer spin operator, one can
take an equal number of parity odd and parity even tensor structures.

The aforementioned method shall be illustrated by the example of a three-point function
〈O1(X1, S1)O2(X2, S2)O3(X3, S3)〉. This example is also chosen in [207].

1. The first step is to gauge fix the conformal correlation function. One possible choice is
given by

g0(S1, S2, S3) := lim
L→∞

L2∆3 〈O1(X1, S1)O2(X2, S2)O3(X3, S3)〉 (3.45)

at the positions

x1 = (0, 0, 0), x2 = (0, 0, 1), x3 = (0, 0, L). (3.46)

2. Clearly, the set of points (3.46) is invariant under the boost K1. The explicit represen-
tation of this boost is given in the appendix in equ. (B.12). This forms the stabilizer
subgroup of this configuration. Hence, the correlator (3.45) is invariant under

si → e−iλk̄1si =
[
cosh

(
λ

2

)
12 + sinh

(
λ

2

)(1 0
0 −1

)]
si

=

(cosh
(
λ
2

)
+ sinh

(
λ
2

))
ξi(

cosh
(
λ
2

)
− sinh

(
λ
2

))
ξ̄i

 with (si)α =
(
ξi
ξ̄i

)
.

(3.47)

It can be seen that ξi has charge 1/2 whereas ξ̄i is negatively charged with −1/2.

3. According to [207] the independent tensor structures are in one-to-one correspondence
to the singlets of the stabilizer, i.e. to functions which are invariant under (3.47). A
basis of such functions is given by the product of the monomials ξi and ξ̄i:

[q1, q2, q3] =
3∏
i=1

ξli+qii ξ̄li−qii with
3∑
i=1

qi = 0 (3.48)

and qi ∈ {−li, . . . , li}. The last two constraints have to be imposed, because there
cannot be more than 2li polarization vectors for each operator. It is easy to see that
(3.48) is invariant under (3.47). For brevity the abbreviation cosh(λ/2) := ch and
sinh(λ/2) = sh is used.

[q1, q2, q3]→ (ch + sh)l1+l2+l3+q1+q2+q3 (ch− sh)l1+l2+l3−q1−q2−q3 [q1, q2, q3]

=
(
ch2 − sh2

)l1+l2+l3 [q1, q2, q3] = [q1, q2, q3]

Thus in the conformal frame (3.46) the basis of tensor structures for three-point cor-
relation functions is given by (3.48).
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3.2.2 Basis of Tensor Structures

To analyze the factorization properties of the four-point conformal correlation functions
〈Ψ1Ψ2Φ3Φ4〉 and 〈Ψ1Ψ2Ψ3Ψ4〉 in three dimensions it is necessary to construct a basis of
their tensor structures as well as the basis of the tensor structures of the three-point func-
tions 〈Ψ1Ψ2Φ3〉, 〈Ψ1Φ2Ψ3,l〉 and 〈Ψ1Ψ2O3,l〉 with l ≥ 0 onto which they factorize. This is
established using the formalism described in section 3.2.1. The basis of tensor structures is of
definite parity which is indicated by the superscript ±. In addition, all the tensor structures
shall be presented in embedding space and they are contracted with the polarization vectors;
hence they are conformally invariant. The expression in physical space can be determined
by the formulae presented in section 3.1.3. In particular, the following formulae are useful

〈S1X2X3 · · ·Xk−1Sk〉 −→3d /x12/x23 · · · /xk−1,k,

〈SiXa · · ·XbSm〉 〈SkXu · · ·XvSl〉 −→3d
[
/xia · · · /xbm

] [
/xku · · · /xvl

]
.

The spinor indices on the r.h.s. have been suppressed and a bracket is used if more than
one concatenation of spinor variables occurs such that it is evident how to interpret the
expression in physical space.

Tensor Structures for Three-Point Functions

The conformal correlator 〈Ψ1Ψ2Φ3〉 of two spin one-half fermions and one scalar has two
independent tensor structures which are chosen in the following way

r+
di = 〈S1S2〉√

X12
, r−di = 〈S1X3S2〉√

X13X32
.

According to (3.44) the conformal correlator 〈Ψ1Ψ2O3,l〉 with spin 0 < l ∈ N∗ has four
independent tensor structures.10 They can be defined to be

r+
di,1 = 〈S1S2〉 〈S3X1X2S3〉l

X
l+1
2

12 X
l
2
13X

l
2
23

, r+
di,2 = 〈S1S3〉 〈S2S3〉 〈S3X1X2S3〉l−1

X
l−1
2

12 X
l
2
13X

l
2
23

,

r−di,3 = 〈S3X1X2S3〉l−1

X
l
2
12X

l+1
2

13 X
l+1
2

23

[X23 〈S1S3〉 〈S2X1S3〉+X13 〈S2S3〉 〈S1X2S3〉] ,

r−di,4 = 〈S3X1X2S3〉l−1

X
l
2
12X

l+1
2

13 X
l+1
2

23

[X23 〈S1S3〉 〈S2X1S3〉 −X13 〈S2S3〉 〈S1X2S3〉] .

(3.49)

For the three-point function 〈Ψ1Φ2Ψ3,l〉 of a scalar Φ2, a spin one-half Ψ1 and a higher
non-integer operator Ψ3,l with 0 < l ∈ N + 1

2 the basis can be chosen such that

r+
cr = 〈S1S3〉 〈S3X1X2S3〉l−

1
2

X
l
2−

1
4

12 X
l
2 + 1

4
13 X

l
2−

1
4

23

, r−cr = 〈S1X2S3〉 〈S3X1X2S3〉l−
1
2

X
l
2 + 1

4
12 X

l
2−

1
4

13 X
l
2 + 1

4
23

. (3.50)

Note that the basis which has been chosen in the associated publication [1] is the same
as in [198, 199] but with different normalization.

10For l = 0, r+
di,1 goes to r+

di and r
−
di,3 goes to r−di.
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Tensor Structures for Four-Point Functions

The conformal correlator 〈Ψ1Ψ2Φ3Φ4〉 has four independent tensor structures. As in [1, 198],
they are taken to be

t+1 = 〈S1S2〉√
X12

, t+2 = 〈S1X3X4S2〉√
X13X34X42

,

t−3 = 〈S1X3S2〉√
X13X32

, t−4 = 〈S1X4S2〉√
X14X42

.

(3.51)

For the conformal correlator 〈Ψ1Ψ2Ψ3Ψ4〉 of four spin one-half fermions the basis of
independent tensor structures consists of sixteen elements. According to [1] they are given
by eight parity even tensor structures

p+
1 = 〈S1S2〉 〈S3S4〉√

X12X34
, p+

2 = 〈S1S2〉 〈S3X1X2S4〉√
X2

12X13X24
,

p+
3 =

〈
S1X3ΓAS2

〉
〈S3X1ΓAS4〉

√
X13X32X31X14

, p+
4 =

〈
S1ΓAΓBS2

〉
〈S3ΓAΓBS4〉

√
X12X34

,

p+
5 = 〈S1X3S2〉 〈S3X1S4〉√

X2
13X14X23

, p+
6 = 〈S1X3S2〉 〈S3X2S4〉√

X2
23X13X24

,

p+
7 = 〈S1X4S2〉 〈S3X1S4〉√

X13X2
14X24

, p+
8 = 〈S1X4S2〉 〈S3X2S4〉√

X14X23X2
24

,

(3.52)

and eight parity odd tensor structures

p−9 = 〈S1S2〉 〈S3X1S4〉√
X12X13X14

, p−10 = 〈S1S2〉 〈S3X2S4〉√
X12X23X24

,

p−11 = 〈S1X3S2〉 〈S3S4〉√
X13X23X34

, p−12 = 〈S1X4S2〉 〈S3S4〉√
X14X24X34

,

p−13 =

〈
S1ΓAS2

〉
〈S3ΓAX1S4〉

√
X12X13X14

, p−14 =

〈
S1ΓAS2

〉
〈S3ΓAX2S4〉

√
X12X23X24

,

p−15 =

〈
S1ΓAX3S2

〉
〈S3ΓAS4〉

√
X13X23X34

, p−16 =

〈
S1ΓAX4S2

〉
〈S3ΓAS4〉

√
X14X42X34

.

(3.53)

3.3 Mellin Amplitudes

In the following Mellin amplitudes in Euclidean spacetime are discussed. The Lorentzian
expression can be obtained by adding the correct iε-prescription which is given by the map
Xij → (xi − xj)2 + iε.

3.3.1 Scalar Mellin Amplitudes

The study of Poincaré covariant correlation functions simplifies drastically in momentum
space. Further, to calculate relevant cross sections of scattering processes the amputated
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correlation function is used which can be obtained by the LSZ procedure (2.7). This proce-
dure is also naturally phrased in momentum space. Hence, for Poincaré covariant theories it
seems natural to formulate the mathematical objects in momentum space.

Conformally covariant correlation functions do not exhibit such a nice form in momentum
space. However, the Mellin-Barnes representation for scalar conformal correlators defined
by Mack [99, 100] seems to be the analogue of momentum representation for conformal
correlators. Consider scalar operators Φi(Xi) with scaling dimension ∆i. Then the connected
part of a correlation function can be written as

〈Φ1(X1) . . .Φn(Xn)〉c :=
∫ i∞

−i∞
[dsij ]Mc({sij})

∏
1≤i<j≤n

Γ(sij)X
−sij
ij . (3.54)

To represent the correlation function, embedding space coordinates (3.28) with the shorthand
notationXij = −2Xi·Xj have been used. The integration measure [dsij ] is over the n(n−3)/2
independent symmetric Mellin variables sij = sji each weighted by (2πi)−1 for n ≤ d. If
n > d there are nd − (d + 1)(d + 2)/2 independent variables. Indeed the configuration
space of n points in d dimensions is nd-dimensional and the conformal group SO(d + 1, 1)
reduces the number of free parameters by (d+ 1)(d+ 2)/2. The correct integration contour
is parallel to the imaginary axis such that the semi-infinite sequences of poles generated by
the Γ-functions are not split like it is shown in figure 3.6. The exact measure of the integral
is defined in the appendix B.3. Mc({sij}) is the Mellin amplitude which is a conformal
invariant function of the Mellin variables only. Implicitly it depends on the scaling dimensions
and the OPE coefficients of the operators included in the theory. Actually, it contains the
entire information about the scaling dimensions and the OPE coefficients of the operators.
To obtain simple growth conditions on the Mellin amplitude, the Γ-functions in (3.54) have
been explicitly included. They fall of exponentially fast in the imaginary direction. The
Γ-functions keep the integrand bounded as long asMc does not grow exponentially.

Homogeneity of each embedding field Φj(Xj) in (3.54) yields n constraints and demands∑
i 6=j

sij = ∆j , sij = sji, sii = 0. (3.55)

which shows that there are n(n − 1)/2 − n = n(n − 3)/2 independent Mellin variables.
However, (3.55) can be written in a more suggestive way which resembles the structure of
amplitudes as functions of Mandelstam variables. Defining sij = pi · pj and −∆j = pj · pj
the constraints (3.55) can be rewritten as momentum conservation

n∑
i=1

pi = 0 because 0 =
n∑
i=1

pi · pj =
n∑
i=1

sij = −∆j +
∑
i 6=j

sij . (3.56)

Perturbatively a Mellin-Barnes representation always exists and can be evaluated in flat
space by Symanzik’s star formula [101] or by the generalization thereof in hyperbolic spaces
[106]. Two simple examples are calculated in the appendix B.3. In perturbation theory it
is also possible to derive some sort of “Feynman rules” in Mellin space for weakly coupled
theories [104] and strongly coupled theories [102, 103]. However, there are certain limitations,
since these Mellin space Feynman rules work at tree level only.11 These rules suggest that one

11Progress on loops as been very limited [106, 208, 209].
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should think of the Mellin amplitude as an amputated correlation function in Mellin-Barnes
representation, because the external propagators do not contribute to it. Thus, extracting
the Mellin amplitude from (3.54) can be thought of as an LSZ like procedure in Mellin space
[33].

Physical sensible information of the CFT is encoded in the pole structure of the Mellin
amplitude:

1. The location of its poles yields the information of the scaling dimensions of the ex-
changed operators.

2. And the residues of these poles contain the information about the OPE coefficients.

Hence, in principle the entire spectrum of the CFT can be derived from the knowledge of
the Mellin amplitude. To prove this statement it is useful to study the Mellin amplitude of a
four-point correlator, which can be written in the following form after solving the constraints
(3.55).

〈Φ1(X1)Φ2(X2)Φ3(X3)Φ4(X4)〉c =
(
X24
X14

)∆1−∆2
2

(
X14
X13

)∆3−∆4
2 A(u, v)

(X12)
∆1+∆2

2 (X34)
∆3+∆4

2

,

u = X12X34
X13X24

, v = X14X23
X13X24

,

(3.57)

A(u, v) =
∫ cs+i∞

cs−i∞

ds

4πi

∫ ct+i∞

ct−i∞

dt

4πiM(s, t)u
s
2 v−

s+t−∆1−∆4
2 ρ∆i

(s, t)

with s = −(p1 + p2)2 = ∆1 + ∆2 − 2s12, t = −(p1 + p3)2 = ∆1 + ∆3 − 2s13.

and

ρ∆i
(s, t) = Γ

(∆1 + ∆2 − s
2

)
Γ
(∆3 + ∆4 − s

2

)
Γ
(∆1 + ∆3 − t

2

)
Γ
(∆2 + ∆4 − t

2

)
× Γ

(
s+ t−∆1 −∆4

2

)
Γ
(
s+ t−∆2 −∆3

2

)
.

with ∆i being the scaling dimensions of the external operators Φi. As expected the four-point
Mellin amplitude is only a function of 4(4−3)

2 = 2 Mellin variables.

In a theory that admits a large N -expansion, the poles of the Γ-function from (3.57)
correspond to multi-trace operators that contribute to the conformal block expansion and
have the said values of twist in a regime where anomalous dimensions are suppressed. The
Mellin amplitude then accounts for the contributions from only single trace operators and is a
meromorphic function [33]. However, in a generic CFT operators of dimension ∆1 +∆2 +2m
do not appear. Thus the Mellin amplitude has to have zeros at the pole position of the
Γ-functions to cancel these. This observation is useful and the program of Mellin-Polyakov
bootstrap obtains information about the spectrum of the CFT by using the cancellation of
these spurious poles as a consistency conditions [114–116].

In general, for every conformal primary with twist τ contributing to the conformal block
expansion of A(u, v) in the s-channel, M(s, t) has poles at s = τ + 2m, m ∈ N where
m = 0 corresponds to the primary and the leading twist descendants (and similarly for the
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∆1 + ∆4 − t

∆2 + ∆3 − t ∆1 + ∆2

∆3 + ∆4

s

Figure 3.6: In the complex s-plane the contour has to be chosen such that no series of poles
generated by the Γ-function is separated. The poles of the Γ-function are depicted by black
dots. Hence, the contour (orange line) is a valid choice.

other channels). To prove this, consider the conformal block expansion (3.27) of the reduced
correlator

A(u, v) =
∑
k

λ12kλ34kg∆k,lk(u, v).

The authors of [192] have shown that the conformal block g∆k,lk(u, v) admits a small u
expansion in the limit (u, v)→ (0, 1).

g∆,l(u, v) = u
∆−l

2

∞∑
m=0

umgm(v) where the first term reads

g0(v) =
(
v − 1

2

)l
2F1

(∆ + l −∆12
2 ,

∆ + l + ∆34
2 ,∆ + l, 1− v

)
.

(3.58)

Here the abbreviation ∆ij = ∆i −∆j has been used. Since both expression of the reduced
correlator (3.57) and (3.27) have to coincide, the Mellin amplitude has to have the following
pole structure

∑
k

∞∑
m=0

λ12kλ34kQm,lk(t)
s−∆k + lk + 2m with m ∈ N. (3.59)

to reproduce the series expansion in u. Hence, the location of the poles encodes the twist
τk = ∆k−lk of the exchanged operator. The spin lk of the exchanged operator can be deduced
from the polynomial Qm,lk(t) which implies that the scaling dimension ∆k can be obtained.
Further, if the polynomial is known, the OPE coefficients λ12kλ34k can be determined from
the residue of the pole. Thus, the spectrum of the CFT is encoded in the Mellin amplitude
as claimed [105].

This also shows another property of Mellin amplitudes - they factorize onto lower-point
Mellin amplitudes. The Mellin amplitude of (3.57) factorizes onto two three-point Mellin
amplitudes which are proportional to the OPE coefficients. These are constants since the
conformality constraint fixes their form completely such that no integration parameter is
left. This statement is verified in equ. (3.59). Therefore the existence of an OPE expansion
implies that the Mellin amplitude factorizes [99, 105].
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Properties (scalar) Mellin Amplitudes Amplitudes

Factorization
Mellin amplitudes factorize onto

lower-point Mellin amplitudes due to
the existence of a convergent OPE.

Tree-level amplitudes factorize onto
lower-point amplitudes due to

Feynman diagrammatic expansion.12

Conservation
conditions

Conformal invariance requires∑
i 6=j sij = ∆j and

pi · pj = sij and −p2
i = ∆i implies

−(pi1 + . . . pia)2 =∑a
j=1 ∆j − 2

∑a
l<k pil · pik .

Momentum conservation implies∑a
i=1 pi = 0.

Hence −(pi1 + . . . pia)2 =∑a
j=1 ∆j − 2

∑a
l<k pil · pik .

Table 3.1: Comparison of Mellin amplitudes to amplitudes.

After this analysis it is useful to compare the properties of Mellin amplitudes to (usual)
amplitudes which is done in table 3.1.

3.3.2 Spinning Mellin Amplitudes

Mellin amplitudes for operators which transform under a non-trivial representation of the
Lorentz group can be defined in a similar way. However, since the correlation functions trans-
form covariantly under Lorentz transformations they are given by a sum over the different
tensor structures like in (3.41) and (3.42).

Considering a correlation function of 2K fermions and M scalars (2K + M = n), the
Mellin amplitude can be defined with the following set of Mellin-Barnes integrals,

〈Ψ1 (X1, S1) · · ·Ψ2K (X2K , S2K) Φ2K+1 (X2K+1) · · ·Φn (Xn)〉

:=
∑
k

T̃k
∫ i∞

−i∞
[dsij ]

n∏
1≤i<j

X
−sij−aij;k
ij Γ

(
sij + aij;k + nij;k + 1

2

K∑
m=1

δi,2m−1δj,2m

)

×Mk ({sij})
K∏
m=1

1√
X2m−1,2m

.

(3.60)

The set {T̃k} furnishes a basis of tensor structures. A basis for three- and four-point cor-
relators in three dimensions has been given in section 3.2. The component of the Mellin
amplitudeMk is associated to the tensor component T̃k.13 Hence, for spinning operators the
Mellin amplitude has several components. The definition of the fermionic Mellin amplitude
is chosen such that the tensor structures are still represented in position space. Therefore
(3.60) is a straightforward generalization of (3.54). The Mellin amplitude has been defined

12A Feynman diagrammatic analysis of tree-level amplitudes reveals that the only simple poles of the
amplitude appear at the position of the propagators. Setting a propagator on-shell separates the l.h.s. and
the r.h.s. of the diagram into two subdiagrams. Hence the tree-level amplitude factorizes onto lower-point
amplitudes.
But an even stronger statement holds for amplitudes. The pole structure of momentum space correlators,
called polology, is discussed in [8, 125]. There it is shown that momentum space correlators always have poles
when an intermediate (fundamental or composite) particle goes on-shell and that at this pole the correlator
factorizes onto lower-point matrix elements. This is a non-perturbative statement.

13In the following the subscript c for the connected part of the correlator is not written any more.
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such that

τi −
∑
l 6=i

sli = 0 ∀i with the twist τi = ∆i − li (3.61)

generalization the case of scalar operators for which the twist coincides with the scal-
ing dimension. This choice leads to a shift of the Γ-function and the additional terms∏
m(X2m−1,2m)−

1
2 . The conformality constraints imposed by (3.61) in (3.60) can be inter-

preted in terms of fictitious Mellin momenta pi which satisfy pi · pj = sij and an on-shell
condition p2

i = −τi as the overall conservation of Mellin momentum
∑
i pi = 0. This ex-

tends the definitions of the corresponding scalar conformal correlator as discussed in 3.3.1
to spinning conformal correlators [1].

Further it is required that the tensor structures are normalized as described in (3.40).
This fixes the numbers aij;k

Tk = T̃k
n∏

1≤i<j
X
−aij;k
ij

by demanding

Tk (λ1S1, · · · , λ2KS2K ;σ1X1, · · · , σnXn) = Tk (S1, · · · , S2K ;X1, · · · , Xn) . (3.62)

In fact, the coefficients aij;k are determined by setting λi = √σi which follows from the
comparison of (3.40) and (3.62).

The precise value of nij;k is given in the next paragraph. Their values are chosen such that
the Mellin amplitudes for the contact interactions are polynomials in the Mellin variable sij
or constant in the perturbative regime. This ensures that the Mellin amplitudes in the large
N limit of the strongly coupled CFT describe only the bulk dynamics. Hence, in perturbation
theory the pole structure of the Mellin amplitudes does not include any information of the
trivial composite operators.

Furthermore, the Mellin amplitude has only been defined for the connected part of the
conformal correlator. Thus for simplicity, it is assumed that all operators of the same spin
have different scaling dimensions ∆ which implies that there is no disconnected part of the
correlator.

With these remarks the Mellin amplitude of the correlator of two scalar and two spin
one-half operators can be defined by

〈Ψ1Ψ2Φ3Φ4〉 =
∫

[dsij ]
∏
i<j

(Xij)−sij
1√
X12

[ 4∑
i=1

tiM̄i ({sab})
]
. (3.63)

It can be checked that the Mellin variables sij obey the conformality constraint stated in
(3.61). The basis of tensor structures ti is given in (3.51).14 In addition, nij;k = 0 has been
set. For readability, (3.63) has been defined with the components of the reduced Mellin
amplitude M̄i which also include the Γ-functions. These components are defined by the

14The superscript has been neglected.
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relations:

M1 = M̄1 [Γ (s12 + 1) Γ (s13) Γ (s14) Γ (s23) Γ (s24) Γ (s34)]−1 ,

M2 = M̄2

[
Γ
(
s12 + 1

2

)
Γ
(
s13 + 1

2

)
Γ (s14) Γ (s23) Γ

(
s24 + 1

2

)
Γ
(
s34 + 1

2

)]−1
,

M3 = M̄3

[
Γ
(
s12 + 1

2

)
Γ
(
s13 + 1

2

)
Γ (s14) Γ

(
s23 + 1

2

)
Γ (s24) Γ (s34)

]−1
,

M4 = M̄4

[
Γ
(
s12 + 1

2

)
Γ (s13) Γ

(
s14 + 1

2

)
Γ (s23) Γ

(
s24 + 1

2

)
Γ (s34)

]−1
.

(3.64)

In the same way, the Mellin amplitude of the four-point correlator of four spin one-half
fermions is defined

〈Ψ1Ψ2Ψ3Ψ4〉 =
∫

[dsij ]
∏
i<j

(Xij)−sij
1√

X12X34

[ 16∑
i=1

piM̄i ({sab})
]
. (3.65)

The basis of tensor structures for the parity even part is given in (3.52) and for the parity
odd part in (3.53). The parameters nij;k are zero with the exception

n12;2 = n13;3 = n13;5 = n23;6 = n14;7 = n24;8 = −1. (3.66)

The precise relation between the reduced Mellin amplitude and the Mellin amplitude is given
in appendix B.4.1

3.3.3 Analyzing the Pole Structure of Spinning Mellin Amplitudes

In section 3.3.1 for scalar Mellin amplitudes the pole structure has been analyzed by com-
paring the Mellin-Barnes representation of the reduced correlator to its conformal block
expansion in the limit (u, v) → (0, 1). Consistency requires that both expression have to
coincide and this dictates the position of the poles. To obtain the location of the poles for
fermionic Mellin amplitudes, the same method can be used [1].

Since the nature of the tensor structures depends on the dimension of spacetime, the
following analysis is restricted to three dimensions. However, the method can be applied to
any dimension.

Location of the Poles for the Fermion-Scalar Four-Point Correlator

There are two different channels to study: the direct channel (s-channel) and the crossed
channel (t-channel). The u-channel is not independent and can be obtained by the other two
using the equation u+ t+s =

∑
i τi. This relation follows from Mellin momenta conservation

(3.56) for fermionic Mellin amplitudes (3.61).
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Poles in the Direct Channel

In the direct channel the reduced correlator A(u, v) for 〈Ψ1Ψ2Φ3Φ4〉 is given by

〈Ψ1Ψ2Φ3Φ4〉 =
(
X24
X14

)∆1−∆2
2

(
X14
X13

)∆3−∆4
2 A(u, v)

(X12)
∆1+∆2

2 (X34)
∆3+∆4

2

,

A(u, v) =
∫ cs+i∞

cs−i∞

ds

4πi

∫ ct+i∞

ct−i∞

dt

4πi

[ 4∑
i=1

tiM̄i(s, t)
]
u
s
2 v−

s+t−τ1−τ4
2 ,

s = −(p1 + p2)2 = τ1 + τ2 − 2s12, t = −(p1 + p3)2 = τ1 + τ3 − 2s13.

(3.67)

M̄i are the components of the reduced Mellin amplitude which is related to the Mellin
amplitude by (3.64). Each component of the Mellin amplitude is associated to a certain tensor
ti, which are given in (3.51). Now, for each component of the Mellin amplitude the same
analysis is done as in the scalar case; hence, it is instructive to write the reduced correlator
as the following linear combination: A(u, v) =

∑
i tiAi(u, v). Since all the components Ai

are linearly independent, they have their own OPE series and OPE coefficients, respectively.

The corresponding components of the conformal block for each component Ai can be
determined from the conformal block of the scalar conformal correlator 〈Φ1Φ2Φ3Φ4〉 by
applying the differential operators

D1 := 〈S1S2〉Π 1
2 ,

1
2
,

D2 := −1
4l(∆− 1)

〈
S1

δ

δX1

δ

δX2
S2

〉
Π− 1

2 ,−
1
2

+ (∆ + ∆1 + ∆2 − l − 4)(∆−∆1 −∆2 − l + 1)
4l(∆− 1) D1,

D3 := 1
2(∆− 1)

[〈
S1

δ

δX1
S2

〉
Π− 1

2 ,
1
2
−
〈
S2

δ

δX2
S1

〉
Π 1

2 ,−
1
2

]
,

D4 := 1
2l

[〈
S1

δ

δX1
S2

〉
Π− 1

2 ,
1
2

+
〈
S2

δ

δX2
S1

〉
Π 1

2 ,−
1
2

]
− ∆1 −∆2

l
D3,

to the scalar conformal block (3.58). The operator Πa,b applies a shift to the scaling dimen-
sion: Πa,b : (∆1,∆2) → (∆1 + a,∆2 + b) and the derivative is defined as δ

δXa
:= ΓA ∂

∂XA
a

with the Γ-matrices given in (B.15). The differential operators generate the tensor struc-
ture of the fermionic correlator 〈Ψ1Ψ2Ol〉 from the scalar correlator 〈Φ1Φ2Ol〉. This works
since in either case the exchanged operator in the direct channel are the same (symmetric
traceless tensors) and the differential operators are constructed such that they produce the
correct tensor structures. This has been shown in [199] by studying the conformal partial
wave expansion of the fermionic correlation function. Explicitly, the relation between the
components of the fermionic conformal block gi,a∆,l and the scalar conformal block g∆,l reads15

(
X24
X14

)∆1−∆2
2

(
X14
X13

)∆3−∆4
2

∑
i tig

i,a
∆,l(u, v)

(X12)
∆1+∆2

2 (X34)
∆3+∆4

2

=Da

(X24
X14

)∆1−∆2
2

(
X14
X13

)∆3−∆4
2 g∆,l(u, v)

(X12)
∆1+∆2

2 (X34)
∆3+∆4

2

 .
(3.68)

15Note that the tensor structures ti are differently normalized compared to the tensor structures in [199].
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Due to the parity symmetric basis of tensor structures, only the following components
of the fermionic blocks are non-zero: g1,1

∆,l, g
1,2
∆,l, g

2,2
∆,l, g

3,3
∆,l, g

3,4
∆,l, g

4,3
∆,l and g

4,4
∆,l. For the scalar

exchange (l = 0) the non-zero components are g1,1
∆,0 ≡ g

1,+
∆,0, g

3,3
∆,0 ≡ g

3,−
∆,0 and g4,3

∆,0 ≡ g
4,−
∆,0.

For spin l > 0 and in the limit (u, v)→ (0, 1) the behaviour of gi,a∆,l is as follows

A1 ⊃ λ1
ψ1ψ2OlλOlφ3φ4g

1,1
s,∆,l + λ2

ψ1ψ2OlλOlφ3φ4g
1,2
s,∆,l (3.69)

≈ u
∆
2

⌊
l−2
2

⌋∑
k=0

(
λ1
ψ1ψ2OlλOlφ3φ4K

1,k
1 + λ2

ψ1ψ2OlλOlφ3φ4K
2,k
1

)(v − 1
2
√
u

)l−2k
+ · · · ,

A2 ⊃ λ2
ψ1ψ2OlλOlφ3φ4g

2,2
s,∆,l ≈ λ

2
ψ1ψ2OlλOlφ3φ4u

∆
2

⌊
l−1
2

⌋∑
k=0
Kk2
(
v − 1
2
√
u

)l−1−2k
+ · · · ,(3.70)

A3 ⊃ λ3
ψ1ψ2OlλOlφ3φ4g

3,3
s,∆,l + λ4

ψ1ψ2OlλOlφ3φ4g
3,4
s,∆,l (3.71)

≈ u
∆
2

⌊
l−1
2

⌋∑
k=0

λ3
ψ1ψ2OlλOlφ3φ4K

3,k
3

(
v − 1
2
√
u

)l−2k

+u
∆−1

2

⌊
l−1
2

⌋∑
k=0

λ4
ψ1ψ2OlλOlφ3φ4K

4,k
3

(
v − 1
2
√
u

)l−1−2k
+ · · · ,

A4 ⊃ λ3
ψ1ψ2OlλOlφ3φ4g

4,3
s,∆,l + λ4

ψ1ψ2OlλOlφ3φ4g
4,4
s,∆,l (3.72)

≈ u
∆
2

⌊
l−1
2

⌋∑
k=0

λ3
ψ1ψ2OlλOlφ3φ4K

3,k
4

(
v − 1
2
√
u

)l−2k

+u
∆−1

2

⌊
l−1
2

⌋∑
k=0

λ4
ψ1ψ2OlλOlφ3φ4K

4,k
4

(
v − 1
2
√
u

)l−1−2k
+ · · · .

λaψ1ψ2Ol are the structure constants of the fermionic three-point correlator 〈Ψ1Ψ2Ol〉 asso-
ciated to the tensor structure rdi,a as in (3.49) and Kj,ka are constants. The value k = 0
corresponds to the exchange of a primary or leading twist descendant whereas the remaining
ones k > 0 account for the exchange of descendants with higher value of twist.

For a scalar exchange (l = 0) denoted by φ, there are the two independent tensor
structures (3.50); hence there can only be two OPE coefficients, i.e. λ1

ψ1ψ2O3,0
≡ λ+

ψ1ψ2φ
,

λ3
ψ1ψ2O3,0

≡ λ−ψ1ψ2φ
, λ2

ψ1ψ2O3,0
≡ 0 and λ4

ψ1ψ2O3,0
≡ 0. Thus the limiting behaviour reads

A1 ⊃ λ+
ψ1ψ2φ

λφφ3φ4K
1,0
1 u

∆
2 + · · · ,

A3 ⊃ λ−ψ1ψ2φ
λφφ3φ4K

3,0
3 u

∆
2 + · · · ,

A4 ⊃ λ−ψ1ψ2φ
λφφ3φ4K

3,0
4 u

∆
2 + · · · .

(3.73)

Comparing (3.69) - (3.72) and (3.73) with (3.67), the pole structure of the Mellin amplitude
can be obtained. The results are listed in table 3.2.

Therefore, each component of the Mellin amplitude needs to have the following pole
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Component of M.A. Location of Poles Residues ∼

M1 τ + 2k λ1
ψ1ψ2OlλOlφ3φ4 , λ2

ψ1ψ2OlλOlφ3φ4

M2 τ + 1 + 2k λ2
ψ1ψ2OlλOlφ3φ4

M3 τ + 2k λ3
ψ1ψ2OlλOlφ3φ4 , λ

4
ψ1ψ2OlλOlφ3φ4

M4 τ + 2k λ3
ψ1ψ2OlλOlφ3φ4 , λ4

ψ1ψ2OlλOlφ3φ4

Table 3.2: s-channel poles of the Mellin amplitude of the two scalar and two fermion con-
formal correlator for l > 0. τ = ∆ − l is the twist of the exchanged operator. For a scalar
exchange one should set λ2

ψ1ψ2O0
≡ 0 and λ4

ψ1ψ2O0
≡ 0.

structure

∑
k

∞∑
m=0

λaψ1ψ2OkλOkφ3φ4Q̃
(s)
m,lk

(t)
s−∆k + lk + b(a) + 2m m ∈ N (3.74)

and the superscript s refers to the direct channel. Note that b(2) = 1 and for the other three
components b(a) = 0. The exchange of the primary and leading twist descendants in the
conformal multiplet corresponds to m = 0 and the exchange of the descendants corresponds
to m > 0. The polynomial Q̃(s)

m,lk
, which is necessary to extract the OPE coefficients from

the residue of the pole, can be determined in a similar way as for the scalar case.

Poles in the Crossed Channel

In the crossed channel (t-channel) the OPE between a fermionic and a scalar operator is
taken (13)-(24); hence the exchanged operator has to be fermionic. The correlator can be
written in the following way.16

〈Ψ1Ψ2Φ3Φ4〉 =
(
X34
X14

)∆13
2
(
X14
X12

)∆24
2 ṽ

∆13
2

X
∆1+∆3

2
13 X

∆2+∆4
2

24

4∑
i=1

tiÃi (ũ, ṽ) ,

ũ = X13X24
X12X34

, ṽ = X14X23
X12X34

, ∆ij = ∆i −∆j ,

Ãi (ũ, ṽ) =
∫

dt

4πi

∫
ds

4πiM̄i (s, t) ũ
t+ 1

2
2 ṽ

s+t+ 1
2−∆1−∆4

2 .

(3.75)

To obtain the pole structure of each component of the Mellin amplitude given in (3.75), the
expression shall be compared with the leading behaviour of the conformal block in the limit
ũ, ṽ → (0, 1). The authors of [198, 202] have computed this conformal block in three dimen-
sions and given its leading behaviour in the variables r and η which were first introduced in
[210].

ũ = 16r2

(1 + r2 − 2rη)2 , ṽ = (1 + r2 + 2rη)2

(1 + r2 − 2rη)2 .

16Note that (3.75) coincides with equation 2.12 of [198] with the following relabelling of the indices: (3.75)
→ [198]: 1→ 1, 2→ 3, 3→ 4, 4→ 2 and renaming gI → Ai.
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Asymptotically for r → 0 these coordinates are given by ũ ≈ r2 and η ≈ − 1−ṽ
2
√
ũ
with η held

constant.

As for the direct channel, the components of the fermionic conformal block gi,jk∆,l are
labelled by the associated tensor structures of the four-point correlator i as well as by j, k = ±
which state into which three-point tensor structures these decompose in the OPE. Parity
conservation demands that only g1,++

∆,l , g1,−−
∆,l , g2,++

∆,l , g2,−−
∆,l , g3,+−

∆,l ,g3,−+
∆,l , g4,+−

∆,l and g4,−+
∆,l are

non-zero. According to [198] the leading behaviour of the components in the limit r → 0 is

g
(1,++)
∆,l (r, η) = −r∆

(
P

(0,1)
l− 1

2
(η) + P

(1,0)
l− 1

2
(η)
)

+O
(
r∆+1

)
,

g
(1,−−)
∆,l (r, η) = −r∆

(
P

(0,1)
l− 1

2
(η)− P (1,0)

l− 1
2

(η)
)

+O
(
r∆+1

)
,

g
(2,++)
∆,l (r, η) = r∆

(
P

(0,1)
l− 1

2
(η)− P (1,0)

l− 1
2

(η)
)

+O
(
r∆+1

)
,

g
(2,−−)
∆,l (r, η) = r∆

(
P

(0,1)
l− 1

2
(η) + P

(1,0)
l− 1

2
(η)
)

+O
(
r∆+1

)
,

g
(3,+−)
∆,l (r, η) = r∆

(
P

(0,1)
l− 1

2
(η)− P (1,0)

l− 1
2

(η)
)

+O
(
r∆+1

)
,

g
(3,−+)
∆,l (r, η) = r∆

(
P

(0,1)
l− 1

2
(η) + P

(1,0)
l− 1

2
(η)
)

+O
(
r∆+1

)
,

g
(4,+−)
∆,l (r, η) = r∆

(
P

(0,1)
l− 1

2
(η) + P

(1,0)
l− 1

2
(η)
)

+O
(
r∆+1

)
,

g
(4,−+)
∆,l (r, η) = r∆

(
P

(0,1)
l− 1

2
(η)− P (1,0)

l− 1
2

(η)
)

+O
(
r∆+1

)
,

with P (α,β)
n (z) being the Jacobi polynomials. Note that they have the following symmetry

property

P (α,β)
n (−z) = (−1)nP (β,α)

n . (3.76)

which implies that P (α,β)
n (z) + P

(β,α)
n (z) has only even powers of z for even n and only odd

powers of z for odd n. On the other hand the difference P (α,β)
n (z)− P (β,α)

n (z) has only odd
powers of z for even n and even powers of z for odd n. Using this insight the series expansion
of these polynomials leads to the following asymptotic behaviour (for l > 1

2):

g
(1,++)
∆,l (ũ, ṽ) ≈ −ũ

∆
2

⌊
l
2

⌋∑
k=0

H
+(0,1)
l,k

(1− ṽ
2
√
ũ

)l−2k
+ · · · ,

g
(1,−−)
∆,l (ũ, ṽ) ≈ −ũ

∆
2

⌈
l
2

⌉
−1∑

k=0
H
−(0,1)
l,k

(1− ṽ
2
√
ũ

)l−2k−1
+ · · · ,

g
(2,++)
∆,l (ũ, ṽ) ≈ ũ

∆
2

⌈
l
2

⌉
−1∑

k=0
H
−(0,1)
l,k

(1− ṽ
2
√
ũ

)l−2k−1
+ · · · ,

g
(2,−−)
∆,l (ũ, ṽ) ≈ ũ

∆
2

⌊
l
2

⌋∑
k=0

H
+(0,1)
l,k

(1− ṽ
2
√
ũ

)l−2k
+ · · · ,

(3.77)
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Component of M.A. Location of Poles Residues ∼

M1
t = τ + 2k λ+

ψ1φ3ψl
λ+
ψlφ4ψ2

t = τ + 1 + 2k λ−ψ1φ3ψl
λ−ψlφ4ψ2

M2
t = τ + 1 + 2k λ+

ψ1φ3ψl
λ+
ψlφ4ψ2

t = τ + 2k λ−ψ1φ3ψl
λ−ψlφ4ψ2

M3
t = τ + 1 + 2k λ+

ψ1φ3ψl
λ−ψlφ4ψ2

t = τ + 2k λ−ψ1φ3ψl
λ+
ψlφ4ψ2

M4
t = τ + 2k λ+

ψ1φ3ψl
λ−ψlφ4ψ2

t = τ + 1 + 2k λ−ψ1φ3ψl
λ+
ψlφ4ψ2

Table 3.3: t-channel poles of the Mellin amplitude from the two fermion and two scalar
correlator. τ = ∆− l is the twist of the exchanged operator.

g
(3,+−)
∆,l (ũ, ṽ) ≈ ũ

∆
2

⌈
l
2

⌉
−1∑

k=0
H
−(0,1)
l,k

(1− ṽ
2
√
ũ

)l−2k−1
+ · · · ,

g
(3,−+)
∆,l (ũ, ṽ) ≈ ũ

∆
2

⌊
l
2

⌋∑
k=0

H
+(0,1)
l,k

(1− ṽ
2
√
ũ

)l−2k
+ · · · ,

g
(4,+−)
∆,l (ũ, ṽ) ≈ ũ

∆
2

⌊
l
2

⌋∑
k=0

H
+(0,1)
l,k

(1− ṽ
2
√
ũ

)l−2k
+ · · · ,

g
(4,−+)
∆,l (ũ, ṽ) ≈ ũ

∆
2

⌈
l
2

⌉
−1∑

k=0
H
−(0,1)
l,k

(1− ṽ
2
√
ũ

)l−2k−1
+ · · ·

(3.78)

with H±(α,β)
n,k being the coefficients of the series expansions of P (α,β)

n (z)±P (β,α)
n (z). For l = 1

2
the expansion reads

g
(1,++)
∆, 12

(ũ, ṽ) ≈ −2ũ
∆
2 + · · · , g

(1,−−)
∆, 12

(ũ, ṽ) ≈ −2ũ
∆+1

2 + · · · ,

g
(2,++)
∆, 12

(ũ, ṽ) ≈ 2ũ
∆+1

2 + · · · , g
(2,−−)
∆, 12

(ũ, ṽ) ≈ 2ũ
∆
2 + · · · ,

g
(3,+−)
∆, 12

(ũ, ṽ) ≈ 2ũ
∆+1

2 + · · · , g
(3,−+)
∆, 12

(ũ, ṽ) ≈ 2ũ
∆
2 + · · · ,

g
(4,+−)
∆, 12

(ũ, ṽ) ≈ 2ũ
∆
2 + · · · , g

(4,−+)
∆, 12

(ũ, ṽ) ≈ 2ũ
∆+1

2 + · · · .

(3.79)

Comparing (3.77), (3.78) and (3.79) with (3.75) gives rise to the poles listed in table 3.3.
The OPE coefficient associated to the tensor structure r±cr from (3.50) for the three-point
correlator 〈Ψ1Φ2Ψ3,l〉 is written in the following way λ±ψφψl .
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Actually, it is interesting that in this case each component of the Mellin amplitude has
two series of poles. This is significantly different from the scalar pole structure, where simply
one series of poles appears. However, in a theory of definite parity merely one series shall
appear, because the four-point correlator can only factorize onto one pair of OPE coefficients.
This is verified in the perturbative calculations in the next section. The Mellin amplitudes of
the u-channel are not independent and their pole structure is stated in the appendix B.4.2.

Pole Structure: Four Fermion Correlator

The fermionic conformal block for the four-point correlator 〈Ψ1Ψ2Ψ3Ψ4〉 can be obtained
from the scalar conformal block by the method explained for the direct channel. The formula
(3.68) can be used again, however, for 〈Ψ1Ψ2Ψ3Ψ4〉 two differential operators have to be
applied, because both three-point functions onto which the four-point correlator factorizes,
include a pair of fermionic operators [199]. This method works for the s- and t-channel, since
only symmetric traceless operators are exchanged in both channels.

There is a further subtlety. A generic basis of tensor structures might lead to spurious
singularities in the conformal block; hence a basis of these is chosen such that each component
of the conformal block can be expanded in the limit (u, v)→ (0, 1) in the following way

I∑
i=1

u
τ−ai

2

∞∑
k=0

ukg̃k(v).

ai < τ and I > 0 are integer valued and g̃k has a power series expansion in 1 − v. Such
a choice ensures that each component of the Mellin amplitude has finitely many series of
poles and the residue of them yields the OPE coefficients times a polynomial. Again, if the
polynomial is known the OPE coefficient can be determined from the Mellin amplitude. As
for the scalar case the degree of the polynomial is determined by the spin l of the exchanged
operator. The basis given in (3.52), (3.53) is a good choice since it does not yield spurious
poles.

The result for the s-channel poles is given in table 3.4. For a scalar exchange l = 0
the number of independent tensor structures is reduced. Therefore all OPE coefficients
apart from λ1

ψ1ψ2Ol , λ
3
ψ1ψ2Ol , λ

1
Olψ3ψ4

and λ3
Olψ3ψ4

should be set to zero. The t-channel and
u-channel poles are listed in the appendix B.4.3.
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Component of M.A. Location of Poles Residues ∼

s = τ + 2k
λ1
ψ1ψ2Olλ

1
Olψ3ψ4

, λ1
ψ1ψ2Olλ

2
Olψ3ψ4

λ2
ψ1ψ2Olλ

1
Olψ3ψ4

, λ2
ψ1ψ2Olλ

2
Olψ3ψ4

M1
s = τ + 1 + 2k

λ3
ψ1ψ2Olλ

3
Olψ3ψ4

, λ3
ψ1ψ2Olλ

4
Olψ3ψ4

λ4
ψ1ψ2Olλ

3
Olψ3ψ4

, λ4
ψ1ψ2Olλ

4
Olψ3ψ4

M2 s = τ + 1 + 2k
λ1
ψ1ψ2Olλ

2
Olψ3ψ4

, λ2
ψ1ψ2Olλ

1
Olψ3ψ4

λ2
ψ1ψ2Olλ

2
Olψ3ψ4

M3 , M5 , M6 ,
s = τ − 1 + 2k λ2

ψ1ψ2Olλ
1
Olψ3ψ4

, λ2
ψ1ψ2Olλ

2
Olψ3ψ4

M7 , M8
s = τ + 2k

λ3
ψ1ψ2Olλ

3
Olψ3ψ4

, λ3
ψ1ψ2Olλ

4
Olψ3ψ4

λ4
ψ1ψ2Olλ

3
Olψ3ψ4

, λ4
ψ1ψ2Olλ

4
Olψ3ψ4

s = τ + 2k λ2
ψ1ψ2Olλ

1
Olψ3ψ4

, λ2
ψ1ψ2Olλ

2
Olψ3ψ4

M4
s = τ + 1 + 2k

λ3
ψ1ψ2Olλ

3
Olψ3ψ4

, λ3
ψ1ψ2Olλ

4
Olψ3ψ4

λ4
ψ1ψ2Olλ

3
Olψ3ψ4

, λ4
ψ1ψ2Olλ

4
Olψ3ψ4

M9 , M10
s = τ + 2k

λ1
ψ1ψ2Olλ

3
Olψ3ψ4

, λ1
ψ1ψ2Olλ

4
Olψ3ψ4

λ2
ψ1ψ2Olλ

3
Olψ3ψ4

, λ2
ψ1ψ2Olλ

4
Olψ3ψ4

s = τ + 1 + 2k λ3
ψ1ψ2Olλ

2
Olψ3ψ4

, λ4
ψ1ψ2Olλ

2
Olψ3ψ4

M11 , M12
s = τ + 2k

λ3
ψ1ψ2Olλ

1
Olψ3ψ4

, λ4
ψ1ψ2Olλ

1
Olψ3ψ4

λ3
ψ1ψ2Olλ

2
Olψ3ψ4

, λ4
ψ1ψ2Olλ

2
Olψ3ψ4

s = τ + 1 + 2k λ2
ψ1ψ2Olλ

3
Olψ3ψ4

, λ2
ψ1ψ2Olλ

4
Olψ3ψ4

M13 , M14

s = τ + 1 + 2k λ3
ψ1ψ2Olλ

2
Olψ3ψ4

, λ4
ψ1ψ2Olλ

2
Olψ3ψ4

s = τ + 2 + 2k λ2
ψ1ψ2Olλ

3
Olψ3ψ4

, λ2
ψ1ψ2Olλ

4
Olψ3ψ4

M15 , M16

s = τ + 1 + 2k λ2
ψ1ψ2Olλ

3
Olψ3ψ4

, λ2
ψ1ψ2Olλ

4
Olψ3ψ4

s = τ + 2 + 2k λ3
ψ1ψ2Olλ

2
Olψ3ψ4

, λ4
ψ1ψ2Olλ

2
Olψ3ψ4

Table 3.4: s-channel poles for the fermionic four-point correlator corresponding to an integer
spin l exchanged primary Ol of twist τ = ∆− l.
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3.4 Perturbative Calculations

To illustrative the pole structure of the Mellin amplitudes described in section 3.3.3, per-
turbative tree-level calculations at strong and weak coupling are performed in this section.
Although the computations are done for arbitrary dimensions, to analyze the pole structure
of the Mellin amplitude the discussion is restricted to three dimensions because in subsection
3.3.3 the pole structure has been deduced in three dimensions only. However, a generalization
to arbitrary dimensions is straightforward. All tree-level calculations are done in Euclidean
signature and the final result is Wick rotated to Minkowskian signature. As usual the al-
gebraic term of the perturbative expression is also presented in forms of diagrams. In the
depicted diagrams solid lines with an arrow shall denote fermionic propagators whereas solid
lines without an arrow shall represent scalar propagators. In the following the scaling di-
mension of the ith external operator is written as ∆i and ∆ denotes the scaling dimension
of the exchanged operator.

At first the calculations at strong coupling are done using Witten diagrams. The
theoretical principle underlying these computations is the AdS/CFT correspondence
which states that there is a duality between string theories in d + 1 dimensions on anti
de Sitter space (AdS) and conformal field theories defined on its d-dimensional boundary
(∂AdS). Therefore a short review about the correspondence shall be given in section 3.4.1
to outline how the calculations at strong coupling, done in section 3.4.2, can be performed.
Afterwards in section 3.4.3 Mellin amplitudes in the weak coupling regime are determined
starting from standard position space Feynman rules.

3.4.1 Basics of AdS/CFT

The paradigm of AdS/CFT [30–32] states there is a one-to-one correspondence between string
theory (quantum gravity) with asymptotically AdS boundary conditions and a CFT defined
on its boundary. To explain this correspondence it is useful to introduce d + 1-dimensional
Euclidean AdS spacetime first. It can be defined by an embedding into Rd+2

−x2
0 + x2

1 + . . .+ x2
d+1 = −L2

with the AdS radius L. Originally, it has been proposed [30] that N = 4 super Yang-Mills
(SYM) theory with gauge group SU(N) in four dimensions is dual, i.e. produces the same
observables, to string theory defined on the geometry AdS5 × S5. However, in the pointlike
limit of the string the massive states decouple and string theory can be approximated by
(super)-gravity. If the gravity theory is weakly coupled, quantum corrections do not have
to be included; hence, it can be described by classical gravity. For the first approximation
to hold it is necessary to study a strongly coupled system on the boundary and the second
statement demands that the system has a large number of degrees of freedom which is equal
to the fact that the central charge of the CFT is large [211].17

17In the original proposal the coupling constants on N = 4 SYM theory and string theory are related by

l2s
L2 = 1√

λ
and

l8p
L8 = π4

2N2 ,

where lp is the Planck length, ls the string length and L the radius of AdS space. The ’t Hooft coupling
λ = Ng2

YM is a product of the Yang-Mills coupling constant gYM and the degree of the gauge group SU(N).
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For the purpose of this thesis a scalar and a fermionic field (which source the correspond-
ing operators in the CFT) in AdS shall be studied. Consider a scalar field φ in AdS which
obeys the AdS-Klein-Gordon equation. The duality states that an operator O of the CFT
is sourced by an appropriately defined boundary value φ0 of the dual field φ which lives in
AdS. In terms of the partition function [31, 32] the AdS/CFT correspondence reads

ZQFT [φ0] :=
〈

exp
(∫

ddxφ0O
)〉

QFT
= Zgravity [φ0] , (3.80)

where Zgravity [φ0] is the gravity path integral over all fields φ which allow φ0 as at the AdS
boundary value [32, 211]

Zgravity [φ0] =
∫
φ=φ0

D [φ] eSgravity[φ].

The bulk field approaches the boundary field like

lim
z0→0

z∆−d
0 φ(z) = 1

2∆− dφ0(z) and z = (z0, z), (3.81)

where the normalization z∆−d
0 is necessary to obtain a convergent boundary field [33].18

Hence, the CFT operator O is sourced by the boundary value of the bulk field. If the
operator O has scaling dimension ∆ the source φ0 has to have scaling dimension d − ∆
such that the integral

∫
ddxφ0O is invariant under conformal transformations. In the regime

where the classical solution of gravity is appropriate one can replace the r.h.s. of (3.80) by
its on-shell action such that the correspondence simplifies to

ZQFT [φ0] = exp
(
Son-shell

gravity [φ]
∣∣∣
φ=φ0

)
with Zgravity [φ0] = exp

(
Son-shell

gravity [φ]
∣∣∣
φ=φ0

)
.

Therefore, the connected n-point conformal correlation function can be computed by the
generating functional logZgravity [φ0] = Son-shell

gravity [φ]
∣∣∣
φ=φ0

of the gravity theory

〈O1(x1) . . .On(xn)〉 =
δ(n)Son-shell

gravity
δφ0(x1) . . . δφ0(xn)

∣∣∣∣∣
φ0=0

. (3.82)

The action Son-shell
gravity should be understood as the renormalized action with counterterms

included. Naively, the on-shell action diverges because on the one hand the volume of AdS is
infinite and on the other hand the induced metric on the boundary ∂AdS receives a double
pole (as can be seen in (3.83) for z0 → 0). One way to regulate the gravity action is by
restricting the bulk integral to the domain z0 > ε > 0 and evaluating the boundary integral
at z0 = ε. After adding the counterterms the limit ε→ 0 can be taken safely [212, 213].

Further, the Ricci scalar R = − d(d+1)
2L2 (i.e. the curvature) is small if the radius L of AdS is large. To obtain

a reliable gravity description the regime

N � 1 (planar limit) and λ� 1 (at strong coupling)

has to be studied [211].
18Notice that the additional factor 2∆− d is due to the normalization of the bulk-to-boundary propagator.

In this section, boundary coordinates shall be denoted by z whereas bulk coordinates are given by z = (z0, z).
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For the following discussion the Poincaré patch for (Euclidean) AdS is used:

ds2 = L2

z2
0

(
dz2

0 + dz2
)

= 1
z2

0
dzµdzµ. (3.83)

In the following length scales are measured in terms of the AdS radius L which implies
L = 1. It can be seen that the metric diverges at z0 → 0 and does not induce a metric at the
boundary. However, it induces a metric up to conformal transformations which enables one
to remove the double pole. (For instance the function f(z) = z2

0 removes the double pole.)
Since any conformal transformation which removes the pole is equally fine the metric can be
constructed up to conformal transformations only [213].

A solution for the bulk field φ in terms of the boundary field φ0 can be established
with a Green’s function K∆(z,x) such that K∆(z,x) solves the AdS Klein-Gordon equation
∇2φ = M2φ and gives rise to the correct boundary value x. The solution reads

φ(z0, z) =
∫
ddyK∆(z,y)φ0(y)

with the bulk-to-boundary propagator

K∆(z,x) = C∆
z∆

0(
z2

0 + (x− z)2)∆ with C∆ = Γ(∆)
2πhΓ(∆− h+ 1) (3.84)

and h = d
2 . K∆ is constructed such that its boundary value is a δ-distribution with the

normalization

lim
z0→0

zd−∆
0 K∆(z,x) = δd(z− x).

In embedding space coordinates the propagator is simply given by

K∆(Z,X) = C∆

(−2X · Z)∆ = C∆
Γ(∆)

∫ ∞
0

dt

t
t∆e2tZ·X , (3.85)

where Z ∈ AdSd+1 is a point in the bulk and X ∈ ∂AdSd is a point at the boundary. The
propagation between two bulk points is established by the usual AdS propagator which reads,
in the harmonic space representation, as follows

G∆(Z1, Z2) =
∫ i∞

−i∞

dc

2πi
Ωc(Z1, Z2)

(∆− h)2 − c2

Ωc(Z1, Z2) =(c)h (−c)h
2πd

∫
∂AdS

Kh+c(Z1, P )Kh−c(Z2, P )
(3.86)

where (x)n = Γ(x+n)
Γ(x) is the Pochhammer symbol [106]. Hence, the scalar bulk-to-bulk prop-

agator (3.86) can be expressed as a convolution of two scalar bulk-to-boundary propagators
(3.85) [32, 33, 211].

Similarly the propagators for a spinor field can be obtained [214–216]. For concreteness,
assume that the massm ≥ 0 of the fermionic bulk field ψ(z) = ψ+(z)+ψ−(z) is non-negative.
ψ+(z) and ψ−(z) are eigenfunctions of Γ0: Γ0ψ±(z) = ±ψ±(z). If the classical bulk field
ψ(z) approaches the boundary, the field scales as

ψ−(z) = z
d
2−m
0 ψ−0 (z) +O

(
z
d
2−m+1
0

)
and ψ+(z) = z

d
2 +m
0 ψ+

0 (z) +O

(
z
d
2 +m+1
0

)
,
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which is similar to the scalar field (3.81). Hence, for m > 0 and close to the boundary
ψ−0 dominates. Further, the objects ψ−0 and ψ+

0 and ψ̄+
0 and ψ̄−0 are related, this can be

proven by demanding regular solutions deep in the bulk z0 → ∞. This analysis shows that
the boundary data is encoded in ψ−0 and ψ̄+

0 only. Hence, in even-dimensional spacetime
(odd-dimensional boundary) the boundary term of the bulk spinor is a Dirac spinor of the
boundary and in odd-dimensional spacetime the boundary term is a Weyl spinor of the
boundary.19

In addition, it is necessary to demand that the action is stationary at the classical path to
obtain the correct classical theory from the quantum theory. This requires to add a boundary
term to the Dirac action [216]. For the Klein-Gordon action no boundary term is required
if Dirichlet boundary conditions δφ = 0 are used, because the action does already vanish at
the classical path [217]. Hence, the AdS action with a Yukawa interaction can be written as

S[ψ, ψ̄, φ] =
∫
M
dd+1z

√
g

[
ψ̄
(
/D −m

)
ψ + 1

2
(
(∇µφ)2 +M2φ2

)
+ λφψ̄ψ

]
+
∫
∂Mε

ddx
√
hε ψ̄ψ,

(3.87)

hε;ij is the induced metric on the surface ∂Mε. ∂Mε is the regularized boundary of the AdS
space M , which approaches the boundary for z0 = ε→ 0 [214–216, 218].

In general it is hard to find an exact solution to (3.87), but a perturbative solution can
be constructed by the following recursion relations of the fields

φ(z) = φ(0)
ε (z)− λ

∫
dd+1w

√
g(w)Gε(z, w)ψ̄(w)ψ(w),

ψ(z) = ψ(0)
ε (z)− λ

∫
dd+1w

√
g(w)Sε(z, w)φ(w)ψ(w),

ψ̄(z) = ψ̄(0)
ε (z)− λ

∫
dd+1w

√
g(w)ψ̄(w)φ(w)Sε(z, w).

(3.88)

Here φ(0)
ε , ψ(0)

ε and ψ̄(0)
ε denote the regularized solutions to the e.o.m. in free theory. Further,

Gε(z, w) and Sε(z, w) are the regularized scalar and spinorial bulk-to-bulk propagators [215,
219]. Eventually one takes the limit ε → 0 such that the regularized free theory solutions
can be expressed in terms of the boundary values:20

φ(0) = lim
ε→0

φ(0)
ε (z) =

∫
ddx K∆(z,x)φ0(~x),

ψ(0) = lim
ε→0

ψ0
ε (z) =

∫
ddx Σ∆ (z,x)ψ−0 (x)

ψ̄(0) = lim
ε→0

ψ̄0
ε (z) =

∫
ddx ψ̄+

0 (x) Σ̄∆ (z,x)

(3.89)

where
Σ∆ (z,x) = Γµ (zµ − xµ)

√
z0

K∆+ 1
2

(z,x)P−,

Σ̄∆ (z,x) = P+ Γµ (zµ − xµ)
√
z0

K∆+ 1
2

(z,x)

19This follows from the fact that in even dimensions the Dirac spinor transforms in a reducible representation
while the Weyl spinor transforms in an irreducible representation of the algebra of the spin group. However, in
odd dimensions the Dirac spinor transforms in an irreducible representation too. Further, in a d-dimensional
spacetime the spinor representation is realized in a 2bd/2c-dimensional vector space.

20The conformal dimension of the scalar field satisfies ∆ (∆− d) = M2 [32] and for the spinor fields
∆ = m+ d

2 [214, 215].
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are the fermionic bulk-to-boundary propagators, respectively [218]. Γµ are the Dirac-matrices
of the bulk theory and P± = (1 ± Γ0)/2 are projection operators. It is easy to verify that
the spinor product of the two fermionic bulk-to-boundary propagators Σ̄∆1 and Σ∆2 can be
written as a product of two scalar bulk-to-boundary propagators K∆1+ 1

2
and K∆2+ 1

2
with

an additional tensor structure:

Σ̄∆1(z,x1)Σ∆2(z,x2) =
(
xµ12ΓµP−

)
K∆1+ 1

2
(z,x1)K∆2+ 1

2
(z,x2). (3.90)

If the tensor structure xµ12ΓµP− is contracted with polarization vectors of the boundary Si
it is equivalent to xa12γa ≡ /x12 where γa are the Dirac-matrices of the boundary theory.

Plugging back the recursive definition of the fields (3.88) into the action (3.87), it can
be written as an expansion in the boundary fields φ0, ψ−0 and ψ̄+

0 .21 Taking the functional
derivative w.r.t. the boundary fields according to (3.82) shall give the correlator in the
planar limit in the boundary CFT. This method can be depicted diagrammatically by tree-
level Witten diagrams [32, 220].

3.4.2 Strong Coupling - Witten Diagrams

The position space representation of Witten diagrams is quite cumbersome, but in the Mellin-
Barnes representation, they are simplified greatly and the relevant (physical) data is concisely
encoded in the Mellin amplitude [103, 106, 221, 222]. In addition the so-obtained Mellin
amplitude can be used to compute scattering amplitudes in QFTs of one dimension higher
by the flat-space limit [106, 107, 113].

In this thesis tree-level Witten diagrams with external fermions and scalars are evaluated
to exemplify the properties of the Mellin amplitudes studied in section 3.3.3. The strategy
to evaluate these diagrams is the following:

1. The position space expression of the fermionic Witten diagram is reduced to a scalar
Witten diagram attached with the tensor structures defined in section 3.2.2 [218, 223].

2. For these scalar Witten diagrams the Mellin-Barnes representation is known [103, 106].
Hence, the Mellin amplitude for the fermionic Witten diagram can be constructed from
these results.

Contact Witten Diagram

The position space representation of a tree-level Witten diagram involving two fermions and
two scalars is merely given by the scalar Witten diagram

Bψ̄1ψ2
φ3φ4

= 〈S1S2〉
∫
AdS

dZ
2∏
i=1

K∆i+ 1
2
(Z,Xi)

4∏
i=3

K∆i
(Z,Xi), (3.91)

which can be checked using the spinor product relation (3.90). The result is written in
embedding space coordinates. The measure dZ integrates over AdS-space and Xi are points

21Since the bulk integrals might diverge, the limit ε → 0 has to be taken after integration. However, in
most cases a careful treatment of the cutoff ε is needed for the two-point correlator only [220].
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1

4 3

2

Figure 3.7: Four point contact Witten diagram with two fermions and two scalars.

on the conformal boundary of AdS. In figure 3.7 the diagram is drawn. The integral in (3.91)
is a contact Witten diagram of four scalars expressed in terms of the scalar bulk-to-boundary
propagator (3.85). This can be expressed in Mellin space [106] to obtain

Bψ̄1ψ2
φ3φ4

= 〈S1S2〉
4∏

1≤i<l

∫ cil+i∞

cil−i∞
(dsil)X−silil Γ (sil)M2,2

4∏
i=1

δ̂

∆i + 1
2(δi1 + δi2)−

∑
j 6=i

sij


=〈S1S2〉√

X12

4∏
1≤i<l

∫ cil+i∞

cil−i∞
(dsil)X

−sil− 1
2 δ1iδ2l

il Γ(sil + δ1iδ2l)M2,2

4∏
i=1

δ̂

τi −∑
j 6=i

sij

,
where the normalization for the delta-distribution reads δ̂(x) = 2πi δ(x) and the integration
measure is given by (dsil) = dsil

2πi . It is trivial to generalize this result to 2n boundary fermions
and m boundary scalars

M1 = M2n,m = πhΓ
(

1
2

2n+m∑
i=1

∆i + n

2 − h
) 2n∏
i=1

[
C∆i+ 1

2

Γ(∆i + 1
2)

] 2n+m∏
i=2n+1

[
C∆i

Γ(∆i)

]
(3.92)

with h = d
2 and C∆ is given in (3.84). The only non-zero component of the Mellin amplitude

isM1 = M2,2 which is a constant as a function of the Mellin variables.

Fermion-Scalar Four-point Witten Diagram: Scalar and Fermionic Exchange

The scalar exchange Witten diagram with two fermions and two scalars, sketched in figure
3.8, is in position space given by

∫
AdS

dZ1

∫
AdS

dZ2 Σ̄∆1(Z1, X1)Σ∆2(Z1, X2)G∆(Z1, Z2)
4∏
i=3

K∆i
(Z2, Xi).

G∆(z1, z2) is the scalar bulk-to-bulk propagator (3.86). Using the spinor product reduction
(3.90) the scalar exchange Witten diagram is

Aψ̄1ψ2
φ3φ4

= 〈S1S2〉
∫
AdS

dZ1

∫
AdS

dZ2

2∏
i=1

K∆i+ 1
2
(Z1, Xi)G∆(Z1, Z2)

4∏
i=3

K∆i
(Z2, Xi).
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1

2 3

4 1

3 4

2

Figure 3.8: Fermionic-scalar exchange Witten diagrams with scalar and spinor exchange.

The above integral has been evaluated in [106].22 The final result reads

Aψ̄1ψ2
φ3φ4

=〈S1S2〉√
X12

4∏
1≤i<l

∫ cil+i∞

cil−i∞
(dsil)X

−sil− 1
2 δ1iδ2l

il Γ (sil + δ1iδ2l)Nψ̄1ψ2
φ3φ4

(sil)
4∏
i=1

δ̂

τi −∑
j 6=i

sij

.
Thus, as a function of the Mandelstam variable s = τ1 + τ2 − 2s12 the non-zero component
of the Mellin amplitude is given by

M1 =Nψ̄1ψ2
φ3φ4

(sil) = M2,2

Γ
(∑

i
∆i

2 + 1
2 − h

)
Γ
(

∆1+∆2+1−s
2

)
Γ
(

∆3+∆4−s
2

)
×
∫ i∞

−i∞

dc

2πi
l(c)l(−c)

(∆− h)2 − c2 ,

l(c) =
Γ
(
h+c−s

2

)
Γ
(

∆1+∆2−h+c
2 + 1

2

)
Γ
(

∆3+∆4−h+c
2

)
2Γ(c) ,

(3.93)

where ∆ is the conformal dimension of the exchanged operator.

The physical poles are located at s = ∆ + 2m with m ∈ N and they can only occur in
(3.93) if the contour is pinched between two colliding poles of the integrand as explained in
[99, 105]. On the other hand there are also several spurious poles which are generated by the
integrand, but these are cancelled by the zeroes of the Γ-function in the prefactor. Hence,
the location of the poles of the componentM1 are exactly given as predicted in section 3.3.3.
Further, the Mellin amplitude can be expressed as a series over these poles as has been shown
in [103, 106].

The calculation of the four-point spinor exchange diagram 3.8 is quite tedious.23 There-
fore it is presented in the appendix B.5. However, the idea how to compute it is simple. To
find the Mellin-Barnes representation for this diagram the same strategy is used as for the
previous computations. The first step is to write the position space expression of the spinor
exchange diagram as a scalar exchange diagram with some prefactor. This has been done in
[218]. The Mellin-Barnes representation is known [106] for this integral and the result can

22The notation in this thesis differs from [106]. In [106] Mellin variables are denoted by δij and Mandelstam
variables as si1···ik .

23Note the non-standard labelling of the external legs.
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be written as

Aψ̄1φ3
ψ2φ4

=〈S1S2〉√
X12

4∏
1≤i<l

∫ cil+i∞

cil−i∞
(dsil)X

−sil− 1
2 δ1iδ2l

il Γ (sil + δ1iδ2l)

× (∆1 + ∆3 + ∆ + 1− d− 2s13)Nψ̄1φ3
ψ2φ4

(sil)
4∏
i=1

δ̂

τi −∑
j 6=i

sij


+ 2 〈S1X3X4S2〉√

X13X34X42

4∏
1≤i<l

∫ cil+i∞

cil−i∞
(dsil)X

−sil− 1
2 δ1iδ2l

il N̄ψ̄1φ3
ψ2φ4

(sil)

× Γ
(
sil + 1

2 (δi1δl2 + δi1δl3 + δi3δl4 + δi2δl4)
) 4∏
i=1

δ̂

τi −∑
j 6=i

sij

 ,

(3.94)

The two parity even independent tensor structures t+1 and t+2 given in (3.51) appear in (3.94),
which implies that the Mellin amplitudes has the two non-zero componentsM1 andM2. In
terms of the Mandelstam variable t = τ1 + τ3 − 2s13, the first componentM1 is given by

M1 = (t+ τ + 2− d)Nψ̄1φ3
ψ2φ4

(sil)

= (t+ τ + 2− d)M2,2

Γ
(∑

i
∆i

2 + 1
2 − h

)
Γ
( τ1+τ3−t

2
)

Γ
( τ2+τ4−t

2
)
∫ i∞

−i∞

dc

2πi
l(c)l(−c)

(τ + 1− h)2 − c2 ,

l(c) =
Γ
(
h+c−t−1

2

)
Γ
(
τ1+τ3−h+c+1

2

)
Γ
(
τ2+τ4−h+c+1

2

)
2Γ(c) .

(3.95)

The position of the poles is at t = τ+2m. τ is the twist of the exchanged spinor. Considering
that the relevant three-point function is parity even, these poles match with the predictions
stated in section 3.3.3. The second component of the Mellin amplitude is of the form

M2 =2 N̄ψ̄1φ3
ψ2φ4

(sil)

= 2 M2,2

Γ
(∑

i
∆i

2 + 1
2 − h

)
Γ
(
τ1+τ3−t+1

2

)
Γ
(
τ2+τ4−t+1

2

)∫ i∞

−i∞

dc

2πi
l(c)l(−c)

(τ + 1− h)2 − c2 ,

l(c) =
Γ
(
h+c−t

2

)
Γ
(
τ1+τ3−h+c+1

2

)
Γ
(
τ2+τ4−h+c+1

2

)
2Γ(c)

(3.96)

with poles located at t = τ + 1 + 2m. For a parity even three-point correlator, this is also
consistent with the analysis done in section 3.3.3.

Scalar Exchange Witten Diagram with Four External Fermions

The computation of the four-fermion Witten diagram with a scalar exchange, presented
in diagram 3.9, is very similar to the scalar exchange of the mixed scalar-fermion Witten
diagram. The position space expression reads

Aψ̄1ψ2
ψ̄3ψ4

= 〈S1S2〉 〈S3S4〉
∫
AdS
dZ1

∫
AdS
dZ2

2∏
i=1

K∆i+ 1
2
(Z1, Xi)G∆(Z1, Z2)

4∏
i=3

K∆i+ 1
2
(Z2, Xi). (3.97)
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1
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4

Figure 3.9: Fermionic four-point Witten diagram with scalar exchange.

It follows from the decomposition of the Mellin amplitude done in section 3.3.3 that the only
non-zero component is given by

M1 = Nψ̄1ψ2
ψ̄3ψ4

(sil) = M4,0

Γ
(∑

i
∆i

2 + 1− h
)

Γ
(

∆1+∆2−s
2 + 1

2

)
Γ
(

∆3+∆4−s
2 + 1

2

)
×
∫ i∞

−i∞

dc

2πi
l(c)l(−c)

(∆− h)2 − c2 ,

l(c) =
Γ
(
h+c−s

2

)
Γ
(

∆1+∆2−h+c
2 + 1

2

)
Γ
(

∆3+∆4−h+c
2 + 1

2

)
2Γ(c) .

(3.98)

with the location of the poles at s = ∆ + 2m. The other series of poles at s = ∆ + 1 + 2m,
predicted in section 3.3.3, is absent because the three-point correlator is parity even.

3.4.3 Weak Coupling - Conformal Feynman Integrals

Like Witten diagrams, conformal Feynman integrals take a very simple form in Mellin-Barnes
representation [104, 224, 225]. In [104] Mellin space Feynman rules for tree-level interactions
in the weak coupling regime were derived for scalar operators. The diagrammatic rules for
the Mellin-Barnes representation showed that assuming an interaction without derivatives,
the Mellin amplitude associated with a tree-level diagram is given by a product of Euler-beta-
functions (B-functions), each of which is associated with an internal propagator. Each vertex
yields the trivial contribution 1. The B-function propagator is a function of the Mandelstam
variables composed of the fictitious Mellin momenta with the right kind of poles as expected
from the Mellin amplitude.

In this section these calculations are extended to Mellin amplitudes associated to tree-
level interactions with two or four external fermions. The interaction Lagrangian is of Yukawa
type without derivatives acting on the fields.

The conformal Feynman integrals are evaluated with four external legs. However, it is
straightforward to generalize these results by adding any number of external scalars. The
challenge is to add more pairs of fermionic legs. It turns out that a recursive method which
reduces all computations to contact diagram calculations effectively is quite useful in these
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calculations.24

Recursive Method

In [104] the authors derived the Mellin space Feynman rules in the weak coupling regime using
a method which included nested Schwinger parameter integrals. These integrals simplified
drastically because conformal covariance of the correlation function requires that a certain
conformality condition (see (3.100)) has to hold. However, if spinning particles are included
the conformality condition is not as useful as in the scalar case any more. Therefore, it is
easier to use a recursive method in which only contact diagrams have to be calculated in
Mellin space. These can be evaluated using Symanzik’s formula derived in [101]. Even though
this method introduces some nested Mellin-Barnes integrals, these are easier to handle than
the nested Schwinger parameter integrals in the present case.

1

2 3

4

u1 u2∆

Figure 3.10: Scalar four-point diagram with scalar exchange.

The recursive method shall be illustrated on an easy example. Consider the scalar four-
point diagram (3.10) with a scalar exchange. Using position space Feynman rules the con-
formal integral is given by

Iφ1φ2
φ3φ4

=
∫
Du1

∫
Du2

2∏
i=1

Γ (∆i)
|xi − u1|2∆i

4∏
i=3

Γ (∆i)
|xi − u2|2∆i

1
|u1 − u2|2∆ with Du = 1

2
ddu

πd/2
.(3.99)

Note that the external propagators have been normalized by additional Euler-gamma func-
tions to simplify the final result. Using conformal covariance of the integral, it can be deduced
that the conformality condition

∆1 + ∆2 = ∆3 + ∆4 = d−∆ (3.100)

has to hold [104].25 The recursive method treats the internal line as an external leg, like it
would be independent of the interaction vertex u1. This is sketched in the diagram 3.11.

Hence, Symanzik’s formula (B.19) can be applied to it, which leads to the partial Mellin-

24Arnab Rudra developed this method while working on [104].
25This is easy to prove using the homogeneity property (3.30) if the integral is rewritten in embedding

space coordinates.
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1

2 3

4

u1 u2∆

∆4

∆3

Figure 3.11: Recursive method: First step

Barnes representation

∫
Du2

4∏
i=3

Γ (∆i)
|xi − u2|2∆i

1
|u1 − u2|2∆ =

( 4∏
i=3

∫ ciu+i∞

ciu−i∞
(dsiu)

)
1

Γ (∆)

∫ c̄34+i∞

c̄34−i∞
(ds̄34)

× Γ (siu)
|xi − u1|2siu

Γ (s̄34)
|x34|2s̄34

4∏
i=3

δ̂(∆i − s̄34 − siu) δ̂(∆− s3u − s4u)
(3.101)

with the integration measure (dsil) = dsil
2πi of the Mellin variables. The correct contours of

the Mellin-Barnes integrals are such that the series of poles generated by the Γ-functions
are not separated. Plugging (3.101) back into (3.99) the integral over the measure Du1 can
be performed using Symanzik’s formula (B.19). In this case the “external legs” are given
by the edges (x1, u1), (x2, u1), (x3, u1) and (x4, u1) with “scaling dimension” ∆1, ∆2, s3u
and s4u, respectively. This is sketched in diagram 3.12. Using the δ-distribution constraint
2πi δ(∆ − s3u − s4u) = δ̂(∆− s3u − s4u) in (3.101) the required conformality condition for
this integral ∆1 + ∆2 + s3u + s4u = d is also satisfied.

1

2 3

4

u1

s4u

s3u

∆1

∆2

Figure 3.12: Recursive method: Second step
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The result reads

Iφ1φ2
φ3φ4

=
4∏

1≤i<l

∫ c̃il+i∞

c̃il−i∞
(ds̃il)

Γ (s̃il)
|xil|2s̃il

∫ c̄34+i∞

c̄34−i∞
(ds̄34) Γ (s̄34)

|x34|2s̄34

1
Γ (∆)

×
( 4∏
i=3

∫ ciu+i∞

ciu−i∞
(dsiu)

)
δ̂(s3u − s̃13 − s̃23 − s̃34) δ̂(s4u − s̃14 − s̃24 − s̃34)

× δ̂(∆1 − s̃12 − s̃13 − s̃14) δ̂(∆2 − s̃12 − s̃23 − s̃24)

×
4∏
i=3

δ̂(∆i − s̄34 − siu) δ̂(∆− s3u − s4u) .

To distinguish the Mellin variables introduced in the last step from the previous one they
are decorated with a tilde. The δ-distributions can be used to integrate out siu. Renaming
s̃ij = sij for (i, j) 6= (3, 4) and taking s̄34 = s34 − s̃34 yields

Iφ1φ2
φ3φ4

=
4∏

1≤i<l

∫ cil+i∞

cil−i∞
(dsil)

Γ (sil)
|xil|2sil

4∏
i=1

δ̂

∆i −
4∑

k=1,k 6=i
sik


× 1

Γ (∆)

∫ c̃34+i∞

c̃34−i∞
(ds̃34) Γ(s̃34) Γ(s34 − s̃34)

Γ(s34) δ̂(∆−K12,34 − 2s̃34) .

To make the result more transparent the object Kij,kl = sik + sil + sjk + sjl has been
introduced. The last integral over (ds̃34) gives finally

Iφ1φ2
φ3φ4

=
4∏

1≤i<l

∫ cil+i∞

cil−i∞
(dsil)

Γ (sil)
|xil|2sil

4∏
i=1

δ̂

∆i −
4∑

k=1,k 6=i
sik

 1
2Γ(∆)B

(∆−K12,34
2 ,

d− 2∆
2

)

with B(x, y) = Γ(x)Γ(y)
Γ(x+ y) . (3.102)

The second argument of the B-function has been rewritten using the constraints from the
conformality condition and the δ-distributions:

d = ∆ + ∆3 + ∆4 and ∆i =
4∑

k=1,i 6=k
sik.

The same result (3.102) has been calculated in [104, 224] before.

Contact Diagrams

To apply the recursive method for diagrams with fermionic legs, the results for the Mellin
amplitude associated to the corresponding contact interaction diagrams have to be known.
In this section, the Mellin-Barnes representation of the contact interaction with two and four
fermions is presented. The corresponding diagrams are drawn in 3.13.

This calculation has been done by Symanzik [101]. The conformal integral for the contact
interaction of two fermions and two scalars is given by

Cψ̄1ψ2
φ3φ4

=
∫
Du /x1 − /u
|x1 − u|2∆1+1 Γ

(
∆1 + 1

2

)
/u − /x2

|u − x2|2∆2+1 Γ
(

∆2 + 1
2

) Γ (∆3)
|x1 − u|2∆3

Γ (∆4)
|x4 − u|2∆4

,
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4

2

31

4

2

31

Figure 3.13: Contact diagrams with two and four fermions.

where spinor indices on /x = xµγµ have been suppressed. The conformality constraint requires
that the sum of all the scaling dimensions has to be equal to the spacetime dimension d. In
embedding space notation, and in accordance with the definition (3.63), the Mellin-Barnes
representation of this conformal integral reads

4∑
j=3

〈S1XjS2〉√
X1jXj2

4∏
1≤i<l

∫ cil+i∞

cil−i∞
(dsil)X

−sil− 1
2 δi1δl2

il

× Γ
(
sil + 1

2 (δi1 + δi2) δjl + 1
2δi1δl2

)∏
i

δ̂

τi −∑
j 6=i

sij

 ,
(3.103)

which implies that the Mellin amplitude is given by

M3 =M4 = 1. (3.104)

The Mellin amplitude associated to the fermionic contact diagram with four legs

Cψ̄1ψ2
ψ̄3ψ4

=
∫
Du

4∏
i=1

Γ
(

∆i + 1
2

)[
/x1 − /u

|x1 − u|2∆1+1
/u − /x2

|u − x2|2∆2+1

] [
/x3 − /u

|x3 − u|2∆3+1
/u − /x4

|u − x4|2∆4+1

]

has been evaluated in [101] to be

4∏
1≤i<l

∫ cil+i∞

cil−i∞
(dsil)X

−sil− 1
2 δi1δl2−

1
2 δi3δl4

il

1
2

〈
S1ΓAS2

〉
〈S3ΓAS4〉

√
X12X34

Γ (sil + δi1δl2 + δi3δl4)

+
4∑
j=3

2∑
k=1

〈S1XjS2〉 〈S3XkS4〉√
X1jXj2X3kXk4

(3.105)

× Γ
(
sil + 1

2 (δi1 + δi2) δlj + 1
2 (δ3l + δ4l) δik + 1

2δi1δl2 + 1
2δi3δl4

)]∏
i

δ̂

τi −∑
j 6=i

sij

,
where the result has been given in embedding space.26

26To relate this expression to the one stated in [101], note that
〈
S1ΓAS2

〉
〈S3ΓAS4〉 −−−−−−−−−→

physical space[
/x1γ

µ + γµ/x2

] [
/x3γµ + γµ/x4

]
− 2
[
/x1/x2

]
[1]− 2[1]

[
/x3/x4

]
holds.
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Expanding the tensor structures appearing in (3.105) into the basis (3.52) and (3.53)〈
S1ΓAS2

〉
〈S3ΓAS4〉

√
X12X34

= 1
2p1 + 2

√
v

u
p3 + 1

2p4 − 2
√
v

u
p5. (3.106)

gives the following non-vanishing Mellin amplitudes

M1 = 1
4 , M3 = 1, M4 = 1

4 , M5 = s13 − 1,

M6 = s23, M7 = s14, M8 = s24.
(3.107)

Further, the results (3.104) and (3.107) are consistent with the fact that in three di-
mensions the Yukawa interaction in Minkowski spacetime with signature (−,+,+) is parity
odd. Because the Mellin amplitudes given in (3.104) and (3.107) decompose in the OPE into
parity odd three-point functions as can be seen in the tables 3.2 and 3.4.27

Fermion-Scalar Four-Point Functions: Scalar and Fermionic Exchange.

The conformal Feynman integrals of the fermion-scalar four-point correlator are drawn in
figure 3.14. They are evaluated with the recursive method described at the beginning of this
section and the known result of the contact interaction (3.103).

1

2 3

4
1

2 3

4

Figure 3.14: Fermion scalar four point diagrams with scalar and fermionic exchange.

The conformal integral with a scalar exchange is given by

I ψ̄1ψ2
φ3φ4

=
∫
Du1

∫
Du2

/x1 − /u1
|x1 − u1|2∆1+1 Γ

(
∆1 + 1

2

)
/u1 − /x2

|u1 − x2|2∆2+1 Γ
(

∆2 + 1
2

)

×
4∏
i=3

Γ (∆i)
|xi − u2|2∆i

1
|u1 − u2|2∆ .

27To clarify contact diagrams are polynomials (or constants) in the Mellin variable, they do not factorize
onto corresponding three-point functions. (Their residue is zero.) However, it is obvious from the recursive
method that for the exchange diagrams the tensor structures from the contact diagrams can appear only;
hence, it can already been deduced that all exchange diagrams will factorize consistently with the fact that
the three-point correlator is parity odd. In particular, this implies that merely one series of poles from table
3.3 is relevant in the t-channel for the two-fermion four-point correlator. The same holds for the fermionic
four-point correlator as can be seen in the tables 3.4, B.2.
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Conformality of this integral demands ∆1 + ∆2 = ∆3 + ∆4 = d − ∆. The Mellin-Barnes
representation of this integral reads

4∑
j=3

〈S1XjS2〉√
X1jXj2

4∏
1≤i<l

∫ cil+i∞

cil−i∞
(dsil)X

−sil− 1
2 δi1δl2

il Γ
(
sil + 1

2 (δ1i + δ2i) δlj + 1
2δi1δl2

)

× 1
2Γ (∆)B

(∆− s
2 ,

d

2 −∆
)∏

i

δ̂

τi −∑
j 6=i

sij

 ,
which yields the non-vanishing components of the Mellin amplitude

M3 =M4 = 1
2Γ (∆)B

(∆− s
2 ,

d

2 −∆
)
. (3.108)

The poles are located at −(p1+p2)2 = s = ∆+2m withm ∈ N which matches the predictions
made in section 3.3.3.

The conformal Feynman integral with an internal spin one-half fermion is given by

I ψ̄1φ3
ψ2φ4

=
∫
Du1

∫
Du2

/x1 − /u1
|x1 − u1|2∆1+1 Γ

(
∆1 + 1

2

)
/u1 − /u2

|u1 − u2|2∆+1

× /u2 − /x2
|u2 − x2|2∆2+1 Γ

(
∆2 + 1

2

) Γ (∆3)
|x3 − u1|2∆3

Γ (∆4)
|x4 − u2|2∆4

.

The corresponding Mellin-Barnes representation reads
4∏

1≤i<l

∫ cil+i∞

cil−i∞
(dsil)X

−sil− 1
2 δ1iδ2l

il

∏
i

δ̂

τi −∑
j 6=i

sij

[ 〈S1X3X4S2〉√
X13X34X42

1
2Γ(τ + 1)

×B
(
τ − t

2 ,
d

2 − τ
) ∏

1≤i<l
Γ
(
sil + 1

2 (δi1δ2l + δi1δl3 + δi3δl4 + δi2δl4)
)

− 〈S1S2〉√
X12

s13
2Γ(τ + 1)B

(
τ + 1− t

2 ,
d

2 − τ
) ∏

1≤i<l
Γ (sil + δi1δl2)

]
.

Hence, the only non-vanishing components of the Mellin amplitude are

M1 = −τ1 + τ3 − t
4Γ(τ + 1) B

(
τ + 1− t

2 ,
d

2 − τ
)
, M2 = 1

2Γ(τ + 1)B
(
τ − t

2 ,
d

2 − τ
)
. (3.109)

M1 has poles at − (p1 + p3)2 = t = τ + 1 + 2m while M2 has poles at t = τ + 2m, where
τ = ∆− 1

2 is the twist of the exchanged operator. This again is consistent with the general
structure stated in section 3.3.3.

Fermionic Four-Point Function: Scalar Exchange

The position space expression for the four-fermion Feynman diagram with a scalar exchange
(s-channel) is ∫

Du1

∫
Du2

[
/x1 − /u1

|x1 − u1|2∆1+1
/u1 − /x2

|u1 − x2|2∆2+1

]
1

|u1 − u2|2∆

×
[

/x3 − /u2
|x3 − u2|2∆3+1

/u2 − /x4
|u2 − x4|2∆4+1

] 4∏
i=1

Γ
(

∆i + 1
2

)
.
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The Mellin-Barnes representation of this conformal integral reads

I ψ̄1ψ2
ψ̄3ψ4

=
4∏

1≤i<l

∫ cil+i∞

cil−i∞
(dsil)X

−sil− 1
2 δi1δj2−

1
2 δi3δj4

il

∏
i

δ̂

τi −∑
j 6=i

sij


×

1
2

〈
S1ΓAS2

〉
〈S3ΓAS4〉

√
X12X34

1
2Γ(∆)B

(∆− s+ 1
2 ,

d

2 −∆
)∏
i<l

Γ (sil + δ1iδ2j + δ3iδ4j)

+
4∑
j=3

2∑
k=1

〈S1XjS2〉 〈S3XkS4〉√
X1jXj2X3kXk4

1
2Γ(∆)B

(∆− s
2 ,

d

2 −∆
)

×
∏
i<l

Γ
(
sil + 1

2 (δ1i + δ2i) δjl + 1
2δik (δ3l + δ4l) + 1

2 (δ1iδ2j + δ3iδ4j)
) .

Rewriting the tensor structure which appears in I ψ̄1ψ2
ψ̄3ψ4

into the basis (3.52) and (3.53) us-
ing the decomposition (3.106) gives the following non-vanishing components for the Mellin
amplitude

M1 =M4 = 1
8Γ(∆)B

(∆ + 1− s
2 ,

d

2 −∆
)
, M3 = 1

2Γ(∆)B
(∆− s

2 ,
d

2 −∆
)
,

M5 =s13 − 1
2Γ(∆) B

(∆− s
2 ,

d

2 −∆
)
, M6 = s23

2Γ(∆)B
(∆− s

2 ,
d

2 −∆
)
,

M7 = s14
2Γ(∆)B

(∆− s
2 ,

d

2 −∆
)
, M8 = s24

2Γ(∆)B
(∆− s

2 ,
d

2 −∆
)
.

(3.110)

The poles of all the non-zeroMi are exactly as predicted in section 3.3.3, since the three-point
interaction is parity odd.

3.5 Conclusions

It has been shown that a generalization to Mellin amplitudes containing spin one-half
fermions is straight forward and it exhibits the expected pole structure, i.e. the location
of the pole is completely fixed by the twist τ of the exchanged operator. This analysis has
also been confirmed by computing different four-point correlators at strong and weak cou-
pling using Witten diagrams and Feynman diagrams respectively. Especially it could be
shown that the positions of the poles predicted in section 3.3.3 agree with the perturbative
analysis performed in section 3.4.

However, spinning conformal correlation functions are always equipped with some ad-
ditional tensor structure. There is no canonical choice for a basis of tensor structures and
not every basis is suitable, because there can appear spurious poles in the corresponding
conformal block which is also reflected in the Mellin amplitude. In addition, contrary to
scalar Mellin amplitudes, fermionic Mellin amplitudes can exhibit more than one series of
poles in a particular channel like it appeared in the t-channel as it is shown in table 3.3. This
might be related to the chosen basis of tensor structures. It would be interesting to study
the exact relationship between the pole structure of the Mellin amplitude and the choice of
basis. In this thesis a basis of definite parity has been chosen which does not include any
spurious poles and makes the analytic properties of the Mellin amplitude manifest. Further,
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this basis is rather well suited to study theories of definite parity because only one series of
poles will appear in this case like the perturbative examples have shown.

The location of the pole contains only part of the CFT data. To compute the OPE
coefficients one has to determine the analogue of the continuous Hahn polynomial Qm,l(t)
from equation (3.59). It is to be expected that these can be obtained in a similar way as
they have been obtained in the literature for scalar Mellin amplitudes:

1. In one approach it has been deduced from the Mack polynomial which is the Mellin am-
plitude of the conformal partial wave [99]. Hence, it depends on both Mellin variables
s, t. The residue of the Mack polynomial in one of the variables gives the continuous
Hahn polynomial Qm,l(t) in the other variable.

2. A second approach is to use the conformal Casimir equation which Qm,l(t) has to obey.
The Casimir equation turns into difference equation in Mellin space and solving this
difference equation shall give Qm,l(t), which is an orthogonal polynomial with respect
to the measure dictated by the Mellin-Barnes transformation [105].

This part is still work in progress and shall be presented in another publication.

If the polynomial residues of the Mellin amplitudes are known the complete CFT data
can be obtained from the Mellin amplitude in principle. To access this data one can apply
Polyakov-Mellin bootstrap techniques to fermionic CFTs. In three dimensions potential
candidates are the Gross-Neveu theory [226] or the Gross-Neveu-Yukawa theory [227].

Another way to pursue is the derivation of Feynman rules in Mellin space for fermionic
operators. Mellin amplitudes at strong coupling have a simple form even for theories includ-
ing fermions. It has been shown that diagrams which only contain fermions on their external
legs can be reduced to the calculation of scalar Mellin amplitudes. Therefore it might be
possible to derive certain Feynman rules in Mellin space for fermionic Witten diagrams too
using the results obtained for scalar Mellin amplitudes [102, 103]. It seems also possible to
generalize this technique to higher spin Mellin amplitudes. In contrast to the strong cou-
pling regime, at weak coupling it might be more difficult to derive general fermionic Feynman
rules, because the complexity of the tensor structures increases rapidly with the number of
external fermions [101]. So far it is not obvious how to generalize the computation of Feyn-
man diagrams in Mellin space with more than four external legs except by a straight forward
calculation.



Appendix A

Amplitudes

A.1 Spinor-Helicity Formalism

The spinor-helicity formalism maps Lorentz vectors to 2× 2 Hermitian matrices. The basis
of this space is spanned by

12 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.1)

which is conveniently packaged into the four vectors (σµ)αα̇ = (12, σ)αα̇ and (σ̄µ)α̇α =
(12,−σ)α̇α. The SL(2,C) indices are α, α̇ = 1, 2. To raise and lower indices the invariant
antisymmetric tensors ε12 = ε1̇2̇ = −ε12 = −ε1̇2̇ = 1 are used which read ε = iσ2. Thus to
each object which carries SL(2,C) indices their duals can be defined by

(σµ)αα̇ = − (εσ̄µε)αα̇ = εαβεα̇β̇ (σ̄µ)β̇β , χα = (εχ)α = εαβχβ , χ̄α̇ = (εχ̄)α̇ = εα̇β̇χ̄
β̇ .

Note that for real momenta the fundamental χα and antifundamental χ̄α̇ Weyl spinors are
related by (χα)∗ = χ̄α̇.

It is instructive to show the relation between the Lorentz group SO+(1, 3) and its double
cover SL(2,C). A general Dirac spinor ψ transforms under Lorentz transformations

Λ : ψ(x)→ ψ′(x′) = SΛψ(Λ−1x),

where

SΛ = exp
(1

8wµν [γµ, γν ]
)

=

exp
(

1
8wµν (σµσ̄ν − σν σ̄µ)

)
0

0 exp
(

1
8wµν (σ̄µσν − σ̄νσµ)

) .
In the last step the Weyl representation (A.2) of the γ-matrices has been used. This shows
that the Dirac spinor is reducible. In fact, separating the totally antisymmetric constant
matrix wµν into boosts βi = w0i and rotations wij = εijkΘk, the transformation behaviour
of the Weyl spinors can be deduced:

Λ : ψL,α(x)→M β
α (β,Θ)ψL,β(Λ−1x) with M(β,Θ) = exp

(
−1

2 (β + iΘ) · σ
)
,

Λ : ψ α̇
R (x)→ M̄ α̇

β̇
(β,Θ)ψ β̇

R (Λ−1x) with M̄(β,Θ) = exp
(1

2 (β + iΘ)∗ · σ
)
.
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Since the matricesM and M̄ are generated by the six (anti-)Hermitian generators σj and iσj
which are traceless, it follows that M ∈ SL(2,C). M̄ α̇

β̇
=
(
Mα

β

)∗
is the complex conjugate

representation of Mα
β = εαα1M β1

α1 εβ1β , which can be proven using ε σjε = −σ∗j . The natural
metric for the Weyl representation is given by ε, because it obeys the same relation as η does
for the vector representation.

ηµν =
(
ΛT ηΛ

)
µν
, εαβ =

(
MT εM

)
αβ
.

The power of the spinor-helicity formalism is rooted in the universal usage of the Fourier
transformed Weyl spinors

u+(p) = v−(p) =
(
λα
0

)
, and u−(p) = v+(p) =

(
0
λ̄α̇

)
,

here given in the helicity basis. They can represent the momenta p as well as the polarization
vectors ε±:

pαα̇ = λαλ̄α̇,

εαα̇+ (pi) = −
√

2 λ̄
α̇
i r

α
i

〈λiri〉
, εαα̇− (pi) =

√
2λ

α
i r̄

α̇
i

[λiri]
,

〈λr〉 = λαrα, [λr] = λ̄α̇r̄
α̇.

The spinors rα and r̄α̇ are auxiliary variables, which are associated to the reference momen-
tum qαα̇ := rαr̄α̇. q 6= p can be chosen arbitrarily. This freedom is related to performing a
gauge transformation.

In the Weyl representation of the γ-matrices the following relation holds

/p = pµγ
µ =

(
0 pαα̇
pα̇α 0

)
with γµ =

(
0 σµ

σ̄µ 0

)
. (A.2)

This representation can be used to show several identities of the spinor products

〈i |γµ| j] = [j |γµ| i〉 , 〈p |γµ| p] = λασµαα̇λ̄
α̇ = 2pµ, 〈i |γµ| j] [l |γµ| k〉 = 2 [ij] 〈lj〉 (A.3)

and the Shouten identity

〈i1i2〉〈i3l〉+ 〈i2i3〉〈i1l〉+ 〈i3i1〉〈i2l〉 = 0. (A.4)

For concrete calculations involving SO+(1, 3) and SL(2,C) the following identities are
helpful:

σµσ̄ν + σν σ̄µ = 2ηµν12, σ̄µσν + σ̄νσµ = 2ηµν12,

Tr (σ̄µσν) = 2ηµν , (σµ)αα̇ (σ̄µ)β̇β = 2δβαδ
β̇
α̇.
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A.2 Details to Einstein-Yang-Mills Amplitudes

A.2.1 Feynman Rules

�p q

r

µ, a ν, b

%, c

−gfabc [(rµ − qµ) ην% + (pν − rν) η%µ + (q% − p%) ηµν ]

�
ν, b

µ, a

%, c

σ, d

−ig2
[
fabe

′
f e
′cd (ηµ%ηνσ − ηµσην%)

+face′f e′db (ηµση%ν − ηµνη%σ)

+fade′f e′bc (ηµνησ% − ηµ%ησν)
]

�
A, a B, b

C, c

iλgfabcFABC

�
B, b

A, a

C, c

D, d

−ig2
[
fabe

′
f e
′cd
(
δACδBD − δADδBC

)
+face′f e′db

(
δADδBC − δABδCD

)
+fade′f e′bc

(
δABδCD − δACδBD

)]

�q p
C, c A, a

µ, b

gfabcδAC (pµ − qµ)

�
µ, a

D, d

B, b

ν, c

ig2
(
fabe

′
f e
′cd + f cbe

′
f e
′ad
)
δBDηµν

�
p

µ, a ν, b

−i ηµν δab

p2 + iε

�
p

A, a B, b

i δAB δab

p2 + iε

Table A.1: Feynman rules for YM+φ3 derived from the Lagrangian (2.66). In this convention
all momenta are outgoing. For the gluon propagator the Feynman gauge ξ = 1 is used.
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A.2.2 Integrands

All integrands are presented in 4 − 2ε dimensions. For the colour factors, the notation
from (2.70) is used. The inverse of the stripped propagators is given by Dj = Q2

j + iε =
(qj + L)2 + iε = (

∑j
k=1 pk + l)2 − µ2 + iε.

Integrands which are proportional to the colour ordering cadbc shall be written with
permuted external momenta pi, i.e. Q̃0 = L, Q̃1 = L+ p2, Q̃2 = L+ p2 + p3, Q̃3 = Q3. The
corresponding stripped propagators are given by (D̃j)−1 = (Q̃2

j + iε)−1.

To present the results clearly only the parts of the integrand in YM+φ3 are written which
contribute to the gravity amplitude in EYM, hence all terms that are not proportional to
the colour structure (2.70) are not displayed. To simplify the expressions the explicit value
of the quadratic Casimir of the adjoint representation cA is used, which for SU(N) is given
by fa′ab′f b′ba′ = cAδ

ab = Nδab.

Integrands for 〈1Aa 2Bb 3Cc 4Dd 〉

These are the two types of integrands that appear in the computation of 〈1Aa 2Bb 3Cc 4Dd 〉
∣∣∣
λ2g4

.
The remaining integrands can be obtained by permuting the external legs. In total, twelve
non-equal box integrands and six non-equal triangle integrands contribute.

�Q0

Q1 Q3

Q2

1A
a

2B
b

4D
d

3C
c

= λ2g4cabcd

D0D1D2D3
FABE

′
FE

′CD
[
(p3 + q3 + l) · (q1 + l − p2)− µ2

]

�Q0

Q1 Q2

1A
a

2B
b

4D
d

3C
c

eff= −g
4λ2cabdc

D0D1D2

(
FADE

′
FE

′BC + FACE
′
FE

′BD + 2δCDFA′AB′FB′BA′
)

For the computation of 〈1Aa 2Bb 3Cc 4Dd 〉
∣∣∣
g4

the following diagrams have to be evaluated.
Ng = N2 − 1 is the number of adjoint generators of SU(N). By permuting the external legs
the remaining non-equal integrands can be obtained (six box graphs, twelve triangles and
six bubbles).

�Q0

Q1 Q3

Q2

1A
a

2B
b

4D
d

3C
c

= g4cabcd

D0D1D2D3
δABδCD [(Q1 − p2) · (p3 +Q3)] [(p1 +Q1) · (Q3 − p4)]
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Q0

Q1 Q2

1A
a

2B
b

4D
d

3C
c

eff= g4cabdc

D0D1D2

(
δACδBD + δADδBC − 2δABδCD

)
(Q0 − p1) · (Q2 + p2)

�Q0

Q1 Q2

1A
a

2B
b

4D
d

3C
c

eff= −2 g4cabdc

D0D1D2
δABδCD

[
(q1 + l − p2) · (p1 + q1 + l)− µ2

]

�
1A
a

2B
b

4D
d

3C
c

eff= 2 g4

D0D2
cabdc

[
2 (Ng − 2) δABδCD + δADδBC + δACδBD

]

�
1A
a

2B
b

4D
d

3C
c

eff= 16 g4

D0D2
cabdcδABδCD

Integrand for 〈1Aa 2Bb 3Cc 4+
d 〉

These four types of integrands can appear in general for the computation of 〈1Aa 2Bb 3Cc 4+
d 〉
∣∣∣
g4λ

.
However, once the double copy is performed the second type of triangle graphs vanishes. For
the first type of box and triangle graphs there are five additional permutations whereas for
the other box graph there are three in total.

�Q0

Q1 Q2

1A
a

2B
b

4+
d

3C
c

eff= i
g4λ cabdc

D0D1D2
FABC

〈r4 |q1 + l − p2| 4]√
2 〈r44〉

�Q0

Q2

Q3

1A
a

2B
b

4+
d

3C
c

eff= 0
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�Q0

Q1 Q3

Q2

1A
a

2B
b

4+
d

3C
c

= −i g4λ cabcd

D0D1D2D3
FABC (p2 +Q2) · (Q0 − p1) 〈r4 |q0 + q3 + 2l| 4]√

2 〈r44〉

�Q0

Q1 Q3

Q2

1A
a

2B
b

4+
d

3C
c

= i
g4λ cabcd

D0D1D2D3
FABC

[
(p1 +Q1) · (Q3 − p4) 〈r4 |q2 + l − p3| 4]√

2 〈r44〉

+ (Q2 − p3) · (p4 +Q0) 〈r4 |p1 + q1 + l| 4]√
2 〈r44〉

− (Q2 − p3) · (p1 +Q1) 〈r4 |q0 + q3 + 2l| 4]√
2 〈r44〉

]

Integrands for 〈1Aa 2Bb 3+
c 4+

d 〉

The gauge choice r3 = r4 reduces the amount of diagrams to compute. This gauge choice
implies that only the three box graphs contribute to 〈1Aa 2Bb 3+

c 4+
d 〉
∣∣∣
g2λ2

.

�Q0

Q1 Q3

Q2

1A
a

2B
b

4+
d

3+
c

= − g4λ2 cabcd

D0D1D2D3
FA

′BB′FB
′AA′ 〈r4 |Q2 +Q3| 3] 〈r4 |Q0 +Q3| 4]

2 〈r43〉〈r44〉

For 〈1Aa 2Bb 3+
c 4+

d 〉
∣∣∣
g4

this gauge choice sets all bubble graphs to zero. The remaining

graphs give a contribution to 〈1Aa 2Bb 3+
c 4+

d 〉
∣∣∣
g4
. To all graphs with box topology one other

distinguished integrand is obtained in addition. The next three triangles are the only dia-
grams which can be drawn with this topology. The last two graphs can be drawn in four
inequivalent ways.

�Q0

Q1 Q3

Q2

1Aa

2Bb

4+d

3+c

= − g
4 cabcd δAB

D0D1D2D3
(p2 +Q2) · (Q0 − p1) 〈r4 |Q2 +Q3| 3] 〈r4 |Q0 +Q3| 4]

2 〈r43〉〈r44〉

�̃
Q0

Q̃1 Q̃3

Q̃2

1Aa

3+c

4+d

2Bb

= g4 cadbc δAB

D̃0D̃1D̃2D̃3

〈
r4
∣∣∣Q̃0 + Q̃3

∣∣∣ 4]
2 〈r43〉〈r44〉

[ 〈
r4
∣∣∣p1 + Q̃3

∣∣∣ 3] (p3 + Q̃2
)
·
(
Q̃0 − p2

)

+
〈
r4
∣∣∣Q̃0 − p2

∣∣∣ 3] (Q̃1 − p3
)
·
(
Q̃3 + p1

)
−
〈
r4
∣∣∣Q̃1 + Q̃2

∣∣∣ 3] (p1 + Q̃3
)
·
(
Q̃0 − p2

) ]
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	Q0

Q1 Q3

Q2

1Aa

2Bb

4+d

3+c

= − g4 cabcd δAB

2D0D1D2D3

[〈r4 |Q1 − p2| 3] 〈r4 |Q2 − p3| 4]− 〈r4 |Q3 +Q2| 3] 〈r4 |Q1 − p2| 4]
〈r43〉〈r44〉

× (Q3 − p4) · (p1 +Q1) + 〈r4 |p1 +Q1| 4]
〈r43〉〈r44〉

[
〈r4 |p4 +Q0| 3] (Q1 − p2) · (Q3 + p3)

+ 〈r4 |Q1 − p2| 3] (Q2 − p3) · (Q0 + p4)− 〈r4 |Q2 +Q3| 3] (Q1 − p2) · (Q0 + p4)
]

−〈r4 |Q0 +Q3| 4]
〈r43〉〈r44〉

[
〈r4 |Q1 − p2| 3] (Q2 − p3) · (Q1 + p1)

+ 〈r4 |p1 +Q1| 3] (Q1 − p2) · (Q3 + p3)− 〈r4 |Q2 +Q3| 3] (Q1 − p2) · (Q1 + p1)
]]

�Q0

Q2

Q3

1Aa

2Bb

4+d

3+c

eff= − g4 cabcd

D0D2D3
δAB
〈r4 |Q2 +Q3| 3] 〈r4 |Q0 +Q3| 4]

〈r43〉〈r44〉 (1−Ng)


Q0

Q2

Q3

1Aa

2Bb

4+d

3+c

eff= g4 cabcd

D0D2D3

δAB

〈r43〉〈r44〉
[
2 〈r4 |Q2 +Q3| 3] 〈r4 |Q0 +Q3| 4]

+ 〈r4 |Q0 + p4| 3] 〈r4 |p3 +Q3| 4] + 〈r4 |Q3 − p4| 3] 〈r4 |Q2 − p3| 4]
]

�Q0

Q1

Q2

1Aa

2Bb

4+d

3+c

eff= − g4 cabcd

D0D1D2
δAB

[〈r4 |Q1 − p2| 3] 〈r4 |p1 +Q1| 4]
2 〈r43〉〈r44〉 + 〈r4 |p1 +Q1| 3] 〈r4 |Q1 − p2| 4]

2 〈r43〉〈r44〉

]

�Q̃2

Q̃1

Q̃3

1Aa

3+c

4+d

2Bb

eff= − g4 cadbc

D̃1D̃2D̃3
δAB

〈
r4
∣∣∣Q̃1 + Q̃2

∣∣∣ 3] 〈r4
∣∣∣p1 − Q̃2

∣∣∣ 4]
2 〈r43〉〈r44〉

�Q̃2

Q̃1

Q̃3

1Aa

3+c

4+d

2Bb

eff= − g4 cadbc

D̃1D̃2D̃3
δAB

×
[〈r4

∣∣∣Q̃3 + p1
∣∣∣ 3] 〈r4

∣∣∣p3 + Q̃2
∣∣∣ 4]

2〈r43〉〈r44〉 −

〈
r4
∣∣∣Q̃1 + Q̃2

∣∣∣ 3] 〈r4
∣∣∣p1 + Q̃3

∣∣∣ 4]
2〈r43〉〈r44〉

]
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Appendix B

Mellin Amplitudes

B.1 Conformal Algebra

In this appendix it is shown that conformal primary operators transform as

Oa(x)→ O′a(x′) = Ω−∆(x)D (Λµν(x))abO
b(x), (B.1)

where Ω(x) is the scale factor from (3.6) and D (Λµν(x))ab is the SO(1, d− 1) representation
of the operator Oa. For example a scalar operator transforms in the trivial representation
D (Λµν(x)) = 1, a vector operator transform in the vector representation D (Λµν(x))µν =
Λµν(x) etc. In the following the SO(1, d − 1) representation indices a, b, . . . are not written
out explicitly.

To derive (B.1) from the action of the conformal generators on the operators, the Haus-
dorff formula is useful

e−ABeA = B + [B,A] + 1
2! [[B,A] , A] + 1

3! [[[B,A] , A] , A] + . . . (B.2)

where A and B are two operators. The Hausdorff formula permits to calculate the action of
a generator on a operator at any position x if the action at x = 0 is known.

Action of translations
It follows from [Pµ,O(0)] = −i∂µO(0) that the translated generator Pµ is given by the same
formula, since

eix·PPµe
−ix·P = Pµ. (B.3)

Action of Lorentz transformations
The Lorentz generator acts as [Mµ

ν ,O(0)] = SµνO(0), where Sµν is a matrix-valued represen-
tation of it. Translating this generator to any position x yields

eix·PMµνe
−ix·P = Mµν − ixρ [Mµν , Pρ] = Mµν − (xµPν − xνPµ) . (B.4)

Action of dilatation
103
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In a scale invariant theory it is natural to chose the primary operator O(0) to be an eigen-
function of the dilatation operator, i.e. [D,O(0)] = −i∆O(0).1 ∆ is called the scaling
dimension of the operator.

eix·PDe−ix·P = D − ixρ [D,Pρ] = D + xρPρ. (B.5)

Action of special conformal transformation
The matrix representation of the dilatation operator is proportional to the identity. Hence,
all other matrix representations of the generators of the conformal algebra have to commute
with it. In particular, this implies that [Kµ,O(0)] = 0, since [D,Kµ] = −iKµ.

eix·PKµe
−ix·P = Kµ − ixν [Kµ, Pν ]− 1

2x
νxρ [[Kµ, Pν ] , Pρ]

= Kµ + 2xµD − 2xνMµν + 2xµxνPν − x2Pµ.
(B.6)

This analysis yields the final transformation formulae for an operator under infinitesimal
conformal transformations

[Pµ,O(x)] = −i∂µO(x),
[Mµν ,O(x)] = (Sµν + i (xµ∂ν − xν∂µ)1)O(x),

[D,O(x)] = −i (∆ + xρ∂ρ1)O(x),

[Kµ,O(x)] =
(
−i2xµ∆1− 2xνSµν − i

(
2xµxν∂ν − x2∂µ

)
1
)
O(x).

(B.7)

The finite conformal transformations are related to the infinitesimal by the formulae

x′µ = xµ + ca
∂εµ

∂ca
, O′(x′) = O(x) + ca

∂F
∂ca

(B.8)

with ca = {iλ, iaµ, ibµ, i2w
µν}. This transformation changes the coordinate from x to x′ as

well as the operator from O(x) to O′(x′) = F (O) (x). Using (B.7) and (B.8) the transfor-
mation for the operator reads explicitly

O′(x′) =
(
1 + i

2w
µνSµν + λ∆1 + bµ (2xµ∆1− i2xνSµν)

)
O(x)

=
(
1 + ∆

d
∂µε

µ1− i

2∂
µενSµν

)
O(x)

=
(

1 + ∆
d
∂µε

µ
)(

1− i

2∂
µενSµν

)
O(x)

with ∂µε
µ = d (λ+ 2xµbµ) , and ∂µενS

µν = i

(
i

2w
µν − i2bµxν

)
Sµν ,

(B.9)

in leading order of the parameters ca. Here ε = εµ∂µ is the conformal Killing vector (3.8).

On the other hand the metric transforms under a finite conformal transformation as

∂xρ

∂x′µ
∂xσ

∂x′ν
ηρσ = Ω2(x)ηµν

1Alternatively, one can also demand that O(0) transforms in an irreducible representation of the Lorentz
group. Since the dilatation operator commutes with Lorentz operators it has to be proportional to the identity
matrix by Schur’s lemma.
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according to (3.3) and (3.6). This finite transformation is established by the coordinate
transformation

∂xν

∂x′µ
= Ω(x)Λνµ(x) with ΛT ηΛ = η.

The infinitesimal version is obtained by considering the infinitesimal change xµ → x′µ =
xµ + εµ(x) which yields

∂xν

∂x′µ
= δνµ − ∂µεν =

(
1− 1

d
∂µε

µ
)(

δνµ −
1
2 (∂µεν − ∂νεµ)

)
. (B.10)

In the last step the conformal Killing equation (3.7) has been used. This implies

Ω(x) = 1− 1
d
∂µε

µ, and Λνµ(x) = δνµ −
1
2 (∂µεν − ∂νεµ) .

Hence, a conformal transformation is locally a combination of a scale transformation and a
rotation. Comparing (B.9) and (B.10) yields the desired expression (B.1) [29, 124].

B.2 Vector and Spinor Representation of the Lorentz Algebra
in Three Dimensions

The fundamental (vector) representation of the Lorentz generator reads

(Mµν)ρσ = i (ηµρδνσ − ηνρδµσ) . (B.11)

It can be easily checked that this construction obeys the commutation relations of (3.10).
In three dimensions the generators are given by one generator M12 = J of rotation in the
x1-x2-plane and two boosts M0i = M0

i = Ki. Explicitly they read

J =

0 0 0
0 0 i
0 −i 0

 , K1 =

 0 −i 0
−i 0 0
0 0 0

 , K2 =

 0 0 −i
0 0 0
−i 0 0

 . (B.12)

The three-dimensional spinor representation of the Lorentz group is given by SL(2,R) ∼=
SU(1, 1) ∼= Sp(2,R) which is the double cover of SO(1,2). The explicit mapping between
the spin group (which is labelled by the indices α, β, . . .) and the Lorentz group (which is
labelled by the indices µ, ν, . . .) is given by the γ-matrices

(
γ0
)α
β

=
(

0 1
−1 0

)
,
(
γ1
)α
β

=
(

0 1
1 0

)
,
(
γ2
)α
β

=
(

1 0
0 −1

)
(B.13)

which obey the Clifford algebra

γµγν + γνγµ = ηµν12 with ηµν = diag(−1, 1, 1).

The spin representation of the Lorentz algebra sp(2,R) = {M ∈ GL(2,R)|MTω + ωM = 0}
can be constructed from (B.13) and the generators are of the form

(Sµν2 )αβ = i

4 ([γµ, γν ])αβ ,
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which obey the Lorentz algebra of (3.10). The indices of the generators are lowered and raised
by the symplectic form ω given in (3.35), e.g. γµαβ = ωασ (γµ)σβ and (γµ)αβ = (γµ)ασ ωσβ .
Hence, the three generators j = M12, ki = M0

i are

(j)αβ = 1
2

(
0 −i
i 0

)
, (k1)αβ = 1

2

(
i 0
0 −i

)
, (k2)αβ = 1

2

(
0 −i
−i 0

)
(B.14)

The anti-fundamental generators are obtained from (B.14) by acting with the symplectic
form: j̄ = ωjω−1 = j and k̄i = ωkiω

−1 = −ki.

The algebra in five dimensions is constructed analogously. The double cover of SO(3,2) is
Sp(4,R) and the corresponding generators transform under sp(4,R) = {M ∈ GL(4,R)|MTΩ+
ΩM = 0} where the symplectic form ΩIJ is given in (3.35). The spin representation is ex-
plicitly constructed by (

SMN
4

)I
J

= i

4
([

ΓM ,ΓN
])I

J
,

where the Γ-matrices in five dimensions
(
ΓN
)I
J
are realized by

Γ0 =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 , Γ1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , Γ2 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,

Γ3 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 , Γ4 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .
(B.15)

They obey the algebra

ΓMΓN + ΓNΓM = ηNM14 with ηNM = diag(−1, 1, 1,−1).

For more information see [199].

B.3 Perturbative Calculation of Mellin Ampitudes

The existence of a Mellin represenation for perturbative calculations follows from Symanzik’s
star formula which shall be derived for the scalar case in this appendix [101]. The star formula
allows to calculate the contact terms of the Mellin space Feynman rules in the weak coupling
regime for scalar operators. These Feynman rules have been derived in [104].

Weak Coupling Regime

Consider the n-point correlator 〈φ(x1) . . . φ(xn)〉 := I. The Mellin amplitude can be deter-
mined by the following algorithm:

1. Represent the correlation function in position space. The integration variable is labelled
by u.
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2. Perform a Schwinger parametrization for each propagator:

Γ(∆)(
(x− y)2

)∆ =
∫ ∞

0

dα

α
α∆e−α(x−y)2

. (B.16)

3. Perform the integration over the vertex u with the Gaussian integral∫
R
dxe−ax

2+bx+c =
√
π

a
e
b2
4a+c. (B.17)

4. Insert a partition of unity 1 =
∫∞

0 dv δ(v−
∑
i αi) and rescale your Schwinger parameters

αi →
√
vαi.

5. Use the inverse Mellin transform for each function of the type

e−x =
∫ c+i∞

c−i∞

ds

2πiΓ(s)x−s. (B.18)

For this calculation each external leg is normalized by Γ(∆i) and the vertex by 1
2π
−h with

h = d
2 to simplify the final result. Further, the vertex is proportional to the coupling constant

g. Hence,

I = g

∫
Rd
Du

n∏
i=1

Γ (∆i)
(xi − u)2∆i

with Du = 1
2
ddu

πh
.

Conformality of the integral demands
∑
i ∆i = d. Using the algorithm stated above the

Mellin representation can be obtained by the following steps

I = g

∫
Rd
Du

n∏
i=1

∫ ∞
0

dαi
αi

α∆i
i e−αi(xi−u)2

= g
n∏
i=1

∫ ∞
0

dαi
αi

α∆i
i e
−
∑

i<j
αiαjx

2
ij with xij = xi − xj

= g
n∏
i=1

∫ ∞
0

dαi
αi

α∆i
i

∏
i<j

∫ cij+i∞

cij−i∞

dsij
2πi Γ(sij)

(
αiαjx

2
ij

)−sij

= g
∏
i<j

∫ cij+i∞

cij−i∞

dsij
2πi Γ(sij)

(
x2
ij

)−sij n∏
i=1

δ̂

∆i −
∑
j 6=i

sij

 .

(B.19)

In the last step
∫∞

0
dα
α α

a = δ̂(a) has been used with δ̂(a) = 2πi δ(a). This holds if the real
part of the exponent a along the contour vanishes [104]. Comparing this equation with (3.54)
shows that the Mellin amplitude is constant, i.e. Mc({sij}) = g.

However, Symanzik wrote the solution of (B.19) in the general form

2
n∏
i=1

∫ ∞
0

dαi
αi

α∆i
i e
−
∑

i<j
αiαjx

2
ij = 1

(2πi)
n(n−3)

2

∫ i∞

−i∞
ds1 . . . dsn(n−3)

2

n∏
i<j

Γ(sij)(
x2
ij

)sij , (B.20)

where the new integration variables si are given by

sij = s0
ij +

n(n−3)
2∑

k=1
cij,k sk.
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s0
ij is a particular solution with positive real parts which satisfies

∑
i 6=j s

0
ij = ∆j and the

coefficients cij,k = cji,k ∈ R obey

cii,k = 0 and
n∑
j 6=i

cij,k = 0.

Not all cij,k can be independent, but only
(
n(n−3)

2

)2
of these coefficients are independent.

In [101] the independent coefficients cij,k range from 2 ≤ i < j ≤ n and 1 ≤ k ≤ n(n− 3)/2
without c23,k. To obtain a unit Jacobian, it has to be demanded that |det cij,k| = 1. Note
that (B.19) and (B.20) differ by an overall factor of 2. This factor arises from the Jacobian
of one of the δ-distribution, the remaining δ-distributions have unit Jacobian.

Strong Coupling Regime

A contact Witten diagram can be evaluated in a similar way. Let the bulk coordinate
(in lightcone coordinates) be parametrized in Poincaré coordinates Z = (Z+, Z−, Zµ) =
1
z (1, z2 + y2, yµ) and the boundary coordinate be given by X = (X+, X−, Xµ) = (1, x2, xµ).
The scalar product of these coordinates reads −2X · Z = 1

z (z2 + (x − y)2). The bulk to
boundary propagator can be written as

K∆(X,Z) = C∆
Γ(∆)

∫ ∞
0

dt

t
t∆e−2tZ·X with C∆ = Γ(∆)

2πhΓ(∆− h+ 1) and h = d

2 .

Consider Q =
∑n
i=1 tiXi and −2Q·Z = z−1∑n

i=1 ti
(
z2 + (xi − y)2) and the following integral

in AdS evaluated in Poincaré coordinates∫
AdS

e2Q·Z =
∫ ∞

0

dz

z
z−d

∫
Rd
ddye−

∑
i
tize−

1
z

∑
i
ti(xi−y)2

=
∫ ∞

0

dz

z
e−
∑

i
tiz
(

π

z
∑
i ti

)h
e
−(z

∑
i
ti)−1∑

i<j
titjx

2
ij

= πh
∫ ∞

0

dz

z
z−he−ze

− 1
z

∑
i<j

titjx
2
ij = πh

∫ ∞
0

dz

z
z−he−ze−

1
z
Q2
,

(B.21)

where the variables have been rescaled by z
∑
i ti → z. Using (B.21) the Mellin amplitude of

the contact Witten diagram A = 〈φ1(x1) . . . φn(xn)〉 of n-scalar fields can be determined.

A = g

∫
AdS

dZ
n∏
i=1

K∆i
(Z,Xi) = g

n∏
i=1

C∆i

Γ(∆i)

∫ ∞
0

dti
ti
t∆i
i

∫
AdS

e2Q·Z

= gπh
n∏
i=1

C∆i

Γ(∆i)

∫ ∞
0

dti
ti
t∆i
i

∫ ∞
0

dz

z
z−he−ze−

1
z
Q2

= gπh
n∏
i=1

C∆i

Γ(∆i)

∫ ∞
0

dti
ti
t∆i
i e−Q

2
∫ ∞

0

dz

z
z−h+ 1

2
∑

i
∆ie−z

= gπhΓ
(

1
2

n∑
i=1

∆i − h
)

n∏
i=1

C∆i

Γ(∆i)

∫ ∞
0

dti
ti
t∆i
i e
−
∑

i<j
titjx

2
ij

= 2gπhΓ
(

1
2

n∑
i=1

∆i − h
)

n∏
i=1

C∆i

Γ(∆i)

n∏
i<j

∫ cij+i∞

cij−i∞

dsij
2πi

Γ(sij)(
x2
ij

)sij n∏
i=1

δ̂

∆i −
∑
j 6=i

sij

 .
In the third line the rescaling ti → ti

√
z has been performed and afterwards the integral over

dz has been written as a Γ-function. In the last line (B.19) has been used.
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B.4 More Results on Mellin Amplitudes

B.4.1 Relation between the Reduced Mellin Amplitude and Mellin Am-
plitude of the Four-Fermion Correlator

The components of the Mellin amplitude for the four-fermion conformal correlator (3.65)
read explicitly as follows

M1 = M̄1 [Γ (s12 + 1) Γ (s13) Γ (s14) Γ (s23) Γ (s24) Γ (s34 + 1)]−1 ,

M2 = M̄2

[
Γ
(
s12 + 1

2

)
Γ
(
s13 + 1

2

)
Γ (s14) Γ (s23) Γ

(
s24 + 1

2

)
Γ
(
s34 + 1

2

)]−1
,

M3 = M̄3

[
Γ
(
s12 + 1

2

)
Γ (s13) Γ

(
s14 + 1

2

)
Γ
(
s23 + 1

2

)
Γ (s24) Γ

(
s34 + 1

2

)]−1
,

M4 = M̄4 [Γ (s12 + 1) Γ (s13) Γ (s14) Γ (s23) Γ (s24) Γ (s34 + 1)]−1 ,

M5 = M̄5

[
Γ
(
s12 + 1

2

)
Γ (s13) Γ

(
s14 + 1

2

)
Γ
(
s23 + 1

2

)
Γ (s24) Γ

(
s34 + 1

2

)]−1
,

M6 = M̄6

[
Γ
(
s12 + 1

2

)
Γ
(
s13 + 1

2

)
Γ (s14) Γ (s23) Γ

(
s24 + 1

2

)
Γ
(
s34 + 1

2

)]−1
,

M7 = M̄7

[
Γ
(
s12 + 1

2

)
Γ
(
s13 + 1

2

)
Γ (s14) Γ (s23) Γ

(
s24 + 1

2

)
Γ
(
s34 + 1

2

)]−1
,

M8 = M̄8

[
Γ
(
s12 + 1

2

)
Γ (s13) Γ

(
s14 + 1

2

)
Γ
(
s23 + 1

2

)
Γ (s24) Γ

(
s34 + 1

2

)]−1
,

M9 = M̄9

[
Γ (s12 + 1) Γ

(
s13 + 1

2

)
Γ
(
s14 + 1

2

)
Γ (s23) Γ (s24) Γ

(
s34 + 1

2

)]−1
,

M10 = M̄10

[
Γ (s12 + 1) Γ (s13) Γ (s14) Γ

(
s23 + 1

2

)
Γ
(
s24 + 1

2

)
Γ
(
s34 + 1

2

)]−1
,

M11 = M̄11

[
Γ
(
s12 + 1

2

)
Γ
(
s13 + 1

2

)
Γ (s14) Γ

(
s23 + 1

2

)
Γ (s24) Γ (s34 + 1)

]−1
,

M12 = M̄12

[
Γ
(
s12 + 1

2

)
Γ (s13) Γ

(
s14 + 1

2

)
Γ (s23) Γ

(
s24 + 1

2

)
Γ (s34 + 1)

]−1
,

M13 = M̄13

[
Γ (s12 + 1) Γ

(
s13 + 1

2

)
Γ
(
s14 + 1

2

)
Γ (s23) Γ (s24) Γ

(
s34 + 1

2

)]−1
,

M14 = M̄14

[
Γ (s12 + 1) Γ (s13) Γ (s14) Γ

(
s23 + 1

2

)
Γ
(
s24 + 1

2

)
Γ
(
s34 + 1

2

)]−1
,

M15 = M̄15

[
Γ
(
s12 + 1

2

)
Γ
(
s13 + 1

2

)
Γ (s14) Γ

(
s23 + 1

2

)
Γ (s24) Γ (s34 + 1)

]−1
,

M16 = M̄16

[
Γ
(
s12 + 1

2

)
Γ (s13) Γ

(
s14 + 1

2

)
Γ (s23) Γ

(
s24 + 1

2

)
Γ (s34 + 1)

]−1
.

B.4.2 u-Channel Poles of the Mellin Amplitude of the Fermion-Scalar
Four-Point Correlator

The u-channel poles of 〈Ψ1Ψ2Φ3Φ4〉 are summarized in table B.1.
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Component of M.A. Location of Poles Residues ∼

M1
s+ t =

∑
i τi − τ − 2k λ+

ψ1φ4ψl
λ+
ψlφ3ψ2

s+ t =
∑
i τi − τ + 1− 2k λ−ψ1φ4ψl

λ−ψlφ3ψ2

M2
s+ t =

∑
i τi − τ − 2k λ+

ψ1φ4ψl
λ+
ψlφ3ψ2

s+ t =
∑
i τi − τ + 1− 2k λ−ψ1φ4ψl

λ−ψlφ3ψ2

M3
s+ t =

∑
i τi − τ − 2k λ+

ψ1φ4ψl
λ−ψlφ3ψ2

s+ t =
∑
i τi − τ − 1− 2k λ−ψ1φ4ψl

λ+
ψlφ3ψ2

M4
s+ t =

∑
i τi − τ − 1− 2k λ+

ψ1φ4ψl
λ−ψlφ3ψ2

s+ t =
∑
i τi − τ − 2k λ−ψ1φ4ψl

λ+
ψlφ3ψ2

Table B.1: u-channel poles of fermion-scalar four-point correlator.

B.4.3 t- and u-Channel Poles of the Mellin Amplitude of the Fermionic
Four-Point Correlator

The t-channel poles of 〈Ψ1Ψ2Ψ3Ψ4〉 are summarized in table B.2.

The u-channel poles of 〈Ψ1Ψ2Ψ3Ψ4〉 are summarized in table B.3. In the case of a scalar
exchange l = 0, all OPE coefficients apart from λ1, λ3 should be taken to zero.
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Component of M.A. Location of Poles Residues ∼

t = τ − 1 + 2k
λ1
ψ1ψ3Olλ

1
Olψ2ψ4

, λ1
ψ1ψ3Olλ

2
Olψ2ψ4

λ2
ψ1ψ3Olλ

1
Olψ2ψ4

, λ2
ψ1ψ3Olλ

2
Olψ2ψ4

M1 , M3 , M4 , M5
t = τ + 2k

λ3
ψ1ψ3Olλ

3
Olψ2ψ4

, λ3
ψ1ψ3Olλ

4
Olψ2ψ4

λ4
ψ1ψ3Olλ

3
Olψ2ψ4

, λ4
ψ1ψ3Olλ

4
Olψ2ψ4

t = τ + 2k λ2
ψ1ψ3Olλ

1
Olψ2ψ4

, λ2
ψ1ψ3Olλ

2
Olψ2ψ4

M2 , M6 , M7
t = τ + 1 + 2k

λ3
ψ1ψ3Olλ

3
Olψ2ψ4

, λ3
ψ1ψ3Olλ

4
Olψ2ψ4

λ4
ψ1ψ3Olλ

3
Olψ2ψ4

, λ4
ψ1ψ3Olλ

4
Olψ2ψ4

t = τ + 1 + 2k λ2
ψ1ψ3Olλ

1
Olψ2ψ4

, λ2
ψ1ψ3Olλ

2
Olψ2ψ4

M8
t = τ + 2 + 2k

λ3
ψ1ψ3Olλ

3
Olψ2ψ4

, λ3
ψ1ψ3Olλ

4
Olψ2ψ4

λ4
ψ1ψ3Olλ

3
Olψ2ψ4

, λ4
ψ1ψ3Olλ

4
Olψ2ψ4

M9 , M11 , M13 , M15
t = τ + 2k

λ1
ψ1ψ3Olλ

3
Olψ2ψ4

, λ1
ψ1ψ3Olλ

4
Olψ2ψ4

λ2
ψ1ψ3Olλ

3
Olψ2ψ4

, λ2
ψ1ψ3Olλ

4
Olψ2ψ4

t = τ + 1 + 2k λ3
ψ1ψ3Olλ

2
Olψ2ψ4

, λ4
ψ1ψ3Olλ

2
Olψ2ψ4

M10 , M12 , M14 , M16
t = τ + 2k

λ3
ψ1ψ3Olλ

1
Olψ2ψ4

, λ4
ψ1ψ3Olλ

1
Olψ2ψ4

λ3
ψ1ψ3Olλ

2
Olψ2ψ4

, λ4
ψ1ψ3Olλ

2
Olψ2ψ4

t = τ + 1 + 2k λ2
ψ1ψ3Olλ

3
Olψ2ψ4

, λ2
ψ1ψ3Olλ

4
Olψ2ψ4

Table B.2: t-channel poles of the four-fermion correlator.
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Component of M.A. Location of Poles Residues ∼

s+ t =
∑
i τi − τ + 1− 2k

λ1
ψ1ψ4Olλ

1
Olψ3ψ2

, λ1
ψ1ψ4Olλ

2
Olψ3ψ2

λ2
ψ1ψ4Olλ

1
Olψ3ψ2

, λ2
ψ1ψ4Olλ

2
Olψ3ψ2

M1
s+ t =

∑
i τi − τ − 2k

λ3
ψ1ψ4Olλ

3
Olψ3ψ2

, λ3
ψ1ψ3Olλ

4
Olψ3ψ2

λ4
ψ1ψ4Olλ

3
Olψ3ψ2

, λ4
ψ1ψ4Olλ

4
Olψ3ψ2

s+ t =
∑
i τi − τ + 1− 2k λ2

ψ1ψ4Olλ
1
Olψ3ψ2

, λ2
ψ1ψ4Olλ

2
Olψ3ψ2

M2 , M4
s+ t =

∑
i τi − τ − 2k

λ3
ψ1ψ4Olλ

3
Olψ3ψ2

, λ3
ψ1ψ3Olλ

4
Olψ3ψ2

λ4
ψ1ψ4Olλ

3
Olψ3ψ2

, λ4
ψ1ψ4Olλ

4
Olψ3ψ2

s+ t =
∑
i τi − τ − 2k

λ1
ψ1ψ4Olλ

1
Olψ3ψ2

, λ1
ψ1ψ4Olλ

2
Olψ3ψ2

λ2
ψ1ψ4Olλ

1
Olψ3ψ2

, λ2
ψ1ψ4Olλ

2
Olψ3ψ2

M3 , M5
s+ t =

∑
i τi − τ − 1− 2k

λ3
ψ1ψ4Olλ

3
Olψ3ψ2

, λ3
ψ1ψ3Olλ

4
Olψ3ψ2

λ4
ψ1ψ4Olλ

3
Olψ3ψ2

, λ4
ψ1ψ4Olλ

4
Olψ3ψ2

s+ t =
∑
i τi − τ − 1− 2k λ2

ψ1ψ4Olλ
1
Olψ3ψ2

, λ2
ψ1ψ4Olλ

2
Olψ3ψ2

M6 , M7
s+ t =

∑
i τi − τ − 2− 2k

λ3
ψ1ψ4Olλ

3
Olψ3ψ2

, λ3
ψ1ψ3Olλ

4
Olψ3ψ2

λ4
ψ1ψ4Olλ

3
Olψ3ψ2

, λ4
ψ1ψ4Olλ

4
Olψ3ψ2

s+ t =
∑
i τi − τ − 2k λ2

ψ1ψ4Olλ
1
Olψ3ψ2

, λ2
ψ1ψ4Olλ

2
Olψ3ψ2

M8
s+ t =

∑
i τi − τ − 1− 2k

λ3
ψ1ψ4Olλ

3
Olψ3ψ2

, λ3
ψ1ψ3Olλ

4
Olψ3ψ2

λ4
ψ1ψ4Olλ

3
Olψ3ψ2

, λ4
ψ1ψ4Olλ

4
Olψ3ψ2

M9 , M12 , M13 , M16
s+ t =

∑
i τi − τ − 2k

λ1
ψ1ψ4Olλ

3
Olψ3ψ2

, λ1
ψ1ψ4Olλ

4
Olψ3ψ2

λ2
ψ1ψ4Olλ

3
Olψ3ψ2

, λ2
ψ1ψ4Olλ

4
Olψ3ψ2

s+ t =
∑
i τi − τ − 1− 2k λ3

ψ1ψ4Olλ
2
Olψ3ψ2

, λ4
ψ1ψ4Olλ

2
Olψ3ψ2

M10 , M11 , M14 , M15
s+ t =

∑
i τi − τ − 2k

λ3
ψ1ψ4Olλ

1
Olψ3ψ2

, λ4
ψ1ψ4Olλ

1
Olψ3ψ2

λ3
ψ1ψ4Olλ

2
Olψ3ψ2

, λ4
ψ1ψ4Olλ

2
Olψ3ψ2

s+ t =
∑
i τi − τ − 1− 2k λ2

ψ1ψ4Olλ
3
Olψ3ψ2

, λ2
ψ1ψ4Olλ

4
Olψ3ψ2

Table B.3: u-channel poles of the four-fermion correlator.
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B.5 Spinor Exchange in AdS

In this section the spinor exchange diagram is calculated. Note that in this calculation the
two scalars are switched, i.e. the quantity Aψ̄1φ4

ψ2φ3
is computed.

Plugging the perturbative solution (3.88) into the action (3.87) one obtains the on-shell
action

Sψ̄φψφ = −2λ2G
4∏
i=1

∫ ∞
−∞

ddxi ψ̄+
0 (x1)φ0 (x4)A (x1,x2,x3,x4)ψ−0 (x2)φ0 (x3) .

The diagram A (x1,x2,x3,x4) = Aψ̄1φ4
ψ2φ3

is given by

Aψ̄1φ4
ψ2φ3

= −
∫
dd+1z

√
g(z)dd+1w

√
g(w)K∆4(z,x4)Σ̄∆1(z,x1)S(z, w)Σ∆2(w,x2)K∆3(w,x3).

To find the Mellin-Barnes representation of this diagram, Aψ̄1φ4
ψ2φ3

is rewritten as a scalar
exchange Witten diagram [218]. The first step is to use the conformal symmetry on the
boundary to translate all coordinates by x2 such that the new coordinates on the boundary
are given by yi = xi−x2 for i 6= 2. Afterwards these coordinates are inverted y′i = yi/ |yi|2.
Since the bulk measure is invariant under inversion and due to the definite transformation
behaviour of the propagators, the amplitude can be rewritten as

Aψ̄1φ4
ψ2φ3

= /y1
|y1|2∆1+1 |y3|2∆3 |y4|2∆4

[
−/y′14

/∂
′
4 +

(
∆1 + 1

2 + ∆4 + ∆+ − d
)]
I
(
y′1,y′3,y′4

)
(B.22)

with ∆+ = d/2 + m + 1/2 and m being the mass of the exchanged fermion. In [218] the
explicit expression for I is given by

I
(
y1
′,y′3,y′4

)
=
∫
dd+1z

√
g(z) dd+1w

√
g(w)K∆4(z,y′4)K∆1+ 1

2
(z,y′1)G∆+(z, w)

×K∆2+ 1
2

(
w′, 0

)
K∆3(w,y′3).

Further, the AdS measure is invariant under inversion and the scalar bulk-to-boundary prop-
agator transforms covariantly under inversion: K∆(z′,x′) = |x|2∆K∆ (z,x). In addition, the
scalar bulk-to-bulk propagator only depends on the chordal distance u = (z−w)2

z2
0w

2
0

and there-
fore is invariant under inversion G∆(z′, w′) = G∆(z, w). These properties allow to rewrite I
as a scalar exchange diagram with four external scalars:

I = |y1|2∆1+1 |y3|2∆3 |y4|2∆4
∫
dd+1z

√
g(z)dd+1w

√
g(w)K∆4(z,y4)K∆1+ 1

2
(z,y1)

×G∆+(z, w)K∆2+ 1
2

(w, 0)K∆3(w,y3)

= |y1|2∆1+1 |y3|2∆3 |y4|2∆4
∫
dd+1z

√
g(z)dd+1w

√
g(w)K∆4(z,x4)K∆1+ 1

2
(z,x1)

×G∆+(z, w)K∆2+ 1
2

(w,x2)K∆3(w,x3).

In the last step the bulk coordinates z → z − x2 and w → w − x2 have been translated.
The Mellin-Barnes representation of this expression is known [106]. Further, I depends
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on the unprimed coordinates only. Thus one can define a new quantity Ĩ (y1,y2,y4) :=
I (y1

′,y′2,y′4) such that

Ĩ = |y1|2∆1+1 |y3|2∆3 |y4|2∆4
4∏

1≤i<l

∫ cil+i∞

cil−i∞
(dsil) Γ (sil)M(sil)

1
|y13|2s13 |y14|2s14 |y34|2s34

× 1
|y1|2s12 |y3|2s23 |y|2s24

4

4∏
i=1

δ̂

∆i + 1
2 (δ1i + δ2i)−

4∑
k=1,k 6=i

sik


is obtained. To evaluate (B.22) note that the tensor structure is generated by the derivative
and /y14. After inverting these

/y′14 = /y1
|y1|2

− /y4
|y4|2

and

/∂y′4 =γµ ∂

∂y′4,µ
y′ ν4
|y′4|

2
∂

∂yν4
= y′4µ

∂

∂yν4
= |y4|2 /∂y4 − 2/y4y4 ·

∂

∂y4
,

the following three types of terms are obtained:

/y1

(
/y1
|y1|2

− /y4
|y4|2

)(
|y4|2 γµ − 2/y4y

µ
4

) y4µ

|y4|2
=/y14 with coefficient 2∆4 − 2s24,

/y1

(
/y1
|y1|2

− /y4
|y4|2

)(
|y4|2 γµ − 2/y4y

µ
4

) −y14µ

|y14|2
=/y4 with coefficient − 2s14,

/y1

(
/y1
|y1|2

− /y4
|y4|2

)(
|y4|2 γµ − 2/y4y

µ
4

) y43µ

|y34|2
= /y14/y43/y4
|y34|2

with coefficient − 2s34.

This gives

Aψ̄1φ4
ψ2φ3

=
4∏

1≤i<l

∫ cil+i∞

cil−i∞
(dsil)

Γ (sil)
|xil|2sil

M(sil)
4∏
i=1

δ̂

∆i + 1
2 (δ1i + δ2i)−

4∑
k=1,k 6=i

sik


×
(
/x12

(
∆1 + 1

2 + ∆4 + ∆+ − d
)

+ 2/x14 (s24 −∆4) + 2/x42s14 + 2 /
x14/x43/x42
|x43|2

s34

)

=
4∏

1≤i<l

∫ cil+i∞

cil−i∞
(dsil)

Γ (sil)
|xil|2sil

M(sil)
4∏
i=1

δ̂

∆i + 1
2 (δ1i + δ2i)−

4∑
k=1,k 6=i

sik


×
(
/x12

(
∆1 + 1

2 + ∆4 + ∆+ − d− 2s14

)
+ 2 /

x14/x43/x32
|x43|2

s34

)
after using s14 + s24 + s34 = ∆4. Rearranging the delta constraints in canonical form and
applying ∆1 + ∆4 − 2s14 + ∆+ − d+ 1

2 = t+ τ − d+ 22 Aψ̄1φ4
ψ2φ3

finally yields

Aψ̄1φ4
ψ2φ3

=
[
/x12
|x12|

(t+ τ − d+ 2)
4∏

1≤i<l

∫ cil+i∞

cil−i∞
(dsil)

Γ (sil + δi1δ2l)
|xil|2sil+δi1δ2l

M(sil + δi1δ2l)

+ 2 /x14/x43/x32
|x14| |x43| |x32|

4∏
1≤i<l

∫ cil+i∞

cil−i∞
(dsil) Γ

(
sil + 1

2 (δi1δ2l + δi1δ4l + δ2iδ3l + δi3δ4l)
)

× 1
|xil|2sil+δi1δi2

M
(
sil + 1

2 (δi1δ2l + δi1δ4l + δ2iδ3l + δi3δ4l)
)] 4∏
i=1

δ̂

τi − 4∑
k=1,k 6=i

sik

 .
2In this calculation the ‘t-channel’ is given by (14)-(23).
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The actual definition of the Mellin amplitude M(sil) is given in the main text in equations
(3.95) and (3.96).
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