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Abstract: In previous work, it was shown that if certain series based on sums over primes of non-
principal Dirichlet characters have a conjectured random walk behavior, then the Euler product
formula for its L-function is valid to the right of the critical line<(s) > 1

2 , and the Riemann hypothesis
for this class of L-functions follows. Building on this work, here we propose how to extend this
line of reasoning to the Riemann zeta function and other principal Dirichlet L-functions. We apply
these results to the study of the argument of the zeta function. In another application, we define and
study a one-point correlation function of the Riemann zeros, which leads to the construction of a
probabilistic model for them. Based on these results we describe a new algorithm for computing very
high Riemann zeros, and we calculate the googol-th zero, namely 10100-th zero to over 100 digits, far
beyond what is currently known. Of course, use is made of the symmetry of the zeta function about
the critical line.

Keywords: zeta functions; prime numbers; probabilistic number theory

1. Introduction

There are many generalizations of Riemann’s zeta function to other Dirichlet series,
which are also believed to satisfy a Riemann hypothesis. A common opinion, based largely
on counterexamples, is that the L-functions for which the Riemann hypothesis is true enjoy
both an Euler product formula and a functional equation. However, a direct connection
between these properties and the Riemann hypothesis has not been formulated in a precise
manner. In [1,2] a concrete proposal making such a connection was presented for Dirichlet
L-functions, and those based on cusp forms, due to the validity of the Euler product formula
to the right of the critical line. In contrast to the non-principal case, in this approach the
case of principal Dirichlet L-functions, of which Riemann zeta is the simplest, turned out
to be more delicate, and consequently it was more difficult to state precise results. In the
present work, we attempt to further address this special case, although as we will explain,
the results are not as conclusive as for the non-principal case. What is new that we present
here a different way to understand the extent in which the truncated Euler product is a
good approximation. We then use this to approximate the argument of the zeta function on
the critical line. We also study one-point statistics of the Riemann zeros, in contrast to the
two-point correlation functions that are widely studied.

Let χ(n) be a Dirichlet character modulo k and L(s, χ) its L-function with s = σ + it.
It satisfies the Euler product formula

L(s, χ) =
∞

∑
n=1

χ(n)
ns =

∞

∏
n=1

(
1− χ(pn)

ps
n

)−1

(1)

where pn is the n-th prime. The above formula is valid for <(s) > 1, since both sides
converge absolutely. The important distinction between principal verses non-principal
characters is the following. For non-principal characters, the L-function has no pole at s = 1;
thus, there exists the possibility that the Euler product is valid partway inside the strip, i.e.,
has abscissa of convergence σc < 1. It was proposed in [1,2] that σc =

1
2 for this case. In

contrast, now consider L-functions based on principal characters. The latter character is
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defined as χ(n) = 1 if n is coprime to k and zero otherwise. The Riemann zeta function is
the trivial principal character of modulus k = 1 with all χ(n) = 1. L-functions based on
principal characters do have a pole at s = 1, and therefore have abscissa of convergence
σc = 1, which implies the Euler product in the form given above strictly cannot be valid
inside the critical strip 0 < σ < 1. Nevertheless, in this paper we will show how a truncated
version of the Euler product formula can be approximately valid for σ > 1

2 .
The primary aim of the work [1,2] was to determine what specific properties of the

prime numbers would imply that the Riemann hypothesis is true. This is the opposite of
the more well-studied question of what the validity of the Riemann hypothesis implies
for the fluctuations in the distribution of primes. The answer proposed was simply based
on the multiplicative independence of the primes, which to a large extent underlies their
pseudo-random behavior. To be more specific, let χ(n) = eiθn for χ(n) 6= 0. In [1,2] it was
proven that if the series

BN(t, χ) =
N

∑
n=1

cos
(
t log pn + θpn

)
(2)

is O(
√

N), then the Euler product converges for σ > 1
2 and the Formula (1) is valid to the

right of the critical line. In fact, we only need BN = O(
√

N) up to logs (see Remark 1);
when we write O(

√
N), it is implicit that this can be relaxed with logarithmic factors. For

non-principal characters, the allowed angles θn are equally spaced on the unit circle, and it
was conjectured in [2] that the above series with t = 0 behaves like a random walk due to
the multiplicative independence of the primes, and this is the origin of the O(

√
N) growth.

Furthermore, this result extends to all t since domains of convergence of Dirichlet series
are always half-planes. Taking the logarithm of (1), one sees that log L is never infinite to
the right of the critical line and thus has no zeros there. This, combined with the functional
equation that relates L(s) to L(1− s), implies there are also no zeros to the left of the critical
line, so that all zeros are on the line. The same reasoning applies to cusp forms if one also
uses a non-trivial result of Deligne [2].

In this article, we reconsider the principal Dirichlet case, specializing to Riemann zeta
itself, since identical arguments apply to all other principal cases with k > 1. In much
more recent work, a different approach to the non-principal case was studied based on
Möbius inversion [3]. Here all angles θn = 0, so one needs to consider the series

BN(t) =
N

∑
n=1

cos(t log pn) (3)

which now strongly depends on t. On the one hand, the case of principal Dirichlet L-
functions is complicated by the existence of the pole, and, as we will see, one consequently
needs to truncate the Euler product to make sense of it. On the other hand, BN can be
estimated using the prime number theorem since it does not involve sums over non-trivial
characters χ, and this aids the analysis. This is in contrast to the non-principal case, where,
however well-motivated, we had to conjecture the random walk behavior alluded to the
above, so in this respect the principal case is potentially simpler. To this end, a theorem of
Kac (Theorem 1 below) nearly does the job: BN(t) = O(

√
N) in the limit t→ ∞, which is

also a consequence of the multiplicative independence of the primes. This suggests that
one can also make sense of the Euler product formula in the limit t→ ∞. However this is
not enough for our main purpose, which is to have a similar result for finite t which we
will develop.

This article is mainly based on our previous work [1,2] but provides a more detailed
analysis and extends it in several ways. It was suggested in [1] that one should truncate the
series at an N that depends on t. First, in the next section we explain how a simple group
structure underlies a finite Euler product, which relates it to a generalized Dirichlet series
which is a subseries of the Riemann zeta function. Subsequently we estimate the error under
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truncation, which shows explicitly how this error is related to the pole at s = 1, as expected.
The remainder of the paper, Sections 4 and 5, presents various applications of these ideas.
We use them to study the argument of the zeta function. We present an algorithm to
calculate very high zeros, far beyond what is currently known. We also study the statistical
fluctuations of individual zeros, in other words, a one-point correlation function.

In many respects, our work is related to the work of Gonek et al. [4,5], which also
considers a truncated Euler product. The important difference is that the starting point
in [4] is a hybrid version of the Euler product which involves both primes and zeros of
zeta. Only after assuming the Riemann hypothesis can one explain in that approach why
the truncated product over primes is a good approximation to zeta. In contrast, here we
do not assume anything about the zeros of zeta, since the goal is to actually understand
their location.

We are unable to provide fully rigorous proofs of some of the statements below;
however, we do provide supporting calculations and numerical work. In order to be clear
on this, below “Proposal” signifies the most important claims that we could not rigorously
prove, and should not be taken as a “Proposition” in the usual formal mathematical sense.

2. Algebraic Structure of Finite Euler Products

The aim of this section is to define properly the objects we will be dealing with. In
particular we will place finite Euler products on the same footing as other generalized
Dirichlet series. The results are straightforward and are mainly definitions.

Definition 1. Fix a positive integer N and let {p1, p2, . . . pN} denote the first N primes where
p1 = 2. From this set one can generate an abelian group QN of rank N with elements

QN =
{

pn1
1 pn2

2 · · · p
nN
N , ni ∈ Z ∀i

}
(4)

where the group operation is ordinary multiplication. Clearly QN ⊂ Q+ where Q+ are the positive
rational numbers. There are an infinite number of integers in QN which form a subset of the natural
numbers N = {1, 2, . . .}. We will denote this set as NN ⊂ N, and elements of this set simply as n.

Definition 2. Fix a positive integer N. For every integer n ∈ N we can define the character c(n):

c(n) = 1 if n ∈ NN ⊂ QN

= 0 otherwise (5)

Clearly, for a prime p, c(p) = 0 if p > pN .

Definition 3. Fix a positive integer N and let s be a complex number. Based on QN , we can define
the infinite series

ζN(s) =
∞

∑
n=1

c(n)
ns = ∑

n ∈NN

1
ns (6)

which is a generalized Dirichlet series. There are an infinite number of terms in the above series
since NN is infinitely dimensional.

Example 1. For instance

ζ2(s) = 1 +
1
2s +

1
3s +

1
4s +

1
6s +

1
8s +

1
9s +

1
12s + . . .

Because of the group structure of QN , ζN satisfies a finite Euler product formula:
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Proposition 1. Let σc be the abscissa of convergence of the series ζN(s) where s = σ + it; namely,
ζN(s) converges for <(s) > σc. Then, in this region of convergence, ζN satisfies a finite Euler
product formula:

ζN(s) =
N

∏
n=1

(
1− 1

ps
n

)−1
(7)

Proof. Based on the completely multiplicative property of the characters,

c(nm) = c(n)c(m) (8)

one has

ζN(s) =
∞

∏
n=1

(
1− c(pn)

ps
n

)−1

The result follows, then, from the fact that c(pn) = 0 if n > N.

Example 2. Let N = 1, so that {n} = {1, 2, 22, 23 . . .}. Then the above Euler product formula (7)
is simply the standard formula for the sum of a geometric series:

ζ1(s) =
∞

∑
n=0

1
2ns =

1
1− 2−s (9)

Here the abscissa of convergence is σc = 0.

The series ζN(s) defined in (6) has some interesting properties:

(i) For finite N the product is finite for s 6= 0, thus the infinite series ζN(s) converges for
<(s) > 0 for any finite N.

(ii) Since the logarithm of the product is finite, for finite N, ζN(s) has no zeros nor poles
for <(s) > 0. Thus the Riemann zeros and the pole at s = 1 arise from the primes at
infinity p∞, i.e., in the limit N → ∞. In this limit all integers are included in the sum
(6) that defines ζN since N∞ = N. This is in accordance with the fact that the pole is a
consequence of there being an infinite number of primes.

The property (ii) implies that, in some sense, the Riemann zeros condense out of the
primes at infinity p∞. Formally one has

lim
N→∞

ζN(s) = ζ(s) (10)

However, since N is going to infinity, the above is true only where the series formally
converges as a Dirichlet series, which, as discussed in the Introduction, is <(s) > 1.
Nevertheless, for very large but finite N, the function ζN can still be a good approximation
to ζ(s) inside the critical strip, since for finite N there is convergence of ζN(s) for <(s) > 0.
This is the subject of the next section, where we show that a finite Euler product formula is
valid for <(s) > 1

2 in a manner that we will specify.

3. Finite Euler Product Formula at Large N to the Right of the Critical Liine

In this section we propose that the Euler product formula can be a very good approx-
imation to ζ(s) for <(s) > 1

2 and large t if N is chosen to depend on t in a specific way
which was already proposed in [1,2]. The new result presented here is an estimate of the
error due to the truncation.

The random walk property we will build upon is based on a central limit theorem of
Kac [6], which largely follows from the multiplicative independence of the primes:



Symmetry 2021, 13, 2014 5 of 13

Theorem 1. (Kac) Let u be a random variable uniformly distributed on the interval u ∈ [−T, T],
and define the series

BN(u) =
N

∑
n=1

cos(u log pn). (11)

Then in the limit N → ∞ and T → ∞, BN/
√

N approaches the normal distributionN (0, 1),
namely

lim
N→∞

lim
T→∞

P

{
x1√

2
<

BN(u)√
N

<
x2√

2

}
=

1√
2π

∫ x2

x1

e−x2/2dx (12)

where P denotes the probability for the set.

We wish to use the above theorem to conclude something about BN(t) for a fixed,
non-random t. Based on Theorem 1, we suggest the following for non-random, but large t:
For any ε > 0,

lim
t→∞

BN(t) = O(N1/2+ε). (13)

We could not rigorously prove this statement, however we can provide a heuristic
argument. As T → ∞, even though u is random, the vast majority of them are tending to
∞. One then uses the normal distribution in Theorem 1. In the following we will provide
indirect numerical evidence.

Remark 1. The proof of convergence of the Euler product in [2] is not spoiled if the bound on
BN is relaxed up to logs. For instance, if in the limit t → ∞, BN = O(

√
N log log N), as

suggested by the law of iterated logarithms relevant to central limit theorems, this is fine, as is
BN = O(

√
N loga N) for any positive power a.

A consequence of Theorem 1 and the comments following it is that the Euler product
formula is valid to the right of the critical line in the limit t→ ∞, at least formally. Namely
for σ > 1

2 ,

lim
t→∞

ζ(σ + it) = lim
N→∞

lim
t→∞

N

∏
n=1

(
1− 1

pσ+it
n

)−1

(14)

As shown in [1,2] and discussed in the Introduction, this formally follows from the√
N growth of BN . The problem with the above formula is that due to the double limit

on the RHS, it is not rigorously defined. For instance, it could depend on the order of
limits. It is thus desirable to have a version of (14) where N and t are taken to infinity
simultaneously. Namely, we wish to truncate the product at an N(t) that depends on t
with the property that limt→∞ N(t) = ∞. One can then replace the double limit on the
RHS of (14) with one limit t→ ∞, or equivalently N(t)→ ∞.

There is no unique choice for N(t), but there is an optimal upper limit, N(t) <
Nmax(t) ≡ [t2], with [t2] its integer part, which we now describe. We can use the prime
number theorem to estimate BN(t):

BN(t) ≈
∫ pN

2

dx
log x

cos(t log x) = <(Ei((1 + it) log pN)) (15)

≈ pN
log pN

(
t

1 + t2

)
sin(t log pN)

where Ei is the usual exponential-integral function, and we have used

Ei(z) =
ez

z

(
1 + O

(
1
z

))
(16)

The prime number theorem implies pN ≈ N log N. Using this in (15) and imposing
BN(t) <

√
N leads to N < [t2].
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Based on the above, henceforth we will always assume the following properties
of N(t):

N(t) ≤ Nmax(t) ≡ [t2] with lim
t→∞

N(t) = ∞, (17)

and will not always display the t dependence of N. Equation (14) now formally becomes

lim
t→∞

ζ(s) = lim
t→∞

N(t)

∏
n=1

(
1− 1

ps
n

)−1
, for <(s) > 1

2 (18)

Extensive and compelling numerical evidence supporting the above formula was
already presented in [1].

Based on the above results we are now in a position to study the following important
question. If we fix a finite but large t, and truncate the Euler product at N(t), which is finite,
what is the error in the approximation to ζ to the right of the critical line? We estimate this
error as follows:

Proposal 1. Let N = N(t) satisfy (17). Then for <(s) > 1
2 and large t,

ζ(s) =
N(t)

∏
n=1

(
1− 1

ps
n

)−1
exp(RN(s)) (19)

where ζ(s) is the actual ζ function defined by analytic continuation and

RN(s) =
1

(s− 1)
O
(

N1−s

logs N

)
. (20)

RN is finite (except at the pole s = 1) and satisfies

lim
t→∞

RN(t)(s) = 0; (21)

namely the error goes to zero as t→ ∞.

We provide the following supporting argument, although not a rigorous proof, for
this Proposal. From (18), one concludes that (19) must hold in the limit of large t with RN
satisfying (21). The logarithm of (19) reads

log ζ(s) = −
N

∑
n=1

log
(

1− 1
ps

n

)
+ RN(s) (22)

First assume <(s) > 1. Then, in the limit of large t, the error upon truncation is the
part that is neglected in (18):

RN(s) = −
∞

∑
n=N+1

log
(

1− 1
ps

n

)
(23)

Expanding out the logarithm, one has

RN(s) ≈
∞

∑
n=N

1
ps

n

≈
∫ ∞

pN

dx
log x

1
xs ≈

1
(s− 1)

p1−s
N

log pN
(24)

where, in the second line, we again used the prime number theorem to approximate the
sum over primes. Next, using pN ≈ N log N, one obtains (20). Finally, the above expression
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can be continued into the strip σ > 1
2 if N(t) < [t2] since N(t)1−s/t < N1/2−s, which goes

to zero as N → ∞ if <(s) > 1
2 . The latter also implies (21).

Proposal 1 makes it clear that the need for a cut-off N < Nmax originates from the pole
at s = 1, since as long as s 6= 1, the error RN(s) in (20) is finite. The error becomes smaller
and smaller the further one is from the pole, i.e., as t → ∞. In Figure 1, we numerically
illustrate Proposal 1 inside the critical strip.

0 200 400 600 800 1000
t

0.02

0.04

0.06

0.08

0.10
R

Figure 1. The error term |RN(s)| with N(t) = Nmax(t) = [t2] for <(s) = 3/4 inside the critical strip
as a function of t. The fluctuating (blue) curve is |RN | computed directly from the definition (19) with
ζ(s) as the usual analytic continuation into the strip. The smooth (yellow) curve is the approximation

RN(s) =
1

(s− 1)
N1−s

logs N based on (20).

Remark 2. For estimating errors at large t, the following formula is useful:

|RN(t)(s)| ∼
N(t)1−σ

t
∼ 1

t2σ−1 (25)

Proposal 2. Assuming Proposal 1, all non-trivial zeros of ζ(s) are on the critical line.

Proof. Taking the logarithm of the truncated Euler product, one obtains (22). If there were
a zero ρ with <(ρ) > 1

2 , then log ζ(ρ) = −∞. However, the right hand side of (22) is
always finite; thus there are no zeros to the right of the critical line. The functional equation
relating ζ(s) to ζ(1− s) shows there are also no zeros to the left of the critical line.

Remark 3. Interestingly, Proposal 1 and Theorem 2 imply that proving the validity of the Riemann
hypothesis is under better control the higher one moves up the critical line. For instance, it is known
that all zeros are on the line up to t ∼ 1013, and beyond this, the error RN is too small to spoil the
validity of the Riemann hypothesis. Henceforth, we assume the RH.

4. One-Point Correlation Function of the Riemann Zeros

Montgomery conjectured that the pair correlation function of ordinates of the Riemann
zeros on the critical line satisfy GUE statistics [7]. Being a two-point correlation function,
it is a reasonably complicated statistic. In this section, we propose a simpler one-point
correlation function that captures the statistical fluctuations of individual zeros.

Let tn be the exact ordinate of the n-th zero on the critical line, with t1 = 14.1347 . . .
and so forth. The single equation ζ(ρ) = 0 is known to have an infinite number of non-
trivial solutions ρ = 1

2 + itn. In [8], by placing the zeros in one-to-one correspondence with
the zeros of a cosine function, the single equation ζ(ρ) = 0 was replaced by an infinite
number of equations, one for each tn that depends only on n:

ϑ(tn) + lim
δ→0+

arg ζ( 1
2 + δ + itn) = (n− 3

2 )π (26)
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where ϑ is the Riemann–Siegel function:

ϑ(t) = = log Γ( 1
4 + it

2 )− t log
√

π. (27)

The Equation (26) involves the important function

S(t) =
1
π

lim
δ→0+

arg ζ( 1
2 + δ + it). (28)

It is important that the δ→ 0+ approaches the critical line from the right, since this is
where the Euler product formula is valid in the sense described above. This equation was
used to calculate zeros very accurately in [8], up to thousands of digits. There is no need
for a cut-off Nmax in the above equation since the arg ζ term is defined for arbitrarily high t
by standard analytic continuation. One aspect of this equation is the following theorem:

Theorem 2. (França-LeClair) If there is a unique solution to the Equation (26) for every positive
integer n, then the Riemann hypothesis is true, and furthermore, all zeros are simple.

Remark 4. Details of the proof are in [8]. The main idea is that if there is a unique solution, then
the zeros are enumerated by the integer n and can be counted along the critical line, and the resulting
counting formula coincides with a well-known result due to Backlund for the number of zeros in
the entire critical strip. The zeros are simple because the zeros of the cosine are simple. The above
theorem is another approach towards proving the Riemann hypothesis; however, it is not entirely
independent of the above approach based on the Euler product formula, in particular Theorem 2.
In [8], we were unable to prove there is a unique solution because we did not have sufficient control
over the relevant properties of the argument of ζ on the critical line.

If the arg ζ term is ignored, then there is indeed a unique solution for all n since ϑ(t)
is a monotonically increasing function of t. Using its asymptotic expansion for large t,
Equation (34) below, and dropping the O(1/t) term, then the solution is

t̃n =
2π(n− 11

8 )

W
(
(n− 11

8 )/e
) (29)

where W is the Lambert W-function. The only way there would fail to be a solution is
if S(t) is not well defined for all t. We point out that the Lambert function was used in
connection with the Riemann zeros in [9]; however, the meaning does not seem to be the
same as in this article.

The fluctuations in the zeros come from arg ζ since t̃n is a smooth function of n. These
small fluctuations are shown in Figure 2. Let us define δtn = tn − t̃n. One needs to
properly normalize δtn, taking into account that the spacing between zeros decreases as
2π/ log n. To this end we expand the Equation (26) around t̃n. Using ϑ(t̃n) ≈ (n− 3

2 )π,
one obtains δtn ≈ −πS(tn)/ϑ′(t̃n) where ϑ′(t) is the derivative with respect to t. Using
ϑ′(t) ≈ 1

2 log(t/2πe), this leads us to define

δn ≡
(tn − t̃n)

2π
log
(

t̃n

2πe

)
≈ −S(tn) (30)

The probability distribution of the set

∆M ≡
{

δ1, δ2, . . . , δM

}
(31)

for large M is then an interesting property to study. Here “probability" is defined as the
frequency of occurrence. The origin of the statistical fluctuations of ∆M is ultimately the
fluctuations in the primes.
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5 10 15 20 25 30
n

20

40

60

80

100

tn

Figure 2. The first 30 Riemann zeros tn. The smooth curve is the approximation t̃n in (29), whereas
the dots are the actual zeros tn.

In Figure 3, we plot the distribution of ∆M for M = 105. It closely resembles a normal
distribution. Let us suppose ∆M does indeed satisfy a normal distribution N (µ, σ1). Using
some known properties of S(tn), together with the Equation (30), we can propose then the
following. First, one expects that the average of δn is zero, since it is known that the average
of S(t) is zero; thus µ = 0. Up to the height t that we have studied, S(t) is nearly always
on the principal branch, i.e., −1 < S(t) < 1 up to some reasonably high t on the order of
t = 106 or more. Then at each jump by 1 at tn, on average S(tn) passes through zero. This

implies that the average ¯|S(tn)| ≈ 1/4. For a normal distribution ¯|S(tn)| =
√

2
π σ1. Thus

one expects the standard deviation σ1 of ∆M to be σ1 ≈
√

π/32 = 0.313 . . . . In Figure 3
we present results for the first 105-th known exact zeros. The distribution function fits a
normal distribution with σ1 =

√
π/32 rather well. Performing a fit, one finds σ1 ≈ 0.27.

For higher values of M around 106, a fit gives σ1 ≈ 0.3, which is closer to the predicted
value. We emphasize, however, that this approximate prediction for σ1 assumes S(t) is on
the principal branch, which is not expected to hold for arbitrarily high t.

-0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 3. The probability distribution for the set ∆M defined in (31) for M = 105. The smooth curve
is the normal distribution N (0, σ1) with σ1 = 0.274.

If we approximate the distribution of ∆M as normal, then we can construct a simple
probabilistic model of the Riemann zeros:
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Definition 4. A probabilistic model of the Riemann zeros. Let r be a random variable
with normal distribution N (0, σ1). Then a probabilistic model of the zeros tn can be defined as the
set {t̂n}, where

t̂n ≡ t̃n +
2π r

log(t̃n/2πe)
(32)

and t̃n is defined in (29). In the above formula r is chosen at random independently for each n.

The statistical model (32) is rather simplistic, since it is just based on a normal dis-
tribution for r and t̃n is smooth and completely deterministic. A natural question then
arises. Does the pair correlation function of {t̂n} satisfy GUE statistics as does the actual
zeros {tn}? It is certainly interesting to study the two-point correlation function of {t̂n}.
Montgomery’s pair correlation conjecture can be stated as follows. Let N (T) denote the
number of zeros up to height T, where N (T) ≈ T

2π log
(

T
2πe

)
. Let t, t′ denote zeros in the

range [0, T]. Then in the limit of large T:

1
N (T) ∑

α<d(t,t′)<β

1 ∼
∫ β

α
du

(
1− sin2(πu)

π2u2

)
(33)

where d(t, t′) is a normalized distance between zeros d(t, t′) = 1
2π log

(
T

2πe

)
(t− t′).

In Figure 4, we plot the pair correlation function for the first 105-th t̂n’s. We chose
σ1 = 0.274, since in this range of n, this gives a better fit to the normal distribution of the
one-point function. The results are reasonably close to the GUE prediction (33), especially
considering that for just the first 105 true zeros the fit to the GUE prediction is not perfect;
for much higher zeros it is significantly better [10].

0.5 1.0 1.5 2.0 2.5 3.0

0.01

0.02

0.03

0.04

0.05

Figure 4. The pair correction function of {t̂n} defined in (32) for n up to 105 where the standard
deviation of r was taken to be σ1 = 0.274. The solid curve is the GUE prediction. The parameters
in (33) are β = α + 0.05 with α = (0, 0.05, 0.10, . . . , 3) and the x-axis is given by x = (α + β)/2.

5. Computing Very High Zeros from the Primes

This section can be viewed as providing additional numerical evidence for some
of the previous results. We will be calculating S(t) from the primes using the truncated
Euler product. Since this requires <(s) → 1

2
+

, this is pushing the limit of the validity of
the truncated Euler product formula; nevertheless we will obtain reasonable results. We
emphasize that this method has nothing to do with the random model for the zeros in
Definition 4, but rather relies on the Euler product formula to calculate S(t).

Many very high zeros of ζ have been computed numerically, beginning with the work
of Odlyzko. All zeros up to the 1013-th have been computed and are all on the critical
line [11]. Beyond this, the computation of zeros remains a challenging open problem.
However, some zeros around the 1021-st and 1022-nd are known [12]. In this section we
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describe a new and simple algorithm for computing very high zeros based on the above
reasoning. It will allow us to go much higher than the known zeros since it does not require
numerical implementation of the ζ function itself, but rather only requires knowledge of
some of the lower primes.

Let us first discuss the numerical challenges involved in computing high zeros from
the Equation (26) based on the standard Mathematica package. The main difficulty is that
one needs to implement the arg ζ term. Mathematica computes Arg ζ, i.e., on the principal
branch, however near a zero this is likely to be valid based on the discussion in Section 4.
The main problem is that Mathematica can only compute ζ for t below some maximum
value around t = 1010. This was sufficient to calculate up to the n = 109-th zero from (26)
in [8]. The log Γ term must also be implemented to very high t, which is also limited in
Mathematica.

We deal with these difficulties first by computing arg ζ from the Euler product formula
involving a finite sum over primes. Then, the log Γ term can be accurately computed using
corrections to Stirling’s formula:

ϑ(t) =
t
2

log
(

t
2πe

)
− π

8
+

1
48 t

+ O(1/t3) (34)

Let tn;N denote the ordinate of the n-th zero computed using the first N primes based
on (26). For high zeros, it is approximately the solution to the following equation

tn;N

2
log
(

tn;N

2πe

)
− π

8
− lim

δ→0+
=

N

∑
k=1

log

(
1− 1

p1/2+δ+itn;N
k

)
= (n− 3

2 )π (35)

where it is implicit that N < Nmax(t) = [t2]. The important property of this equation is
that it no longer makes any reference to ζ itself. It is straightforward to solve the above
equation with standard root-finder software, such as FindRoot in Mathematica.

One can view the computation of tn as a kind of Markov process. If one includes
no primes, i.e., N = 0, and drops the next to leading 1/t corrections, then the solution is
unique and explicitly given by tn;0 = t̃n in terms of the Lambert W-function in (29). One
then goes from tn;0 to tn;1 by finding the root to the equation for tn;1 in the vicinity of tn;0;
then similarly tn;2 is calculated based on tn;1 and so forth. At each step in the process one
includes one additional prime, and this slowly approaches tn, so long as N(t) < Nmax(t).
In practice we did not follow this iterative procedure, but rather fixed N and simply
solved (35) in the vicinity of t̃n.

We can estimate the error in computing the zero tn from the primes using Equation (35)
as follows. As in Section 4, we expand the Equation (26) now around tn;N rather than t̃n.
One obtains

tn − tn;N = −π dSN/ϑ′(tn;N)

where dSN is the error in computing S(t) from the primes. Using (24), we have

dSN = 1
π=RN(s = 1

2 + it) ≈
√

pN

πt log pN
cos(t log pN).

Now from the prime number theorem, pN ≈ N log N. Recall N is cut off at Nmax = [t2],
which cancels the 1/t in the previous formula. Finally, it is meaningful to normalize the
error by the mean spacing 2π/ log n. The result is

tn − tn;N

2π/ log n
≈ 1

π
√

log N
cos(tn log pN) (36)

where we have used tn;N ≈ t̃n ≈ 2πn/ log n. The left-hand side represents the ratio of the
error to the mean spacing between zeros at that height. Again, it is implicit that N < [t2

n].
The interesting aspect of the above formula is that the relative error decreases with N,
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although rather slowly. The cosine factor also implies there are large scale oscillations
around the actual tn.

For very high t, Nmax(t) = [t2] is extremely large, and it is not possible in practice to
work with such a large number of primes. This is the primary limitation to the accuracy
we can obtain. We will limit ourselves to the relatively small N = 5× 106 primes. Let
us verify the method by comparing with some known zeros around n = 1021 and 1022.
The results are shown in Table 1. Equation (36) predicts tn − tn;N ≈ 0.01 for these n and
N, and inspection of the table shows this is a good estimate. Odlyzko was, of course,
able to calculate more digits; our accuracy can be improved by increasing N in principle.
We also checked some zeros around the n = 1033-rd computed by Hiary [13], again with
favorable results.

Table 1. Zeros around the n = 1021-st and 1022-nd computed from (35) with N = 5× 106 primes. We
fixed δ = 10−6. Above, ∼ denotes the integer part of the second column.

n tn;N tn (Odlyzko)

1021 − 1 144176897509546973538.205 ∼0.225
1021 144176897509546973538.301 ∼0.291

1021 + 1 144176897509546973538.505 ∼0.498
| | |

1022 − 1 1370919909931995308226.498 ∼0.490
1022 1370919909931995308226.614 ∼0.627

1022 + 1 1370919909931995308226.692 ∼0.680

Having made this check, let us now go far beyond this and compute the n = 10100-th
zero by the same method. Again using only N = 5× 106 primes, we found the following tn:

n = 10100−th zero :
tn = 280690383842894069903195445838256400084548030162846

045192360059224930922349073043060335653109252473.244 . . . .

Obtaining this number took only a few minutes on a laptop using Mathematica. We
are confident that the last 3 digits ∼0.244 are correct, since we checked that they did not
change between N = 106 and 5× 106. Furthermore, 3 digits is consistent with (36), which
predicts that for these n and N, tn − tn;N ≈ 0.002. We calculated the next zero to be ∼0.273.

We were able to extend this calculation to the 101000-th zero without much difficulty.
As Equation (36) shows, the relative error only decreases as one increases t. It is also
straightforward to extend this method to all primitive Dirichlet L-functions and those
based on cusp forms using the transcendental equations in [8] and the results in [2].
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