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Abstract: We review the mechanisms which can build a "�are" Pomeron and the ex­
perimental evidence for and against these mechanisms . Then we discuss 
the "super-critical" case of Reggeon field theory in order to determine 
the asymptotic behaviour of the scattering amplitudes when the Pomeron 
intercept is larger than one . 

Resume On examine les mecanismes susceptibles d ' engendrer un pomeron "nu" , 
et les indications experimentales en faveur et contre ces mecanismes .  
Ensuite on discute le  cas "supercritique" de  la  theorie des reggeons , 
afin de determiner le comportement asymptotique des sections eff icaces 
lorsque l ' intercept du pomeron est plus grand que 1 .  
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In this talk I wil l  review some theoret ical ideas about the Pomeron . Some 

of these ideas are rather recent , but some date back to fif teen years ago, with 

the invention of the multiperipheral model 1 ) . However , if one compares the situa­

t ion now to that which we discussed four years ago , at the 1973 Moriond meeting 

on the Pomeron , we see that there has been a lot of c larification from a theo­

retical point of view, that a rather wel l-defined theoretical scheme has emerged , 

and has , to some extent , received experimental verif icat ion .  

I n  this scheme , i t  i s  useful t o  distinguish two steps in building the scat­

tering amplitude at high energy. In the first step , one as sumes that there exists 

a basic mechanism for multiparticle product ion , which gives only short-range 

corre lations in rapidity ,  or , in other words ,  which obeys short-range order . A 
dynamical model which realizes this as sumpt ion is of course the multiperipheral 

model 1 ) , but one may have in mind a dual model 2 ) , or any other model .  The only 

important point is really short-range order , and I need not be too precise about 

the detai ls  of the dynamic s .  

This production proces s  generate s ,  v i a  unitarity , diffractive amplitudes , 

for exampl e ,  the elastic amplitude . Because of the short;.-range order hypothesis , 

it wi l l  be possible to represent the elastic amplitude by the exchange of a Regge 
� . J,-, 

pole 3 ) , name ly the Pomeron , more precisely the ".bare" Pomeron . 
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Now we can go to the second step in building the scattering amplitude , by 

allowing for mul tiple exchanges of this Pomeron, Pomeron interactions ,  etc . The 

scheme which is derived in this way is Gribov Reggeon calculus 4 

The plan of the talk wi l l  follow this idea of a two- step proce s s .  In the 

first part I wi l l  d iscuss how one generates the bare Pomeron, and in the second 

I will describe some recent results obtained with the Reggeon calculus 5 ) . 



1 .  THE BARE POMERON 

I have no time to review in detail the experimental evidence for and against 
the short-range order picture of multiparticle production . Let me just mention 
that there is extremely good evidence in favour of an important short-range com­
ponent in two-particle rapidity correlations , and also good evidence coming from 
local charge conservations ) . 

The important violation of Feynman scaling in the central region goes a 
priori against short-range order:  one f inds that in the ISR energy range (from 
IS = 22 GeV to IS = 63 GeV) the inclusive cros s-section do/dy in the central 
region increases by � 40% 7 ) .  However , there may be finite energy effects due 
to peculiarities of multiperipheral dynamics 8 ) ; also if the Pomeron intercept is  
larger than one , one expects that do/dy increases faster than otot ' owing to the 
famous AGK cancellation . Nevertheless a 40% increase is a large effect,  and one 
can feel somewhat uneasy with the "explanations" given above . 

There is just one result which I would like to examine in some more detail , 
s ince it is relatively recent 9 ) . This result shows for the first time (or at 
least gives some indication in favour of) the validity of local compensation of 
transverse momentums ) . Thi s  property, which is a consequence of short-range 
order, is extremely important , because if transverse momentum were not conserved 
locally, one would not expect to f ind a Regge pole out of the unitarity equation3 l .  
Before this  experiment,  all the data were in agreement with global conservations ) , 
thus casting some doubt on the whole theoretical scheme . 

The quantity which i s  measured is the f luctuation of transverse momentum 
transfer 3 • s ) : 

( 1) 

... 
where pTi is the transverse momentum of particle i ,  yi its rapidity, and 8 (x) the 
step function. The fluctuation is  

Just to  illustrate this formula , let  me take both arguments equal to  zero : 

D2 
( 0 ,  0) T 

... ) 2 
< (li_ PTi > ycm<o 

( 2) 

(3 )  

It is  easy to realize that if  transverse momenta are distributed at random (global 
. ... 

conservation of pT) , this fluctuation will be proportional to the average number ->-2 of particle s ,  (n} , and to ( PT ) .  In fact one finds 
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2 DT (0 , 0) = (4) . 

whet� the formula ts written for charged particles only. For example,  at 
200 GeV/c,  (n )ch � 7 . 8 ,  (p�) ; 0 . 20 (GeV) 2 , and one gets from (4) a theoretical 
prediction of ·� 0 . 26 . . A more refined (but yet not completely correct) model  of 
global pT conservation has been built by the authors of Ref . 9 ,  and one sees from 
Table 1 that global conservation is ruled out experimentally. 

200 GeV/C . 

300 GeV/c 

Table 1 
D� (O ,O) (GeV/c) 2 

Eiperiment· · Random model 

0 . 202 ± '  0 . 009 0 . 289 ± b . 006 

O . ?q? ± 0 . Q0,8 . .0 . 331 ± 0 .  0{)9 

; · , _ l 
An�the:i: _impo.r�a!lt point is that: p{: Cy,pYz ) should be .energy independent. · This .is 
���u�i.f�ll?, �atist,

ied
. 
by th�; ,d!lta . a� .  ?OO . •  <,in� 3Q_O GeV le , :  However , , .even. with. �ocal 

PT cc:i��e�vati
,':'

'.1• c°ne 
.. 
�pu�d •. • �.tP,1 .. expec� some et\e}'."g¥ dependence, ,reflecting: t.he ; 

�nc�e�se wit,h _�';'ergy _ ?f. , J;�e pa.r�ic:)e. den_13i,t;:y. p. , , and o,f , (p4 ) .  I�ee!l, if one : itries 
an exponential parametrization . 

j - : : l - ·- " .: : : ' . .. ! 1 
.

,' -' -� . . ' i ! • • 

the . .  <i<)lefE-icient A i s  determined to be 

A 1 < -p2 2 T (0) > pch (0)  L 

• ; i 

Since both ( p� (O) ) and pch(O) increase by <v 10% betw��n 2�0 G�V/c and 

(5) 

300 Gf!:V I c ,
; 
a�d .  s �nce _L 

_
i� appr9xil!late�Y, cqnstaqt,  ql/re ,WOlJlc:l ,expec;t .a  'V 20� increase 

of D� , as is observed in tli.e case of local conserv.ilt�oµ .of . cha,rge6) . 

Although there are certainly problems with the details of the experiment , let 
me nevertheless assume that we can use its result in the Krzywicki7Weingarten 
bound3 ) for the Pomeron slope ai{, 

, ·; \ 

a. 'IP 0 . 1 6 .  ( GeVlc) -2 
( 0 ,  y) dy 

·From thi s '  value, we· can assert ·that ·we understand . . at: le.ast half of the Pomeron 
slope, sirice ap � O .  25 (GeV /C) -2 • 

(6 )  



2 .  POMERON :j:TERATIONSJ : . ! ; ! _, , . . f _J 

Once the Pomeron has' ' be�� 1b�ii.d� ' one c�n 'Jo��g�t-· about its origin a�d re��ber 
only a few parameters :  

intercept :  a IP or µ = a IP - 1 
slope 

· c�upling to :ineiastic states : A 
(in. order to . simplifJ the discussion, we keep orily the triple Poni.erbn coupling :>..) .  
GriboJT •has• shown that these parameters ean �be ifise�ted into ' the :Lagrangian of ' a '  
two-dimensional non-relativistic field theory ,  and that the rules for comphtirig 
multi-:PomeroI\ exchanges are exact ly, the ,E'.e:miman rules of this JieLd t;he�i;y� ) . 
,
The ��grangi�� �s �ri�ten in teI'IJ\s ,pf -�· pq��;O'll field,.1/J(y,b) , .  wl!:i,ch L·is a .fonction f{ '� i ] . , • < ; • _; J ' .I ' " ' • • : ' ' ' i .' ' - . . ' 
of .the i rapid�tx ,Y , <r.9:t1iv<1;iyn� t\HII\ ima,g,ina,i;y ,tim�� 1 �nd ,o� : t;J:l!i; . t;w9�di.m�nsional · · 

. . . ·+ impact parameter b .  Owing to Pomeron interactions , the Pomeron intercept gets 
renormalized, µ + µR . If µR < 0 ,  tile, amplH:'udes are 1dominated asymptotically by 
a pole and the s ituation is very simple . If µR = O, one has the so-called 
"c;i;:iio-ical Jll:<imerdtt'' 'where .f'or iexamRle tne' total ,fros�1·seetion ''l:i'eb'aves· ·'aii' (iO'g "sj!IT 
L.e,t1· iu:S- 1.e.alt :µ 1, .t.henralue :ifior -whi'c�: rµR\ 1· 1 ·-is:.:�xa!ctly·L�et'a.: :�rt (V : �.t 'V '';- J� ·-hiciV'e :.:thJ\ L; 

I 0 )  
c c 

... s11cc.a.ll.e1t ".sup.er..,-:erit:ica·l Pometton" .  : Via:rii6us 'estiiillatel 'gi\le' ' \i' "' '1':1' 11r1) 1 'wh1iie''. '- ' , ·, -
clJ.,c· ,-?'.j 1 -'.0l-;-lr. 02 ,: :and: it '.thus: s.eems·: '.thaitJ ·.the1: s'.u:per·�cr1t1�:a1 \�-·�-se "f's ·''t'e1.�Jfze"ci i-n l'_, ·,v 

, This is: pre<iis.ely '.the s'1\:uiiiti.on1 whidh I1 would' 'Hk.e to ekabiirte' i:ri' wh.i:F'follows . 
As- wH L he: .sie!!·n,, the, :pr:Oblem i:sJ a; -ra'theY' 'cdmplicat'�a' oti.e:, aitd 'r' 'would •111<�' i:� ., : ' ·  

beg!i;nJ wilth . .  a ,  simple:. remark� The' Prnnertin ·proi>ag'ator"i:ff {y�b} $pc1fce'' i·s ' ' · 1 ·' '  
, '  l t '', i )  _' •, 1 ' · , 

' : � , ,  ' -

' �t
, fix�d ,

y and i l���e enq11g\1 . Clt. ! ,�?, l,4a.'.µy) , , the
. �X\!

'
P.���� ��: ont'· pol� �s'

·

. 

going to domina�7� 
' J

i!:)c.e rP.
.
e. ��t� ar.\' : mµ�tipJ.�\!ative .i11 iµipacJ: p;µ;�et;e,r : space ; ' 

This remark will be extremely important in the following . For the moment let me 
• ' 1 . 

ori.ty ' use ' 'it to makii a ' very ' i:i.aiv'e gues�  at the as:Ymptotk behaviour of the ampli-: 
tude . ' '  :Far l 'h l  ·�  /4a'ii�. : i>ert:urbation th�o�y. ; as we have seen, is likely to .b� 
valid '. Howi:\vet , for '!"b l  :S /4a1\Jy we ��y expe�t th�t the amplitude ,  at fixed im­
pact parameter, goes to a constant . If this constant i s  non-zero , we see at once 
that the cross-section will be 'V ( 4a1µ)  ( log. s ) 2 ,  corresponding to a disk expanding 
in impact parameter space with a velocity V4a1µ . 
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Let me now try to explain how this picture emerges from a more complete 
analysis ,  by considering the two-point Green ' s  function 

G (y,  b) <o l w <y ,b) w <o ,o) J o > < o j w (O ,b) c-Hy �(o ,o) I o > (8 ) 

where H is the Reggeon field theory Hamiltonian .  We have chosen to  keep the 
original vacuum of the theory, and not to switch to a new vacuum, although RFT 
for µ > 0 is  superficially similar to a situation in which there is spontaneous 
synmetry breaking (as in A�4 with µ2 < 0) . Indeed we wish to recover perturbation 
theory at large b (at y fixed) and this is automatic if we do not change the 
vacuum. 

Suppose one is able to prove that the spectrum of H is positive and that the 
first excited state is separated from the ground state (vacuum) by a gap 6 .  Then 
by inserting intermediate states in (8) we obtain (apart from factors of log s) 

G (y) "' e - f!,y -6 s 

This would be the case for µR < 0 ,  with 6 = -µR . At the critical point , 6 = 0 ,  

and we expect something a ground-state degeneracy , a s  in a standard second-order 
phase transition; above the critical point (µ > µc) this ground-state degeneracy 
would of course persist ,  and transitions between the two degenerate ground states 
could give rise to a constant S-matrix (always at a fixed impact parameter) . 

However , thinking of a normal field theory (A�4 ) ,  one immediately sees a 
difficulty, because the two degenerate ground states are indeed completely dis­
connected : the matrix-elements of field operators between the two ground states 
are strictly zero . This problem is solved in RFT because the Hamiltonian is 
non-Hermitian .  This implies two properties , which are completely at variance with 
those of the Hermitian theory: i) the perturbative vacuum is one of the ground 
states ; ii)  the field-operators have non-zero matrix elements between the two 
ground states .  This allows the second ground state l �o )  to contribute as an 
intermediate state in (8) and to give rise to a constant S-matrix . 

To show these properties explicitly, it is convenient to go to a lattice in 
impact parameter space . This is equivalent to an ultraviolet cut-off (which is 
in any case present in the theory) and should be harmless in the vicinity of the 
critical point . Now H has the form 

H = l:. H. + K. term J J in 

where Hj is the Hamiltonian at the lattice point j and the kinetic term connects 
neighbouring lattice points .  Let us begin by determining the spectrum of Hj ' 



neglecting for the moment intersite interactions . In a A¢4 theory with µ 2 < 0 ,  

one discovers that the spectrum of  Hj i s  that of  a double wel l  potential . 

\-------;' - - - - -

___ ·X .6. 
Fi g .  2 

Because of tunnel ling , each energy level is almost doubly degenerate . However , 

this is true only i f  one neglects intersite interactions . Indeed , in the ordered 

situation , the tunnel l ing disappears and the two ground states are obtained by 

putting all "particles" in the same wel l .  The wave function in a we l l  i s  a co­
herent s tate*) 

X± , j  
11 at e ± i\  J Xo , j (9 )  

where X . = I O , j )  is  the perturbative vacuum at  each site . 0 ' J  
By solving RFT in zero-space dimens ion , one can show that the spectrum o f  H . J 

is quite s imilar to that of Fig . 2 ;  however , the ground state is the vacuum, 

x o ,j ' while the first excited state ( almost degenerate with x o , j ) is approximately 

again a coherent state 

- e 
( 10) 

. - 2 /2A 2 Its  energy 6 is proportional to � e µ an express ion typical of tunnelling , 

although we do not have a potent ial wel l  of the form drawn in Fig .  2 .  

Now comes the crucial point . Suppose one builds a collective state in A¢4 

�± = IT X+ ' . 
j - J 

I t  i s  easy to realize that all  non-diagonal matrix element s  of f ield operators 
between <!>+ and <!> - (or between I 0 ) and <!>± ) wi l l  have a factor exp [-N (µ2 /A 2 ) ] ,  

where N i s  the number of states , and al 1 these matrix elements  wil l  go to zero 
the limi t N -.. oo .  

*) We have s lightly redefined the parameters of  the A¢4 theory, so that the 
formulae look similar to those of RFT . 

in 
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On the contrary, in RFT , one notices that the state Xi , j ' as defined in ( 10) , 
is correctly normalized to one ( in fai:'t -1 ! )  in the limit µ/'A » 1 .  One has to 
remember that the "bras" X0 • are eigenstates of H+ , which means replacing A by , ]  - "A .  Hence 

The collective state Wo is built as 

- II .  J 

2 2 
- l + e - µ fl,  

( 11) 

( 12) 

This state is correctly normalized (to -1) and is an approximate eigenstate of H 
in the limit µ/'A + oo, When inserted as an intermediate state in G (y) , it gives 
a non-zero contribution [in fact � (µ/A.) 2]. 

To be more quantitative , one builds a spin-model by keeping only the two 
lowest  states at each lattice site (owing to the structure of the spectrum, this 
is a, reasonable approximation) . The calculations are made in detail in Ref . 5 .  

In the second paper , one shows in particular how the expanding disk i s  generated, 
at least in the framework of this spin model .  

3 .  CONCLUSION 

I think that there exists at present a theoretical scheme for high-energy 
scattering which is in reasonable agreement with experiment (although there are 
some difficulties) , and which seems to be internally consistent . Owing to the 

, fact that µ >  µc ' this scheme predicts that at ultra-high energies , the total 
cross-sections will grow like ( log s) � [and the average multiplicity like ( log s) 3] .  
However , I must  mention that there are other theoretical approaches to  the theory 
of the super-critical Pomeron, which predict quite a different asymptotic be­
haviour 1 2 ) , and there remains a lot of work to be done before the situation is 
completely clarified . 
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