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We review the mechanisms which can build a "bare" Pomeron and the ex-
perimental evidence for and against these mechanisms. Then we discuss
the "super-critical" case of Reggeon field theory in order to determine

the asymptotic behaviour of the scattering amplitudes when the Pomeron
intercept is larger than one.

On examine les mécanismes susceptibles d'engendrer un poméron 'nu",

et les indications expérimentales en faveur et contre ces mécanismes.
Ensuite on discute le cas "supercritique" de la théorie des reggéons,
afin de déterminer le comportement asymptotique des sections efficaces
lorsque l'intercept du poméron est plus grand que 1.
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In this talk I will review some theoretical ideas about the Pomeron. Some
of these ideas are rather recent, but some date back to fifteen years ago, with
the invention of the multiperipheral model!) . However, if one compares the situa-
tion now to that which we discussed four years ago, at the 1973 Moriond meeting
on the Pomeron, we see that there has been a lot of clarification from a theo-
retical point of view, that a rather well-defined theoretical scheme has emerged,

and has, to some extent, received experimental verification.

In this scheme, it is useful to distinguish two steps in building the scat-
tering amplitude at high energy. In the first step, one assumes that there exists
a basic mechanism for multiparticle production, which gives only short-range
correlations in rapidity, or, in other words, which obeys short-range order. A
dynamical model which realizes this assumption is of course the multiperipheral
modell), but one may have in mind a dual modelz), or any other model. The only
important point is really short-range order, and I need not be too precise about

the details of the dynamics.

This production process generates, via unitarity, diffractive amplitudes,
for example, the elastic amplitude. Because of the shortrrange order hypothesis,
it will be possible to represent the elastic amplitude by the exchange of a Regge

sl

polea), namely the Pomeron, more precisely the "bare'" Pomeron.
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Fig. 1

Now we can go to the second step in building the scattering amplitude, by
allowing for multiple exchanges of this Pomeron, Pomeron interactions, etc. The

scheme which is derived in this way is Gribov Reggeon calculus"’

The plan of the talk will follow this idea of a two-step process. In the
first part I will discuss how one generates the bare Pomeron, and in the second

I will describe some recent results obtained with the Reggeon calculus®).



THE BARE POMERON

I have no time to review in detail the experimental evidence for and against
the short-range order picture of multiparticle production. Let me just mention
that there is extremely good evidence in favour of an important short-range com-
ponent in two-particle rapidity correlations, and also good evidence coming from

local charge conservation®) .

The important violation of Feynman scaling in the central region goes a
priori against short-range order: one finds that in the ISR energy range (from
Vs = 22 GeV to /s = 63 GeV) the inclusive cross-section do/dy in the central
region increases by N 407 7). However, there may be finite energy effects due
to peculiarities of multiperipheral dynamicsa); also if the Pomeron intercept is

larger than one, one expects that do/dy increases faster than o , owing to the

tot
famous AGK cancellation. Nevertheless a 407 increase is a large effect, and one

can feel somewhat uneasy with the "explanations" given above.

There is just one result which I would like to examine in some more detail,
since it is relatively recent?). This result shows for the first time (or at
least gives some indication in favour of) the validity of local compensation of
transverse momentum®). This property, which is a consequence of short-range
order, is extremely important, because if transverse momentum were not conserved
locally, one would not expect to find a Regge pole out of the unitarity equationa).
Before this experiment, all the data were in agreement with global conservatione),

thus casting some doubt on the whole theoretical scheme.

The quantity which is measured is the fluctuation of transverse momentum

transfer®:®);

G 0 =3 B 0 (v -y e¥

>
where Pp; 1s the transverse momentum of particle i, vi its rapidity, and 6(x) the

step function. The fluctuation is

2 - >
Dy (¥5¥9) = <Qp (y). Qp (y,)> (2)
Just to illustrate this formula, let me take both arguments equal to zero:

D3 (0, O =<(y By 7> 3

ycm<o
It is easy to realize that if transverse momenta are distributed at random (global
. > . . . .
conservation of pT), this fluctuation will be proportional to the average number

of particles, (n), and to (;;). In fact one finds
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(0, 0) = % <n h> <32 0) > (4)

* Where the formula is written for charged partlcles only For example, at
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200 GeV/c, (n) ch = 7.8, ( ) 0.20 (GeV)z, and one gets from (4) a theoretlcal
prediction of '~ 0.26. A more refired (but yet not completely correct) model of
global 3 conservatlon has been built by the authors of Ref. 9, and one sees from

Table 1 that global conservation is ruled out experimentally.

Table 1

D;(o,o) (Gev/é)?

- i s Experiment ‘Random model

200 Gev/c | 0.202 % 0.009 | 0.289  0.006

300 GeV/c | 0.208 + 0.008 | 0.331 % 0.009 [ . . .

Another 1mportant p01nt 1s that DT<Y1:Y2) should be. energy, 1ndependent\ - This-is

beautlfully satlsf1ed by the. data, atVZOD and 300‘GeV/c., However, even, with: Local

pT conservatlon, one would st_ll expect. some, energy dependence, reflecting: the.
1ncrease w1th energy of the part

e. denslty £, and. of., (p,r) .Indeed,- if one.tries

an exponent1a1 parametrlzatlon e et B P L Ay

2

SR IA e Lot Q:Ar e )
Dy (0 3 €5)

oLt

the .goefficient A is determined. to:be

D ) R PR
A = S <pg (0) >p, (0L

Since both (;;(0)) and p h(0) increase by 107 bétween 200 GeV/c and
300 GeV/c, and s;nce L 1s approx1mately constant, .one woyld,.expect.a. v 207 increase

of DT’ as is observed in the case of local conservatron .of . charge ) Vi

Although there are certainly problems with the details of the experiment, let
me nevertheless assume that we can use its result-in the:Krzywicki-Weingarten
bound®) for the Pomeron slope aé

T

2
a'p > s 1 = 0.16. (GeVlc) ™. (6)
8 [ DT (0, y) dy )

"‘From thig’ value, ‘we can assert ‘that we understand at least half of the Pomeron

slope; since aP 0.25 (GeV/c) 2.



2. POMERON ITERATIONS:

L T TA R BV T TP SO RIS X1 E R R TS B T ) i ! o
Once the Pomeron has been built, one can forget about its orlgm and remember
only a few parameters:

i

intercept: gop or u= ap -1
slope: ¢ gfp Torisimply o'
‘coupling to 'i.nell‘asti'c states: A )
.(in order-to.simplify the discussion, wé 'keep orly the triplé Pomerbn coupling A).
Gribov has-shown-that these parameters-éar 'be ifiserted into the ‘Lagrangian of ‘a’
two-dimensional non-relativistic field theory, and that the rules for computing"
mu1t1—Pomeron exchanges are exactly the Feynman rules of this.field theoty")

The Lagranglan is wrltten in term: f,a Pameran field, lb(y,b), whichiis:a.function

of the rapldlty y (equlvalent to.an 1mag1nag:y time) .and ,of :the -two=diménsiondl .
1mpact parameter b Owing to Pomeron interactions, the Pomeron intercept gets
renormalized, u + Mg~ If Mp < 0, thie amplitudes are dominated asymptotically by

a pole and the situation is very simple. If Mg = 0, one has the so-called
"gritical :Pdmerdn” where for Iexample the' total »c’rosg{ 'séétion "behaves’ as (1og sfn 10)
Let usicall ue ‘thesvalue :for :which 'u“ is-tewdet Ty Leto,

ey u(‘:';’ we' ‘Have the
-se—called, super»;cru»mal Pomeron o Vamoué restimared ‘givé i = 17 of M) wh11e

Al 140471, 02, and -it ithus: seems: that ‘thet Super=critidal ‘case {s ‘Yedlized in "

[3

NAtUTe. . orpryn fopnnl Loyt ow ge mynebnd A ivrooed nleno

2oud el 2viy

~ This is precisely :the situation> which I would Fike o ‘exaliine in'What’ follows.
As will, be: sieen,, the iproblem is/ ai rather: complicated’ ofie’, and “T'tould 1ike’ Yo !

i oy

begin; with-a:simple. remark.: ~The' Pbmeron prropegator‘ 110y, ‘tf) “spdce” i's

b T e b o fp o o PEVR TR SN NI e SR SN

Sreihapnowin ar i ieysto

___1__ }"b/4ay
bo'y'

At flxed y and b large enough (lbI >2 My), the exchange of  one: poler iss
g01ng to domlnate,‘snlce g:he cuts are multlpl;catlve in 1mpact parameter. space,; .
This remark will be extremely 1mportant in the f0110w1ng For the moment let me
only 'use it to make a very naive guess ‘at the asymptotlc beha{rlout of the ampll—
tude.“'For |b| 2 /—’_y, perturbatmn theory, as we have seen, 1s 11keiy; to be ‘
valid! However for |b| /‘*'_y we may expect that the amplltude, at f1xed 1m—
pact parameter, goes to a constant. If this constant is non—zero, we see at once
that the cross—section will be v (4o’ W) (log s)2, ‘ cc_)rrespendlng to a disk expanding

in impact parameter space with a velocity V40L'1_1

- . . g VRN Tomie ".\\
PR S ol i

51



Let me now try to explain how this picture emerges from a more complete

analysis, by considering the two—point Green's function

G (y, B) = <0[y(y, ) v (0,8 [0> = < 0[p0,®) ¢V F0,H! 0> (8)

where H is the Reggeon field theory Hamiltonian. We have chosen to keep the
original vacuum of the theory, and not to switch to a new vacuum, although RFT

for u > 0 is superficially similar to a situation in which there is spontaneous
symmetry breaking (as in A¢" with u? < 0). Indeed we wish to recover perturbation
theory at large 3 (at y fixed) and this is automatic if we do not change the

vacuum.

Suppose one is able to prove that the spectrum of H is positive and that the
first excited state is separated from the ground state (vacuum) by a gap A. Then
by inserting intermediate states in (8) we obtain (apart from factors of log s)

-4 -4
G (y) v e Y = s
This would be the case for uR < 0, with A = “Hg- At the critical point, A = O,
and we expect something a ground-state degeneracy, as in a standard second-order
phase transition; above the critical point (u > uc) this ground-state degeneracy
would of course persist, and transitions between the two degenerate ground states

could give rise to a constant S-matrix (always at a fixed impact parameter).

However, thinking of a normal field theory (A¢"), one immediately sees a
difficulty, because the two degenerate ground states are indeed completely dis-
connected: the matrix-elements of field operators between the two ground states
are strictly zero. This problem is solved in RFT because the Hamiltonian is
non-Hermitian. This implies two properties, which are completely at variance with
those of the Hermitian theory: 1i) the perturbative vacuum is one of the ground
states; 1ii) the field-operators have non-zero matrix elements between the two
ground states. This allows the second ground state |{y,) to contribute as an

intermediate state in (8) and to give rise to a constant S-matrix.

To show these properties explicitly, it is convenient to go to a lattice in
impact parameter space. This is equivalent to an ultraviolet cut-off (which is
in any case present in the theory) and should be harmless in the vicinity of the

critical point. Now H has the form

H =2 H + K term
in

where H, is the Hamiltonian at the lattice point j and the kinetic term connects

neighbouring lattice points. Let us begin by determining the spectrum of Hj’



neglecting for the moment intersite interactions. In a A¢* theory with u? <o,

one discovers that the spectrum of Hj is that of a double well potential.

'
i
!
S
>

Fig. 2

Because of tunnelling, each energy level is almost doubly degenerate. However,
this is true only if one neglects intersite interactions. Indeed, in the ordered
situation, the tunnelling disappears and the two ground states are obtained by

putting all "particles" in the same well. The wave function in a well is a co-

herent state*)
U T A
Xtaj = e 2 }\2 e” 1A J xo’] (9)
where X0 ; = |0,j) is the perturbative vacuum at each site.
b

By solving RFT in zero-space dimension, one can show that the spectrum of Hj
is quite similar to that of Fig. 2; however, the ground state is the vacuum,
X ., while the first excited state (almost degenerate with X4 j) is approximately
’

05]
again a coherent state

e

v,
] = X . — e J Xos 3
X1s] 0] °%] (10)

—u?/2x2

Its energy A is proportional to Vv e , an expression typical of tunnelling,

although we do not have a potential well of the form drawn in Fig. 2.

Now comes the crucial point. Suppose one builds a collective state in A¢"

¢+ =11 s -
P

It is easy to realize that all non-diagonal matrix elements of field operators
between & and ¢_ (or between |0) and ®,) will have a factor exp [—N(uz/kz)],

where N is the number of states, and all these matrix elements will go to zero in

the limit N -+ oo,

*) We have slightly redefined the parameters of the A¢" theory, so that the
formulae look similar to those of RFT.
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On the contrary, in RFT, one notices that the state Xl IE as defined in (10),
’
is correctly normalized to one (in fa¢t -1!) in the limit p/A >> 1. One has to
remember that the "bras' io 5 are eigenstates of H*, which means replacing ) by
’

-A. Hence
u

- — _ zux$ _ oV
s X1 = gs Xo) — (Xo» © Xo) = (Xo> © Xo) +
11
Ly A7 2, an
+ (os et e iy =-1+e ¥
The collective state Y, is built as
u o=
Uy o ir '3
= 1. . —II. e .
i XOJ j XOJ (12)

This state is correctly normalized (to -1) and is an approximate eigenstate of H
in the limit p/A + », When inserted as an intermediate state in G(y), it gives

a non-zero contribution [in fact v (u/A)ZJ.

To be more quantitative, one builds a spin-model by keeping only the two
lowest states at each lattice site (owing to the structure of the spectrum, this
is a, reasonable approximation). The calculations are made in detail in Ref. 5.
In the second paper, one shows in particular how the expanding disk is generated,

at least in the framework of this spin model.

3. CONCLUSION

I think that there exists at present a theoretical scheme for high-energy
scattering which is in reasonable agreement with experiment (although there are
some difficulties), and which seems to be internally consistent. Owing to the

. fact that p > Mo this scheme predicts that at ultra-high energies, the total
cross-sections will grow like (log s)2 [and the average multiplicity like (log s)3].
However, I must mention-that there are other theoretical approaches to the theory
of the super-critical Pomeron, which predict quite a different asymptbtic be-
haviour!?), and there remains a lot of work to be done before the situation is

completely clarified.
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