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Abstract

Mass is one of the most fundamental properties of matter. Understanding its origin has long
been a central topic in physics. According to modern particle and nuclear physics, the key
to this issue is to understand the origin of nucleon (lowest-lying baryon) masses from the
nonperturbative strong interaction. With the development of computing technologies, lattice
Quantum Chromodynamics simulations provide great opportunities to understand the origin
of mass from first principles. However, due to the limit of computational resources, lattice
baryon masses have to be extrapolated to the physical point. Chiral perturbation theory, as an
effective field theory of low-energy QCD, provides a model independent method to understand
nonperturbative strong interactions and to guide the lattice multiple extrapolations. Therefore,
we present the interplay between lattice QCD and chiral perturbation theory to systematically
study the baryon masses.

In the SU(3) sector, we study the lowest-lying octet baryon masses in covariant baryon
chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-
to-leading order. In order to consider lattice artifacts from finite lattice box sizes, finite-volume
corrections to lattice baryon masses are estimated. By constructing chiral perturbation theory
for Wilson fermions, we also obtain the discretization effects of finite lattice spacings. We
perform a systematic study of all the latest nf = 2 + 1 lattice data with chiral extrapolation
(mq → mphys.

q ), finite-volume corrections (V →∞), and continuum extrapolation (a→ 0). We
find that finite-volume corrections are important to describe the present lattice baryon masses.
On the other hand, the discretization effects of lattice simulations up to O(a2) are of the order
1% when a ∼ 0.1 fm and can be safely ignored. Furthermore, we find that the lattice data from
different collaborations are consistent with each other, though their setups are quite different.

Using the chiral formulas of octet baryon masses, we accurately predict the octet baryon
sigma terms via the Feynman-Hellmann theorem by analyzing the latest high-statistics lattice
QCD data. Three key factors — lattice scale setting effects, chiral expansion truncations
and strong-interaction isospin-breaking effects — are taken into account for the first time. In
particular, the predicted pion- and strangeness-nucleon sigma terms, σπN = 55(1)(4) MeV
and σsN = 27(27)(4) MeV, are consistent with the most latest lattice results of nucleon sigma
terms.

With the success in the study of octet baryon masses, we also present a systematic analysis
of the lowest-lying decuplet baryon masses in covariant baryon chiral perturbation theory by
simultaneously fitting nf = 2 + 1 lattice data. A good description for both the lattice and the
experimental decuplet baryon masses is achieved. The convergence of covariant baryon chiral
perturbation theory in the SU(3) sector is discussed. Furthermore, the pion- and strangeness-
sigma terms for decuplet baryons are predicted by the Feynman-Hellmann theorem.

In addition, understanding the excitation spectrum of hadrons is still a challenge, especially
the first positive-parity nucleon resonance, the Roper(1440). The baryon spectrum shows a
very unusual pattern that the Roper state is lower than the negative-parity state N(1535).
Most lattice studies suggest that the Roper mass exhibits much larger chiral-log effects than
that of the nucleon. Therefore, we calculate the Roper mass in chiral perturbation theory by
explicitly including the nucleon/Delta contributions. The mixed contributions between nucleon



ii

and Roper to the baryon masses are taken into account for the first time. A first analysis of
lattice Roper masses is presented.

Keywords: effective field theory, chiral Lagrangians, lattice QCD, baryon masses, sigma
terms



Résumé

La masse est une des propriétés les plus fondamentales de la matière. Comprendre son

origine a longtemps été un sujet central en physique. D’après la physique nucléaire et la

physique des particules modernes, la clef de ce problème réside dans la compréhension de

l’ origine de la masse du nucléon (baryon de masse la plus petite) à partir de l’ interac-

tion forte. Avec le développement des technologies informatiques, la chromodynamique

quantique sur réseau offre la possibilité de comprendre l’ origine de la masse à partir des

premiers principes. Cependant, dû aux ressources de calcul limitées, les masses obtenues à

partir des calculs sur réseau doivent être extrapolées jusqu’au point physique. La théorie

chirale des perturbations en tant que théorie effective des champs de QCD à basse énergie

est une méthode indépendante de modèle permettant de comprendre l’ interaction forte

dans la région non perturbative et de guider les diverses extrapolations nécessaires pour

passer du résultat lattice au résultat physique. Le but de cette thèse est donc d’utiliser la

complémentarité entre QCD sur réseau et théorie chirale des perturbations afin d’étudier

de façon systématique les masses des baryons.

Nous étudions les masses de l’octet baryonique le plus léger dans le cadre de la théorie

chirale covariante des perturbations pour les baryons. Nous utilisons la méthode ”extended

on mass shell” jusqu’à l’ordre trois fois sous dominant. Afin d’étudier les artefacts des

calculs sur réseau dûs à la taille finie de la bôıte nous calculons les effets de volume fini.

Adaptant la théorie chirale des perturbations à des fermions de Wilson nous obtenons aussi

les effets de discrétisation dû au pas a fini du réseau. Nous étudions de façon systématique

toutes les données réseau en tenant compte à la fois de l’ extrapolation au continu (a→ 0),

des corrections de volume finie (V → ∞) et de l’extrapolation chirale (mπ → mphys
π où mπ

est la masse du pion). Nous démontrons l’importance des corrections de volume fini dans

la description des masses des baryons sur réseau. Par contre les effets de discrétisation sont

de l’ordre de 1% jusqu’à l’ordre a2 et peuvent donc être ignorés sans problème. De plus

nous trouvons que toutes les données sur réseau prises en compte sont consistentes entre

elles malgré des différences notables dans les procédures adoptées.
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Utilisant les formules chirales des masses des baryons nous prédisons de façon précise

leurs termes sigma via le théorème de Feynman-Hellmann en analysant les données sur

réseau les plus récentes dont la statistique est élevée. Les effets dûs au pas du réseau, à

la troncation de la série de perturbation chirale et à la violation d’isospin de l’interaction

forte sont pris en compte pour la première fois. En particulier le terme sigma pion nucléon

σπN = 55(1)(4) MeV et le ”strangeness sigma term” σsN = 27(27)(4) MeV sont en accord

avec les résultats réseau les plus récents.

Au vue des succès rencontrés lors de l’étude des masses de l’octet baryonique nous avons

aussi fait une analyse systématique des masses du décuplet baryonique le plus léger dans la

théorie chirale covariante des perturbations pour les baryons en fittant de façon simultanée

les données réseau nf = 2 + 1. Une bonne description à la fois des données réseau et des

masses expérimentales est obtenue. La convergence de la série de perturbations dans le

secteur SU(3) est discutée. De plus les termes sigma sont prédits à l’aide du théorème de

Feynman-Hellmann.

Enfin comprendre le spectre d’excitation des hadrons est encore un challenge. En par-

ticulier le spectre des baryons a une structure très inhabituelle, la résonance Roper (1440)

de parité positive étant plus légère que l’état de parité négative N(1535). La plupart des

études sur réseau suggère que les effets des log chiraux sont plus importants pour la masse

de la résonance Roper que pour celle des nucléons. Nous avons donc calculé la masse de

cette résonance en théorie chirale des perturbations en tenant en compte de façon explicite

des contributions du nucléon et du ∆. Les contributions venant du mélange entre le nucléon

et la résonance Roper sont étudiées pour la première fois. Une première analyse de la masse

de cette particule est présentée.

Mots cls: thorie effective des champs, Lagrangiens chiraux, QCD sur rseau, masses

des baryons, termes sigma
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Chapter 1

Introduction

Mass, as an essential property of matter, was firstly introduced by Issac Newton in his book
The Mathematical Principles of Natural Philosophy in 1687 [1]. According to the different
methods to measure the mass, there are two definitions of mass: inertial and gravitational
mass. Inertial mass, which can be measured by the use of Newton’s second law F = ma,
denotes the inertia of an object. Gravitational mass, which can be measured by Newton’s law
of gravity F = GMm/r2 (F is the force between the masses M and m, G is the gravitational
constant, and r is the distance between the centers of the masses), represents the response of one
object to the gravitational force. With the requirement of Einstein’s equivalence principle [2],
gravitational mass is identical to inertial mass. Up to now, all experimental researches, e.g.
the famous Eötvös experiment [3], also show that inertial mass and gravitational mass are
equivalent.

Mass has been introduced in many physical theories as a fundamental quantity. However,
understanding the origin of mass is still a hot topic in the exploration of our ordinary matter
world 1. In the 1960s, with the famous Higgs boson proposed, the masses of fundamental
particles (such as quarks, leptons, gauge bosons) can be produced by the Brout-Englert-Higgs
mechanism [4–6]. This mechanism was confirmed in 2012, when the Higgs particle was observed
by the ATLAS [7] and the CMS [8] experiments at CERN’s Large Hadron Collider. Following
the discovery, Peter Higgs and François Englert were awarded the Nobel Prize in Physics in
2013 for their extraordinary work in theory. However, the Brout-Englert-Higgs mechanism does
not tell the whole story. When one explores the production mechanism of mass of ordinary
matter, one finds that the Higgs mechanism can only provide about 1%. Where is the majority
of contributions coming from?

1.1 Origin of mass

In order to understand the origin of mass, let us first examine the hierarchy of ordinary matter.
Ordinary matter is made up of atoms and molecules (an electrically neutral group of two or
more atoms). Because the binding energies of atoms/molecules introduced by van der Waals’
interaction and chemical bond are much weaker compared to atomic masses, the study of
the origin of mass can be attributed to the understanding of atomic mass. As illustrated in
Fig. 1.1, an atom is composed of one or more electrons [9] and a nucleus [10], which is a
bound system of protons or/and neutrons [11]. According to the Standard Model of particle
physics, the proton and the neutron are comprised by u, u, d and u, d, d three quarks [12,
13], respectively. These fundamental particles within the atom interact with each other via

1The ordinary matter is always called baryonic matter, which is not only the everything you see (e.g. the
sun, rivers, mountains, mobile devices, food etc.), but also the nonvisible matter composed of baryons.
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Figure 1.1: Structure within the atom.

four fundamental interactions: gravitational interaction, electromagnetic interaction, strong
interaction, and weak interaction.

However, on the scale of atomic matter, the gravitational force can be neglected due to the
weak interaction strength. The weak interaction can also be ignored, since it is responsible for
the nuclear decay processes and irrelevant to the formation of bound systems. As a long-range
force, the electromagnetic force plays an important role in binding electrons and nucleus to
form an atom. And, the strong interaction, the strongest force of the four, is responsible for
binding u, d quarks to form nucleons and binding nucleons to form a nucleus.

All in all, the mass of ordinary matter can be the sum of the masses of particles within the
atom (shown in Fig. 1.1) and the energy of electromagnetic and strong interactions (according
to Einstein’s mass-energy relation E = mc2 [14], with the light speed c = 1 in natural units).

At the hadronic level, the picture is quite intuitive that the mass of an atom equals to the
masses of electrons and nucleus minus the binding energies between electrons and nucleus. The
electron mass is me = 511 keV, which is about 1/1836 of nucleon mass (MN = 939 MeV), and
the mass loss induced by binding is extremely small (at electron volt (eV) level). Therefore,
the mass of an atom is mainly from the nucleus mass. Because protons and neutrons are
bound into a nucleus with the residual strong interaction, the mass of nucleus equals to the
sum of masses of nucleons minus the binding energy. The average nuclear binding energy is
about 8 MeV per nucleon, which only accounts for less than 1% of nucleon mass, therefore,
the mass loss is negligible comparing to the total nuclear mass. Consequently, we find that
the masses of nucleons provide the vast majority of atomic mass. In order to make this point
clearly, we take iron-56 (56Fe), one of the most tightly bound nuclei (binding energy is about
8.8 MeV per nucleon), for example. It contains 26 electrons, 26 protons, and 30 neutrons. The
atomic mass of 56Fe is 55.935 u (∼ 52103.1 MeV) in unified atomic mass units. The masses
of electrons, 26× 0.511 = 13.286 MeV, only account about 0.025% of total mass of 56Fe. The
major contributions are the nucleus mass of 56Fe, 56 × 939 − 56 × 8.8 = 52091.2 MeV, where
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Figure 1.2: The composition of proton.

the binding energy accounts about 0.95%. Therefore, the masses of nucleons provide 99% of
the atomic mass of iron-56.

As mentioned above, the nucleon is made up of three quarks, which are bound together
by strong interactions. But the physical picture becomes more complicated than the nucleus,
since the sum of quark masses is about 10 MeV (mu = 2.3+0.7

−0.5 MeV, md = 4.8+0.5
−0.3 MeV

at a renormalization scale µ ≈ 2 GeV [15]), which accounts for about 1% of nucleon mass.
The other 99% contributions are the mass-energy from strong interaction. In order to clearly
understand this phenomena, in Fig. 1.2, we present a more realistic picture of the composition
of proton. We can see that the proton not only contains three valence quarks, but also includes
tremendous sea quarks (quark and anti-quark pairs) and gluons, which provide most of proton
mass. Therefore, almost 98% of the mass of atomic matter could be from the strong interaction.
It would be of fundamental interest to understand the strong interaction to produce the nucleon
masses.

1.2 Baryon masses from QCD

Quantum Chromodynamics (QCD), as an important component of the Standard Model of
particle physics, is the part of the theory describing the strong interaction. The basic degrees
of freedom are quarks and gluons. In principle, QCD could provide a reasonable explanation
of the 98% of atomic mass. However, being a non-Abelian gauge theory, QCD possesses two
peculiar properties: asymptotic freedom and confinement. As illustrated in Fig. 1.3, quarks
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Figure 1.3: Running coupling constant αs(Q) as a function of the respective energy scale Q.
The figure is taken from Ref. [16].

and gluons interact very weakly at high energy, allowing perturbative expansion in powers
of the running coupling constant αs. On the other hand, due to confinement, αs takes large
value at low energies, and QCD becomes nonperturbative. In order to tackle this problem,
lattice quantum chromodynamics (LQCD), effective field theories, and phenomenological quark
models are developed. Because the former two methods are usually deemed as the theory of
QCD, we would like to focus on their studies of nucleon (baryon) masses to understand the
origin of atomic mass.

Lattice quantum chromodynamics simulation is a numerical method for solving QCD in
the non perturbative regime with the QCD action directly discretized in a finite space-time
hypercube. The corresponding lattice QCD gauge theory was firstly formulated by Wilson
in 1974 [17]. The quark fields are located on lattice sites and the gluon fields are defined
as the links to connect adjacent two sites. With the development of computational ability
and advances of numerical algorithms, lattice QCD has undergone three developing stages:
the “quenched” approximation [18, 19] in 1990s, the “partial-quenched” approximation [20, 21]
in 2000s, and the fully dynamical simulations nowadays (around 2010). Therefore, lattice
simulations provide a powerful framework for a quantitative analysis of the baryon masses
from the nonperturbative strong interaction.

Recently, several LQCD collaborations have performed studies of lowest-lying octet and
decuplet masses [22–29], especially the BMW Collaboration [22], which presented a significant
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explanation of the origin of mass from first principles. However, due to the limited computing
resources, most lattice simulations have to employ larger than physical light-quark masses 2,
finite lattice volumes and lattice spacings. In order to extract the observables at the physical
point, one has to perform multiple extrapolations of lattice baryon masses to the physical
point with physical quark masses (mq → mphys.

q ), to infinite space-time (L → ∞), and to
the continuum (a → 0). For many observables, these extrapolations have led to uncertainties
comparable to or even larger than the inherent statistical uncertainties.

On the theoretical side, chiral perturbation theory (ChPT), proposed by Weinberg [32]
in 1978, is an effective field theory for low-energy QCD. The quintessence of ChPT is the
effective Lagrangian technique with an expansion in powers of external momenta and light
quark masses, which is constrained by chiral symmetry and its breaking pattern. After the
further generalization by Gasser and Leutwyler [33, 34], ChPT became a very popular method
in studies of nonperturbative strong interaction physics [32–46]. At present, it has been suc-
cessfully applied to the meson sector (including static properties of mesons, the meson-meson
interactions, semileptonic decays, etc.) and the baryon sector (including static properties of
baryons, baryon-baryon interactions and other related processes). In ChPT, there exist un-
known low-energy constants (LECs) in the effective Lagrangians. But, once the values of LECs
are determined, ChPT can provide a model independent tool to explore the low-energy QCD.

Therefore, the combination between lattice QCD and chiral perturbation theory is a power-
ful strategy to study the nonperturbative strong interaction, and it can provide a trustworthy
interpretation of the majority of baryon masses from the strong interaction to further answer
the origin of mass.

Gratifyingly, chiral perturbative theory provides a model independent framework to study
the light-quark mass dependence, lattice volume effects and discretization effects of LQCD
results. In the last decades, baryon chiral perturbation theory (BChPT) has been applied to
study the ground state octet and decuplet baryon masses [47–68] with different renormalization
methods. Because the baryon masses do not vanish in the chiral limit, Weinberg power-
counting is violated in BChPT if one is not careful. In order to restore chiral power counting,
there are mainly three renormalization schemes, the so-called Heavy-Baryon (HB) ChPT [69],
the infrared (IR) BChPT [70] and the extended-on-mass-shell (EOMS) [71, 72] BChPT. In
addition to these dimensional renormalization schemes (MS and its derivatives), to speed up
the convergence of BChPT, other renormalization/regularization schemes are also proposed,
e.g., the cutoff scheme [73], the finite range regulator (FRR) method [58, 74, 75], and the partial
summation approach [59]. Although the baryon masses have been systematically studied, most
calculations are up to next-to-next-to-leading order (NNLO). If one wants to perform a higher
order (e.g. next-to-next-to-next-to-leading order, N3LO) calculation, the number of LECs is too
large to be determined by the experimental results of baryon masses. Fortunately, as above
mentioned lattice baryon masses, such a study of N3LO expansion baryon masses becomes
available by fitting the lattice data. This study also provides a good opportunity to study the
convergence properties of SU(3) BChPT. Up to NNLO, it is found that HBChPT converges
not well [76]. And, the situation is much better in FRR and EOMS BChPT in the analysis
of PACS-CS and LHPC lattice data [56, 58]. Furthermore, as a covariant method, the EOMS

2We also notice that few lattice simulations with physical light-quark masses have become available (see,
e.g., Refs. [30, 31]) lately, which (will) largely reduce the systematic uncertainties related to chiral extrapolations
to the physical light-quark masses.



6 Chapter 1. Introduction

approach not only satisfies all fundamental symmetries and analyticity constraints, but also
converges relatively fast. Therefore, in this work we would like to apply EOMS BChPT to
perform the chiral extrapolation of baryon masses up to next-to-next-to-next-to-leading order.
In order to apply this chiral formulas of baryon masses to analyze lattice data, one has to
consider the artifacts from finite volumes and lattice spacings.

Because the commonly employed lattice box size L is about 3 ∼ 5 fm, finite-volume effects
cannot be neglected or included in statistical errors. In Refs. [77, 78], Gasser and Leutwyler
suggested that one could use ChPT to evaluate finite-volume corrections 3. In the past decades,
most studies have employed either HB ChPT or IR BChPT and focused on the two flavor sector
(see, e.g., Refs. [80, 81]). Recently, two studies in the three-flavor sector have been performed
with HB ChPT [29] and EOMS BChPT [57] up to NNLO. It was pointed out that both
HB ChPT and EOMS BChPT can describe the NPLQCD data well with different values of
baryon octet and decuplet couplings [57]. However, it should be noted that the EOMS BChPT
extrapolation to the physical point is in better agreement with data than HB’s with the LECs
determined from LQCD data.

In order to apply ChPT to study LQCD results, in principle, one should first take the
continuum limit, since ChPT describes continuum QCD and is not valid for nonzero lattice
spacing. In the last decades, studies of the discretization effects of LQCD have made great
progress with Symanzik’s effective field theory [82–85]. At present, there are three versions of
discretized BChPT for Wilson fermions (WChPT), for staggered fermions (SChPT), and for
twisted mass fermions (tmChPT), respectively. The discretization effects on the ground-state
meson/baryon properties, such as masses, decay constants, electromagnetic form factors, etc.,
have been extensively studied in Wilson HBChPT [86–94]. Furthermore, similar studies have
also been performed in SChPT [95–102] and tmChPT [103–109]. However, the corresponding
studies are still missing in the framework of EOMS BChPT. It is interesting to note that
recently several attempts have been made to determine the unknown LECs of WChPT [110–
114].

Furthermore, in SU(3) BChPT one should also be careful about the contributions of the
decuplet resonances since the average mass gap between the baryon octet and the baryon
decuplet δ = mD − m0 ∼ 0.3 GeV is similar to the pion mass and well bellow those of the
kaon and eta mesons, MK ,Mη. In Ref. [47], HBChPT was enlarged to include the decuplet
and applied to calculate the octet baryon masses up to O(p3). It was shown in Ref. [48] that
the effects of the virtual decuplet on the octet baryon masses start out at O(p4) in the same
framework. For the spin-dependent quantities, the virtual decuplet contributions are found to
be important in HBChPT, such as magnetic moments [115] and axial vector form factors [116,
117]. In EOMS BChPT, the effects of the virtual decuplet are found to be negligible for
the magnetic moments of the octet baryons if the “consistent” coupling scheme for the octet-
decuplet-pseudoscalar coupling is adopted [118]. On the other hand, up to NNLO, the virtual
decuplet contributions seem to play an important role in describing the NPLQCD volume-
dependent data [57] and in the determination of the baryon sigma terms [119]. Therefore, it
is necessary to study the effects of the virtual decuplet on the light-quark mass and on the
volume dependence of the LQCD data at N3LO.

3The finite-volume corrections of scattering process can be studied by using the Lüscher formula [79] and
its resummed version.
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To sum up, in this work, we would like to use EOMS BChPT to study octet and decuplet
baryon masses up to next-to-next-to-next-to-leading order. By constructing the chiral effective
field theory to take the lattice artifacts from finite-lattice volumes and lattice spacings into
account self-consistently, we could perform a trustworthy analysis of the lattice baryon masses.
With the obtained LECs, we could explore the convergent property of EOMS BChPT at
different chiral orders and predict the baryon sigma terms to interpret the composition of
baryon masses. We also can apply this strategy to study the baryon masses of excitation
states by including the excitation resonances in chiral perturbation theory.

1.3 Outline of the dissertation

In Chapter 2, the basic ideas and fundamental knowledge of lattice QCD are briefly introduced.
We take the lowest-lying octet baryons for example and review the recent lattice baryon masses
in detail. As the theoretical basis, in Chapter 3, chiral perturbation theory is elaborated by
including the essence of effective field theory, chiral symmetry of low-energy QCD and its
spontaneous and explicit breaking pattern. Applying Weinberg’s theorem, the general form of
chiral effective Lagrangians is constructed for the meson and baryon sectors. We also discuss
the three renormalization schemes to deal with the power-counting breaking terms appearing
in the calculation of baryon chiral perturbation theory. Next, we present the application of
ChPT to the study of lattice baryon masses in chapters 4-7. Firstly, in Chapter 4, we perform
a systematic study of lowest-lying octet baryon masses in covariant baryon chiral perturbation
theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order.
The corresponding meson-meson and meson-baryon chiral Lagrangians are given. After calcu-
lating Feynman diagrams, we obtain the chiral corrections to octet baryon self-energies and the
finite-volume corrections at O(p4). By constructing Wilson BChPT in the SU(3) sector, we
obtain the discretization effects for finite lattice spacing. In Chapter 5, we utilize the theoret-
ical expressions of octet baryon masses in a discretized finite-volume hypercube and perform
a systematic study of all the published lattice QCD data by including chiral extrapolation of
octet baryon masses, finite-volume effects, and finite-lattice spacing discretization effects. In
addition, the virtual decuplet effects on the chiral extrapolation and finite-volume effects are
systematically explored. In Chapter 6, we predict the octet baryon sigma terms, σπB and
σsB, via the Feynman-Hellmann theorem by analyzing the latest high-statistics lattice QCD
data. Three key factors in determining sigma terms are clarified for the first time, including
effects of lattice scale setting, systematic uncertainties originating from chiral expansion trun-
cations, and constraint of strong-interaction isospin breaking effects. As a natural extension, in
Chapter 7, we present an analysis of lowest-lying decuplet baryon masses up to next-to-next-
to-next-to-leading order in EOMS BChPT. In order to determine the unknown low-energy
constants, we perform a simultaneous fit of lattice data from the PACS-CS, QCDSF-UKQCD,
and HSC collaborations, with finite-volume corrections included self-consistently. The pion-
and strangeness-sigma terms of the decuplet baryons are also predicted. With the development
of computer techniques, the baryon masses of excitation states are becoming available in lattice
simulations, especially for the Roper. In Chapter 8, the nucleon, Delta and Roper masses and
widths are systematically studied in an extension of chiral perturbation theory that includes
the Delta-nucleon and Roper-nucleon mass differences as low-energy scales. The contributions
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due to the mixing between nucleon and Roper are taken into account explicitly. The virtual
Roper effects on the nucleon and Delta masses are evaluated up to next-to-next-to-leading
order, as well as the effects of the nucleon and Delta in the Roper mass and width. Finally, a
brief summary and perspectives are given in Chapter 9. Furthermore, in Appendix A, we tab-
ulate the latest nf = 2+1 lattice results of lowest-lying octet baryon masses. In Appendices B
and C, the utilized Feynman rules and the method of loop integrals are presented, respectively.
In Appendix D, the strong isospin-breaking effects on octet baryon masses are calculated.



Chapter 2

Lattice Quantum Chromodynamics

Lattice Quantum Chromodynamics, as a numerical method to deal with nonperturbative low-
energy QCD from first principles, was proposed by Wilson [17] in the 1980s. LQCD has the
same input parameters as QCD: the running coupling constant αs and the quark masses. There
are three steps to carry out a nonperturbative lattice simulation. First, in order to deal with
the renormalization problem of QCD, one should introduce an ultraviolet regulator into the
discretized theory in terms of the finite space-time grid. Second, using the path integral and the
Monte Carlo numerical method, the Green’s functions of lattice QCD can be evaluated. Third,
one should perform multiple extrapolations (chiral extrapolation, finite-volume corrections and
continuum extrapolation) to obtain the observables of interest in continuum space-time. In
this chapter, we present the basic ideas and fundamental knowledge of lattice QCD. Taking
lattice octet baryon masses as an example, we briefly introduce the extraction method, the
adopted lattice actions, volumes and spacings. And, recent LQCD studies of Roper mass are
summarized. For more details and the recent developments of LQCD, we refer to the recent
excellent reviews [120–129].

2.1 Fundamentals of lattice QCD

In this section, we overview the basic and key techniques in lattice QCD simulation. Because
the transition matrix elements can be evaluated by using the Feynman path integral approach,
we first discuss the technique of path integrals in LQCD.

In continuum QCD, the expectation value of one chronological operator Ô[ψ, ψ̄, Aµ] can be
expressed in terms of a path integral in Euclidean space and time 1

〈O〉 =
1

Z

∫
DψDψ̄

∫
DAµÔ[ψ, ψ̄, Aµ]e−(ψ̄Mψ+SG), (2.1)

where ψ and ψ̄ are quark and anti-quark fields, and Aµ is gauge field. The M is M = /D +m

with the gauge covariant derivative Dµ = ∂µ + igAµ and quark mass m. The gluon gauge
action is SG = 1

4GµνG
µν with the gluon field strength Gµν = ∂µAν −∂νAµ− ig[Aµ, Aν ], where

g is the SU(3) structure constant. Aµ = AaµTa with the eight gluon fields Aaµ and Ta being the
SU(3) generators in the 3 representation. The partition function Z in Euclidean space-time
is [130, 131]

Z =

∫
DψDψ̄

∫
DAµe−(ψ̄Mψ+SG). (2.2)

After performing the integration over fermion fields analytically and using its Gaussian struc-
ture, ∫

DψDψ̄e−ψ̄Mψ ∝ det(M), (2.3)

1We want to mention that the expectation values 〈Ô〉 in the path integral approach correspond to time-
ordered correlation functions.
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Figure 2.1: The fundamental ingredients of lattice QCD simulations in three dimensions: lattice
site, gauge link, plaquette (the smallest loop).

we can express the expectation value as

〈O〉 =
1

Z

∫
DAµdet(M)Ô[M−1, Aµ]e

∫
d4x(− 1

4
GµνGµν), (2.4)

with

Z =

∫
DAµdet(M)e

∫
d4x(− 1

4
GµνGµν). (2.5)

Therefore, the expectation value of Ô[ψ, ψ̄, Aµ] and the partition function are integrals over
only the background gluon gauge configurations with the quark contribution encoded in the
non-local term det(M).

In order to evaluate the path integral [Eq. (2.1)] in lattice QCD, one can discretize a finite
Euclidean space-time with length L into a number of unit cells with the lattice spacing a, as
illustrated in Fig. 2.1 for three dimensions. Here we only focus on the common isotropic case
in which the lattice spacings in all directions are equal. The corresponding temporal/spatial
coordinates of lattice sites are

xµ = nµa, with nµ = 0, · · · , Nµ − 1, (2.6)

where the a and Nµ are the lattice spacing and the number of lattice sites in the direction µ,
respectively. The lattice size in the direction µ is Lµ = aNµ. In the studies of the properties
of hadronic ground states, the number of lattices in temporal dimension (Nt) is always 3 ∼ 5

times larger than the one in the spacial dimension (Ns).
In the discretized space-time, the quark field (Ψ(x)) is located in the lattice site,

ψ → Ψ(x) = (u(x), d(x), s(x), . . . )T , (2.7)
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with three light quark fields u(x), d(x), s(x), and the gluon gauge field (Uµ(x, y)) is defined as
the link connecting the two adjacent sites,

Aµ → Uµ(x, y) = P exp(−
∫ y

x
Aµ(x′)dx′). (2.8)

In terms of discretized fields, the expectation value of operator 〈O〉 can be written as

〈O〉 =
1

Z

∫
DΨDΨ̄

∫
DUµ O[Ψ, Ψ̄, Uµ] e−(Ψ̄M(U)Ψ+SG[U ]), (2.9)

in the discretized space-time, with the quark operatorM(U) and the gluon gauge action SG(U),
which depend on the gauge field U . In principle, we can perform the integration over the quark
fields, and obtain

〈O(q, q̄, U)〉 =
1

Z

∫
DUµ(x)detM(U)O[M−1(U), Uµ] e−SG(U). (2.10)

Because there are 4 gauge links for each lattice site, and every gauge link is described by an
SU(3) matrix with 8 parameters, the number of integration variables in Eq. (2.10) is huge:
N3
s × Nt × 4 × 8. Therefore, direct numerical integration is impractical and one has to use

Monte-Carlo techniques to generate all the sets of U on all links. The cost of lattice QCD is
roughly expressed as [132] 2

Cost ∝
(
L

a

)4 1

a

1

M2
πa
, (2.11)

where the first factor is the number of lattice sites (N3
sNt), and the second and third factors

are due to “critical-slowing-down” of the algorithms used for the simulation. Here, we want
to mention that, at the annual conference of lattice QCD 2001, a practical formula was given
by Ukawa [133] with the standard Hybrid-Monte-Carlo (HMC) algorithm employed the CP-
PACS and JLQCD collaborations. In 2006, an updated formula of lattice cost was presented
using the domain decomposition ideas (DD) with HMC algorithm [134]. The number of Nop

of floating-point can be expressed as

Nop = k

(
20 MeV

m̄

)(
L

3 fm

)5(0.1 fm

a

)6

Tflops× year, (2.12)

where m̄ is the running sea-quark mass in the MS scheme at renormalization scale µ = 2 GeV
and k ' 0.05 when one employs the O(a)-improved action. In order to guarantee precision
and statistical quality, the lattice spacing a is usually taken about 0.1 fm, and the lattice box
size is L = 3 ∼ 5 fm.

In the last century, under the limitation of computer resources, the “quenched” approxi-
mation was employed in the lattice simulations [18, 19], wherein quark fields are treated as
non-dynamical “frozen” variables. It corresponds to taking det(M) = constant and neglect-
ing quark loop effects. After that, the so called “partially quenched” approximation [20, 21],
where the determinant det(M) = det( /D(U) +msea) and the quark propagator = ( /D+mval)

−1

with msea 6= mval, was proposed. In this case, the quark loop contributions are partially
taken into account. Nowadays, with the development of computing power and numerical algo-
rithms, full-dynamical lattice simulations have become feasible. The international activity has

2
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begun to share the lattice QCD configurations, such as the International Lattice Data Grid
(ILDG) [http://plone.jldg.org/]. From this website, one can find several large collections of
ensembles of configurations.

When one discretizes the equation of motion for fermions, the fermion doubling problem
appears, which is manifested through the existence of extra poles in the Dirac propagator on
the lattice. These poles do not disappear even in the continuum limit a → 0. In order to
explicitly show this problem, we write out the Dirac propagator in momentum space

D(p) =

i(1/a)
∑
µ
γµ sin(apµ) +m

[(1/a)
∑
µ

sin(apµ)]2 +m2
. (2.13)

In addition to the physical pole at p2 = −m2, there are also 15 additional poles located at the
edges of the Brillouin zone. This is because of the chiral anomaly [135] 3, which exists in the
continuum theory, while it is absent in lattice QCD [136].

In practical lattice calculations, one has to fix the fermion doubling problem by employing
different types of fermion actions, such as staggered fermions [137–139], Wilson fermions [140],
twisted mass fermions [141, 142], and chiral symmetric fermions [143–146] (e.g. domain
wall fermions, overlap fermions).

2.2 Extracting baryon masses

In this section, we present the techniques to extract physical observables, especially baryon
masses. Hadron matrix elements can be calculated using two- or three-point correlation func-
tions. In order to extract the baryon masses, we take the two-point correlation function for
example:

〈0|Of (x, t)O†i (0, 0)|0〉, (2.14)

with the “source” operator Oi and the “sink” operator Of , representing the amplitude for
creating a state with the quantum numbers of Oi at space-time point (0, 0), annihilated by
Of at (x, t). For the specific octet baryon state |B〉, the two operators should have non-zero
overlaps with |B〉 (〈0|Oi,f |B〉 6= 0).

One can perform Fourier-transforms in the spatial directions for Eq. (2.14)

Cif (p, t) =
∑
x

〈0|Of (x, t)O†i (0, 0)|0〉e−ip·x. (2.15)

Inserting a complete set of energy eigenstates, the correlation function becomes

Cif (p, t) =
∑
n

1

2En(p)
〈0|Of |n〉〈n|O†i |0〉e

−En(p)t, (2.16)

where the energy En(p) is the nth-eigenvalue of H, and the factor 1/2En(p) is due to the
relativistic normalization. If the octet baryon state |B〉 happens to be the lowest energy state,
the correlation function can become

Cif (t)
t→∞−−−→ 1

2E0(p)
〈0|Of |B〉〈B|O†i |0〉e

−E0(p)t, (2.17)

3Frequently, a symmetry of a classical theory is also a symmetry of the quantum theory based on the same
Lagrangian. When it is not, the symmetry is said to be anomalous.



2.3. Lattice data of baryon masses 13

since all other states die at the large enough t. Therefore, the octet baryon mass mB = E0

can be extracted with the product of matrix elements 〈0|Of |B〉〈B|O†i |0〉.
In principle, the expression of the correlator Cif (p, t) can also be used to obtain the en-

ergies of the excited hadron states, which have the same quantum numbers as the operators
Oi,f , by fitting the correlation function to a sum of exponentials. However, it is complicated to
extract excited state masses from these exponents as the correlation functions decay quickly.
The standard method is the variational method to determine the excited state hadron spec-
trum [147, 148]. This method has been widely applied in the study of the hadron spectrum.
Recently, a new method called Athens Model Independent Analysis Scheme (AMIAS) was
proposed in Ref. [149] and applied to study the excited state of nucleon [150].

The physical quantities computed from lattice QCD always depend on the lattice unit
(unknown lattice spacing a). Therefore, one has to use the scale-setting method, which is
to choose a well-known quantity at the physical point to determine the lattice spacing a, to
obtain the lattice results with the physical unit. We want to mention that a suitable physical
quantity demands the following conditions: it is easily calculated in lattice QCD with small
statistical errors, and it should have a weak dependence on the quark masses (for a recent
review, see Ref. [151]). Commonly, there are two main scale setting methods: the mass-
independent (phenomenological) scales and the mass-dependent (theoretical) scales. For the
former, one assumes that the lattice spacing is independent of the bare quark masses at a
fixed bare coupling. Then, the lattice spacing a, which is the same for all lattice ensembles,
can be determined by using the physical quantities, such as the Ω mass or the pseudoscalar
meson decay constants fπ, fK at the physical point. For the mass-dependent scales, the lattice
spacing varies with different bare quark masses. The lattice spacing a can be determined by
using a physical quantity, which is assumed to be independent with the quark masses, such as
the Sommer scales r0, r1 from the static quark potential V (r) [152],

r2dV (r)

dr

∣∣∣∣
r=r0

= 1.65, r2dV (r)

dr

∣∣∣∣
r=r1

= 1.0, (2.18)

and the scales t0, w0 from the gradient current [153, 154],

E (t)|t=t0 = 0.3, t
dE (t)

dt

∣∣∣∣
t=w2

0

= 0.3, (2.19)

with E (t) = t2〈E(t)〉, where 〈E(t)〉 being the expectation value of the continuum-like action
density Gµν(t)Gµν(t)/4.

2.3 Lattice data of baryon masses

In the past decades, with the increase of computing power and the continuous improvement of
numerical algorithms, lattice QCD has been shown to be extremely successful in studying the
nonperturbative regime of QCD. There are many applications to low-energy hadronic physics,
e.g. the hadronic spectrum (especially the ground state hadron masses) [128, 155], the structure
of hadrons [156], the mechanism of quark confinement and chiral symmetry breaking [157], the
equilibrium properties of QCD at finite temperature and finite chemical potential [158], etc.
Besides that, lattice simulations can vary the input parameters, especially the quark masses,
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Figure 2.2: Extrapolation results for the light hadron spectrum from the BMW Collaboration.
Horizontal lines and bands are experimental values and the LQCD results are denoted as solid
circles. The figure is taken from Ref. [22].

to predict the dependence of observables on the running coupling constant αs [159]. Here
we would like to present the recent studies of baryon masses from lattice simulations. The
latest developments of lattice QCD in the study of low-energy particle physics are reviewed in
Ref. [129].

Recently, the lowest-lying baryon masses, composed of up, down and strange quarks, has
been simulated by various LQCD collaborations [22–29, 160]. Here we want to mention that, as
the first systematic and accurate study of proton and nucleon masses and other light hadrons
(including the ground state of pseudoscalar octet meson, vector nonet meson, octet baryon
and decuplet baryon masses), the BMW Collaboration provided an accurate interpretation
of the origin of mass from first principles [22]. In the BMW calculations, the lightest pion
mass is Mπ ≈ 190 MeV, very close to its physical value Mphys.

π = 139 MeV, which guarantees
a valid chiral extrapolation to the physical region. Three different values of lattice spacing
a = 0.125, 0.085, and 0.065 fm are employed to take into account lattice discretization effects
and to perform the continuum extrapolation of lattice data. Several lattice box size L are
considered, to include finite-volume corrections. The effects of the heavier c, b, and t quarks are
included in the coupling constant and light quark masses. With the above considerations, the
extrapolation results of light hadron spectrum are very close to the corresponding experimental
data (Fig. 2.2). Furthermore, in Fig. 2.3, they present the chiral extrapolation of the nucleon
lattice data with three different lattice spacings. We can see that the extrapolation result for the
nucleon mass is 953(29)(19) MeV, which is almost the same as the experimental value mphys.

N =

939(1) MeV [15]. More recently, the ETMC Collaboration have studied the lowest-lying baryon
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Figure 2.3: The extrapolation of the nucleon and omega masses as function of the pion mass
M2
π for all three values of the lattice spacing. The figure is taken from Ref. [22].

masses with nf = 2 + 1 + 1 twisted mass fermions [160], where a strange and a charm quark
masses fixed to approximately their physical values. The pseudoscalar masses in the range of
210 MeV to 430 MeV with three different lattice spacings a = 0.0936(13), 0.0823(10), 0.0646(7)

fm.
During the same period, several lattice QCD collaborations have also performed nf = 2+1

simulations of light hadron spectrum [23–29]. In Table 2.1, we tabulate the quark/gluon gauge
actions and lattice spacings which are utilized in the BMW [22], PACS-CS [23], LHPC [25],
HSC [26], QCDSF-UKQCD [28], NPLQCD [29], and ETMC [160] simulations. From Table 2.1,
we can see that most lattice simulations employ a lattice spacing a ≈ 0.1 fm and the O(a)-
improved action. On the other hand, although all these five collaborations adopt different
fermion and gauge actions, all of them are believed to lead to the same continuum theory –
QCD. Therefore, it is crucial to clarify whether all these simulation results of octet baryon
masses are consistent with each other [161]. It should be mentioned that, in this work, we
would like to limit our studies in the SU(3) sector to analyze the lattice baryon masses from
nf = 2 + 1 simulations. Therefore, the ETMC results and the unpublicable BMW results are
not studied.

As has been stated in introduction, lattice calculations are performed with larger than
physical light quark masses and finite volumes. In Fig. 2.4, we show the lattice simulation
points of the PACS-CS, LHPC, HSC, QCDSF-UKQCD and NPLQCD collaborations in the
(2M2

K −M2
π) –M2

π plane and in the L–M2
π plane. There is only one point for the NPLQCD

simulation at Mπ = 389 MeV on the left panel, because the main purpose of the NPLQCD
collaboration was to study finite-volume effects on the baryon masses. The large range of light
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Table 2.1: The quark/gluon gauge action, and lattice spacings which are employed in the
BMW, PACS-CS, LHPC, HSC, QCDSF-UKQCD, NPLQCD, and ETMC simulations.

lattice coll. quark action gluon action lattice spacing a [fm]

BMW clover-improved Wilson Symanzik-improved
∼ 0.125, ∼ 0.085

∼ 0.065

PACS-CS O(a)-improved Wilson Iwasaki 0.0907(13)

LHPC
asqtad sea/

Symanzik-improved 0.12406(248)
domain wall valence

HSC anisotropic clover Symanzik-improved
at = 0.03506(23)

as = 0.1227(8)

QCDSF-UKQCD O(a)-improved Wilson Symanzik-improved 0.0795(3)

NPLQCD anisotropic clover Symanzik-improved
at = 0.03506(23)

as = 0.1227(8)

ETMC twisted mass Wilson Iwasaki improved
0.0936(13), 0.0823(10)

0.0646(7)

pion masses provides the opportunity to explore the applicability of ChPT for extrapolation
of baryon masses. Although the light u/d quark masses adopted are always larger than their
physical counterpart, the strange quark masses vary from collaboration to collaboration: those
of the PACS-CS and LHPC collaborations are larger than the physical one; those of the HSC
and NPLQCD groups are a bit smaller, whereas those of the QCDSF-UKQCD collaboration
are all lighter than the physical one. In the L–M2

π plane, it is seen that the PACS-CS and
LHPC simulations adopt a single value of lattice volume; the HSC and QCDSF-UKQCD
simulations use two different lattice volumes and the NPLQCD simulations are performed
with four different lattice volumes in order to study the finite-volume effects on the octet
baryon masses. Many of the simulations are still performed with MφL from 3 to 5 and with
Mφ larger than 300 MeV. As a result, finite-volume corrections (FVCs) may not be negligible
(see, e.g., Ref. [57]).

In Appendix A, we tabulate the octet baryon masses of the PACS-CS, the LHPC, the HSC,
the QCDSF-UKQCD and the NPLQCD collaborations. The numbers are given in physical
units using either the lattice scale specified in the original publications [23, 25, 26, 29] or the
method of ratios such as QCDSF-UKQCD [28].

Nowadays, the lowest-lying hadron spectrum is now well understood with controllable lat-
tice artifacts [128]. But, for the light quark hadrons, there are many excited states whose
physical properties are poorly understood. In particular, the first even-parity excited state of
the nucleon, JP = (1/2)+ Roper resonance N(1440) or P11(1440), has been very interesting
since its discovery [162]. In the quark model, the Roper, as an S-wave excitation, is lighter than
the first odd-parity excited state N(1530) or S11(1530), a P -wave excitation. This abnormal
phenomenology stimulates a large number of studies to explain its structure with a possible
exotic nature. Recently, several LQCD collaborations [150, 163–167] have performed studies
of the low-lying excitation spectrum of nucleon (octet baryons) with a special attention to the
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Figure 2.4: Landscape of LQCD simulations of the ground-state octet baryon masses data form
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Figure 2.5: Roper mass from the CSSM, JLab, BGR, Cyprus, and χQCD collaborations.

mass of Roper resonance. In Fig. 2.5, lattice Roper masses from the CSSM [163], JLab [164],
BGR [165], Cyprus [150, 166], and χQCD [167] collaborations are illustrated. We can see that
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lattice Roper masses exhibit much larger chiral-log effects than that of the nucleon, except
the χQCD simulation adopting the Sequential Empirical Bayesian method with the overlap
fermion [167]. The Roper mass from χQCD shows almost the same pion mass dependence as
the nucleon. Furthermore, most lattice data of Roper mass correspond to an unstable Roper
particle for Mπ < 500 MeV. Therefore, LQCD calculation of Roper mass should need more
efforts to clarify this large discrepancy.



Chapter 3

Chiral Perturbation Theory

In this chapter, we discuss the theoretical framework of the present dissertation. Chiral per-
turbation theory (ChPT), as an effective field theory of low-energy QCD, was firstly proposed
by Weinberg [32] in 1979. Since its proposal, it has been widely applied in the study of
low-energy hadronic physics. Firstly, we give a general introduction about the basic ideas of
effective field theory. Following that, we turn to the low-energy region of QCD and discuss
chiral symmetry and its breaking pattern. We introduce the construction principles of chi-
ral effective Lagrangians in the mesonic sector and extend chiral perturbation theory to the
one-baryon sector with three different renormalization schemes. In this chapter, we cannot
cover all the details of ChPT and we suggest the interested readers to refer to several excellent
reviews [36–46].

3.1 Effective field theory

Effective Field Theory (EFT) is a powerful theoretical tool to describe low-energy physics.
Nowadays, the EFT technique has become popular in particle and nuclear physics. The basic
idea of EFT is that the low energy dynamics does not depend on the details of the high energy
dynamics, which can be integrated out. In order to construct an EFT to describe low-energy
physics, one has to ensure a characteristic heavy scale Λ (called “hard energy scale”) to separate
low and high energy regions, and make an expansion in powers of Q/Λ with Q � Λ, where
Q is the soft momentum scale of the energy region of interest. When the relevant degrees of
freedom (light fields) are determined, the general possible effective Lagrangian can be written
down according to a theorem, proposed in Weinberg’s original work [32]:

“If one writes down the most general possible Lagrangian, including all terms consistent
with assumed symmetry principles, and then calculates matrix elements with this La-
grangian to any given order of perturbation theory, the result will simply be the most
general possible S-matrix consistent with analyticity, perturbative unitary, cluster decom-
position, and the assumed symmetry principles.”

The general form of effective Lagrangians can be expressed as

Leff. =
∑
i

ciOi, (3.1)

where the operators Oi are constructed with the light fields, and the couplings ci are called low-
energy constants (LECs) and contain the information about heavy degrees of freedom which
are integrated out in the EFT. In principle, the values of ci can be computed from a more
fundamental high energy theory. If the fundamental theory is weakly coupled (e.g. QED), one
can explicitly obtain the values of ci, but if the theory is strongly coupled (e.g. QCD), one
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usually treats the ci as free parameters, which can be fixed by the relevant experimental and
the lattice data. Usually, we can organize the operators by using naïve dimensional analysis
(NDA) [168]. First, the canonical dimensions of the light fields can be determined by using
the kinetic terms in the free Lagrangian. Thus, one can easily obtain the dimension of the
operators Oi, denoted as di. In the four dimensional space-time, the estimated magnitudes of
all the corresponding LECs should be ci ∼ (4π)N−2/Λdi−4.

According to the dimensions of operators, we can distinguish three types of operators with
different behaviours:

• Relevant operators with d < 4: These operators become more relevant at low energy with
large values of the coefficients ci ∼ Λ4−di . The number of possible relevant operators is
small, such as unit operator (d = 0), boson mass terms (d = 2) and fermion mass terms
(d = 3).

• Marginal operators with d = 4: These operators, lying between relevancy and irrelevancy,
are equally important at all energy scales. There are some well-known examples: φ4 term
in scalar field theory, a Yukawa interaction ψ̄ψφ, and QED/QCD interactions.

• Irrelevant operators with d > 4: Their contributions are small at low energies with the
values of couplings ∼ 1/Λd−4, which can suppress the contributions from these operators.
But they cannot be ignored because they usually contain information about the high
energy physics.

The operators mentioned above can be systematically organized based on their contributions
in an EFT. This principle of organization is the so called “power counting”. As mentioned in
Ref. [40], for the weakly-coupled cases, the power counting is just a dimensional expansion, as
we discussed above. This kind of EFT is the decoupling effective field theory. We can write
the corresponding effective Lagrangian in a general form

Leff. = L≤4 + L5 + L6 + · · · , (3.2)

where L≤4 contains all terms with dimension d ≤ 4, L5 contains the terms with dimension
5, and so on. Generally speaking, the first term L≤4, which only contains the relevant and
marginal operators, can be renormalizable. If the irrelevant operators are included (such as
L5, L6, · · · ), the EFT becomes renormalizable order by order. The corrections from the
d > 4 parts are suppressed by (E/Λ)d−4. There are several decoupling EFTs: QED, the Fermi
theory of weak interaction, and the Standard Model. But for the un-decoupling EFT [40],
the situation will be very different when one has to tackle the strongly-coupled theories with
spontaneous symmetry breaking down. The fundamental degrees of freedom are replaced by
the light pseudo-Goldstone bosons at low energies. There are two examples of non-decoupling
EFTs, the Standard Model without Higgs bosons and chiral perturbation theory. In the next
section, we will give the details of chiral perturbation theory.

Generally, there are infinite terms in the effective Lagrangian. However, at a specific
expansion order, EFT is described by a number of finite terms in the Lagrangian with several
coupling constants. Once the effective Lagrangian is written out at a given order, the EFT can
provide a powerful prediction ability for many different processes. Besides, there must exist a
range of applicability for an EFT, which usually depends on the characteristic energy scale Λ.
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At some high energy region, one has to find another high energy theory, which could lead to
the corresponding EFT. In this section, we only give a brief overview of EFT, the interested
readers can find more details in the reviews [169–176].

3.2 Chiral perturbation theory

In this section, we begin to introduce a powerful EFT for the study of nonperturbative strong
interactions. As mentioned above, this EFT should have the same symmetries as QCD and in
particular chiral symmetry. That is why this EFT is named as Chiral Perturbation Theory.
We discuss how to construct chiral perturbation theory from low-energy QCD, mainly focusing
on the meson sector. Chiral perturbation theory in its modern form was introduced by Wein-
berg [32], and Gasser and Leutwyler [33]. The basic idea of ChPT is an two-fold expansion in
small momentum and small quark masses.

3.2.1 Chiral symmetry and its breaking

In the Standard Model, there are six different quark flavors with three “light” quarks (u, d,
s) and three “heavy” quarks (c, b, t), compared with the splitting energy scale Λχ ∼ 1 GeV 1

(In the following, this energy scale is denoted as the chiral symmetry breaking scale). Because
we mainly talk about the low-energy region in the following, we will focus on the three-flavor
QCD. The corresponding Lagrangian can be expressed as

LQCD =
∑

f=u,d,s

(q̄f i /Dqf −mf q̄fqf )− 1

4
Gµν,aG

µν
a . (3.3)

In order to better present the approximate chiral symmetry, we would like to rewrite the QCD
Lagrangian as

LQCD = L0
QCD + LM , (3.4)

with
L0

QCD =
∑

f=u,d,s

q̄f i /Dqf −
1

4
Gµν,aG

µν
a , LM = q̄Mq, (3.5)

where the three light quark masses are collected in a diagonal matrixM = diag(mu, md, ms).
Firstly, we introduce two projection operators PL,R with the chirality operator γ5,

PL =
1

2
(1− γ5), PR =

1

2
(1 + γ5). (3.6)

Thus, the quark spinor field qf can be decomposed into left- and right-handed components,
qf,L and qf,R, respectively,

qf =
1

2
(1− γ5)qf +

1

2
(1 + γ5)qf = PLqf + PRqf ≡ qf,L + qf,R. (3.7)

In terms of this decomposition, one can re-express the Lagrangian L0
QCD as

L0
QCD =

∑
f=u,d,s

q̄f,Li /Dqf,L + q̄f,Ri /Dqf,R −
1

4
Gµν,aG

µν
a , (3.8)

1Λχ is associated with the mass of rho meson, mρ = 770 MeV, and the chiral symmetry breaking scale
4πfπ ∼ 1170 MeV.



22 Chapter 3. Chiral Perturbation Theory

with the total separation between left- and right-handed quark fields. The above Lagrangian
has a classical global U(3)L×U(3)R symmetry. According to group theory, the U(3)L×U(3)R
can be expressed as

U(3)L × U(3)R ≡ SU(3)L × SU(3)R × U(1)V × U(1)A, (3.9)

where the vectorial symmetry U(1)V is the conservation of baryon number, but the axial
symmetry U(1)A is broken by instanton effects (U(1)A anomaly) [177]. Because the baryon
number is invariant in the strong interaction, the Lagrangian L0

QCD is actually invariant under
the remaining SU(3)L × SU(3)R transformation,

qf,L → ei
λa

2
αaLqf,L, qf,R → ei

λa

2
αaRqf,R, (3.10)

with the Gell-Mann SU(3) matrices λa (a = 1, . . . , 8).
By using Nöther’s theorem [178–180], one can establish the connections between continuous

symmetries and conserved quantities. For the chiral symmetry group SU(3)L×SU(3)R, there
are 2(n2

f −1) = 16 (with nf = 3) Nöther currents divided into left- and right-handed conserved
currents,

Jµ,aL = q̄Lγ
µλ

a

2
qL, Jµ,aR = q̄Rγ

µλ
a

2
qR, (3.11)

with ∂µJ
µ,a
L/R = 0. Usually, one can use linear combinations of the above chiral currents to

obtain the vector and axial-vector currents

V µ,a = Jµ,aR + Jµ,aL = q̄γµ
λa

2
q,

Aµ,a = Jµ,aR − Jµ,aL = q̄γµγ5
λa

2
q. (3.12)

The corresponding conserved Nöther charges are

QaV =

∫
d3xq†(x)

λa

2
q(x), with

dQaV
dt

= 0,

QaA =

∫
d3xq†(x)γ5

λa

2
q(x), with

dQaA
dt

= 0. (3.13)

Before we go on to discuss chiral symmetry breaking, we want to mention that there are
two realizations of chiral symmetry 2. One is the Wigner-Weyl mode, which is the linear
representation, with the trivial (empty) vacuum (QaV |0〉 = QaA|0〉 = 0). Another is the Nambu-
Goldstone mode, which is the non-linear realization, with a non-trivial vacuum (QaV |0〉 = 0,
QaA|0〉 6= 0).

Up to now, the discussion about chiral symmetry is based on the chiral limit with three
zero light-quark masses. But, in fact, chiral symmetry is not quite exact in QCD. Recalling
the full QCD Lagrangian at low-energies [Eq. (3.4)], the mass part is

LM = −q̄Mq = −(q̄RMqL + q̄LMqR). (3.14)

We can see that left- and right-handed quark fields are mixed by the quark-mass matrix.
Therefore, chiral symmetry is explicitly broken by the non-zero quark masses.

2Generally, a classical symmetry is realized in quantum field theory in two different ways depending on how
the vacuum responds to a symmetry transformation.
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Due to the small masses of u, d, and s quarks, QCD possesses an approximate chiral
symmetry and this symmetry should be approximately presented in the hadronic spectrum.
That means there should exist (almost) degenerate parity doublets 3 under Wigner’s realization
mode of chiral symmetry. In experiment, one can find two observed bands with different parity,
but they are not degenerate. Furthermore, the masses of lowest-lying pseudoscalar mesons
(π, K, η) are very small in comparison with other hadronic states. Therefore, in order to
explain these two observations, we can deduce that chiral symmetry is conserved in the QCD
Lagrangian but it is spontaneously broken by the vacuum state. In the Nambu-Goldstone
realization mode, the global chiral symmetry SU(3)L×SU(3)R is spontaneously broken to the
vectorial subgroup SU(3)V = SU(3)L+R,

SU(3)L × SU(3)R
SSB−−→ SU(3)V , (3.15)

where SU(3)V is the symmetry group of vacuum. According to Goldstone’s theorem [181], in
this process, an octet of pseudoscalar massless Goldstone bosons should be produced due to
the eight broken generators of chiral symmetry group. If we denote G = SU(3)L × SU(3)R
and H = SU(3)V , the Goldstone boson manifold is the coset space G/H which is isomorphic
to SU(3). Furthermore, when considering that the light quark masses are not zero but small,
we can easily find the candidates for the eight Goldstone bosons in the hadronic spectrum.
There are three pions, π0,±, four kaons, K±,0, K̄0, and the eta, η. Therefore, we can explain
the above two experimental phenomena by using Goldstone’s theorem.

3.2.2 Lowest order chiral effective Lagrangian

In the preceding section, we identified the relevant degrees of freedom, the pseudoscalar mesons
π, K, η, at low-energy region. Therefore, the chiral perturbation theory can be constructed
by applying Weinberg’s theorem. The corresponding effective Lagrangian should demand all
the symmetries of QCD, such as Lorentz invariant, SU(3)C gauge invariance, charge con-
jugation (C), parity (P), and time reversal (T) symmetries, and chiral symmetry. Because
chiral symmetry is spontaneously broken, one cannot directly write down the effective La-
grangian from the nonperturbative QCD Lagrangian due to the replacement of quarks and
gluons with Goldstone bosons. In the 1970s, the standard method to construct effective field
theory for a spontaneously broken symmetry was formulated by Callan, Coleman, Wess, and
Zumino [182, 183].

Usually, the Goldstone boson fields (π, K, η) are collected in a unitary matrix field U(φ)

U(φ) = exp

(
i
φ

Fφ

)
, (3.16)

φ =

8∑
a=1

φaλa =
√

2


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 , (3.17)

with the meson decay constant Fφ and the law of transformation for U(φ)

U(φ)→ gRU(φ)g†L, U †(φ)→ gLU
†(φ)g†R, (3.18)

3For a given spin and parity hadronic state, there would be another state with the same spin but the
opposite parity.
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where gL and gR are SU(3)L and SU(3)R transformations, respectively. On the other hand, a
more basic matrix field u(φ) is the square root of U(φ) with the chiral transformation

u(φ)→ gRu(φ)h(g, φ)−1, (3.19)

with the unbroken transformation h(g, φ) ∈ SU(3)V .
In the following, we could construct the general effective Lagrangians in terms of U(φ) or

u(φ). As a first step, we want to discuss how to obtain the lowest order chiral Lagrangian
corresponding to the QCD Lagrangian L0

QCD in the chiral limit.
Since the Goldstone bosons are pseudoscalar, in order to guarantee parity invariance, the

effective Lagrangian should contain an even number of meson fields. More precisely, one U
should accompany U † due to the parity transformation φ parity−−−→ −φ/U parity−−−→ U †. The most
general invariant term can be the product of terms with the form,

〈UU † · UU † · ...〉, (3.20)

where 〈...〉 denotes the trace of flavor space. At lowest order, due to UU † = I, in order
to obtain a non-trivial interaction, the derivative of U is required. With the limitation of
Lorentz invariance, one has to introduce even numbers of derivative on the meson fields. The
only possible term of lowest order is 〈∂µU∂µU †〉. We will investigate whether this term is
invariant or not under the chiral transition. The elements of 〈∂µU∂µU †〉 have the following
transformation properties,

∂µU → gR∂µUg
†
L, ∂µU

† → gL∂µU
†g†R. (3.21)

It is easy to see that

〈∂µU∂µU †〉 → 〈gR∂µUg†LgL∂
µU †g†R〉 = 〈g†RgR∂

µU∂µU †〉 = 〈∂µU∂µU †〉. (3.22)

Finally, we obtain the lowest order chiral effective Lagrangian

L(2)
φ =

F 2
φ

4
〈∂µU∂µU †〉, (3.23)

where the superscript 2 denotes two derivatives. The coefficient F 2
φ/4 is to ensure the kinetic

terms having the traditional form with 1
2∂µφa∂

µφa. This can be clearly shown when one
performs the expansion of U

U = 1 +
iφ

Fφ
+ · · · , U † = 1− iφ

Fφ
+ · · · , (3.24)

∂µU =
i

Fφ
∂µφ+ · · · , ∂µU

† = − i

Fφ
∂µφ+ · · · , (3.25)

as the effective Lagrangian becomes

L(2)
φ =

1

2
〈∂µφ∂µφ〉+

1

12F 2
φ

〈(φ∂µφ)(φ∂µφ)〉+O

(
φ6

F 4
φ

)
. (3.26)

Here we want to mention that the Lagrangian L(2)
φ trivially satisfies U(1)V invariance with

baryon number zero.
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As mentioned in the preceding section, chiral symmetry is explicitly broken by the non-
zero quark masses. When constructing the effective Lagrangian, one has to incorporate the
consequences of mixing left- and right-handed fields. According to the discussion in Ref. [184],
if the quark mass matrix transformed as

M→ gRMg†L, (3.27)

the mass term LM would be invariant under the chiral transformation. We can construct the
lowest order term in the effective Lagrangian with M using the same arguments as before.
There is one term 〈MU †+UM〉 which is Lorentz invariant, and parity and chiral symmetric.
Therefore, the lowest order Lagrangian can be written as

LSB =
F 2
φB

2
0

2
〈MU † + UM〉, (3.28)

where the subscript (SB) denotes the chiral symmetry explicitly breaking in QCD. The constant
B0 = −〈0|q̄q|0〉/F 2

φ relates to the quark condensate and cannot fixed by symmetry requirements
alone.

After expanding U and U † in powers of φ, we obtain

LSB = −B0〈Mφ2〉+
B0

6F 2
φ

〈Mφ4〉+O

(
φ6

F 4
φ

)
. (3.29)

The first term provides the relationships between the masses of Goldstone bosons and the
quark masses with exact isospin symmetry 4 (mu = md ≡ ml),

M2
π = 2B0ml,

M2
K = B0(ml +ms),

M2
η =

2

3
B0(ml + 2ms), (3.30)

and gives the Gell-Mann-Okubo relation [185–187]

4M2
K = M2

π + 3M2
η , (3.31)

which is not dependent on B0. Furthermore, the second term of Eq. (3.29) gives higher order
corrections to the masses of pseudoscalar mesons. In Appendix D, we also calculate the strong
isospin-splitting effects on the meson masses.

Combining Eq. (3.23) and Eq. (3.28), the lowest order chiral Lagrangian is

L(2)
φ =

F 2
φ

4

[
〈∂µU∂µU †〉+ 2B2

0〈MU † + UM〉
]
. (3.32)

3.2.3 General chiral effective Lagrangians

The general form of the chiral Lagrangian for the mesonic sector is

Leff
φ =

∑
n

L(2n)
φ [U,U †, ∂µU, ∂µU

†,M], n = 1, 2, · · · , (3.33)

4The up and down quarks have very small masses (mu ∼ md ∼ few MeV) compared to ΛQCD.
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with the even order only. The superscripts 2n refer to the power of the momentum and quark
mass expansion. As discussed in the above subsection, the index 2 denotes two derivatives
terms or a single quark mass term. The higher order Lagrangians, e.g. L(4)

φ , L(6)
φ , contains

more complicated terms. The expression of L(4)
φ is given in Eq. (4.2) of Chapter 4. The chiral

Lagrangians are organized in a momentum expansion based on the chiral counting rules

U,U † ∼ O(p0), ∂µU, ∂µU
† ∼ O(p1), M∼ O(p2), (3.34)

with the small momentum p. This can be easy to understand with the derivative generating
four momentum, ∂µ ∼ pµ, and the on-shell conditionM∝M2

φ = p2.
The above discussion is at the ordinary QCD level. When one wants to study the interac-

tions with external fields at the low energies, a more general QCD Lagrangian is

LExternal
QCD = L0

QCD +
∑

f=u,d,s

q̄fγ
µ(vµ + γ5aµ)qf −

∑
f=u,d,s

q̄f (s− iγ5ψp)qf , (3.35)

where the external vector vµ, axial-vector aµ, scalar s, and pseudoscalar ψp fields are Hermitian
3×3 matrices in flavor space. In this situation, the effective field theory becomes more powerful
and can be used to study the electromagnetic interactions and semileptonic weak interactions.

Applying Weinberg’s theorem, the extended QCD Lagrangian, LExternal
QCD , can be mapped

into the most general effective Lagrangian

LExternal
QCD [q̄f , qf , Gµν , vµ, aµ, s, ψp]→ Leff

φ [U, ∂µU, vµ, aµ, s, ψp], (3.36)

which has been given in Ref. [34]. The chiral counting rules for the new induced terms are

vµ, aµ ∼ O(p1), s, ψp ∼ O(p2). (3.37)

Additionally, let us re-examine the lowest order of chiral Lagrangian which naturally in-
cludes the external field interactions,

L(2)
φ =

Fφ
4
〈DµU

†DµU + U †χ+ χ†U〉, (3.38)

where vµ, aµ can only appear through the covariant derivatives

DµU = ∂µU − irµU + iUlµ, (3.39)

with lµ = vµ − aµ, rµ = vµ + aµ. The scalar field s and the pseudoscalar field ψp are encoded
in

χ = 2B0(s+ iψp). (3.40)

If taking the external field lµ and rµ as

lµ = rµ = −eQAµ, (3.41)

with the external electromagnetic field Aµ and Q = diag(2/3,−1/3,−1/3), or,

lµ = − g√
2

(W+
µ T+ + H.c.), rµ = 0, (3.42)

with the gauge coupling g, the massive charged weak bosons W±µ = (W1µ ∓ iW2µ)/
√

2, and

T+ =

 0 Vud Vus
0 0 0

0 0 0

 , (3.43)

one can study the electromagnetic interaction of Goldstone bosons or the semileptonic decay.
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3.2.4 Weinberg’s power counting

In principle, the chiral effective Lagrangian contains an infinite number of terms with an
infinite number of parameters. One has to find a systematic method to collect the important
contributions at a specific chiral order. This concept is called “power counting”. Under the
rule of power counting, we also can test the convergence of the chiral expansion by increasing
chiral order.

It was shown that, in the meson sector, there is one-to-one correspondence between chiral
orders and loop diagrams [33]. The general form of an amplitude A for a given Feynman
diagram is

A ∝
∫

(d4p)L
1

(p2)NM

∏
d

pdNd ≡ pnChPT , (3.44)

where L is the number of meson loops, NM is the number of internal lines (meson propagators),
Nd is the number of vertices with dimension d obtained from chiral Lagrangian L(d)

φ . In a mass-
independent subtraction scheme, the only dimensional parameters are the momentum p and
the pion mass. The chiral dimension nChPT can be written as

nChPT = 4L− 2NM +
∑
d

dNd. (3.45)

The chiral Lagrangian starts at leading order d ≥ 2, therefore, the chiral dimension should be
nChPT ≥ 2.

3.3 Chiral perturbation theory in baryon sector

3.3.1 Meson-baryon effective Lagrangians

As an effective field theory of low-energy QCD, chiral perturbation theory can also be applied
to study baryon systems. The difference between the meson sector and the baryon sector is
that the baryon mass is not zero at the chiral limit. We take the lowest-lying octet baryon as
an example to construct the general effective Lagrangian.

The octet baryon fields can be collected in a traceless 3× 3 matrix B,

B =

8∑
a=1

Baλa√
2

=


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 . (3.46)

Under the chiral symmetry SU(3)L × SU(3)R, the baryon field B transforms as any matter
field,

B → B′ = KBK†, (3.47)

withK(U, gL, gR) the compensator field [40] representing an element of the conserved subgroup
SU(3)V . For convenience, we introduce two definitions, the so-called chiral connection Γµ,

Γµ =
1

2

[
u†(∂µ − irµ)u+ u(∂µ − ilµ)u†

]
, (3.48)

and the axial current uµ,

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
. (3.49)
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They transform as
Γµ → KΓµK

† − (∂µK)K†, uµ → KuµK
†. (3.50)

The covariant derivative of the baryon field is defined as

DµB = ∂µB + [Γµ, B], (3.51)

with the transformation law
DµB → K(DµB)K†. (3.52)

As given in Ref. [188], the chiral counting scheme of the building blocks is

B, B̄ = O(p0), DµB = O(p0), (i /D −m0)B = O(p1),

1, γµ, γ5γµ, σµν = O(p0), γ5 = O(p). (3.53)

This counting rule can be understood from bilinears B̄ΓB with the plane waves solutions of the
free Dirac equation. The details can be seen in the page 154 of Ref. [46]. With the contraction
between Dirac matrices and derivatives of baryon field, the most general Lagrangians can be
expressed as

Leff
φB = L(1)

φB + L(2)
φB + L(3)

φB + L(4)
φB + · · · , (3.54)

with the gradual increase of chiral order. The lowest order of meson-baryon effective Lagrangian
L(1)
φB can be expressed as

L(1)
φB = 〈B̄(i /D −m0)B〉+

D

2
〈B̄γµγ5{uµ, B}〉+

F

2
〈B̄γµγ5[uµ, B]〉, (3.55)

where m0 denotes the baryon mass in the chiral limit, and the constants D and F are the axial-
vector coupling constants, which can be determined from the baryon semi-leptonic decays.

After including baryons in the ChPT, the chiral order of a specific diagram with L loops
is calculated as

nChPT = 4L− 2NM −NB +
∑
d

dVd, (3.56)

where NB is the number of internal baryon propagators. However, because the baryon mass
does not vanish in the chiral limit and its value is close to the chiral symmetry breaking scale
Λχ, Weinberg’s power counting is naively violated in the baryon chiral perturbation theory 5.
This problem was first pointed out by Gasser, Sainio, and Svarc [35] in the 1990s. In order to
illustrate the power-counting breaking (PCB) terms that appear in the loop calculations, we
take a scalar loop integral with one pion and one nucleon propagators for example,

H(p2, d) = −i
∫

ddq

(2π)d
1

q2 −m2
π + iε

1

(p− q)2 −m2
0 + iε

. (3.57)

By using the dimensional regularization scheme and limiting d→ 4, one obtains

H = − 1

16π2

(
−2 + log

m2
0

µ2
+
m2
π

m2
0

log
mπ

m0
+

2mπ

m0

√
1− m2

π

4m2
0

arccos
mπ

2m0

)
. (3.58)

5It is easy to see from the derivative of baryon field, i∂µB = pµBB = [(mB ,~0) + (EB −mB , ~pB)]B, where
the first term is the baryon mass in the chiral limit and cannot be thought as “small quantity”.
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According to the chiral order of Eq. (3.56), this Feynman diagram with one scalar loop is
O(p1), therefore, the first two terms

− 1

16π2

(
−2 + log

m2
0

µ2

)
, (3.59)

are the power-counting breaking terms and should be removed from the loop contributions
(equivalent to be absorbed by counter terms).

In order to systematically restore the PC, the so-called Heavy-Baryon (HB) ChPT was first
proposed by Jenkins and Manohar [69], considering baryons as heavy static sources. Later,
covariant BChPT implementing a consistent PC with different renormalization methods have
been developed, such as the infrared (IR) [70] and the extended-on-mass-shell (EOMS) [71, 72]
renormalization schemes. In the following subsections, we will briefly summarize the essential
features of HB ChPT, IR BChPT and EOMS BChPT.

In addition to the afore-mentioned dimensional renormalization schemes (MS and its deriva-
tives), other renormalization/regularization schemes have been proposed, such as the cutoff
scheme [73], the finite range regulator (FRR) method [74, 75], and the partial summation
approach [59] etc., to speed up the convergence of BChPT.

3.3.2 Heavy baryon approach

Drawing on the experience of heavy quark physics and of QED applied to atomic and molecular
physics, the basic idea of heavy baryon scheme [69] is to take the baryon as heavy (nearly on-
shell) and divide the baryon momentum into a large piece and a small residual piece,

pµ = m0vµ + kµ, (3.60)

where vµ is the baryon velocity with v2 = 1 and v0 ≥ 1, and kµ denotes the soft residual
momentum with kµ · v � m0, Λχ (at rest frame with vµ = (1, 0, 0, 0)). Therefore, in the heavy
baryon scheme, one can perform a two-fold expansion in terms of

k

Λχ
,

k

m0
. (3.61)

According to the decomposition of baryon momentum, the baryon field can also be sepa-
rated into light and heavy components

B(x) = eim0v·x [Bv(x) +Hv(x)] , (3.62)

with light Bv and heavy Hv fields

Bv(x) ≡ eim0v·xPv+B(x), Hv(x) ≡ eim0v·xPv−B(x). (3.63)

Here, the projection operators Pv± are defined as

Pv± ≡
1± /v

2
, (3.64)

with the properties of

Pv+ + Pv− = 1, P 2
v± = Pv±, Pv±Pv∓ = 0. (3.65)
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It should be mentioned that the light field Bv(x) is usually called heavy baryon field and
∂µBv(x) produces a small residual momentum kµ. From the leading order covariant effective
Lagrangian [Eq. (3.55)], one can perform the path integral and integrate out the heavy compo-
nent Hv(x) to obtain the corresponding heavy baryon effective Lagrangians in terms of heavy
baryon fields Bv(x) with definite velocity vµ,

L̂(1)
φB = 〈B̄viv ·DBv〉 −D〈B̄vSµ〈{uµ,Bv〉} − F 〈B̄vSµ[uµ,Bv]〉, (3.66)

where ˆ indicates the heavy-baryon formalism. The derivative on the heavy baryon field is
defined as the same in Eq. (3.51) with the replacement of B → Bv. The covariant spin-operator
Sµ = i

2γ5σµνv
ν is the spin matrix with

S · v = 0, S2 =
1− d

4
, {Sµ, Sν} =

1

2
(vµvν − gµν), [Sµ, Sν ] = iεµναβv

αSβ, (3.67)

in d space-time dimensions. It should be noted that the leading order Lagrangian
L̂φB [Eq. (3.66)] does not have the baryon mass m0 terms. The baryon mass is shuffled from
the propagators to the vertices. Therefore, heavy baryon ChPT has the same power counting
as Weinberg’s power counting for mesons with the chiral counting order of building blocks

Bv, B̄v ∼ O(p0), vµ, Sµ,∼ O(p0) DµBv, uµ ∼ O(p1). (3.68)

The propagator of heavy baryon, derived from L̂(1)
φB, can be written as

Gv(k) =
Pv+

v · k + iε
. (3.69)

In order to better understand the HB method, let us reconsider the integral of a scalar loop
diagram with one meson and one baryon propagator, which can be expressed as

HHB = −i
∫

ddq

(2π)d
1

(q2 −m2
π + iε)

1

v · (k − q) + iε

= − 1

16π2

πmπ

2m0
, (3.70)

in the limit d → 4. We can see that the HB result is clearly of order O(p1) as required from
the counting rules.

HBChPT has been successfully applied to study low-energy physical phenomena, partic-
ularly in two-flavor sector [38]. However, in order to ensure HBChPT is reparameterization
invariant or Lorentz invariant at a specific order, one has to take into account the 1/m0 cor-
rection Lagrangians [189]. Therefore, the heavy baryon effective Lagrangians have more terms
than the covariant counterparts at the same chiral order [190]. One also found that the con-
vergence of HBChPT is not fast enough in the calculation of some physical quantities, such as
electroweak form factors [191] and electromagnetic form factors [192] of nucleon.

3.3.3 Infrared regularization

In order to avoid the shortcomings of HBChPT, one has to find a regularization method to
combine the proper power counting of the HB approach and proper analyticity. As a first
attempt, Tang and Ellis [193, 194] pointed out that the loop integral can be divided into soft-
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and hard-momentum parts. The hard-momentum terms are always polynomials and can be
totally absorbed into the LECs. However, this division relies on specific loop integrals which
cannot be always valid. Becher and Leutwyler [70] proposed a systematic method to extract
the soft- and hard-momentum parts, which is known as Infrared Regularization (IR) of baryon
chiral perturbation theory.

To illustrate the main idea of IR BChPT, we would like to also take one scalar loop
integral [Eq. (3.57)] for example. It is clear that the infrared singularity appears in the region
of integration ofmπ → 0. Because the nucleon momentum is close to the mass shell (m2

0−p2) ∼
O(p), the infrared singularity is of the order O(pd−3). On the other hand, the so called hard-
momentum parts with large momenta are just the ordinary Taylor expansion of momentum
and can be totally absorbed into the LECs.

Following the discussion of Ref. [70], in order to isolate the infrared parts, one can introduce
two dimensionless variables,

α =
mπ

m0
, Ω =

p2 −m2
0 −m2

π

2mπm0
, (3.71)

which count as O(p) and O(p0), respectively. After using the standard Feynman parametriza-
tion and performing the momentum shift k → k + pz, the scalar loop becomes

H(p2, d) = −i
∫ 1

0
dz

∫
ddq

(2π)d
dz

[q2 −M(z)]2
, (3.72)

with
M(z) = m0[z2 − 2αΩz(1− z) + α2(1− z)2]. (3.73)

Performing the integration over k, we can get

H(p2, d) = κ(d)

∫ 1

0
dz[M(z)− iε]

d
2
−2 = κ(d)

∫ 1

0
dz

(
1

M(z)− iε

) 4−d
2

, (3.74)

with κ(d) = Γ(2 − d/2)/(4π)d/2. Therefore, the infrared singularity originates where M(z)

goes to zero as mπ → 0 at the small values of z. In order to isolate the divergent part, we
perform a change of variable z = αx, then

H(p2, d) = κ(d)

∫ 1
α

0
dxα[M(αx)− iε]

d
2
−2. (3.75)

With mπ → 0, the upper limit of integral x = 1/α → ∞, therefore, the integral I, which
contains the same infrared singularity, can be expressed as

I ≡ κ(d)αd−3

∫ ∞
0

[D(x)− iε]
d
2
−2dx, (3.76)

where
D(x) = 1− 2Ωx+ x2 + 2αx(Ωx− 1) + α2x2. (3.77)

In order to satisfy the relation of H = I −R, the regular part of H is defined as

R ≡ κ(d)

∫ ∞
1

dz[M(z)− iε]
d
2
−2. (3.78)
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For arbitrary values of d, the explicit expressions for H, I, and R involve hypergeometric
functions. The chiral expansion of I has the form

I = O(pd−3) +O(pd−2) +O(pd−1) + · · · , (3.79)

while for any value of d the corresponding expansion of R is

R = O(p0) +O(p1) +O(p2) + · · · . (3.80)

This expansion form can be easily understood at the threshold region, p2 = (mπ +m0)2. The
infrared part reads

Ithr. = κ(d)αd−3

∫ ∞
0

dx
{

[(1 + α)x− 1]2 − iε
} d

2
−2

= κ(d)αd−3 1

(d− 3)(1 + α)

1

(n− 3)(1 + α)

=
Γ(2− d

2)

(4π)
d
2 (d− 3)

md−3
π

m0 +mπ
, (3.81)

while the regular part is

Rthr. =
Γ(2− d

2)

(4π)
d
2 (d− 3)

md−3
0

m0 +mπ
. (3.82)

Furthermore, according to the definitions of I [Eq. (3.76)]and R [Eq. (3.78)], we can explicitly
compute the loop diagrams taking the limit of d→ 4,

I = − 1

16π2

{[
− mπ

2m0
+
mπ

m0
log

mπ

m0

2mπ

m0
+

√
1− m2

π

4m2
0

arccos

(
− mπ

2m0

)]}
, (3.83)

R =
1

16π2

{
−2 + log

m2
0

µ2
+
m2
π

m2
0

− 2mπ

m0

√
1− m2

π

4m2
0

arccos

(
1− m2

π

2m2
0

)}
,

=
1

16π2

(
−2 + log

m2
0

µ2
− m2

π

m2
0

+
m4
π

6m4
0

+ · · ·
)
. (3.84)

From the general expansion form of I and R, one can conclude that the infrared part I
contains non-integer powers of momenta and quark masses, while the regular part R is the
ordinary Taylor expansion in momenta and quark masses. Therefore, the regular part R can
be totally absorbed by the LECs appearing in the chiral effective Lagrangian, and the power
counting scheme is valid with the replacement of the general integral H by the corresponding
infrared part I. Besides, the infrared part contains the full 1/m0 correction terms, which rep-
resents the infinite sum of the kinetic energy corrections to the baryon propagator. Therefore,
one has to carefully choose a proper regularization scale µ to absorb the divergences from 1/m0

higher order corrections. This problem has been stressed in Ref. [70].
Comparison with Eq. (3.57) and Eq. (3.83), the function arccos(mπ/2m0) appearing in

the MS calculation becomes arccos(−mπ/2m0) in IR scheme. This transformation has large
effects on the light-quark mass evolution of some physical observables, e.g. the nucleon/baryon
magnetic moments [195, 196]. Furthermore, the analyticity of the infrared method is also
broken at a scale of twice the baryon mass, although this large scale should not effect the low-
energy expansions. At present, there are several studies to reformulate the IRBChPT [197, 198]
to overcome these drawbacks.
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3.3.4 Extended-on-mass-shell scheme

The extended-on-mass-shell (EOMS) scheme, which also deals with the power-counting break-
ing problem, was originally proposed by Gegelia et al. [71] and has been applied to study the
nucleon mass in detail in Ref. [72]. As mentioned in the above subsection, the regular part
R is considered as the power-counting breaking terms and totally removed in infrared chiral
perturbation theory. However, one also found that R can contain power counting allowed
terms, which are not necessarily absorbed by the counter terms. Therefore, Gegelia et al. [71]
tried to separate the exact power-counting breaking terms from the loop integral and proposed
the extended-on-mass-shell (EOMS) scheme 6. More precisely, the basic idea of the EOMS
method is to absorb the PCB terms by performing finite subtractions from the results of loop
integration with the M̃S regularization scheme. Results must satisfy the power-counting rules.

The key technical point for the EOMS scheme is to extract the power-counting breaking
terms from the results of loop integration. In order to illustrate this point clearly, as presented
in Ref. [42], we would like to consider the scalar loop H in the chiral limit,

H(p2, d,mπ = 0) = −i
∫

ddq

(2π)d
1

q2 + iε

1

(p− q)2 −m2
0 + iε

. (3.85)

After introducing a small dimensionless quantity

∆ =
p2 −m2

0

m2
0

, (3.86)

which counts as O(q) due to the baryon mass closing to the mass shell, the integral H can be
written as

H(p2, d,mπ = 0) = κ(d)md−4
0

∫ 1

0
dz[C(z,∆)]

d
2
−2, (3.87)

with C(z,∆) = z2 −∆z(1− z)− iε. Using the identity∫ 1

0
dz[C(z,∆)]

d
2
−2 = (−∆)

d
2
−2

∫ 1

0
dz z

d
2
−2

(
1− 1 + ∆

∆
z

) d
2
−2

, (3.88)

and the hypergeometric function F

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− tz)−a,Re(c) > Re(b) > 0, (3.89)

one can obtain the loop function

H(p2, d,mπ = 0) = κ(d)md−4
0

Γ
(
d
2 − 1

)
Γ
(
d
2

) (−∆)
d
2
−2F

(
2− d

2
,
d

2
;
d

2
;
1 + ∆

∆

)
, (3.90)

with a = 2− d/2, b = d/2− 1, c = d/2, and z = (1 + ∆)/∆. Applying the properties of F ,

F (a, b; c; z) = (1− z)−aF
(
a, c− b; c; z

z − 1

)
, (3.91)

F (a, b; c; z) = F (b, a; c; z), (3.92)
6Since the substraction point is p2 = m2

0, the renormalization condition is denoted “extended on-mass-shell”
scheme in analogy with the on-mass-shell renormalization scheme in renormalizable theories.
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the loop function becomes as

H(p2, d,mπ = 0) = κ(d)md−4
0

Γ
(
d
2 − 1

)
Γ
(
d
2

) F

(
1, 2− d

2
;
d

2
;
p2

m2
0

)

=
md−4

0

(4π)
d
2

[
Γ
(
2− d

2

)
d− 3

F

(
1, 2− d

2
; 4− d;−∆

)
+ (−∆)d−3Γ

(
d

2
− 1

)
Γ(3− d)F

(
d

2
− 1, d− 2;n− 2;−∆

)]
≡ F (d,∆) + ∆d−3G(d,∆), (3.93)

where F (d,∆) and G(d,∆) are proportional to hypergeometric functions.
We can expand the hypergeometric function F for |z| < 1,

F (a, b; c; z) = 1 +
ab

c
z +

a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2
+ · · · , (3.94)

and find

F (d,∆) = O(p0) +O(p1) +O(p2) + · · · , (3.95)

G(d,∆) = O(pd−3) +O(pd−2) +O(pd−1) + · · · . (3.96)

Therefore, the PCB terms are contained in the first term of loop function and should be
subtracted. Generally, there are two approaches to systematically obtain the PCB terms.
First, one can calculate a Feynman diagram using the MS scheme to obtain analytical results,
and pick out the subtracting PCB terms by using the chiral counting order for the building
blocks. This method is obvious when the loop integral has a simple Lorentz structure and can
easily generate explicit expressions for the analytic terms. For example, one can calculate the
one-loop chiral corrections to the nucleon self-energy. But, in most cases the loop integrals are
rather difficult to perform explicitly, therefore, one has to find another method to determine
the subtraction terms for these cases.

In the second alternative, one can first expand the integrand in terms of the small quantities,
e.g. mπ, p, or 1/m0 to identify the relevant terms of the final PCB terms with the naive chiral
counting analysis, and then perform the integration to obtain the corresponding PCB terms.
Here, we want to mention that, since the PCB terms are always finite and analytic, this method
should always work.

After using the EOMS scheme, the one scalar loop integral Eq. (3.57) becomes

HEOMS = − 1

16π2

(
m2
π

m2
0

log
mπ

m0
+

2mπ

m0

√
1− m2

π

4m2
0

arccos
mπ

2m0

)
. (3.97)

We can see that HEOMS is the same as Eq. (3.57) except for the power-counting breaking terms.
Finally, we would like to summarize the differences among the MS, HB, IR and EOMS

renormalization schemes. As an important feature of ChPT, the HB, IR, and EOMS methods
satisfy the power-counting rule. More precisely, comparing with the Eqs. (3.70),(3.83), and
(3.97), we can find that the results of HB scheme only contain terms of the specified chiral
order, while the other two methods also have a series of higher order terms (recoil corrections).
In addition, one can obtain the HB results by expanding the IR results in powers of 1/m0
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Figure 3.1: Power counting scheme of BChPT with MS, HB, IR, and EOMS renormaliza-
tion schemes. Pink-filled points denote the contact terms. Red-filled circle are the PCB
terms. Black and blue circles indicate the strict PC terms and the higher order corrections,
respectively. Half- and full-filled circles denote the analytical terms which have the different
analyticity (The details can be seen in text). The figure is taken from Ref. [199].

up to specific orders. Both HBChPT and IR BChPT spoil the analytical structure of loop
amplitudes, the EOMS scheme has the same analyticity as the MS. These two features are
clearly illustrated in Fig. 3.1 for the case of the pion-nucleon scattering.





Chapter 4

Octet Baryon Masses in ChPT

In this chapter, we perform the chiral expansion of octet baryon masses in covariant baryon
chiral perturbation theory with the extend-on-mass-shell scheme up to next-to-next-to-next-
to-leading order. The virtual decuplet baryon contributions are explicitly included. In order
to take into account lattice QCD artifacts, finite-volume corrections are carefully examined in
the same framework. Furthermore, finite lattice spacing discretization effects are calculated by
constructing covariant baryon chiral perturbation theory for Wilson fermions.

4.1 Chiral expansion of octet baryon self-energies

In the past decades, the ground-state octet baryon masses have been studied extensively [47–
56, 58–63]. It is found that SU(3) HBChPT converges rather slowly [76] in several versions
of BChPT. Most calculations are performed only up to NNLO because of the many unknown
LECs at N3LO except those of Refs. [50, 51, 53, 61–63]. Regarding chiral extrapolations, Young
and Thomas [58] obtained very good results using the FRR scheme, which induced a form factor
in HBChPT to decrease the loop contributions, up to NNLO by fitting the LHPC [25] and
PACS-CS [23] lattice data. In Ref. [56], we applied the NNLO EOMS-BChPT to analyze the
same lattice data and found that the EOMS-BChPT can provide a better description of lattice
data and is more suitable for chiral extrapolation purposes than HBChPT and NLO BChPT.
Recently, using a partial summation scheme up to N3LO, Semke and Lutz [61, 63, 200, 201]
found that the BMW [22], HSC [26], PACS-CS [23], LHPC [25], QCDSF-UKQCD [28], and
ETMC [160] lattice results can be well described.

On the other hand, up to now, a simultaneous description of all the nf = 2 + 1 lattice
data with finite-volume effects taken into account self-consistently is still missing. 1 Such a
study is necessary for exploring the convergence properties of the SU(3) BChPT by numerically
evaluating the contributions of different orders. And, it is also helpful to test the consistency
between different lattice simulations. Furthermore, it also provides a good opportunity to
determine/constrain the many unknown LECs of BChPT at N3LO.

4.1.1 Chiral effective Lagrangians

In this subsection, we collect the relevant chiral Lagrangians for the calculation of octet baryon
masses in the u, d, s three-flavor sector up to N3LO. Firstly, we would like to present the meson-
baryon effective Lagrangians without including decuplet baryon interactions. After that, the
related decuplet baryon Lagrangians are discussed.

1In Ref. [63], Semke and Lutz showed that their partial summation approach can reproduce the results of
the HSC and QCDSF-UKQCD collaborations by fitting the BMW, PACS-CS and LHPC data.
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Chiral effective Lagrangians without decuplet

The Lagrangians can be written as the sum of a mesonic part and a meson-baryon part:

Leff = L(2)
φ + L(4)

φ + L(1)
φB + L(2)

φB + L(3)
φB + L(4)

φB, (4.1)

where superscript (i) denotes the corresponding chiral order O(pi), φ = (π, K, η) represents
the pseudoscalar Nambu-Goldstone boson fields, and B = (N, Λ, Σ, Ξ) lowest-lying octet
baryons.

Pseudoscalar meson Lagrangians
The lowest order meson Lagrangian has been given in Eq. (3.38) of Chapter 3, and the

corresponding notations can be found in there.
The most general meson Lagrangian at O(q4) allowed by symmetries has the following

form [34]:

L(4)
φ = L1[〈DµU(DµU)†〉]2 + L2〈DµU(DνU)†〉〈DµU(DνU)†〉

+L3〈DµU(DµU)†DνD(DνU)†〉+ L4〈DµU(DµU)†〉〈χU † + Uχ†〉
+L5〈DµU(DµU)†(χU † + Uχ†)〉+ L6[〈χU † + Uχ†〉]2

+L7[〈χU † − Uχ†〉]2 + L8〈Uχ†Uχ† + χU †χU †〉
−iL9〈fRµνDµU(DνU)† + fLµν(DµU)†DνU〉+ L10〈UfLµνU †f

µν
R 〉

+H1〈fRµνf
µν
R + fLµνf

µν
L 〉+H2〈χχ†〉, (4.2)

where the field-strength tensors are defined as fµνR = ∂µrν − ∂νrµ− i[rµ, rν ] and fµνL = ∂µlν −
∂ν lµ − i[lµ, lν ] with rµ = vµ + aµ, lµ = vµ − aµ with vµ and aµ the external vector and axial
currents. The LECs L1,··· ,10 and H1,2 are scale-dependent and absorb the infinities generated
by the one-loop graphs.

Pseudoscalar meson-octet baryon Lagrangians
The effective pseudoscalar meson-octet baryon Lagrangians contain terms of odd and even

chiral orders,
Leff
φB = L(1)

φB + L(2)
φB + L(3)

φB + L(4)
φB. (4.3)

The lowest order meson-baryon Lagrangian has been presented in Eq. (3.55) of Chapter 3.
The meson-baryon Lagrangian at order O(p2) can be written as

L(2)
φB = L(2, sb)

φB + L(2)
φB

′
. (4.4)

This separation is motivated by the fact that the first part appears in tree and loop graphs,
whereas the latter only contributes to masses via loops. The explicit chiral symmetry breaking
part reads as

L(2,sb)
φB = b0〈χ+〉〈B̄B〉+ bD〈B̄{χ+, B}〉+ bF 〈B̄[χ+, B]〉, (4.5)

where b0, bD, and bF are LECs, and χ+ = u†χu†+uχ†u. For the latter part, we take the same
form as in Ref. [202]:

L(2)
φB

′
= b1〈B̄[uµ, [u

µ, B]]〉+ b2〈B̄{uµ, {uµ, B}}〉
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+b3〈B̄{uµ, [uµ, B]}〉+ b4〈B̄B〉〈uµuµ〉

+ib5

(
〈B̄[uµ, [uν , γµDνB]]〉 − 〈B̄

←−
Dν [uν , [uµ, γµB]]

)
+ib6

(
〈B̄[uµ, {uν , γµDνB}]〉 − 〈B̄

←−
Dν{uν , [uµ, γµB]}

)
+ib7

(
〈B̄{uµ, {uν , γµDνB}}〉 − 〈B̄

←−
Dν{uν , {uµ, γµB}}〉

)
+ib8

(
〈B̄γµDνB〉 − 〈B̄

←−
DνγµB〉

)
〈uµuν〉+ · · · , (4.6)

where b1,··· ,4 have dimension mass−1 and b5,··· ,8 have dimension mass−2. If one works for a set
of fixed quark masses (e.g., Ref. [54]), all terms with one or two covariant derivatives can be
absorbed in the structures proportional to b1,··· ,4. However, for our purposes, we need to retain
all the terms because they lead to different quark mass dependencies.

The contributions from the third chiral order Lagrangian are at least O(p5), which beyond
the accuracy of our studies. The fourth-order effective Lagrangian relevant to our study is [50]:

L(4)
φB = d1〈B̄[χ+, [χ+, B]]〉+ d2〈B̄[χ+, {χ+, B}]〉

+d3〈B̄{χ+, {χ+, B}}〉+ d4〈B̄χ+〉〈χ+B〉
+d5〈B̄[χ+, B]〉〈χ+〉+ d7〈B̄B〉〈χ+〉2

+d8〈B̄B〉〈χ2
+〉. (4.7)

Chiral effective Lagrangians with decuplet

The baryon decuplet consists of a SU(3)-flavor multiplet of spin-3/2 resonances. Usually,
the spin-3/2 particle can be described by the Rarita-Schwinger (RS) field [203], ψµ. The
corresponding free Lagrangian is

Lfree
RS = ψ̄µ(iγµνα∂α −Mγµν)ψν , (4.8)

with the mass M and the totally antisymmetric gamma matrix products γµν = 1
2 [γµ, γν ],

γµνα = 1
2 {γ

µν , γα} = −iεµναβγβγ5 (using the convention ε0123 = −ε0123 = +1). After, one
can obtain the Euler-Lagrange field equations

(i/∂ −M)ψµ = 0, (4.9)

∂µψµ = 0, (4.10)

γµψµ = 0. (4.11)

Due to the last two constraints, it is clearly that the 16 components of vector-spinor field are
reduced to 4 independent components which is the physical number of spin degrees of freedom
of the massive spin-3/2 particle.

For the interacting case, because the physical and unphysical components may couple
in a nontrivial way, the situation becomes more complicated. The most general form of an
interaction among a spin-3/2 particle, a nucleon (Ψ) and a (pseudo-)scalar boson (φ) is given
by [204],

LInt = gψ̄µ

[
gµν − (z +

1

2
)γµγν

]
Ψ∂νφ+ H.c., (4.12)

where g denotes the coupling constant and z is the off-shell parameter. This is the so-called
inconsistent coupling and may often involve the unphysical spin-1/2 components. On the other
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hand, the “consistent” spin-3/2 couplings, proposed by Pascalutsa [205, 206], satisfy the gauge
invariant (ψµ → φµ + ∂µε, with a spinor field ε) and remove the spin-1/2 background,

LGI
Int = gεµναβ(∂µψ̄ν)γ5γαΨ∂βφ+ H.c.. (4.13)

Following, we would like to employ this method to include the decuplet baryon in the chiral
effective Lagrangians.

For the decuplet baryon, T abcµ , the physical fields are assigned to the tensor as T 111 = ∆++,
T 112 = ∆+/

√
3, T 122 = ∆0/

√
3, T 222 = ∆−, T 113 = Σ∗+/

√
3, T 123 = Σ∗0/

√
6, T 223 =

Σ∗−/
√

3, T 133 = Ξ∗0/
√

3, T 233 = Ξ∗−/
√

3, and T 333 = Ω−. The covariant free Lagrangian for
decuplet baryons is

LD = T̄ abcµ (iγµναDα −mDγ
µν)T abcν , (4.14)

where mD is the decuplet-baryon mass in the chiral limit and the derivative of the decuplet
baryon fields is defined as

DνT
abc
µ = ∂νT

abc
µ + (Γν , Tµ)abc, (4.15)

with the definition (X,Tµ)abc ≡ (X)adT
dbc
µ +(X)bdT

adc
µ +(X)cdT

abd
µ . In the previous and following

Lagrangians, we always apply the Einstein notation to sum over any repeated SU(3)-index,
and (X)ab denotes the element of row a and column b of the matrix representation of X.

The O(p2) Lagrangian for decuplet baryons is:

L(2)
φD =

t0
2
T̄ abcµ gµνT abcν 〈χ+〉+

tD
2
T̄ abcµ gµν(χ+, Tν)abc, (4.16)

where the parameters t0, tD are two unknown LECs.
At O(p3), the chiral effective Lagrangian, describing the interaction of octet and decuplet

baryons with pseudoscalar mesons, can be written as [118]

L(1)
φBD =

iC
mDFφ

εabc(∂αT̄
ade
µ )γαµνBe

c∂νφ
d
b + H.c., (4.17)

where the coefficient C denotes the φBT “consistent” coupling.

4.1.2 Octet baryon self-energies up to N3LO

Baryon self-energy up to N3LO

The physical baryon mass is defined at the pole, /p = mB, in the two-point function of the
baryon field ψB(x)

S0(x) = −i〈0|T [ψB(x)ψ̄B(0)]|0〉 =
1

/p−m0 − Σ(/p)
, (4.18)

where Σ(/p) corresponds to the baryon self-energy,

mB −m0 − Σ(/p = mB) = 0, ⇒ mB = m0 + Σ(/p = mB). (4.19)

The leading contribution to the self-energy, Σa = m
(2)
B , is of order O(p2) [Fig. 4.1(a)]. The

self-energy Σb = m
(3)
B of the one-loop diagram [Fig. 4.1(b)] is of order O(p3). One tree diagram

contribution from L(4)
φB [Fig. 4.1(c)] and two loop diagrams [Figs. 4.1(d,e)] are of order O(p4),
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Figure 4.1: Feynman diagrams contributing to the octet-baryon masses up to O(p4) in the
EOMS-BChPT. The solid lines correspond to octet-baryons and dashed lines refer to Goldstone
bosons. The black boxes (diamonds) indicate second (fourth) order couplings. The solid dot
indicates an insertion from the dimension one meson-baryon Lagrangians. Wave function
renormalization diagrams are not explicitly shown but included in the calculation.

m
(4)
B = Σc + Σd + Σe. We remark that due to parity conservation, there are no first order

contributions. The baryon mass up to fourth order in chiral expansion can be expressed as

mB = m0 +m
(2)
B +m

(3)
B +m

(4)
B . (4.20)

The tree diagrams [Fig. 4.1(a,c)] can be calculated straightforwardly. The corresponding
results are shown below. The three one-loop diagrams [Figs. 4.1(b,d,e)] yield, generically,

Gb = i

∫
d4k

(2π)4
/kγ5

1

/p− /k −m0 + iε
/kγ5

1

k2 −M2
φ + iε

, (4.21)

Gd = i

∫
d4k

(2π)4
{1, kµkµ, kµkνpµγν}

1

k2 −M2
φ + iε

, (4.22)

Ge = i m
(2)
B

∫
d4k

(2π)4
/kγ5

(
1

/p− /k −m0 + iε

)2

/kγ5
1

k2 −M2
φ + iε

, (4.23)

where Mφ represents the mass of a Nambu-Goldstone boson. These loop integrations can be
calculated in the standard way as given in Appendix C. The above loop functions contain
PCB terms and therefore additional steps need to be taken to conserve a proper chiral power-
counting scheme. As we have demonstrated before, the EOMS scheme has shown a relatively
better convergence property than HB or IR approaches. Therefore, we would like to employ
the EOMS scheme to subtract the PCB terms. After calculating all the Feynman diagrams
shown in Fig. 4.1, we obtain the chiral expansion of octet baryon masses up to N3LO.

At O(p2), the tree level contribution provides the leading order (LO) SU(3)-breaking cor-
rections to the chiral limit octet baryon mass

m
(2)
B =

∑
φ=π, K

ξ
(a)
B,φM

2
φ, (4.24)

where the coefficients ξ(a)
B,φ are listed in Table 4.1.
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Table 4.1: Coefficients of the NLO contribution to the self-energy of octet baryons [Eq. (4.24)].

N Λ Σ Ξ

ξ
(a)
B,π −(2b0 + 4bF ) −2

3 (3b0 − 2bD) −(2b0 + 4bD) −(2b0 − 4bF )

ξ
(a)
B,K −(4b0 + 4bD − 4bF ) −2

3 (6b0 + 8bD) −4b0 −(4b0 + 4bD + 4bF )

Table 4.2: Coefficients of the NNLO contribution to the self-energy of octet baryons [Eq. (4.25)].

N Λ Σ Ξ

ξ
(b)
B,π

3
2(D + F )2 2D2 2

3(D2 + 6F 2) 3
2(D − F )2

ξ
(b)
B,K

1
3(5D2 − 6DF + 9F 2) 2

3(D2 + 9F 2) 2(D2 + F 2) 1
3(5D2 + 6DF + 9F 2)

ξ
(b)
B,η

1
6(D − 3F )2 2

3D
2 2

3D
2 1

6(D + 3F )2

At O(p3) diagram Fig. 4.1(b) gives the NLO SU(3)-breaking corrections to octet baryon
masses

m
(3)
B =

1

(4πFφ)2

∑
φ=π, K, η

ξ
(b)
B,φH

(b)
B (Mφ), (4.25)

where the coefficients ξ(b)
B,φ are given in Table 4.2, and the corresponding loop functions

H
(b)
B (Mφ) is

H
(b)
B (Mφ) = −

2M3
φ

m0

√4m2
0 −M2

φ arctan

 Mφ√
4m2

0 −M2
φ


+
√

4m2
0 −M2

φ arctan

 2m2
0 −M2

φ

Mφ

√
4m2

0 −M2
φ

+Mφ log
Mφ

m0

 . (4.26)

The NNLO SU(3)-breaking corrections to the octet baryon masses are

m
(4)
B = ξ

(c)
B,πM

4
π + ξ

(c)
B,KM

4
K + ξ

(c)
B,πKM

2
πM

2
K

+
1

(4πFφ)2

∑
φ=π, K, η

[
ξ

(d,1)
B,φ H

(d,1)
B (Mφ) + ξ

(d,2)
B,φ H

(d,2)
B (Mφ) + ξ

(d,3)
B,φ H

(d,3)
B (Mφ)

]
+

1

(4πFφ)2

∑
φ=π, K, η

B′=N, Λ, Σ, Ξ

ξ
(e)
BB′,φ ·H

(e)
B,B′(Mφ). (4.27)

The first three terms of Eq. (4.27) are the tree contributions of diagram Fig. 4.1(c), and the
corresponding coefficients ξ(c)

B,π, ξ
(c)
B,K , ξ(c)

B,πK can be found in Table 4.3. The next term is the
contribution from the tadpole diagram Fig. 4.1(d) and the Clebsch-Gordan coefficients are
listed in Table 4.4. The last term is from the one-loop diagram of Fig. 4.1(e), together with
the wave function renormalization diagrams not shown, and ξ(e)

BB′,φ can be found in Table 4.5.
After using the EOMS scheme to remove the PCB terms, the loop functions are written as:
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( b ) (c )( a )

Figure 4.2: Feynman diagrams contributing to the octet baryon masses with the intermediate
decuplet resonances. The solid lines correspond to octet baryons, the double lines to decuplet
baryons, and the dashed lines denote pseudoscalar mesons. Black dots indicate an insertion
from the dimension one chiral Lagrangian [Eq. (4.17)], and black boxes (diamonds) indicate
O(p2) mass insertions.

H
(d,1)
B (Mφ) = M2

φ

[
1 + ln

(
µ2

M2
φ

)]
, (4.28)

H
(d,2)
B (Mφ) = M4

φ

[
1 + ln

(
µ2

M2
φ

)]
, (4.29)

H
(d,3)
B (Mφ) = m0

{
M4
φ

4

[
1 + ln

(
µ2

M2
φ

)]
+

1

8
M4
φ

}
, (4.30)

H
(e)
B,B′(Mφ) =

2M3
φ

m2
0

√
4m2

0 −M2
φ

[
6m2

0(m
(2)
B −m

(2)
B′ )−M

2
φ(2m

(2)
B −m

(2)
B′ )
]

arccos
Mφ

2m0

−M2
φ

[
3(m

(2)
B −m

(2)
B′ ) +

3m2
0(m

(2)
B −m

(2)
B′ )−M

2
φ(2m

(2)
B −m

(2)
B′ )

m2
0

ln
M2
φ

m2
0

+ (m
(2)
B +m

(2)
B′ ) ln

m2
0

µ2

]
, (4.31)

where m(2)
B and m(2)

B′ are the corresponding LO SU(3) corrections to octet baryon masses given
in Eq. (4.24).

4.1.3 Virtual decuplet contributions

Up to N3LO, the octet baryon masses with the virtual decuplet contributions can be written
as

mB = m0 +m
(2)
B +m

(3)
B +m

(4)
B +m

(D)
B , (4.32)

Table 4.3: Coefficients of the N3LO tree contribution to the self-energy of octet baryons
[Eq. (4.27)].

N Λ Σ Ξ

ξ
(c)
B,π −4(4d1 + 2d5 + d7 + 3d8) −4(4d3 + 8

3
d4 + d7 + 3d8) −4(4d3 + d7 + 3d8) −4(4d1 − 2d5 + d7 + 3d8)

ξ
(c)
B,K

−16 (d1 − d2 + d3 −16( 8
3
d3 + 2

3
d4 + d7 + d8) −16(d7 + d8)

−16 (d1 + d2 + d3

−d5 + d7 + d8) +d5 + d7 + d8)

ξ
(c)
B,πK

8 (4d1 − 2d2 − d5
16( 8

3
d3 + 4

3
d4 − d7 + d8) −16(d7 − d8)

8 (4d1 + 2d2 + d5

−2d7 + 2d8) −2d7 + 2d8)
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Table 4.4: Coefficients of the tadpole contribution to the self-energy of octet baryons
[Eq. (4.27)].

N Λ Σ Ξ

ξ
(d,1)
B,π −3(2b0 + bD + bF )m2

π −2(3b0 + bD)m2
π −6(b0 + bD)m2

π −3(2b0 + bD − bF )m2
π

ξ
(d,1)
B,K −2(4b0 + 3bD − bF )m2

K − 4
3 (6b0 + 5bD)m2

K −4(2b0 + bD)m2
K −2(4b0 + 3bD + bF )m2

K

ξ
(d,1)
B,η

− 1
3

[
8(b0 + bD − bF )m2

K − 2
9

[
4(3b0 + 4bD)m2

K − 2
3

[
4b0m

2
K − 1

3

[
8(b0 + bD + bF )m2

K

−(2b0 + 3bD − 5bF )m2
π

]
−(3b0 + 7bD)m2

π

]
+(bD − b0)m2

π

]
−(2b0 + 3bD + 5bF )m2

π

]
ξ

(d,2)
B,π 3(b1 + b2 + b3 + 2b4) 2(2b2 + 3b4) 2(4b1 + 2b2 + 3b4) 3(b1 + b2 − b3 + 2b4)

ξ
(d,2)
B,K 2(3b1 + 3b2 − b3 + 4b4) 4

3 (9b1 + b2 + 6b4) 4(b1 + b2 + 2b4) 2(3b1 + 3b2 + b3 + 4b4)

ξ
(d,2)
B,η

1
3 (9b1 + b2 − 3b3 + 6b4) 2(2b2 + b4) 2

3 (2b2 + 3b4) 1
3 (9b1 + b2 + 3b3 + 6b4)

ξ
(d,3)
B,π 6(b5 + b6 + b7 + 2b8) 4(2b7 + 3b8) 4(4b5 + 2b7 + 3b8) 6(b5 − b6 + b7 + 2b8)

ξ
(d,3)
B,K 4(3b5 − b6 + 3b7 + 4b8) 8

3 (9b5 + b7 + 6b8) 8(b5 + b7 + 2b8) 4(3b5 + b6 + 3b7 + 4b8)

ξ
(d,3)
B,η

2
3 (9b5 − 3b6 + b7 + 6b8) 4(2b7 + b8) 4

3 (2b7 + 3b8) 2
3 (9b5 + 3b6 + b7 + 6b8)

Table 4.5: Coefficients of the loop contributions (Fig. 4.1e) to the self-energy of octet baryons
[Eq. (4.27)].

N Λ Σ Ξ

ξ
(e)
NNπ = 3

4 (D + F )2 ξ
(e)
ΛNK = 1

6 (D + 3F )2 ξ
(e)
ΣNK = 1

2 (D − F )2 ξ
(e)
ΞΛK = 1

12 (D − 3F )2

ξ
(e)
NNη = 1

12 (D − 3F )2 ξ
(e)
ΛΛη = 1

3D
2 ξ

(e)
ΣΛπ = 1

3D
2 ξ

(e)
ΞΣK = 3

4 (D + F )2

ξ
(e)
NΛK = 1

12 (D + 3F )2 ξ
(e)
ΛΣπ = D2 ξ

(e)
ΣΣπ = 2F 2 ξ

(e)
ΞΞπ = 3

4 (D − F )2

ξ
(e)
NΣK = 3

4 (D − F )2 ξ
(e)
ΛΞK = 1

6 (D − 3F )2 ξ
(e)
ΣΣη = 1

3D
2 ξΞΞη = 1

12 (D + 3F )2

ξ
(e)
ΣΞK = 1

2 (D + F )2

where m(D)
B denotes the contributions of virtual decuplet resonances up to N3LO. After cal-

culating the Feynman diagrams shown in Fig. 4.2 and subtracting the PCB terms with the
EOMS scheme, the virtual decuplet contributions to the octet baryon masses can be expressed
as

m
(D)
B =

1

(4πFφ)2

∑
φ=π, K, η

ξ
(a)
BD,φH

(a)
B,D(Mφ)

+
1

(4πFφ)2

∑
φ=π, K, η

D′=∆, Σ∗, Ξ∗, Ω−

ξ
(b/c)
BD′,φH

(b/c)
B,D′(Mφ). (4.33)

The first term of Eq. (4.33) is the NNLO contributions of Feynman diagram Fig. 4.2(a). The
corresponding coefficients ξ(a)

BD,φ are listed in Table 4.6 and the loop function H(a)
B,D(Mφ) is

H
(a)
B,D(Mφ) =

1

24m0m2
D

M2
φ

[
2m4

0 + 4m3
0mD − 7m2

0M
2
φ − 4m0mD(m2

D +M2
φ)

−2(m4
D + 3m2

DM
2
φ −M4

φ)
]

− 1

12m3
0m

2
D

M4
φ ln

(
Mφ

mD

)[
6m4

0 + 6m3
0mD +m2

0(6m2
D − 4M2

φ)

+m0(6m3
D − 2mDM

2
φ) + 6m4

D − 4m2
DM

2
φ +M4

φ

]
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+
1

12m3
0m

2
D

(m0 −mD)(m0 +mD)3 ln

(
mDMφ

m2
D −m2

0

)
×
[
m4

0 − 2m2
0(m2

D + 2M2
φ) + 2m0mDM

2
φ +m4

D − 4m2
DM

2
φ

]
− 1

12m3
0m

2
D

√
W

(m2
0 − 2m0mD +m2

D −M2
φ)2(m2

0 + 2m0mD +m2
D −M2

φ)3

×

[
arctan

(
m2

0 +m2
D −M2

φ

W

)
− arctan

(
m2

0 −m2
D +M2

φ

W

)]
, (4.34)

where W = −m4
0 − (m2

D −M2
φ)2 + 2m2

0(m2
D +M2

φ).
The next term is the virtual decuplet contribution at O(p4) from the one-loop diagram

of Fig. 4.2(b) and the wave function renormalization diagrams of Fig. 4.2(c). The Clebsch-
Gordan coefficients ξ(b/c)

BD′,φ are tabulated in Table 4.7, and the loop function H
(b/c)
B,D′(Mφ) has

the following form:

H
(b/c)
B,D (Mφ) =

1

24m2
0m

2
D

m
(2)
B M2

φ

[
2(11m2

0 + 8m0mD + 9m2
D)

×(m2
0 −m2

D) + (5m2
0 + 8m0mD + 18m2

D)M2
φ − 6M4

φ

]
+

1

36m0m3
D

m
(2)
D M2

φ

[
−34m4

0 − 24m3
0mD + 30m4

D

−6m2
DM

2
φ − 6M4

φ + 6m0mD(4m2
D +M2

φ) + 3m2
0(4m2

D + 7M2
φ)
]

− 1

12m4
0m

2
D

m
(2)
B M2

φ ln

(
Mφ

mD

)[
12m5

D(m0 +mD)

+6(m4
0 −m2

0m
2
D − 2m0m

3
D − 3m4

D)M2
φ + 4(m2

0 +m0mD + 3m2
D)M4

φ − 3M6
φ

]
+

1

6m3
0m

3
D

m
(2)
D M2

φ ln

(
Mφ

mD

)[
m5
D(9m0 + 8mD)

+3(m2
0 −m2

D)(2m2
0 +m0mD + 2m2

D)M2
φ −m0(4m0 +mD)M4

φ +M6
φ

]
− 1

12m4
0m

3
D

M2
φ(m0 −mD)2(m0 +mD)4 ln

(
mDMφ

m2
D −m2

0

)
×
[
mD

(
−5m2

0 + 2m0mD − 3m2
D

)
m

(2)
B + 2m0

(
m2

0 −m0mD + 3m2
D

)
m

(2)
D

]
− 1

6m3
D

m0M
4
φ ln

(
mDMφ

µ2

)[
6mD(m0 +mD)m

(2)
B −m0(4m0 + 3mD)m

(2)
D

]
+

1

12m4
0m

3
D

√
W

(m2
0 − 2m0mD +m2

D −M2
φ)(m2

0 + 2m0mD +m2
D −M2

φ)2

×
[
3mD(m2

D −M2
φ)2m

(2)
B − 2m0(m2

D −M2
φ)
(

(3m2
D +M2

φ)m
(2)
D +m2

Dm
(2)
B

)

Table 4.6: Coefficients of the NNLO virtual decuplet contribution to the self-energy of octet
baryons [Eq. (4.33)].

N Λ Σ Ξ

ξ
(a)
BD,π

16
3 C

2 4C2 8
9C

2 4
3C

2

ξ
(a)
BD,K

4
3C

2 8
3C

2 40
9 C

2 4C2

ξ
(a)
BD,η 0 0 4

3C
2 4

3C
2
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Table 4.7: Coefficients of loop diagrams (Fig. 4.2(b/c)) to the self-energy of octet
baryons [Eq. (4.33)].

N Λ Σ Ξ

ξ
(b/c)
N∆,π = 4C2 ξ

(b/c)
ΛΣ∗,π = 3C2 ξ

(b/c)
Σ∆,K = 8

3C
2 ξ

(b/c)
ΞΣ∗,K = C2

ξ
(b/c)
NΣ∗,K = C2 ξ

(b/c)
ΛΞ∗,K = 2C2 ξ

(b/c)
ΣΣ∗,π = 2

3C
2 ξ

(b/c)
ΞΞ∗,π = C2

ξ
(b/c)
ΣΣ∗,η = C2 ξ

(b/c)
ΞΞ∗,η = C2

ξ
(b/c)
ΣΞ∗,K = 2

3C
2 ξ

(b/c)
Ξ∆−,K = 2C2

Table 4.8: Coefficients of LO contribution to the self-energy of decuplet baryons [Eq. (4.36)].

∆ Σ∗ Ξ∗ Ω−

ξD,π t0 + 3tD t0 + tD t0 − tD t0 − 3tD
ξD,K 2t0 2t0 + 2tD 2t0 + 4tD 2t0 + 6tD

+2m2
0m

2
D(m2

D +M2
φ)(m

(2)
B +m

(2)
D ) + 2m3

0

(
2(m2

D −M2
φ)m

(2)
D +m2

Dm
(2)
B

)
−m4

0mD

(
5m

(2)
B + 2m

(2)
D

)
+ 2m5

0m
(2)
D

]
×

[
arctan

(
m2

0 +m2
D −M2

φ

W

)
+ arctan

(
m2

0 −m2
D +M2

φ

W

)]
, (4.35)

where the NLO octet baryon mass, m(2)
B , is given in Eq. (4.32) and the NLO decuplet baryon

mass is
m

(2)
D = −

∑
φ=π,K

ξ
(2)
D,φM

2
φ. (4.36)

The corresponding coefficients ξ(2)
D,φ are listed in Table 4.8. It should be noted that in order to

obtain the results of Eq. (4.33), the decuplet-octet mass difference, δ = mD−m0, is considered
up to all orders [56]. Here we want to mention that there are two diagrams (presented in
Fig. 4.3) contributed to the octet baryon masses up to N3LO. In Ref. [207], it was pointed that
their contributions are small and should be started at O(p5) in EOMS BChPT. Therefore, we
do not include them in this work.

At N3LO, a replacement of meson masses by their O(p4) counterparts in m
(2)
B generates

N3LO contributions to m(4)
B . The corresponding Nambu-Goldstone boson masses up to O(p4)

Figure 4.3: Two feynman diagrams contributing to the octet baryon masses with the interme-
diate decuplet resonances. The other notations are the same as Fig. 4.2.
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can be found in Ref. [34], which read as

M2
π,4 = M2

π,2

{
1 +

M2
π,2

32π2F 2
φ

ln

(
M2
π,2

µ2

)
−

M2
η,2

96π2F 2
φ

ln

(
M2
η,2

µ2

)

+
16

F 2
φ

[(
M2
π,2

2
+M2

K,2

)
(2Lr6 − Lr4) +

M2
π,2

2
(2Lr8 − Lr5)

]}
, (4.37)

M2
K,4 = M2

K,2

{
1 +

M2
η,2

48π2F 2
φ

ln

(
M2
η,2

µ2

)

+
16

F 2
φ

[(
M2
π,2

2
+M2

K,2

)
(2Lr6 − Lr4) +

M2
K,2

2
(2Lr8 − Lr5)

]}
, (4.38)

M2
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)
−
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32π2F 2
φ

ln

(
M2
π,2

µ2

)
+

M2
K,2

48π2F 2
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ln

(
M2
K,2

µ2
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+M2
η,2

[
1 +

M2
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16π2F 2
φ

ln

(
M2
K,2

µ2

)
− Mη,2

24π2F 2
φ

ln

(
Mη,2

µ2

)

+
16

F 2
φ

(
M2
π,2

2
+M2

K,2

)
(2Lr6 − Lr4) + 8

M2
η,2

F 2
φ

(2Lr8 − Lr5)

]

+
128

9

(M2
K,2 −M2

π,2)2

F 2
φ

(3Lr7 + Lr8). (4.39)

The empirical values of 2Lr6 − Lr4 = −0.17 × 10−3 and 2Lr8 − Lr5 = −0.22 × 10−3, and 3Lr7 +

Lr8 = −0.15 × 10−3 are taken from the latest global fit [208], which are evaluated at the
renormalization scale µ = 0.77 GeV. 2 To be consistent with our renormalization scale used for
the one-baryon sector, we have re-evaluated the Lri ’s at µ = 1 GeV.

4.2 Finite-volume corrections

Because lattice QCD simulations are performed in a finite hypercube, the momenta of virtual
particles are discretized. As a result, the simulated results are different from those of infinite
space-time. The difference is termed as finite-volume corrections. In cases where MφL � 1,
the so-called p-regime, ChPT provides a model-independent framework to study FVCs [77, 78].

Physically, finite-volume corrections can be easily understood. Because of the existence of
space-time boundaries, the allowed momenta of virtual particles become discretized, i.e, one
has to replace a momentum integral by a finite sum of discretized momenta,∫ ∞

−∞
dk →

N∑
n=−N+1

(
2π

L

)
n, (4.40)

2It should be noted that the uncertainties of the Lri are quite large. Because the effects of their contributions
are found to be small, we do not take into account the uncertainties of these LECs in our fit of LQCD mass
data.
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with N = L/(2a) (assuming periodical boundary conditions). In LQCD simulations of zero-
temperature physics, the temporal extent is generally larger than the spatial extent such that
the integral in temporal dimension can be treated as if it extends from −∞ and∞. As a result,
only the integral in spatial dimensions should be replaced by an infinite sum. Furthermore, it
is obvious that only loop diagrams are affected by the existence of space-time boundaries.

In the following, we take the one-loop diagram of Fig. 4.1(c) as an example to present the
details of FVCs calculation. The definition of FVCs is the following difference:

δG
(c)
B = G

(c)
B (L)−G(c)

B (∞), (4.41)

where G(c)
B (L) and G

(c)
B (∞) denote the integrals calculated in a finite hypercube and in an

infinite space-time, respectively. These quantities have several features that make calculations
more feasible than a direct computation of G(c)

B (L). First, because G(c)
B (L) and G(c)

B (∞) have
the same ultraviolet behavior, δG(c)

B are finite and can therefore be calculated in four dimen-
sions. Second, the unwelcome PCB terms appearing in a covariant baryon ChPT calculation
are absent because they emerge from short-distance physics while such short-distance proper-
ties are the same in G

(c)
B (L) and G

(c)
B (∞). As a result, PCB terms vanish in the differences

δG
(c)
B and no power-counting-restoration schemes, such as EOMS or IR, are needed to calculate

δG
(c)
B .
Using the Feynman parameterization, one obtains

G
(c)
B (∞) = i

∫ 1

0
dx

∫
d4k

(2π)4

/k(/k − /p+m0)/k

((k − px)2 −M2
B)2

= i

∫ 1

0
dx

∫
d4k

(2π)4

/k(k2 − 2k · p) + 2k2M0

((k − px)2 −M2
B)2

, (4.42)

whereM2
B = x2m2

0 +(1−x)M2
φ− iε. Calculating the integral [Eq. (4.42)] in a finite hypercube

requires treating the temporal and spatial dimensions differently. We choose to work in the
baryon rest frame, i.e., pµ = (m0,~0). In this frame,

G
(c)
B = i

∫ 1

0
dx

∫
dk0

2π

∫
d~k

(2π)3

(γ0k0 − ~γ · ~k)(k2
0 − ~k2 − 2k0m0) + 2(k2

0 − ~k2)m0[
(k0 − xm0)2 − ~k2 −M2

B

]2 . (4.43)

This can be easily calculated by performing a shift in k0 (k0 → k′0 + xm0), Wick rotating k′0
(k′0 → ik′0), and then performing the integration over k′0. The result is

G
(c)
B =

∫ 1

0
dx

∫
d~k

(2π)3

1

2
m0(2x+ 1)

(
1

~k2 +M2
B

)1/2

−1

4
m0(m2

0x
3 +M2

B(x+ 2))

(
1

~k2 +M2
B

)3/2
 . (4.44)

After utilizing the master formula [209], one can easily obtain

δG
(c)
B =

∫ 1

0
dx

[
1

2
m0(2x+ 1)δ1/2(M2

B)
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−1

4
m0(m2

0x
3 +M2

B(x+ 2))δ3/2(M2
B)

]
, (4.45)

where

δr(M2) =
2−1/2−r(

√
M2)3−2r

π3/2Γ(r)

∑
~n6=0

(L
√
M2|~n|)−3/2+rK3/2−r(L

√
M2|~n|), (4.46)

where Kn(z) is the modified Bessel function of the second kind, and
∑
~n6=0

≡
∞∑

nx=−∞

∞∑
ny=−∞

∞∑
nz=−∞

(1− δ(|~n|, 0)) with ~n = (nx, ny, nz).

In a similar way, one can calculate FVCs of Fig. 4.1(d,e)

δG
(d,1)
B (Mφ) =
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2
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(
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φ

)
, (4.47)
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2
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)
, (4.48)
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B (Mφ) =
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)
, (4.49)
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. (4.50)

In addition, when the virtual decuplet baryon contributions are taken into account, the
FVCs to the loop results of Fig. 4.2(a,b,c) are
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B,D =
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and
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+3m0mDM2
Dx
[
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(2)
B −m

(2)
D

)
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(
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D

)}
, (4.52)

respectively, withM2
D = x2m2

0 − x(m2
0 −m2

D) + (1− x)M2
φ − iε.

4.3 Finite lattice spacings discretization effects

To apply ChPT to the study of lattice simulations, in principle, one should first take the
continuum limit of LQCD data, since ChPT describes continuum QCD and is not valid for
nonzero lattice spacing. However, nowadays it is a common practice to assume that lattice
spacing artifacts for current LQCD setups of a ≈ 0.1 fm are small and can be treated as
systematic uncertainties.

In order to study discretization effects on LQCD simulations, one can first write down
Symanzik’s effective field theory [82–85], a continuum effective field theory which describes
the lattice field theory close to the continuum limit, and then one can extend ChPT to be
consistent with this EFT with additional symmetry breaking parameters. In this way, the chiral
expansion results can naturally encode lattice spacing effects (see, e.g. Ref. [210]). Sharpe
and Singleton [211] and Lee and Sharpe [212] first extended ChPT to include finite lattice
spacing effects up to O(a) for Wilson fermions [17] (WChPT) and staggered fermions [137, 139]
(SChPT), respectively. Later, Munster and Schmidt [213] applied WChPT to the study of
discretization artifacts of twisted mass fermions (tmChPT) [141, 142].

In the past decade, discretization effects on the ground-state meson/baryon properties, such
as masses, decay constants, electromagnetic form factors, etc., have been extensively studied
in WChPT. In the mesonic sector, the masses and decay constants of the Nambu-Glodstone
mesons were first studied up to O(m2

q) and O(a) for the Wilson action [86] and for the mixed
action [87], where Wilson sea quarks and Ginsparg-Wilson valence quarks are employed. These
studies were subsequently extended to next-to-leading order (up to O(a2)) [88, 89]. In the one-
baryon sector, a systematic study of the nucleon properties up to O(a) was first performed
by Beane and Savage for both the mixed and the unmixed action [90]. The electromagnetic
properties of the octet mesons as well as of the octet and decuplet baryons were also studied up
to O(a) for both the mixed and the unmixed action [93]. Discretization effects on the nucleon
and ∆ masses [91] as well as on the vector meson masses [92] were also studied up to O(a2).
The EFT for the anisotropic Wilson lattice action has been formulated up to O(a2) [94] as
well.

In this subsection, we aim to study the discretization effects of the LQCD simulations
of the ground-state octet baryon masses up to O(a2) in covariant BChPT with the EOMS
renormalization scheme. Firstly, we briefly review the continuum effective action up to and
including O(a2). After, we follow closely the procedure and notations of Ref. [91] and construct
for the first time the chiral Lagrangians incorporating a finite lattice spacing for the Wilson
action in the u, d, and s three-flavor one-baryon sector.
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4.3.1 Continuum effective action

Close to the continuum limit, LQCD can be described by an effective action, the ‘Symanzik
action’ [82, 83], which is expanded in powers of the lattice spacing a as

Seff = S0 + aS1 + a2S2 + · · ·

=

∫
d4x(L(4) + aL(5) + a2L(6) + · · · ), (4.53)

where the index i = 4, 5, ... denotes the dimension mass. The L(4) is the normal (contin-
uum) QCD Lagrangian and the two new terms L(5) and L(6) are introduced to include the
discretization effects of LQCD. The Lagrangian L(5) contains chiral breaking terms only, while
L(6) contains both chiral invariant and breaking terms. In the u, d, and s three-flavor sector,
QCD Lagrangian is

L(4) = ψ̄q(i /D −M)ψq, (4.54)

with the quark field ψq and the quark mass matrixM = diag(ml,ml,ms) in the isospin limit
(mu = md ≡ ml), and /D = Dµγ

µ with Dµ the covariant derivative.
At O(a), there is only the Pauli term left by using equations of motion to redefine the

effective fields [85]
aL(5) = acSWψ̄σ

µνGµνωqψ, (4.55)

where Gµν = [Dµ, Dν ] and cSW is the Sheikholeslami-Wohlert (SW) [84] coefficient that must
be determined numerically. The ωq (q = u, d, s) is a constant which is determined by the
kind of lattice fermions employed in LQCD simulations: ωq = 1 for Wilson fermions [17] and
ωq = 0 for Ginsparg-Wilson (GW) fermions [143]. Similar to the quark masses, the ωq’s are
usually collected in the Wilson matrix,

W = diag(ωl, ωl, ωs), (4.56)

with conserved isospin symmetry (ωu = ωd ≡ ωl). This term breaks chiral symmetry in
precisely the same way as the quark mass term. It should be noted that the Pauli term can be
canceled by adding the clover term to the lattice action [89], resulting in the O(a)-improved
Wilson fermion action [84, 85, 214, 215].

Up to O(a2), the Symanzik action for Wilson fermions has been extensively studied in
Refs. [84, 88, 89]. In total, there are 18 operators appearing in L(6). They can be classified into
operators of the following five types according to whether or not they break chiral symmetry
and the O(4) rotation symmetry [91]:

• L(6)
1 : quark bilinear operators that conserve chiral symmetry,

ψ̄ /D
3
ψ, ψ̄(DµDµ /D + /DDµDµ)ψ, ψ̄Dµ /DDµψ. (4.57)

• L(6)
2 : quark bilinear operators that break chiral symmetry,

ψ̄mqDµDµψ, 〈mq〉ψ̄DµDµψ, ψ̄mqiσµνGµνψ, 〈mq〉ψ̄iσµνGµνψ. (4.58)

• L(6)
3 : four-quark operators that conserve chiral symmetry,

(ψ̄γµψ)2, (ψ̄γµγ5ψ)2, (ψ̄taγµψ)2, (ψ̄taγµγ5ψ)2, (4.59)

where ta are the SU(3) generators, a = 1, · · · , 8.
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• L(6)
4 : four-quark operators that break chiral symmetry,

(ψ̄ψ)2, (ψ̄γ5ψ)2, (ψ̄σµνψ)2, (ψ̄taψ)2, (ψ̄taγ5ψ)2, (ψ̄taσµνψ)2. (4.60)

• L(6)
5 : quark bilinear operators that break the O(4) rotation symmetry,

ψ̄γµDµDµDµψ. (4.61)

It should be noted that fermionic operators that conserve chiral symmetry first appear at
O(a2).

4.3.2 Wilson chiral Lagrangians

In order to construct the chiral Lagrangians of WChPT, one has to write down the most general
Lagrangians that are invariant under the symmetries of the continuum EFT. This can be done
by following the standard procedure of spurion analysis [88, 89]. In practice, in order to obtain
the corresponding a-dependent chiral Lagrangians, one only needs to know which symmetries
are broken and how [91]. Before writing down the chiral Lagrangians up to O(a2), one has to
first specify a chiral power-counting scheme, which should be enlarged to include the lattice
spacing a. In LQCD simulations, the following hierarchy of energy scales is satisfied:

mq � ΛQCD �
1

a
. (4.62)

If one assumes that the size of chiral symmetry breaking due to light-quark masses and dis-
cretization effects are of comparable size, as done in Refs. [89–91], one has the following ex-
pansion parameters:

ε2 ∼ mq

ΛQCD
∼ aΛQCD, (4.63)

where ε denotes a generic small quantity and ΛQCD ≈ 300 MeV denotes the typical low energy
scale of QCD. Up to O(a2), the a-dependent chiral Lagrangians contain terms of O (a, amq,
a2) and can be written as

Leff
a = LO(a) + LO(amq)

+LO(a2)
1 + LO(a2)

2 + LO(a2)
3 + LO(a2)

4 + LO(a2)
5 , (4.64)

and LO(a2)
i (i = 1, . . . , 5) are the five classes of chiral Lagrangians corresponding to the previous

five types of operators appearing in the Symanzik action at O(a2).
The chiral Lagrangian at O(a) can be written as

LO(a) = b̄0〈B̄B〉〈ρ+〉+ b̄D〈B̄[ρ+, B]−〉+ b̄F 〈B̄[ρ+, B]+〉, (4.65)

where b̄0, b̄D, and b̄F are the unknown LECs of dimension mass−1. The new operator ρ+ =

u†ρu† + uρ†u and ρ+ transforms under chiral rotation (R), parity transformation (P), charge
conjugation transformation (C) and hermitic conjugation transformation in the following way:
ρ+

R−→ hρ+h
† with h ∈ SU(3)V , ρ+

P−→ ρ+, ρ+
C−→ ρT+, and ρ+

h.c.−−→ ρ+. The matrix ρ is related
to the Wilson matrix [Eq. (4.56)] via [86]

ρ = 2acSWW0W, (4.66)
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( a ) ( b ) ( c ) ( d )

Figure 4.4: Feynman diagrams contributing to the a-dependence of octet baryon masses up to
O(a2). The solid lines represent octet baryons and the dashed lines denote pseudoscalar mesons.
The boxes (diamonds) indicate the O(a) (O(a2)) vertices. The circle-cross is an insertion from
the LO(a). The wave function renormalization diagrams are not explicitly shown but included
in the calculation.

which introduces explicit chiral symmetry breaking because of the finite lattice spacing a. The
constantW0 = −〈0|q̄σµνGµνq|0〉/F 2

φ is an unknown dimensional quantity that is related to the
scale Λχ.

The O(amq) Lagrangian has the following form:

LO(amq) = b̄1〈B̄χ+ρ+B〉+ b̄2〈B̄χ+Bρ+〉+ b̄3〈B̄ρ+Bχ+〉+ b̄4〈B̄Bχ+ρ+〉
+b̄5〈B̄χ+〉〈ρ+B〉+ b̄6〈B̄ρ+〉〈χ+B〉+ b̄7〈B̄[χ+, B]〉〈ρ+〉
+b̄8〈B̄{χ+, B}〉〈ρ+〉+ b̄9〈B̄[ρ+, B]〉〈χ+〉+ b̄10〈B̄{ρ+, B}〉〈χ+〉
+b̄11〈B̄B〉〈χ+〉〈ρ+〉+ b̄12〈B̄B〉〈χ+ρ+〉, (4.67)

where b̄1,...,12 are unknown LECs of dimension mass−3. One can eliminate the b̄3 term by
use of the following identity valid for any 3 × 3 matrix A derived from the Cayley-Hamilton
identity [216]: ∑

perm=6

〈A1A2A3A4〉 −
∑

perm=8

〈A1A2A3〉〈A4〉 −
∑

perm=3

〈A1A2〉〈A3A4〉

+
∑

perm=6

〈A1A2〉〈A3〉〈A4〉 − 〈A1〉〈A2〉〈A3〉〈A4〉 = 0, (4.68)

where ‘perm’ stands for permutation number. In the end, there are 11 independent terms left.
At O(a2), the previous five operators in the Symanzik action can be mapped into the EFT

with five classes of chiral Lagrangians LO(a2)
i (i = 1, . . . , 5). Following the notation of Ref. [91],

the first class of chiral Lagrangians can be written as

LO(a2)
1 = a2c2

SWW
2
0

[
c̄1〈B̄B〉+ c̄2〈O+〉〈B̄B〉+ c̄3〈B̄[O+, B]+〉+ c̄4〈B̄[O+, B]−〉

]
, (4.69)

where the operator O+ is defined as

O+ = 2
[
u†(W −W)u+ u(W −W)u†

]
, (4.70)

with W = 1−W = diag(1−ωl, 1−ωl, 1−ωs), and c̄1,...,4 are the unknown LECs of dimension
mass−3.

Because the second type of operators have an insertion of the quark mass mq, the chiral
order of the corresponding chiral Lagrangians is at least O(p6), which is beyond the present
work and will not be shown.

There are seven independent terms in the third class of chiral Lagrangians

LO(a2)
3 = a2c2

SWW
2
0

[
ē1〈B̄[O+, [O+, B]]〉+ ē2〈B̄[O+, {O+, B}]〉
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+ē3〈B̄{O+, {O+, B}}〉+ ē4〈B̄O+〉〈O+B〉
+ē5〈B̄[O+, B]〉〈O+〉+ ē6〈B̄{O+, B}〉〈O+〉
+ē7〈B̄B〉〈O+〉2 + ē8〈B̄B〉〈O2

+〉
]
, (4.71)

where the ēi are the unknown LECs of dimension mass−3. Furthermore, we can eliminate the
ē6 term by use of the Cayley-Hamilton identity [216]:

〈B̄{X2, B}〉+ 〈B̄XBX〉 − 1

2
〈B̄B〉〈X2〉 − 〈B̄X〉〈BX〉 = 0, (4.72)

with X = O+ − 1
3〈O+〉 being a 3× 3 traceless matrix.

Four-quark operators that break chiral symmetry can be mapped into the following chiral
Lagrangian:

LO(a2)
4 = d̄1〈B̄[ρ+, [ρ+, B]]〉+ d̄2〈B̄[ρ+, {ρ+, B}]〉

+d̄3〈B̄{ρ+, {ρ+, B}}〉+ d̄4〈B̄ρ+〉〈ρ+B〉
+d̄5〈B̄[ρ+, B]〉〈ρ+〉+ d̄7〈B̄B〉〈ρ+〉2

+d̄8〈B̄B〉〈ρ2
+〉, (4.73)

with the seven unknown LECs d̄i of dimension mass−3. Because the chiral transformation prop-
erties of ρ+ and χ+ are the same, the chiral Lagrangian has the same form as the corresponding
fourth-order chiral Lagrangian of ChPT.

For the O(4) breaking operators, the mapped chiral Lagrangian can be written as

LO(a2)
5 = a2c2

SWW
2
0

[
f̄1〈B̄DµDµDµDµB〉+ f̄2〈O+〉〈B̄DµDµDµDµB〉

+f̄3〈B̄DµDµDµDµ[O+, B]+〉+ f̄4〈B̄DµDµDµDµ[O+, B]−〉
]
, (4.74)

where the f̄i are the unknown LECs of dimension mass−3. Their contributions to the octet
baryon masses can be absorbed by the terms of class one, i.e., Eq. (4.69).

4.3.3 Discretization effects up to O(a2)

The octet baryon masses up to N3LO and with finite lattice spacing a contributions up to
O(a2) can be expressed as

mB = m0 +m
(2)
B +m

(3)
B +m

(4)
B +m

(a)
B , (4.75)

where m(a)
B denotes the discretization effects up to O(a2). In our power-counting scheme, it

contains the following three contributions:

m
(a)
B = m

O(a)
B +m

O(amq)
B +m

O(a2)
B . (4.76)

Here, we need to mention that virtual decuplet contributions are not explicitly included,
since their effects on the chiral extrapolation and the finite-volume corrections are relatively
small [65].

In the case of unmixed Wilson action, where the u, d, and s quarks are all Wilson fermions,
the Wilson matrix can be written as W = diag(1, 1, 1). One can easily compute the O(a)

contributions of the diagram Fig. 4.4(a) to the octet baryon masses,

m
O(a)
B = −4acSWW0(3b̄0 + 2b̄D). (4.77)
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Table 4.9: Coefficients of the O(amq) contributions to octet baryon masses (Eq. 4.78).

ξl ξs

N B̄1 + 2B̄3 B̄2 + B̄3

Λ 1
3(B̄1 + B̄2 + 6B̄3) 1

3(2B̄1 + 2B̄2 + 3B̄3)

Σ B̄1 + B̄2 + 2B̄3 B̄3

Ξ B̄2 + 2B̄3 B̄1 + B̄3

The O(amq) contributions can be written as

m
O(amq)
B = −16acSWW0B0(ξlml + ξsms)

= −8acSWW0

(
ξlM

2
π + ξs(2M

2
K −M2

π)
)
, (4.78)

and the coefficients ξl and ξs are tabulated in Table 4.9. We have introduced the following
combinations of LECs: b̄1 + b̄2 +3b̄7 +3b̄8 = B̄1, b̄4−3b̄7 +3b̄8 = B̄2, and 2b̄10 +3b̄11 + b̄12 = B̄3.
Hence, there are 3 independent combinations. In obtaining the above results, the light-quark
masses have been replaced by the leading-order pseudoscalar meson masses: ml = 1

2B0
M2
π and

ms = 1
2B0

(2M2
K −M2

π).
The O(a2) contributions are not only from the fourth-order tree-level diagram Fig. 4.4(b),

but also from the one-loop diagrams of Fig. 4.4(c,d)

m
O(a2)
B = −a2c2

SWW
2
0

(
C̄ + 16D̄ + 16Ē

)
− 1

(4πFφ)2
acSWW0

∑
π, K, η

ξ
(c)
B,φH

(c)
B (Mφ)

+
1

(4πFφ)2

∑
π, K, η

ξ
(d)
BB′,φH

(d)
B,B′(Mφ), (4.79)

where C̄ = c̄1 + 4(3c̄2 + 2c̄3), D̄ = 4d̄3 + 9d̄7 + 3d̄8, and Ē = 4ē3 + 9ē7 + 3ē8. We introduce
C̄ + 16D̄+ 16Ē = 16X̄ as one free LEC in the fitting process. The second line of Eq. (4.79) is
for the contributions from the tadpole diagram of Fig. 4.4c, and the corresponding coefficients
ξ

(c)
B,φ are listed in Table 4.10. The last term is for the contributions from the one-loop diagram

of Fig. 4.4d, and the coefficients ξ(d)
BB′,φ are already given in Table 4.5. The loop diagrams

H
(c)
B (Mφ) and H(d)

BB′(Mφ) read

H
(c)
B (Mφ) = M2

φ

[
1 + ln

(
µ2

M2
φ

)]
, (4.80)

H
(d)
BB′(Mφ) = m

O(a)
B

 2M5
φ

m2
0

√
4m2

0 −M2
φ

arccos

(
Mφ

2m0

)
+
M4
φ

m2
0

ln

(
M2
φ

m2
0

)

+2M2
φ ln

(
m2

0

µ2

)]
, (4.81)

where the mO(a)
B is for the leading-order discretization effects of Eq. (4.77).
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Table 4.10: Coefficients of the tadpole diagram contributions to octet baryon
masses (Eq. (4.79)).

N Λ Σ Ξ

ξ
(c)
B,π 6(2b̄0 + b̄D + b̄F ) 4(3b̄0 + b̄D) 12(b̄0 + b̄D) 6(2b̄0 + b̄D − b̄F )

ξ
(c)
B,K 4(4b̄0 + 3b̄D − b̄F ) 8

3(6b̄0 + 5b̄D) 8(2b̄0 + b̄D) 4(4b̄0 + 3b̄D + b̄F )

ξ
(c)
B,η

2
3(6b̄0 + 5b̄D − 3b̄F ) 4(b̄0 + b̄D) 4

3(3b̄0 + b̄D) 2
3(6b̄0 + 5b̄D + 3b̄F )



Chapter 5

Systematic study of lattice octet
baryon masses

In this chapter, we discuss a systematic study of the lattice octet baryon masses by performing
the chiral extrapolation of LQCD data, self-consistently including finite-volume corrections
and finite lattice spacing discretization effects of LQCD. In order to fix all the unknown LECs
and test the consistency of current lattice simulations, we perform a simultaneous fit of all the
publicly available nf = 2 + 1 LQCD data from the PACS-CS, LHPC, HSC, QCDSF-UKQCD
and NPLQCD collaborations. The contributions of virtual decuplet baryons are also explicitly
taken into account to study their effects on the chiral extrapolation of octet baryon masses
and finite-volume corrections.

5.1 Chiral extrapolation of octet baryon masses

In this section, we study light quark mass dependence of lowest-lying octet baryon masses
using the N3LO EOMS-BChPT mass formulas [Eq. (4.20)] by fitting nf = 2 + 1 LQCD
simulation results. As mentioned above, there are 19 unknown LECs, which cannot be fully
determined by the lattice data of a single LQCD simulation. Therefore, we decided to fit
all the published lattice results of ground-state octet baryon masses obtained by different
collaborations, including the PACS-CS [23], LHPC [25], HSC [26], QCDSF-UKQCD [28] and
NLPQCD [29] collaborations. In performing such a study, we can test the consistency of all
these lattice simulations, which used totally different setups.

In the fit process, we use the meson decay constant Fφ = 0.0871 GeV [217]. In principle
at N3LO one can use either the chiral limit value Fφ = 0.0871 GeV obtained from a two-loop
ChPT calculation [217], or the SU(3) averaged value, Fφ = 1.17Fπ with Fπ = 0.0924 GeV as in
Ref. [56]. The difference is of higher chiral order. In practice, we found that at N3LO the results
are not sensitive to these two options while at NNLO the SU(3) averaged value is preferred
by the LQCD data. For the baryon axial coupling constants D and F , we use the standard
value D = 0.8 and F = 0.46 with D + F = 1.26 as determined from nuclear beta decay. We
have allowed D and F to vary in the fits and found that the optimal values determined by the
lattice data are consistent with the phenomenological values. The renormalization scale µ is
set at 1 GeV, as in Ref. [56].

As mentioned in Chapter 2, the fitted lattice data should fulfilMπ < 500 MeV andMφL > 4

to ensure that the N3LO BChPT is valid for these pion (light-quark) masses and lattice volumes.
After selection, there are 11 data sets from the PACS-CS, LHPC, HSC, QCDSF-UKQCD and
NPLQCD collaborations, respectively. The results of different collaborations are not correlated
with each other, but the data from the same collaboration are partially correlated by the
uncertainties propagated from the determination of the lattice spacing. Therefore, in order



58 Chapter 5. Systematic study of lattice octet baryon masses

Table 5.1: Values of the LECs and fit-χ2/d.o.f. from the best fits. We have performed fits to
the LQCD and experimental data at O(p2), O(p3), and O(p4) , without ( /D) and with (D) the
explicit contributions of the virtual decuplet baryons.

/D-O(p2) /D-O(p3) /D-O(p4) D-O(p4)

m0 [MeV] 900(6) 767(6) 880(22) 908(24)

b0 [GeV−1] −0.273(6) −0.886(5) −0.609(19) −0.744(16)

bD [GeV−1] 0.0506(17) 0.0482(17) 0.225(34) 0.355(20)

bF [GeV−1] −0.179(1) −0.514(1) −0.404(27) −0.552(28)

b1 [GeV−1] – – 0.550(44) 1.08(6)

b2 [GeV−1] – – −0.706(99) 0.431(93)

b3 [GeV−1] – – −0.674(115) −1.83(15)

b4 [GeV−1] – – −0.843(81) −1.57(4)

b5 [GeV−2] – – −0.555(144) −0.355(74)

b6 [GeV−2] – – 0.160(95) −0.423(117)

b7 [GeV−2] – – 1.98(18) 2.79(15)

b8 [GeV−2] – – 0.473(65) −1.73(6)

d1 [GeV−3] – – 0.0340(143) 0.0157(130)

d2 [GeV−3] – – 0.296(53) 0.445(57)

d3 [GeV−3] – – 0.0431(304) 0.328(18)

d4 [GeV−3] – – 0.234(67) −0.117(59)

d5 [GeV−3] – – −0.328(60) −0.853(77)

d7 [GeV−3] – – −0.0358(269) −0.425(39)

d8 [GeV−3] – – −0.107(32) −0.557(56)

χ2/d.o.f. 11.8 8.6 1.0 1.0

to correctly calculate the χ2 we incorporate the inverse of the resulting correlation matrix
Cij = σiσjδij + ∆ai∆aj for each lattice ensemble (see Ref. [56]) , where the σi are the lattice
statistical errors and the ∆ai are the fully-correlated errors propagated from the determination
of lattice spacing ai. The FVCs to the baryon masses are consistently calculated in the EOMS-
BChPT framework as explained in Section 4.3.

We perform a χ2 fit to the lattice data and the physical octet baryon masses by varying
the 19 LECs. The so-obtained values of the LECs from the best fits are listed in Table 5.1.
We remark that in the following the experimental octet baryon masses are always included in
the fit unless otherwise stated. This way, the fitted values of LECs are better constrained.

For the sake of comparison, we have fitted lattice data using the NLO and NNLO EOMS-
BChPT. It should be noted that since at NLO, ChPT does not generate any FVCs, we have
shifted LQCD data by subtracting FVCs calculated by N3LO EOMS-BChPT with the LECs
determined from the corresponding best fit. The values of the LECs b0, bD, bF , andm0 are tab-
ulated in Table 5.1. An order-by-order improvement is clearly seen, with decreasing χ2/d.o.f.

at each increasing order. Apparently, only using the O(p3) chiral expansion, we cannot give a
good description of the lattice data from the five collaborations. The corresponding χ2/d.o.f.

is about 8.6. On the other hand, in the N3LO fit of lattice data and experimental octet baryon
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Table 5.2: Finite-volume corrections (in units of MeV) to lattice octet baryon masses in co-
variant BChPT up to N3LO.

Mπ δmN δmΛ δmΣ δmΞ MπL MKL MηL

PACS-CS 296 7 2 5 2 4.3 8.7 9.8
384 3 1 2 1 5.7 8.6 9.3
411 2 0 1 1 6.0 9.3 10.2

LHPC 356 11 6 7 5 4.5 7.6 8.4
495 2 1 1 1 7.5 8.6 9.0

HSC 383 3 2 2 1 5.7 8.1 8.8
449 29 26 21 21 4.5 5.8 6.2

QCDSF-UKQCD 320 16 13 12 11 4.1 5.8 6.2
NPLQCD 388 10 7 6 6 4.8 6.8 7.3

388 3 1 2 1 5.8 8.1 9.8
388 0 0 0 9 7.7 10.8 11.7

masses, χ2/d.o.f. = 1.0. In addition, the values of the fitted LECs all look very natural. 1 It
should be noted that the baryon mass in the chiral limit, m0 = 880 MeV, seems to be consistent
with the SU(2)-BChPT value [81, 218].

Finally, it is important to point out that including the FVCs is important to understand
the LQCD results in ChPT at N3LO. In Table 5.2, we tabulate the values of FVCs calculated
in N3LO BChPT for each lattice ensemble in our fit. We can see that, in the SU(3) sector,
FVCs are sizable evenMφL > 4. Without FVCs taken into account, the best fit to lattice data
yields χ2/d.o.f. ∼ 1.9.

In Fig. 5.1, setting the strange-quark mass to its physical value, we plot the light-quark
mass evolution of N , Λ, Σ and Ξ as functions of M2

π using the LECs from Table 5.1. We can
see that the NNLO fitting results are more curved and do not describe well lattice data. On
the contrary the N3LO fit can give both a good description of lattice data and experimental
results. The rather linear dependence of the lattice data on M2

π at large light quark masses,
which are exhibited both by the lattice data [25] and reported by other groups, is clearly seen.

5.2 Virtual decuplet contributions

In this section, we perform a systematic study of virtual decuplet effects on the chiral extrap-
olation of octet baryon masses and the corresponding finite-volume corrections of lattice by
explicitly including their contributions and comparing the fitting results with the octet-only
ones.

Light-quark mass dependence of the octet baryon masses

Up to N3LO, there are 19 unknown LECs (m0, b0, bD, bF , b1−8, and d1−5, 7, 8) in the octet-
only EOMS BChPT [Eq. (4.20)]. To take into account the contributions of the decuplet

1We have checked that removing from lattice data the two lattice points of LHPC and HSC with Mπ > 400

MeV and MK > 580 MeV does not change qualitatively our results.



60 Chapter 5. Systematic study of lattice octet baryon masses

 0.8

 1

 1.2

 1.4

 1.6

Mπ
2   [GeV2]

O
ct

et
 B

ar
yo

n 
M

as
se

s 
   

[G
eV

]

Ν Λ

Σ Ξ

Mπ
2   [GeV2]

O
ct

et
 B

ar
yo

n 
M

as
se

s 
   

[G
eV

]

Ν Λ

Σ Ξ

 1

 1.2

 1.4

 1.6

 0  0.1  0.2  0.3  0.4

Mπ
2   [GeV2]

O
ct

et
 B

ar
yo

n 
M

as
se

s 
   

[G
eV

]

Ν Λ

Σ Ξ

 0  0.1  0.2  0.3  0.4  0.5

Mπ
2   [GeV2]

O
ct

et
 B

ar
yo

n 
M

as
se

s 
   

[G
eV

]

Ν Λ

Σ Ξ

Fit NLO
Fit NNLO

Fit N3LO
Expt.

PACS-CS
LHPC
QCDSF-UKQCD
HSC

Figure 5.1: The lowest-lying baryon octet masses as functions of the pion mass. The dot-
dashed lines and the dotted lines are the best NLO and NNLO fits to lattice data. The
bands correspond to the best N3LO fits to lattice results. In obtaining the ChPT results,
the strangeness quark mass has been fixed at its physical value. The lattice data points are
obtained from the original ones by setting the strange quark mass at its physical value.

baryons, one has to introduce four more LECs, mD, t0, tD and C [Eq. (4.33)]. The φBD
coupling constant C can be fixed to the SU(3)-average value among the different decuplet-to-
octet pionic decay channels, i.e., C = 0.85 [119] 2. A moderate variation of C has no significant
effects on our final results. The LECs t0, tD, and mD can be fixed by fitting the NLO decuplet
mass formula MD = mD −m(2)

D to the physical decuplet baryon masses. Because t0 and mD

cannot be disentangled at the physical point, one only obtains a combination of mD and t0
with meff

D = mD − t0(2M2
K + M2

π) = 1.215 GeV and tD = −0.326 GeV−1. In the following,
the octet-decuplet mass splitting δ = mD −m0 is fixed to be 0.231 GeV — the average mass
gap between the octet and decuplet baryons. Therefore, one can fix the four LECs in the
following way: mD = m0 + 0.231 GeV, t0 = (m0 − 0.984)/0.507 GeV−1, tD = −0.326 GeV−1

and C = 0.85. As a result, the same 19 LECs as those in the octet-only BChPT need to be
determined. The other fixed coupling constants are the same as previous section: the meson

2In Refs. [56, 118] the value of C is fixed from the ∆(1232)→ πN decay rate, which yields C = 1.0. But in
our previous study of the NPLQCD data, this coupling turned out to be somewhat smaller [57].
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decay constant Fφ = 0.0871 GeV, the baryon axial coupling constants D = 0.8, F = 0.46 and
the renormalization scale µ = 1 GeV.

We utilize the formulas of Eq. (4.32) to fit the lattice octet baryon masses and the ex-
perimental values [161]. The LQCD data to be studied are taken from the PACS-CS [23],
LHPC [25], HSC [26], QCDSF-UKQCD [28] and NPLQCD [29] data satisfyingMπ < 500 MeV
and MφL > 4, the same data set as previous section. The so-obtained values of the LECs
from the best fit and the corresponding χ2/d.o.f. are tabulated in Table 5.1. For χ2/d.o.f.,
from the comparison with the octet-only best fit results, one can conclude that the inclusion of
virtual decuplet baryons does not change the description of LQCD data. On the other hand,
the values of LECs have changed a lot, as can be clearly seen from Table 5.1 3. This confirms
the assumption that using only octet baryon mass data, one cannot disentangle virtual decu-
plet contributions from those of virtual octet baryons and tree-level diagrams [64]. In other
words, for the static properties of octet baryons, most contributions of the virtual decuplet are
hidden in the relevant LECs, as one naively expects. Below, we will see that their inclusion,
however, does improve the description of the volume-dependence of LQCD data, as also noted
in Ref. [57].

In Fig. 5.2, setting the strange-quark mass to its physical value, we show the pion mass
dependence of octet baryon masses in the N3LO EOMS BChPT with and without virtual
decuplet baryon contributions. It is clear that the two N3LO fits give the same description of
lattice data, as can be inferred from the same χ2/d.o.f. shown in Table 5.3.

Finite-volume corrections to the octet baryon masses

In Ref. [57], we have studied the FVCs to lowest-lying octet baryon masses using the EOMS
BChPT up to NNLO, and found that finite-volume effects are very important and cannot be
neglected. Therefore, in this work FVCs are self-consistently included in Eq. (4.32) to analyze
the lattice data. The NPLQCD [29] simulation is performed with the same pion mass of
Mπ ' 390 MeV and at four different lattice sizes L ∼ 2.0, 2.5, 3.0 and 3.9 fm. Therefore, it
provides a good opportunity to study FVCs to the octet-baryon masses.

In Fig. 5.3, we contrast the NPLQCD data with the N3LO EOMS BChPT using the LECs
from Table 5.1. As stated in Ref. [64], three sets of the NPLQCD data with MφL > 4 are
included in lattice data and denoted by solid points in Fig. 5.3. Another set with MπL = 3.86

(hollow points) is not included. Both the octet-only and the octet plus decuplet (O+D) BChPT
can give a reasonable description of the FVCs. In the e−mπL/(mπL) ≤ 0.2 region, these two
fits give essentially the same results. With the increase of e−mπL/(mπL) (the decrease of lattice
size L), the O+D BChPT results are in better agreement the NPLQCD data, especially for the
nucleon mass. It seems that the virtual decuplet baryons can help to improve the description
of the FVCs, although the BChPT results are still a bit larger than the LQCD data at small
MφL. It is also indicated that including MφL = 3.86 could give a better description of
FVCs. Therefore, in the following, we would like to slightly loose the constraint of MφL with
MφL > 3.8.

3The same phenomenon has been observed in the studies of octet baryon magnetic moments [118] and octet
baryon masses up to NNLO [119].
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5.3 Continuum extrapolation of lattice data

In this section, we employ the octet baryon masses obtained in Wilson covariant BChPT up
to N3LO [Eq. (4.75)] to estimate discretization effects of the current LQCD simulations by
performing a simultaneous fit of the latest nf = 2 + 1 LQCD data, which are obtained with
the O(a)-improved Wilson action.

At present, most LQCD simulations employ a single lattice spacing a and take discretization
effects as systematic uncertainties. A similar strategy has been adopted by theoretical studies.
On the other hand, one may combine the LQCD simulations from different collaborations and
perform a quantitative study of the discretization effects. Among the latest LQCD simulations,
several collaborations employed the O(a)-improved or ‘clover’ Wilson action, e.g. PACS-CS
(with a = 0.0907(14) fm and cSW = 1.715), QCDSF-UKQCD (with a = 0.0795(3) fm and
cSW = 2.65), HSC and NPLQCD (with as = 0.1227(8) fm, at = 0.03506(23) fm, csSW = 2.6,
and ctSW = 1.8) collaborations. These simulations are performed at three different values of
lattice spacing a and with different light-quark masses and, therefore, in principle allow for a
quantitative study of the discretization effects on the octet baryon masses.
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Figure 5.2: Pion mass dependence of the LQCD data in comparison with the best fits of the
EOMS BChPT up to N3LO with (solid lines) and without (dashed lines) the virtual decuplet
contributions. The lattice data have been extrapolated to the physical strange-quark mass and
infinite space-time.
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Figure 5.3: Lattice volume dependence of the NPLQCD data in comparison with the EOMS
BChPT up to N3LO with (solid lines) and without (dashed lines) the virtual decuplet contri-
butions. The full black points with MφL > 4 are included in the fit data sets, while the hollow
point with MφL = 3.86 are not.

It should be noted that both the HSC [26] and the NPLQCD [29] simulations employed the
anisotropic clover fermion action [219]. In this action, the temporal lattice spacing is chosen
to be much smaller than the spatial lattice spacing. The EFT for such a LQCD setup has
been worked out in Ref. [94]. It is in principle more appropriate for the study of lattice data
of HSC and NPLQCD collaborations. On the other hand, this EFT contains more LECs to
discriminate the temporal and spatial lattice spacing effects. As we will see, present limited
LQCD data do not allow us to perform such a study. Therefore, in our study we assume that
these simulations are performed with a single lattice spacing, as, and we treat the difference
between as and at as higher-order effects.

As in Refs. [65, 66], we focus on LQCD data from the above four collaborations with
Mπ < 500 MeV and MφL > 3.8 to ensure the applicability of SU(3) covariant BChPT. In
total, there are 12 sets of LQCD data from the PACS-CS (3 sets), QCDSF-UKQCD (2 sets),
HSC (3 sets), and NPLQCD (4 sets). In order to better ascertain the values of LECs, the
experimental octet baryon masses are also included in the fits.

In the O(a)-improved Wilson action, the Pauli term aL(5) is eliminated. As a result,
discretization effects originate only from the O(amq) and O(a2) terms. Therefore, only the
fourth-order tree-level diagrams contribute, while the leading order tree-level diagram and the
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Table 5.3: Values of the LECs from the best fit to the LQCD data and the experimental data
at O(p4) with and without discretization effects.

BChPT WBChPT BChPT WBChPT
m0 [MeV] 910(20) 915(20) d1 [GeV−3] 0.0295(124) −0.0196(121)

b0 [GeV−1] −0.579(56) −0.557(50) d2 [GeV−3] 0.342(65) 0.230(58)

bD [GeV−1] 0.211(56) 0.201(48) d3 [GeV−3] −0.0314(63) −0.0557(56)

bF [GeV−1] −0.434(43) −0.359(41) d4 [GeV−3] 0.372(114) 0.304(1008)

b1 [GeV−1] 0.730(10) 0.810(8) d5 [GeV−3] −0.401(110) −0.237(88)

b2 [GeV−1] −1.21(18) −0.819(26) d7 [GeV−3] −0.0913(58) −0.104(48)

b3 [GeV−1] −0.340(153) −0.357(12) d8 [GeV−3] −0.132(79) −0.0417(67)

b4 [GeV−1] −0.776(16) −0.780(15) B̄1 [GeV−3]×10−2 – −0.121(103)

b5 [GeV−2] −1.15(287) −1.34(23) B̄2 [GeV−3]×10−2 – −0.467(109)

b6 [GeV−2] 0.778(390) 0.889(199) B̄3 [GeV−3]×10−2 – 0.344(267)

b7 [GeV−2] 0.899(26) 0.787(14) X̄ [GeV−3]×10−4 – 0.606(5723)

b8 [GeV−2] 0.627(37) 0.817(28)

χ2 30.0 28.0 χ2/d.o.f. 0.91 0.97

tadpole/one-loop diagrams do not contribute. In the end, the discretization effects refer to the
Eq. (4.78) and Eq. (4.79),

m
(a)
B = m

O(amq)
B +m

O(a2)
B

= −8acSWW0

(
ξlM

2
π + ξs(2M

2
K −M2

π)
)
− 16a2c2

SWW
2
0 X̄, (5.1)

only contain 4 new independent combinations of LECs, i.e., B̄1, B̄2, B̄3, and X̄. Together
with the 19 unknown LECs appearing in the octet baryon masses in the continuum, there are
in total 23 free LECs that need to be fixed 4. The other parameters are fixed as the same as
before: Fφ = 0.0871 GeV, D = 0.8, F = 0.46, and µ = 1 GeV.

In order to study the discretization effects on the octet baryon masses, we perform two fits.
First, we use the continuum octet baryon mass formulas to fit the LQCD and experimental
data. Second, the mass formulas of Eq. (4.75) with discretization effects taken into account
are employed to fit the same data. In both fits, the finite-volume corrections to the LQCD
simulations are always taken into account self-consistently [64]. The LECs, together with the
χ2/d.o.f., obtained from the two best fits are tabulated in Table 5.3. It is clear that the 19

LECs remain similar whether or not discretization effects are taken into account. The total
χ2 changes from 30 for the first fit to 28 for the second fit, indicating that the data can be
described slightly better. On the other hand, the χ2/d.o.f. slightly increases from 0.91 to 0.97,
implying that discretization effects do not play an important role in describing the present
LQCD data.5 This justifies their treatment as systematic uncertainties without being taken
into account explicitly in the fitting, as done in most previous theoretical and LQCD studies.
It should be noted that the one-sigma uncertainties of the LECs B̄1, B̄2, B̄3, and, particularly,
X̄ are rather large. This shows clearly the need to perform LQCD simulations at multiple
lattice spacings in order to pin down more precisely discretization effects, which has long been

4In our fits, we set W0 at 1 GeV3. Later a more proper value will be used to check the naturalness of the
resulting LECs, B̄1, B̄2, B̄3, and X̄.

5This is in contrast with the finite-volume effects. In Ref. [64], it is shown that a self-consistent treatment
of finite-volume effects is essential to obtain a χ2/d.o.f. about 1.



5.3. Continuum extrapolation of lattice data 65

Table 5.4: Extrapolated octet baryon masses (in units of MeV) to physical point with the LECs
determined by fitting to LQCD data alone.

BChPT WBChPT Exp. [161]
χ2/d.o.f. 0.89 1.0 –
mN 889(21) 865(39) 940(2)

mΛ 1113(17) 1087(41) 1116(1)

mΣ 1163(19) 1139(42) 1193(5)

mΞ 1333(16) 1309(41) 1318(4)

recognized [220].
In the above fits we have included the experimental data to better constrain the large

number of LECs appearing at N3LO. We can of course drop the experimental data, redo the
fit, and calculate the octet baryon masses at the physical point. Such a procedure should
be taken with caution, however, for the following reasons. First, we have a large number of
unknown LECs (about 20). Second, the lightest LQCD data point has a Mπ about 300 MeV,
and it is still a bit away from the physical point. Third, all the χ2/d.o.f. are close to 1. These
factors can make the extrapolations unstable with respect to moderate changes of the LECs. In
Table 5.4, we tabulate the extrapolated octet baryon masses with two sets of LECs, determined
from the fits in which finite lattice spacing effects are either taken into account or neglected. It
is clear that the extrapolated masses agree within uncertainties, and so do the corresponding
LECs (not shown). Nevertheless, the extrapolated nucleon mass still deviates about 60-80 MeV
from its physical value, calling for LQCD simulations with smaller light-quark masses (than
studied in the present work).

In Fig. 5.4, we show the evolution of discretization effects as a function of the lattice spacing
for three different pion masses with the relevant LECs determined from the second fit. It is
seen that the discretization effects increase almost linearly with increasing lattice spacing a for
fixed pion mass. For fixed a, they increase with increasing pion mass as well. Furthermore,
essentially no curvature is observed. It is clear that in our present work the O(amq) terms
dominate over the O(a2) terms 6. It should be stressed that the LEC X̄ is consistent with zero
and a fit without the O(a2) contributions would have yielded very similar results as shown in
Table 5.3 and Fig. 5.4. For a lattice spacing up to a = 0.15 fm, the finite lattice spacing effects
on the baryon masses are less than 2%, consistent with the LQCD study of Ref. [221].

The above results can be naively understood in the following way. Recall that mq/ΛQCD ∼
aΛQCD in our power-counting scheme. If we take ms = 100 MeV, ΛQCD = 300 MeV, and
a = 0.1 fm, we obtain mq/ΛQCD ≈ 0.3 and aΛQCD ≈ 0.15. If we further assume that all
the LECs are of natural size, i.e., ∼ 1, we then expect O(m2

q) : O(amq) : O(a2) = 4 : 2 : 1.
Remember that the quark masses are larger than their physical values while the lattice spacing
is fixed to be around 0.1 fm in the LQCD simulations, our actual numerical results seem to
support this naive argument. Furthermore, we would like to point out that the a-dependent
LECs B̄1, B̄2, B̄3, and X̄ are of natural size. The values in Table 5.3 appear to be small

6In Ref. [207], Alvarez-Ruso et al. performed a phenomenological study of the continuum extrapolation of
the LQCD simulations of the nucleon mass by considering only O(a2) terms, and they showed that finite-volume
corrections and finite lattice spacing effects are of similar size. In our present work we find that they are indeed
of similar size, but the O(amq) contributions are larger than the O(a2) ones.
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Figure 5.4: (color online). Finite lattice spacing effects on the octet baryon masses, RB =

m
(a)
B /mB, as functions of lattice spacing a for Mπ = 300, 400, and 500 MeV, respectively. The

SW coefficient is set at cSW = 1.715, the value of the PACS-CS Collaboration. The strange
quark mass is fixed at its physical value dictated by the leading order ChPT.

because we have set the dimensional quantity W0 to be 1 GeV3. Its more ‘proper’ value
can be estimated by noting the following relations W0a ∼ B0mq and M2

π ∝ 2B0mq (in the
leading-order ChPT), which yields W0 ≈ 0.02 GeV3. With this value, the LECs turn out to be
B̄1 = −0.0605 GeV−3, B̄2 = −0.234 GeV−3, B̄3 = 0.172 GeV−3, and X̄ = 0.152 GeV−3, which
are of natural size as expected.



Chapter 6

Octet baryon sigma terms

In Chapter 4, we have obtained the chiral expansion of octet baryon masses. As an applica-
tion, we would like to utilize the Feynman-Hellmann theorem to predict the octet baryon sigma
terms by analyzing the high-statistics nf = 2 + 1 lattice QCD data. In order to perform an
accurate prediction of sigma terms, several key factors are systematically taken into account
and clarified for the first time, including the effects of lattice scale setting, systematic un-
certainties originating from chiral expansion truncations, and constraint of strong-interaction
isospin breaking effects.

6.1 Introduction

Understanding the sea-quark structure of nucleon has long been a central topic in nuclear
physics [222]. Of particular interest are the contributions of the ss̄ component since nucleon
contains no valence strange quarks, e.g., the strangeness contribution to proton spin [223]
and to electric and magnetic form factors [224]. In this context, the strangeness-nucleon sigma
term, σsN = ms〈N |s̄s|N〉, plays an important role as it relates to the scalar strangeness content
of nucleon, the composition of nucleon mass, KN scatterings, counting rates in Higgs boson
searches [225], and the precise measurement of the Standard Model parameters in pp collisions
at LHC [226]. Furthermore, the uncertainty in σsN is the principal source in predicting the
cross section of certain candidate dark matter particles interacting with nucleons [227].

Although the pion-nucleon sigma term σπN = ml〈N |ūu + d̄d|N〉 can be determined from
pion-nucleon scattering [228, 229], historically the strangeness-nucleon sigma term has been de-
termined indirectly via the nonsinglet matrix element σ0 = ml〈N |ūu+d̄d−2s̄s|N〉, which yields
a value ranging from 0 to 300 MeV [119]. In principle, LQCD provides a model independent
way in the determination of baryon sigma terms by either computing three-point [230–237]
or two-point correlation functions (the so-called spectrum method) [58, 64, 200, 235, 238–242].
Although tremendous efforts have been made in this endeavor, due to the many systematic
and statistical uncertainties inherent in these studies, no consensus has been reached on the
value of the scalar strangeness content of nucleon.

The most important sources of systematic uncertainties originate from the so-called chiral
extrapolations. In the u, d, and s flavor sector, a proper formulation of baryon chiral pertur-
bation theory that satisfies all symmetry and analyticity constraints is known to be essential
to properly describe the nonperturbative regime of QCD. In this sense, the extended-on-mass-
shell formulation [71] has shown a number of both formal and practical advantages, whose
applications have solved a number of long-existing puzzles in the one-baryon sector [199]. Its
applications in the studies of the LQCD octet baryon masses turn out to be very successful
as well [64–66]. Furthermore, as demonstrated recently, mass dependent and mass indepen-
dent lattice scale setting methods can result in a σsN different by a factor of three [240, 243].
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Therefore, it casts doubts on the determination of σsN from a single data set with a particular
scale setting method. To say the least, systematic uncertainties might be well underestimated.

In this chapter, utilizing the latest and high-statistics nf = 2 + 1 LQCD simulations
of the octet baryon masses from the PACS-CS [23], LHPC [25], and QCDSF-UKQCD [28]
collaborations and the Feynman-Hellmann theorem, paying special attention to the lattice
scale setting, we report a determination of the baryon sigma terms, particularly the strangeness-
nucleon sigma term, in covariant BChPT up to N3LO.

The Feynman-Hellmann theorem [244] dictates that in the isospin limit the baryon sigma
terms can be calculated from the quark mass dependence of the octet baryon masses, mB, in
the following way:

σπB = ml〈B|ūu+ d̄d|B〉 ≡ ml
∂mB

∂ml
, (6.1)

σsB = ms〈B|s̄s|B〉 ≡ ms
∂mB

∂ms
. (6.2)

The chiral expansion of octet baryon masses up to N3LO, mB, is already given in Eq. (4.20)
of Chapter 4. The virtual decuplet contributions are not explicitly included, since their effects
on the chiral extrapolation and FVCs are shown to be relatively small [65]. For convenience in
the following discussion, we would like to mention that there are 19 unknown LECs: m0, b0,
bD, bF , b1−8, d1−5,7,8 to be determined by fitting the LQCD data [64], and the others are fixed
at the following values: D = 0.8, F = 0.46 [245], Fφ = 0.0871 GeV [217], and µ = 1 GeV.

6.2 Three key factors for accurate determination

In order to obtain an accurate determination of baryon sigma terms, a careful examination of
LQCD data is essential, since not all of them are of the same quality though they are largely
consistent with each other as shown in Refs. [64, 201]. For instance, the statistics of the HSC
simulations needs to be improved [26] while the NPLQCD simulations are performed at one
single combination of light-quark and strange-quark masses [29], which offers little constraint
on the quark mass dependence of baryon masses. The BMW simulations [22], though of high
quality, are not publicly available. This leaves the PACS-CS [23], LHPC [25], and QCDSF-
UKQCD [28] data for our study. It is important to note that most LQCD simulations fix the
strange-quark mass close to its physical value and vary the light-quark masses. As a result,
they are suitable to study the light-quark mass dependence but not the strange-quark mass
dependence. In this respect, the QCDSF-UKQCD simulations are of particular importance
because they provide a dependence of baryon masses on the strange-quark mass in a region
not accessible in other simulations. In order to stay within the application region of BChPT, we
only choose LQCD data satisfying the following two criteria: Mπ < 500 MeV 1 andMφL > 3.8,
as in Refs. [65, 67]. It should be noted that the later criterium is relaxed for the QCDSF-
UKQCD data (the smallest MφL taken into account is 2.932) since their FVCs are small
because of the use of ratio method [28].

1We have checked that reducing the cut on Mπ down to Mπ = 400 MeV or Mπ = 360 MeV has little effect
on our numerical results, but since our χ2/d.o.f. (see Table 6.1) is already about 1, there is no need to further
decrease the cut on Mπ.
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Table 6.1: Values of the LECs from the best fits to LQCD and experimental octet baryon
masses up to N3LO. The lattice scale in each simulation is determined using both the mass
independent scale setting (MIS) and the MDS methods. In the MIS, both the original lattice
spacings determined by the LQCD collaborations themselves “a fixed” and the self-consistently
determined lattice spacings “a free” are used (see text for details).

MIS MDS
a fixed a free

m0 [MeV] 884(11) 877(10) 887(10)

b0 [GeV−1] −0.998(2) −0.967(6) −0.911(10)

bD [GeV−1] 0.179(5) 0.188(7) 0.039(15)

bF [GeV−1] −0.390(17) −0.367(21) −0.343(37)

b1 [GeV−1] 0.351(9) 0.348(4) −0.070(23)

b2 [GeV−1] 0.582(55) 0.486(11) 0.567(75)

b3 [GeV−1] −0.827(107) −0.699(169) −0.553(214)

b4 [GeV−1] −0.732(27) −0.966(8) −1.30(4)

b5 [GeV−2] −0.476(30) −0.347(17) −0.513(89)

b6 [GeV−2] 0.165(158) 0.166(173) −0.0397(1574)

b7 [GeV−2] −1.10(11) −0.915(26) −1.27(8)

b8 [GeV−2] −1.84(4) −1.13(7) 0.192(30)

d1 [GeV−3] 0.0327(79) 0.0314(72) 0.0623(116)

d2 [GeV−3] 0.313(26) 0.269(42) 0.325(54)

d3 [GeV−3] −0.0346(87) −0.0199(81) −0.0879(136)

d4 [GeV−3] 0.271(30) 0.230(24) 0.365(23)

d5 [GeV−3] −0.350(28) −0.302(50) −0.326(66)

d7 [GeV−3] −0.435(10) −0.352(8) −0.322(7)

d8 [GeV−3] −0.566(24) −0.456(30) −0.459(33)

χ2/d.o.f. 0.87 0.88 0.53

A second issue relates to the scale setting of LQCD simulations as mentioned in Chapter 2.
For the spectrum determination of baryon sigma terms, it was pointed out in Ref. [240, 243]
that using the Sommer scale r0 [152] to fix the lattice spacing of the PACS-CS data can change
the prediction of the strangeness-nucleon sigma term by a factor of two to three in the FRR
BChPT up to NNLO. However, in our following studies, we found that the scale setting effects
on sigma terms are small. It was claimed that using Sommer scale r1 for the purpose of lattice
scale setting is preferred in the LHPC simulations [246] as well. As a result, it is necessary to
understand how different scale setting methods for the same simulations affect the prediction
of the baryon sigma terms. Unfortunately, such a systematic study is still missing. In addition,
instead of relying on the scale determined by the LQCD collaborations themselves, one can
fix the lattice scale self-consistently in the BChPT study of the LQCD dimensionless data, as
recently done in Ref. [201]. In the present work, all the three alternative ways of lattice scale
setting will be studied and their effects on the predicted sigma terms examined and quantified.

At N3LO, the large number of unknown LECs should be better constrained in order to
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give a reliable prediction of the baryon sigma terms. In this work, we employ the latest LQCD
results on the strong isospin-splitting effects on octet baryon masses to further constrain the
LECs. The following values are used: δmN = −2.50(50) MeV, δmΣ = −7.67(79)(105) MeV and
δmΞ = −5.87(76)(43) MeV at the physical point. The δmN is chosen such as to cover all the
recent results [247, 248], while the δmΣ and δmΞ are taken from Ref. [248]. It should be pointed
out that no new unknown LECs need to be introduced to calculate isospin-breaking corrections
up to the order at which we work. For more details about the strong isospin-splitting effects
on octet baryon masses, please refer to Appendix D.

6.3 Predicted baryon sigma terms

In the mass formulas of octet baryon, the LQCD and experimental meson masses are described
by NLO ChPT [34] with the LECs of Ref. [249]. FVCs [250] are taken into account but found
to play a negligible role. In Table 6.1, we tabulate the values of LECs and the corresponding
χ2/d.o.f. from three best fits to lattice and experimental octet baryon masses. In the first fit,
we use the lattice spacings a determined by LQCD collaborations themselves to obtain the
hadron masses in physical units as done in Ref. [64]. In the second fit, we determine the lattice
spacings a self-consistently. Interestingly, we find that the so-determined lattice spacings a
are close to the ones determined by LQCD collaborations themselves. Specifically, the PACS-
CS deviation is 2.5%, the LHPC deviation is 4.1%, and the QCDSF-UKQCD deviation is
2.1%. The corresponding χ2/d.o.f. also look similar. While in the third fit, we adopt the
so-called mass dependent scale setting (MDS), either from r0 for the PACS-CS data with
r0(phys.) = 0.465(12) fm [251], r1 for the LHPC data with r1(phys.) = 0.31174(20) fm [242] 2,
or Xπ =

√
(M2

π + 2M2
K)/3 for the QCDSF-UKQCD data with Xπ(phys.) = 0.4109 GeV [28].

The third fit yields a smaller χ2/d.o.f. and different LECs compared to the other two fits.
In Fig. 6.1, we show octet baryon masses as functions ofM2

π and 2M2
K−M2

π using the LECs
from Table 6.1 with the physical light- (right panel) and strange-quark (left panel) masses. In

Table 6.2: Predicted pion- and strangeness-sigma terms of the octet baryons (in units of MeV)
by the N3LO BChPT with the LECs of Table 6.1.

MIS MDS
a fixed a free

σπN 55(1)(4) 54(1) 51(2)

σπΛ 32(1)(2) 32(1) 30(2)

σπΣ 34(1)(3) 33(1) 37(2)

σπΞ 16(1)(2) 18(2) 15(3)

σsN 27(27)(4) 23(19) 26(21)

σsΛ 185(24)(17) 192(15) 168(14)

σsΣ 210(26)(42) 216(16) 252(15)

σsΞ 333(25)(13) 346(15) 340(13)

2Technically, this scale setting should be classified as a mass independent scale setting. Here, we slightly
misuse the terminology to distinguish it from the one used in the LHPC original publication [25].
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Table 6.3: The strangeness content and the “dimensionless sigma terms” of the octet baryons
at the physical point. The first error is statistical and the second one is systematic, estimated
by taking half the difference between the N3LO result and the NNLO result.

yB fπB fsB
N 0.041(41)(7) 0.059(1)(0) 0.029(29)(4)

Λ 0.48(6)(5) 0.029(0)(1) 0.166(22)(15)

Σ 0.51(7)(11) 0.028(0)(3) 0.176(22)(35)

Ξ 1.73(17)(23) 0.012(0)(2) 0.253(19)(10)

order to cross-check the validity of our N3LO BChPT fit, the BMW collaboration data [238]
are shown as well. It is clear that our three fits yield similar results and are all consistent with
the high-quality BMW data, which are not included in our fits.

Using the best fit LECs, we predict the sigma terms of the octet baryons and tabulate
the results in Table 6.2. Our predictions given by LECs of Table 6.1 are consistent with each
other within uncertainties, and the scale setting effects on the sigma terms seem to be small.
Therefore, we take the central values from the fit to the mass independent a fixed LQCD
simulations as our final results, and treat the difference between three lattice scale settings
as systematic uncertainties, which are given in the second parenthesis of the second column
of Table 6.2. It is clear that for σπN , uncertainties due to scale setting are dominant, while
for σsN statistics errors are much larger, calling for improved LQCD simulations. It should
be noted that we have studied the effects of virtual decuplet baryons and variation of the
LECs D, F , Fφ, and found that the induced uncertainties are negligible compared to those
shown in Table 6.2. We want to mention that, as shown in Ref. [67], continuum extrapolations
have no visible effects on the predicted sigma terms. Furthermore, there are also other related
quantities, which often appear in the literature, including the strangeness content (yB) and
the so-called “dimensionless sigma terms” (fπB, fsB):

yB =
2〈B|s̄s|B〉
〈B|ūu+ d̄d|B〉

=
ml

ms

2σsB
σπB

, (6.3)

fπB =
ml〈B|ūu+ d̄d|B〉

MB
=
σπB
MB

, (6.4)

fsB =
ms〈B|s̄s|B〉

MB
=
σsB
MB

, (6.5)

are also calculated and tabulated in Table 6.3.
The pion-nucleon sigma term, σπN = 55(1)(4) MeV, is in reasonable agreement with the

latest πN scattering study, σπN = 59(7) MeV [229], and also the systematic study of nf = 2+1

LQCD simulations on the nucleon mass, σπN = 52(3)(8) MeV [207], but larger than that of
Ref. [201], σπN = 39+2

−1 MeV. Our predicted σsN is compared with those of earlier studies in
Fig. 6.2, classified into three groups according to the methods by which they are determined.
The first group is the results reported by the nf = 2 + 1 LQCD simulations, while the second
and third groups are predicted by the NNLO and N3LO BChPT, respectively. Our results are
consistent with the latest LQCD determinations and those of NNLO BChPT studies. However,
the prediction of the only other N3LO study in the partial summation approach [201] is not
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Figure 6.1: Octet baryon masses as a function ofM2
π and 2M2

K−M2
π vs the BMW LQCD data

(data points are taken from Fig. [2] of Ref. [238]). The solid, dashed, and dot-dashed lines are
obtained with the LECs from the three fits of Table 6.1. On the left and right panels, the
strange-quark mass and the light-quark mass are fixed at their respective physical values.

consistent with our result and most LQCD results. It should be noted that, in last two
months, the BMW and χQCD collaborations have updated their nucleon sigma terms. More
surprisingly, the latest nucleon strangeness sigma term from the BMW Collaboration changes
from σsN = 34(15)(25) [238] to σsN = 105(41)(37) MeV [252], while the χQCD result only
changes a little bit (σsN = 32.3(4.7)(4.9) MeV [253]). Therefore, one has to put more efforts
to clarify this large distinction of σsN .

A note of caution is in order. Clearly, using the spectrum method to determine baryon sigma
terms depends critically on the details of LQCD simulations. Lattice scale setting is just one of
the sources for potentially large systematic errors. We have studied three common alternative
strategies and found that the resulting predictions remain almost the same. Nevertheless, our
studies do not exclude the possibility that predictions can change in more rare scenarios. In
addition, other LQCD artifacts (such as lattice spacing discretization effects) not addressed
in the present work that affect little the baryon masses may have an impact on the predicted
baryon sigma terms, which is, however, beyond the scope of present work.

Given the fact that BChPT plays an important role in predicting baryon sigma terms, it is
of particular importance to assess the uncertainties of truncating chiral expansions. It becomes
even more important in the u, d, and s three-flavor sector, where convergence is governed by
the relative large ratio of mK/ΛChPT ≈ 0.5. Previous studies either stayed at NNLO or N3LO
and, therefore, were unable to perform such an analysis except those of Refs. [64, 65], which,
however, focused on a global study of baryon masses and did not include all the QCDSF-
UKQCD data that provide further constraints on the strange-quark mass dependence of the
octet baryon masses.

To understand quantitatively the convergence issue, we have studied at NNLO the octet
baryon masses of the PACS-CS, LHPC and QCDSF-UKQCD data obtained with the lattice
spacings a given by the LQCD collaborations themselves. We have allowed the LEC Fφ to
vary to get an estimation of the induced variation. All the obtained χ2/d.o.f. is larger than 1,
indicating that higher-order chiral contributions need to be taken into account. In addition,
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Figure 6.2: Strangeness-nucleon sigma term determined from different studies. The purple
and pink bands are our NNLO and N3LO results, respectively. Data points are taken from the
following references: BMW [238], QCDSF-UKQCD [239], MILC(2013) [254], JLQCD [235],
Engelhardt [234], Junnarkar & Walker-Loud [242], χQCD [236], Martin-Camalich et al. [56],
Shanahan et al. [240], Lutz et al. [201].

we have employed the FRR method, which is known to converge relatively faster, to study the
same data and found no qualitative difference with the EOMS approach. We noted that if
one allows the Fφ to deviate from the chiral limit value to take into account SU(3) breaking
effects, the so-obtained Fφ is close to its SU(3) average 1.17fπ with fπ = 92.1 MeV [161].
The predicted strangeness-nucleon sigma term is shown in Fig. 6.2. It is clear that the NNLO
result has a much smaller uncertainty compared to the N3LO one mainly because LECs are
over constrained by LQCD simulations. It should be mentioned that in the Feynman-Hellmann
method the large ms multiplying the derivative enhances the uncertainty in the determination
of strangeness-baryon sigma term, which seems to dominate the uncertainty and therefore puts
an upper limit in the precision one can achieve.

To summarize, we have determined the octet baryon sigma terms using covariant baryon
chiral perturbation theory up to next-to-next-to-next-to-leading order. We found σπN =

55(1)(4) MeV and σsN = 27(27)(4) MeV. Special attention was paid to uncertainties induced by
the lattice scale setting method, which, however, were found to be small, in contrast with pre-
vious studies. Other uncertainties, such as those induced by truncating chiral expansions and
variations of LECs were also studied in detail. In addition, we have used the strong-interaction
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isospin-splitting effects from the LQCD simulations to further constrain the relevant LECs. Our
results indicate a small scalar strangeness content in nucleon, consistent with the strangeness
contribution to proton spin and to the electromagnetic form factors of nucleon.



Chapter 7

Decuplet baryon masses in ChPT

As a natural extension, in this chapter, we present an analysis of lowest-lying decuplet baryon
masses in covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme
up to next-to-next-to-next-to-leading order. In order to determine the unknown low-energy
constants, we perform a simultaneous fit of nf = 2+1 lattice data from the PACS-CS, QCDSF-
UKQCD, and HSC collaborations, self-consistently including finite-volume corrections. We
also tentatively explore the convergence of the SU(3) BChPT. In addition, the pion- and
strangeness-sigma terms of decuplet baryons are predicted using the Feynman-Hellmann the-
orem.

7.1 Introduction

In the past few years several studies of lowest-lying baryon decuplet masses have been per-
formed on the lattice [22–29]. Just like the baryon octet case, under the limitation of computing
resources, decuplet baryon masses from LQCD should be extrapolated to the physical point
with the help of chiral perturbation theory. At present, the ground-state octet baryon masses
have been studied rather extensively in baryon chiral perturbation theory up to N3LO [56–
58, 61–65, 200]. In contrast, there are only a few studies of nf = 2 + 1 LQCD decuplet
baryon masses [25, 61, 63, 76, 200], despite many studies limited either to the SU(2) sector
or to the quenched LQCD data [47, 49, 56, 60, 76, 106, 255–266]. In Refs. [25, 76], it was
shown that HB ChPT at NNLO cannot describe the LHPC and PACS-CS decuplet baryon
masses. In Ref. [56], the PACS-CS and LHPC decuplet baryon data were also studied by using
EOMS BChPT up to NNLO and a reasonable description of the LQCD data was achieved,
contrary to the HBChPT studies of Refs. [25, 76]. In Refs. [61], Semeke and Lutz studied the
BMW [22] lattice data for octet and decuplet baryon masses up to N3LO in BChPT with the
partial summation scheme. It was shown that the light-quark mass dependence of decuplet
baryon masses can be well described. However, FVCs to lattice data are not taken into account
self-consistently. Whereas, in our previous studies [57, 64, 65], it has been shown that FVCs
need to be taken into account self-consistently in order to achieve a χ2/d.o.f about 1 in the
description of current nf = 2 + 1 LQCD octet baryon masses.

Given the fact that a simultaneous description of nf = 2+1 LQCD decuplet baryon masses
with FVCs taken into account self-consistently is still missing and that the EOMS BChPT can
describe lattice octet baryon masses rather well [56, 57, 64, 65], it is timely to perform a
thorough study of lowest-lying decuplet baryon masses in EOMS BChPT up to N3LO.
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7.2 Chiral correction to decuplet baryon masses

In this section, we collect the relevant chiral effective Lagrangians. For convenience of the
following discussion, we would like to keep the relevant notations, which are already given in
Chapter 4. After that, we calculate the chiral corrections to decuplet baryon masses and the
corresponding FVCs in covariant BChPT up to N3LO.

7.2.1 Chiral effective Lagrangians

The chiral effective Lagrangians relevant to the present study can be written as the sum of a
mesonic part and a meson-baryon part:

Leff = L(2)
φ + L(4)

φ + L(1)
φD + L(2)

φD + L(4)
φD. (7.1)

The Lagrangians L(2)
φ and L(4)

φ of the mesonic sector are given in Eq. (3.38) of Chapter 3
and Eq. (4.2) of Chapter 4, respectively. For the decuplet baryon fields in the ChPT, the
construction principles can be seen in Chapter 4. The leading-order meson-baryon Lagrangian
is

L(1)
φD = LD + L(1)

φBD + L(1)
φDD, (7.2)

where LD denotes the covariant free Lagrangian, and L(1)
φBD and L(1)

φDD describe the interaction
of the octet- and decuplet-baryons with the pseudoscalar mesons. The expressions of LD and
L(1)
φBD are given in Eq. (4.14) and Eq. (4.17), respectively. And, L(1)

φDD has the following form:

L(1)
φDD =

iH
mDFφ

T̄ abcµ γµνρσγ5

(
∂ρT

abd
ν

)
∂σφ

c
d, (7.3)

where we have used the so-called “consistent” coupling scheme for the meson-octet-decuplet
vertices [205, 206].

The meson-baryon Lagrangian at order O(p2) can be written as

L(2)
φD = L(2, sb)

φB + L(2, sb)
φD + L(2)

φD

′
. (7.4)

The first and second terms, L(2, sb)
φB and L(2, sb)

φD , denote the explicit chiral symmetry breaking
part. Their expressions are given in Eq. (4.5) and Eq. (4.16) of Chapter 4, respectively. For
the chiral symmetry conserving part, L(2)

φD

′
, one has nine terms, following the conventions of

Refs. [61, 267],

L(2)
φD

′
=

1

F 2
φ

{
t1T̄

abc
µ gµν (∂σφ∂σφ)dc T

abd
ν + t2T̄

abc
µ

[
(∂µφ∂νφ)dc + (∂νφ∂

µφ)dc

]
T ν,abd

+t3T̄µ,abc∂νφ
a
dε
bdeTµ,fgc∂νφhfεghe

+t4T̄µ,abc

[
∂µφadε

bde∂νφ
h
fεghe + ∂νφ

a
dε
bde∂µφhfεghe

]
T ν,fgc

+t5T̄
abc
µ gµνT abcν 〈∂σφ∂σφ〉+ t6T̄

abc
µ T ν,abc〈∂µφ∂νφ〉

+t7

[(
T̄ abcα (∂µφ∂νφ)dc iγ

µ∂νTα,abd + T̄ abcα (∂νφ∂µφ)dc iγ
µ∂νTα,abd

)
+ H.c.

]
+t8

[(
T̄α,abc∂µφ

a
dε
bdeiγµ∂νTα,fgc∂νφ

h
fεghe
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Figure 7.1: Feynman diagrams contributing to the decuplet-baryon masses up to O(p4) in
EOMS BChPT. The single lines correspond to octet-baryons, double lines to decuplet baryons
and dashed lines to mesons. The black boxes (diamond) indicate second (fourth) order cou-
plings. The solid dot indicates an insertion from the dimension one meson-baryon Lagrangians.
Wave function renormalization diagrams are not explicitly shown but included in the calcula-
tion.

+T̄α,abc∂νφ
a
dε
bdeiγµ∂νTα,fgc∂µφ

h
fεghe

)
+ H.c.

]
+t9

[
T̄ abcα iγµ∂νTα,abc〈∂µφ∂νφ〉+ H.c.

]}
, (7.5)

where t1,...,6 have dimension mass−1 and t7,...,9 have dimension mass−2.
The fourth order chiral effective Lagrangians contain five LECs (see also Refs. [61, 263]):

L(4)
φD = e1T̄

abc
µ gµν

(
χ2

+

)c
d
T abdν + e2

(
T̄ abcµ (χ+)dc

)
gµν

(
(χ+)be T

aed
ν

)
+e3T̄

abc
µ gµν (χ+)cd T

abd
ν 〈χ+〉+ e4T̄

abc
µ gµνT abcν 〈χ+〉2

+e5T̄
abc
µ gµνT abcν 〈χ2

+〉, (7.6)

where e1−5 are the unknown LECs.

7.2.2 Decuplet baryon self-energies

In this subsection, decuplet baryon masses are calculated in the limit of exact isospin symmetry.
Formally, up to O(p4) baryon masses can be written as

MD = mD +m
(2)
D +m

(3)
D +m

(4)
D , (7.7)

where m(2)
D , m(3)

D , and m(4)
D are the LO, NLO, and NNLO SU(3)-breaking corrections to decu-

plet baryon masses, respectively. The corresponding Feynman diagrams are shown in Fig. 7.1,
and the explicit expression of decuplet baryon masses is

MD = mD + ξ
(a)
D,πM

2
π + ξ

(a)
D,KM

2
K

+
1

(4πFφ)2

∑
φ=π,K,η

[
ξ

(b)
D,φH

(b)
D (Mφ) + ξ

(c)
D,φH

(c)
D (Mφ)

]
+ξ

(d)
D,πM

4
π + ξ

(d)
D,KM

4
K + ξ

(d)
D,πKM

2
πM

2
K

+
1

(4πFφ)2

∑
φ=π, K, η

[
ξ

(e,1)
D,φ H

(e,1)
D (Mφ) + ξ

(e,2)
D,φ H

(e,2)
D (Mφ) + ξ

(e,3)
D,φ H

(e,3)
D (Mφ)

]
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− 1

(4πFφ)2

∑
φ=π, K, η

B=N, Λ, Σ, Ξ

ξ
(f)
DB,φH

(f)
D,B(Mφ)

− 1

(4πFφ)2

∑
φ=π, K, η

D′=∆, Σ∗, Ξ∗, Ω−

ξ
(g)
DD′,φH

(g)
D,D′(Mφ), (7.8)

where ξ(i)’s and H(i)’s are the corresponding coefficients and loop functions with the subscript
i denoting the corresponding diagrams shown in Fig. 7.1. The ξ(i)’s are tabulated in Tables
7.1 and 7.2.

Table 7.1: Coefficients of the NLO and NNLO contributions to decuplet baryon masses
[Eq. (7.8)].

∆ Σ∗ Ξ∗ Ω−

ξ
(a)
D,π t0 + 3tD t0 + tD t0 − tD t0 − 3tD

ξ
(a)
D,K 2t0 2t0 + 2tD 2t0 + 4tD 2t0 + 6tD

ξ
(b)
D,π

4
3C

2 10
9 C

2 2
3C

2 0

ξ
(b)
D,K

4
3C

2 8
9C

2 4
3C

2 8
3C

2

ξ
(b)
D,η 0 2

3C
2 2

3C
2 0

ξ
(c)
D,π

50
27H

2 80
81H

2 10
27H

2 0

ξ
(c)
D,K

20
27H

2 160
81 H

2 20
9 H

2 40
27H

2

ξ
(c)
D,η

10
27H

2 0 10
27H

2 40
27H

2

In Eq. (7.8), the loop functions H(b)
D , H(c)

D , H(e,1)
D , H(e,2)

D , H(e,3)
D , H(f)

D,B and H
(g)
D,D′ are

obtained by using the MS renormalization scheme to remove the divergent pieces and the
EOMS renormalization scheme to remove the PCB terms [71, 72, 199]. The explicit expressions
of H(b)

D , H(c)
D , H(e)

D , H(f)
D,B, H

(g)
D,D′ are given in the following:

H
(b)
D (Mφ) =

1

48m3
D

M2
φ

[
M2
φ(6m2

0 + 4m0mD + 7m2
D)

+2(m0 −mD)(m0 +mD)3 − 2M4
φ

]
+

1

24m5
D

M4
φ log

Mφ

m0

[
−2M2

φ(2m2
0 +m0mD + 2m2

D)

+6(m4
0 +m3

0mD +m2
0m

2
D +m0m

3
D +m4

D) +M4
φ

]
+

1

24m5
D

(m0 −mD)(m0 +mD)3 log

(
m0Mφ

m2
0 −m2

D

)
×
[
2M2

φ(−2m2
0 +m0mD − 2m2

D) + (m2
0 −m2

D)2
]

− 1

24m5
D

√
W

(m2
0 − 2m0mD +m2

D −M2
φ)2(m2

0 + 2m0mD +m2
D −M2

φ)3

×

[
arctan

(
m2

0 −m2
D −M2

φ√
W

)
− arctan

(
m2

0 +m2
D −M2

φ√
W

)]
, (7.9)
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H
(g)
D,D′(Mφ) =

M2
φ

432m4
D

[
4m4

D

(
132m

(2)
D − 97m

(2)
D′

)
+30M4

φ

(
3m

(2)
D + 2m

(2)
D′

)
− 15m2

DM
2
φ

(
31m

(2)
D + 14m

(2)
D′

)]
+

5M2
φ

72m6
D

log
Mφ

mD

[
−30m4

DM
2
φm

(2)
D + 48m6

D

(
m

(2)
D −m

(2)
D′

)
+10m2

DM
4
φ

(
2m

(2)
D +m

(2)
D′

)
−M6

φ

(
3m

(2)
D + 2m

(2)
D′

)]
+

5M2
φ

36

(
12m

(2)
D − 7m

(2)
D′

)
log

m2
D

µ2
− 5

72m6
D

M3
φ(4m2

D −M2
φ)3/2

×
[
2m2

D

(
m

(2)
D −m

(2)
D′

)
−M2

φ

(
3m

(2)
D + 2m

(2)
D′

)]
×

arctan
Mφ√

4m2
D −M2

φ

+ arctan
2m2

D −M2
φ

Mφ

√
4m2

D −M2
φ

 . (7.15)

In Eqs. (7.10,7.14,7.15), W = −m4
0 − (m2

D −M2
φ)2 + 2m2

0(m2
D + M2

φ), m(2)
D and m(2)

B are the

NLO decuplet and octet baryon masses, where m(2)
D is given in Eq. (7.8), and m

(2)
B has the

following form:
m

(2)
B =

∑
φ=π, K

ξ
(2)
B,φM

2
φ (7.16)

with the corresponding coefficients ξ(2)
B,φ listed in Table 7.3.

It should be noted that in the evaluation of diagrams Fig. 7.1(f,g), we have only kept terms
linear in M (2)

D and M (2)
B , in accordance with our power-counting. At N3LO, the pesudoscalar

meson masses, appearing in m(2)
D , should be replaced by their O(p4) counterparts. The explicit

expressions of the meson masses up to O(p4) are given in Eqs. (4.37-4.39) of Chapter 4. The
empirical values of the LECs Lri (i = 1, . . . , 10) are taken from the latest global fit [208].
In order to be consistent with our renormalization scale used for the baryon sector, we have
re-evaluated the LECs at µ = 1 GeV. The details can be found in Ref. [64].

7.2.3 Finite-volume corrections

As emphasized in Refs. [57, 64, 65], finite-volume corrections have to be taken into account
in studying the current LQCD data. In the case of decuplet baryon masses, they have been
studied up to NNLO in EOMS BChPT [56] and in HB ChPT [76]. In the following, we extend
the study up to N3LO in EOMS BChPT.

The FVCs can be easily evaluated following the standard technique. One chooses the baryon
rest frame, i.e., pµ = (mD,~0), performs a momentum shift and Wick rotation, integrates over

Table 7.3: Coefficients of the NLO contributions to octet baryon masses [Eq. (7.16)].

N Λ Σ Ξ

ξ
(a)
B,π −(2b0 + 4bF ) −2

3 (3b0 − 2bD) −(2b0 + 4bD) −(2b0 − 4bF )

ξ
(a)
B,K −(4b0 + 4bD − 4bF ) −2

3 (6b0 + 8bD) −4b0 −(4b0 + 4bD + 4bF )
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the temporal dimension, and obtains the results expressed in terms of the master formulas
given in Ref. [209]. The details can be seen in Section 4.2 of Chapter 4.

To proceed with the above procedure, one should note that since Lorentz invariance is
lost in finite volume, the mass term in the loop functions is identified as the term having the
structure of δij . This can be easily seen by noticing that in the rest frame the zero component
of decuplet baryon field vanishes because of the on-shell condition pµTµ = 0. For instance, the
loop function of diagram Fig. 7.1(b), after Feynman parameterisation, becomes:

G
(b)
D ∝

∫
d4k

(2π)4

(mD(x− 1)−mB)kαkβ(
k2 −M(b)

D

2
)2 , (7.17)

where M(b)
D

2
= (x2 − x)m2

D + xm2
0 + (1 − x)M2

φ − iε. To evaluate its contribution to the
decuplet baryon mass, one simply replaces kαkβ with δij~k2/3 in the numerator. Following the
procedure specified above, one can then easily obtain the FVCs to the loop function of diagram
Fig. 7.1(b),

δG
(b)
D (Mφ) ≡ G

(b)
D (L)−G(b)

D (∞)

=
−1

12

∫ 1

0
dx [m0 −mD(x− 1)]

[
δ1/2(M(b)

D

2
)−M(b)

D

2
δ3/2(M(b)

D

2
)

]
, (7.18)

where the “master” formula δr(M2) is defined as

δr(M2) =
2−1/2−r(

√
M2)3−2r

π3/2Γ(r)

∑
~n6=0

(L
√
M2|~n|)−3/2+rK3/2−r(L

√
M2|~n|), (7.19)

where Kn(z) is the modified Bessel function of the second kind, and
∑
~n6=0

≡
∞∑

nx=−∞

∞∑
ny=−∞

∞∑
nz=−∞

(1− δ(|~n|, 0)) with ~n = (nx, ny, nz).

One also can obtain the FVCs of other loop diagrams in Fig. 7.1. For the NNLO one-loop
diagram of Fig. (7.1c), one obtains

δG
(c)
D (Mφ) =

5

36

∫ 1

0
dx mD(x− 2)

[
δ1/2(M(c)

D

2
)−M(c)

D

2
δ3/2(M(c)
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]
, (7.20)

withM(c)
D

2
= x2m2

D + (1−x)M2
φ − iε. Taking the limit of mD →∞, Eq. (7.18) and Eq. (7.20)

reduce to

δG
(b)
D (Mφ)HB = −1

8

∫ ∞
0

dx
[
δ1/2(β2

∆)− β2
∆δ3/2(β2

∆)
]
, (7.21)

δG
(c)
D (Mφ)HB =

1

2

∫ ∞
0

dx
[
δ1/2(β2)− β2δ3/2(β2)

]
, (7.22)

where β∆ = x2 − 2xδ + M2
φ and β = x2 + M2

φ. They agree with the HB ChPT results of
Ref. [76].

FVCs to the N3LO one-loop diagrams Fig. 7.1 (e,f,g) have the following form:

δG
(e,1)
D (Mφ) =

1

2
δ1/2(M2

φ), (7.23)
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(e,2)
D (Mφ) =
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2
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φδ1/2(M2

φ), (7.24)

δG
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D (Mφ) =

1

2
mDδ−1/2(M2

φ), (7.25)
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There is a technical problem in computing δG(f)
D,B(Mφ) with the master formula [Eq. (7.19)],

becauseM(b)
D

2
, appearing in Eq. (7.18) and Eq. (7.26), can become negative formD > m0+Mφ

in x ∈ [0, 1], i.e., when baryon can decay into the intermediate channel. In order to deal with
this problem, we adopt the strategy proposed in Ref. [268] and replace the original δr(M2)

with three parts by introducing a new scale µ satisfying µ < m0 +Mφ, i.e.,

δr(M2) = gr1 − gr2 + gr3, (7.28)

where the gr1,2,3 are

gr1 =
1
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L2 +M2(m2
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]r+1
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gr2 =

∫ +∞

0
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2π2

 1[
~k2 +M2(m2

D)
]r − 1[

~k2 +M2(µ2)
]r +

r(x2 − x)(m2
D − µ2)[

~k2 +M2(µ2)
]r+1

 ,
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gr3 = δr
(
M2(µ2)

)
− r(x2 − x)(m2

D − µ2)δr+1

(
M2(µ2)

)
, (7.29)

and

M2(m2
D) = (x2 − x)m2

D + xm2
0 + (1− x)M2

φ − iε, (7.30)

M2(µ2) = (x2 − x)µ2 + xm2
0 + (1− x)M2

φ − iε. (7.31)

To take into account of FVCs in the study of the LQCD data, one simply replaces the loop
functions H of Eq. (7.8) by H̃ = H + δG with the δGs calculated above.

7.3 Systematic study of lattice decuplet baryon masses

In this section, we perform a simultaneous fit of the nf = 2 + 1 LQCD data from the PACS-
CS [23], QCDSF-UKQCD [28], and HSC [26] Collaborations and the experimental data [161] to
determine the 17 unknown LECs, mD, tD, t0···9, and e1···5. Since t1, t2, t3, t4, t5, and t6 appear
in combinations, effectively we have only 14 independent LECs. The pion or light-quark mass
dependence of the decuplet baryon masses is studied in the NLO, NNLO, and N3LO EOMS
BChPT. Using the so-obtained LECs, we also carry out a detailed study on the QCDSF-
UKQCD and LHPC data to test the applicability of the N3LO BChPT and the consistency
between different LQCD simulations. Furthermore, the pion- and strangeness-baryon sigma
terms are predicted by the use of the Feynman-Hellmann theorem.

7.3.1 Lattice data of decuplet baryon masses

Up to now, five collaborations have reported nf = 2 + 1 simulations of the decuplet baryon
masses, i.e., the BMW [22], PACS-CS [23], LHPC [25], HSC [26], and QCDSF-UKQCD [28]
collaborations. Because the BMW data are not publicly available and the data of the LHPC
Collaboration seem to suffer some systematic errors, as shown in their chiral extrapolation
result on the ∆(1232) mass, which is much higher than its physical value [25], we will concen-
trate on the data of the PACS-CS, QCDSF-UKQCD, and HSC collaborations. Following the
criteria used in our previous studies [65], we only select the LQCD data that satisfy Mπ < 0.5

GeV and MφL > 3.8. As a result, there are eight sets of data from the PACS-CS (3 sets),
QCDSF-UKQCD (2 sets), and HSC (3 sets) Collaborations. Among the eight LQCD data sets
studied, only in the ensemble with Mπ = 296 MeV from the PACS-CS Collaboration, can the
decay ∆ → N + π happen. It should be noted that the PACS-CS Collaboration measured
the lowest energy levels of the vector meson and decuplet baryon channels, which are different
from the true resonance masses. The resulting difference for the ρ meson is estimated to be 5
percent using Lüscher’s formula [23]. We will comment on this later.

It should be mentioned that the O(a)-improved Wilson action was used by all the above
collaborations except the LHPC Collaboration, which employed a mixed action. The O(a)-
improved action has the favorable property that the leading order corrections from the finite
lattice spacing are eliminated. The finite lattice spacing corrections of the mixed action of
the LHPC Collaboration were also shown to be small [25]. Therefore, in the present work we
assume that the discretization artifacts of the present LQCD simulations are small and can be
ignored, and will leave a detailed study on finite lattice spacing artifacts to a future study (for
a recent study of the discretization effects on the octet baryon masses, see Ref. [67]).
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Before we perform a simultaneous fit of LQCD data, we specify our strategy to fix some of
the LECs in the N3LO BChPT mass formulas Eq. (7.8). For the meson decay constant, we use
Fφ = 0.0871 GeV. The φBD coupling is fixed to the SU(3)-average value among the different
decuplet-to-octet pionic decay channels, C = 0.85 [119]. The φDD coupling H is barely known,
and we fix it using the large Nc relation HA = (9/5)gA, where gA and HA are the nucleon and
∆ axial charges. With gA = 1.26, this yields the φDD coupling H = HA/2 = 1.13. In the loop
function Eq. (7.27), the LO corrections to virtual octet masses are included, therefore, there
are 4 more LECs m0, b0, bD, and bF related to octet baryon masses up to O(p2). Similar to the
determination of decuplet baryon masses at O(p2) in Chapter 5, their values can be obtained by
fitting the physical octet baryon masses with the NLO octet mass formula MB = m0 −m(2)

B .
Because at the same pion masses, the m0 and b0 cannot be disentangled, we only obtain
meff

0 = m0− b0(4M2
K + 2M2

π), bD = 0.06 GeV−1, and bF = −0.231 GeV−1. The octet-decuplet
mass splitting δ = 0.231 GeV is taken as the average physical masses gap. As a result, m0 and
b0 can be expressed as m0 = mD − 0.231 GeV and b0 = (mD − 1.423)/1.014 GeV−1.

In the fitting process, we incorporate the inverse of the correlation matrix Cij = σiσjδij +

∆ai∆aj for each lattice ensemble to calculate the χ2, where σi are the lattice statistical errors
and ∆ai are the fully-correlated errors propagated from the determination of ai. This is
because the data from different collaborations are not correlated with each other, but the data
form the same collaboration are partially correlated by the uncertainties propagated from the
determination of lattice spacing a.

7.3.2 Chiral extrapolation

In this subsection, we proceed to study the eight sets of lattice data for decuplet baryon masses
by using the N3LO BChPT mass formulas [Eq. (7.8)]. In order to constrain better the values
of LECs, we include the corresponding experimental data in the fits. The obtained 14 LECs
from the best fits are tabulated in Table 7.4. For the sake of comparison, we also perform fits
at NLO 1 and NNLO. Up to NNLO, there are only three LECs, i.e., mD, t0, and tD.

It is clear that the NLO fit (without loop contributions) already describe the LQCD sim-
ulations very well. The description becomes a bit worse at NNLO. 2 The χ2/d.o.f. for the
N3LO is as low as 0.20. Therefore we confirm that the PACS-CS, QCDSF-UKQCD, and HSC
data are consistent with each other, although their setups are different. Furthermore, it seems
that lattice decuplet baryon masses are almost linear in M2

π , as demonstrated by the good fit
obtained at NLO, χ2/d.o.f.

∗
= 0.44.

The values of 14 LECs seem very natural, except that the LECS t̃1, t̃2, t̃3, and t7 might be
slightly large. If we had constrained their values to lie between −1 to 1 in the fitting process,
we would have obtained a χ2/d.o.f. = 0.26, instead of 0.20. It seems that the present LQCD
simulations are not precise enough or are too limited to put a stringent constraint on the values
of all the LECs appearing up to N3LO, because the NLO fit already yields a χ2/d.o.f. smaller
than 1. This is further confirmed by the relatively large correlation observed between some of
the LECs, e.g., between t̃1 and t̃2, among t7, t8, and t9, and among e1, e3, and e5. We found

1Because at O(p2), BChPT does not generate any FVCs, we have adjusted lattice data by subtracting the
FVCs calculated by the N3LO EOMS BChPT with virtual octet contributions taken into account.

2Without the contributions of the virtual octet baryons, the NNLO description would be much better, with
a χ2/d.o.f. ≈ 2.
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Table 7.4: Values of LECs from the best fits to the lattice and experimental data with different
fitting strategies at O(p2), O(p3), and O(p4), respectively. The estimator for the fits with and
without the experimental decuplet masses, χ2/d.o.f. and χ2/d.o.f.

∗, are given in the last two
rows (see text for details).

NLO NNLO N3LO
mD [MeV] 1135(14) 870(12) 1152(25)

t0 [GeV−1] 0.167(27) 1.36(2) 0.0710(59)

tD [GeV−1] 0.322(2) 0.785(3) 0.318(16)

t̃1 [GeV−1] – – 5.90(24)

t̃2 [GeV−1] – – −2.26(29)

t̃3 [GeV−1] – – −3.67(45)

t7 [GeV−2] – – −2.37(8)

t8 [GeV−2] – – 0.298(156)

t9 [GeV−2] – – 1.21(13)

e1 [GeV−3] – – −0.00386(11689)

e2 [GeV−3] – – 0.194(47)

e3 [GeV−3] – – −0.167(117)

e4 [GeV−3] – – 0.0767(480)

e5 [GeV−3] – – −0.0182(734)

χ2/d.o.f. 4.4 9.5 0.20

χ2/d.o.f.
∗

0.44 1.7 0.18

that putting some of them to zero only slightly increases the χ2/d.o.f.. In short, the values of
the N3LO LECs should be viewed in the present context and used with care.

As mentioned earlier, the lightest lattice point with mπ = 296 MeV of the PACS-CS Col-
laboration suffers from potentially large systematic errors. If we had performed the fit without
this point, we would have obtained a χ2/d.o.f. = 0.24, slightly larger than the χ2/d.o.f. = 0.20

of Table 7.4. In addition, the values of the corresponding LECs would change moderately. On
the other hand, the extrapolations with the LECs determined from the fit excluding physical
masses became much worse. This seems to suggest that the inclusion of the lightest PACS-CS
point is reasonable, keeping in mind the caveat that they suffer from potentially large system-
atic errors. This is also the strategy adopted by the PACS-CS collaboration [76] and other
similar studies [200].

In Fig. 7.2, we show the ∆, Σ∗, Ξ∗, and Ω− masses as functions of M2
π , where the strange

quark mass is set to its physical value. It is clear that lattice data are rather linear in M2
π .

The O(p3) BChPT results show strong curvature and cannot describe LQCD data. A good
description can only be achieved up to N3LO. 3 In Fig. 7.2, we also show those data of the
PACS-CS and HSC collaborations, which are excluded from the fit. The O(p4) BChPT can
describe reasonably well those data as well.

It should be emphasised that the setups of the QCDSF-UKQCD simulations are rather

3In principle, at NNLO, we can use for the meson decay constant its SU(3) average, Fφ = 1.17fπ with
fπ = 92.4 MeV. This improves a lot the NNLO fit.
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Figure 7.2: (Color online). Pion mass dependences of the lowest-lying decuplet baryon masses.
Filled (open) symbols denote the lattice data points included in (excluded from) the fits,
which are projected to have the physical strange-quark mass. The dot-dashed, the dashed,
and the solid lines are the best NLO, NNLO and N3LO fits to the lattice data, respectively. In
obtaining the BChPT results, the strange quark mass has been set to its physical value. The
lattice points in the shaded region are not included in the fits.

different from those of the PACS-CS and HSC collaborations. Most LQCD simulations fix the
strange quark mass at (or close to ) its physical value and gradually moving u/d quark masses
to their physical values. The QCDSF-UKQCD Collaboration adopted an alternative method
by starting at a point on the SU(3) flavor symmetric line (mu/d = ms) and holding the sum
of the quark masses m̄ = (2mu/d + ms)/3 constant [27]. In this way, the corresponding kaon
and eta masses can be smaller than the pion mass. On the other hand, the FVCs from the
kaon and eta loops can become comparable or even larger than that induced by the pion loop,
because the MφL can simultaneously become smaller than 4. Therefore, the QCDSF-UKQCD
data provide us an opportunity to test BChPT in the world of small strange quark masses and
small lattice volumes.

In Fig. 7.3, the QCDSF-UKQCD lattice data are compared with the N3LO BChPT. The
lattice points included in the fit are denoted by solid points and those excluded from the fit
by hollow points. All lattice points are shifted by FVCs and the kaon mass is fixed using the
function M2

K = a + bM2
π for the lattice ensemble with a and b determined in Appendix II of

Ref. [64]. It is clear that the N3LO BChPT can describe reasonably well the QCDSF-UKQCD
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Figure 7.3: The QCDSF-UKQCD lattice data [27] in comparison with the N3LO BChPT. The
lattice data denoted by the blue filled squares are included in the fit; those by the green opened
circles (with Ns = 32) and the red diamonds (with Ns = 24) are not. FVCs of the lattice
results have been subtracted. The two flavour singlet quantities, Xπ and X∆, are defined as:
Xπ =

√
(M2

π + 2M2
K)/3, X∆ = (2m∆ +mΩ−)/3, respectively [27].

data obtained in both large (Ns = 32) and small (Ns = 24) volumes with both heavy and light
pion masses. However, it should be pointed out that the ratio method eliminates to a large
extent the FVCs. In other words, to plot/study the data this way one can neglect FVCs, as
noticed in Ref. [28].

We would like to point out that in the above fits we have not included the LHPC data,
while in Refs. [64, 65] we have studied their data for octet baryon masses. The reason is that
the LHPC decuplet baryon data do not seem to be consistent with those of the PACS-CS,
QCDSF-UKQCD, and HSC collaborations. This is clearly demonstrated in Fig. 7.4, where the
LHPC data are contrasted with the N3LO BChPT with the LECs of N3LO-II tabulated in
Table I, and the corresponding kaon mass is fixed usingM2

K = a+bM2
π with a and b determined

in Ref. [64]. It is clear that the dependence of lattice data on M2
π seems to be flatter than

suggested by N3LO BChPT. In Ref. [25], it was noticed that it is difficult to extrapolate
lattice data to the physical ∆(1232) mass. Our study seems to confirm their finding. If we
had included the LHPC data 4(three sets of them satisfying our selection criteria), we would
have obtained a χ2/d.o.f. = 2.4.

Finite-volume corrections play an important role in describing LQCD data as pointed out
in the present context in Refs. [57, 64]. In Table 7.5, we show the finite-volume corrections
calculated in N3LO BChPT with the LECs determined above. Not surprisingly, the finite-
volume corrections to the QCDSF-UKQCD data are the largest, which can be easily understood
from the arguments given above.

Furthermore, in order to quantify the effects of loop contributions involving virtual octet

4It needs to be mentioned that in Ref. [246], a different way of setting the lattice scale has been used to
obtain the decuplet baryon masses of the LHPC Collaboration [25] in physical units.
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Table 7.5: Finite-volume corrections (in units of MeV) to LQCD decuplet baryon masses in
covariant BChPT up to N3LO.

Mπ δm∆ δmΣ∗ δmΞ∗ δmΩ− MπL MKL MηL

PACS-CS 296 14 5 0 -3 4.3 8.7 9.8
384 5 2 1 1 5.7 8.6 9.3
411 4 2 0 1 6.0 9.3 10.2

QCDSF-UKQCD 320 20 13 8 4 4.1 5.8 6.2
411 50 50 50 50 3.95 3.95 3.95

HSC 383 4 2 1 0 5.7 8.1 8.8
389 42 27 14 3 3.9 5.4 5.9
449 28 19 11 4 4.5 5.8 6.2
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Figure 7.4: Comparison between the N3LO BChPT and the LHPC data [25].

and decuplet baryons, one can allow C and H to vary in the fitting. The corresponding best
fit-χ2/d.o.f. is 0.27 with C = 0.75 and H = 1.0. It is clear that the values are consistent with
the phenomenological values we used above, which can be seen as evidence for the existence
of non-analytical chiral contributions following the argument given in Ref. [246]. One should
note that because of the small difference between the χ2/d.o.f. obtained here and the χ2/d.o.f.

obtained by putting C and H to zero, this evidence is rather weak in the present case.

7.3.3 Convergence of SU(3) EOMS BChPT

Convergence of BChPT in the u, d, and s three-flavor sector has been under debate for many
years. See, e.g., Refs.[73, 74, 199, 269] and references cited therein.5 One prominent example is

5For related discussions in the mesonic sector, see, e.g., Refs. [270, 271], where the so-called resummed
chiral perturbation theory has been shown to exhibit better convergence than conventional chiral perturbation
theory. To our knowledge, no similar studies exist in the one-baryon sector.
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the magnetic moments of octet baryons. In Ref. [196], it has been shown that compared to HB
ChPT and IR BChPT, EOMS BChPT converges relatively faster. The same has been found for
octet baryon masses [56]. Nevertheless, even in EOMS BChPT, convergence is relatively slow
because of the large expansion parameter,MK/ΛChPT. Naively, each higher order contribution
is only suppressed by about one half at the physical point, which can even be further reduced
for LQCD simulations with larger light-quark masses.
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Figure 7.5: Ratio of one-loop and tree contributions to the decuplet baryon masses,∣∣p3/(p2 +mD)
∣∣, as a function of pion mass. The strange quark mass is set at its physical

value.

In the following, we would like to examine the contributions of different chiral orders. In
Table 7.4 and Fig. 7.2, one notices that the NLO BChPT can already describe LQCD data
very well, but experimental data are missed a little bit. If the chiral expansions work, one

Table 7.6: Contributions of different chiral order to the decuplet baryon masses at the physical
point (in units of GeV).

∆ Σ∗ Ξ∗ Ω−

mD p2 p3 p4 p2 p3 p4 p2 p3 p4 p2 p3 p4

NLO 1.135 0.104 – – 0.248 – – 0.392 – – 0.537 – –
NNLO 0.870 0.737 −0.383 – 1.089 −0.582 – 1.441 −0.785 – 1.793 −0.991 –
N3LO 1.152 0.046 −0.429 0.463 0.158 −0.652 0.728 0.270 −0.878 0.988 0.382 −1.106 1.244
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value.

should expect a smaller χ2/d.o.f. at NNLO and N3LO. This is indeed the case. Since the NLO
results already describe LQCD data very well, it is not surprising that up to NNLO and N3LO,
there should be some reshuffling of contributions of different order. This can be clearly seen
from Table 7.6, where contributions of different chiral order to decuplet baryon masses at the
physical point are tabulated. Once loop diagrams are included, a naive comparison of p0 (mD),
p2, p3, and p4 contributions turns out to be a disaster. At NNLO, the p2 contributions can
be a factor of 2 larger than mD, while at N3LO, the p3 and p4 contributions are opposite and
become comparable to or even larger than the p2 contributions, particularly for the decuplet
baryons containing strangeness.

On the other hand, up to one-loop level, it might be more proper to judge conver-
gence by comparing tree and loop contributions. In Figs. 7.5 and 7.6

∣∣p3/(p2 +mD)
∣∣ and∣∣(p3 + p4)/(p2 +mD)

∣∣ are shown as a function of M2
π . At NNLO, the p3 contributions can

reach about 50% of the tree contributions, while at N3LO the loop contributions become
about 10% ∼ 20% of the tree contributions. These results suggest that the chiral expansions
are convergent as expected.
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Table 7.7: Pion- and strangeness-sigma terms of the decuplet baryons at the physical point.
The first error is statistical and the second is systematic, estimated by taking half the difference
between the N3LO result and the NNLO result.

O(p3) O(p4)

w/o octet w/ octet Ref. [56] w/o octet w/ octet Ref. [200]
σπ∆ 50(1) 64(1) 55(4)(18) 42(1)(4) 28(1)(8) 34(3)

σπΣ∗ 32(1) 44(1) 39(3)(13) 24(1)(4) 22(2)(9) 28(2)

σπΞ∗ 17(1) 26(1) 22(3)(7) 8(2)(5) 11(2)(6) 18(4)

σπΩ− 6(1) 8(1) 5(2)(1) −5(2)(6) 5(2)(2) 10(4)

σs∆ 70(13) 93(12) 56(24)(1) 99(24)(15) 88(22)(3) 41(41)

σsΣ∗ 198(13) 181(13) 160(28)(7) 233(23)(18) 243(24)(31) 211(44)

σsΞ∗ 298(13) 258(14) 274(32)(9) 375(24)(39) 391(24)(67) 373(53)

σsΩ− 370(14) 326(15) 360(34)(26) 507(25)(69) 528(26)(101) 510(50)

7.4 Pion- and strangeness-decuplet baryon sigma terms

The baryon sigma terms are important quantities in understanding the chiral condensate and
the composition of the baryons. At present, there are no direct LQCD simulation of these
quantities for decuplet baryons (In Ref. [272], the very preliminary studies of the decuplet
baryon sigma terms was reported.). On the other hand, one can calculate the decuplet baryon
sigma terms σπD and σsD using BChPT, once the relevant LECs are fixed, via the Feynman-
Hellmann theorem. See, e.g., Refs. [64] for relevant formulas.

Using the LECs given in Table 7.4, we calculate the sigma terms of the baryon decuplet at
the physical point, and the results are listed in Table 7.7. For comparison, we also tabulate the
results of Refs. [56, 200]. The difference between our O(p3) predictions with those of Ref. [56]
reflects the influence of the LQCD data and the fitting strategy. However, our N3LO results
are consistent with those of Ref. [200] within uncertainties.



Chapter 8

Roper mass and width in ChPT

With the development of computer techniques, the baryon masses of excited states are becom-
ing available in lattice QCD, especially for the Roper. In this chapter, the nucleon, Delta, and
Roper masses and widths are calculated in chiral perturbation theory up to next-to-next-to-
leading order. The effects of the mixing between the nucleon and the Roper are taken into
account for the first time. We also tentatively perform an analysis of the lattice Roper masses
to explore the quark mass dependence. Here, we want to mention that this work is still in
progress, and the obtained results should be thought as preliminary.

8.1 Introduction

The light-quark spectrum provides a great opportunity to study QCD in its nonperturbative
regime. In particular, the first even-parity excited state of the nucleon, the JP = (1/2)+

Roper resonance N(1440) or P11(1440), has been a puzzle since its discovery [162]. In the
constituent quark model, the Roper, as an S-wave excitation, tends to be above the first odd-
parity excited state N(1530) or S11(1530), a P -wave excitation, a problem that is ameliorated
if Goldstone-boson exchange is introduced. Several exotic interpretations have been proposed,
such as a hybrid baryon [273, 274], a pentaquark state [275], and a breathing mode of the
ground state [276]. This puzzle has made the Roper a focus of the N∗ program at JLab, and
in Bonn, Mainz, and Japan [277–279].

The recent outburst of interest in lattice QCD has not resolved this puzzle. The low-
lying hadron spectrum is now well understood within controllable lattice artifacts [128], but
lattice simulations of excited states have not yet reached the same level of maturity. Several
LQCD collaborations have published results for the Roper mass at various values of the pion
mass mπ [150, 163, 164, 166, 167, 280]. Except for the χQCD collaboration [167] which finds
relatively small masses with a chiral behavior similar to that of nucleons, most of the results
are in broad agreement. For mπ ≤ 500 MeV, the proton is light enough for the Roper to be
unstable, yet, it is treated as a stable particle. Taken at face value, however, these results
imply that there is a strong decrease in the Roper mass as mπ approaches the physical point.
This, in turn, suggests that the Roper could be considerably closer to the nucleon in the chiral
limit than in the real world.

There are other clues that indicate an important role for the Roper with respect to chiral
symmetry. The importance of the Delta isobar ∆(1232) in low-energy phenomena stems from
the relatively small Delta-nucleon mass difference δ∆N = m∆ − mN ' 290 MeV, at least
compared to most mesons. The Roper-nucleon mass difference δRN = mR −mN ' 490 MeV
is less than twice as large, and the ratio of Roper-to-Delta widths is roughly of the order of
(δRN/δ∆N )3, as one might expect from widths that come primarily from a one-pion-loop self-
energy [281]. Moreover, the nucleon, Delta and Roper nearly saturate the Adler-Weisberger
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sum rule, which can be understood if they act as chiral partners in a reducible representation
of the chiral symmetry group SU(2)L × SU(2)R [282].

Much work has been carried out in ChPT including explicitly pions, nucleons and Deltas
— for a comprehensive review, see for example Ref. [45]. In contrast, the next nucleon excited
state, the Roper, has received considerably less attention. The Roper-nucleon splitting is
still somewhat smaller than Λχ at the physical pion mass, and could decrease towards the
chiral limit. Therefore, it can be included as an explicit degree of freedom in ChPT. Various
quantities and processes have been studied from this point of view, including: Roper octet
contributions to decuplet masses and magnetic moments [261]; virtual Roper contributions
to πN → ππN threshold amplitudes [283] and to elastic πN scattering [281, 284]; chiral
corrections to the Roper self-energy [285, 286]; and Roper magnetic moment [287]. The Roper
has also been included indirectly via resonance saturation of LECs in the calculations of baryon
self-energies [50] and of nonleptonic hyperon decays [288], and explicitly in the chiral unitarity
approach to study meson-baryon dynamics [289].

Perhaps the most noticeable effect of the Roper in ChPT is, not surprisingly, in the reaction
that led to its discovery [162], elastic πN scattering. In ChPT, whether without [290–295] or
with [194, 284, 296–298] an explicit Delta, the empirical near-threshold behavior of the P11

phase shift is reproduced in lowest orders, with a monotonically decreasing function of energy.
Yet the empirical phase shift turns up and crosses zero in the Delta region, which can only
be achieved if a nominally higher-order effect provides an opposite contribution to cancels
those of lowest orders. This lack of convergence is not a problem when the Delta region is
considered beyond the range of EFT, but needs to be addressed as we extend this range [298].
Once the Roper is included explicitly as a low-energy degree of freedom, Roper pole diagrams,
suppressed only by the relatively small energy difference δ∆N − δRN , appear already at the
lowest non-trivial order and naturally produce the observed phase-shift behavior [281].

The goal of the present work is to initiate a systematic study of nucleon, Delta and Roper
properties within ChPT. As LQCD continues to pick up momentum, we can anticipate in-
creasingly precise data for a variety of baryon properties at pion masses from Λχ down to
the physical value, and perhaps below. Over such a broad range, the simplest approach is to
treat the baryon mass differences in the same footing as the pion mass, and consider momenta
Q ∼ mπ ∼ δ∆N ∼ δRN . We express observables as expansions in Q/Λχ. In this way, we gen-
eralize the simpler countings of ChPT without [69] and with [116] Deltas, where δ∆N and/or
δRN are considered high scales and the effects of Deltas and/or Ropers are relegated to LECs.

As a first step, we reconsider the Roper self-energy [285, 286] to next-to-next-to-leading
order including explicitly the pion-mass dependence of the mixing between nucleon and Roper.
We also calculate the virtual Roper effects on the nucleon and Delta self-energies to the same
order. Thus, we obtain the full one-loop corrections to the nucleon mass, and Delta and Roper
masses and widths. Many LQCD studies exist already of nucleon and Delta masses, indicating
a relatively good convergence of ChPT, see for example Ref. [299]. We hope our results will
prove useful in similar analysis of upcoming data.
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8.2 Chiral effective Lagrangians in SU(2) sector

In this section, we present the effective Lagrangian relevant for the chiral corrections to the
nucleon, Delta, and Roper self-energies up to NNLO. Further background and references can
be found in Ref. [45].

The nonrelativistic nature of nucleons in the regime of validity of the EFT means that we
can integrate out antinucleons and limit ourselves to interactions with at most one baryon. We
can split the effective Lagrangian as

L = Lπ + LπN + LπN∆ + LπNR + Lπ∆R, (8.1)

which describe, respectively, interactions among pions, between pions and nucleons, of Deltas
with pions and nucleons, of Ropers with pions and nucleons, and of Ropers with pions and
Deltas. We do not consider electromagnetic effects nor isospin violation stemming from the
quark mass difference, but extension is straightforward.

The effective Lagrangian can be ordered,

L =
∑
nChPT

L(nChPT), (8.2)

according to the (integer) chiral index [32, 300]

nChPT = d+ f/2− 2 ≥ 0, (8.3)

where d and f are, respectively, the number of derivatives and low-energy scales, and the
number of fermion fields entering each interaction. In the mesonic and one-baryon sectors
1 the chiral index tracks the number of powers of Λ−1

χ expected from the naive dimensional
analysis (NDA) [168] that underlies the EFT expansion. It exhibits the lowest order where
the corresponding interaction appears. The lower bound in Eq. (8.3) stems from the pattern
of chiral-symmetry breaking in QCD, and guarantees that there is a leading order from which
the expansion can be constructed.

In the next subsections we describe each term in Eq. (8.1), making specific choices of fields.
At a given order, results can only depend on these choices up to higher-order terms, that is,
results for different choices must fall within the theoretical error bars. The choice of fields
is guided by the symmetries we want to implement, namely chiral symmetry and Lorentz
invariance in the nonrelativistic regime.

Each interaction with symmetry transformation properties (i.e., invariant or transforming
like the quark mass terms in the QCD Lagrangian) introduces a LEC. The LECs can be
determined by fitting LQCD data at different values of mπ, and particular combinations can
be obtained from experimental data at the physical point. We assume that throughout the
low-mass region we have two small expansion parameters δN∆/Λχ and δNR/Λχ in addition to
mπ/Λχ. Thus all LECs, which are defined in the chiral limit (mπ = 0), can be written as series
in these parameters. The coefficients of these series cannot be determined from experiment
or LQCD, except perhaps if QCD is deformed with the introduction of further independent
parameters such as the number of colors. For simplicity we leave these series implicit.

1Note that Lagrangians in these sectors are frequently labeled not by nChPT but by d, for example
L(nChPT+2)
π and L(nChPT+1)

πN .
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Pion Lagrangian

We use an exponential realization of the pion fields (π0, π±),

u = exp

[
i

Φ

2fπ

]
, Φ = τaπ

a =

(
π0

√
2π+

√
2π− −π0

)
, (8.4)

where τa is the isospin Pauli matrix and fπ = 92.1 MeV [279] is the pion decay constant in the
chiral limit.

The chiral lagrangian is built from covariant combinations of pion fields such as the pion
vector and axial currents

Γµ =
1

2

(
u†∂µu+ u∂µu

†
)

=
1

2
τa〈τaΓµ〉, uµ = i

(
u†∂µu− u∂µu†

)
=

1

2
τa〈τauµ〉, (8.5)

and
χ± = u†χu† ± uχ†u, (8.6)

where 〈· · · 〉 denotes the trace in flavor space, and χ = 2B0M,M = diag(mu,md), represents
the explicit breaking of chiral symmetry by the up- and down quark masses mu and md. Here
B0 = −〈q̄q〉/f2

π is related to the quark condensate 〈q̄q〉0 in the chiral limit.
From the pion Lagrangian, we need only the nChPT = 0 part, which can be written as

L(0)
π =

f2
π

4
[〈uµuµ〉+ 〈χ+〉] . (8.7)

The first term includes the pion kinetic energy while the second gives rise to the pion mass,

m2
π =

1

4
〈(χ+ χ†)〉. (8.8)

In the following only the pion propagator obtained from Eq. (8.7) appears.

Nucleon Chiral Lagrangian

Since the nucleon mass in the chiral limit MN0 is of the order of the breakdown scale of the
EFT, we use a heavy nucleon field

N =

(
p

n

)
(8.9)

which does not have a trivial evolution factor exp(−iMN0v ·x), where vµ is the nucleon velocity
(vµ = (1,~0) in the rest frame). This amounts to measuring nucleon energies with respect to
the nucleon rest energy in the chiral limit, MN0. With this choice of field, all spin physics
enters through the covariant spin-operator Sµ = iγ5σµνv

ν/2, with the basic properties

S · v = 0, {Sµ, Sν} =
1

2
(vµvν − gµν), [Sµ, Sν ] = iεµναβv

αSβ, (8.10)

in the convention ε0123 = 1. Lorentz invariance at a given order is ensured by 1/MN0 corrections
introduced via reparametrization invariance [189]. Interactions with pions are written with the
chiral covariant derivative

DµN = ∂µN + ΓµN. (8.11)
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The pion-nucleon effective Lagrangian with lowest chiral index can be written as

L(0)
πN = N̄(iv ·D + gAS · u)N, (8.12)

where gA = O(1) is the axial vector coupling at the chiral limit. This Lagragian gives rise to
a static nucleon propagator and the usual derivative pion-nucleon coupling. At the next order
we have recoil corrections, the sigma term, and new interactions,

L(1)
πN =

1

MN0
N̄
[
(v ·D)2 −D2 − igA {S ·D, v · u}

]
N

+cN1〈χ+〉N̄N − cN2〈(v · u)2〉N̄N +
cN3

2
〈u · u〉N̄N + · · · , (8.13)

with cN1, cN2, cN3 unknown LECs expected to be of O(1/Λχ). The term with LEC cN1 gives
an m2

π correction to the nucleon mass, while the cN1, cN2, cN3 terms provide seagull vertices.
For our purposes we also require the m4

π correction to the mass contained in the third-order
Lagrangian 2,

L(3)
πN = e38〈χ+〉2N̄N + e115〈χχ†〉N̄N + e116(detχ+ detχ†)N̄N + · · ·

= eN1m
4
πN̄N + · · · , (8.15)

where eN1 = (16e38 + 2e115 + 2e116) is a combination of the three LECs e38, e115, and e116 of
Ref. [301]. We expect eN1 = O(1/Λ3

χ).

Delta Chiral Lagrangian

The Delta is a spin-3/2, isospin-3/2 resonance and, therefore, it is described by a field

∆µ =


∆++
µ

∆+
µ

∆0
µ

∆−µ

 (8.16)

where each charge state has four spin components. In order to construct isospin conserving
interactions we need the isospin 3/2 analogs of the Pauli matrices,

T 1 =
2

3


0

√
3/2 0 0√

3/2 0 1 0

0 1 0
√

3/2

0 0
√

3/2 0

 , (8.17)

T 2 =
2i

3


0 −

√
3/2 0 0√

3/2 0 −1 0

0 1 0 −
√

3/2

0 0
√

3/2 0

 , T 3 =


1 0 0 0

0 1/3 0 0

0 0 −1/3 0

0 0 0 −1

 ,(8.18)

2Sometimes further terms, such as

L(2)
πN = N̄(B32δ

3
∆N +B23δ∆N 〈χ+〉)N, (8.14)

are written explicitly [256]. Here they are absorbed in the LECs MN0 and cN1 in the ciral limit.
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with T aT a = 5
3 , as well as the isospin 1/2-to-3/2 transition matrices,

t1 =
1√
6

(
−
√

3 0 1 0

0 −1 0
√

3

)
, t2 =

−i√
6

( √
3 0 1 0

0 1 0
√

3

)
, t3 =

√
2

3

(
0 0 1 0

0 0 1 0

)
,

(8.19)
with tatb† = δab − 1

3τ
aτ b.

Since Delta excitation requires only δ∆N in energy, we choose the phase of the field so that
the same factor MN0v · x is absent. As a consequence, Delta energies are also measured with
respect to the nucleon’s. The Delta is then also a static field, but with a residual mass.

The chiral Lagrangian for the Delta and its transition to the nucleon has a parallel form
to the Lagrangian of the previous subsection. The chiral covariant derivative on Delta field is
written as

Dν∆µ = ∂ν∆µ + Ta〈τaΓν〉∆µ. (8.20)

At lowest index,

L(0)
πN∆ = −∆̄µ(iv ·D− δN∆)∆µ−HA∆̄µS

νTa〈τauν〉∆µ− 1

4
hA
(
∆̄µta〈τauµ〉N + H.c.

)
. (8.21)

The first term provides the Delta propagator

Sµν(k) = − i

v · k − δN∆ + iε

[
vµvν − gµν − 4

3
SµSν

]
, (8.22)

where δN∆ = M∆0 −MN0 is the mass splitting between Delta and nucleon in the chiral limit.
The LECs HA, hA = O(1) are axial vector couplings of the Delta and of the Delta-nucleon
transition, respectively. At next order we again need recoil corrections and seagull vertices,

L(1)
πN∆ = − 1

MN0
∆̄µ

[
(v ·D)2 −D2

]
∆µ

+
iHA

MN0
∆̄µ{S ·D, vνTa〈τauν〉}∆µ +

hA
4MN0

(
i∆̄µ←−Dµv

νta〈τauν〉N + H.c.
)

−∆̄µ

[
c∆1〈χ+〉 − c∆2〈(v · u)2〉+

c∆3

2
〈u2〉

]
∆µ + · · · , (8.23)

where c∆1, c∆2 , c∆3 = O(1/Λχ) are LECs 3. As in the nucleon sector, of higher orders we need
only the m4

π correction to the baryon mass,

L(3)
πN∆ = −e∆1m

4
π∆̄µ∆µ + · · · , (8.25)

with e∆1 = O(1/Λ3
χ) yet another LEC.

3Note that in covariant ChPT there are two more terms [302] in L(1)
πN∆ which are relevant in the study of

baryon masses up to NNLO [207, 256],

L(1)
πN∆ = −ib3N̄T aωa,µνγµ∆ν −

b6
M∆

N̄T a(∂µ∆ν)ωa,µν + H.c., (8.24)

with ωaµν = 1
2
〈τa[Dµ, uν ]〉. However these terms are redundant in the heavy baryon expansion [303, 304].
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Roper Chiral Lagrangian

The Roper has the same spin/isospin numbers as the nucleon, just a higher mass. The ma-
chinery we employ to build the interactions of its field

R =

(
R+

R0

)
(8.26)

is the same as for the nucleon. The only differences are that i) it has a residual mass in the
chiral limit, and ii) it can mix with the nucleon with a mixing angle that depends on the quark
masses.

We define the nucleon and Roper fields such that they are mass eigenstates in the chiral
limit. Then we can simply add to the LO nucleon Lagrangian Eq. (8.12) the lowest-order
Roper terms

L(0)
πNR = R̄(iv ·D − δRN + gRS · u)R+ gNR

(
N̄S · uR+ h.c.

)
, (8.27)

where δRN = MR0 −MN0 denotes the mass splitting between nucleon and Roper in the chiral
limit, gR = O(1) is the axial-vector coupling of the Roper, and gNR = O(1) the axial-vector
transition coupling between Roper and nucleon. Terms at next order have a form familiar from
Eq. (8.13),

L(1)
πNR =

1

MN0
R̄
[
(v ·D)2 −D2 − igR {S ·D, v · u}

]
R

+cR1〈χ+〉R̄R− cR2〈(v · u)2〉R̄R+
cR3

2
〈u · u〉R̄R (8.28)

+cNR
(
〈χ+〉N̄R+ h.c.

)
− igNR
MN0

R̄{S ·D, v · u}N + h.c.+ · · · , (8.29)

where cR1, cR2 , cR3 = O(1/Λχ) are LECs to be fixed. Noteworthy is the Roper-nucleon mixing
linear in the quark masses with LEC cNR = O(1/Λχ), which we kep here explicit in contrast
to what is done in Ref. [285]. When one is interested in Roper effects at a fixed pion mass, for
example at its physical value (e.g. Refs. [281, 283, 284]), we can perform a new rotation to
re-diagonalize the fields at that mass and eliminate cNR. Here we keep track of its effects as
the pion mass is varied. As before, the only higher-order term we need is

L(3)
πNR = eR1m

4
πR̄R+ . . . . (8.30)

with eR1 = O(1/Λ3
χ) another LEC.

In addition we need the Roper-Delta transitions at the two lowest orders,

L(0)
π∆R = −1

4
g∆R

(
∆̄µta〈τauµ〉R+ H.c.

)
(8.31)

and

L(1)
π∆R =

ig∆R

4MN0

(
∆̄µ←−Dµv

νta〈τauν〉R+ H.c.
)
, (8.32)

where g∆R = O(1) is the axial-vector transition coupling.
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8.3 Baryon mass and width matrices

8.3.1 Perturbatively calculation of the baryon self-energies

Firstly, let us consider the two-point function of the baryon field B(x)

S0(x) = −i〈0|T [B(x)B̄(0)]|0〉 =
1

p0 − δ − Σ(p0)
, (8.33)

where the momentum matrix p0, the mass splitting matrix δ and the self-energy matrix Σ(p0),
respectively, can be written as

p0 =

 p0
NN 0 p0

NR

0 p0
∆∆ 0

p0
RN 0 p0

RR

 , δ =

 0 0 0

0 δN∆ 0

0 0 δNR

 , (8.34)

Σ(p0) =

 ΣNN (p0
NN ) 0 ΣNR(p0

NR)

0 Σ∆∆(p0
∆∆) 0

ΣRN (p0
RN ) 0 ΣRR(p0

RR)

 , (8.35)

where the elements of self-energy matrix, ΣBB′(p
0
BB′) with B,B

′ = N, ∆, R, can be expanded
up to fourth order

ΣBB′(p
0
BB′) = Σ

(2)
BB′ + Σ

(3)
BB′(p

0
BB′) + Σ

(4)
BB′(p

0
BB′) + · · · . (8.36)

The baryon masses are defined as MB = MN0 + Re[p0] at the pole with p0 = δ + Σ(p0).
And the corresponding widths are defined as ΓB = −2Im[Σ(p0)]. In order to obtain the baryon
masses and widths, one has to calculate the matrix equation perturbatively in terms of the
expansion of p0,

p0 = p0(1)
+ p0(2)

+ p0(3)
+ p0(4)

+ · · · , (8.37)

with

p0(1)
= δ =

 0 0 0

0 δN∆ 0

0 0 δNR

 , p0(2)
=

 Σ
(2)
NN 0 Σ

(2)
NR

0 Σ
(2)
∆∆ 0

Σ
(2)
RN 0 Σ

(2)
RR

 , (8.38)

p0(3)
=

 Σ
(3)
NN (0) 0 Σ

(3)
NR(0)

0 Σ
(3)
∆∆(δN∆) 0

Σ
(3)
RN (0) 0 Σ

(3)
RR(δNR)

 , (8.39)

and

p0(4)
=

 Σ
(2)
NN Σ

(3)
NN

′
(0) 0 Σ

(2)
NR Σ

(3)
NR

′
(0)

0 Σ
(2)
∆∆ Σ

(3)
∆∆

′
(δN∆) 0

Σ
(2)
RN Σ

(3)
RN

′
(0) 0 Σ

(2)
RR Σ

(3)
RR

′
(δNR)


+

 Σ
(4)
NN (0) 0 Σ

(4)
NR(0)

0 Σ
(4)
∆∆(δN∆) 0

Σ
(4)
RN (0) 0 Σ

(4)
RR(δNR)
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≡

 Σ̃
(4)
NN (0) 0 Σ̃

(4)
NR(0)

0 Σ̃
(4)
∆∆(δN∆) 0

Σ̃
(4)
RN (0) 0 Σ̃

(4)
RR(δNR)

 . (8.40)

Here we would like to mention that the mixed terms ΣNR and ΣRN are the same.
The baryon mass matrix, MB = MN0 + Re[p0], can be expressed as

MB =

 MNN 0 MNR

0 M∆∆ 0

MRN 0 MRR

 , (8.41)

with the diagonal terms MNN , M∆∆, and MRR

MNN = MN0 +M
(2)
NN +M

(3)
NN +M

(4)
NN + · · · ,

M∆∆ = MN0 + δN∆ +M
(2)
∆∆ +M

(3)
∆∆ +M

(4)
∆∆ + · · · ,

MRR = MN0 + δNR +M
(2)
RR +M

(3)
RR +M

(4)
RR + · · · , (8.42)

and the mixed terms MNR and MRN

MNR = M
(2)
NR +M

(3)
NR +M

(4)
NR + · · · ,

MRN = M
(2)
RN +M

(3)
RN +M

(4)
RN + · · · , (8.43)

where M (i)
BB′ are the real parts of baryon self-energies:

M
(2)
BB′ = Σ

(2)
BB′ , M

(3)
BB′ = Re

[
Σ

(3)
BB′(p

0
BB′

(1)
)
]
, M

(4)
BB′ = Re

[
Σ̃

(4)
BB′(p

0
BB′

(1)
)
]
. (8.44)

Similarly, we also can define the matrix of baryon widths

ΓB =

 ΓNN 0 ΓNR
0 Γ∆∆ 0

ΓRN 0 ΓRR

 , (8.45)

with the diagonal terms ΓNN , Γ∆∆, and ΓRR

ΓNN = Γ
(3)
NN + Γ

(4)
NN + · · · = −2Im[Σ

(3)
NN (0)]− 2Im[Σ̃

(4)
NN (0)] + · · · ,

Γ∆∆ = Γ
(3)
∆∆ + Γ

(4)
∆∆ + · · · = −2Im[Σ

(3)
∆∆(δN∆)]− 2Im[Σ̃

(4)
∆∆(δN∆)] + · · · ,

ΓRR = Γ
(3)
RR + Γ

(4)
RR + · · · = −2Im[Σ

(3)
RR(δNR)]− 2Im[Σ̃

(4)
RR(δNR)] + · · · , (8.46)

and the mixed terms ΓNR and ΓRN

ΓNR = Γ
(3)
NR + Γ

(4)
NR + · · · = −2Im[Σ

(3)
NR(0)]− 2Im[Σ̃

(4)
NR(0)] + · · · ,

ΓRN = Γ
(3)
RN + Γ

(4)
RN + · · · = −2Im[Σ

(3)
RN (0)]− 2Im[Σ̃

(4)
RN (0)] + · · · . (8.47)

Because the nucleon is the lightest baryon state, the imaginary part of self-energies ΣNN (0)

and ΣNR(0) = ΣRN (0) should be zero, therefore,

ΓNN = ΓNR = ΓRN ≡ 0. (8.48)
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8.3.2 Diagonalization of the baryon mass and width matrices

In order to obtain the masses and widths of nucleon, Delta, and Roper, one should diagonalize
the above two matrices [Eq. (8.41) and Eq. (8.45)] simultaneously. We encode the baryon mass
and width matrices into a single matrix

MB − i
ΓB
2
≡

 MNN − iΓNN
2 0 MNR − iΓNR

2

0 M∆∆ − iΓ∆∆
2 0

MRN − iΓRN
2 0 MRR − iΓRR

2


=

 MNN 0 MNR

0 M∆∆ − iΓ∆∆
2 0

MRN 0 MRR − iΓRR
2

 . (8.49)

After diagnolizing the baryon mass and width matrices, we obtain the three eigenvalues
represent the nucleon, Delta and Roper masses and widths,

MN − i
ΓN
2

=
1

2

[
MNN +MRR −

√
W − iΓRR

2

]
, (8.50)

M∆ − i
Γ∆

2
= M∆∆ − i

Γ∆∆

2
, (8.51)

MR − i
ΓR
2

=
1

2

[
MNN +MRR +

√
W − iΓRR

2

]
, (8.52)

with

W = (MNN −MRR)2 + 4MNRMRN + i(MNN −MRR)ΓRR −
Γ2
RR

4
. (8.53)

The corresponding three eigenvectors after normalization are

VN =


− |MRN |

MRN

√
W−MNN+MRR−i

ΓRR
2√

4M2
RN+(

√
W−MNN+MRR−i

ΓRR
2

)2

0
2|MRN |√

4M2
RN+(

√
W−MNN+MRR−i

ΓRR
2

)2

 , V∆ =

 0

1

0

 , (8.54)

VR =


|MRN |
MRN

√
W+MNN−MRR+i

ΓRR
2√

4M2
RN+(

√
W+MNN−MRR+i

ΓRR
2

)2

0
2|MRN |√

4M2
RN+(

√
W+MNN−MRR+i

ΓRR
2

)2

 . (8.55)

Expanding
√
W up to NNLO,

√
W ≈ MRR −MNN −

2

δNR

(
M

(2)
NRM

(2)
RN −M

(2)
NRM

(3)
RN −M

(2)
RNM

(3)
NR

)
+

2

δ2
NR

(
M

(2)
NRM

(2)
RN (M

(2)
RR −M

(2)
NN )

)
− iΓRR

2
, (8.56)

the expressions of baryon masses and widths are

MN − i
ΓN
2
≈ MN0 +M

(2)
NN +M

(3)
NN +M

(4)
NN

+
1

δNR

(
M

(2)
NRM

(2)
RN −M

(2)
NRM

(3)
RN −M

(2)
RNM

(3)
NR

)
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Figure 8.1: One loop self-energy diagrams contributing to M (3)
NN . The dashed, solid, double-

solid, and triple-solid lines correspond to the pion, nucleon, ∆, and Roper, respectively. Black
dots indicate an insertion from the dimension one chiral Lagrangians.

+
1

δ2
NR

(
M

(2)
NRM

(2)
RN (M

(2)
NN −M

(2)
RR)

)
, (8.57)

M∆ − i
Γ∆

2
≈ MN0 + δN∆ +M

(2)
∆∆ +M

(3)
∆∆ +M

(4)
∆∆ − i

Γ
(3)
∆∆ + Γ

(4)
∆∆

2
, (8.58)

MR − i
ΓR
2
≈ MN0 + δNR +M

(2)
RR +M

(3)
RR +M

(4)
RR

− 1

δNR

(
M

(2)
NRM

(2)
RN −M

(2)
NRM

(3)
RN −M

(2)
RNM

(3)
NR

)
− 1

δ2
NR

(
M

(2)
NRM

(2)
RN (M

(2)
NN −M

(2)
RR)

)
− i

Γ
(3)
RR + Γ

(4)
RR

2
. (8.59)

Therefore, in order to obtain the explicit expressions of baryon masses and widths, one needs
the diagonal terms of baryon self-energies up to NNLO and the mixed terms between nucleon
and Roper up to NLO.

8.4 Baryon self-energies up to NNLO

Diagonal terms of the nucleon self-energy

The leading order contribution to the nucleon self-energy is

Σ
(2)
NN = −4cN1m

2
π. (8.60)

At O(ε3), the contributing loop diagrams are collected in Fig. 8.1. After calculating the
diagrams using the HBChPT, we can obtain the chiral corrections to the nucleon self-energy

Σ
(3)
NN (0) = −

3g2
A

32πf2
π

m3
π −

h2
A

12π2f2
π

δ3
N∆F

(
mπ

δN∆

)
−

3g2
NR

(4πfπ)2
δ3
NRF

(
mπ

δNR

)
, (8.61)

where the loop function F(x) is defined as
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F(x) =
1

4
x2 +

1

2
(1− 3

2
x2) log

x2

4

+


(1− x2)3/2 log

(
1
x +

√
1
x2 − 1

)
, 0 ≤ x < 1,

(x2 − 1)3/2 arccos 1
x , |x| ≥ 1,

−(1− x2)3/2
[
iπ − log

(
−1
x +

√
1
x2 − 1

)]
, −1 < x < 0.

(8.62)

The evolution of F(x) is illustrated in Fig. 8.2. There are six different values of F(x) with
x = ±mπ/δ (δ = δN∆, δ = δ∆R and δ = δNR) at the physical point are presented. We also
investigate the limit behavior of F(x): when x → 0, the loop function F(x) → 0 and when
x→∞, the loop function F(x)→ π

2x
3.

Up to NNLO, the needed one loop diagrams are collected in Fig. 8.3, and the corresponding
chiral correction to the nucleon self-energy can be expressed as

Σ̃
(4)
NN (0) = −eN1m

4
π +

3

64π2f2
π

(8cN1 − cN2 − 4cN3)m4
π log

m2
π

µ2
+

3cN2

128π2f2
π

m4
π

− 3

4(4πfπ)2

g2
A

MN0

(
log

m2
π

µ2
+ 1

)
m4
π

+
h2
A

4π2f2
π

(cN1 − c∆1)

[
m2
πδ

2
N∆J

(
mπ

δN∆
,
δN∆

µ

)
+m4

π

]
− 5

8(4πfπ)2

h2
A

MN0

(
log

m2
π

µ2
+

9

10

)
m4
π −

h2
A

24π2f2
π

δ4
N∆

MN0
F
(
mπ

δN∆

)

-4

-2

 0

 2

 4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

F(
x)

x 

Re[F(x)]

Im[F(x)]

Figure 8.2: The evolution of F(x). Solid (dash) line corresponds to the real (imaginary) part
of F(x). Red circles denote F(x) with x = ±mphys.

π /δphys.
N∆ , blue squares and green diamonds

are the results with x = ±mphys.
π /δphys.

∆R (δphys.
∆R = mphys.

∆ −mphys.
R ) and x = ±mphys.

π /δphys.
NR . The

full and hollow symbols are the real and imaginary results of F(x), respectively.
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Figure 8.3: One loop self-energy diagrams contributing to M (4)
NN . The dashed, solid, double-

solid, and triple-solid lines correspond to the pion, nucleon, ∆, and Roper, respectively. The
filled circles denote an insertion from the dimension one chiral Lagrangians, the black boxes
indicate O(p2) mass insertions, and the empty circles are the couplings from the 1/MB cor-
rection Lagrangains. Wave function renormalization diagrams are not explicitly shown but
included in the calculation.

+
9g2
NR

(4πfπ)2
(cN1 − cR1)

[
m2
πδ

2
NRJ

(
mπ

δNR
,
δNR
µ

)
+

2

3
m4
π

]
− 3

4(4πfπ)2

g2
NR

MN0

(
log

m2
π

µ2
+ 1

)
m4
π −

9g2
NR

2(4πfπ)2

δ4
NR

MN0
F
(
mπ

δNR

)
− 3

4π2f2
π

cNRgAgNR

[
m2
πδ

2
NRH

(
mπ

δNR
,
δNR
µ

)
+m4

π

]
, (8.63)

where the function, J (x, y), from loop diagrams Fig. 8.3(a,b,c), is defined as

J (x, y) = x2 log(x2y2) + 2 log
4

x2

−


4
√

1− x2 log
(

1
x +

√
1
x2 − 1

)
, 0 < x < 1,

(−4)
√
x2 − 1 arccos 1

x , |x| ≥ 1,

(−4)
√

1− x2
[
iπ − log

(
−1
x +

√
1
x2 − 1

)]
, −1 < x < 0.

(8.64)
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The asymptotic behavior of J (x, y) is: J (x, y)→ −x2+x2 log(4y2) when x→ 0 and J (x, y)→
x2 log(x2y2) when x→∞.

Due to the mixing between nucleon and Roper fields, two new loop diagrams [Fig. 8.3(d,e)]
should be taken into account. The corresponding three-point function H(x, y) is defined as

H(x, y) =
3

2
x2 log(x2y2) + πx3 + log

4

x2

−


2(1− x2)3/2 log

(
1
x +

√
1
x2 − 1

)
, 0 < x < 1,

2(x2 − 1)3/2 arccos 1
x , |x| ≥ 1,

−2(1− x2)3/2
[
iπ − log

(
−1
x +

√
1
x2 − 1

)]
, −1 < x < 0.

(8.65)

Furthermore, the limit behavior is: H(x, y)→ −1
2x

2 + 3
2x

2 log(4y2) when x→ 0 and H(x, y)→
3
2x

2 log(x2y2) when x→∞.

Diagonal terms of the Delta self-energy

In order to obtain the chiral corrections to the self-energy of Delta, one has to calculate the
one-loop diagrams shown in Figs. 8.4 and 8.5. The LO, NLO and NNLO contributions are

Figure 8.4: One loop self-energy diagrams contributing toM (3)
∆∆. Other notations are the same

as in Fig. 8.1.

Σ
(2)
∆∆ = −4c∆1m

2
π, (8.66)

Σ
(3)
∆∆(δN∆) = −

25H2
A

864πf2
π

m3
π +

h2
A

3(4πfπ)2
δ3
N∆F(− mπ

δN∆
)−

g2
∆R

3(4πfπ)2
δ3

∆RF(
mπ

δ∆R
), (8.67)

Σ̃
(4)
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Figure 8.5: One loop self-energy diagrams contributing toM (4)
∆∆. Other notations are the same

as in Fig. 8.3.

where the new loop function G(mπ, δND, δNR, µ), from Fig. 8.5(d,e), is defined as
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(8.69)
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Figure 8.6: One loop self-energy diagrams contributing to M (3)
RR. Other notations are the same

as in Fig. 8.1.

Figure 8.7: One loop diagrams self-energy contributing to M (4)
RR. Other notations are the same

as in Fig. 8.3.

Diagonal terms of the Roper self-energy

Just the same as the case of the nucleon, all the loop diagrams that contribute to the self-
energy of Roper up to and including NNLO are presented in Figs. (8.6-8.7). The different order
contributions to the Roper self-energy are

Σ
(2)
RR = −4cR1m

2
π, (8.70)

Σ
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32πf2
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), (8.71)
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− 3

4(4πfπ)2

g2
R

MN0

(
log

m2
π

µ2
+ 1

)
m4
π

+
9g2
NR

(4πfπ)2
(cR1 − cN1)

[
m2
πδ

2
NRJ (− mπ

δNR
,−δNR

µ
) +

2

3
m4
π

]
− 3

4(4πfπ)2

g2
NR

MN0

(
log

m2
π

µ2
+ 1

)
m4
π −

9g2
NR

2(4πfπ)2

δ4
NR

MN0
F(− mπ

δNR
)

+
g2

∆R

4π2f2
π

(cR1 − c∆1)

[
m2
πδ

2
∆RJ (− mπ

δ∆R
,−δ∆R

µ
) +m4

π

]
− 5

8(4πfπ)2

g2
∆R

MN0

(
log

m2
π

µ2
+

9

10

)
m4
π −

g2
∆R

24π2f2
π

δ4
∆R

MN0
F(− mπ

δ∆R
)

− 3

4π2f2
π

cNRgRgNR

[
m2
πδ

2
NRH(− mπ

δNR
,−δNR

µ
) +m4

π

]
. (8.72)

Mixed terms between nucleon and Roper

Figure 8.8: Leading order diagrams of mixed terms between nucleon and Roper. Other nota-
tions are the same as in Fig. 8.3.

Figure 8.9: Next-to-leading order diagrams of mixed terms between nucleon and Roper. Other
notations are the same as in Fig. 8.1.

Because Roper, as the first excitation state of nucleon, has the same quantum numbers as
nucleon, there exists mixing between nucleon and Roper which is allowed by chiral symmetry.
According to the mass formulas of nucleon [Eq. (8.57)] and Roper [Eq. (8.59)], we only need
the mixed contributions up to NLO, including Σ

(2)
NR, Σ

(2)
RN , Σ

(3)
NR, and Σ

(3)
RN . As illustrated in

Fig. (8.8), the mixed term up to leading order is

Σ
(2)
NR = Σ

(2)
RN = −4cNRm

2
π. (8.73)

At O(ε3), the one-loop diagrams contributing to the mixed terms Σ
(3)
NR and Σ

(3)
RN are shown

in Fig. 8.9. The mixed terms Σ
(3)
NR and Σ

(3)
RN have the same loop structure as Σ

(3)
NN , and can

be expressed as

Σ
(3)
NR(0) = Σ

(3)
RN (0)
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= −3gAgNR
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). (8.74)

8.5 Results and Discussion

Up to now, we have obtained the chiral expansions of the self-energies of nucleon, Delta, and
Roper up to NNLO. Now, we can give explicit expressions of the baryon masses and widths.
As a tentative application, we would like to simultaneously analyze the lattice data of nucleon,
Delta, and Roper masses to explore the quark mass dependence of Roper mass and the nucleon-
Roper mixing effects.

8.5.1 Nucleon, Delta and Roper masses

In terms of Eqs. (8.57-8.59), we could explicitly write out the expressions of nucleon, Delta
and Roper masses at O(ε4).

• The nucleon mass MN is
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• The Delta mass M∆ is
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• The Roper mass MR is

MR = MN0 + δNR − 4cR1m
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We want to mention that, the chiral expansions of nucleon, Delta and Roper masses have
been carried out in Refs. [73, 81, 256, 259, 285, 286, 305]. Our nucleon mass, without the virtual
Delta and Roper contributions, is the same as Eq.(11) of Ref. [73] and Eq.(A.1) of Ref. [305].
But, for the nucleon and Delta masses, even without the virtual Roper contributions, our
results are different with Ref. [259], which did not perform the expansion in δ∆N and δRN .

8.5.2 Delta and Roper widths

The width of resonance can be obtained by the imaginary of self-energy with ΓB = −2Im[ΣB].
By using the Eq. (8.58) and Eq. (8.59), we obtain:
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• The width of Roper ΓR
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In the next subsection, we will employ the widths of Delta and Roper to deter-
mine/constrain the values of the related LECs.

8.5.3 Analysis of lattice data of nucleon, Delta and Roper masses

Due to the unstable Roper state with mπ ≤ 500 MeV in LQCD, in principle, the lattice Roper
mass is not suitable to be studied in ChPT. As illustration of our calculations, we would like
to perform the chiral extrapolation of Roper mass by analyzing the lattice data.

However, because there is a large number of LECs (24) appearing in the nucleon, Delta,
and Roper masses up to NNLO, we do not expect to determine all the LECs by just fitting the
lattice baryon masses. In order to tentatively study the chiral extrapolation of Roper mass,
we would like to utilize the NLO baryon masses, which contains 10 unknown LECs (m0, δ∆N ,
∆RN , cN1, c∆1, cR1, cNR, gNR, g∆R, and gR), to simultaneously study the lattice data of
nucleon, Delta, and Roper masses and their experimental results.

Table 8.1: Values of the LECs from the best fit to the nucleon, Delta, and Roper lattice data
and experimental results.

Fit-I Fit-II
MN0 853(2) 854(3)
δ∆N 304(11) 310(5)
δRN 237(141) 535(54)
cN1 -1.36(1) -1.35(2)
c∆1 -1.19(10) -1.07(5)
cR1 -5.79(2.97) -0.450(486)
cNR 0±0.147 0±0.231
gNR 0.390(64) 0.391(64)
g∆R 2.00(49) 2.03(48)
gR 3.26(160) 0±3.69
χ2-N 20.98 20.85
χ2-∆ 4.66 4.28
χ2-R 5.39 0.16

χ2/d.o.f. 1.15 1.01
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Figure 8.10: Chiral extrapolation of nucleon mass. Left panel and right panel are the results
from Fit-I and Fit-II, respectively.

At present, there are many lattice simulations on the nucleon mass, such as the nf = 2 sim-
ulations from the ETM [306], Mainz [307], QCDSF [308], and BGR [165] collaborations, and
the nf = 2 + 1 simulations from the PACS-CS [23], LHPC [25], HSC [26], RBC-UKQCD [241]
and BMW [22] collaborations. For the lattice Delta masses, several collaborations have re-
ported their results, the ETM [306] and BGR [165] collaborations with nf = 2, and the
PACS-CS [23], HSC [165] collaborations with nf = 2 + 1. But the situation for the lattice
Roper masses is unsatisfactory. As mentioned in Chapter 2, the lattice data of Roper masses
from the CSSM [163], JLab [164], BGR [165], Cyprus [150] collaborations is large different
with the results of χQCD [167] simulation. In the sense of the tentative study of lattice Roper
masses, we could divide the lattice results of Roper masses into two groups: one group is from
the CSSM, JLab, BGR, and Cyprus collaborations, another from χQCD Collaboration.

In the following, we perform a simultaneous fit of the nucleon, Delta, and Roper masses of
the LQCD by using the chiral expansions of baryon masses at O(ε3). The lattice data should
fulfill m2

π < 0.15 GeV2 to ensure the validity of NLO ChPT. After selection, the number of
lattice points is 25 for the nucleon, 6 for the Delta, and 6(4) from group one (two) for the
Roper. We denote the lattice data points of nucleon, Delta, and lattice data of Roper masses
from group one as Set-I. And, Set-II contains the same nucleon and Delta lattice data as Set-I
and the lattice Roper masses from group two. The pion decay constant fπ is taken its latest
experimental result fπ = 92.1 MeV [15]. The nucleon-Delta coupling hA is fixed as hA = 2.09

by using the Delta width. And, the nucleon-Roper and Delta-Roper couplings gNR and g∆R

are constrained by the Breit-Wigner width of Roper ΓR = 350± 100 MeV.

We perform a χ2 fit to the lattice data and the physical baryon masses. The obtained LECs
and χ2/d.o.f. from the best fits are tabulated in Table 8.1. Besides, the fit-χ2 for nucleon, Delta,
and Roper are also given. The two fit strategies, named as Fit-I and Fit-II, give essentially the
same description of nucleon and Delta masses of LQCD. This is also illustrated in Fig. 8.10
and Fig. 8.11 of the chiral extrapolation of lattice data. Due to the large difference of the fitted
Roper masses in Set-I and Set-II, we can see that the values of LECs related to Roper masses,
e.g. δRN , cR1, are very different. In Fig. 8.12, we present the quark mass dependence of Roper
masses from Set-I (left panel) and Set-II (right panel). As we expected, the lattice data from
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Figure 8.11: Chiral extrapolation of Delta mass. Left panel and right panel are the results
from Fit-I and Fit-II, respectively.

the CSSM, JLab, BGR, Cyprus collaborations present a large chiral-log effect, whereas the
χQCD results give a mild quark mass dependence of Roper mass. In Fit-I, as anticipated, the
Roper-nucleon mass difference in the chiral limit is relatively small, and comparable to the
Delta-nucleon splitting. The value of cNR ∼ 0 denotes that the mixed effects of nucleon and
Roper are very small at O(p3). But, on the other hand, the sizable error of cNR also indicates
the mixing effects should be carefully investigated when better lattice data becomes available.
And, it would be interest to study its effects up to NNLO.
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Figure 8.12: Chiral extrapolation of Roper mass. Left panel and right panel are the results
from Fit-I and Fit-II, respectively.



Chapter 9

Conclusion

The origin of mass of ordinary matter is linked to the origin of nucleon masses. The components
of a nucleon mass can be divided into two parts: one is the three valence quark masses from
the Brout-Englert-Higgs mechanism, which can only provide 1% contributions, and the other
is from the nonperturbative strong interaction, which accounts for ∼99% of the nucleon mass.
In this dissertation, we present an integration of chiral perturbation theory and lattice QCD
to study lattice baryon masses and to understand the mechanism of the origin of mass.

In the SU(3) sector, we performed a systematic study of the lattice results of lowest-lying
octet and decuplet baryon masses in covariant baryon chiral perturbation theory with the
extended-on-mass-shell renormalization scheme.

• For lowest-lying octet baryons, we calculated the baryon self-energies up to next-to-next-
to-next-to-leading order in the chiral expansion by using EOMS BChPT. The corre-
sponding finite-volume corrections to the lattice data were evaluated up to O(p4). By
constructing the discretized BChPT for Wilson fermions, we obtained the finite lattice
spacing discretization effects of lattice QCD. Then, we performed a systematic study of
lattice baryon masses from the PACS-CS, LHPC, QCDSF-UKQCD, HSC, and NPLQCD
collaborations by exploring the chiral extrapolation of baryon masses, and evaluating
finite-volume and finite lattice spacing discretization effects of LQCD.

We confirmed that covariant BChPT in the three-flavor sector converges as expected,
relatively slowly as dictated by MK/ΛChPT but with clear improvement order by order,
at least concerning the octet baryon masses. A successful simultaneous fit of all the
latest 2+1 flavors LQCD simulations indicates that the lattice octet baryon masses are
consistent with each other, though their setups are quite different. We also found the
finite-volume corrections of LQCD are important. And, for the lattice discretization
effects, our studies showed that the treatment of discretization effects as systematic
uncertainties in the previous studies of the LQCD octet baryon masses seems to be
justified. It was shown that the discretization effects on the octet baryon masses are
less than 2% for lattice spacings up to 0.15 fm, in agreement with other LQCD studies.
Furthermore, it is also shown that the contributions of virtual decuplet baryons affect
little the light-quark mass dependence of the octet baryon masses, indicating that their
effects can be embodied in the LECs of the octet only version. On the other hand, a
slightly better description of FVCs can be achieved once virtual decuplet baryons are
taken into account.

• Applying the obtained chiral formulas for the octet baryon masses at O(p4), we have
performed an accurate prediction of the octet baryon sigma terms by systematically ana-
lyzing the high statistic lattice baryon masses from PACS-CS, LHPC, QCDSF-UKQCD
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collaborations. We found σπN = 55(1)(4) MeV and σsN = 27(27)(4) MeV. Special at-
tention was paid to uncertainties induced by the lattice scale setting method, which,
however, were found to be small, in contrast with previous studies. Other uncertainties,
such as those induced by truncating chiral expansions and variations of LECs were also
studied in detail. In addition, we have used the strong-interaction isospin-splitting effects
from the LQCD simulations to further constrain the relevant LECs. Our results indi-
cate a small scalar strangeness content in the nucleon, consistent with the strangeness
contribution to the proton spin and to the electromagnetic form factors of the nucleon.

• As a natural extension, we have also studied the lowest-lying decuplet baryon masses in
covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to
next-to-next-to-next-to-leading order. Through a simultaneous fit of the nf = 2+1 lattice
data from the PACS-CS, QCDSF-UKQCD, and HSC collaborations, the 14 unknown low-
energy constants are determined. In fitting the lattice data, finite-volume corrections are
taken into account self-consistently. A χ2/d.o.f. = 0.23 is achieved for the eight sets of
lattice data satisfying M2

π < 0.25 GeV2 and MφL > 3.8.

Our studies show that the chiral expansions are convergent as expected and the results of
the PACS-CS, QCDSF-UKQCD, and HSC collaborations seem to be consistent with each
other, but not those of the LHPC Collaboration which employs the hybrid action. We
have predicted the sigma terms of the decuplet baryons by use of the Feynman-Hellmann
theorem, which should be compared to the lattice data in the future. It should be noted
that our present study suffers from the limited range of the LQCD data (in terms of
the input parameters) and the rather large number of unknown low-energy constants.
Future refined LQCD simulations with various light-quark and strange quark masses,
lattice volume and lattice spacing will be extremely welcome to put covariant baryon
chiral perturbation theory to a more stringent test than did in the present work.

From the above studies, we present a nice interplay of lattice QCD and chiral perturbation
theory to study the lowest-lying baryon masses. By performing the chiral extrapolation of
lattice baryon masses to the physical point, we could reproduce the baryon masses. This could
confirm that the nonperturbative strong interaction can provide the 99% of nucleon (baryon)
masses.

With the studies of excited states becoming popular in lattice simulations, we also explored
the chiral corrections to the self-energies of Roper, the first excitation state of nucleon. We
performed a systematic study of the nucleon, Delta and Roper masses and widths in an ex-
tension of chiral perturbation theory that includes the Delta-nucleon and Roper-nucleon mass
differences as expansion degrees of freedom. The contributions due to the mixing between
nucleon and Roper induced by explicit chiral symmetry breaking were taken into account ex-
plicitly. The virtual Roper effects on the nucleon and Delta masses were evaluated up to
next-to-next-to-leading order, as well as the effects of the nucleon and Delta in the Roper mass
and width.

Lattice QCD has been successful to calculate many physical properties of lowest-lying
states. The ground-state hadron spectrum is well understood [128], and the corresponding
numerical artifacts from continuum extrapolation and finite-volume corrections are well con-
trolled. Therefore, computing the spectrum of excited mesons and baryons in lattice QCD
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becomes interesting. At present, there are several lattice collaborations which performed the
study of excited hadron spectrum, such as the CSSM Collaboration [309–311], the BGR Col-
laboration [165, 312], the HSC Collaboration [313, 314], the Cyprus Collaboration [150, 166].
But, such calculations are still very challenging. Although, in this dissertation, we have studied
Roper mass in chiral perturbation theory, the corresponding lattice Roper mass is not very
clear and not suitable to perform the chiral extrapolation. We believe that, in the future, when
the lattice QCD studies of Roper mass are mature, we can then use the same ideas to perform
a systematic study of Roper mass by including the finite-volume corrections and finite lattice
spacing discretization effects. Furthermore, we also want to study the nucleon axial charge gA
including the Roper effects and the Roper axial charge gR in chiral perturbation theory.

In this dissertation, the isospin symmetry between u and d quarks is always taken exactly
with mu = md ≡ ml in the lattice baryon masses and the chiral corrections to baryon self-
energies 1. Although the difference between u, d quarks is very small, it plays important roles
in the study of low-energy physics. If one understands the baryon mass splitting from isospin
symmetry breaking, especially for the proton and neutron masses splitting, it would be very
helpful to the study of β decay and to explore new physics [315]. More recently, with the
advance of computer techniques and computational resources, the effects of isospin symmetry
breaking are starting to be included in lattice simulations. There are several studies of nucleon
and baryon masses combining QCD and QED [247, 248, 316–322]. In Ref. [323], Davoudi and
Savage have studied the electromagnetic corrections to the masses of meson, baryon and nuclei
in a finite volume. In a near future, we would like to construct chiral effective Lagrangians
including virtual photons, and study the electromagnetic corrections to the octet baryon masses
in chiral perturbation theory.

Furthermore, studies of hadron resonance structure become a hot topic with the discovery
of the exotic (X, Y , and Z) hadron states by experiments. Although chiral perturbation theory
is a powerful theoretical tool to study the low-energy physics, its application energy region is
around 1 GeV. Therefore, unitary chiral perturbation theory (UChPT) [324, 325], which em-
ploys unitary techniques to conventional chiral perturbation theory, enables the study of higher-
energy regions and describes low-lying resonances. With my collaborators, we have studied five
different subjects: (1) We studied for the first time the antineutrino-proton reactions to produce
the Λ(1405) by using the UChPT, which generates two Λ(1405) poles [326]; (2) We presented a
new reaction ηc(ηc(2S))→ φK∗K̄∗ to generate the h1(1830) by using UChPT, which can pro-
vide a suggestion for experimentalists to confirm the existence of h1(1830) state [327]; (3) We
calculated the interaction kernel up to O(p2) to generate the lowest-lying axial-vector mesons
in the UChPT to explore the effects of higher order contributions [328]; (4) We calculated
the energy levels of the KK∗ system in the f1(1285) channel in finite volume by utilizing the
UChPT [329]; (5) With the three-body resonances drawing much attention, we also studied the
ρ, D∗, D̄∗ three-body system by using the fixed-center approximation to the Faddeev equation
in Ref. [330]. Recently, With the discovery of pentaquark states Pc(4380)+ and Pc(4450)+ by
LHCb [331], it would be interesting to explore the nature and the properties of pentaquark
states with those methods.

1We want to mention that, in Appendix D, the strong isospin-breaking effects are calculated.





Appendix A

Nf = 2 + 1 Lattice QCD simulation
results

In this section, we briefly summarize some key ingredients of the LQCD simulations of the
PACS-CS [23], LHPC [25], HSC [26], QCDSF-UKQCD [28] and NPLQCD [29] collaborations,
which are relevant to our study. In addition, we tabulate the simulated octet baryon masses
in physical units, which satisfy M2

π < 0.5 GeV2, M2
K < 0.7 GeV2, and the pseudoscalar meson

mass times lattice box size MφL > 3.

PACS-CS [23]

The PACS-CS Collaboration employs the nonperturbatively O(a)-improved Wilson quark ac-
tion and the Iwasaki gauge action. Numerical simulations are carried out at the lattice spacing
of a = 0.0907(14) fm, on a 323 × 64 lattice with the use of the domain-decomposed HMC
algorithm to reduce the up-down quark mass, which is about 3 MeV. For the strange quark
part they improve the PHMC algorithm with the UV-filtering procedure. Their simulation
points cover from 701 MeV to 156 MeV, but the lightest point has a MπL ≈ 2.9, which might
induce large finite volume corrections.

Table A.1: Masses of the pseudoscalar mesons and the octet baryons (in units of MeV) obtained
by the PACS-CS Collaboration (TABLE III of Ref. [23].) The first number in the parentheses
is the statistical uncertainty and second is that from the uncertainty of the lattice spacing.
The lattice data sets with stars demand Mπ < 500 MeV and MφL > 4.

Mπ MK mN mΛ mΣ mΞ

155.8 553.7 932.1(78.3)(14.4) 1139.9(20.7)(17.6) 1218.4(21.5)(18.8) 1393.3(6.7)(21.5)
∗ 295.7 593.5 1093.1(18.9)(16.9) 1253.8(14.1)(19.4) 1314.8(15.4)(20.3) 1447.7(10.0)(22.3)
∗ 384.4 581.4 1159.7(15.4)(17.9) 1274.1(9.1)(19.7) 1316.5(10.4)(20.3) 1408.3(7.0)(21.7)
∗ 411.2 635.0 1214.7(11.5)(18.7) 1350.4(7.8)(20.8) 1400.2(8.5)(21.6) 1503.1(6.5)(23.2)
569.7 713.2 1411.1(12.2)(21.8) 1503.8(9.8)(23.2) 1531.2(11.1)(23.6) 1609.5(9.4)(24.8)
701.4 789.0 1583.0(4.8)(24.4) 1643.9(5.0)(25.4) 1654.5(4.4)(25.5) 1709.6(5.4)(26.4)

LHPC [25]

The LHPC Collaboration calculates the light hadron spectrum in full QCD using a mixed
action that exploits the lattice chiral symmetry provided by domain wall valence quarks (the
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DWF valence quark action) and ensembles of computationally economical improved staggered
sea quark configurations (the so-called asqtad action). The lattice spacing is determined to be
a = 0.12406(248) fm and the lattice volume is 203 × 64 . The range of pion masses simulated
in this work extends from 758 MeV down to 293 MeV.

Table A.2: Masses of the pseudoscalar mesons and the octet baryons (in units of MeV) ob-
tained by the LHPC Collaboration (TABLE II, TABLE VI, TABLE VII of Ref. [25]). The
uncertainties have the same origin as those in Table A.1.

Mπ MK mN mΛ mΣ mΞ

292.9 585.6 1098.9(8.0)(22.0) 1240.5(4.8)(24.8) 1321.6(6.4)(26.4) 1412.2(3.2)(28.2)
∗ 355.9 602.9 1157.8(6.4)(23.1) 1280.2(4.8)(25.6) 1350.2(4.8)(27.0) 1432.9(3.2)(28.6)
∗ 495.1 645.4 1288.2(6.4)(25.8) 1369.3(4.8)(27.4) 1409.1(6.4)(28.2) 1469.5(4.8)(29.4)
596.7 685.6 1394.8(6.4)(27.9) 1440.9(8.0)(28.8) 1463.1(9.5)(29.2) 1504.5(8.0)(30.1)
687.7 728.1 1502.9(11.1)(30.0) 1528.3(9.5)(30.6) 1536.3(9.5)(30.7) 1557.0(9.5)(31.1)

HSC [26]

The HSC Collaboration uses a Symanzik-improved action with tree-level tadpole-improved
coefficients for the gauge sector and the anisotropic clover fermion action for the fermion
sector. The lattice spacings are as = 0.1227(8) fm and at = 0.003506(23) fm in spatial
and temporal directions, respectively. The simulations are performed at four different lattice
volumes 123 × 96, 163 × 96, 163 × 128, and 243 × 128. The simulated pion masses range from
383 MeV to 1565 MeV. For our purposes, we only need those data with M2

π ≤ 0.5 GeV2. The
pseudoscalar meson masses and corresponding octet baryon masses are listed in Table A.3.

Table A.3: Masses of the pseudoscalar mesons and the lowest-lying baryons (in units of MeV)
obtained by the HSC Collaboration (TABLE VI and TABLE VII of Ref. [26]). The uncertain-
ties have the same origin as those in Table A.1.

Mπ MK mN mΛ mΣ mΞ

∗ 383.2 543.6 1147.5(10.7)(7.5) 1243.1(8.4)(8.2) 1287.0(8.4)(8.4) 1347.8(6.8)(8.8)
388.9 545.9 1164.9(22.5)(7.6) 1226.8(16.9)(8.0) 1288.7(16.9)(8.5) 1345.0(11.3)(8.8)
∗ 448.5 580.8 1238.1(16.9)(8.1) 1328.1(11.3)(8.7) 1361.9(16.9)(8.9) 1412.5(10.7)(9.3)
560.5 646.6 1361.9(22.5)(8.9) 1440.6(16.9)(9.5) 1457.5(22.5)(9.6) 1496.9(16.9)(9.8)

QCDSF-UKQCD [28]

The QCDSF-UKQCD Collaboration employs the particular clover action, which has a single
iterated mild stout smearing, and the (tree-level) Symanzik improved gluon action, which
contains the gluon action and the three-flavor Wilson-Dirac fermion action. The simulations
are carried out at the lattice spacing of a = 0.075−0.078 fm, on 163×32, 243×48 and 323×64
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lattices. The resulting pion masses range from 229 MeV to 449 MeV. In the simulations, they
kept the singlet quark mass fixed and tuned the quark masses to ensure that the kaon always
has a mass less than the physical one. It should be noted that in Table A.4 we did not tabulate
the 163 × 32 and the 323 × 64 three-flavor simulation results, which have meson masses out of
the range specified above.

Table A.4: Masses of the pseudoscalar mesons and the lowest-lying baryons (in units of MeV)
obtained by the QCDSF-UKQCD Collaboration (TABLE XX, TABLE XXII and TABLE
XXIII of Ref. [28]). The uncertainties have the same origin as those in Table A.1.

Mπ MK mN mΛ mΣ mΞ

229.3 476.9 996.7(22.1)(3.8) 1181.5(16.1)(4.3) 1181.6(9.7)(4.5) 1263.7(4.7)(4.8)
274.9 462.7 1027.1(15.1)(3.9) 1119.3(14.4)(4.3) 1164.0(9.2)(4.4) 1233.7(5.2)(4.7)
∗ 319.1 448.8 1059.0(12.4)(4.0) 1128.5(10.7)(4.3) 1165.6(8.2)(4.4) 1217.8(5.2)(4.6)
332.6 461.1 1108.4(16.4)(4.0) 1193.7(14.1)(4.4) 1201.9(10.4)(4.4) 1257.8(7.9)(4.6)
358.4 449.0 1153.5(11.4)(4.1) 1195.0(12.2)(4.3) 1218.5(8.9)(4.4) 1254.5(6.9)(4.5)
392.9 436.5 1175.6(16.9)(4.2) 1189.8(14.4)(4.3) 1208.9(13.6)(4.4) 1225.5(11.9)(4.4)
420.9 420.9 1194.0(8.2)(4.3) 1194.0(8.2)(4.3) 1194.0(8.2)(4.3) 1194.0(8.2)(4.3)
457.3 399.3 1234.9(6.2)(4.5) 1205.9(10.7)(4.4) 1189.0(7.7)(4.3) 1161.2(9.7)(4.2)

NPLQCD [29]

The NPLQCD Collaboration mainly studied finite-volume effects on the octet baryon masses.
Simulations are performed with nf = 2 + 1 anisotropic clover Wilson action in four lattice
volumes with spatial extent L ∼ 2.0, 2.5, 3.0 and 3.9 fm. The anisotropic lattice spacing in
the spatial direction is bs ∼ 0.123 fm and bt = bs/3.5 in the time direction. The pion mass is
fixed at Mπ ∼ 390 MeV.

Table A.5: Masses of the pseudoscalar mesons and the lowest-lying baryons (in units of MeV)
obtained by the NPLQCD Collaboration (TABLE II of Ref. [29]). The uncertainties have the
same origin as those in Table A.1.

Mπ MK mN mΛ mΣ mΞ

387.8 544.4 1182.1(5.4)(7.7) 1263.3(5.1)(8.2) 1286.6(4.3)(8.4) 1361.5(4.1)(8.9)
∗ 387.8 544.4 1164.0(3.2)(7.6) 1252.0(2.6)(8.2) 1280.5(3.0)(8.3) 1356.4(2.6)(8.8)
∗ 387.8 544.4 1151.6(2.5)(7.5) 1242.3(2.6)(8.1) 1282.7(2.2)(8.4) 1349.3(2.1)(8.8)
∗ 387.8 544.4 1151.3(2.6)(7.5) 1241.2(2.2)(8.1) 1279.0(2.8)(8.3) 1349.2(2.0)(8.9)





Appendix B

Feynman Rules

Here we would like to collect the relevant Feynman rules in the calculation of octet and decuplet
baryon masses.

Propagators

Pseudoscalar meson propagator:

k i
k2−m2+iε

(B.1)

Octet baryon propagator:

p i
/p−m0+iε (B.2)

Decuplet baryon propagator:

pν µ −iP3/2
µν (p)

/p−mD+iε . (B.3)

The covariant spin-3/2 projection operator is defined as

P3/2
µν (p) = gµν −

1

d− 1
γµγnu−

1

(d− 1)mD
(γµpν + pµγν)− d− 2

(d− 1)m2
D

pµpν , (B.4)

in d dimensions.

Vertices

For the calculation of octet baryon masses

From L(1)
φB:

k
p

∝ γµγ5kµ. (B.5)
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From L(2)
φB:

k

p

∝ 1, kµk
µ, kµkνp

µγν (B.6)

From L(1)
φBD:

k
p

∝ kµ(p− k)νγ
νaµ (B.7)

For the calculation of decuplet baryon masses

From L(1)
φD:

k
p

∝ T̄ρkµ(p− k)νγ5γ
σρνµTσ (B.8)

From L(2)
φD:

k

p

∝ 1, kµk
µ, kµkνp

µγν (B.9)

From L(1)
φBD:

k
p

∝ kµ(p− k)νγ
νρµTρ (B.10)
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Loop Integrals

Feynman parameterization

The Feynman parameterization is a way to fraction with a product in the denominator:

1

A1A2 · · ·An
= (n− 1)!

∫ 1

0
dx1

∫ 1

0
dx2 · · ·

∫ 1

0
dxn

δ(1− x1 − x2 − · · · − xn)

[A1x1 +A2x2 + · · ·+Anxn]n
, (C.1)

invented by Richard Feynman to calculate loop integrals.
In our studies, we use the following Feynman parameterization:

1

AB
=

∫ 1

0
dx

1

[Ax+B(1− x)]2
, (C.2)

1

ABC
=

∫ 1

0
dx

∫ 1−x

0
dy

1

[Ax+By + C(1− x− y)]3
. (C.3)

Loop functions

In the calculation of the loop diagrams, we have used the d-dimension integrals in Minkowski
space: ∫

ddk
kα1 · · · kα2n

(k2 −M2)λ
= i(−1)λπd/2

Γ(λ− n+ ε− 2)

2nΓ(λ)

(−1)ngα1···α2n
s

(M2)λ−n+ε−2
, (C.4)

with ε = (4− d)/2. And, gα1···α2n
s = gα1α2 · · · gα2n−1α2n + · · · is a combination symmetric with

respect to the permutation of any pair of indices. After expansion in powers of ε up to O(ε),
we can easily obtain the following integral identities:

iµ4−D
∫

dDl

(2π)D
1

(l2 −M2)2
= − 1

16π2

[
R+ log

(
µ2

M2

)]
, (C.5)

iµ4−D
∫

dDl

(2π)D
lalb

(l2 −M2)2
= − 1

16π2
g(a,b)
s

[
R+ 1 + log

(
µ2

M2

)]
M2, (C.6)

iµ4−D
∫

dDl

(2π)D
lalblcld

(l2 −M2)2
= − 1

32π2
g(a,b,c,d)
s

[
R+

3

2
+ log

(
µ2

M2

)]
M4, (C.7)

iµ4−D
∫

dDl

(2π)D
1

(l2 −M2)3
= − 1

16π2

[
− 1

2M2

]
, (C.8)

iµ4−D
∫

dDl

(2π)D
lalb

(l2 −M2)3
= − 1

64π2
g(a,b)
s

[
R+ log

µ2

M2

]
, (C.9)

iµ4−D
∫

dDl

(2π)D
lalblcld

(l2 −M2)3
= − 1

128π2
g(a,b,c,d)
s

[
R+ 1 + log

µ2

M2

]
M2, (C.10)
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where
R =

1

ε
+ log(4π)− γ, (C.11)

g(a,b)
s =

1

2
gab, (C.12)

g(a,b,c,d)
s =

1

4
(gabgcd + gacgbd + gadgbc). (C.13)
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Strong isospin-breaking effects on
octet baryon masses

In Chapter 5, the chiral expansions of octet baryon masses are obtained under the assumption
that the isospin symmetry of u, d quarks is always conservation. Although the isospin breaking
corrections to the octet baryon masses are small in comparison with octet baryon masses, as
pointed in Ref. [332], their effects are of fundamental importance to describe the structure of
ordinary matter.

There are two different sources of isospin symmetry breaking. One is from the small
difference between the masses of u and d quarks, which are contributed by strong interaction.
Another one is from the electric charge differences between u and d quarks. In this section, we
would like to focus on the former one and calculate the strong isospin-breaking effects on the
masses of pseudoscalar meson and octet baryon at O(p4).

Isospin breaking effects to pseudoscalar meson masses

Expanding the lowest order meson Lagrangian [Eq. (3.38)] in powers of meson fields, one can
obtain

L(2)
φ = B0(mu +md)(π

+π−) +
B0

2
(mu +md)(π

0π0)

+B0(mu +ms)(K
+K−) +B0(md +ms)(K

0K̄0)

+
B0

6
(mu +md + 4ms)(η

2)− 1√
3

(mu −md)(π
0η) (D.1)

Because the masses difference between u and d quarks, mixing of π0 and η would be appear.
In order to remove the mixing to obtain the meson masses, one should rotate the meson field
with (

π0

η

)
→

(
cos(ε) − sin(ε)

sin(ε) cos(ε)

)(
π0

η

)
, (D.2)

where the lowest order mixing angel ε is

tan(2ε) =

√
3(md −mu)

2ms −mu −md
. (D.3)

Therefore, the meson masses can be expressed at leading order 1 as

M2
π± = B0(mu +md)−

2B0

3
(2ms −mu −md)

sin2(ε)

cos(2ε)
, (D.4)

1Under CPT symmetry, Mπ+ = Mπ− , MK+ = MK− , and MK0 = MK̄0 .
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M2
K0 = B0(md +ms), (D.5)

M2
K± = B0(mu +ms), (D.6)

M2
η =

B0

3
(mu +md + 4ms) +

2B0

3
(2ms −mu −md)

sin2(ε)

cos(2ε)
. (D.7)

Up to next-to-leading order, the contributions to the meson masses by including the effects
of isospin breaking read as

M2,4
φ =

1

16π2F 2
0

B0

36

∑
φ′=π±,π0,η,K±,K0

ξφ,φ′Hφ(M2,2
φ′ )

−8B2
0

F 2
0

(
ξφ,uum

2
u + ξφ,ddm

2
d + ξφ,ssm

2
s+

ξφ,udmumd + ξφ,usmums + ξφ,dsmdms) , (D.8)

where M2,2
φ and M2,4

φ denote the M2
φ at the leading order and the next-to-leading order,

respectively. The corresponding coefficients ξφ,φ′ and ξφ,qq′ are listed in Tables (D.1-D.5) and
Table D.6. The loop function Hφ is

Hφ(M2,2
φ′ ) = M2,2

φ′ ln

(
µ2

M2,2
φ′

)
. (D.9)

Table D.1: The coefficients ξφ,φ′ in Eq. (D.8).

π±

ξφ,π± 0

ξφ,π0 −5mu − 5md − 2ms − 12(mu +md) cos(2ε)− (mu +md − 2ms) cos(4ε) +
√

3(md −mu) sin(4ε)

ξφ,η −5mu − 5md − 2ms + 12(mu +md) cos(2ε)− (mu +md − 2ms) cos(4ε) +
√

3(md −mu) sin(4ε)

ξφ,K± 0

ξφ,K0 0

Table D.2: The coefficients ξφ,φ′ in Eq. (D.8).

π0

ξ
φ,π± 2

(
−5mu − 5md − 2ms − 12(mu +md) cos(2ε)− (mu +md − 2ms) cos(4ε) +

√
3(md −mu) sin(4ε)

)
ξ
φ,π0 2

(
6(mu +md +ms) + 4(mu +md − 2ms) cos(2ε)− (mu +md − 2ms) cos(4ε)−

√
3(md −mu)(4 sin(2ε) + sin(4ε))

)
ξφ,η 2

(
2(mu +md +ms) + (mu +md − 2ms) cos(4ε) +

√
3(md −mu) sin(4ε)

)
ξ
φ,K± 2

(
−5mu − 2md − 5ms + 6(mu +ms) cos(2ε)− (md − 2mu +ms) cos(4ε)−

√
3 ((md −ms) sin(4ε) + 6(mu +ms) sin(2ε))

)
ξ
φ,K0 2

(
−2mu − 5md − 5ms + 6(md +ms) cos(2ε)− (mu − 2md +ms) cos(4ε) +

√
3 ((mu −ms) sin(4ε) + 6(md +ms) sin(2ε))

)

Table D.3: The coefficients ξφ,φ′ in Eq. (D.8).

η

ξ
φ,π± 2

(
−5mu − 5md − 2ms + 12(mu +md) cos(2ε)− (mu +md − 2ms) cos(4ε) +

√
3(md −mu) sin(4ε)

)
ξ
φ,π0 2

(
2(mu +md +ms) + (mu +md − 2ms) cos(4ε) +

√
3(md −mu) sin(4ε)

)
ξφ,η 2

(
6(mu +md +ms)− 4(mu +md − 2ms) cos(2ε)− (mu +md − 2ms) cos(4ε) +

√
3(md −mu)(4 sin(2ε)− sin(4ε))

)
ξ
φ,K± 2

(
−5mu − 2md − 5ms − 6(mu +ms) cos(2ε)− (md − 2mu +ms) cos(4ε)−

√
3 ((md −ms) sin(4ε)− 6(mu +ms) sin(2ε))

)
ξ
φ,K0 2

(
−2mu − 5md − 5ms − 6(md +ms) cos(2ε)− (mu − 2md +ms) cos(4ε) +

√
3 ((mu −ms) sin(4ε)− 6(md +ms) sin(2ε))

)
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Table D.4: The coefficients ξφ,φ′ in Eq. (D.8).

K±

ξ
φ,π± 0

ξ
φ,π0 −5mu − 2md − 5ms + 6(mu +ms) cos(2ε)− (md +ms − 2mu) cos(4ε) +

√
3 ((ms −md) sin(4ε)− 6(mu +ms) sin(2ε))

ξφ,η −5mu − 2md − 5ms − 6(mu +ms) cos(2ε)− (md +ms − 2mu) cos(4ε) +
√

3 ((ms −md) sin(4ε) + 6(mu +ms) sin(2ε))

ξ
φ,K± 0

ξ
φ,K0 0

Table D.5: The coefficients ξφ,φ′ in Eq. (D.8).

K0

ξ
φ,π± 0

ξ
φ,π0 −2mu − 5md − 5ms + 6(md +ms) cos(2ε)− (mu +ms − 2md) cos(4ε) +

√
3 ((mu −ms) sin(4ε) + 6(md +ms) sin(2ε))

ξφ,η −2mu − 5md − 5ms − 6(md +ms) cos(2ε)− (mu +ms − 2md) cos(4ε) +
√

3 ((mu −ms) sin(4ε)− 6(md +ms) sin(2ε))

ξ
φ,K± 0

ξ
φ,K0 0

Table D.6: The coefficients ξφ,qq′ in Eq. (D.8).
π± K± K0

ξφ,uu 2L4 + L5 − 4L6 − 2L8 2L4 + L5 − 4L6 − 2L8 0

ξφ,dd 2L4 + L5 − 4L6 − 2L8 0 2L4 + L5 − 4L6 − 2L8

ξφ,ss 0 2L4 + L5 − 4L6 − 2L8 2L4 + L5 − 4L6 − 2L8

ξφ,ud 4L4 + 2L5 − 8L6 − 4L8 2L4 − 4L6 2L4 − 4L6

ξφ,us 2L4 − 4L6 4L4 + 2L5 − 8L6 − 4L8 2L4 − 4L6

ξφ,ds 2L4 − 4L6 2L4 − 4L6 4L4 + 2L5 − 8L6 − 4L8

π0

ξπ0,uu

1
9

[6(2L4 + L5 − 4L6 − 4L7 − 4L8) + 2
√

3 sin(2ε)(3L4 + 2L5 − 6L6 − 6L7 − 6L8 + L5 cos(2ε))]

+ 1
9

[2 cos(2ε)(3L4 + 2L5 − 6L6 − 6L7 − 6L8)− cos(4ε)L5]

ξπ0,dd

1
9

[6(2L4 + L5 − 4L6 − 4L7 − 4L8)− 2
√

3 sin(2ε)(3L4 + 2L5 − 6L6 − 6L7 − 6L8 + L5 cos(2ε))]

+ 1
9

[2 cos(2ε)(3L4 + 2L5 − 6L6 − 6L7 − 6L8)− cos(4ε)L5]

ξπ0,ss
8
9

sin2(2ε) (3L4 + L5 − 6L6 − 6L7 − 6L8 − L5 cos(2ε))

ξπ0,ud
2
9

(3(4L4 + L5 − 8L6 + 4L7) + 2 cos(2ε)(3L4 + 2L5 − 6L6 + 12L7) + 2 cos(4ε)L5)

ξπ0,us

2
9

[3(4L4 + L5 − 8L6 + 4L7) +
√

3 sin(2ε)(3L4 + 2L5 − 6L6 + 12L7 − 2L5 cos(2ε))]

− 2
9

[cos(2ε)(3L4 + 2L5 − 6L6 + 12L7) + cos(4ε)L5]

ξπ0,ds

2
9

[3(4L4 + L5 − 8L6 + 4L7)−
√

3 sin(2ε)(3L4 + 2L5 − 6L6 + 12L7 − 2L5 cos(2ε))]

− 2
9

[cos(2ε)(3L4 + 2L5 − 6L6 + 12L7) + cos(4ε)L5]

η

ξη,uu
1
9

[6(2L4 + L5 − 4L6 − 4L7 − 4L8)− 2
√

3 sin(2ε)(3L4 + 2L5 − 6L6 − 6L7 − 6L8 − L5 cos(2ε))]

− 1
9

[2 cos(2ε)(3L4 + 2L5 − 6L6 − 6L7 − 6L8) + cos(4ε)L5]

ξη,dd
1
9

[6(2L4 + L5 − 4L6 − 4L7 − 4L8) + 2
√

3 sin(2ε)(3L4 + 2L5 − 6L6 − 6L7 − 6L8 − L5 cos(2ε))]

− 1
9

[2 cos(2ε)(3L4 + 2L5 − 6L6 − 6L7 − 6L8) + cos(4ε)L5]

ξη,ss
8
9

cos2(ε) (3L4 + L5 − 6L6 − 6L7 − 6L8 + L5 cos(2ε))

ξη,ud
2
9

(3(4L4 + L5 − 8L6 + 4L7)− 2 cos(2ε)(3L4 + 2L5 − 6L6 + 12L7) + 2 cos(4ε)L5)

ξη,us
2
9

[3(4L4 + L5 − 8L6 + 4L7)−
√

3 sin(2ε)(3L4 + 2L5 − 6L6 + 12L7 + 2L5 cos(2ε))]

+ 2
9

[cos(2ε)(3L4 + 2L5 − 6L6 + 12L7)− cos(4ε)L5]

ξη,ds
2
9

[3(4L4 + L5 − 8L6 + 4L7) +
√

3 sin(2ε)(3L4 + 2L5 − 6L6 + 12L7 + 2L5 cos(2ε))]

+ 2
9

[cos(2ε)(3L4 + 2L5 − 6L6 + 12L7)− cos(4ε)L5]

Strong isospin-breaking effects on octet baryon masses

The effective pseudoscalar meson-octet baryon Lagrangians have been given in Eq. (4.3) of
Chatper 4. Due to the isospin breaking of u and d quarks, the quark mass matrix M ==

diag(ml,ml,ms) (with ml ≡ mu = md) appeared in Eq. (4.3) should be replaced by M =

diag(mu,md,ms). After calculating the Feynman diagrams given in Fig. 4.1, we can obtain
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the strong isospin-breaking effects on octet baryon masses up to N3LO,

mB = m0 +m
(2)
B +m

(3)
B +m

(4)
B , (D.10)

where the leading order contribution is

m
(2)
B = −ξ(a)

B,uB0mu − ξ(a)
B,dB0md − ξ

(a)
B,sB0ms, (D.11)

with the coefficients ξ(a)
B,u, ξ

(a)
B,d, and ξ

(a)
B,s tabulated in Table D.7.

Table D.7: The coefficients ξ(a)
B,u, ξ

(a)
B,d, and ξ

(a)
B,s in Eq. (D.11).

B ξ
(a)
B,u ξ

(a)
B,d ξ

(a)
B,s

p 4(b0 + bD + bF ) 4b0 4(b0 + bD − bF )

n 4b0 4(b0 + bD + bF ) 4(b0 + bD − bF )

Λ 4
3(3b0 + bD) 4

3(3b0 + bD) 4
3(3b0 + 4bD)

Σ+ 4(b0 + bD + bF ) 4(b0 + bD − bF ) 4b0
Σ0 4(b0 + bD) 4(b0 + bD) 4b0
Σ− 4(b0 + bD − bF ) 4(b0 + bD + bF ) 4b0
Ξ0 4b0 4(b0 + bD − bF ) 4(b0 + bD + bF )

Ξ− 4(b0 + bD − bF ) 4b0 4(b0 + bD + bF )

At O(p3), the chiral corrections to the baryon self-energies can be expressed as

m
(3)
B =

1

(4πFφ)2

∑
φ=π±,0, K±,0, η

ξ
(b)
B,φH

(b)
B (Mφ), (D.12)

where the loop function H(b)
B (Mφ) is already given in Eq. (4.26), and the coefficients ξ(b)

B,φ given
in Table D.8.

Table D.8: The coefficients ξ(b)
B,φ in Eq. (D.12).

π± π0 K0 K± η

p (D + F )2 1
18

(√
3(D − 3F ) sin(ε)− 3(D + F ) cos(ε)

)2
(D − F )2 2

3
(D2 + 3F2) 1

18

(√
3(D − 3F ) cos(ε) + 3(D + F ) sin(ε)

)2

n (D + F )2 1
18

(√
3(D − 3F ) sin(ε) + 3(D + F ) cos(ε)

)2 2
3

(D2 + F2) (D − F )2 1
18

(√
3(D − 3F ) cos(ε)− 3(D + F ) sin(ε)

)2

Λ 4
3
D2 2

3
D2 1

3
(D2 + 9F2) 1

3
(D2 + 9F2) 2

3
D2

Σ+ 2
3

(D2 + 3F2) 2
9

(√
3D sin(ε) + 3F cos(ε)

)2
(D − F )2 (D + F )2 2

9

(√
3D cos(ε)− 3F sin(ε)

)2

Σ0 4F2 2
3
D2 D2 + F2 D2 + F2 2

3
D2

Σ− 2
3

(D2 + 3F2) 2
9

(√
3D sin(ε)− 3F cos(ε)

)2
(D + F )2 (D − F )2 2

9

(√
3D cos(ε) + 3F sin(ε)

)2

Ξ0 (D − F )2 1
18

(√
3(D + 3F ) sin(ε) + 3(D − F ) cos(ε)

)2 2
3

(D2 + 3F2) (D + F )2 1
18

(√
3(D + 3F ) cos(ε)− 3(D − F ) sin(ε)

)2

Ξ− (D − F )2 1
18

(√
3(D + 3F ) sin(ε)− 3(D − F ) cos(ε)

)2
(D + F )2 2

3
(D2 + 3F2) 1

18

(√
3(D + 3F ) cos(ε) + 3(D − F ) sin(ε)

)2
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Up to N3LO, the contributions to octet baryon masses are

m
(4)
B = ξ

(c)
B,u2B

2
0m

2
u + ξ

(c)
B,d2B

2
0m

2
d + ξ

(c)
B,s2

B2
0m

2
s

+ξ
(c)
B,udB

2
0mumd + ξ

(c)
B,usB

2
0mums + ξ

(c)
B,dsB

2
0mdms

+
1

(4πFφ)2

∑
φ=π±,0, K±,0, η

(
ξ

(d,1)
B,φ H

(d,1)
B (Mφ) + ξ

(d,2)
B,φ H

(d,2)
B (Mφ) + ξ

(d,3)
B,φ H

(d,3)
B (Mφ)

)
+

1

(4πFφ)2

∑
φ=π±,0, K±,0, η

B′=p,n,Λ,Σ+,Σ0,Σ−,Ξ0,Ξ−

ξ
(e)
BB′,φ ·H

(e)
B,B′(Mφ), (D.13)

where the loop functions are given in Eqs. (4.28) and (4.31), and the coefficients are listed in
Tables (D.9-D.20).

Table D.9: The coefficients ξ(c)
B,u2 , ξ

(c)
B,d2 , ξ

(c)
B,s2

, ξ(c)
B,ud, ξ

(c)
B,us, and ξ

(c)
B,ds in Eq. (D.13).

ξ
(c)

B,u2 ξ
(c)

B,d2
ξ
(c)

B,s2

p −16(d1 + d2 + d3 + d5 + d7 + d8) −16(d7 + d8) −16(d1 − d2 + d3 − d5 + d7 + d8)

n −16(d7 + d8) −16(d1 + d2 + d3 + d5 + d7 + d8) −16(d1 − d2 + d3 − d5 + d7 + d8)

Λ − 8
3

(4d3 + d4 + 6d7 + 6d8) − 8
3

(4d3 + d4 + 6d7 + 6d8) − 8
3

(16d3 + 4d4 + 6d7 + 6d8)

Σ+ −16(d1 + d2 + d3 + d5 + d7 + d8) −16(d1 − d2 + d3 − d5 + d7 + d8) −16(d7 + d8)

Σ0 −8(4d3 + d4 + 2d7 + 2d8) −8(4d3 + d4 + 2d7 + 2d8) −16(d7 + d8)

Σ− −16(d1 − d2 + d3 − d5 + d7 + d8) −16(d1 + d2 + d3 + d5 + d7 + d8) −16(d7 + d8)

Ξ0 −16(d7 + d8) −16(d1 − d2 + d3 − d5 + d7 + d8) −16(d1 + d2 + d3 + d5 + d7 + d8)

Ξ− −16(d1 − d2 + d3 − d5 + d7 + d8) −16(d7 + d8) −16(d1 + d2 + d3 + d5 + d7 + d8)

ξ
(c)
B,ud ξ

(c)
B,us ξ

(c)
B,ds

p −16(d5 + 2d7) −16(−2d1 + 2d3 + 2d7) −16(2d7 − d5)

n −16(d5 + 2d7) −16(2d7 − d5) −16(−2d1 + 2d3 + 2d7)

Λ − 16
3

(d4 + 6d7) − 32
3

(3d7 − d4) − 32
3

(3d7 − d4)

Σ+ −32(−d1 + d3 + d7) −16(d5 + 2d7) −16(2d7 − d5)

Σ0 −16(2d7 − d4) −32d7 −32d7

Σ− −32(−d1 + d3 + d7) −16(2d7 − d5) −16(d5 + 2d7)

Ξ0 −16(2d7 − d5) −16(d5 + 2d7) −32(−d1 + d3 + d7)

Ξ− −16(2d7 − d5) −32(−d1 + d3 + d7) −16(d5 + 2d7)
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Table D.10: The coefficients ξ(d,1)
B,φ in Eq. (D.13).

π0 ξ
(d,1)

B,π0 = ξπ0,uB0mu + ξπ0,dB0md + ξπ0,sB0ms

ξπ0,u ξπ0,d ξπ0,s

p − 2
3

(b0 + bD + bF )
(√

3 sin(2ε) + cos(2ε) + 2
)

− 2
3
b0
(
−
√

3 sin(2ε) + cos(2ε) + 2
)

− 8
3

(b0 + bD − bF ) sin2(ε)

n − 2
3
b0
(√

3 sin(2ε) + cos(2ε) + 2
)

− 2
3

(b0 + bD + bF )
(
−
√

3 sin(2ε) + cos(2ε) + 2
)

− 8
3

(b0 + bD − bF ) sin2(ε)

Λ − 2
9

(3b0 + bD)
(√

3 sin(2ε) + cos(2ε) + 2
)

− 2
9

(3b0 + bD)
(
−
√

3 sin(2ε) + cos(2ε) + 2
)

− 8
9

(3b0 + 4bD) sin2(ε)

Σ+ − 2
3

(b0 + bD + bF )
(√

3 sin(2ε) + cos(2ε) + 2
)

− 2
3

(b0 + bD − bF )
(
−
√

3 sin(2ε) + cos(2ε) + 2
)

− 8
3
b0 sin2(ε)

Σ0 − 2
3

(b0 + bD)
(√

3 sin(2ε) + cos(2ε) + 2
)

− 2
3

(b0 + bD)
(
−
√

3 sin(2ε) + cos(2ε) + 2
)

− 8
3
b0 sin2(ε)

Σ− − 2
3

(b0 + bD − bF )
(√

3 sin(2ε) + cos(2ε) + 2
)

− 2
3

(b0 + bD + bF )
(
−
√

3 sin(2ε) + cos(2ε) + 2
)

− 8
3
b0 sin2(ε)

Ξ0 − 2
3
b0
(√

3 sin(2ε) + cos(2ε) + 2
)

− 2
3

(b0 + bD − bF )
(
−
√

3 sin(2ε) + cos(2ε) + 2
)

− 8
3

(b0 + bD + bF ) sin2(ε)

Ξ− − 2
3

(b0 + bD − bF )
(√

3 sin(2ε) + cos(2ε) + 2
)

− 2
3
b0
(
−
√

3 sin(2ε) + cos(2ε) + 2
)

− 8
3

(b0 + bD + bF ) sin2(ε)

η ξ
(d,1)
B,η = ξη,uB0mu + ξη,dB0md + ξη,sB0ms

ξη,u ξη,d ξη,s

p 2
3

(b0 + bD + bF )
(√

3 sin(2ε) + cos(2ε)− 2
)

2
3
b0
(
−
√

3 sin(2ε) + cos(2ε)− 2
)

− 8
3

(b0 + bD − bF ) cos2(ε)

n 2
3
b0
(√

3 sin(2ε) + cos(2ε)− 2
)

2
3

(b0 + bD + bF )
(
−
√

3 sin(2ε) + cos(2ε)− 2
)

− 8
3

(b0 + bD − bF ) cos2(ε)

Λ 2
9

(3b0 + bD)
(√

3 sin(2ε) + cos(2ε)− 2
)

2
9

(3b0 + bD)
(
−
√

3 sin(2ε) + cos(2ε)− 2
)

− 8
9

(3b0 + 4bD) cos2(ε)

Σ+ 2
3

(b0 + bD + bF )
(√

3 sin(2ε) + cos(2ε)− 2
)

2
3

(b0 + bD − bF )
(
−
√

3 sin(2ε) + cos(2ε)− 2
)

− 8
3
b0 cos2(ε)

Σ0 2
3

(b0 + bD)
(√

3 sin(2ε) + cos(2ε)− 2
)

2
3

(b0 + bD)
(
−
√

3 sin(2ε) + cos(2ε)− 2
)

− 8
3
b0 cos2(ε)

Σ− 2
3

(b0 + bD − bF )
(√

3 sin(2ε) + cos(2ε)− 2
)

2
3

(b0 + bD + bF )
(
−
√

3 sin(2ε) + cos(2ε)− 2
)

− 8
3
b0 cos2(ε)

Ξ0 2
3
b0
(√

3 sin(2ε) + cos(2ε)− 2
)

2
3

(b0 + bD − bF )
(
−
√

3 sin(2ε) + cos(2ε)− 2
)

− 8
3

(b0 + bD + bF ) cos2(ε)

Ξ− 2
3

(b0 + bD − bF )
(√

3 sin(2ε) + cos(2ε)− 2
)

2
3
b0
(
−
√

3 sin(2ε) + cos(2ε)− 2
)

− 8
3

(b0 + bD + bF ) cos2(ε)

π± K0 K±

p −2(2b0 + bD + bF )(mu +md)B0 −2(2b0 + bD − bF )(md +ms)B0 −4(b0 + bD)(mu +ms)B0

n −2(2b0 + bD + bF )(mu +md)B0 −4(b0 + bD)(md +ms)B0 −2(2b0 + bD − bF )(mu +ms)B0

Λ − 4
3

(3b0 + bD)(mu +md)B0 − 2
3

(6b0 + 5bD)(md +ms)B0 − 2
3

(6b0 + 5bD)(mu +ms)B0

Σ+ −4(b0 + bD)(mu +md)B0 −2(2b0 + bD − bF )(md +ms)B0 −2(2b0 + bD + bF )(mu +ms)B0

Σ0 −4(b0 + bD)(mu +md)B0 −2(2b0 + bD)(md +ms)B0 −2(2b0 + bD)(mu +ms)B0

Σ− −4(b0 + bD)(mu +md)B0 −2(2b0 + bD + bF )(md +ms)B0 −2(2b0 + bD − bF )(mu +ms)B0

Ξ0 −2(2b0 + bD − bF )(mu +md)B0 −4(b0 + bD)(md +ms)B0 −2(2b0 + bD + bF )(mu +ms)B0

Ξ− −2(2b0 + bD − bF )(mu +md)B0 −2(2b0 + bD + bF )(md +ms)B0 −4(b0 + bD)(mu +ms)B0



133

Table D.11: The coefficients ξ(d,2)
B,φ in Eq. (D.13).

π0

p 1
3

(
2(3b1 + b3 + 3b4) + (−3b1 + 3b2 + b3) cos(2ε) +

√
3(3b1 + b2 − b3) sin(2ε)

)
n 1

3

(
2(3b1 + b3 + 3b4) + (−3b1 + 3b2 + b3) cos(2ε)−

√
3(3b1 + b2 − b3) sin(2ε)

)
Λ 2

3(4b3 + 3b4 − 2b3 cos(2ε))

Σ+ 2
3

(
3b1 + b3 + 3b4 + (3b1 − b3) cos(2ε) +

√
3b2 sin(2ε)

)
Σ0 2

3(4b3 + 3b4 + 2b3 cos(2ε))

Σ− 2
3

(
3b1 + b3 + 3b4 + (3b1 − b3) cos(2ε)−

√
3b2 sin(2ε)

)
Ξ0 1

3

(
2(3b1 + b3 + 3b4)− (3b1 + 3b2 − b3) cos(2ε)−

√
3(3b1 − b2 − b3) sin(2ε)

)
Ξ− 1

3

(
2(3b1 + b3 + 3b4)− (3b1 + 3b2 − b3) cos(2ε) +

√
3(3b1 − b2 − b3) sin(2ε)

)
η

p 1
3

(
2(3b1 + b3 + 3b4)− (−3b1 + 3b2 + b3) cos(2ε)−

√
3(3b1 + b2 − b3) sin(2ε)

)
n 1

3

(
2(3b1 + b3 + 3b4)− (−3b1 + 3b2 + b3) cos(2ε) +

√
3(3b1 + b2 − b3) sin(2ε)

)
Λ 2

3(4b3 + 3b4 + 2b3 cos(2ε))

Σ+ 2
3

(
3b1 + b3 + 3b4 − (3b1 − b3) cos(2ε)−

√
3b2 sin(2ε)

)
Σ0 2

3(4b3 + 3b4 − 2b3 cos(2ε))

Σ− 2
3

(
3b1 + b3 + 3b4 − (3b1 − b3) cos(2ε) +

√
3b2 sin(2ε)

)
Ξ0 1

3

(
2(3b1 + b3 + 3b4) + (3b1 + 3b2 − b3) cos(2ε) +

√
3(3b1 − b2 − b3) sin(2ε)

)
Ξ− 1

3

(
2(3b1 + b3 + 3b4) + (3b1 + 3b2 − b3) cos(2ε)−

√
3(3b1 − b2 − b3) sin(2ε)

)
π± K0 K±

p 2(b1 + b2 + b3 + 2b4) 2(b1 − b2 + b3 + 2b4) 4(b1 + b3 + b4)

n 2(b1 + b2 + b3 + 2b4) 4(b1 + b3 + b4) 2(b1 − b2 + b3 + 2b4)

Λ 4
3(2b3 + 3b4) 2

3(9b1 + b3 + 6b4) 2
3(9b1 + b3 + 6b4)

Σ+ 4(b1 + b3 + b4) 2(b1 − b2 + b3 + 2b4) 2(b1 + b2 + b3 + 2b4)

Σ0 4(2b1 + b4) 2(b1 + b3 + 2b4) 2(b1 + b3 + 2b4)

Σ− 4(b1 + b3 + b4) 2(b1 + b2 + b3 + 2b4) 2(b1 − b2 + b3 + 2b4)

Ξ0 2(b1 − b2 + b3 + 2b4) 4(b1 + b3 + b4) 2(b1 + b2 + b3 + 2b4)

Ξ− 2(b1 − b2 + b3 + 2b4) 2(b1 + b2 + b3 + 2b4) 4(b1 + b3 + b4)
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Table D.12: The coefficients ξ(d,3)
B,φ in Eq. (D.13).

π0

p 2
3

(
3(b5 + b6 + b7 + 2b8) cos(ε) +

√
3(3b5 + 3b6 − b7) sin(ε)

)
n 2

3

(
3(b5 + b6 + b7 + 2b8) cos(ε)−

√
3(3b5 + 3b6 − b7) sin(ε)

)
Λ 4

3(2b7 + 3b8) cos(ε)

Σ+ 4(2b5 + b8) cos(ε)

Σ0 4(2b7 + b8) cos(ε)

Σ− 4(2b5 + b8) cos(ε)

Ξ0 2
3

(
3(b5 − b6 + b7 + 2b8) cos(ε)−

√
3(3b5 − 3b6 − b7) sin(ε)

)
Ξ− 2

3

(
3(b5 − b6 + b7 + 2b8) cos(ε) +

√
3(3b5 − 3b6 − b7) sin(ε)

)
η

p 2
3

(
(9b5 − 3b6 + b7 + 6b8) cos(ε)−

√
3(3b5 − b6 − b7) sin(ε)

)
n 2

3

(
(9b5 − 3b6 + b7 + 6b8) cos(ε) +

√
3(3b5 − b6 − b7) sin(ε)

)
Λ 4(2b7 + b8) cos(ε)

Σ+ 4
3

(
(2b7 + 3b8) cos(ε)− 2

√
3b6 sin(ε)

)
Σ0 4

3(2b7 + 3b8) cos(ε)

Σ− 4
3

(
(2b7 + 3b8) cos(ε) + 2

√
3b6 sin(ε)

)
Ξ0 2

3

(
(9b5 + 3b6 + b7 + 6b8) cos(ε) +

√
3(3b5 + b6 − b7) sin(ε)

)
Ξ− 2

3

(
(9b5 + 3b6 + b7 + 6b8) cos(ε)−

√
3(3b5 + b6 − b7) sin(ε)

)
π± K0 K±

p 4(b5 + b6 + b7 + 2b8) 4(b5 − b6 + b7 + 2b8) 8(b5 + b7 + b8)

n 4(b5 + b6 + b7 + 2b8) 8(b5 + b7 + b8) 4(b5 − b6 + b7 + 2b8)

Λ 8
3(2b7 + 3b8) 4

3(9b5 + b7 + 6b8) 4
3(9b5 + b7 + 6b8)

Σ+ 8(b5 + b7 + b8) 4(b5 − b6 + b7 + 2b8) 4(b5 + b6 + b7 + 2b8)

Σ0 8(2b5 + b8) 4(b5 + b7 + 2b8) 4(b5 + b7 + 2b8)

Σ− 8(b5 + b7 + b8) 4(b5 + b6 + b7 + 2b8) 4(b5 − b6 + b7 + 2b8)

Ξ0 4(b5 − b6 + b7 + 2b8) 8(b5 + b7 + b8) 4(b5 + b6 + b7 + 2b8)

Ξ− 4(b5 − b6 + b7 + 2b8) 4(b5 + b6 + b7 + 2b8) 8(b5 + b7 + b8)

Table D.13: The coefficients ξ(e)
pB′,φ in Eq. (D.13).

π± π0 K0 K± η

p 0
1
36

[
3(D + F ) cos(ε)

0 0
1
36

[
3(D + F ) sin(ε)

−
√

3(D − 3F ) sin(ε)
]2

+
√

3(D − 3F ) cos(ε)
]2

n 1
2
(D + F )2 0 0 0 0

Λ 0 0 0 1
12

(D + 3F )2 0

Σ+ 0 0 1
2
(D − F )2 0 0

Σ0 0 0 0 1
4
(D − F )2 0

Σ− 0 0 0 0 0

Ξ0 0 0 0 0 0

Ξ− 0 0 0 0 0
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Table D.14: The coefficients ξ(e)
nB′,φ in Eq. (D.13).

π± π0 K0 K± η

p 1
2
(D + F )2 0 0 0 0

n 0
1
36

[
3(D + F ) cos(ε)

0 0
1
36

[
3(D + F ) sin(ε)

+
√

3(D − 3F ) sin(ε)
]2 −

√
3(D − 3F ) cos(ε)

]2
Λ 0 0 1

12
(D + 3F )2 0 0

Σ+ 0 0 0 0 0

Σ0 0 0 1
4
(D − F )2 0 0

Σ− 0 0 0 1
2
(D − F )2 0

Ξ0 0 0 0 0 0

Ξ− 0 0 0 0 0

Table D.15: The coefficients ξ(e)
ΛB′,φ in Eq. (D.13).

π± π0 K0 K± η

p 0 0 0 1
12 (D + 3F )2 0

n 0 0 1
12 (D + 3F )2 0 0

Λ 0 1
3D

2 sin2(ε) 0 0 1
3D

2 cos2(ε)

Σ+ D2

3 0 0 0 0

Σ0 0 1
3D

2 cos2(ε) 0 0 1
3D

2 sin2(ε)

Σ− D2

3 0 0 0 0

Ξ0 0 0 1
12 (D − 3F )2 0 0

Ξ+ 0 0 0 1
12 (D − 3F )2 0

Table D.16: The coefficients ξ(e)
Σ+B′,φ in Eq. (D.13).

π± π0 K0 K± η

p 0 0 1
2 (D − F )2 0 0

n 0 0 0 0 0

Λ 1
3D

2 0 0 0 0

Σ+ 0 1
9

(
3F cos(ε) +

√
3D sin(ε)

)2
0 0 1

9

(
3F sin(ε)−

√
3D cos(ε)

)2
Σ0 F 2 0 0 0 0

Σ− 0 0 0 0

Ξ0 0 0 0 1
2 (D + F )2 0

Ξ− 0 0 0 0 0
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Table D.17: The coefficients ξ(e)
Σ0B′,φ

in Eq. (D.13).

π± π0 K0 K± η

p 0 0 0 1
4 (D − F )2 0

n 0 0 1
4 (D − F )2 0 0

Λ 0 1
3D

2 cos2(ε) 0 0 1
3D

2 sin2(ε)

Σ+ F 2 0 0 0 0

Σ0 0 1
3D

2 sin2(ε) 0 0 1
3D

2 cos2(ε)

Σ− F 2 0 0 0 0

Ξ0 0 0 1
4 (D + F )2 0 0

Ξ− 0 0 0 1
4 (D + F )2 0

Table D.18: The coefficients ξ(e)
Σ−B′,φ in Eq. (D.13).

π± π0 K0 K± η

p 0 0 0 0 0

n 0 0 0 1
2 (D − F )2 0

Λ 1
3D

2 0 0 0 0

Σ+ 0 0 0 0 0

Σ0 F 2 0 0 0 0

Σ− 0 1
9

(
3F cos(ε)−

√
3D sin(ε)

)2
0 0 1

9

(
3F sin(ε) +

√
3D cos(ε)

)2
Ξ0 0 0 0 0 0

Ξ 0 0 1
2 (D + F )2 0 0

Table D.19: The coefficients ξ(e)
Ξ0B′,φ

in Eq. (D.13).

π± π0 K0 K± η

p 0 0 0 0 0

n 0 0 0 0 0

Λ 0 0 1
12

(D − 3F )2 0 0

Σ+ 0 0 0 1
2
(D + F )2 0

Σ0 0 0 1
4
(D + F )2 0 0

Σ− 0 0 0 0 0

Ξ0 0
1
36

[
3(D − F ) cos(ε)

0 0
1
36

[
3(D − F ) sin(ε)

+
√

3(D + 3F ) sin(ε)
]2 −

√
3(D + 3F ) cos(ε)

]2
Ξ− 1

2
(D − F )2 0 0 0 0
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Table D.20: The coefficients ξ(e)
Ξ−B′,φ in Eq. (D.13).

π± π0 K0 K± η

p 0 0 0 0 0

n 0 0 0 0 0

Λ 0 0 0 1
12

(D − 3F )2 0

Σ+ 0 0 0 0 0

Σ0 0 0 0 1
4
(D + F )2 0

Σ− 0 0 1
2
(D + F )2 0 0

Ξ0 1
2
(D − F )2 0 0 0 0

Ξ− 0
1
36

[
3(D − F ) cos(ε)

0 0
1
36

[
3(D − F ) sin(ε)

−
√

3(D + 3F ) sin(ε)
]2

+
√

3(D + 3F ) cos(ε)
]2
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Titre : Théorie effective des champs pour les masses des baryons 

Mots clés : théorie effective des champs, Lagrangiens chiraux, QCD sur réseau, masses des baryons, 
termes sigma 

Résumé : Comprendre QCD non perturbative 
pour produire les masses des baryons lumière est 
d'un intérêt fondamental. Aujourd'hui, interaction 
entre la CDQ sur réseau et de la théorie de 
perturbation chirale devient un outil puissant pour 
étudier la lumière masses des baryons. Utilisant 
des simulations récentes CDQ sur réseau et de la 
théorie de perturbation chirale, nous présentons 
une étude détaillée des masses de l'octet et 
décuplet baryons les plus basses masses ainsi que 
la masse et la largeur de la résonance Roper. 

Nous étudions les les plus basses masses octet 
des baryons dans baryon covariante théorie de la 
perturbation chirale avec le schéma étendu-sur-
masse coquille jusqu'à avant-avant-avant-ordre 
dominant. Afin d'examiner les artefacts de treillis, 
des corrections volumes finis et treillis fini effets 
espacement de discrétisation à treillis masses des 
baryons sont estimés. Nous effectuons une étude 
systématique de toutes les dernières nf=2+1 
données de treillis avec extrapolation chiral, 
corrections volumes finis, et  

le continuum extrapolation. Les artefacts de 
réseau sont bien comprises et discutées. Nous 
constatons également que les données du réseau 
de différentes collaborations sont compatibles 
les uns avec les autres. En utilisant les formules 
chiraux de masses octet de baryons, nous prédire 
avec précision les termes sigma octet de baryons 
via le théorème de Feynman-Hellmann. La 
valeur déterminée pour le nucléon étrangeté 
terme sigma est en accord avec les décisions de 
treillis. 

Nous présentons également une analyse 
systématique des masses les plus basses décuplet 
des baryons dans baryon covariante théorie de la 
perturbation chirale en ajustant simultanément 
les données nf = 2 + 1 en treillis. 

Enfin, nous étudions également la masse 
Roper en théorie de perturbation chirale en 
incluant explicitement le nucléon / contributions 
Delta. Les contributions mixtes entre nucléons et 
Roper aux masses des baryons sont pris en 
compte pour la première fois. Une première 
analyse des treillis masses Roper est présenté. 

 

 

 

Title : Effective Field Theory for Baryon Masses  

Keywords : effective field theory, chiral Lagrangians, lattice QCD, baryon masses, sigma terms 

Abstract : Understanding nonperturbative QCD 
to produce the light baryon masses is of 
fundamental interest. Nowadays, interplay 
between lattice QCD and chiral perturbation 
theory is becoming a powerful tool to study light 
baryon masses. Utilizing recent lattice QCD 
simulations and chiral perturbation theory, we 
present a detailed study of the masses of the 
lowest-lying octet and decuplet baryon masses as 
well as the mass and width of the Roper 
resonance. 

We study the lowest-lying octet baryon 
masses in covariant baryon chiral perturbation 
theory with the extended-on-mass-shell scheme 
up to next-to-next-to-next-to-leading order. In 
order to consider lattice artifacts, finite-volume 
corrections and finite lattice spacing 
discretization effects to lattice baryon masses are 
estimated. We perform a systematic study of all 
the latest nf = 2 + 1 lattice data with chiral 
extrapolation, finite-volume corrections, and   

continuum extrapolation. The lattice artifacts are 
well understood and discussed. We also find that 
the lattice data from different collaborations are 
consistent with each other. Using the chiral 
formulas of octet baryon masses, we accurately 
predict the octet baryon sigma terms via the 
Feynman-Hellmann theorem. The value 
determined for the nucleon strangeness sigma 
term is in agreement with lattice determinations.  

We also present a systematic analysis of the 
lowest-lying decuplet baryon masses in covariant 
baryon chiral perturbation theory by 
simultaneously fitting nf = 2+1 lattice data.  

Finally, we also study the Roper mass in chiral 
perturbation theory by explicitly including the 
nucleon/Delta contributions. The mixed 
contributions between nucleon and Roper to the 
baryon masses are taken into account for the first 
time. A first analysis of lattice Roper masses is 
presented. 
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