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Abstract: As a generalization of Rota—Baxter algebras, the concept of an (2-Rota—Baxter could also
be regarded as an algebraic abstraction of the integral analysis. In this paper, we introduce the
concept of an ()-dendriform algebra and show the relationship between ()-Rota—Baxter algebras and
O-dendriform algebras. Then, we provide a multiplication recursion definition of typed, angularly
decorated rooted trees. Finally, we construct the free ()-Rota—Baxter algebra by typed, angularly
decorated rooted trees.
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1. Introduction
1.1. Rota—Baxter Algebras

A Rota—Baxter algebra is an associative algebra equipped with a linear operator that
generalizes the algebra of continuous functions with the integral operator. More precisely,
for a given commutative ring k and A € k, a Rota—Baxter k-algebra of weight A is a
k-algebra R, together with a k-linear map P : R — R, such that

P(x)P(y) = P(P(x)y +xP(y) + Axy) 1

for all x,y € R. Such a linear operator is called a Rota—Baxter operator of weight A. The
concept of a Rota—Baxter algebra could be regarded as an algebraic framework of the
integral analysis. Let R be the R-algebra of continuous function on R. Define P : R — R as
the integration

PUH) = [ F(0it

Then, the integration by parts formula

is just Equation (1) with A = 0. The concept of Rota—Baxter algebra was introduced in 1960
by Glen Baxter [1] in his probability study of fluctuation theory, and then studied in the
1960s and 1970s by Cartier and Gian-Carlo Rota [2—4] in connection with combinatorics.
Apparently, this algebra remained inactive until 2000, when new motivations were found,
coming from interesting applications in the prominent work of Connes and Kreimer [5] on
the renormalization of perturbative quantum field theory, and from the close relationship
with the associative Yang—Baxter equation [6] and the construction of free Rota—Baxter
algebras related to the shuffle product [7,8]. Since then, the Rota—Baxter operator has
appeared in a wide range of areas in mathematics and mathematical physics, such as
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number theory [9], pre-Lie and Lie algebra [6,10], Hopf algebras [11,12], operads [13],
O-operators [14,15], Rota—Baxter groups and skew left braces [16,17], classical Yang—Baxter
equations and associative Yang—Baxter equations [14,18].

1.2. Motivations of ()-Rota—Baxter Algebras

The study of ()-Rota—Baxter algebras was also partly motivated by the formula of
partial integrations. Now, we consider the R-algebra of continuous functions on R. Let
() be a nonempty subset of R. Define a set of linear operators P, : R = R,w € ) by the
integration

P = [ eyt

It follows from the formula of partial integration that

Po(x)Pg(y) = Pu(xPp(y) + Pu(x)y),

which leads to the emergence of a general notation-()-Rota—Baxter algebras [19]. See
Example 1 below.

The second motivation comes from ()-operated algebras. The concept of algebras with
(one or more) linear operators was introduced by A.G. Kurosch [20]. Later, Guo [21] called
such algebras ()-operated algebras and constructed their free objects by Motzkin paths,
rooted forests and bracketed words.

Definition 1. Let ) be a nonempty set. An Q-operated algebra is an algebra R together with a
family of operators P, : R — R.

Recently, many scholars have studied multiple operator algebras. Foissy [22,23] stud-
ied multiple algebra structure on typed decorated trees. The authors introduced the con-
cepts dendriform family algebras and matching dendriform algebras [24-26]. Aguiar [27]
introduced some notions of an S-relative algebras in order to provide a simple uniform
perspective on these algebras. Ma and Li [28] combined Rota-Baxter family algebras and
Hopf 7t-(co)algebras, and integrate the Rota-Baxter operator into Hopf 7-(co)algebra, which
leads to the concept of Rota-Baxter(Hopf) 7r-(co)algebra.

Rooted trees are useful for several areas of mathematics, such as in the study of vector
fields [29], numerical analysis [30] and quantum field theory [31]. The work of the British
mathematician Cayley in the 1850s can now be considered as the prehistory of pre-Lie
algebras. Chapoton and Livernet [32] first showed that the free pre-Lie algebra generated by
a set X is given by grafting of X-decorated rooted trees. Recently, typed decorated trees are
used by Bruned, Hairer and Zambotti in [33] to give a systematic description of a canonical
renormalization procedure of stochastic PDEs. The authors constructed the free dendriform
family algebras [26] and the free matching dendriform algebras [24] respectively via typed
decorated trees whose vertices are decorated by elements of a set X and edges are decorated
by elements of a semigroup 2. In this paper, we aim at constructing the free ()-Rota-Baxter
algebra by typed angularly decorated planar rooted trees.

The outline of this paper. In Section 2, we first recall the concept of (2-Rota-Baxter
algebras and show that Rota—Baxter algebras induce ()-Rota—Baxter algebras. Then, we
provide a definition of ()-dendriform algebras and prove that ()-Rota—Baxter algebras
induce Q)-dendriform algebras. Section 3 is devoted to typed angularly decorated planar
rooted trees. We provide a multiplication of typed, angularly decorated planar rooted trees;
then, we construct the free (2-Rota—Baxter algebras on them.

Notation. Throughout this paper, let k be a unitary commutative ring, which will be
the base ring of all modules, algebras, and linear maps. Algebras are unitary associative
algebras but not necessary commutative.

2. ()-Rota-Baxter Algebras and Q)-Dendriform Algebras

In this section, we first recall (2-Rota—Baxter algebras and introduce the concept of
()-dendriform algebras. We then construct an (2-Rota—Baxter algebra arising from a Rota—
Baxter operator of an augmented algebra.



Mathematics 2022, 10, 190

30f15

2.1. O-Rota Baxter Algebras
In this section, we mainly investigate some basic properties of (2-Rota—Baxter algebras.

Definition 2 ([19]). Let A be a given element of k and Q) a nonempty set. An (3-Rota—Baxter

algebra of weight A, or simple an Q)-RBA of weight A, is a pair (R, (Pw)weq) consisting of an

algebra R and a set of linear operators P, : R = R, w € (), that satisfy the ()-Rota—Baxter equation
Py(x)Pg(y) = Pu(xPg(y) + Pu(x)y + Axy) forall x,y € Randa,p € Q.

Any Rota—Baxter algebra of weight A can be viewed as an ()-Rota—Baxter algebra of weight A
by taking Q) as a singleton set.

Remark 1. Another notion of algebras with multiple Rota—Baxter operators, called a Rota—Baxter

family algebra, was suggested by Guo in [34]. See also [21,35]. The difference is that, there, the index
set Q) is a semigroup and the Rota—Baxter equation in Rota—Baxter family algebras is defined by

Pa(x)Pp(y) = Pup(Pu(x)y) + Pup(xPp(y)) + APap(xy) for x,y € A o, p € Q.

The following example shows that an ()-Rota—Baxter algebra could be regarded as an
algebraic framework of the integral analysis, parallel to the fact that a differential algebra
could be considered an algebraic abstraction of differential equations.

Example 1 ([19]). (Integration (we thank professor L. Guo for suggesting this example))

Let R be the R-algebra of continuous functions on R and () a nonempty subset of R. Define a set of
linear operators P, : R — R, w € Q by the integration

Po(N() = [ Fl.

Then, the pair (R, (Pw)aeq) is an Q-Rota—Baxter algebra of weight zero. This follows from the
integration by parts formula, as follows. For any f,g € R,a and § € O, set

F(x) = /:f(t)dt and G(x) = //:g(t)dt.

Then, we have

F(a) =0, F/(x) = f(x) and G'(x) = g(x).

Thus, the integration by parts formula

/x F'(£)G(t)dt = F(H)G(t) | — /x F(t)G'(t)dt

can be rewritten as

In other words,
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which implies that

P (fP5(3)) = Pulf)Pa(s) — Pu (Pul)g)-

Rearranging the terms, we have

Pu(F)Ps(8) = Pu(fPs(2)) + Pu (Pu(f)g) for fg € R e)

The following result shows that an (2-Rota—Baxter algebra can be constructed from a
Rota—-Baxter operator of an augmented algebra.

Proposition 1. Let A be a unitary generalized augmented algebra together with a family of

augmentation maps o : A — k and ) a set of augmentation maps. Suppose that P is a Rota—Baxter
operator on A. Define

Py(x) := P(x) —a(P(x))1 forall x € A,a € Q.
Then, (A, (Py)weq) is an Q-Rota—Baxter algebra of weight A.

Proof. Foranya, 8 € (Qand x,y € A, we have

Pu(x)Pa(y) = (P(x) —a(P(x))1) (P(y) = B(P(y))1)
= P(x)P(y) = P()B(P(y) )1~ a(P(x))1P(y) +«(P(x) )18(P(n) 1.
Similarly,

Py (xP/s(y) + Pu(x)y + Axy)

Thus, we obatin

Pu(x)Ps(y) = Pa (xP3(y) + Pu(x)y + Axy ).
This completes the proof. [

2.2. O)-Dendriform Algebras

In this subsection, we mainly introduce the concept of ()-dendriform algebras. Then,
we investigate the relationship between ()-Rota-Baxter algebras and ()-dendriform algebras.
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Definition 3. Let Q) be a nonempty set. An ()-dendriform algebra or more precisely an Q-
multiple dendriform algebra, is a module D together with a family of binary operations (<
, = w)weq, such that, for any x,y,z € D and a, B € Q, satisfying

(x<ay) =pz=x=u (Y =pz+Y =a2), (3)
(x=ay) <pz=1x>=a (y <p2), 4)
X (Y =p2z) = (X <Y +x =2 y) =a z. (5)

Definition 4. Let () be a set. An Q-tridendriform algebra is a k-module T equipped with a set
of linear operations (<, >=w)weq and a binary operation - such that, for x,y,z € Tand o, p € Q,

(x<ay) <pz=x=<a (y<pz+y=az+y-z), (6)

(x=ay) <pz=x>a (y <p2), (7)

(x =py+x=ay+x-y) =az=x>4 (¥ >p2), 8)
(x>ay) z=x"u (y-2), ©)
(x<ay)-z=x-(y =a2), (10)

(x-y) <az=x-(y <2 2), (11)
(x-y)-z=x-(y-2) (12)

As Rota—Baxter family algebras induce (tri)dendriform family algebras [26] and match-
ing Rota—Baxter algebras induce matching dendriform algebras [24], we will prove that
()-Rota—Baxter algebras induce the so-called multiple ()-dendriform algebras [19].

Proposition 2.

(@)  An Q-Rota-Baxter algebra (R, (Pw)weq) of weight A induces an Q-dendriform algebra
(RI (<Wr >_w)w60), where

X <o Y :=xP,(y) +Axy,x =y y:=Py(x)y forx,y € R,w e Q.

(b)  An Q-Rota-Baxter algebra (R, (P )weq) of weight 0 induces an Q-dendriform algebra
(R, (Rw, =w)weq), where

X <wY:=xPy(y),x =wy:=Pu(x)y forx,y € R weQ.

() An Q-Rota-Baxter algebra (R, (Py)wen) of weight A induces an Q-tridendriform algebra
(RI (’<(Ur >'u.})ajeﬂ), where

X <0y =xPy(y),x =wy:=Py(x)y,x-y:=Axy forx,y € R weQ.

(d)  An Q-tridendriform algebra (T, (<w, >w)weq, ) induces two Q-dendriform algebras
(T, (Reor =io)wen) and (T, (<, =i )wea), where

x<Ly:=x=<py+x-yand x =, y:=X=uY,
x <l yi=x=<pyand x =, y:=x>=,y+x-y, for x,y €T.
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Proof.
(@) Foranya, f € O and x,y € R, we have

(x <ay) <pz= (xPu(y) + Axy) <p z
= (xPu(y) + Axy)Pg(z) + A(xPy(y) + Axy)z
= xP, (y)P/g(z) + AxyPg (z) + A(xPﬁ (y)z+ /\zxyz
= xPy(yPg(z) + Ayz + Pa(y)z) + Ax(yPg(z) + Ayz + Pu(y)z)
=x <a (yPp(2) + Ayz + Pu(y)z)
=X =<a (Y =pz+Y>=az)
(x =2 y) <pz = (Pa(x)y)Pp(z) + A(Pu(x)y)z
= Pu(x)(yPp(2) + Ayz)
= (x=a (y <p 2).
X =u (y =p z) = Pu(x)(Pp(y)z) = Pu(x)Pp(y)z
Pu(xPg(y) + Axy + Pu(x)y)z
= (x <pY+xa Y) >a 2.

(b) This follows from Item (a) by taking A = 0.
(c) For x,y,z € Rand a, B € (), we have

(x <ay) <pz=xPu(y)Ps(2)
= x(Pa(y)z +yPp(z) + Ayz)
=x=a (Y =az+ty<pz+y-2).
(x = y) =p 2= Pa(x)yPp(z) = x =4 (y <p 2)
(x <py+x=ay+x-y) =az
= (xPg(y) + Pu(x)y + Axy) =4 2
= Py(x)Pg(y)z = x = (¥ =5 2)-
(x <py+x=qy+x-y) =x 2= Pu(xPg(y) + Pu(x)y + Axy)z
= (Pu(x)Pg(y))z = Pu(x)(Pp(y)z)
=X =4 (Y =p 2)
(x =2 y) - z=MPu(x)y)z = Pu(x)(Ayz) = x =0 (v - 2).
(x <ay)-z=AMxPa(y ))Z—M( w(Y)z) = x - (Y »a 2).
(x-y) <az=Axy)Pu(z) = Ax(yPa(z)) = x - (¥ <a 2).
(x-y)-z=A(xy)z = Ax(yz) = x- (y-2).

(d) For x,y,z € Rand a, B € (), we have

(x <ey) <pz=(x <ay+x-y) <3z

o~ o~

=x=<4y+x-y) <ﬁz+(x <aY+x-y)-z
=(x=<ay)<pzt(x-y)<pz+(x<ay)-z+(xy) z
=x=a(Y=<pztyraz+y-z)+x-(y<pz+y-z+y=az).
=x<p (V=<pz+y-z+y-a2) =x =<, (y<;gz+y>,’xz).

(x = y) <pz=(x=ay) <pz=(x>=ay) <pz+(x =ay) z
=x=a (Y =pz+y-2) =3, (y <5 2)

x =" (y>;3z):x>,x (y=pz)=(x =gy +x-y+x=4y) =z
=X <py+x=4y) =z
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We also have

(x < y) <pz=(x=<ay) <pz
=x <y (y</5z+y>,xz+y~z)
=x=y (y<gz+y =y z)
(x =g y) <pz=(x=ay+x-y) <pz
=x=a (y<pz)+x (y<p2z)
=x =y (y <g 2).
(x ='y) >gz:x>;’ (y-pz+y-2)
= =pyt+tx=ay+tx-y)=az+x=ay) z+(x=<py)-z+(x-y) z
= (x <gy+x>&/y) s z+ (x <gy+x =y) -z

=(x<gy+x =y y) =g z
This completes the proof. [J

3. Free ()-Rota-Baxter Algebras on Typed Angularly Decorated Rooted Trees

In this section, we construct free (3-Rota—Baxter algebras in terms of typed angularly
decorated planar rooted trees.

3.1. Typed Angularly Decorated Planar Rooted Trees

First, we recall some notations of planar rooted trees; for more details, see [21,26,36,37].
A rooted tree is a finite graph, connected and without cycles, with a special vertex called
the root. A planar rooted tree is a rooted tree with a fixed embedding into the plane. The
first few planar rooted trees are listed below (note that we view the root and the leaves of a
tree as edges rather than vertices):

Y Y

where the root of a tree is on the bottom.

An edge of a planar rooted tree T is called an inner edge if it is neither a leaf nor the
root of T. Let IE(T) be the set of inner edges of T. For each vertex, v yields a (possibly
empty) set of angles A(v), with an angle being a pair (¢, ¢’) of adjacent incoming edges
for v. Let A(T) = U,cy(1)A(v) be the set of angles of T. We now recall the notation of an
X-angularly decorated Q)-typed from [26].

Let X and Q) be two sets. An X-angularly decorated ()-typed (abbr. typed angularly
decorated) planar rooted tree is a planar rooted tree T, together with two maps dec :
A(T) — X and type : IE(T) — Q. Forn > 0, let 7 (X, Q)n be the set of X-angularly
decorated ()-typed planar rooted trees with n + 1 leaves and define

J(X,0):= || 7(X,Q)n and kT (X, Q) := P kT (X, Q)n.

n>0 n>0

The following are some examples of X-angularly decorated ()-typed planar rooted
trees in J (X, Q)).
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j(X/Q)ﬂ: {*liwlz wl, "'|w1,CU2,... GQ},

w2

x
Y x x x
B Q w
TJX={N", o, Vo, Vo Yo - ;o reXaBw €y,
v )
X Y Y x|y
v x|y x|y w
J(X,Q)c= BNA, N N\, ;YO oy eXaBw, - €Qp.
w w @

Graphically, an element T € 7 (X, ®) is of the form:

Tpp1» Withn >0, where x1,--+,x, € X, a; € Q if T; # | and otherwise

n; doesnotexistforl <i<n+1.
For each w € (), there is a grafting operator

Bl 1 kJ(X,Q) = kJ(X,Q)

that grafts a tree to a new root and satisfies that the new inner edge between the new root
and the root of the tree is typed by w. For example,

)~} w(y)-

The depth dep(T) of a rooted tree T is defined as the maximal length of linear chains
from the root to the leaves of the tree. For example,

x|y

dep(b —dep(\y) =1and dep( o] ) =2

For later use, we add the "zero-vertex tree" | to the picture, and set dep(|) = 0. For
each typed, angularly decorated planar rooted tree T, define the number of branches of T
tobebra(T) = 0if T = |. Otherwise, dep(T) > 1 and T is of the form

Here, any branch T; € J (X, Q) U {|},j =1,...,n+ 1is of a depth that is, at most, one less
than the depth of T, and equal to zero if, and only if, Tj = |. We define bra(T) := n + 1.

For example,
bra (L,) =1, bra (\V) =2 and bra (\Y{y/) =3,



Mathematics 2022, 10, 190

9of 15

3.2. The Product o on Typed Angularly Decorated Planar Rooted Trees

Let X be a set and let Q) be a set. We now define a product ¢ on k7 (X, Q) by induction.
For T, T' € J(X,Q)), we define T ¢ T’ by induction on dep(T) + dep(T’) > 2. For the initial
step dep(T) + dep(T’) = 2, we have dep(T) = dep(T’) = 1 and T, T' are of the form

Define

(13)

17, withsome T; # | or some T]( # |

There are four cases to consider.
. — — / .
Case 1: Tj,11 = | = Tj. Define
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Case 4: Ty, 1 # | # T. Define

X2 Uy,
:_<T1 NA <>(B;Lm+1(Tm+1<>B;1(T1)+Bzﬂ+1(Tm+1)<>T{+/\Tm+1<>T{))><>
3%

Here, the first ¢ is defined by Case 3, the second, third and fourth ¢ are defined by
induction and the last ¢ is defined by Case 2. This completes the inductive definition of
the multiplication ¢ on 7 (X, Q). Extending by linearity, we can expand the ¢ to k.7 (X, Q).
Now, we have the following result.

Example 2. Let X be a set and () a nonempty set. For o, p € O, and x,y € X, we have

=N o (BN ) 0 B (NY)) 0N
:%W(Y DTN \/><>Y
:VOBI<W+\%+AV>O\V

RAS AR S IR
S V/ N

Lemma 1. Let Q) be a set. Then (kT (X, Q)), 5)weq) is an Q-Rota-Baxter algebra.

Proof. We prove that(kJ (X, Q), ¢, (BJ;)weq) is an Q-Rota-Baxter algebra. From Case 4,
when m = n = 0, we immediately obtain (BJ}),cq, satisfying the )-Rota-Baxter equation.

By the construction of k.7 (X, Q) is closed under ¢ and + is the identity of ¢.

Now, we show the associativity of ¢, i.e.
(T1 <o Tz) oTz3 =Ty ¢ (T2 <o T3) forall 1, T, T3 € J(X, Q) (18)

We prove Equation (18) by induction on the sum of depths p := dep(T;) + dep(T») +
dep(T3). If p = 3, then dep(T;) = dep(Tz) = dep(T3) = 1 and Ty, T», T are of the form

o\ /x v\ /m a\ [z
T, = , T = , and T3 = with I,m,n > 0.
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Then (T; ¢ T) ¢ T3 = Ty ¢ (T ¢ T3) by direct calculation.
If p > 3, we use induction on the sum of branches g := bra(T;) + bra(T,) + bra(T3).

If ¢ = 3 and one of T7, T, Tz has depth 1, then this tree must be of the form + and the

associativity of ¢ follows directly. Assume

Ty =B, (T}), T» = BE’(Té), T3 = B (T3) forsomew, B,y € Qand 11, T5, Tz € J (X, Q)),

then

(o Tp)oTs = (B (Tq) QBE(TD) © B (T3)

= B (T{ B (Ty) + B{ (T{) o Ty + AT © T) o B} (T3)

= B{ ((T{ o B (T3)) © By (T3) + (B (T1) © T3) o By (T3) + A(T{ 0 T3) © By (T3)
+ By (Tj o B (T3)) o Ty + By (By (T1) 0 Ty) o T3 + AB; (Ty 0 T) o Ts + M(T{ 0 B (T3)) © T3
+A(BF(T]) 0 T}) o Ty + A* (T} 0 T}) o T4)

= B{ (T{(B; (T3) © By (T3) + By (T{) © (T © By (T3)) + AT; © (T3 0 By (T3))
+ B (T 0 B§ (Ty)) 0 T3+ By (B (T1) 0 T3) 0 Ty + AB; (T{ 0 Tp) 0 T3 + ATy o (B; (T3) © T3)

+ABT(T]) o (Tj o T) + A*Tj o (T © T3))
(by induction hypothesis)
= B (T{ o B} (T 0B (T3)) + T{ o Bf (B4 (Ty) © T3) + AT; o Bf (Ty 0 T3)

B pA7P p
+ By (T7) o (Ty 0 By (T3)) + BY (T{) © (B (T3) © T3) + AB{ (T{) © (T 0 T3) + ATj o (T 0 By (T3))
+AT] o (B (T;) 0 T3) + A*T{ o (Ty 0 T§) )
= B (T{) o By (Ty 0 By (T3) + B; (T3) © T3 + AT, 0 T3)

=B (T1) o (Bg (T3) © By (T3)) = Ty o (T2 0 T).

If m > 3, then at least one of T, T, T3 have branches greater than or equal to 2. If
bra(T;) > 2, then there are T}, T{’ of the form

such that T; = T] ¢ T}'. Hence

(TioTh)oTz = ((T{oT{)oTp) o T3
= (T{o(T{ ©Tp)) o T3 (By induction hypothesis)
=T{o((T{ ©Tp) ©T3) (By the form of T; and the definition of ©)
=T{o(T{ (T ©T3) (Byinduction hypothesis)
=T oT{ ¢ (T,oT;) (By the form of Tj and the definition of ©)
=Ti0(TroTs).

If bra(T,) > 2 or bra(T3) > 2, the associativity can be similarly proved. [

Leti: X — kJ(X,Q),i( \/ be a set map. Then, we have the following result.

Proposition 3. Let Q be a set. (kT (X,Q),,(BJ))weq) together with the map i is the free
O-Rota—Baxter algebra generated by X.

Proof. By Lemma 1 and the definition of ¢, (k7 (X, Q), ¢, (Bf,)weq) is an Q-Rota-Baxter
algebra. Now, we show the freeness of k7 (X, Q).
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Let (4, -, (Pw)wen) be an O-Rota—Baxter algebra and f : X — A a set map. We extend
f to an Q-Rota-Baxter algebra morphism f : kJ (X, Q) — A as follows: For T € J(X,Q),
we define f(T) by induction on dep(T). If dep(T) = 1, then T is of the form

Define f(T) := f(x1)- f(x2) - - - f(xm). Suppose f(T) was defined for all trees of depth
< k, where k > 1is a fixed integer. Consider the case of dep(T) = k + 1, we define f(T) by
induction on the branches of T. If bra(T) = 1, then T is of the form

Define

F(T) 1= Poy(Pay (f(T1)) - f(x1) - Pay (F(T2)) Py (F (Tn)) * f (xm) * Pagyy (f (Tons1)))-
If bra(T) > 1, then T is of the form

Define

F(T) := Pa, (f(T1)) - f(x1) - Pay (F(T2)) -+ Pay (F(Tn)) + £ () * Py (F (Tons1)-

By the construction of f, P, f = fB, for all w € Q. Next, we show that f is an algebra
homomorphism, i.e.,

f(ToT) = f(T)- (T forall T,T' € J(X,Q). (19)

We prove that Equation (19) holds by induction on the sum of depth dep(T) +
dep(T’) > 2. If dep(T) + dep(T’) = 2, then dep(T) = dep((T’) = 1 and

X1 Xm W1 Yn
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|

|

Assume that Equation (19) holds when dep(T) + dep(T’) < k for a given k > 2 and
consider the case of dep(T) + dep(T’) = k + 1. We reduce to the induction on bra(T) +
bra(T"). For the initial step of bra(T) + bra(T’) = 2, we have bra(T) = bra(T") = 1 and
T =By (T1), T = B (T{). Then
(B (T1) o B (T})

(T1)) + B (T1) o Ty + ATy 0 Ty)

7))+ B (T1) o Ty + ATy o Ty)
(Bg (T1))) + f(By (T1)) - f(T1) + Af(T1) - F(T1))
(by induction on the sum of branches)

= Pa(Z(Tl) : Pﬁ(ffT{)) + Pa(?(le) (T +AF(Ty) - (T7))

Suppose that Equation (19) holds for bra(T) + bra(T’) < p, with p a fixed integer.
Consider the case of bra(T) +bra(T’) = p+ 1. If To T" is in the Case 1, 2 or 3, we can get

f(ToT') = f(T) - f(T') by the definition of © and f. Hence, we only need to consider Case 4.

f(ToT)

i T

o (B (Tt oB;l(:rl’) + By (Tuy1) o T + ATy 0 T{))><> Nl o

< (Btjmﬂ (Tm+l © B,érl (Tll) + Bljmﬂ (Terl) < T{ + /\Tm+1 < Ti))) ’ .7

(by induction on the sum of branches)
T T v T/

- f(T") (by induction hypothesis and the associativity of o).

Then, we can obtain that f is an algebra homomorphism such that P, f = fB, for all
w € Q). Moreover, this is a unique way to extend f as an ()-Rota-Baxter algebra morphism.
Hence, (k7 (X,Q), 9, (Bf)weq) is the free Q-Rota-Baxter algebra generated by X. [

4. Conclusions and Future Studies

Root tree is a good language for constructing free objects. We can intuitively construct
algebraic structures through it. In this paper, we mainly construct the free ()-Rota—Baxter
algebra by typed angularly decorated rooted trees. Further, we hope to provide a more
profound characterization from the perspective of operad, representation and homology.

(@) In 2000, Aguiar established the relationship between Rota—Baxter algebras and
Loday’s dendriform algebras. Later, Bai, Guo and Vallete promoted and deepened
this connection from the perspective of operad. Operad provides a unified approach
to systematically study the relationship between algebraic operations, which helps
us to better understand these algebraic structures.



Mathematics 2022, 10, 190 14 of 15

(b)  The Representation theory and homology theory of Rota—Baxter algebras have
always been important topics. However, at present, there are just a few articles
on the representation of multiple Rota—Baxter algebras, and the theory is still not
mature. This leads us to consider the representation theory and homology theory of
algebraic structures with a family of operators.
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