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Abstract: As a generalization of Rota–Baxter algebras, the concept of an Ω-Rota–Baxter could also
be regarded as an algebraic abstraction of the integral analysis. In this paper, we introduce the
concept of an Ω-dendriform algebra and show the relationship between Ω-Rota–Baxter algebras and
Ω-dendriform algebras. Then, we provide a multiplication recursion definition of typed, angularly
decorated rooted trees. Finally, we construct the free Ω-Rota–Baxter algebra by typed, angularly
decorated rooted trees.
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1. Introduction
1.1. Rota–Baxter Algebras

A Rota–Baxter algebra is an associative algebra equipped with a linear operator that
generalizes the algebra of continuous functions with the integral operator. More precisely,
for a given commutative ring k and λ ∈ k, a Rota–Baxter k-algebra of weight λ is a
k-algebra R, together with a k-linear map P : R→ R, such that

P(x)P(y) = P(P(x)y + xP(y) + λxy) (1)

for all x, y ∈ R. Such a linear operator is called a Rota–Baxter operator of weight λ. The
concept of a Rota–Baxter algebra could be regarded as an algebraic framework of the
integral analysis. Let R be the R-algebra of continuous function on R. Define P : R→ R as
the integration

P( f )(x) :=
∫ x

0
f (t)dt.

Then, the integration by parts formula∫ x

0
P( f )′(t)P(g)(t)dt = P( f )(x)P(g)(x)−

∫ x

0
P( f )(t)P(g)′(t)dt

is just Equation (1) with λ = 0. The concept of Rota–Baxter algebra was introduced in 1960
by Glen Baxter [1] in his probability study of fluctuation theory, and then studied in the
1960s and 1970s by Cartier and Gian-Carlo Rota [2–4] in connection with combinatorics.
Apparently, this algebra remained inactive until 2000, when new motivations were found,
coming from interesting applications in the prominent work of Connes and Kreimer [5] on
the renormalization of perturbative quantum field theory, and from the close relationship
with the associative Yang–Baxter equation [6] and the construction of free Rota–Baxter
algebras related to the shuffle product [7,8]. Since then, the Rota–Baxter operator has
appeared in a wide range of areas in mathematics and mathematical physics, such as
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number theory [9], pre-Lie and Lie algebra [6,10], Hopf algebras [11,12], operads [13],
O-operators [14,15], Rota–Baxter groups and skew left braces [16,17], classical Yang–Baxter
equations and associative Yang–Baxter equations [14,18].

1.2. Motivations of Ω-Rota–Baxter Algebras
The study of Ω-Rota–Baxter algebras was also partly motivated by the formula of

partial integrations. Now, we consider the R-algebra of continuous functions on R. Let
Ω be a nonempty subset of R. Define a set of linear operators Pω : R → R, ω ∈ Ω by the
integration

Pω( f )(x) =
∫ x

ω
f (t)dt.

It follows from the formula of partial integration that

Pα(x)Pβ(y) = Pα(xPβ(y) + Pα(x)y),

which leads to the emergence of a general notation-Ω-Rota–Baxter algebras [19]. See
Example 1 below.

The second motivation comes from Ω-operated algebras. The concept of algebras with
(one or more) linear operators was introduced by A.G. Kurosch [20]. Later, Guo [21] called
such algebras Ω-operated algebras and constructed their free objects by Motzkin paths,
rooted forests and bracketed words.

Definition 1. Let Ω be a nonempty set. An Ω-operated algebra is an algebra R together with a
family of operators Pω : R→ R.

Recently, many scholars have studied multiple operator algebras. Foissy [22,23] stud-
ied multiple algebra structure on typed decorated trees. The authors introduced the con-
cepts dendriform family algebras and matching dendriform algebras [24–26]. Aguiar [27]
introduced some notions of an S-relative algebras in order to provide a simple uniform
perspective on these algebras. Ma and Li [28] combined Rota-Baxter family algebras and
Hopf π-(co)algebras, and integrate the Rota-Baxter operator into Hopf π-(co)algebra, which
leads to the concept of Rota-Baxter(Hopf) π-(co)algebra.

Rooted trees are useful for several areas of mathematics, such as in the study of vector
fields [29], numerical analysis [30] and quantum field theory [31]. The work of the British
mathematician Cayley in the 1850s can now be considered as the prehistory of pre-Lie
algebras. Chapoton and Livernet [32] first showed that the free pre-Lie algebra generated by
a set X is given by grafting of X-decorated rooted trees. Recently, typed decorated trees are
used by Bruned, Hairer and Zambotti in [33] to give a systematic description of a canonical
renormalization procedure of stochastic PDEs. The authors constructed the free dendriform
family algebras [26] and the free matching dendriform algebras [24] respectively via typed
decorated trees whose vertices are decorated by elements of a set X and edges are decorated
by elements of a semigroup Ω. In this paper, we aim at constructing the free Ω-Rota-Baxter
algebra by typed angularly decorated planar rooted trees.

The outline of this paper. In Section 2, we first recall the concept of Ω-Rota-Baxter
algebras and show that Rota–Baxter algebras induce Ω-Rota–Baxter algebras. Then, we
provide a definition of Ω-dendriform algebras and prove that Ω-Rota–Baxter algebras
induce Ω-dendriform algebras. Section 3 is devoted to typed angularly decorated planar
rooted trees. We provide a multiplication of typed, angularly decorated planar rooted trees;
then, we construct the free Ω-Rota–Baxter algebras on them.

Notation. Throughout this paper, let k be a unitary commutative ring, which will be
the base ring of all modules, algebras, and linear maps. Algebras are unitary associative
algebras but not necessary commutative.

2. Ω-Rota–Baxter Algebras and Ω-Dendriform Algebras
In this section, we first recall Ω-Rota–Baxter algebras and introduce the concept of

Ω-dendriform algebras. We then construct an Ω-Rota–Baxter algebra arising from a Rota–
Baxter operator of an augmented algebra.
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2.1. Ω-Rota Baxter Algebras
In this section, we mainly investigate some basic properties of Ω-Rota–Baxter algebras.

Definition 2 ([19]). Let λ be a given element of k and Ω a nonempty set. An Ω-Rota–Baxter
algebra of weight λ, or simple an Ω-RBA of weight λ, is a pair (R, (Pω)ω∈Ω) consisting of an
algebra R and a set of linear operators Pω : R→ R, ω ∈ Ω, that satisfy the Ω-Rota–Baxter equation

Pα(x)Pβ(y) = Pα(xPβ(y) + Pα(x)y + λxy) for all x, y ∈ R and α, β ∈ Ω.

Any Rota–Baxter algebra of weight λ can be viewed as an Ω-Rota–Baxter algebra of weight λ
by taking Ω as a singleton set.

Remark 1. Another notion of algebras with multiple Rota–Baxter operators, called a Rota–Baxter
family algebra, was suggested by Guo in [34]. See also [21,35]. The difference is that, there, the index
set Ω is a semigroup and the Rota–Baxter equation in Rota–Baxter family algebras is defined by

Pα(x)Pβ(y) = Pαβ(Pα(x)y) + Pαβ(xPβ(y)) + λPαβ(xy) for x, y ∈ A, α, β ∈ Ω.

The following example shows that an Ω-Rota–Baxter algebra could be regarded as an
algebraic framework of the integral analysis, parallel to the fact that a differential algebra
could be considered an algebraic abstraction of differential equations.

Example 1 ([19]). (Integration (we thank professor L. Guo for suggesting this example))
Let R be the R-algebra of continuous functions on R and Ω a nonempty subset of R. Define a set of
linear operators Pω : R→ R, ω ∈ Ω by the integration

Pω( f )(x) =
∫ x

ω
f (t)dt.

Then, the pair (R, (Pω)α∈Ω) is an Ω-Rota–Baxter algebra of weight zero. This follows from the
integration by parts formula, as follows. For any f , g ∈ R, α and β ∈ Ω, set

F(x) :=
∫ x

α
f (t)dt and G(x) :=

∫ x

β
g(t)dt.

Then, we have

F(α) = 0, F′(x) = f (x) and G′(x) = g(x).

Thus, the integration by parts formula∫ x

α
F′(t)G(t)dt = F(t)G(t)

∣∣x
α
−
∫ x

α
F(t)G′(t)dt

can be rewritten as∫ x

α
f (t)G(t)dt =F(t)G(t)

∣∣x
α
−
∫ x

α
F(t)g(t)dt

=F(x)G(x)− F(α)G(α)−
∫ x

α
F(t)g(t)dt

=F(x)G(x)−
∫ x

α
F(t)g(t)dt.

In other words,

Pα

(
f Pβ(g)

)
(x) = Pα( f )(x)Pβ(g)(x)− Pα

(
Pα( f )g

)
(x),
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which implies that

Pα

(
f Pβ(g)

)
= Pα( f )Pβ(g)− Pα

(
Pα( f )g

)
.

Rearranging the terms, we have

Pα( f )Pβ(g) = Pα

(
f Pβ(g)

)
+ Pα

(
Pα( f )g

)
for f , g ∈ R. (2)

The following result shows that an Ω-Rota–Baxter algebra can be constructed from a
Rota–Baxter operator of an augmented algebra.

Proposition 1. Let A be a unitary generalized augmented algebra together with a family of
augmentation maps α : A→ k and Ω a set of augmentation maps. Suppose that P is a Rota–Baxter
operator on A. Define

Pα(x) := P(x)− α(P(x))1 for all x ∈ A, α ∈ Ω.

Then, (A, (Pα)ω∈Ω) is an Ω-Rota–Baxter algebra of weight λ.

Proof. For any α, β ∈ Ω and x, y ∈ A, we have

Pα(x)Pβ(y) =
(

P(x)− α(P(x))1
)(

P(y)− β(P(y))1
)

= P(x)P(y)− P(x)β
(

P(y)
)

1− α
(

P(x)
)

1P(y) + α
(

P(x)
)

1β
(

P(y)
)

1.

Similarly,

Pα

(
xPβ(y) + Pα(x)y + λxy

)
= Pα

(
x
(

P(y)− β
(

P(y)
)
1
)
+ Pα

((
P(x)− α

(
P(x))1

)
y
)
+ λPα(xy)

= Pα(xP(y))− β
(

P(y)
)

1Pα(x) + Pα

(
P(x)y

)
− α
(

P(x)
)

1Pα(y) + λPα(xy)

= P(xP(y))− α
(

P(xP(y))
)

1− β
(

P(y)
)

1
(

P(x)− α
(

P(x)
)

1
)
+ P(P(x)y

)
− α
(

P(P(x)y
)

1

− α
(

P(x)
)

1
(

P(y)− α
(

P(y)
)

1
)
+ λP(xy)− α

(
P(xy)

)
1

= P(x)P(y)− α
(

P(xP(y))
)

1− β
(

P(y)
)

1P(x) + β
(

P(y)
)

1α
(

P(x)
)

1

− α
(

P(P(x)y)
)

1− α
(

P(x)
)

1P(y) + α
(

P(x)
)

1α
(

P(y)
)

1− α
(

P(xy)
)

1

= P(x)P(y)− α
(

P(x)P(y)
)

1− α
(

P(x)
)

1P(y)

+ α
(

P(x)
)

1α
(

P(y)
)

1− β
(

P(y)
)

1P(x) + β
(

P(y)
)

1α
(

P(x)
)

1

= P(x)P(y)− α
(

P(x)
)

1P(y)− β
(

P(y)
)

1P(x) + β
(

P(y)
)

1α
(

P(x)
)

1.

Thus, we obatin

Pα(x)Pβ(y) = Pα

(
xPβ(y) + Pα(x)y + λxy

)
.

This completes the proof.

2.2. Ω-Dendriform Algebras
In this subsection, we mainly introduce the concept of Ω-dendriform algebras. Then,

we investigate the relationship between Ω-Rota–Baxter algebras and Ω-dendriform algebras.
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Definition 3. Let Ω be a nonempty set. An Ω-dendriform algebra or more precisely an Ω-
multiple dendriform algebra, is a module D together with a family of binary operations (≺ω

,�ω)ω∈Ω, such that, for any x, y, z ∈ D and α, β ∈ Ω, satisfying

(x ≺α y) ≺β z = x ≺α (y ≺β z + y �α z), (3)

(x �α y) ≺β z = x �α (y ≺β z), (4)

x �α (y �β z) = (x ≺β y + x �α y) �α z. (5)

Definition 4. Let Ω be a set. An Ω-tridendriform algebra is a k-module T equipped with a set
of linear operations (≺ω ,�ω)ω∈Ω and a binary operation · such that, for x, y, z ∈ T and α, β ∈ Ω,

(x ≺α y) ≺β z = x ≺α (y ≺β z + y �α z + y · z), (6)

(x �α y) ≺β z = x �α (y ≺β z), (7)

(x ≺β y + x �α y + x · y) �α z = x �α (y �β z), (8)

(x �α y) · z = x �α (y · z), (9)
(x ≺α y) · z = x · (y �α z), (10)
(x · y) ≺α z = x · (y ≺α z), (11)

(x · y) · z = x · (y · z). (12)

As Rota–Baxter family algebras induce (tri)dendriform family algebras [26] and match-
ing Rota–Baxter algebras induce matching dendriform algebras [24], we will prove that
Ω-Rota–Baxter algebras induce the so-called multiple Ω-dendriform algebras [19].

Proposition 2.

(a) An Ω-Rota-Baxter algebra (R, (Pω)ω∈Ω) of weight λ induces an Ω-dendriform algebra
(R, (≺ω,�ω)ω∈Ω), where

x ≺ω y := xPω(y) + λxy, x �ω y := Pω(x)y for x, y ∈ R, ω ∈ Ω.

(b) An Ω-Rota-Baxter algebra (R, (Pω)ω∈Ω) of weight 0 induces an Ω-dendriform algebra
(R, (≺ω,�ω)ω∈Ω), where

x ≺ω y := xPω(y), x �ω y := Pω(x)y for x, y ∈ R, ω ∈ Ω.

(c) An Ω-Rota-Baxter algebra (R, (Pω)ω∈Ω) of weight λ induces an Ω-tridendriform algebra
(R, (≺ω,�ω)ω∈Ω), where

x ≺ω y := xPω(y), x �ω y := Pω(x)y, x · y := λxy for x, y ∈ R, ω ∈ Ω.

(d) An Ω-tridendriform algebra (T, (≺ω,�ω)ω∈Ω, ·) induces two Ω-dendriform algebras
(T, (≺′ω,�′ω)ω∈Ω) and (T, (≺′′ω,�′′ω)ω∈Ω), where

x ≺′ω y : = x ≺ω y + x · y and x �′ω y := x �ω y,

x ≺′′ω y : = x ≺ω y and x �′′ω y := x �ω y + x · y, for x, y ∈ T.
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Proof.

(a) For any α, β ∈ Ω and x, y ∈ R, we have

(x ≺α y) ≺β z = (xPα(y) + λxy) ≺β z

= (xPα(y) + λxy)Pβ(z) + λ(xPα(y) + λxy)z

= xPα(y)Pβ(z) + λxyPβ(z) + λ(xPβ(y))z + λ2xyz

= xPα(yPβ(z) + λyz + Pα(y)z) + λx(yPβ(z) + λyz + Pα(y)z)

= x ≺α (yPβ(z) + λyz + Pα(y)z)

= x ≺α (y ≺β z + y �α z).

(x �α y) ≺β z = (Pα(x)y)Pβ(z) + λ(Pα(x)y)z

= Pα(x)(yPβ(z) + λyz)

= (x �α (y ≺β z).

x �α (y �β z) = Pα(x)(Pβ(y)z) = Pα(x)Pβ(y)z

= Pα(xPβ(y) + λxy + Pα(x)y)z

= (x ≺β y + x �α y) �α z.

(b) This follows from Item (a) by taking λ = 0.
(c) For x, y, z ∈ R and α, β ∈ Ω, we have

(x ≺α y) ≺β z = xPα(y)Pβ(z)

= x(Pα(y)z + yPβ(z) + λyz)

= x ≺α (y �α z + y ≺β z + y · z).
(x �α y) ≺β z = Pα(x)yPβ(z) = x �α (y ≺β z)

(x ≺β y + x �α y + x · y) �α z

= (xPβ(y) + Pα(x)y + λxy) �α z

= Pα(x)Pβ(y)z = x �α (y �β z).

(x ≺β y + x �α y + x · y) �α z = Pα(xPβ(y) + Pα(x)y + λxy)z

= (Pα(x)Pβ(y))z = Pα(x)(Pβ(y)z)

= x �α (y �β z).

(x �α y) · z = λ(Pα(x)y)z = Pα(x)(λyz) = x �α (y · z).
(x ≺α y) · z = λ(xPα(y))z = λx(Pα(y)z) = x · (y �α z).
(x · y) ≺α z = λ(xy)Pα(z) = λx(yPα(z)) = x · (y ≺α z).

(x · y) · z = λ2(xy)z = λ2x(yz) = x · (y · z).

(d) For x, y, z ∈ R and α, β ∈ Ω, we have

(x ≺′α y) ≺′β z = (x ≺α y + x · y) ≺′β z

= (x ≺α y + x · y) ≺β z + (x ≺α y + x · y) · z
= (x ≺α y) ≺β z + (x · y) ≺β z + (x ≺α y) · z + (x · y) · z
= x ≺α (y ≺β z + y �α z + y · z) + x · (y ≺β z + y · z + y �α z).

= x ≺′α (y ≺β z + y · z + y �α z) = x ≺′α (y ≺′β z + y �′α z).

(x �′α y) ≺′β z = (x �α y) ≺′β z = (x �α y) ≺β z + (x �α y) · z
= x �α (y ≺β z + y · z) = x �′α (y ≺′β z).

x �′α (y �′β z) = x �α (y �β z) = (x ≺β y + x · y + x �α y) �α z

= (x ≺′β y + x �′α y) �′α z.
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We also have

(x ≺′′α y) ≺′′β z = (x ≺α y) ≺β z

= x ≺α (y ≺β z + y �α z + y · z)

= x ≺′′α (y ≺′′β z + y �′′α z).

(x �′′α y) ≺′′β z = (x �α y + x · y) ≺β z

= x �α (y ≺β z) + x · (y ≺β z)

= x �′′α (y ≺′′β z).

(x �′′α y) �′′β z = x �′′α (y �β z + y · z)

= (x ≺β y + x �α y + x · y) �α z + (x �α y) · z + (x ≺β y) · z + (x · y) · z

= (x ≺′′β y + x �′′α y) �α z + (x ≺′′β y + x �′′α y) · z

= (x ≺′′β y + x �′′α y) �′′α z.

This completes the proof.

3. Free Ω-Rota–Baxter Algebras on Typed Angularly Decorated Rooted Trees
In this section, we construct free Ω-Rota–Baxter algebras in terms of typed angularly

decorated planar rooted trees.

3.1. Typed Angularly Decorated Planar Rooted Trees
First, we recall some notations of planar rooted trees; for more details, see [21,26,36,37].

A rooted tree is a finite graph, connected and without cycles, with a special vertex called
the root. A planar rooted tree is a rooted tree with a fixed embedding into the plane. The
first few planar rooted trees are listed below (note that we view the root and the leaves of a
tree as edges rather than vertices):

, , , , , .

where the root of a tree is on the bottom.
An edge of a planar rooted tree T is called an inner edge if it is neither a leaf nor the

root of T. Let IE(T) be the set of inner edges of T. For each vertex, v yields a (possibly
empty) set of angles A(v), with an angle being a pair (e, e′) of adjacent incoming edges
for v. Let A(T) = tv∈V(T)A(v) be the set of angles of T. We now recall the notation of an
X-angularly decorated Ω-typed from [26].

Let X and Ω be two sets. An X-angularly decorated Ω-typed (abbr. typed angularly
decorated) planar rooted tree is a planar rooted tree T, together with two maps dec :
A(T) → X and type : IE(T) → Ω. For n ≥ 0, let J (X, Ω)n be the set of X-angularly
decorated Ω-typed planar rooted trees with n + 1 leaves and define

J (X, Ω) :=
⊔

n≥0
J (X, Ω)n and kJ (X, Ω) :=

⊕
n≥0

kJ (X, Ω)n.

The following are some examples of X-angularly decorated Ω-typed planar rooted
trees in J (X, Ω).
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J (X, Ω)a = { , ω1 ,
ω1

ω2

, · · ·
∣∣ω1, ω2, . . . ∈ Ω},

J (X, Ω)b =


x ,

x

ω ,
x

ω
α

,
x

ω
α β

,
x

ω
α

β
,

x

ω

α

, · · ·
∣∣x ∈ X, α, β, ω, · · · ∈ Ω

,

J (X, Ω)c =


x

y

ω
β α ,

y

x α ,

y

x
ω
α ,

x y
α ,

x y
ω ,

x y
ω

α
, · · ·

∣∣x, y ∈ X, α, β, ω, · · · ∈ Ω

.

Graphically, an element T ∈ T (X , ⊗) is of the form:

T = T1

T2 Tn

Tn+1x1
· · ·

xn
α1 αn+1

α2 αn

, with n ≥ 0, where x1, · · · , xn ∈ X, αi ∈ Ω if Ti 6= | and otherwise

αi does not exist for 1 ≤ i ≤ n + 1.
For each ω ∈ Ω, there is a grafting operator

B+
ω : kJ (X, Ω)→ kJ (X, Ω)

that grafts a tree to a new root and satisfies that the new inner edge between the new root
and the root of the tree is typed by ω. For example,

B+
ω

( )
= ω , B+

ω

(
x
)
=

x

ω .

The depth dep(T) of a rooted tree T is defined as the maximal length of linear chains
from the root to the leaves of the tree. For example,

dep
( )

= dep
(

x
)
= 1 and dep

( x y

α

)
= 2.

For later use, we add the "zero-vertex tree" | to the picture, and set dep(|) = 0. For
each typed, angularly decorated planar rooted tree T, define the number of branches of T
to be bra(T) = 0 if T = |. Otherwise, dep(T) ≥ 1 and T is of the form

T = T1

T2 Tn

Tn+1x1
· · ·

xn
α1 αn+1

α2 αn

with n ≥ 0.

Here, any branch Tj ∈ J (X, Ω) t {|}, j = 1, . . . , n + 1 is of a depth that is, at most, one less
than the depth of T, and equal to zero if, and only if, Tj = |. We define bra(T) := n + 1.
For example,

bra
(

ω

)
= 1, bra

(
x
)
= 2 and bra

( x y )
= 3.
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3.2. The Product � on Typed Angularly Decorated Planar Rooted Trees
Let X be a set and let Ω be a set. We now define a product � on kJ (X, Ω) by induction.

For T, T′ ∈ J (X, Ω), we define T � T′ by induction on dep(T)+dep(T′) ≥ 2. For the initial
step dep(T) + dep(T′) = 2, we have dep(T) = dep(T′) = 1 and T, T′ are of the form

T =
x1
· · ·

xm

and T′ =
y1
· · ·

yn

, with m, n ≥ 0.

Define

T � T′ :=
x1
· · ·

xm

�
y1
· · ·

yn

:= x1

· · ·
xm y1 · · ·

yn . (13)

For the induction step dep(T) + dep(T′) ≥ 3, the trees T and T′ are of the form

T = T1

T2 Tm

Tm+1x1
· · ·

xm
α1 αm+1

α2 αm

and T′ = T′1

T′2 T′n

T′n+1y1
· · · yn

β1 βn+1

β2 βn

with some Ti 6= | or some T′j 6= |.

There are four cases to consider.
Case 1: Tm+1 = | = T′1. Define

T � T′ := T1

T2 Tm

x1
· · ·

xm
α1

α2 αm

�

T′2 T′n

T′n+1y1
· · · yn

βn+1

β2 βn

:= T1

T2

Tm T′2

T′n

T′n+1x1

· · · xm y1

· · ·

yn
α1 βn+1

α2

αm β2
βn . (14)

Case 2: Tm+1 6= | = T′1. Define

T � T′ := T1

T2 Tm

Tm+1x1
· · ·

xm
α1 αm+1

α2 αm

�

T′2 T′n

T′n+1y1
· · · yn

βn+1

β2 βn

:=
T1

T2

Tm
Tm+1 T′2

T′n

T′n+1x1

· · · xm y1

· · ·

yn
α1 βn+1

α2

αm β2
βn

αm+1

. (15)

Case 3: Tm+1 = | 6= T′1. Define

T � T′ := T1

T2 Tm

x1
· · ·

xm
α1

α2 αm

� T′1

T′2 T′n

T′n+1y1
· · · yn

β1 βn+1

β2 βn

:=
T1

T2

Tm
T′1 T′2

T′n

T′n+1x1

· · · xm y1

· · ·

yn
α1 βn+1

α2

αm β2
βn

β1

. (16)
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Case 4: Tm+1 6= | 6= T′1. Define

T � T′ := T1

T2 Tm

Tm+1x1
· · ·

xm
α1 αm+1

α2 αm

� T′1

T′2 T′n

T′n+1y1
· · · yn

β1 βn+1

β2 βn

: =

(
T1

T2 Tm

x1
· · ·

xm
α1

α2 αm

�
(

B+
αm+1

(Tm+1) � B+
β1
(T′1)

))
�

T′2 T′n

T′n+1y1
· · · yn

βn+1

β2 βn

:=

(
T1

T2 Tm

x1
· · ·

xm
α1

α2 αm

� (B+
αm+1

(
Tm+1 � B+

β1
(T′1) + B+

αm+1
(Tm+1) � T′1 + λTm+1 � T′1

)
)

)
�

T′2 T′n

T′n+1y1
· · · yn

βn+1

β2 βn

. (17)

Here, the first � is defined by Case 3, the second, third and fourth � are defined by
induction and the last � is defined by Case 2. This completes the inductive definition of
the multiplication � on J (X, Ω). Extending by linearity, we can expand the � to kJ (X, Ω).
Now, we have the following result.

Example 2. Let X be a set and Ω a nonempty set. For α, β ∈ Ω, and x, y ∈ X, we have

x
y

α � z
p

β

= x �
(

B+
α

( y )
� B+

β

( p ))
� z

= x � B+
α

(
y

α �
p

+
y �

p

β + λ
y � p

)
� z

= x � B+
α

(
p

y

α +
y

p

β + λ
y p

)
� z

= x �
(

p
y

α
α

+
y

p

βα
+ λ

y p

α

)
� z

=

p
y

α
α

x z +

y
p

βα
x z + λ

y p

α
x z .

Lemma 1. Let Ω be a set. Then (kJ (X, Ω), �, (B+
ω )ω∈Ω) is an Ω-Rota-Baxter algebra.

Proof. We prove that(kJ (X, Ω), �, (B+
ω )ω∈Ω) is an Ω-Rota–Baxter algebra. From Case 4,

when m = n = 0, we immediately obtain (B+
ω )ω∈Ω, satisfying the Ω-Rota–Baxter equation.

By the construction of kJ (X, Ω) is closed under � and is the identity of �.
Now, we show the associativity of �, i.e.

(T1 � T2) � T3 = T1 � (T2 � T3) for all T1, T2, T3 ∈ J (X, Ω). (18)

We prove Equation (18) by induction on the sum of depths p := dep(T1) + dep(T2) +
dep(T3). If p = 3, then dep(T1) = dep(T2) = dep(T3) = 1 and T1, T2, T3 are of the form

T1 =
x1
· · ·

xl

, T2 =
y1
· · ·

ym

, and T3 =
z1
· · ·

zn

with l, m, n ≥ 0.
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Then (T1 � T2) � T3 = T1 � (T2 � T3) by direct calculation.
If p > 3, we use induction on the sum of branches q := bra(T1) + bra(T2) + bra(T3).

If q = 3 and one of T1, T2, T3 has depth 1, then this tree must be of the form and the

associativity of � follows directly. Assume

T1 = B+
α (T′1), T2 = B+

β (T
′
2), T3 = B+

γ (T′3) for some α, β, γ ∈ Ω and T′1, T′2, T′3 ∈ J (X, Ω),

then

(T1 � T2) � T3 =
(

B+
α (T′1) � B+

β (T
′
2)
)
� B+

γ (T′3)

= B+
α

(
T′1 � B+

β (T
′
2) + B+

α (T′1) � T′2 + λT′1 � T′2
)
� B+

γ (T′3)

= B+
α

(
(T′1 � B+

β (T
′
2)) � B+

γ (T′3) + (B+
α (T′1) � T′2) � B+

γ (T′3) + λ(T′1 � T′2) � B+
γ (T′3)

+ B+
α (T′1 � B+

β (T
′
2)) � T′3 + B+

α (B+
α (T′1) � T′2) � T′3 + λB+

α (T′1 � T′2) � T′3 + λ(T′1 � B+
β (T

′
2)) � T′3

+ λ(B+
α (T′1) � T′2) � T′3 + λ2(T′1 � T′2) � T′3

)
= B+

α

(
T′1(B+

β (T
′
2) � B+

γ (T′3) + B+
α (T′1) � (T′2 � B+

γ (T′3)) + λT′1 � (T′2 � B+
γ (T′3))

+ B+
α (T′1 � B+

β (T
′
2)) � T′3 + B+

α (B+
α (T′1) � T′2) � T′3 + λB+

α (T′1 � T′2) � T′3 + λT′1 � (B+
β (T

′
2) � T′3)

+ λB+
α (T′1) � (T′2 � T′3) + λ2T′1 � (T′2 � T′3)

)
(by induction hypothesis)

= B+
α

(
T′1 � B+

β (T
′
2 � B+

γ (T′3)) + T′1 � B+
β (B+

β (T
′
2) � T′3) + λT′1 � B+

β (T
′
2 � T′3)

+ B+
α (T′1) � (T′2 � B+

γ (T′3)) + B+
α (T′1) � (B+

β (T
′
2) � T′3) + λB+

α (T′1) � (T′2 � T′3) + λT′1 � (T′2 � B+
γ (T′3))

+ λT′1 � (B+
β (T

′
2) � T′3) + λ2T′1 � (T′2 � T′3)

)
= B+

α (T′1) � B+
β

(
T′2 � B+

γ (T′3) + B+
β (T

′
2) � T′3 + λT′2 � T′3

)
= B+

α (T′1) � (B+
β (T

′
2) � B+

γ (T′3)) = T1 � (T2 � T3).

If m > 3, then at least one of T1, T2, T3 have branches greater than or equal to 2. If
bra(T1) ≥ 2, then there are T′1, T′′1 of the form

T′1 = T′1

T′2 T′m

x1
· · ·

xm
α1

α2 αm
and T′′1 =

T′′2 T′′n

T′′n+1y1
· · · yn

βn+1

β2 βn

such that T1 = T′1 � T′′1 . Hence

(T1 � T2) � T3 = ((T′1 � T′′1 ) � T2) � T3

= (T′1 � (T′′1 � T2)) � T3 (By induction hypothesis)

= T′1 � ((T′′1 � T2) � T3) (By the form of T′1 and the definition of �)
= T′1 � (T′′1 � (T2 � T3) ( By induction hypothesis)

= T′1 � T′′1 � (T2 � T3) (By the form of T′1 and the definition of �)
= T1 � (T2 � T3).

If bra(T2) ≥ 2 or bra(T3) ≥ 2, the associativity can be similarly proved.

Let i : X → kJ (X, Ω), i(x) = x be a set map. Then, we have the following result.

Proposition 3. Let Ω be a set. (kJ (X, Ω), �, (B+
ω )ω∈Ω) together with the map i is the free

Ω-Rota–Baxter algebra generated by X.

Proof. By Lemma 1 and the definition of �, (kJ (X, Ω), �, (B+
ω )ω∈Ω) is an Ω-Rota–Baxter

algebra. Now, we show the freeness of kJ (X, Ω).
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Let (A, ·, (Pω)ω∈Ω) be an Ω-Rota–Baxter algebra and f : X → A a set map. We extend
f to an Ω-Rota–Baxter algebra morphism f : kJ (X, Ω)→ A as follows: For T ∈ J (X, Ω),
we define f (T) by induction on dep(T). If dep(T) = 1, then T is of the form

T =
x1
· · ·

xm

.

Define f (T) := f (x1) · f (x2) · · · f (xm). Suppose f (T) was defined for all trees of depth
≤ k, where k ≥ 1 is a fixed integer. Consider the case of dep(T) = k + 1, we define f (T) by
induction on the branches of T. If bra(T) = 1, then T is of the form

T = T1

T2 Tm

Tm+1x1
· · ·

xm
α1 αm+1

α2 αm

•ω

.

Define

f (T) := Pω(Pα1( f (T1)) · f (x1) · Pα2( f (T2)) · · · Pαm( f (Tm)) · f (xm) · Pαm+1( f (Tm+1))).

If bra(T) > 1, then T is of the form

T = T1

T2 Tm

Tm+1x1
· · ·

xm
α1 αm+1

α2 αm

.

Define

f (T) := Pα1( f (T1)) · f (x1) · Pα2( f (T2)) · · · Pαm( f (Tm)) · f (xm) · Pαm+1( f (Tm+1)).

By the construction of f , Pω f = f B+
ω for all ω ∈ Ω. Next, we show that f is an algebra

homomorphism, i.e.,

f (T � T′) = f (T) · f (T′) for all T, T′ ∈ J (X, Ω). (19)

We prove that Equation (19) holds by induction on the sum of depth dep(T) +
dep(T′) ≥ 2. If dep(T) + dep(T′) = 2, then dep(T) = dep((T′) = 1 and

T =
x1
· · ·

xm

, T′ =
y1
· · ·

yn

.

Then

f (T � T′) = f ( x1

· · ·
xm y1 · · ·

yn ) = f (x1) · · · f (xm) · f (y1) · · · f (yn) = f (T) � f (T′).
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Assume that Equation (19) holds when dep(T) + dep(T′) ≤ k for a given k ≥ 2 and
consider the case of dep(T) + dep(T′) = k + 1. We reduce to the induction on bra(T) +
bra(T′). For the initial step of bra(T) + bra(T′) = 2 , we have bra(T) = bra(T′) = 1 and
T = B+

α (T1), T′ = B+
β (T

′
1). Then

f (T � T′) = f (B+
α (T1) � B+

β (T
′
1))

= f (B+
α (T1 � B+

β (T
′
1)) + B+

α (T1) � T′1 + λT1 � T′1)

= Pα f (T1 � B+
β (T

′
1)) + B+

α (T1) � T′1 + λT1 � T′1)

= Pα( f (T1) · f (B+
β (T

′
1))) + f (B+

α (T1)) · f (T′1) + λ f (T1) · f (T′1))

(by induction on the sum of branches)

= Pα( f (T1) · Pβ( f (T′1)) + Pα( f (T1)) · f (T′1) + λ f (T1) · f (T′1))

= Pα( f (T1)) · Pβ( f (T′1)) = f (T) · f (T′).

Suppose that Equation (19) holds for bra(T) + bra(T′) ≤ p, with p a fixed integer.
Consider the case of bra(T) + bra(T′) = p + 1. If T � T′ is in the Case 1, 2 or 3, we can get
f (T � T′) = f (T) · f (T′) by the definition of � and f . Hence, we only need to consider Case 4.

f (T � T′)

= f


(

T1

T2 Tm

x1
· · ·

xm
α1

α2 αm

� (B+
αm+1

(
Tm+1 � B+

β1
(T′1) + B+

αm+1
(Tm+1) � T′1 + λTm+1 � T′1

)
)

)
�

T′2 T′n

T′n+1y1
· · · yn

βn+1

β2 βn



= f


(

T1

T2 Tm

x1
· · ·

xm
α1

α2 αm

� (B+
αm+1

(
Tm+1 � B+

β1
(T′1) + B+

αm+1
(Tm+1) � T′1 + λTm+1 � T′1

)
)

) · f


T′2 T′n

T′n+1y1
· · · yn

βn+1

β2 βn


(by induction on the sum of branches)

=

 f

 T1

T2 Tm

x1
· · ·

xm
α1

α2 αm

 · ( f (B+
αm+1

(Tm+1)) � f (B+
β1
(T′1)))

 · f


T′2 T′n

T′n+1y1
· · · yn

βn+1

β2 βn


= f (T) · f (T′) (by induction hypothesis and the associativity of �).

Then, we can obtain that f is an algebra homomorphism such that Pω f = f B+
ω for all

ω ∈ Ω. Moreover, this is a unique way to extend f as an Ω-Rota-Baxter algebra morphism.
Hence, (kJ (X, Ω), �, (B+

ω )ω∈Ω) is the free Ω-Rota–Baxter algebra generated by X.

4. Conclusions and Future Studies
Root tree is a good language for constructing free objects. We can intuitively construct

algebraic structures through it. In this paper, we mainly construct the free Ω-Rota–Baxter
algebra by typed angularly decorated rooted trees. Further, we hope to provide a more
profound characterization from the perspective of operad, representation and homology.
(a) In 2000, Aguiar established the relationship between Rota–Baxter algebras and

Loday’s dendriform algebras. Later, Bai, Guo and Vallete promoted and deepened
this connection from the perspective of operad. Operad provides a unified approach
to systematically study the relationship between algebraic operations, which helps
us to better understand these algebraic structures.
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(b) The Representation theory and homology theory of Rota–Baxter algebras have
always been important topics. However, at present, there are just a few articles
on the representation of multiple Rota–Baxter algebras, and the theory is still not
mature. This leads us to consider the representation theory and homology theory of
algebraic structures with a family of operators.
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