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Abstract
In this note, we describe an experiment on portfolio optimization using the Quadratic Unconstrained Binary Optimization
(QUBO) formulation. The dataset we use is taken from a real-world problem for which a classical solution is currently
deployed and used in production. In this work, carried out in a collaboration between the Raiffeisen Bank International (RBI)
and Reply, we derive a QUBO formulation, which we solve using various methods: two D-Wave hybrid solvers, that combine
the employment of a quantum annealer together with classical methods, and a purely classical algorithm. Particular focus is
given to the implementation of the constraint that requires the resulting portfolio’s variance to be below a specified threshold,
whose representation in an Ising model is not straightforward.We find satisfactory results, consistent with the global optimum
obtained by the exact classical strategy. However, since the tuning of QUBO parameters is crucial for the optimization, we
investigate a hybrid method that allows for automatic tuning.

Keywords QUBO · Quantum annealing · Hybrid quantum algorithms · Portfolio optimization · Financial services

1 Introduction

Portfolio optimization (PO) is a standard problem in the
financial industry (Markowitz 1952). A monetary budget
needs to be completely invested on a given set of finan-
cial assets with known historical returns and volatilities. The
whole investment amountmust be equal to 100%of the initial
budget and needs to be split, possibly in different percent-
ages, among the assets. The aim is to maximize the expected
return of the resulting portfolio while keeping the risk pro-
file, which is measured by the volatility computed from the
covariancematrix of the assets, below a specified limit. Addi-
tional constraints may be added to help the diversification of
the portfolio over multiple sectors or asset classes. A similar
problem has been solved by Grant et al. (2021).

The computational complexity of combinatorial opti-
mization problems tends to increase exponentially with the
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number of variables—here, the number of assets—which at
large scale can make solvers incapable of providing only
optimal solutions. Instead, the results are likely suboptimal.
Currently, it is being investigated in various circumstances
whether quantum computers can help cope with this com-
plexity. In particular, a strategy called quantumannealing has
proven to be a particularly useful approach to optimization
problems (Farhi et al. 2000; Morita and Nishimori 2008).

The data used in ourwork consists of a portfolio structured
into threemain asset classes: equity (EQ), fixed-income (FI),
and money market (MM). A client portfolio typically ranges
from 9 to 11 assets. We have chosen this type of dataset
because of the following:

1. It represents a setup that is actually used in a real-world
bank’s production environment.

2. It makes it possible to run the optimization in a short
amount of time on quantum computers.

Various constraints have to be imposed on the composi-
tion of the portfolio, which we describe in greater detail in
Section 2.When imposing constraints in a Quadratic Uncon-
strained Binary Optimization (QUBO) formulation (Grant
et al. 2021; Lucas 2014; Glover and Kochenberger 2018),
which is by definition unconstrained, each of these terms
must be properly weighted in the objective function such
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that the resulting solution not only satisfies the constraints,
but also maximizes the returns.

Our contribution and the novelty of our work revolve
around 2 main points. On the one hand, we conducted
a comparison of various approaches to solving the port-
folio optimization problem modeled as a QUBO, namely
D-Wave’s QBSolv, hybrid binary quadratic model (BQM),
and hybrid constrained quadratic model (CQM). This com-
parative analysis allows both to elucidate the strengths and
weaknesses of existing methods, as well as improve the
understanding of how these techniques perform. A substan-
tial portion of our research is dedicated to exploring the use of
CQM as a new and alternative method for addressing QUBO
problems. We acknowledge that identifying suitable penalty
coefficients for the different Hamiltonian terms can be partic-
ularly challenging in solving QUBO problems. This is why
we investigate an approach, which is expected to make this
procedure easier. By comparing this technique with tradi-
tional methods, we have demonstrated that our approach can
simplify the solution of QUBO problems and identify the
effective strategies for optimization.

On the other hand, our research represents a synthe-
sis of multiple relevant methodologies and considerations
that directly impact the practical application of portfolio
optimization. The data, constraints, and problem objectives
come from industry-specific scenarios. Focusing on the con-
crete applicability of these techniques, we elaborate on the
use of inequality constraints, additional external constraints,
and other considerations that are required in industrial use
cases, providing a comprehensive framework for portfolio
optimization. To this end, we had to develop a number of
technical improvements which allow us to treat the problem
completely as a QUBO. In particular, we developed a rep-
resentation of the weights as rational numbers with multiple
qubits, which leverage specific conditions of the problem at
hand to improve the use of resources, and we devise a strat-
egy to handle inequality constraints which would involve
higher than quadratic order terms in the objective function.
The added value of our work therefore lies in the effective
combination of all of these developments.

By articulating these contributions, we believewe can bet-
ter convey the advancements our research offers to the field
and its potential implications for real-world financial appli-
cations.

In this study, we focus deliberately on testing the capabil-
ities of quantum computing to serve as a solution method for
standard portfolio optimization and contrast it with classical
solutions. Deeper questions on the robustness and stability of
the approach to, e.g., different market conditions and its gen-
eral validity from the point of view of financial mathematics
are undoubtedly valuable but beyond the scope of our work.
We see no a priori reason why a different solution method

like quantum computing would change the validity of this
method in general.

We structure this paper as follows: in Section 2,we explain
the structure of the problem in detail, and we describe the
mathematical formulation used by classical algorithms and
we introduce the QUBO approach. In Section 3, we dive
deeper into how we cast our problem as a QUBO and put our
work in the context of current research. The results of the var-
ious approaches that we use to solve the QUBO are presented
in Section 4, where the different solutions are compared and
benchmarked against the exact global optimum.

2 Problem formulation

We consider the Markowitz portfolio optimization as a
quadratic programming problem (Markowitz 1952) that
determines the fraction ωi of available budget B to be allo-
cated on the purchase of the i th asset out of potentially N
assets with the goal of maximizing returns, while keeping
the risk below a target volatility σ 2

target. For simplicity, we set
B = 1, and we consider weights ωi as normalized weights.

The optimization problem is formulated as

max
ω

{rT · ω} (1)

subject to

ωT � ω≤σ 2
target (Volatility constraint)

(2)

1T · ω=1 , ωi ≥ 0 , ∀i=1, . . . , N (Weights constraint)
(3)

A · ω 〈op〉 b , 〈op〉 ∈ {=,≤,≥} (Linear constraints)
(4)

where

• r is the vector of (mean historical) asset returns.
• ω is the vector of asset weights.
• � is the covariance matrix of the returns.
• σ 2

target is the target volatility, i.e., the maximum allowed
risk.

• A is a matrix of coefficients specifying further linear con-
straints.

• b is a vector of constants.

2.1 Classical formulation

The PO problem investigated in this work is based on a cal-
culation that is performed in production at Raiffeisen Bank
International AG (RBI) as a service for RBI clients. Themain
objective of the PO is to maximize the expected return while
fulfilling several constraints. The risk constraint limiting the
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portfolio volatility is written, using the notation from Eq.2,
as follows:

ωT � ω =
N∑

i=1

N∑

j=1

σi j ωi ω j ≤ σ 2
target . (5)

The corresponding risk term is hence a quadratic form that
is bounded from above.

We impose several additional linear constraints, either
defined globally or for a specific client:

1. Normalization constraint: sum of weights ωi is normal-
ized to 1, i.e., all budget needs to be invested:

N∑

i=1

ωi = 1 . (6)

2. Single asset constraints: defining lower and upper bound
of the weight of a single asset:

ωi ≥ ωi,min, (7)

ωi ≤ ωi,max. (8)

3. Multi asset constraints: conditions involving a set of
assets, e.g., constraints for a specific asset-class group
(EQ, FI, or IR):

N∑

i=1

a j,i ωi 〈op〉 b j , j ∈ {1, ..., M}, 〈op〉 ∈ {=,≤,≥} ,

(9)

where a j,i are the elements of matrix A, b j are the con-
stants of the constraints j , and M is the number of multi
asset constraints.

In the classical calculation, the strategic asset allocation
is accomplished via Markowitz optimization (Markowitz
1952), and the tactical asset allocation is based on the so-
called Black-Litterman model (1991a; 1991b). The Black-
Litterman approach takes (i) market expectations derived
from market data and (ii) the objective and independent
forecasts provided by the bank’s internal research group
(Raiffeisen Research) as input parameters, and then pro-
duces the posterior asset returns and covariance through an
optimization process. The outputs from the Black-Litterman
process are then used as input for the strategic Markowitz
optimization.

For the classical calculations the statistical software pro-
gramming environment R is employed. The optimization
algorithm is run via IBM’s CPLEX optimization software
package, which provides solvers for linear and quadratic pro-
gramming problems (IBM2022a). TheseCPLEXsolvers can

be called from the R environment via the R interface module
“Rcplex” (IBM 2022b).

Since the mathematical optimization model represents a
convex problem, and furthermore, the volume of the data sets
currently faced in RBI’s production environment is rather
small, the classical optimization procedure is able to quickly
find the exact solution, which is the global optimum. There-
fore, it clearly cannot be the goal of the study to achieve a
more accurate result. This solution rather serves as the ulti-
mate target goal to be ideally achieved by the optimization
procedure executed on a quantumcomputer. The study serves
as a starting point to apply the working quantum algorithms
to improve results, where classical solutions are not satisfac-
tory.

2.2 QUBO formulation

The Quadratic Unconstrained Binary Optimization (QUBO)
model represents a wide range of combinatorial optimiza-
tion problems (Lucas 2014; Grant et al. 2021; Glover and
Kochenberger 2018). It is currently the most applied model
in the quantum computing area for these kinds of problems.
TheQUBOmodel is expressed by the following optimization
problem:

minimize fQ(x) , (10)

where fQ : {0, 1}n −→ R,

fQ(x) =
n∑

i=1

n∑

j=i

qi j xi x j , (11)

is a quadratic polynomial over binary variables xi ∈ {0, 1}
and coefficients qi j ∈ R for 1 ≤ i ≤ j ≤ n. The QUBO
problem consists of finding a binary vector x∗ that is minimal
with respect to f among all other binary vectors, namely

x∗ = argmin
x∈{0,1}n

fQ(x) . (12)

In order to maximize fQ(x), one simply minimizes f−Q(x)
= − fQ .

Another, more compact way to formulate fQ(x) is using
matrix notation,

fQ(x) = xT Q x , (13)

where Q ∈ R
n×n is a square matrix containing the coeffi-

cients qi j . It is common to assume an upper triangular form
for Q since it is a symmetric matrix; thus, the transformation
can always be achieved without loss of generality with sim-
ple tricks. Many problems can be effectively reformulated as
a QUBO model by introducing quadratic penalties into the
objective function as an alternative to explicitly imposing
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constraints in the classical sense (Glover and Kochenberger
2018). The penalties introduced are chosen so that the influ-
ence of the constraints on the solution process can alterna-
tively be achieved by the natural functioning of the optimizer
as it looks for solutions that avoid incurring the penalties. For
a minimization problem, these penalties are used to create an
augmented objective function to be minimized.

3 Methodology

In this work, we tackle the PO problem by modeling it
as a QUBO (Grant et al. 2021; Mugel et al. 2020, 2022).
This formulation enables the use of special-purpose quan-
tum computers, quantum annealers, to find the minimum of
a given objective function.

In recent years, along with the developments in the quan-
tum computing field, increasing attention has been drawn to
the formulation of well-known combinatorial optimization
problems as a QUBOmodel or, equivalently, the Ising model
(Lucas 2014; Glover and Kochenberger 2018). The equiva-
lence consists in the solution of one of the two models also
being the solution of the second one, up to a linear change of
variables: this allows to adhere to common formulations in
operations research that exploit binary variables taking val-
ues in {0, 1}, while being able to exploit quantum annealers
to find the minimum of the optimization problem at hand.
Therefore, a current focal point in the quantum optimization
literature is to examine the capabilities of quantum annealers
in application to combinatorial optimization problems (Kad-
owaki and Nishimori 1998; Farhi et al. 2001; Kochenberger
et al. 2014; Katzgraber et al. 2015; Heim et al. 2015, 2017;
Asproni et al. 2020).

The PO problem is a key activity in the financial services
industry (Mugel et al. 2022). The classical Markowitz model
is a convex quadratic programming problem, which in its
simplest form, the Mean-Variance model, has a polynomial
worst-case complexity bound (Nesterov and Nemirovski
1994; Kerenidis et al. 2019), where the algorithm’s running
time t behaves as follows:

t ∼ O(Nk), 2 ≤ k ≤ 4 . (14)

Numerical calculations using state-of-the-art classical opti-
mization algorithms indicate that the classical Markowitz
model shows at best a quadratic time complexity with respect
to the number of assets (Brown 2011; Pedersen 2021). How-
ever, the complexity of enhanced PO problems, e.g., the
so-called Limited Asset Markowitz (LAM) model (also
called cardinality constrained Markowitz model), depends
on the specific constraints that are additionally imposed on
the basic objective (Maringer 2008; Cesarone et al. 2009,
2011). Additional constraints increase the level of complex-

ity, which can result at worst in an NP-hard problem whose
complexity scales exponentially as the number of assets
grows (Bienstock 1995; Jin et al. 2016):

t ∼ O(eN ) . (15)

This, combined with the nonlinear nature of the problem
that particularly fits the QUBO formulation, has led to the
use of a quantum computing approach to tackle the prob-
lem (Rosenberg et al. 2016). In this work, we build a QUBO
model similar to Grant et al. (2021). We follow the approach
by including a risk measure constraint on the assets’ covari-
ances, given by Eq.2, and include the left-hand side term
of the inequality in the QUBO formulation, fine-tuning the
model parameters such that the overall risk does not exceed
σ 2
target (cf. Sect. 3.2.4 for details). Finally, we discretize the

continuous variables ω into a set of binary variables, each
of which is weighted in the QUBO by a coefficient. Differ-
ently from the approach proposed in Grant et al. (2021), for
each asset i and the corresponding variableωi , our discretiza-
tion uses a fixed number of binary variables, representing a
given interval [ωi,min, ωi,max]which may differ from asset to
asset. This entails the possibility to use a reduced number of
variables to represent assets’ weights in the portfolio, while
on the other hand potentially providing a different granu-
larity for different assets. Further mathematical details are
explained in Section 3.1.

3.1 Discretization of variables

In order to cast the problem into the QUBO formulation, one
needs to choose a binary encoding of the weights. As the
weights are fractions, the exponents in the binary expansion
of the weights are going to be negative. Using discrete rather
than continuous variables inevitably limits the accuracy of
the solution. While the accuracy increases if more binary
variables are being used for each weight, so do the resource
needs. Thus, one has to carefully find an optimal number
of binary variables that represents a trade-off between target
accuracy and acceptable resource usage.

If we allow K variables for the discretization of each
weight ωi , i = 1, . . . , N , the upper bound of the number
of QUBO variables for the discretization without consider-
ing any additional (slack) variable is N ·K .

However, the number of variables needed can be reduced
after carefully analyzing the linear constraints that restrict
the weights for single assets, the so-called single-min and
single-max constraints (see Eqs. 4, 7, and 8 of Section 2,
respectively). For example, if the weight of an asset is limited
within a specific range, fewer binary variables are needed to
achieve the same granularity covering only that range

ωi = ωi,min + (ωi,max − ωi,min) · ω′
i , (16)
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where the normalized weight ω′
i is restricted to

0 ≤ ω′
i ≤ 1 . (17)

With the definition

�ωi = ωi,max − ωi,min , (18)

one gets

ωi = ωi,min + �ωi · ω′
i . (19)

In a binary expansion using K bits, i.e., having a granularity
pK = 1/2K , ω′

i is given as

ω′
i =

K∑

k=1

2k−1xi,k pK , (20)

where xi,k ∈ {0, 1}, i = 1, . . . , N , k = 1, . . . , K , are binary
variables.

Naturally, the granularity would be chosen to be pK =
1/2K . Then, the normalized weightω′

i in Eq.16 is effectively
restricted to

0 ≤ ω′
i ≤ (1 − pK ) , (21)

and the effective granularity pK,eff i is given by

pK,eff i = �ωi · pK . (22)

While this choice for the granularity technically does not
allow to reach exactly ωmax for each asset, we can reach a
number close to it by summing up all the terms, incidentally
ensuring by design to have ωi < ωi,max such that the max
constraint is automatically fulfilled. An alternative choice
of p̃K = 1/2K−1 for the granularity would not have these
advantages but would allow to reach the maximum amount
exactly. This would also come at the cost of using one binary
variable more for each asset.

For example, if K = 10, the granularity of the normalized
weightω′

i is pK = 1/210, and the effective granularity for the
weightωi of asset i is 1/210 ·�ωi = 9.765625·10−4 ·�ωi of
the budget. The maximum fraction of the normalized weight
is

∑K
i=1 2

i−1−K = 1 − 1/2K ≈ 0.999023, thus giving for
asset i an effective maximum weight

ωi,max_eff = ωi,max − 9.765625 · 10−4 · �ωi . (23)

However, if we use pK ′ = 1/220, the effective granularity
for asset i is approx. 9.5367 ·10−7 ·�ωi of the budget, while
the maximum fraction is 1 − 1/2K

′ ≈ 0.999999046.

The choice of K relies on the effective granularity needed,
the level of approximation manageable, and the number of
variables implementable.

Finally, we use the same number of variables for all assets,
although the discretized ranges vary among different assets,
since the effective granularity pK,eff i for asset i is given
by pK · �ωi . That means that the effective granularity for
each asset is in fact finer than pK , because in our real-world
setup �ωi is always smaller than 1 for all assets (in the cur-
rent setup, one has ωi,max < 1, and �ωi = 0.1 for all i ;
thus, the effective granularity is the same for all assets, i.e.,
pK,eff i = pK,eff ). A possible improvement when having the
same granularity for each asset would be to reduce the num-
ber of binary variables for each asset.

The error in representing the individual weights due to
the finite granularity also leads to an error in the total budget
invested. This is because every weight is in principle a ran-
dom rational number between 0 and 1. When approximating
the ω′

i in any weight in a binary expansion, this number will
be representedwith an error depending on pK . Treating these
errors as a distribution, we are calculating the expected value
and variance of the error in the Appendix C. The resulting
expectation value of the error ε is

E[ε] = p2K
2

, (24)

and standard deviation is

Var[ε] = p2K
12

+ p3K
4

− p4K
4

. (25)

However, given our construction, we are sampling the
interval between the minimal and maximally allowed values,
only as explained in Eq.19. Therefore, the error accumulates
to

δω = δ
∑

i

ωi =
∑

i

�ωi δω
′
i = δω′ ∑

i

�ωi , (26)

where in the last step we have used the fact that all the
ωi are constructed in the same way according to Eq.20. This
makes the error dependent on the individual min-max con-
straint, more precisely on the difference between maximum
and minimum.

Keeping this in mind is important for the interpretation of
the results of our experiments in Section 4.

3.2 Structure of objective function

Considering the terms including the constraints mentioned
above, the objective function consists in our case of the fol-
lowing four terms:

• Returns to be maximized, ref. Equation1
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• Weights constrained as all budget needs to be invested,
ref. Equation3

• Linear constraints, ref. Equation4
• Target volatility constraint, ref. Equation2

This formulation allows to consider a single QUBO expres-
sion made up of 4 terms:

fQ = λ1H1 + λ2H2 + λ3H3 + λ4H4, (27)

where λl > 0 is the penalty coefficient incorporating the
relative importance of the l th term and the sign linked to the
maximization or minimization; the Hl is the Hamiltonian
derived from the QUBO matrix of the l th term. We analyze
each term in detail below.

3.2.1 Returns H1

The optimization of returns consists of minimizing

H1 = −rTω, (28)

where r = (r1, . . . , rN ) is the vector of returns of assets
i = 1, . . . , N and ω = (ω1, . . . , ωN ) is the vector of asset
weights. The “return” term H1 is the basic objective term
of the optimization problem. In order to formulate the prob-
lem in the QUBO framework, one needs to discretize the
weights as described in Section 3.1. Without losing general-
ity the discretization expressed in Eq.16 is used. With this
discretization, the QUBO formulation of the basic objective
term H1 is written as

H1 = −
N∑

i=1

(
ωi,min + (ωi,max − ωi,min) ·

K∑

k=1

pK 2
k−1xi,k

)
· ri .

(29)

3.2.2 Weight constraint H2

This term is a hard constraint on the sum of investments of
the initial budget, and it is expressed as follows:

1T · ω =
N∑

i=1

ωi = 1. (30)

With the discretization explained in Section 3.1, the QUBO
formulation becomes

H2 =
[

N∑

i=1

(
ωi,min + (ωi,max − ωi,min) ·

K∑

k=1

pK 2
k−1xi,k

)
− 1

]2

.

(31)

3.2.3 Linear constraints H3

This term represents a set of linear constraints defined by
the matrix A and the vector b in Eq.4. These constraints are
slightly different from H2 because they include inequalities.
One can always put them into aQUBOformulation by includ-
ing auxiliary variables, so-called slack variables, which are
also represented as a binary expansion using slack binary
variables. Supposing that matrix A is of the type M × N
where M is the total number of linear constraints and N the
number of assets, the QUBO formulation becomes

M∑

j=1

λ3 j

(
N∑

i=1

a j,i ωi + α j s j − b j

)2

, (32)

where a j,i are the elements of matrix A, b j are the constants
of the various linear constraints j , s j are slack terms, that
are introduced to transform inequality constraints effectively
into equality conditions, and α j are the signs related to the
slack terms, that depend on the relational operators of the
constraints:

α j =

⎧
⎪⎨

⎪⎩

1 if j th constraint is ≤
0 if j th constraint is =
−1 if j th constraint is ≥

, (33)

Using a binary formulation the slack term s j is given as

s j = β j

S j∑

k=1

pSj 2
k−1s j,k , (34)

where s j,k ∈ {0, 1}, j = 1, . . . , M , k = 1, . . . , S j , are the
actual binary slack variables, and β j is the maximum value
of the continuous version of the slack term, given by

β j =

⎧
⎪⎨

⎪⎩

argmax
xi∈{0,1}

[ (b j − ∑
i a j,i xi ), 0 ] if j th constraint is ≤

argmax
xi∈{0,1}

[ (
∑

i a j,i xi − b j ), 0 ] if j th constraint is ≥ .

(35)

The number of slack variables S j for constraint j depends
on the effective slack term granularity

pSj ,eff = β j · pSj , pSj = 1/2S j . (36)

For practical reasons, the number of slack variables S j has
been fixed for each linear constraint j to the number K of
physical binary variables per asset. Thus,while the number of
slack variables is always the same for the various constraints,
the effective slack term granularity pSj ,eff varies.
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Another approachwhichhas beenperformed in the current
activity is related to those linear constraints that act individu-
ally on each asset: these give lower and upper bounds on the
values of such assets. In this way, the discretization described
in Eq.16 can be applied to the new range defined by the
constraints. This allows to satisfy those constraints by con-
struction and there is no need to include them in the QUBO
formulation, leading to an ease of calibration and findings
of feasible solutions. For example, if two constraints impose
that the investment of an asset i must be within the range
[ωi,min, ωi,max], then the discretization will find a fraction of
the value (ωi,max − ωi,min).

With the discretization explained in Section 3.1, Eq.32 is
transformed into

M∑

j=1

λ3 j

[
N∑

i=1

(
a j,i ωi,min + a j,i (ωi,max− ωi,min) ·

K∑

k=1

pK 2
k−1xi,k

)
+

+α j β j

S j∑

k=1

pSj 2
k−1s j,k − b j

⎤

⎦
2

. (37)

3.2.4 Target volatility constraint H4

The QUBO formulation of this term strictly depends on the
approach implemented to consider the target volatility con-
straint as in Section 2.

As a first example, we consider the constraint rewritten in
Eq.2 in which the target volatility is set to zero. In this way,
the portfolio risk is handled via the minimization of the term

ωT � ω =
N∑

i=1

N∑

j=1

σi j ωi ω j , (38)

which in the QUBO formulation with the discretization
explained in Section 3.1 becomes

N∑

i=1

N∑

j=1

σ̃i j ·
(
ωi,min+ (ωi,max− ωi,min) ·

K∑

k=1

pK 2
k−1xi,k

)
·

(39)

·
(

ω j,min+ (ω j,max− ω j,min) ·
K∑

k=1

pK 2
k−1x j,k

)
,

where σ̃i j in an adjusted coefficient such that

σ̃i j =

⎧
⎪⎨

⎪⎩

σi j if i = j

2σi j if i < j

0 otherwise

(40)

When the maximal risk is not allowed to exceed a thresh-
old value given by the target volatility σ 2

target, the following

less-than-or-equal constraint has to be fulfilled

ωT � ω ≤ σ 2
target . (41)

Putting this constraint into a non-constraintQUBO-like form,
one gets the following:

H4 =
(
ωT � ω + svola − σ 2

target

)2
, (42)

where, since a less-than-or-equal constraint (and not an exact
equality condition) has to be handled, a slack variable term
svola has to be introduced which, using binary slack variables
sσ,k ∈ {0, 1}, k = 1, . . . , Sσ , is given by

svola = σ 2
target

Sσ∑

k=1

pSσ 2
k−1 sσ,k , (43)

in which Sσ is the number of binary slack variables for the
volatility constraint that depends on the effective volatility
slack term granularity

pSσ ,eff = σ 2
target · pSσ , pSσ = 1/2Sσ . (44)

After squaring Eq.42, one obtains

H4 = (ωT � ω)2 + 2 (svola − σ 2
target) ωT � ω

−2 svola σ 2
target + s2vola + σ 4

target . (45)

Since the volatility risk term is itself a quadratic form, the first
term contains quartic and cubic contributions in ω. Strictly
speaking, the problem is no longer a QUBO (quadratic)
problem, but it turned into a so-called PUBO (Polynomial
Unconstrained Binary Optimization) problem (sometimes
also called HUBO for Higher-Order Unconstrained Binary
Optimization) (Glover et al. 2011a, b; Palmer et al. 2021).
The existence of up to fourth-order polynomial terms repre-
sents a fundamental complication in the procedure since these
terms cannot be mapped onto the Ising model of the quan-
tum computer, whose interactions are by definition restricted
to linear 1-body and quadratic 2-body terms. However, sev-
eral workarounds for the PUBO problem are proposed in the
literature:

1. Applying order-reduction techniques (Mugel et al. 2020):
Using this method is rather expensive since one needs
additional bits.

2. Linearization (Palmer et al. 2021): In this approach,
the quadratic volatility term is replaced by a linearized
expression.

H4 =
(
kT � ω − σ 2

target

)2
, (46)
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where k is a vector of constants which are called linear
weights. Due to the linearization, the whole term remains
quadratic. However, finding an appropriate value of k
is somehow arbitrary: one option is to find k in a self-
consistent way, and another possibility is to fine-tune k
starting from a convenient value like ki = 1/N ∀i .

3. Replacement by am equality-to-zero condition (Grant
et al. 2021): if the target volatility threshold value is suffi-
ciently small, then it can be approximated by zero. When
the right-hand-side is exactly zero, the ≤ operator can
be replaced by the equality operator since the left-hand-
side, the quadratic volatility term, is positive-definite. A
constraint like g(ω) = 0 with a positive-definite function
g(ω) ≥ 0 can be handled in the optimization model very
easily by just adding a term λ g(ω) to the objective. Thus,
in this approach, one has

H4 = ωT � ω , (47)

For the calculations employing (i) the classical QBsolv
solver and (ii) D-Wave’sHybridBQMsolver, we used the lat-
ter workaround, namely the replacement of the PUBO term
by an equality-to-zero constraint. By tuning the weight of
the volatility constraint carefully, i.e., by choosing an appro-
priate Lagrange multiplier, we obtain a feasible formulation
while being able to optimize the complete objective function
including all the other constraints.

The calculations performed with (iii) D-Wave’s new
Hybrid CQM solver do not need such a replacement, because
the CQM solver can handle both linear and quadratic condi-
tions naturally as genuine constraints.

3.3 Computational method

To solve the PO problem, different approaches have been
followed up such that the capabilities of quantum and
quantum-inspired solutions could be thoroughly assessed
and benchmarked. In order to check and quantify the quality
of these solutions, the results have been compared with the
global minimum of the optimization problem, which, given
the limited size of the data at hand, could be easily found via
classical strategies.

First and foremost, the QUBO model as described in
Section 3 has been built and D-Wave’s QBSolv library has
been exploited to solve the optimization problem through
classical optimization techniques. In order to do so, the binary
quadratic model data structure has been used that stores each
entry of the QUBO model, assigning biases and couplers as
penalty coefficients to each variable and pair of variables,
respectively.

Second, we have investigated the use of D-Wave’s hybrid
binary quadratic model (BQM), which decomposes the
overall QUBO problem into subproblems suitable to be
solved on a quantum processing unit (QPU). Those sub-
problems can be solved directly on the QPU, thus having
the benefit of quantum effects such as quantum tunneling to
best find high-quality solutions. The decomposition step is
needed in order to have QUBO subproblems of sufficiently
small size that match current QPU architecture; this proce-
dure is handled automatically by D-Wave’s hybrid software.

With the aforementioned QUBO solvers, one crucial step
needed to find not only feasible but also optimal solutions
is to fine-tune some significant QUBO parameters, namely
the Lagrange multipliers λl from Eq.27, that act as relative
weights between the various optimization terms and con-
straints that build up thewholeQUBOexpression.This step is
non-trivial andmight lead to suboptimal solutions, especially
when the number of optimization terms and constraints, and
thus the overall complexity of the problem, increases.

As the next step, and particularly motivated to over-
come the problem to fine-tune Lagrange parameters, we have
investigated the usage of D-Wave’s next-generation hybrid
solution, the constrained quadratic model (CQM) solver. The
CQMsolver is the newest product ofD-Waves’s hybrid solver
family. It enables to formulate constraints in their natural
form as “they are,” i.e., as real constraints

term 〈op〉 b, 〈op〉 ∈ (=,≤,≥) . (48)

where “term” can be any linear or quadratic form in the
binary variables. Thus, even themaximal volatility constraint
Eq.41, which is quadratic and a less-than-or-equal condition
(i.e., not an equality condition), can be entered into the CQM
solver directly without any modification. Before, when using
one of the previous solvers, e.g., the Hybrid BQM solver, one
had to formulate constraints as penalty terms, which in case
of an inequality condition even had to be supplied with an
auxiliary variable term α s. The constraint had to be put into
a parabolic form multiplied by a Lagrange multiplier λ (cf.
Sect. 3.2):

λ (term+ α s − b)2 , α = {0, 1,−1} if 〈op〉 = {=,≤,≥}.
(49)

With the availability of the CQM solver from D-Wave,
constraints are handled automatically. However, since the
implementation details of D-Wave’s CQM algorithm have
not been publicly revealed by the software vendor, from a
software end-user’s perspective, it remains hidden under the
surface how the constraints are in fact implemented or for-
mulated.
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4 Results

We have performed our investigation on multiple solutions
ranging from classical strategies adopted by the QBSolv
library to hybrid techniques for decomposing the optimiza-
tion problem into suitable subproblemswhich are solved both
on classical and quantum processing units (QPUs). In order
to exploit the full potential of the available software for quan-
tum optimization, and thus to reach the highest-performing
solution strategy, two available strategies have been investi-
gated, namely using a BQM and a CQM.

The former is used as a data structure to represent the
QUBO modeling and hence underlies the same principles:

one needs to fine-tune the model parameters in order to find
feasible and optimized solutions, in terms ofmaximum return
andminimumvolatility. The latter allows to explicitly declare
which terms of the optimization are genuine constraints and
which constitute the objective function. The management of
different terms is then delegated to the hybrid solver library,
i.e., to the software side, and thus allows the software user to
reduce the time spent calibrating QUBO parameters.

In the following paragraphs, we show multiple results
using common notation and considerations:

• The scatter plots in Fig. 1 show the achieved return vs.
volatility for different parameter sets, where one data
point represents the best result of one experiment. The

Fig. 1 Distribution of solutions
of several runs for different
solvers and granularity. The
solvers employed are the purely
classical QBSolv, and the
Hybrid BQM and Hybrid CQM,
that both have a quantum
backend; N denotes the number
of assets considered; K
represents the number of binary
variables, i.e., the number of
qubits, used for each asset. This
number also determines the
granularity of the calculation.
The dashed lines, horizontal for
the volatility, and vertical for the
expected return of the portfolio
represent the solutions obtained
by the classical CPLEX solver.
The not_satisfied label on each
solution indicates the number of
constraints violated as described
in paragraph Section 3.1. The
spread of the solutions along an
upwards slope makes sense
from a business point of view,
insofar as higher risk should be
associated with higher return. It
can be clearly seen that the
results obtained with the Hybrid
CQM solver are the most
precise. A zoomed version of
these plots with better visibility
is given in Fig. 17
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vertical dashed line marks the result achieved by the
classical solver, which is expected to be close to the the-
oretical optimum of the return with the given volatility,
marked by a horizontal dashed line. Points higher than the
horizontal dashed line represent experiments which have
yielded impermissible results (risk too high). Results to
the right of the vertical dashed linewould represent exper-
iments which yield better-performing portfolios than the
ones classically found, which is not expected. We are
looking for the best experiment in the lower left quad-
rant, i.e., the one closest to the intersection of the dashed
lines.

• The not_satisfied label in the plots refers to the number
of constraints violated. The investment constraint is con-
sidered satisfied in those cases where the actual sum of
investments deviates from the target (100%) nomore than
a small amountwhich is given by the effective granularity
pK ,eff :

∣∣∣∣∣

N∑

i=1

ωi − 1

∣∣∣∣∣ ≤ pK ,eff (50)

The distribution of the sum of approximated weights is
shown in Fig. 5 as measured in our experiments, which
describes to what extent the normalization constraint is
fulfilled.

• Our notation is such that:

– N refers to the number of assets.
– K refers to the number of (regular) qubits.
– t refers to the maximum time provided to CQM to
retrieve the solution.

4.1 Solvers comparison on business KPIs

In this paragraph, we focus on the comparison of the results
based on the business KPIs, namely volatility and return of
the optimized portfolios. Figure1 reports volatility vs return
plots (zoomed version with better visibility on details in
Fig. 17 in the appendix). The classical optimization yields
a volatility and return value reported as a horizontal dashed
line and a vertical dashed line, respectively. The optimal solu-
tion lies at the intersection of the two lines. The dots represent
the results (samples) from the QUBO formulation. Given the
flexible nature of QUBO problems not setting constraints
explicitly and given our approach to satisfy the volatility
constraint, it is in principle possible to find results that do
not satisfy such constraint. These solutions are represented
in the plot with the dots lying above the horizontal dashed
line. From a business perspective, these are solutions that
must be discarded. We have however included them in the
plots to report a detailed and complete overview of the out-
come of the QUBOproblemswith a calibration of the QUBO

weights as thorough as possible (note that the calibration has
not been implemented when using the CQM solver). Among
the samples found via the different solvers, we were able to
find results fairly close to the global optimum found via a
classical optimization procedure.

To produce the bottom plots of Fig. 1 regarding CQM per-
formances, we have excluded the volatility constraint from
the counting of the number of constraints not satisfied, which
is shown via the dots’ label within the plot. This is due to the
fundamentally quartic nature of such constraint and the diffi-
culty in treating this termwithin aQUBO formulation, which
requires advanced procedures and cannot be reformulated as
a quadratic term without the use of additional variables.

In Fig. 2, we see a comparison of business KPIs for
the three solvers considered in this work, namely QBSolv,
Hybrid BQM, and Hybrid CQM. We see that hybrid solvers
perform better than QBSolv. While the average objective is
higher for Hybrid CQM, so is the average risk. This has to
be put into the perspective that behind the Hybrid BQM and
QBSolv solution there is the need to fine-tune the QUBO
weights, or Lagrange multipliers, which is handled automat-
ically in the Hybrid CQM. Looking at the Sharpe ratio, we
see that Hybrid BQM actually outperforms the other solvers.
However the objective was to maximize the returns while
satisfying the volatility constraint, rewritten as a risk min-
imization, and the Sharpe ratio has not been introduced as
an explicit term of the objective functions. It also needs to
be pointed out that the spread of the values is in the range
of 10th permille and thus very reduced, almost rendering the
approaches on par.

4.2 Investigation of capability to scale number
of assets

Scaling up the number of assets is crucial for industrial
applications, and thus, we investigate the capabilities of the
considered solvers for having 499 assets to choose from.

Figure 3 shows the comparison of results in terms of
returns and volatility of QBSolv and CQM approaches,
benchmarked against the classical solution, for 499 assets.
We were not able to solve this problem with BQM. Not only
is QBSolv likely to find infeasible solutions, but they are also
of lower quality with respect to CQM results: the CQM’s
feature to automatically handle constraints proves to be a
consistent approach to obtain feasible portfolios. At the same
time, the objective (i.e., the expected return) is also close to
the classical benchmark.

Figure 4 shows the distribution of expected return (objec-
tive), volatility, and the derived Sharpe ratios for multiple
runs of the optimizationwith both solvers. For each,we report
the distributions (histograms) for 499 assets and the median
as well as the best result (in terms of objective, volatility, and
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Fig. 2 We compare the distribution of business-relevant characteristics
of portfolios obtained with different solvers. The solid lines of each
color mark the classical result. The dotted lines mark the experiment

yielding the highest objectivewhile the volatility is below the set thresh-
old, i.e. the best permissible portfolio obtained with these parameters.
First row K = 10, second row K = 20

Sharpe ratio, respectively) of a feasible portfolio. The results
we find are twofold:

1. The best results that we find are close to the classical
solutions.

2. Hybrid CQM finds portfolio configurations with higher
objectives which still satisfy all the constraints.

As we scale up the number of assets, so does the num-
ber of variables in the QUBO and thus the complexity of the
problem. It therefore becomes more difficult for the solver to
satisfy the constraints, which also requires more specific tun-
ing of Lagrangemultipliers to still performwell. On the other
hand, we see that the CQM solver is able to find high-quality
solutions and achieves higher returns than QBSolv for the

Fig. 3 Comparison of risk vs return for a more complicated problem with 499 assets. This problem could only be solved with QBSolv (left) and
hybrid CQM (right)
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Fig. 4 Comparison of performance of QBSolv and Hybrid CQM with
499 assets. Performances are shown as the portfolios’ expected returns,
volatilities, and Sharpe Ratios, respectively. The dashed red lines mark

the classical result. The dotted lines mark the experiment yielding the
highest objective while the volatility is below the set threshold, i.e., the
best permissible portfolio obtained with these parameters

configurations we have examined. Although the volatilities
of these solutions are also higher, they are below the given
threshold.

Fromabusiness perspective, the best solutionwould be the
one that maximizes the expected return (while satisfying the
volatility constraint). Alternatively, even though not directly
optimized, the best portfoliowould be the one thatmaximizes
the Sharpe ratio (right panel). It appears as if QBSolv is
delivering a better-performing portfolio than Hybrid CQM.
However, all of these solutions violate at least one of the
constraints (cf. Fig. 13) and therefore are in reality not usable.
In fact, the solutions obtained with Hybrid CQM are closer
to the classical solutions than those coming from QBSolv in
general.

4.3 Solvers capabilities scaling with the number
of qubits

Given a fixed number of assets, employing more variables
allows to increase the granularity of the weights of the indi-
vidual assets, which should we expect to help satisfying the
constraint that the sum of investments should equal 1. This

behavior is confirmed by Fig. 5, where we show the distri-
butions of the sum of asset weights, i.e. the total amount of
investment, both for K = 10 and K = 20 variables used to
represent each asset. The peaks in the distribution for K = 20
suggest that, for multiple solutions, all the solvers are able
to find portfolios in which the total investment is closer to
the constraint target value 1. The statistics of the violation of
the normalization constraint for the three solvers and for two
granularities are reported in Table 1 along with our explicit
calculation of the expected error in Appendix C.

Furthermore, while all solvers are able to find solutions
having a relatively small deviation from the constraint target,
QBSolv outputs solutionswhere such deviation is in the order
of 10−4, BQM in the order of 10−5 and CQM, as the best
solver, in the order of 10−6.

Comparing with the values measured from the distribu-
tions in Fig. 5 and reported in Table 1, we see that only a
fraction of the error can be explained by the finite granular-
ity. In Table 1, we also report the skewness of the solution
distribution for the various methods for completeness. For
the results to be conclusive, presumably larger statistics than
available would be needed.

Fig. 5 Comparison of the distribution of portfolio weights using K = 10 and K = 20 variables for each asset, thus differing in the overall
granularity of potential investments
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Table 1 Comparison of the
violation of the normalization
constraint violation (deviation
of mean of sum of weights from
unity) and of the variance of the
error for all the three solvers and
for 10 and 20 binary variables,
respectively

1 − E(
∑

w) QBSolv Hybrid BQM Hybrid CQM Theory

K = 10 −4.89 · 10−5 −4.97 · 10−5 7.28 · 10−8 4.77 · 10−7

K = 20 −7.20 · 10−9 −1.06 · 10−7 3.72 · 10−8 4.55 · 10−13

MSE Variance

K = 10 3.67 · 10−9 1.42 · 10−9 3.46 · 10−13 7.97 · 10−8

K = 20 4.48 · 10−14 6.67 · 10−15 1.67 · 10−13 7.58 · 10−14

Skew

K = 10 −3.29 · 10−1 −1.84 · 10−1 2.21 · 10−2 5.03 · 10−3

K = 20 −5.36 2.01 −2.72 · 10−1 4.96 · 10−6

The results from an explicit calculation of the error expected due to finite granularity are reported as “Theory”

4.4 Observations

Building on the study of the effect of the number of variables
considered for each asset, Fig. 6 reports the results in terms
of the KPIs for K = 10 and K = 20. The first finding con-
sists of the CQM solver providing more peaked distributions
over multiple solutions when compared to other solvers, thus

suggesting consistent—and high quality as can be seen from
the measured values—results. Then, we show that QBSolv
and BQM do not report substantial differences in the distri-
butions when compared to one another, while slight disparity
is shown when comparing the distributions for K = 10 and
K = 20 for each solver.

Fig. 6 Comparison of objective (left column), volatility (middle col-
umn), and Sharpe ratios (right column) for solutions obtained with
QBSolv (top row), Hybrid BQM (middle row), and Hybrid CQM (bot-
tom row). Results for granularities K = 10 (blue) and K = 20 (orange)

are reported. In each plot, the median value of the sample of solutions
obtained is marked with a dashed line. The best acceptable portfolio
from the sample, i.e., the portfolio with the highest objective obeying
the volatility bound, is marked with a solid line
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5 Conclusions and outlook

In this work, we have analyzed the capabilities of current
quantum and hybrid solvers in solving the portfolio opti-
mization problem. The data used represents a production
environment and consists of 10 assets that can be divided
into 3 main classes: equity, fixed-income, and money mar-
ket. This is a particularly interesting problem both in terms
of common applicability in financial services as well as due
to its nonlinear nature, which makes the QUBO formulation
a particularly suitable model for the problem. We have thus
detailed both the classical mathematical formulation of the
portfolio optimization problem as well as the QUBO one.

We have explored the D-Wave’s libraries and tackled
the problem using the QBSolv, the Hybrid BQM, and the
Hybrid CQM solvers, while benchmarking the solutions
with one given by exact classical methods. We have found
that the CQM solver and its automating handling of multi-
ple optimization terms and constraints QUBO can lead to
higher-quality solutions. Our satisfactory results show that
the quantum computing approach is able to find solutions
that are close to the exact optimum in terms of return and
volatility.

These results pave the way for a broader applicability
of the QUBO model using larger data sets, where a dra-
matic increase in the number of assets can lead classical
solvers to yield only suboptimal solutions, while quantum
computing is set to aim for high-performing scaling capabil-
ities and may thus outperform classical solutions in much
more computationally-complex scenarios. Concretely, the

next steps will include increasing the number of assets and
the complexity of the problem.

Appendix A: Solution quality with respect
to various parameters

In this section, we examine how various model hyperparam-
eters influence the solution quality.

First of all, the discrete approximation of the continuous
weights can be expected to influence the solution quality. In
Fig. 6, we report our findings on two choices of the granu-
larity K . It appears that QBSolv does not profit a lot from
increased granularity as the spread of the solution histograms
is similar. However, the Sharpe ratio of the best usable port-
folio is better for K = 20, given the increased volatility for
coarser granularity.

The picture is similar for Hybrid BQM. The objectives
are almost the same. Surprisingly, though, the Sharpe ratios
are slightly better for lower granularity. Potentially, while
using a larger granularity should in principle yield a better
solution, it appears that the solver has trouble realizing this
improvement as the solution space increases.

For Hybrid CQM, the effect is more pronounced. In gen-
eral with increasing K the solution gets better. The quality
seems to saturate at K = 20. It seems an accidental finding
that K = 5 outperforms K = 10. It is clearly visible that
for K = 5 the spread of the solutions is very large as can be
seen in Fig. 7.

Fig. 7 The effect of varying the granularity of the weights approximation for CQM. In general, higher granularities improve sampling of the
solutions
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Appendix B: Iterations

It becomes clear from Fig. 8 that sampling the result for
50 iterations is not too far off a better result obtained with
5000 iterations at correspondingly higher costs. Figure9 also
shows this qualitatively. Therefore, it seems that a smaller
sampling is already sufficient.

Fig. 8 Comparison of solution quality after increasing the number of iterations for QBSolv. A slightly better solution can be found by sampling
more often. Histograms are scaled for comparability

Fig. 9 Comparing the solutions for QBSolv in risk vs. volatility for 50 (left) and 5000 (right) iterations, respectively. It can be seen qualitatively
that a lower sampling provides already a good representation of the solution space
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Fig. 10 Comparison of success
probability for each solver. Any
constraint violation will be
counted. While in QBSolv and
Hybrid BQM, 82% and 96% of
the runs were satisfying all the
constraints, respectively, this
was true for all runs with Hybrid
CQM

Appendix C: Constraint violation

In Section 2, we have presented the constraints on the prob-
lem solution. Those constraints are hard constraints for the
business context and a solution can only be used if they are
obeyed. Due to the nature of the solution strategy, however,
violation of some of the constraints is to be expected. This
is because the constraints are included in QUBO by impos-
ing an energy penalty, which does not guarantee it is obeyed.
Therefore, post-selection of the results is necessary. For the
application in a production context, it is relevant to under-
stand the success probability in the sense of which fraction
of the results do not violate any constraints.

We are evaluating the constraint violations found in our
experiments inFig. 10.With success probabilities between82
and 100%, the procedure is usable with a large enough sam-
ple size. The hybrid methods have a slightly higher success
probability than the simulation, which manifests the utility
of using the QPU in the calculation. Hybrid CQM (100%)

has a slight advantage over Hybrid BQM (94%). Here, we
have evaluated only runs with 10 assets and 10 qubits.

Including also higher number of assets and binary vari-
ables shows a much more diversified picture. In Fig. 11, we
make the rather unexpected observation that satisfying all
constraints becomes more difficult with more binary vari-
ables. For Hybrid CQM,we have examined evenmore values
for K in Fig. 12.

An interesting experiment is to scale the number of assets,
because we expect the quantum computer to be more perfor-
mant than the classical solver when we increase this number.
In Fig. 13, we see that QBSolv is not able to find any per-
missible solutions with 499 assets while Hybrid CQM still
always finds a permissible solution.

For the application of the procedure in a business con-
text, not all violations are equally problematic. The volatility
and normalization constraints can be slightly violated, for
instance, while regulatory constraints must not. We therefore

Fig. 11 Comparison of success
probability for different
numbers of binary variables for
each of the solvers. It is striking
to see that adding more
variables does not necessarily
lead to better performance.
Presumably, this is due to the
increase in search space, which
makes it more difficult for the
solver to find a solution
satisfying all constraints
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Fig. 12 The effect of the
granularity on constraint
violation for Hybrid CQM

Fig. 13 Examination of the
success probability for a large
number of assets (N = 499)
shows that Hybrid CQM can
still find solutions which satisfy
the constraints as opposed to
QBSolv

Fig. 14 Percentage of
experiments with constraint
violations per constraint type
and solver. Multi-min and
multi-max constraints are
violated at a much lower
frequency than normalization
and volatility constraint
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also examine which constraints are violated in each context
in Fig. 14.

Given the construction in Eq.16, the single-min and
single-max constraints are automatically and always satis-
fied and are therefore not displayed. This is not true for the
other constraints. We see violations on two levels. While
the multi-min and multi-max constraints are violated on the
10−3% level (except for QBSolv with many assets), normal-
ization and volatility constraints are violated above 20%.

The normalization constraint is affected by the granularity
as we have already detailed in Section 3.1. We report the
violation of the normalization constraint in our experiments
in Fig. 5.

It is obvious that the granularity affects the violation
of the normalization constraint. For the calculation of the
error stemming from the finite granularity of representing
the binary expansion of the weights, we are applying a tele-
scope procedure explained in Fig. 15.

In principle, every rational number between 0 and 1 is
equally probable for a specific weight, so the probability dis-
tribution is uniform. The error produced when representing
the continuous number by a discrete binary variable depends
in a linear fashion on its distance from the number. The
representation in Fig. 15 makes it directly obvious, that the
expected error cancels in every part of the telescope.

We are first calculating the expected value of the error ε

as depicted in Fig. 15. Each contribution to the expectation
value E[ε] from the first 2K −1 integrals cancel. We see that

E0 =
∫ pK

2

0
x dx +

∫ pK

pK
2

(x − pK ) dx

= 0

= Ei for i ≤ 2K − 1 . (C1)

The non-zero contribution to the expected value is

E2K = E[ε] =
∫ 1

1−pK
(x − (1− pK )) dx = p2K

2
∼ O(p2K ) .

(C2)

Note that this is the expected error for an individual uncon-
strained weight with possible values in [0, 1]. We obtain the
expected value of the sum of weights according to Eq.26. In
the case at hand in this study, it turns out that the expected
error of the normalization constraint is the same as the pre-
factor just turns out to be unity.

Concerning the standard deviation,we are determining the
second moment of our error distribution Var[ε] = E[ε2] −
E[ε]2. We are following the prescription outlined in Fig. 15.
The first integral of E[ε2]

E[ε2]0 =
∫ pK

2

0
x2 dx +

∫ pK

pK
2

(x − pK )2 dx = p3k
12

= E[ε2]i for i ≤ 2k − 1 . (C3)

Given the structure of the telescope, this is the contribution
to the variance for all the integrals up to the final one

E[ε2]2K =
∫ 1

1−pK
(x − (1 − pK ))2 dx = p3K

3
. (C4)

Summing 2K − 1 parts of Eqs.C3 and C4, we obtain

E[ε2] =
(

1

pK
− 1

)
p3K
12

+ p3K
3

= p2K
12

+ p3K
4

∼ O(p2K ) . (C5)

Fig. 15 This sketch explains the calculation of the error in the approxi-
mation of a rational number between 0 and 1 using binary variables. For
the purpose of the illustration, we are using K = 2 variables without
loss of generality. Potential representations (0, 0), (1, 0), (0, 1), (1, 1)
which represent the numbers 0, 1

4 , 1
2 , 3

4 (green dots). Each possible con-

tinuous rational number is represented by a discrete binary value that
has the smallest difference. The difference/error behaves as depicted
and grows larger close to unity. This is because in the construction of
Section 3.1 unity is not reached due to a trade-off for higher resolution
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Fig. 16 Comparison of experimental results of the sum of weights for
QBSolv and HybridBQM for 10 binary variables with a corresponding
beta distribution fit. In principle, a skewed beta distribution seems to

be suitable to generate the experimental data. To get a more conclusive
understanding, larger statistics would be necessary, presumably

Putting it all together, we obtain for the variance for the
error

Var[ε] = p2K
12

+ p3K
4

− p4K
4

∼ O(p2K ) . (C6)

For determining the skewness

Skew[ε] = E[ε3] − 3E[ε]Var[ε] − E[ε]3
(Var[ε])3/2 , (C7)

we calculate the third moment E[ε3]. Due to the anti-
symmetry of the error function, the first integrals vanishwhen
partitioning in the same way as when calculating the expec-
tation value

E[ε3]i =
∫ pK

2

0
x3 dx +

∫ pK

pK
2

(x − pK )3 dx=0 for i ≤2K − 1 .

(C8)

The non-vanishing contribution comes from

E[ε3]2K =
∫ 1

1−pK
(x − (1 − pK ))3 dx = p4K

4
. (C9)

Inserting the results of Eqs.C2, C6, and C9 into Eq.C7, one
gets

Skew[ε] =
p4K
4 − 3

p2K
2 (

p2K
12 + p3K

4 − p4K
4 ) − (

p2K
2 )3

(
p2K
12 + p3K

4 − p4K
4 )

3
2

=

= 3
√
3 (pK − 3p2K + 2p3K ) · (1+ 3pK − 3p2K )−

3
2

= 3
√
3 pK + O(p2K ) ∼ O(pK ). (C10)

As reflected in the data of Table 1, the higher moments of
theory and experiments do not match. In Fig. 16, we show
howa skewed beta distribution coincideswith the experimen-
tal data. For the results to be conclusive, presumably larger
statistics would be needed.

All in all, the considerations in this section show good
usability of the approach for a large enough sampling, which
is reflected already in Fig. 6, where the best usable portfolio,
which is marked with a solid line is chosen such that no
constraints are violated.

Appendix D: Zoomed plots
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Fig. 17 Return is plotted
against volatility like in Fig. 1
but zoomed in around the center
of the solutions for better
visibility. It can be seen very
clearly that the variance of the
solutions is greatly reduced by
the use of a QPU. In particular,
for Hybrid CQM, the solutions
become more clustered around
the volatility threshold line and
the shape is more circular than
elongated, which gives a hint at
the different way the quantum
algorithm is used
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