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Abstract

RF magnetic properties of conductive plane magnetic sheets are analyzed to provide a
basis for applications of magnetic alloy tapes to RF accelerating cavities. This paper
reports on the effects of eddy current on the magnetic properties of the sheets when the
frequency of the applied magnetic field increases up to RF frequencies. A nonuniform
magnetic field distribution, formed within the sheet by eddy currents, is obtained by
solving a field equation based on Maxwell’s equations, which include conductivity and
complex permeability. The resulting distribution is used to derive expressions for RF
magnetic properties of the sheet, such as effective permeability, magnetic power loss,
and Q-value.
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1. Introduction and Survey

1.1 Background

High energies and high beam intensities continue to be major goals in accelerator
science. The drive for higher energies comes principally from high-energy particle
physics, where the Large Hadron Collider (LHC) is leading the field. A complementary
drive is toward higher beam power or luminosity, for example, spallation neutron
source (SNS), Japan Proton Accelerator Research Complex (J-PARC), SuperKEKB,
and the SuperB Factory to be built at the University of Rome. In novel proton
accelerators, such as J-PARC and SNS, high-intensity proton beams and a variety of
intense secondary particle beams are required to pursue frontier science in particle and
nuclear physics, material science, life science, nuclear technology, and so on.

In proton synchrotrons, an effective method for meeting the increasing demand for
higher beam intensity is to increase the repetition rate, which essentially requires a
higher RF accelerating voltage. Since the space allocated for RF accelerating cavities is
usually limited, this measure is only possible if there is a cavity that can produce a much
higher accelerating gradient than that obtained with a conventional RF cavity. The
widely used ferrite-loaded RF cavities can only attain an accelerating gradient of
approximately 10 [kV/m]. This limitation comes mainly from an anomalous RF-loss
mechanism termed high-loss effect, which is observed at high RF magnetic fields[1].
Another factor limiting the accelerating gradient is a cooling problem due to the rather
low Curie temperature (100 to 200°C) of ferrites.

1.2 Birth of MA Cavity

In recent years, the development of highly permeable, soft magnetic alloys (MA) has
been underway. The first attempt to apply MA materials to an accelerating cavity was
made in CEA-LNS Saclay in the late 1980s to early 1990s. A test cavity loaded with
cobalt-based amorphous alloy was built for MIMAS, the storage booster for the
SATURNE II synchrotron [2][3]. The reason for building this cavity was to replace the
two existing ferrite-loaded cavities with a single unit that affords the same performance
in order to free up part of the ring for other instrumentation [3]. Although the work on
this project slowed, the development of the cavity was continued for the Proton-Ion
Medical Machine Study (PIMMS) at the European Organization for Nuclear Research
(CERN) and for TERA, the Italian proton and light-ion synchrotron project for cancer
therapy [4][5][6].

In Japan, the development of a MA-loaded cavity was started in the mid-1990s.
Early in the development of RF cavities for the J-PARC, which was then called the



Japan Hadron Project (JHP) and later the Japan Hadron Facility (JHF), the properties of
numerous magnetic materials, including ferrites and MAs, were measured[7][8]. Shunt
resistance, which describes the accelerating gradient of the cavity, is proportional to a
u,Qf-product of the loaded magnetic core, where u, is the permeability in parallel
circuit representation; Q, the quality factor; and f, the frequency. During the course of
material surveying and research, it was found that the field dependence of the
wu,Qf-product (hereafter, 1,0f-value) of MA materials was drastically different from
that of ferrites[9][10][11][12]. Although MAs exhibited lower x,Qf-values than ferrites
in low RF magnetic fields, even when the RF magnetic field was increased to levels
well over 0.1[T], the u,Qf-value remained at almost the same level as that in the low
magnetic fields. This is in striking contrast to the behavior of ferrite u,Qf-values, which
decrease rapidly as the RF magnetic field is increased and above around 0.01[T] fall to
values unsuitable for cavity applications. This remarkable feature of MA materials
suggested the possibility of realizing a new high-accelerating-gradient cavity. Extensive
measurements confirmed that amongst the MA materials that had been measured, an
iron-rich nanocrystalline magnetic alloy had the highest x,0f-value and was best suited
for RF cavity applications [13][14]. In this paper, we term this material iron-rich
nanocrystalline magnetic alloy (hereafter, IRNC). IRNC is also called “Finemet”, which
is a registered trade name owned by Hitachi Metals, Ltd.

1.3 IRNC and MAs

Although Fe-based amorphous alloys can produce a large magnetic flux density, they
have been used for low-frequency applications only due to their inferior soft magnetic
properties in the high frequency range as compared to those of Co-based amorphous
alloys. After extensive research and development, a new class of Fe-based soft magnetic
alloys with nanoscale grains, IRNC, was developed by crystallization from amorphous
precursors [15][16][17]. IRNC is prepared by annealing amorphous alloys consisting of
Fe, Si, B, and small amounts of Cu and Nb under substantial crystallization. The
structure comprises randomly oriented ultrafine crystals in the order of 10 [nm] and
even finer crystal grains distributed in the remaining amorphous phase. IRNC has a very
high saturation magnetic flux density (over 1.3 [T]), low magnetostriction, as well as
superior soft magnetic properties. The mechanism whereby IRNC exhibits these
excellent soft magnetic properties is not fully understood yet. However, it is suggested
that this may be attributed to the decrease in local magnetic anisotropy due to reduced
grain size and a decrease in magnetostriction as the result of cancellation between the
crystals and the amorphous phase[15].

Most MA materials have moderate conductivity, which limits their usefulness in



high-frequency applications because of induced eddy currents. Power loss caused by
eddy currents may exceed an acceptable level unless a magnetic object is made by
laminating a very thin plate insulated electrically from its neighbors or by winding a
very thin insulated tape. In accelerating cavity applications, an insulator-coated
magnetic alloy tape of approximately 20 [wm] in thickness is wound into a toroidal core
with a diameter of several tens of centimeters and heat-treated in an oven. The shunt
resistance of an RF cavity is proportional to x,0f x In[O.D./L.D.], where O.D. and 1.D.
denote the outer and inner diameters, respectively. This means that a larger O.D./L.D.
makes shunt resistance higher and consequently leads to a higher accelerating gradient.
Since MA cores are formed by winding, it is possible to fabricate large cores, with an
O.D. greater than 1 [m]. This is a practical advantage over ferrites, whose ceramic
nature makes them wunsuitable for forming large cores because the cores are

manufactured by pressing, with the size of the press being a limiting factor.

1.4 Characteristics of MAs in Cavity Applications

High-power measurements revealed that when the intensity of the RF field was varied
over a wide range, IRNCs maintained a fairly high u,Qf-value (=5 [k€2/m]) up to a
magnetic field intensity of 0.2 [T], whereas the u,Qf-value of ferrites was greatly
reduced even at much lower field intensities [8][9][14]. It should be emphasized that 0.2
[T] is not the ultimate magnetic field that IRNCs can hold but the maximum field that
could be attained by using the then available RF measurement system, which had
limited power capacity. This indicated that IRNCs have the potential to produce an
accelerating gradient much higher than can be attained with ferrites. In addition, the
IRNCs’ operations were quite stable even at very high magnetic fields because of their
high heat resistance, based on a high Curie temperature of about 570°C.

Two distinctive features of IRNC material as seen from cavity applications are a
high relative permeability and a low Q-value. High relative permeability compensates
for a decreased u,Qf-value due to a low Q-value and thereby helps to keep the cavity
shunt resistance fairly high. Another advantage of the very high permeability of MAs is
that accelerating structures can be much more compact than those loaded with ferrites.
However, an applicable frequency range of MAs is limited due to eddy currents that
make the relative permeability start to drop at a relatively low RF. A low Q-value of the
core causes a broad cavity resonance, thereby making it possible for the cavity to
operate over a wide frequency range without any cavity tuning system. The broad
bandwidth of a low-Q cavity allows multi-harmonic RF operation, in which bunch
properties can be manipulated, for instance, to reduce space-charge effects at injection,
to match bunch shape and emittance between cascaded machines, and to avoid some



types of beam instabilities. A broad-bandwidth cavity is also suited to producing a
pulsed sinusoid for barrier-bucket manipulations. In addition, a low-Q cavity has little
memory of the beam that passed through it and, as a result, barely excites severe
coupled-bunch instabilities. However, since the impedance of a low-Q cavity extends
over a wide frequency range, the voltages at several revolution harmonics might be
induced in the cavity and added to the accelerating voltage. To avoid the distortion of
the accelerating voltage, which is much more serious at higher beam-current operation,
the induced voltages must be compensated for by means of some kind of feedforward or
feedback system.

The Q-value of the core can be increased by introducing a radial gap and controlled
by a factor of more than 10 by changing the gap width. However, the u,QOf-value or
shunt resistance does not change much because the radial gap also reduces the effective
permeability by an amount that almost cancels out the increase in Q-value. To
summarize, the radial gap increases the effective Q-value while the shunt resistance R
remains almost unchanged, which reduces R/Q. A low R/Q is beneficial with respect to
beam instabilities and transient beam loading.

Regarding MA materials other than IRNC, tests of newly developed cobalt-based
amorphous cores have been reported[18][19][20][21]. The permeability of the core was
improved by adjusting the annealing temperature and by applying a magnetic field
during heat treatment. The u,Qf-value of the test cores with a 300 [mm] O.D. and 150
[mm] I.D. was found to be approximately 1.6—1.9 times as high as that of IRNC[19]. A
prototype RF cavity loaded with 12 cores of 550 [mm] O.D. and 310 [mm] I.D. was
installed and beam-tested in the Heavy Ion Medical Accelerator in Chiba (HIMAC) at
the National Institute of Radiological Sciences (NIRS). In the beam test, the cavity
showed good acceleration performances [21]. However, the procedure for
manufacturing large size cores for RF cavity applications has not yet been established,
and consequently, the shunt resistance of the core still depends significantly on the core
size and annealing/manufacturing parameters[19][20].

Recently, to increase the accelerating voltage of J-PARC RF cavities, a new class of
IRNC core has been developed, with a wu,Qf-value approximately twice that of
conventional IRNC cores [22]. The increase in u,Qf-value was achieved by introducing
a new annealing method in which a magnetic field is applied during the crystallization
process and by reducing the tape thickness from 18 [um]to 13 [um] [23].

1.5 Applications of MAs to RF Cavities

RF cavities loaded with MA cores (mostly IRNC cores) worked or have been working
as RF accelerating cavities or as special purpose cavities at numerous institutes
worldwide. The following is a brief survey of MA-loaded cavity applications.



(a) Cavities for High-Energy Physics

The first application of IRNC to RF cavities was made in collaboration between the
High Energy Accelerator Research Organization (KEK) and Brookhaven National
Laboratory (BNL). An MA-loaded cavity designed and built in KEK was successfully
beam-tested in the alternating gradient synchrotron (AGS) at BNL in 1998. It was used
as a barrier-bucket cavity to maximize the longitudinal bunching factor in a bucket-
to-bucket beam transfer [24][25][26][27]. In 2000, a second harmonic RF system
equipped with an MA-loaded cavity was installed in the KEK 12 [GeV] proton
synchrotron (KEK-PS) to alleviate the space charge effects during the beam injection
period [28][29]. Subsequently, in 2003, one of the ferrite-loaded cavities for the
KEK-PS booster was replaced with a nonresonant MA-loaded cavity [30][31]. The new
accelerating system, together with a new COD correction system, contributed to
increasing the booster’s average beam intensity by up to 40 [%].

At CERN, two MA-loaded cavities were built for a low-energy ion ring (LEIR) in
collaboration with KEK. They cover a wide frequency range (0.35-5.0[MHz]) without
cavity tuning and allow multiharmonic operation[32][33]. Also at CERN, as part of the
LHC injector upgrade program, an increase in the beam energy transferred from the
proton synchrotron booster (PSB) to the proton synchrotron (PS) has been investigated
as a possible upgrade scenario [34]. An RF cavity loaded with the abovementioned
IRNC with an improved u,Qf-value is being developed in order to increase the total
accelerating voltage obtainable within the space allotted to the RF cavities [35]. In
Fermilab, a 7.5 [MHz] single-gap RF cavity with five MA cores was built and tested as
part of the Proton Driver Design Study [36]. The MA-loaded cavity was chosen to
achieve the highest possible accelerating gradient and to reduce beam-loading effects. In
addition, at Fermilab, a barrier RF system with an MA-loaded cavity was installed in
the main injector to increase the luminosity of the Tevatron, which was shut down in
September 2011 [37].

One of the fruitful applications of MA is an induction-accelerating cell, which was
built in the KEK-PS to demonstrate the feasibility of realizing an induction synchrotron.
The induction-accelerating system successfully captured an injected 500 [MeV] single
proton-bunch by a barrier bucket, and succeeded in accelerating it up to 6 [GeV] [38]
[39][40][41][42].

(b) Cavities for Medical-Use Synchrotrons

In the field of particle-beam therapy, MA-loaded cavities have been gaining a firm hold,
because their suitability for untuned wideband operation is particularly favorable for
medical-use synchrotrons characterized by a large RF swing between the injection
energy and the top energy. In 1999, an MA-loaded cavity was installed in the HIMAC



at NIRS to accelerate carbon or heavier ions through a large frequency change of 1-8
[MHz] with an accelerating gradient of 50 [kV/m][43][44] [45].

Stimulated by the remarkable results at HIMAC, medical-use synchrotrons equipped
with MA-loaded cavities have been built and are operating at a large number of
institutes, including the Proton Medical Research Center (PMRC) at the University of
Tsukuba [46][47], the Wakasa-wan Energy Research Center (WERC)[48][49], and the
M. D. Anderson Cancer Center (MDACC) at University of Texas [50].

(¢) Cavities for FFAGs

MA-loaded cavities have also been successfully applied to fixed-field alternating
gradient accelerators (FFAG). In KEK, the 1 [MeV] proof-of-principle (POP) FFAG
came into operation in 2000, and in 2006, the larger 150 [MeV] FFAG, a prototype for
proton therapy and neutron production, first accelerated protons up to 100 [MeV] at a
repetition rate of 100 [Hz] [51][52][53][54]. Subsequently, it was relocated to the
Center for Accelerator and Beam Applied Science at Kyushu University to promote
both research and educational activities at the university [55]. Beam commissioning and
pilot research in nuclear, medical, and life sciences are being carried out from 2011 to
2013 [56].

Another 150 [MeV] FFAG was built at the Kyoto University Research Reactor
Institute (KURRI) to test accelerator-driven subcritical reactor (ADSR) operation
[571[58]. The whole machine is a cascade of three FFAG rings, the beam of which was
successfully accelerated up to 100 [MeV] in 2008 [59]. Also at KURRI, a project
aiming at medical applications of FFAG accelerators is ongoing: an FFAG storage ring
with energy/emittance recovery internal target (ERIT) has been constructed, which is
intended to serve as an intense accelerator-based neutron source for boron neutron-
capture therapy (BNCT)[60][61][62][63].

In France, a variable-energy (70-180 [MeV]) spiral-lattice FFAG equipped with two
MA cavities was designed for a project, Recherche en ACCélérateurs et Applications
Meédicales (RACCAM) [64][65][66]. One aim of RACCAM is to show the feasibility of
the application of FFAG beam to hadron therapy. FFAGs are also of interest for muon
acceleration: at the Research Center for Nuclear Physics (RCNP) of Osaka University, a
Phase Rotated Intense Slow Muon beam (PRISM) has been constructed, which aims to
produce a high-quality and high-intensity muon beam by means of a phase rotating
technique [67][68][69] [70].

(d) Others

The first application of IRNC in the field of accelerators was not to an RF cavity but to
a longitudinal impedance tuner, which was planned at KEK in 1996 to mitigate the



longitudinal space-charge effects in the KEK-PS [71][72]. The tuner was designed to
compensate for the longitudinal space-charge impedance (negative inductance) and
consisted of three units, each having four MA cores with 340 [mm] O.D. and 140 [mm)]
[.D. The beam test performed in 1997 showed that the tuner effectively reduced the
space-charge impedance and proved that IRNC has a very high tolerance to radiation
[73][74].

A very short length (11.6[cm]) beam chopper using three MA cores was developed
for HIMAC and installed between the ion sources and the RFQ [75][76]. It operated
stably at a chopping voltage of 5[kV] with a rise and fall time of 10[ns]. At the Center
for Nuclear Study (CNS) at the University of Tokyo, an RF buncher using MA
cut-cores was installed in the beam transport line of an ECR ion source HiECR
[771[78][79]. The buncher operates in a wide frequency range (18—45[MHz]) without
tuning and successfully formed bunched beams of H', O°", and Ar*".

1.6 Cavities for J-PARC
1.6.1 Progress of J-PARC

As mentioned in Section 1.2, the MA (IRNC)-loaded cavity was originally designed in
the mid-1990s in collaboration between KEK and the Institute for Nuclear Study (INS)
at the University of Tokyo* to meet the challenging requirements for J-PARC RF
cavities. Since then, it has been developed in INS and KEK and later in the Japan
Atomic Energy Agency (JAEA). The J-PARC was a large-scale project and accordingly
it took a long time before the design was finalized and the project was officially
approved. During this period, besides developing their own cavities for J-PARC, the
J-PARC (JHF) group energetically led activities in applying MA to other machines.
Because of their efforts, a number of MA-loaded cavities were developed and worked
well in various machines. These cavities have demonstrated that both high accelerating
gradient and large frequency swing are practically achievable.

The J-PARC rings are composed of a 3 [GeV] rapid cycling synchrotron (RCS) and
a 50[GeV] synchrotron of the main ring (MR), now operating at a phase-I energy of 30
[GeV]. Beam commissioning of the RCS started in October 2007. The first 3 [GeV]
beam from the RCS was injected into the MR in May 2008, and user runs of the RCS
started in December 2008 for the Materials and Life Science Facility (MLF). The MR
proton beam reached the initial goal of 30[GeV] in December 2008. In January 2009,
the 30[GeV] proton beam was successfully extracted from the MR and then transferred
to the Hadron experimental hall. The first neutrino beam production was confirmed in
April 2009 by observing the muons produced by the fast-extracted proton beam. In
February 2010, the Tokai-to-Kamioka (T2K) collaboration detected the first neutrino



event at Super-Kamiokande, which is located 295 [km] away from Tokai. In the RCS,
the beam intensity has been steadily increased and in November 2010 the beam power
delivered to MLF went up to 200 [kW]. In the MR, the beam power to T2K beam line
reached 145 [kW] in March 2011, shortly before the northeastern region of Japan was
struck by a gigantic earthquake (officially called the Great Eastern Japan Earthquake) in
which the J-PARC facility experienced considerable damage.

*In 1997, the High Energy Accelerator Research Organization (present KEK) was established
by merging three laboratories: National Laboratory for High Energy Physics (old KEK) and

two related institutions of the University of Tokyo, INS, and Meson Science Laboratory.

1.6.2 Build-up of Cavities

J-PARC was the first accelerator to use MA cavities on a large scale. Beam tests of the
RCS started with 10 RF accelerating cavities, each loaded with 18 noncut MA cores.
The cavity is equipped with a low-loss inductor and a vacuum capacitor, with both
connected in parallel to the cavity in order to adjust its Q-value and resonance
frequency [80][81][82]. To increase the beam-capture efficiency, a second-harmonic RF
voltage is added to the fundamental one in the early stages of acceleration [83].
Application of the second harmonic voltage maximizes the longitudinal bunching factor
and thereby alleviates the space-charge effect that causes capture efficiency to
deteriorate. An eleventh RF accelerating cavity was added in December 2008, and since
then, the RF system has been working very well. The beam energy of the linac will be
upgraded in the fiscal year 2013 from a provisional value of 181 [MeV] to the design
value of 400 [MeV]. At about that time, a twelfth RF cavity will be installed to provide
a total accelerating voltage sufficient to accept the upgraded beam and to accelerate it
up to 3 [GeV] [84].
Beam tests of the MR started with four RF accelerating cavities, each loaded with
18 radial-cut MA cores. A fifth RF accelerating cavity was added in August 2009 [84].
To reduce the space-charge effects that hamper increases in beam current, the first
second-harmonic RF cavity was installed in August 2010, and shortly thereafter, a
preliminary beam study using the second-harmonic cavity was performed [85]. By
changing the tuning capacitors, the MR cavity is easily converted from the accelerating
cavity to the second-harmonic cavity or vice versa. In October 2011, two more RF
cavities were installed, and in December 2011, the first beam test after the earthquake
began. At present, eight RF cavities are operational in the MR and the ninth (and last)
cavity will be added during the 2012 summer shutdown [86].
In the near future, to achieve the target beam-power of 750 [kW], the MR repetition
cycle will be reduced from the present 2.56 [s] to 1.28 [s] [87]. The RF voltage required



for this high repetition rate is much higher than the present total RF voltage. Since space
for cavities is limited, the accelerating gradient of the cavity must be increased
considerably to obtain the necessary RF voltage. As mentioned in Section 1.4, a new
class of IRNC core has been developed, with a much higher u,Qf-value than the present
core. Production of real-size cores (80 [cm] in diameter) has been started after
completion of various tests of the manufacturing system. The system is mainly
composed of a large oven for annealing the core and a larger magnet that can hold the
whole oven between its pole pieces and generate a high magnetic field with acceptable
uniformity [88]. Newly designed RF cavities loaded with these cores are expected to
attain the required RF voltage within the capacity of the present RF power amplifiers
and to fit in the present space for cavities [88].

1.7 Outline of the Paper

The purpose of this paper is to give a detailed description of the RF magnetic properties
of plane magnetic sheets made of lossy materials, such as soft magnetic alloys. Finite
resistivity or nonzero conductivity of a material causes a flow of eddy current within the
sheet, which plays an important role in determining the magnetic properties of the sheet.
Throughout the analyses, complex permeability and nonzero conductivity are used so
that the obtained results can be applied to any magnetic sheet having any value of tand
and conductivity.

The contents of the paper are organized into eight chapters. Chapter 2 reviews some
fundamental equations of basic physical quantities, such as stored magnetic energy and
magnetic power loss. From these equations, we obtain various expressions for magnetic
properties of the sheet. We introduce two definitions of permeability—the intrinsic
permeability and the effective permeability—which form the basic elements of the
analyses in this paper.

In Chapter 3, approximate expressions for the AC magnetic properties of the sheet
are derived on the assumption that the frequency of the applied magnetic field is much
lower than RF frequencies. The derived expressions are useful for predicting the
behavior of magnetic sheets when used at frequencies from very low to approximately
100 [kHz]. These expressions can also be used as the references to which the accurate
expressions derived in the following chapters must reduce when the frequency is
assumed to be much lower than RF frequencies.

Chapter 4 discusses the distribution of the magnetic field in the interior of the sheet,
which is essentially formed under the influence of eddy currents. We obtain the field
distribution by solving a field equation that is based on Maxwell’s equations and
governs the magnetic field inside the sheet. We derive an expression of skin depth for
the magnetic sheet, which is applicable to all magnetic sheets because it includes tand



and conductivity. We give some numerical examples of the field distribution to show
the way it changes as a function of frequency, material constants, and thickness of the
sheet.

Chapter 5 briefly surveys the frequency characteristics of the intrinsic permeability,
which is inherent in magnetization mechanisms and is therefore a material constant. The
main sources of dispersion in the frequency response of intrinsic permeability are the
relaxation and resonance absorption associated with magnetization processes. We
describe two dispersion sources in some detail, namely, the relaxation in orientation of
magnetic moments and the resonance of domain wall motion. Both effects usually
appear in a relatively low RF range in which most proton-ring RF cavities operate.

In Chapter 6, we derive the effective permeability that characterizes the macroscopic
magnetic properties of the sheet. It represents the relationship between the average
magnetic flux density within the sheet and the applied magnetic field strength. To
obtain the complex effective permeability, the real and imaginary parts of the magnetic
field are separately integrated and averaged over the cross section of the sheet. The
effective permeability of the sheet is determined mainly by eddy current, and hence, it
depends on the frequency and sheet thickness as well as the material constants.

In Chapter 7, we derive expressions for the RF magnetic properties of the sheet
using the magnetic field distribution obtained in Chapter4 and its integrations given in
Chapter 6. Here, we obtain the expressions for the stored magnetic energy, overall
magnetic power loss, eddy-current loss, hysteresis loss, and Q-value of the sheet. We
give some numerical examples of these magnetic properties to show how they depend
on the material constants and thickness and how they change as the frequency is varied
over a wide range.

Appendix A takes a fundamental approach to the subject of stored energy and
derives the equation for the stored magnetic energy of a magnetic object when it is
placed in a magnetic field. Appendix B expresses the magnetic power loss in terms of
field quantities and verifies that the expression agrees precisely with the commonly
used power loss defined by the product of voltage and current. Appendix C discusses
the distribution of magnetic field within a solid magnetic cylinder made of a material

having complex permeability and nonzero conductivity.
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2. Basic Physical Quantities

In this chapter, we review some fundamental equations of basic physical quantities,
such as stored magnetic energy and magnetic power loss. From these equations, we
obtain expressions for various properties of magnetic materials under an alternating

magnetic field.

2.1 Stored Magnetic Energy

Stored magnetic energy and magnetic power loss are important basic physical quantities
of magnetic sheets. The quality factor, usually referred to as the Q-value, is another
important quantity and is based on these two quantities. In this section, we review the
expression for the stored energy of a magnetic object when it is placed in a magnetic
field.

First, let H and B denote the magnetic field intensity and magnetic flux density in a
medium, respectively. Then, the magnetic energy stored in a volume V' is expressed (as
derived in Appendix A) by

W, = IV dv JH-dB, (2.1)

where the symbol “-” represents the scalar product of the two vectors H and B and
[H-dB represents the local density of the stored magnetic energy. If we assume that the
relationship of B to H is linear and that the medium is isotropic, we can write B=xH,
where u is the permeability and is a constant if the medium is homogeneous. The
energy given in eq. (2.1) then reduces (as shown in Appendix A) to

1
W, = —J H- B dv. (2.2)
2 Jv

Let us assume that a magnetic field has been established in a medium that is
isotropic and homogeneous. A magnetic object is now introduced into the field, while
the source of the field is maintained strictly constant. The energy stored in the object
can be obtained from the change in energy of the system before and after the
introduction of the object. If the magnetic properties of the medium and the object can
be characterized by the permeability u, the magnetic energy stored in the object is given
by (Appendix A)

W, = lj ( —ﬂ) H, B, dv, (2.3)
14 My
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where V is the volume occupied by the magnetic object; u, the permeability of the
medium outside the object; u», the permeability of the object; Hj, the magnetic field
intensity in the medium before introducing the object; and B,, the magnetic flux density
within the object. If the configuration of the field and object is such that the magnetic
polarization in the object does not affect the field in the medium, the field intensity in
the medium is independent of the presence or absence of the object. In this case, H; in
eq.(2.3) is also the field intensity in the medium after the object is introduced. If the
medium is not magnetic or y; is much lower than u,, such that the condition w/u, <1 is
satisfied, the second term in parentheses in eq.(2.3) can be ignored, and thus, W,, can be

written as

1
W, = EJ H, B, dv. (2.4)
1%

The condition u/u, <<1 is satisfied for almost all ordinary proton-ring RF cavities in
which magnetic cores are placed in a nonmagnetic medium, such as air or water.
Therefore, we conclude that eq.(2.4) can be used to calculate the stored magnetic energy
of the cores.

If H and B change sinusoidally, they can be represented by
H(r,t) = H(r) e’ and  B(r,t) = B(r) '™, (2.5)

where o is the angular frequency of the field and r is the generalized position. The
scalar product of H and B can be obtained from the ordinary product of H* (the
complex conjugate of H) and B, instead of performing a vector operation. Expressing
variables as a complex conjugate enables a much easier calculation because the time
factors of H* and B, e and ¢’ respectively, cancel each other out. We can easily
show that the scalar product of H and B is equal to the real part of the ordinary product
of H* and B:

H-B = Re[H'B]. (2.6)

Substituting eq.(2.6) into eq.(2.4), the average density of the magnetic energy stored in
the object, IV, becomes

1 x
W = — | Re|H,B, |dv, (2.7)
2V j v [, ]
where V' is the volume of the magnetic object; H;,the magnetic field intensity in the

medium before introducing the object; and B,, the magnetic flux density within the
object.
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2.2 General Consideration of Magnetic Power Loss

In this section, we review the energy conservation law, from which we can obtain the
magnetic power loss expressed in terms of field quantities. Consider an arbitrary region
in which there exists an electric field E with electric flux density D and conducting
current density J, and a magnetic field H with magnetic flux density B. The question is
“How can the energy relationship be represented inside a region whose volume and
surface area are V and S, respectively?”

By applying some mathematical operations to Maxwell’s equations in differential
form, the following expression is derived (Appendix B):

95 (ExH)-da +J E-Jdv = —j E-a—D+H-a—B dv. (2.8)
s % v ot ot

The result is essentially a power balance equation known as Poynting’s theorem, after J.
H. Poynting who first derived this equation. The customary interpretation of eq. (2.8) is
as follows. The right-hand side represents the rate of decrease in electric and magnetic
energy stored within the volume V. From the conservation law of energy, the loss of
available stored energy must be accounted for by the sum of the energy loss within the
volume and the outward energy flow across the volume’s boundary surface S. Since the
second term of the left-hand side is the power dissipated in Joule heat within the volume,
the first term must be the power flow out of the closed surface S. The vector S=ExH is
termed the Poynting vector, which represents the magnitude of energy-flux flow [W/m’]
and direction of the energy flow.

Equation (2.8) is the general expression for all cases, because it is derived from
Maxwell’s equations without any assumptions. This theorem is one of the most
fundamental and useful relationships of electromagnetic theory. In eq. (2.8),
H-0B/0t is the only term concerned with magnetic power loss, and therefore, it must
represent the overall magnetic power loss including all types of power loss originating

from all mechanisms.

2.3 Overall Magnetic Power Loss

It follows from the Poynting’s theorem given in eq.(2.8) that the average density of
magnetic power loss in the volume, V, is given by

1 JB
P = — H.-— dv. 2.9
-8 Vv JV ot Y (2.9)

As mentioned above, this is the expression of magnetic power loss that includes all
types of losses, such as hysteresis loss, eddy-current loss, magnetic after-effect loss, and
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so on. Hence, by using eq.(2.9), we can, in principle, obtain the overall magnetic power
loss, provided the distribution of H and B that reflects all of these losses is known and
manageable. However, in practice, it is only when the magnetic field distribution is very
simple that we can express the overall magnetic power loss analytically. Using the
complex conjugate representation given in eq. (2.6), we can rewrite eq.(2.9) as

_1 j Re[H _} dv. (2.10)

A commonly used measure of power loss is the rate at which energy is expended,
that is, the time-averaged power loss, which is expressed in watts or joules per second.
To calculate the time-averaged power loss, the integration in time over a period T is
necessary, in addition to integration in space. If H and B are steady-state sinusoidal
time-varying functions, the time integral over 7 simply produces a factor of 7/2. Then,
dividing the result of integration by 7, we obtain P,, the time-averaged overall power

_ _j { *aB}dv @.11)

Magnetic energy dissipation comes from the irreversibility inherent in magnetizing

loss per unit volume given by

mechanisms. It shows up at the macroscopic scale through the area enclosed by a B-H
or hysteresis loop. From eq. (2.1), the average density of magnetic energy loss in
volume ¥ in one hysteresis cycle is

P, .= ij dv@H-dB
’ VJv
1 M
= — | dv(QQ Re|H dB |. 2.12
VJV ¢ I: ] ( )

Equation (2.12) is another expression of magnetic energy loss, and it also embraces all
types of magnetic losses, since it is derived from the general stored magnetic energy
expression (eq. (2.1)). If H and B are periodic functions of time with a period 7, eq.

- _J dv_[ Re{ *aB} . (2.13)

Performing the time integral in eq. (2.13), we obtain

(2.12) can be written as
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T «0B
P,. = — | RelH 9B dv. (2.14)
’ 2V Jv ot
Comparing eq.(2.14) with eq.(2.11), we can see a natural consequence that the magnetic
energy loss per cycle (eq.(2.14) is equivalent to the magnetic energy loss per second (eq.
(2.11) multiplied by the period 7.

The power loss of a magnetic object placed in a magnetic field can be obtained in
the same manner as used in Section 2.1. From eq.(2.11), the time-averaged overall
magnetic loss per unit volume, P,, is

1

« 0B
P = — | Re|lH —2|dv, 2.15
" 2V Jv e|: ! at} Y ( )

where H; is the magnetic field intensity in the medium before introducing the object
and B, is the magnetic flux density within the object. Likewise, the overall magnetic
loss per cycle per unit volume is given (from eq.(2.14)) by

T « 0B
P .= — | Re|lH —2|dv. 2.16
"2V .[v [ "ot } (210

As stated before (below eq.(2.3)), if magnetic polarization of the object does not affect
the field in the medium, H; does not change even if the object is introduced.

In this section, two conventions are presented to express the magnetic power loss,
namely, the energy loss per second (7,) and the energy loss per cycle (P,,.). Materials
scientists usually use the energy loss per cycle because it is suited to basic materials
research. On the other hand, engineers or users of magnetic materials prefer the energy
loss per second because it is more convenient in practical use. As mentioned above, P,
= P,T (=P,/f), where f is the frequency of the field. In this paper, we use P, as a

measure of magnetic power loss

2.4 Power Loss due to Eddy Current
2.4.1 Effects of Eddy Current

When the magnetic flux in a conductor changes with time, an electric field is generated
in the plane at right angles to the direction in which the flux is changing, resulting in a
flow of currents within the conductor. These currents are referred to as eddy currents
and depend on the geometry of the conductor specimen, on its resistivity, and on the
frequency of alternation of the field. Their directions always counteract the change in
field that produced them. The net effect of the flow of eddy currents is to prevent the
field from penetrating immediately to the interior of the conductor. When the applied
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field varies fast, the field strength in the interior may never be more than a small
fraction of the field strength at the surface. Thus, the eddy currents produce a
nonuniform field distribution over the cross section of the conductor, a phenomenon
referred to as the skin effect. The skin effect expresses the tendency of alternating
current to flow near the surface of a conductor. This effect becomes more pronounced at
higher frequencies and, in particular, at microwave frequencies, an electromagnetic field
can only survive in very close vicinity to the surface.

A magnetic material also suffers from the skin effect if it has finite resistivity or
nonzero conductivity. Because of limited penetration of the applied magnetic field, the
magnetic flux density also decreases from the surface toward the interior. This leads to a
reduction in the average magnetic flux density within the material and consequently

causes a reduction in effective permeability.

2.4.2 Eddy-Current Loss

Power dissipated due to eddy currents is referred to as an eddy-current loss, which
increases with a decrease in resistivity of magnetic material. We will see in Chapter 3
that in a low-frequency region where the influence of eddy currents is weak, the loss is
precisely proportional to the reciprocal of resistivity. Ferrites that have been widely
used in proton-ring RF cavities have high resistivity, and consequently, the eddy-current
loss is insignificant compared to the hysteresis loss. On the other hand, the resistivity of
magnetic alloys is considerably lower than that of ferrites, and as a result, the
eddy-current loss of magnetic alloys is substantially higher than the hysteresis loss in
the frequency range where most of the RF cavities for proton rings operate.

In principle, if the distribution of electric field induced within a magnetic object is
known, the eddy-current loss can be calculated. For a magnetic object in which there is
a time-varying magnetic flux density B, the following Faraday’s law holds:

CﬁE-ds = —EJ‘ B nda, (2.17)
c at S

where n is a unit vector whose direction is outwardly normal to the surface S. Basically,
the law states that a changing magnetic field will induce an electric field. More
specifically, the equation indicates that the line integral of electric field E along any
closed path ¢ is equal to the rate of decrease in the magnetic flux through any surface S
spanning that path. Provided that the distribution of B is known, we can obtain the
distribution of both the electric field and the eddy current within the object from eq.
(2.17). The magnitude of the eddy current depends on the magnitude of E and the
resistivity of the object. If J denotes the eddy-current density, then the power loss in the
object is given by
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1 1 (7 .
P, = —| dv— | Re|JE|dt, 2.18
ed VJV Y T.[o [ ] ( )

where P.; is the eddy-current loss expressed as time-averaged power loss per unit
volume. Assuming J and E are steady-state sinusoidal time-varying functions, and
performing the time integral in eq.(2.18), we obtain

1 *
Pu = 5o JV Re[ J'E] dv. (2.19)

2.5 Hysteresis Loss
2.5.1 Definition of Hysteresis Loss

The analysis of magnetic loss into its constituent parts is difficult and still a matter of
some debate. A conventional approach is that the overall magnetic loss is divided
into two principal parts: hysteresis loss and eddy-current loss. The hysteresis loss
is determined from the area enclosed by the so-called static hysteresis loop. This
separation of losses is based on the assumption that there is something fundamental
about the static hysteresis loss. However, this assumption is not necessarily true,
because the loop is not completely static and the shape and area of the loop depend on
the way in which the applied field changes with time. If the drive field changes
sinusoidally and its frequency increases slowly from a very low value with a constant
field-amplitude, the shape and area of the loop change.

The current view of magnetic loss is that virtually all observed losses in alternating
magnetization are due to eddy currents. Any field change over time, such as the change
caused by the domain wall motion and magnetization rotation, accompanies eddy
currents that cause the power loss. This view implies that the so-called static hysteresis
loss is due to the same cause, that no matter how slowly the loop is traversed,
irreversible changes in magnetization occur and these changes generate eddy currents.
In other words, the overall magnetic loss given by eq. (2.15) is precisely equal to the
eddy-current loss in the current interpretation. However, since the term Aysteresis loss is
still widely used, we propose an improvement of the conventional approach, as
explained in the following paragraph.

In this approach, the overall magnetic loss is divided into two parts: the hysteresis
loss, which is no longer static but changes with the frequency, and the so-called
classical eddy-current loss. In order to apply classical electromagnetic theory, the latter
is calculated on the assumption that the magnetization is microscopic and distributed
homogeneously. The word “classical” in “classical eddy-current loss” is hereafter
omitted for simplicity. The hysteresis loss defined here is equivalent to the loop area of
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the B-H loop in which A and B are the magnetic field intensity and the magnetic flux
density within the object, both of which vary with the frequency and position. This
hysteresis loss is distinct from the overall magnetic loss that is defined as the loop area
of the B-H loop in which H is the magnetic field in the medium before introducing the
object, and B is the magnetic flux density within the object. Defined this way, for a
known, simple field distribution, the eddy-current loss and hysteresis loss can be
calculated separately; otherwise, it is extremely difficult to measure them separately
even for a simple field distribution.

2.5.2 Hysteresis Loss Equation

As defined above, the time-averaged hysteresis loss per unit volume, P;, of a magnetic
object in a magnetic field is given by

= —J. [ - 9B, }a’v, (2.20)

where H, and B, are the magnetic field intensity and magnetic flux density, respectively,
within the object. Provided that H, and B, reflect all of the magnetization mechanisms
functioning in the object, eq. (2.20) represents all types of magnetic loss arising from
each mechanism. If the magnetic power loss definition given above is correct, the sum
of P in eq.(2.20) and P.; in eq.(2.19) must agree with P, in eq. (2.15), that is,

P, =P + P, (2.21)

m

Since these three types of losses can be calculated separately for a flat magnetic sheet,
under the simplified conditions given in the next chapter, we verify eq. (2.21) in the
following chapters.

Likewise, the hysteresis loss per cycle per unit volume of a magnetic object, Py ., is

= —J [ 9B }dv (2.22)

The area inside a B-H loop displayed on an oscilloscope corresponds to the overall

represented by

magnetic loss, not solely the hysteresis loss. If the B-H loop is traced as frequency
increases, we observe that a coercive field H, increases, the loop becomes more rounded,
and the loop area increases until it reaches a maximum at a specific frequency (see
Chapter 7). This behavior is, of course, attributed to the eddy current induced in the
object by the rapid change in magnetic flux. We will see in Chapters 3 and 7 that the

hysteresis loss decreases with an increase in the frequency, even when the overall
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magnetic loss increases. This is because as frequency increases, both the magnetic field
intensity and the magnetic flux density within the sheet diminish due to the eddy-current
effect. However, it is shown in Chapter 7 that the Q-value defined by the hysteresis loss,
Oh, 1s always equal to the intrinsic Q-value Qy, which does not depend on frequency, as
long as the frequency is within a nondispersive region.

Incidentally, the word “hysteresis” is Greek, meaning “a coming late,” and is today
applied to almost any phenomenon in which the effect lags behind the cause. Its first
scientific use was by J. A. Ewing in 1881, referring to the magnetic behavior of iron.
Incidentally, Ewing was a professor at the University of Tokyo from 1878 to 1883.
During his five-year tenure at the university, he introduced his students to research on
magnetism, and Japanese research in this field has flourished ever since [89].

2.6 (O-Value of Magnetic Materials

In the materials-engineering field, a so-called loss factor or loss tangent has usually
been used as a measure of a material’s quality. It is defined by the ratio of the imaginary
part of the complex permeability of a material to its real part and is customarily referred
to as tanod, where J is sometimes called the loss angle. In electrical engineering, a
quality factor Q, which is often referred to as the Q-value, has traditionally been used as
a figure of merit of an oscillating system, such as a resonant circuit. It is defined by the
ratio of the stored energy to the energy dissipated in one radian of an oscillation. Most
proton-ring RF cavities are loaded with magnetic cores to make the cavity length short
and to provide a means of dynamically tuning the cavity. Hence, it is advantageous to
express the quality of the core by the Q-value, because cavity loss and core loss can
then be treated in a unified manner. In Chapter 7, we demonstrate using an orthodox
method that the Q-value of a material is exactly equal to the reciprocal of its loss factor,
1/tand.

On the basis of the above definition, we can obtain the overall Q-value of a
magnetic object, O,, from the stored magnetic energy W (given in eq.(2.7)) and the
time-averaged overall magnetic loss P,, (given in eq.(2.15)) as follows:

oW
—P .

m

0, = (2.23)

A magnetic object, subjected to a high magnetic field at a high frequency can have
several types of losses from different mechanisms. The Q-value can be defined for each
loss mechanism. If there are a number of loss mechanisms in the magnetic object whose

stored energy is W, the overall Q-value is defined as
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P}’l
L: zn" _ PB+P +P+ - :ZL (2.24)
0, oW oW - Q. '
with 0, = a;—W, (2.25)

where P, (n=1, 2, 3, *) denotes the power loss due to each mechanism and Q, the
corresponding Q-value. Equation (2.24) indicates that for Q-values obtained separately,
the overall Q-value is obtained through their combination. However, it is very difficult
to experimentally separate a power loss caused by one mechanism from those caused by
other mechanisms. Theoretically, eq.(2.15) gives the overall magnetic loss and does not
provide any way of distinguishing one mechanism from another. Nevertheless, as
mentioned before, the eddy-current loss and the hysteresis loss can be calculated
separately provided the field distribution is simple and easy to handle. It should be
noted that hysteresis loss generally includes several types of losses arising from separate
magnetization mechanisms and eq.(2.20) gives the sum of those losses.

Let Oy represent the Q-value defined by the hysteresis loss and Q.,; represent the
Q-value defined by the eddy-current loss. Then, in our present model, in which the
overall magnetic loss consists of the hysteresis loss and the eddy-current loss, the
overall Q-value Q, is given (from eq. (2.24)) by

L . (2.26)

Qe B Z Qed

If we know the stored energy, the hysteresis loss, and the eddy-current loss, we can
obtain O, and Q.; from eq.(2.25) and then Q. from eq.(2.26). Equation (2.26) can
therefore be used as an expression for cross-checking the value of O, obtained from eq.
(2.23).

If a device is comprised of several components, its Q-value is determined by the
energy stored in the device and the sum of the power loss of each component. For RF
cavities for proton rings, the power loss of the magnetic core is much higher than the
cavity wall loss and the losses of other components. As a result, the Q-value of the
cavity is almost equal to that of the magnetic core.

2.7 Permeability

The magnetic characterization of a magnetic object is based on the measurement of B
as a function of H. The permeability x, which is defined by the ratio of B to H, is the
slope of a line from the origin to a particular point on the B-H curve shown in Fig.2.1.
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Therefore, it varies continuously as H increases from zero. Two special values of u are
the initial permeability and the maximum permeability. The initial permeability y; is the
limit approached by the permeability as B and H are decreased toward zero. The
maximum permeability u,, is the highest value of permeability obtained by varying the
amplitude of H, as illustrated in Fig.2.1.

We are interested in an alternating magnetic field H,. swinging about the origin or
about some operating point set on a B-H curve by applying a biasing field. A closed
curve traced on the B-H plane by this field variation is sometimes referred to as a minor
loop. If the swing is small, the incremental permeability ua, defined by B,./H,., where
B, is the magnetic flux density created by H,., can be regarded as a constant value. As
the permeability we use in this paper is exclusively the incremental permeability, the
word “incremental” and the subscript Aare omitted for simplicity. Incidentally, it is a
simple matter to show that if the incremental permeability is a constant, a minor loop

takes the shape of an exact ellipse.

+B
SlOpC = Wm
minor loop ( [-=———— slope = ua
[T — - ~
Y slope = y;
0 / +H
T major loop

Figure 2.1 Virgin induction curve, part of a hysteresis loop and two minor loops. Three kinds

of permeability (u;, i, and pa) are also illustrated.
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In this paper, we use two definitions of permeability: intrinsic permeability and
effective permeability. The intrinsic permeability u (= u'—ju") is the permeability that is
inherent in magnetization mechanisms and characterizes the local relationship between
B and H. It is a material constant and does not depend on the geometry of a magnetic
object, but is a function of the frequency because of the presence of some dispersion
mechanisms. The frequency behavior of intrinsic permeability is briefly reviewed in
Chapter 5.

The permeability definition we usually use is the effective permeability, which is
defined by the ratio of the average magnetic flux density within the object to the applied
magnetic field strength. Thus, it characterizes the macroscopic magnetic properties of
the object and is expressed by u. (=ui—jue ). The effective permeability is related to the
intrinsic permeability by a demagnetizing factor, which is defined as the ratio of the
demagnetizing field to the magnetization (see Section 6.2). While the demagnetizing
factor essentially depends on the geometry of a magnetic object, if the object is
somewhat conductive and used in an alternating magnetic field, it also depends on the
eddy current. In particular, when the conductive object is used at high frequencies, eddy
currents virtually determine the demagnetizing field and, consequently, the effective
permeability.

We can easily measure the applied magnetic field H,,,; and can obtain the average
magnetic flux density within an object, B,,, by measuring, for example, the inductance
of the object. Then, by taking the ratio B,/H,,, we can obtain the effective
permeability .. In Chapter 6, the expression of the effective permeability of magnetic
sheet is derived using the magnetic field distribution obtained in Chapter 4.
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3. Low-Frequency Properties of Magnetic Sheet

3.1 Introduction

Most applications use magnetic materials in an alternating magnetic field, because of
which their magnetic properties in such applications differ from those they exhibit in a
quasistatic state. In this chapter, we discuss the magnetic properties of a plane magnetic
sheet in an alternating magnetic field applied at a low frequency. There are three
reasons for deriving the approximate expressions applicable only to the low-frequency
regions. First, the obtained expressions are sufficiently useful in low-frequency
applications up to 10 [kHz] or even 100 [kHz], depending on the values of the material
constants and thickness of the sheet. Second, since the expressions are simple and easily
understood, they can help us interpret the behavior of magnetic materials when used in
an alternating magnetic field. Third, these expressions can be used as references to
which the expressions derived in the following chapters without any frequency
assumptions must reduce when the frequency is much lower than RFs. This is a
necessary condition for the accuracy of the expressions.

3.2 Assumptions

Figure 3.1 shows a cross section of a flat magnetic sheet of thickness d which extends
infinitely in both x and z directions. Assume a sinusoidal, time-varying, uniform
magnetic field of small to moderate amplitude is applied in the z direction, parallel to
the sheet surface. The applied magnetic field induces some eddy currents, which hinder
its penetration into the interior of the sheet. However, as long as the frequency is very
low, the field can penetrate fairly well into the sheet, such that both the field
nonuniformity and the eddy-current loss are very small. In this chapter, we deal with the
case where the magnetic field is applied at such a low frequency (that is, the ratio of the
sheet thickness to the skin depth is very small) that the effect of the eddy currents is
quite weak.
To summarize, the analyses in this chapter are based on the following assumptions:

(1) the magnetic sheet is flat and extends infinitely in both x and z directions,
(2) the intrinsic permeability of the sheet is linear and isotropic, and
(3) the frequency of the applied magnetic field is low enough to cause only very

minor eddy currents.

Assume that the applied magnetic field H is given by

H, = H,e™. (3.1
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The magnetic field intensity H. and the magnetic flux density B, within the sheet are

written as

H, = H(y)e/” and B,=uH, = (/' -ju”)H(y)e™, (3.2)
where u (=u'—ju") is the intrinsic permeability. It is important to distinguish between
the intrinsic permeability and the effective permeability, although at low frequencies,
the two are very similar because the eddy-current effect is weak.

3.3 Approximate Field Distribution

To obtain the low-frequency magnetic properties of the sheet, we require the field
distribution within the sheet in this frequency range. Even at low frequencies, the
time-varying magnetic flux creates small eddy currents, which cause the field intensity
to diminish slightly and the field phase to lag slightly behind the surface phase. As a
result of this phase lag, the magnetic field has a small imaginary part in addition to a
real part whose magnitude is slightly less than that of the applied field. Thus, H. is
represented in the complex form by the real part Re[H;] and the imaginary part Im[H.]:

H, = H(y)e’” = {Re[H, ]+ jIm[H, ]} /", (3.3)
y
® Hy
H;: ® — Ex
d : - @ — - — x
HZ@ -~ Ex
® Hy

Figure 3.1 Field components in Cartesian coordinates in a flat magnetic sheet extending

infinitely in both x and z directions.
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The next step is to understand how the low-frequency approximations of Re[H:] and
Im[H;] are expressed in terms of the frequency and the thickness and material constants
of the sheet. Fortunately, we have obtained the exact expressions of magnetic field
distribution (next chapter), from which we can obtain the low-frequency approximations.
Then, we only need to reduce the exact expressions to approximate forms on the
assumption that the field is applied at a low frequency.

The expressions of the field distribution are written as a function of 6, which is
defined as

0

d
—, 3.4
5 (3.4)

where d is the thickness of the sheet and J; is the skin depth given by

5= | ——, (3.5)
oo

with ¢ being the conductivity of the sheet material. The skin depth is discussed at some

length in Chapter 4. The real and imaginary parts of the magnetic field given in egs.
(4.29) and (4.30) are expressed in terms of trigonometric and hyperbolic functions, both
of which can be expanded into a power series of §. The expansions are written in a
series of even powers of 6, ag+Xa,,0”", where ay is a constant, n is a positive integer
(n=1,2,3,+++), and ay, is a coefficient of the (n+1)th term. Under the low frequency
assumption, we take only the first and secondterms from the expansions of Re[H;] and
Im[H.] and ignore the other terms. Then, Re[H.] and Im[H.] can be approximately

written as

Re[H

Z

2
1= 1- Lo ans + 6 wans 2] | H,, (3.6)
4 d ’
and

2
Im[H.] = {_iez + 92(3) }HO, (3.7)

where tano is the intrinsic loss factor given by u"/u'. It follows from eqs. (3.6) and (3.7)
that at the surface of the sheet (y=d/2 or y=-4d/2),

RefH.] _ =~ .~ ImH] _

0, 3.8
H, H, (3.8)

and in the middle of the sheet (y=0),
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Re[H,]
HO

1 Im[H |
1-Lloans  ana AL 1g (3.9)
4 H, 4

In the following sections of this chapter, we use the approximate field distribution given
in egs. (3.6) and (3.7).

3.4 Stored Magnetic Energy

The average density of the stored magnetic energy W of a magnetic object when it is
placed in a magnetic field is given by eq.(2.7). In the present case, the magnetic field
H. is applied parallel to a sheet surface of infinite width, and consequently, the
magnetization of the sheet does not affect the field in the medium outside the sheet.
Therefore, the field intensity in the medium remains unchanged regardless of the
presence or absence of the sheet. As a result, H; in eq. (2.7) is replaced with H.y, and B,
is replaced with B.. Then, W is written as

1 .
W= JV Re[ H,B_ | dv. (3.10)

Figure 3.2 shows the rectangular parallelepiped over which the volume integral in eq.
(3.10) is performed. The length of the sides are /) in the x direction, d in the y direction,
and one unit length in the z direction, so that the volume V" is equal to /od.

From egs. (3.2) and (3.3), the magnetic flux density B. is given by

B, = uH, = (u'-ju"){Re[H, ]+ jIm[H_]} &/
= {Re[B.] +,jIm[B,]} /. (3.11)

Substituting Re[H.] from eq. (3.6) and Im[H.] from eq. (3.7) into eq.(3.11) yields the
approximate expressions of Re[B.] and Im[B.]:

2
Re[B.] = iRe[H.] + u"Im[H.] = {u’— S 240 (ﬁj }H (3.12)
and

Im(B,] = ' Im[H, ] - u”Re[H, ]

I

2
—u - %‘u’62(1—tan25) + 0o’ (1—tan2 5) (g] }HO. (3.13)
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Figure 3.2 Rectangular parallelepiped over which the volume integral is performed.

The real part of H(B. is then given by

Re[H,B. | = Re[ Hye ™ {Re[B.] + jIm[B.]} ¢/ | = Re[B.]H,
N R i (ij Hp. (3.14)
2 d 0 '
Replacing Re[H>oB.] in eq.(3.10) with eq. (3.14) gives

2
1 1 y
W= — - w0+ 2 ”02(—j H? dv. 3.15
X% V{u e u y, o dv (3.15)

Performing the integration over the volume V and dividing the result by V, we find

1 ’ 1 ” 1 4 1
W = = (u - S H szHg =S H (1 - Ee)%amstg. (3.16)

If the magnetic field varies quasistatically or at a very low frequency, the second term in
parentheses can be ignored, and thus, W reduces to a familiar form of stored magnetic

energy:

L,
Wo = - WHS. (3.17)
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From eqgs. (3.16) and (3.17), the ratio of W to W, is given by

W 1
— = 1 - — #*tané. (3.18)
W, 3
Equation (3.18) clearly shows that the stored energy decreases as 6 or the frequency
increases. This is attributed to the diminished magnetic field intensity due to the

eddy-current effect.

3.5 Overall Magnetic Loss

The time-averaged overall magnetic loss per unit volume, P,, of a magnetic object
placed in a magnetic field is given by eq.(2.15). As mentioned in the previous section,
H, and B, are replaced with H.( and B., respectively, and then P, is written as

1 )
P, = — | Re|H, = | v,
LYY Jv e[ 0 az} ' (3.19)

From B. given in eq.(3.11), 0B./0t becomes

oB

z

ot

= {~oIm[B,] +joRe[B.]} . (3.20)

It follows from H¢ in eq.(3.1), 0B./0¢ in eq.(3.20), and Im[B.] in eq.(3.13) that we can
obtain the real part of H.o(0B./0f),

Re| H. 98, = Re| Hye ' {—wIm|[B_ | + joRe[B_ | e/ | = —wIm|B_|H,
z0 ot b4 z b4

2
= w{u’% %,u’92(1—tan26) - ,u’92(1—tan26)(§) }Hg
(3.21)

Substituting eq.(3.21) for Re[H.q (dB./d¢)] in eq.(3.19), performing the integration
over the volume ¥, and dividing the result by V, we obtain

1 14 1 ’
P, = Ea)[u v Qz(l—tan25)}H§
= Lowli+ Lo _ sl | m2 (3.22)
) H 6 tan & 0" '
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If the magnetic field varies at a very low frequency, P,, reduces to

1
Pup = 5@ WH. (3.23)

From egs. (3.22) and (3.23), the ratio P,/P, is given by

Lo il s, (3.24)
P, 6 tan &

which increases with an increase in @ when tand is lower than 1.0 and decreases when
tano is higher than 1.0. The magnetic loss is often expressed as the energy loss in one
hysteresis cycle, P, ., which is given in eq.(2.16). Let us replace H; and B, in eq.(2.16)
with H.y and B., respectively, and substitute eq.(3.21) for Re [H.o @B./01)] in eq.(2.16).
Then, performing the integration in eq.(2.16) over volume V, we obtain

1 1
P = 711+ —6° —tané | | HZ. 3.25
m,c ﬂu |: 6 [tan5 an j} 0 ( )

The loss P, can also be obtained by dividing P, given in eq.(3.22) by the frequency
I

3.6 Eddy-Current Loss
3.6.1 Electric Field Distribution

The time-averaged eddy-current loss per unit volume, P, is given by eq.(2.19). As
shown in Fig.3.1, the magnetic field exists only in the z direction, and accordingly, the
electric field and current are induced only in the x direction. Therefore, P,; is given by

1 ;
Pu = v L Re[ JIE, | dv, (3.26)

where J, and E, denote the electric current density and the electric field intensity in the
x direction, respectively. To evaluate the eddy-current loss of the sheet, we require the
distribution of J, and E, in y, which can be obtained from the distribution of B, using
Faraday’s law.

Figure3.3 shows a closed path ¢ in an x-y cross section of the sheet. The path is
composed of two segments of length /, in the x direction and two segments of length
2yy in the y direction. We apply Faraday’s law, given in eq.(2.17), to this path ¢ and the
surface S enclosed by the path. Supposing that the operation of the derivative with
respect to ¢ and the operation of the surface integral can be interchanged, we can write
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Figure 3.3 Closed path ¢ and surface S enclosed by ¢ in x-y cross section of the sheet. Line
integrals of E, along ¢ and surface integral of oB./dt over S are performed to

obtain E, at y=y,.

oB
E -ds = - z.nda.
gﬁc x5 .L ot aa (3-27)

First, we perform the line integral of E, along the closed path c. It is clear from the

configuration shown in Fig. 3.1 that the induced E, is antisymmetric with respect to the
x axis. To be more precise, the operation of replacing y with —y reverses the sign of E,
but does not change the magnitude of E,. Since E, at y=+yy or y=— )y is independent
of position x, the left-hand side of eq.(3.27) is given by

CﬁEx-ds = 2I,E,. (3.28)

Next, we perform the surface integral of 0B./dt over the area S (=2y,l,). Making
use of dB./ot given in eq.(3.20), we can write the right-hand side of eq. (3.27) as

Yo
[ e = 20 [ (] e} . 29
s ot 0

where Re[B.] and Im[B.] are given in egs.(3.12) and (3.13). Performing the integral of
eq.(3.29), we obtain
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oB ,
— J Lnda = - 2l,y,0H,(Re+ jIm) ', (3.30)
S

ot
where
1 1)’02
Re = u”+ w6*(1-tan’8)|— — — —) 3.31
e= p'+ WO (l-an’s)| - - —| 7 (3.31)
and
1 2 (Yo ’|
Im=u - ue|—-=|21 | 3.32
m= [\—- [ > 3(dj_ (3.32)

Substituting eqs. (3.28) and (3.30) into eq.(3.27) yields the E, induced at y = yj:

E, = —y0H,(Re+ jIm) ¢ (3.33)
X 0 0

3.6.2 Calculations of Eddy-Current Loss

The current density J, induced by E, is written as

H,(Re+ jIm)
J. = oE, = B o 0O o(Re + jlm) s (3.34)
p p

where ¢ is the conductivity and p (=1/0) is the resistivity of the sheet material. Then, J,
in eq.(3.26) is replaced with J, from eq.(3.34) to give

1 2
P, =——| |E 3.35
“ = 2pV jv| o[ (335)

where
E,|" = EE, = )} 0*H] (R + Im?). (3.36)

X X

By expanding (Re’+ Im?) in a power series of 6 and taking only the first two terms, that

is, the constant term and the & term, the following approximate expression is obtained
from eq.(3.36):

a4

’ 1 ’ ”n 2 92
[ = wzHéaHuQ— SHH ezjyé -5 yé} (337)

with
”2 1

u

a=1+—5=1+@n’d =1+ (3.38)
u

2 s
0

where Oy is the intrinsic Q-value defined by 1/tand. Substituting |E,|* given in eq.(3.37)
into eq. (3.35) and performing the integral extending over the whole volume of the
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rectangular parallelepiped shown in Fig. 3.2, we obtain

2 ,2 2
P, = AR 2l - 2 g2 ans H;. (3.39)
24p 5

3.6.3 Discussions on Eddy-Current Loss

Equation (3.39) clearly shows how each parameter is related to the eddy-current loss in
the low-frequency range. The most important result is the strong dependence of P.; on
the frequency w and the sheet thickness d as well as on the applied field intensity Hp.
First, the eddy-current loss is proportional to ”. This is because the induced field E, is
proportional to ®, as shown in eq.(3.33), and the power loss P,y is proportional to [E.[*,
as given in eq.(3.35). In most cases, @ and H, cannot be chosen freely because they are
usually determined by each application’s requirements and operational conditions.

The parameters d, p, and '’ can, in principle, be controlled to reduce the eddy-
current loss. The most important parameter among them is d, because the eddy-current
loss is proportional to d°. Fortunately, reducing d in manufacturing processes is not
difficult as long as the amount of reduction is within an allowable limit. On the other
hand, p is intrinsically connected with the manufacturing method itself and therefore
cannot be controlled in ordinary manufacturing processes. Note that if p is anisotropic,
it is p in the direction of the tape width (x in Fig. 3.1) that is important for the eddy-
current loss, not p in the direction of the tape length (z in Fig. 3.1). This is because the
eddy current flows perpendicularly to the magnetic flux that flows along the tape.

Another factor determining the eddy-current loss is x'°a, which is given (from eq.
(3.38)) by

‘UIZ(X — ‘U,2+ ‘u//Z' (340)

If a magnetic sheet is used in a low-frequency range, or more precisely, if a=1
(¢'>>u"), only the real part 4 is responsible for the eddy-current loss. The eddy-current
loss depends heavily on 4 because the magnetic flux @ is proportional to x', and
therefore, a high 4 creates a large &, which in turn produces large eddy currents.
Although lowering the value of ' clearly helps to reduce eddy-current loss, it is not
realistic because a higher x' is desirable in most cases and a top priority in many
applications. The adverse effect of a high x4 value on the eddy-current loss must be
compensated for by reducing the thickness of the sheet. If a magnetic sheet is used in a
dispersive frequency region, the imaginary part 4" might increase considerably, which
might contribute to an increase in eddy-current loss. Note that x” is the intrinsic
permeability free from dispersion due to eddy currents and that for most sheet materials,
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" is much lower than 4 as long as the magnetic sheet is used in a frequency region well
below the lowest relaxation frequency (see Chapter 5).

The above discussions can be summarized as follows. It is desirable, but very
difficult, to increase p by improving manufacturing methods and processes. It is
important to avoid a reduction in g’ in order to retain the advantage of the very high 4/
property of magnetic alloys. The only practical way of reducing the eddy-current loss is
to make the thickness of the sheet as thin as possible while preserving the appropriate
sheet strength.

The eddy-current loss given in eq.(3.39) can be rewritten by using 6 from eq. (3.4)
and the skin depth J; from eq.(3.5) as follows:

I

1 2 2 3 2 1 2 2
P —ooW'0°H; |1— —60°tand | = —wo’'60°H
ed 12 u o( 5 j I H 0

1 1
—ou’6’ + tand |H, (3.41)
12 tano

where the 6* term is ignored. It follows from egs. (3.23) and (3.41) that the ratio of Py
to Pyo 1s given by

+ tan5j. (3.42)

tan o

Equation (3.42) shows that in a low-frequency region P.4/P,, is proportional to 6% or .
This is because P, is proportional to @* while P, is proportional to .

3.7 Hysteresis Loss

The time-averaged hysteresis loss per unit volume, P, of a magnetic object placed in a
magnetic field is given by eq.(2.20). In the present case, H, and B, are replaced with H.
and B., respectively, and then P, is written as

1 « 0B
P = — Re| H = | dv. 3.43
h 2V J.v e[ ‘oot } ’ ( )

It follows from H. in eq.(3.3) and 0B./d¢ in eq.(3.20) that Re[H(dB./dt)] is represented
by

R{H;‘ aaB;z} = w{-Re[H, |Im[B_] + Im[H, |Re[B_]}. (3.44)

Substituting egs. (3.6), (3.7), (3.12), and (3.13) into eq.(3.44) leads to the low-frequency
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approximation of Re[H: (dB./dr)] given by

2
Re{Hz a;"} = wu”{(l - % 6* tan5j +26? tan5(§) }Hg (3.45)

Replacing Re[H:(0B./0r)] in eq.(3.43) with eq.(3.45), performing the integration over
the volume V" shown in Fig. 3.2, and dividing the result by ¥, we finally obtain

1 1
By= 5 o (1— 502 tanSJ H;. (3.46)
We see from eq.(3.46) that in a very low frequency region where the #* term can be
ignored, P, is exactly proportional to . Equation (3.46) also shows that the second
term in parentheses makes P, shift slightly below the linear increase with an increase in
. This is, of course, attributed to the eddy current, which slightly reduces both the
magnetic field and the magnetic flux density and, as a result, causes a slight decrease in
hysteresis loss. From egs.(3.23) and (3.46), the ratio of P, to P, is written as
P, 1
— =~ 1 - = 6°tand. (3.47)
It is worth noting that P;/P,, given in eq.(3.47) is identical to W/W, given in eq.(3.18).
Taking the sum of P, from eq.(3.46) and P.; from eq.(3.41) yields

1 1 1
P+P, = Ewu” 1- EQZtanaj Hj + Ea)au’ezHg

tan

=—ou’|1+ 1 92{ —~ tanSH H;. (348)

The result is exactly the same as the overall magnetic loss P, given in eq. (3.22). This
verifies the accuracy of eq.(2.21) in the low-frequency region.

3.8 Q-Value

The overall Q-value of the magnetic sheet, Q,, is obtained by introducing the stored
magnetic energy W from eq.(3.16) and the overall magnetic loss P,, from eq. (3.22) into
eq.(2.23) as follows:
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’ 1 ” n2 1 2
w—-—u”e 1—— 67 tano
0 = 2V _ 3 - 3 . (3.49)

m ” l’2 _ 2 i2 _ 2
u +6/.L9(1 tan 6) tan5+60 (1 tan 6)

Now, let O be the Q-value defined by the hysteresis loss. Substituting W and the
hysteresis loss P, from eq.(3.46) into eq.(2.25) gives

’ 1 ”
w—= g# 6’ W 1
Qh = = = P =

Ph ‘u”_ ;‘LL,92 tan25 /.l tan5

0. (3.50)

It is interesting that O is determined solely by the intrinsic permeabilities ' and y" and
is independent of #. This can be explained mathematically by the behavior of W and P,
as 0 changes. W and P, vary with 6 in exactly the same manner, and consequently,
their dependence on € is canceled out when W is divided by P,. We will see in Chapter
7 that the equation O, = Qp applies not only to low-frequency regions but to any
frequency region.

Likewise, let Q.; be the Q-value defined by the eddy-current loss. Substituting W
and the eddy-current loss P, from eq.(3.41) into eq. (2.25) yields

L2
6 l_ o ”9
oW (M 3 # j

Qed = Ped = OC‘LL,QZ
6 1,
== (1+tan25) (1— 50 tan5j. (3.51)
This can also be written as
12 1 )
= - —owu'cd” tané |. 3.52
Cod ou'od’ (1+tan’ §) [ 6 “H j (3:52)

Equation (3.52) shows that as the frequency decreases toward zero, Q.; approaches
infinity. This corresponds to the behavior of the eddy-current loss, which decreases
toward zero when the frequency approaches zero, as shown in eq. (3.39).

The overall Q-value of the magnetic sheet is also obtained from eq.(2.26) using QO
from eq.(3.50) and Q. from eq.(3.51):
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1 o o2
| | | v 02 (1+tan25) tand + S 0 (1 tan 5)
o, e, - 1 . (3.53)
0, 0O, 04 H 6 (1_ l92 tan5} 1— 3 6° tand
3

The result is consistent with eq.(3.49). If the frequency is very low, Q.; becomes high
enough to satisfy the condition Q.;> Q; so that O, becomes almost equal to Q.

3.9 Expressions in Terms of Effective Permeability

In Chapter 6, the accurate expression of the effective permeability of the sheet, y., is
derived and given in egs. (6.19) and (6.22). If the frequency is low, the real part x; and
the imaginary part x¢ are approximated by

p, = p - %u”ez, (3.54)
and ul o= u”+ % /.t’@z(l—tan26). (3.55)

By using these equations, we can rewrite W in eq. (3.16), P, in eq. (3.22), and the
Q-value in eq.(3.49) as
1

W= —u
5 M

m 9 o

e

H2, P = ~ouwH?, ad o, = (3.56)
U

all of which are reasonable and expected results. Likewise, P.; in eq.(3.41) and P, in eq.
(3.46) can be rewritten as

1
P, = Ea),u;Hg(tanSK—tan&, (3.57)

1
and P, = P W, H; tand, (3.58)

where tand, is the effective loss factor of the sheet given by u¢/u.

3.10 Numerical Examples

Figure 3.4 shows W/W, as a function of 6 (=d/d,) for four values of tand, where W is
the stored magnetic energy and W is that at very low frequencies. The results obtained
from the approximate expression in eq.(3.18) are represented as dotted lines, and those
from the accurate expression in eq.(7.9) as solid lines. As seen from Fig. 3.4, W/W,
decreases as 6 increases because of the reduced magnetic field intensity due to the eddy
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current. W/W, decreases faster for higher values of tand because the field within the
sheet diminishes more rapidly when tand is higher, as will be shown in the next chapter.
For tand=0.5, the approximate plot almost overlaps with the accurate one throughout
the range of @ shown in the figure. As mentioned in Section 3.7, the ratio P,/P,,0, where
P, is the hysteresis loss and P, is the overall magnetic loss at very low frequencies, is
identical to the ratio W/W,.

1.0

0.8 [

WIW,
0.6

Plz/PmO

04 -

Figure 3.4 Normalized stored energy W/W, versus 6 (=d/d;) for four values of tand. The
dotted lines show the low-frequency approximations obtained from eq.(3.18), and
the solid lines show the accurate results obtained from eq.(7.9). Normalized

hysteresis loss P,/P, is equal to W/W,.
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Figure 3.5 illustrates the normalized eddy-current loss P.q/P,o versus 6 for four
values of tand. The dotted lines show the low-frequency approximations obtained from
eq.(3.42), and the solid lines show the accurate results obtained from eq.(7.35). Poa/Pno
behaves in a rather complex manner when tané changes, and the reason for this can be
mathematically explained using egs.(3.42) and (7.35), both of which include the factor
(1/tand + tano). For tand=0.1, the factor is quite large due to the predominance of the
term 1/tand, and consequently, P.;/P,o also becomes large. As tano is increased from
0.1, the factor continuously decreases until tand reaches 1.0, where it reaches a
minimum value of 2.0. If tand increases beyond 1.0, the factor starts to increase, and
therefore, the approximate P.;/P,o begins to increase as well. However, as the figure
shows, the accurate P.s/P,o hardly increases when tano increases beyond 1.0, because

1.0
0.8
06

P("L /PIII [

i tand = 0.1
04
050r20
0.5

0.2

Figure 3.5 Normalized eddy-current loss P,/ P, versus 8 for four values of tand. The dotted
lines show the low-frequency approximations obtained from eq. (3.42), and the

solid lines show the accurate results obtained from eq.(7.35).
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eq.(7.35) includes a factor, g(é, ), which decreases rapidly with an increase in tand, as
will be demonstrated in Fig. 6.2.

Figure 3.6 shows the normalized overall magnetic loss P,/P,o as a function of & for
four values of tand. The dotted lines show the low-frequency approximations obtained
from eq.(3.24), and the solid lines show the accurate results obtained from eq.(7.17).
Note that the ordinate in Fig.3.6 starts at 0.6. We know from Figs.3.4 and 3.5 that as 0
increases, the normalized hysteresis loss P,/P,o decreases, whereas the normalized
eddy-current loss P.;/P,o increases. Since P,/P,o is given by the sum of these two
normalized losses, the behavior of P,/P, shown in Fig. 3.6 must be explained by the
behavior of these two losses. When tand is lower than 1.0, the increase rate of eddy-
current loss exceeds the decrease rate of hysteresis loss, so that P,/P,o increases as
0 increases. When tano is higher than 1.0, the decrease rate of hysteresis loss exceeds

26

22

tand = 0.1

1.8

Pm/P/nO

1.4

1.0 |

Figure 3.6 Normalized overall magnetic loss P,/P,o versus € for four values of tand. The
dotted lines show the low-frequency approximations obtained from eq.(3.24), and

the solid lines show the accurate results obtained from eq. (7.17).
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the increase rate of eddy-currnt loss and consequently P,,/P,o decreases as 6 inceases.
The dotted lines in Fig.3.7 show Q./Qo as a function of # for four values of tand,
where Q. is the approximate overall Q-value given in eq.(3.49) and Q is the intrinsic
Q-value given by /i The solid lines show the accurate Q./Q, obtained from Q. given
in eq.(7.51). Since Q./Qo is equal to the ratio of W/Wy to Pu/Puo (W/Wo)/(Pu/Pno)
=(WIPn)/(Wo/Puo) = Q./Q0), the behavior of O./Qp shown in Fig.3.7 can be interpreted
from the behavior of W/W, shown in Fig. 3.4 and that of P,/P,o in Fig. 3.6. For
example, consider the case of tand=0.1. While W/W; decreases very slowly as 6
increases, P,/P,o increases rather sharply. As a result, Q./Qo decreases appreciably

with an increase in 6.

1.0

0.8

tand = 0.1

0.6
Qe/ Q()

04+

02+

Figure 3.7 Normalized overall Q-value Q./Q, versus 6 for four values of tand. The dotted
lines show the low-frequency approximations obtained from the ratio of eq. (3.49)

to Qo, and the solid lines show the accurate results obtained from the ratio of eq.
(7.51) to Q.
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3.11 Frequency Range of Application

We can easily determine the range of 6 for which the approximate expressions obtained
in this chapter are applicable. Close study of the figures in the previous section show
that the approximate plots agree quite well with the accurate ones, at least up to §=0.4.
If tano is lower than 0.1, the range in which the plots are in good agreement may be
extended. Now, we are particularly interested in the frequency range in which @ is less
than 0.4. It follows from egs.(3.4) and (3.5) that the frequency at which @ is equal to 0.4
is given by
0.16

R 3.59
nd*yc (3:59)

Jo-04 =
where d is the thickness of the sheet; p/, the real part of the intrinsic permeability
(=14, where g, is the relative permeability); and o, the conductivity. Let us consider a
numerical example: if d =18 [pum], 1 =10,000, and o=1x10° [S/m], then f,_,, is
12.5[kHz]. If w4 decreases to 1,000 while the other parameters remain the same, fy_g4
becomes 125 [kHz].

41



4. Field Distribution within Magnetic Sheet

4.1 Introduction

In Chapter 3, the magnetic properties of a plane magnetic sheet were discussed on the
assumption that the magnetic field is applied at a low frequency. In this low-frequency
range, the magnetic field distribution within the sheet is not much different from the
uniform one. However, as the frequency increases, the eddy currents become more
noticeable and more influential in altering the field distribution. In this chapter, the low
frequency assumption is removed and the expressions useful for any frequency range
are derived.

First, we derive a field equation that governs the magnetic field in the interior of the
sheet and solve it to obtain the magnetic field distribution. In the following chapters, the
field distribution obtained here will be used to derive the expressions for the effective
permeability and other RF magnetic properties of the sheet, such as the magnetic power
loss and the Q-value.

Effects of eddy currents on the magnetic properties of the sheet usually fall into one
of three categories:

(1) the intensity of the field diminishes and the phase of the field lags behind that at
the surface,

(2) the effective permeability of the sheet changes, and

(3) the energy loss of the sheet increases.

Category (1) is discussed in this chapter and categories (2) and (3) are discussed in
Chapters 6 and 7, respectively.

4.2 Assumptions

Ferromagnetic materials are usually magnetized by the movement of magnetic walls, by
the rotation of magnetic domains, or both. In fact, both mechanisms produce the same
result because the spins in a region swept out by a moving wall have their orientation
rotated through a definite angle. When studying the magnetic properties of a
ferromagnetic material, we generally must take into account the domain structure of the
material.

As regards materials for RF cavity applications, we are presently interested in
magnetic alloys, such as the fine-structured soft magnetic alloys and the amorphous
alloys. The fine-structured soft magnetic alloys, such as IRNC, are composed of
nanometer-size, single-domain, crystalline grains in an amorphous phase. The

amorphous alloys are noncrystalline materials and do not have definite rectilinear
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domain walls. In both the fine-structured alloys and the amorphous alloys, the domain
structure is less important and the magnetization is considered to be microscopic and
distributed homogeneously. For this reason, it may be safe to assume that the
magnetization can be regarded as a subject to which a standard method of classical
electromagnetic theory is applied.

In the present and following chapters, we remove assumption (3) from Section 3.2,
which states that a low-frequency field is applied and consequently the eddy-current
effects are quite weak. However, assumptions (1) and (2), given below, remain, because
these assumptions facilitate the calculation of the way in which the magnetic field
decreases with depth below the surface:

(1) the magnetic sheet is flat and infinitely wide in both x and z directions, and
(2) the intrinsic permeability of the sheet is linear and isotropic.

4.3 Field Equation

Maxwell’s equations expressed in differential form are given in Appendix B (egs. (B.1),
(B.2), and (B.3)). We start with Maxwell’s equations written in Cartesian coordinates
and composed of eight equations for six field components (E,, E,, E., H,, H,, and H.).
Because of the assumption that the uniform magnetic field is applied in the z direction,
as shown in Fig. 3.1, only the two field components E, and H. have nonzero values,
while the other four components are zero. Likewise, only the two field gradients OE,/0y
and 0H./0y have nonzero values, while the other four field gradients are zero, that is,
oE JE oH oH

E=E=H =H =0 and L = L = z = L =0. 4.1
Y ¢ * Y ox 0z ox 0z “.1)

As aresult, only the following two equations are significant:

JE oH

s O 42
% M P (4.2)
M. _ B | oE - 0(1 n jwe)Ex, (4.3)
dy ot o}

where ¢ and o are the permittivity and the conductivity, respectively, of a sheet material.
Since we are assuming that the electromagnetic fields vary sinusoidally in time, it is
convenient to represent all field quantities as complex vectors with a time dependence
¢/®. The second equation of eq.(4.3) is obtained by assuming this time dependence. In
this paper, ¢/ is sometimes omitted for the sake of simplicity.

For conductive materials, even if the conductivity is not as high as that of copper,
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we can show that the condition we/o<<1 is satisfied over a wide frequency range up to
at least microwave frequencies. For instance, o/¢ of a magnetic alloy with o= 1x10°
[S/m] is in the order of 10" [s™'], which is much higher than the frequencies we are
interested in for particle acceleration. Hence, the displacement current in the magnetic
sheet, ¢(0OE,/0t), is negligible compared to the conducting current oE,. Therefore, from
eq.(4.3), we obtain

1 OH,

E = — .
o dy

X

(4.4)

Substituting eq.(4.4) into eq.(4.2) eliminates E, to give the second-order differential
equation for H. as follows:

o’H oH
ayzz = Uo atz . (4.5)
This can also be written as
o’H
ayzz - joucH, = 0. (4.6)

We use the complex intrinsic permeability u given by
po=u—ju. 4.7
Replacing x4 in eq. (4.6) with eq. (4.7) leads to

o’H,
dy’

- jo(w-ju)cH, = 0. (4.8)

Now, we take a square root of the coefficient of H. from eq.(4.8) and denote it by y:

y = \/ja)(u’—ju”)a = \/wu’a(tan5+j)

_ Y2 ol el (4.9)
where tand = ‘u, = L, (4.10)
H O
2
S, = —, (3.5
ou o



o =1+ tan*$§, (3.38)

and o = 1 tan_l( ] +mr = %tan‘l(QO) + mr. (4.11)

In this paper, tand and Qo are referred to as the intrinsic loss factor and intrinsic
quality factor, respectively. The word “intrinsic” is derived from the term “intrinsic

2

permeability,” which was introduced in Section 2.7 and will be described in further
detail in Chapter 5. The skin depth J,, defined by eq.(3.5), is customarily used as a
measure of penetration of the applied magnetic field into the interior of a magnetic
object. It is the distance at which the amplitude of the field decays to 1/e of its surface
value. However, J; is not applicable to all magnetic materials, because it does not
include the imaginary part of the permeability x". It is considered to be the skin depth of
a conductor or a magnetic material whose tand is much lower than 1.0. In this chapter,
we introduce a new expression for the skin depth of magnetic sheet, which includes u”
and is therefore applicable to all magnetic sheets. When the distinction between these
two definitions is necessary, we call d;, defined by eq. (3.5), the conductor skin depth.

By using y given in eq.(4.9), we can rewrite eq. (4.8) as
—=< - y’H_ = 0. (4.12)

This is recognized as a homogeneous linear differential equation with a complex
number coefficient.

4.4 Solution of Equation
We can express the general solution of eq. (4.12) by

H = Ce”+ Ce”, (4.13)

where C; and C, are the constants of complex numbers, chosen to satisfy the boundary
conditions. With reference to Fig. 3.1, let the applied magnetic field be Hoe’™ (eq.
(3.1)); then, the boundary conditions to be satisfied at both surfaces of the sheet, that is,
at y=+d/2 orat y=—d/2, are

(4.14)

By applying these boundary conditions to eq. (4.13), we can determine C; and C;:
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H,

C,=0C = ——7—<. (4.15)
2 cosh (}/d)
2
Substituting C, and C, into eq. (4.13) leads to the solution
H
H, = —Od cosh (yy). (4.16)
cosh (}/2)

Next, we transform eq.(4.16) into a form more suitable for calculating the field
distribution. Let 6 denote the ratio of the sheet thickness d to the skin depth s,

0 = 5£; 3.4)
then, y given in eq. (4.9) can be written as
1/4
y = \/Eda 0 e’?. (4.17)
It can also be expressed in an explicit complex form
Y= a +jb, (4.18)
. V2 o (051/2 + tan5)l/2
Wlth a] = 9 COS¢ = i 9 (4.19'1)
d d
V2o (Ocl/2 — tan6)1/2
and b, = p 0 sing = * P 0 (4.19-2)

The plus sign in the last terms of eq. (4.19) is for m=0, and the minus sign is for m=1
(see eq.(4.11)). We can also write

d
YT = a, +jb,, (4.20)

ol (al/z + tan5)1/2
with a, = N 0 cos¢p = =+ 5

4.21-1)
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12
a’ (Oc'/2 - tan5)
and b, = 0 sing = *

2 2

Using these expressions leads to another expression of H. with the time factor ¢/*":

(4.21-2)

1/4

H
H, = 1;)4 cosh[
cosh [35 0 e”’j

9 o yj ez

cosh (aly + jbly)

e’ 4.22
cosh (a2 + jbz) 422)

The complex field H. can be expressed as a combination of the amplitude |H;| and
the phase 6.:

H, = [H, PG (4.23)
h(2a,y) + cos(26,y) ]
where |- H, cosh(2a,y) + cos(2b,y 4.24)
' cosh(2a2) + cos (2b2)
and 0. = tan' [ tanh(a,y) tan(b,y) | — tan™' [ tanh(a, ) tan(b,)]. (4.25)

Equation (4.24) gives the relationship between the amplitude of the interior field |H.|
and the amplitude of the surface field Hy. The maximum values of these two amplitudes
are reached at different times due to a time lag or a phase lag of the field, which is given
by eq. (4.25). Fig.4.2 shows an example of the difference between |H.|/H, and the
instantaneous H./H, at the instant when the surface field reaches its maximum. The
phase lag 0. is closely related to the eddy-current loss as will be seen later.

If the intrinsic tand given in eq.(4.10) is zero or x"=0, then eqs.(4.24) and (4.25)
reduce to

(29 ) (29 J "

cosh| —y | +cos| —y

| = H, d d (4.26)
: cosh (6) + cos(0)

-1 Q 9 _ -1 Q 9
0, = tan [tanh(dy) tan(dyﬂ tan [tanh(zj tan(zﬂ. (4.27)
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These expressions agree with those given in some textbooks on ferromagnetism [89]
[90].

4.5 Real and Imaginary Part of the Field

Instead of expressing H. by the amplitude and phase, it is often convenient to express it
by a combination of the real and the imaginary parts as follows:

B cosh(aly +jb1y) jor . joot
H, = H, (et in) {Re[H, ]+, jIm[H_|} &, (4.28)

where
R I:H ] - cosh(a1y+a2)cos(bly—b2) + cosh(aly—az)cos(bly+b2) (4.29)
L= cosh (2a,) + cos(2b,) '
and
Im[HZ] - u, sinh (a1y+a2)sin (bly—b2) + sinh (aly—az)sin (b1y+b2) (430)

cosh (2a2) + cos (2b2)

If tand =0, then egs. (4.29) and (4.30) reduce to

0 0 0 0 0
cosh Ey+5 cos dy—— + cosh dy—— cos y+§
Re[H, | = H, (4.31)
cosh (0) + cos(6)

and

. 0 6). (0 0 . 0 0). (0 0
sinh 2y+5 sin Ey—g + sinh Ey—g sin gy+§
Im[H, | = H, . (432)
cosh (0) + cos(0)

In Chapters 6 and 7, the complex field representation given in egs.(4.28), (4.29), and
(4.30) is used to derive the expressions for various magnetic properties of the sheet.

4.6 Skin Depth from Field Distribution

In the present and the following sections, we consider the behavior of the magnetic field
in a frequency region where the skin depth is much smaller than the thickness of the
sheet. In other words, we consider the case where the condition 8>>1.0 is satisfied. In

this frequency range, the amplitude of the field near the surface can be approximated
from eq.(4.24) by
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(4.33)

|HZ| _ [cosh(Zal)’) TZ B [eza‘y Tz _ pavar

H, cosh (2a,) e

We use the inequalities, cosh(2a,y)>> cos(2b,y) and cosh(2a,) >> cos(2b,), which are
valid under the condition, #>>1.0. Using a; and a, from egs. (4.19) and (4.21), we can

|HZ| = €Xp (y - d) %, 72 | (° (4.34)
H, 2 (al/2+tan5)

Then, replacing the axis y with Y, which is given by

rewrite eq.(4.33) as

d

Y == -y, 435
5 7Y (4.35)
we obtain
Y

H —

LN o (4.36)

HO
where

0, 1 2
Oy = 2 7z 2 72 \/ P (4.37)
(a +tan5) ((x +tan6) ou o

Note that Y is the distance from the surface, whereas y is the distance from the
middle of the sheet. Equation (4.36) shows that the amplitude of the field decays
exponentially with the distance from the surface and at the depth of J,,, below the
surface, it becomes 1/e or 0.368 of the amplitude at the surface. The length J;,, given in
eq. (4.37) is hereafter referred to as the skin depth, while as mentioned before, the
commonly used J; given by eq.(3.5) is called the conductor skin depth. We can see
from eq. (4.37) that the skin depth J;, is somewhat shorter than the conductor skin
depth o, depending on the value of intrinsic tano. It is quite evident that if tanJ=0,
Os.m reduces to ds.

A similar approximation can be applied to the phase lag 6.. Provided that a;y>1.0
and a;>1.0 (these conditions are equivalent to y/d,>>1.0 and >>1.0, respectively),
we can use approximate expressions, tanh (a;y) = 1.0 or —1.0 and tanh (a;) =1.0 or —1.0.
The sign of plus or minus depends on the value of m given in eq.(4.11). As a result of
the approximations, 4., given in eq.(4.25), simplifies to
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D
U

=~ tan”' [tan(bly)] — tan™' [tan(b2 )] = by — b,

_ Y . (4.38)

) 5S/(al/2 — tan5)1/2

Equation (4.38) shows that the phase of the field lags linearly with respect to ¥ and at a
depth of d,/(a"*~tand)"?, the phase is exactly 1.0 [rad] behind the phase at the surface.
It should be emphasized that this distance is somewhat greater than the skin depth J;,,.
If tand =0, the depth at which the phase lag reaches 1.0 [rad] is exactly the same as the
depth at which the amplitude decays to 1/e.

The general expression of the skin depth for conductive magnetic materials should
include the complex permeability and the complex conductivity. As noted in Section 4.3,
in the frequency range of interest, the imaginary part of the effective conductivity is
much smaller than the real part and can be completely ignored. It is therefore safe to say
that the skin depth given in eq. (4.37), that includes ux', u"”, and o, is the general
expression for conductive magnetic sheets. The commonly used definition given by eq.
(3.5) is the skin depth of a conductor or a magnetic material whose intrinsic tand is
much less than 1.0.

4.7 Skin Depth from Wave Number

We consider the skin depth again from the viewpoint of damped-wave propagation.
Equation (4.12) is the general wave or Helmholtz equation for H. in a lossy (or
conductive) material. It is only when the material is much less conductive and hence the
displacement current is much higher than the conducting current that we obtain true
wave propagation with less attenuation. However, in a magnetic sheet of moderate
conductivity, a considerable amount of damping occurs during wave propagation. We
can obtain the skin depth (eq. (4.37)) and phase lag (eq. (4.38)) more easily by solving
eq. (4.12) under the condition 8>>1.0.

Using the axis Y from eq.(4.35) as the distance measured from the surface, eq.
(4.12) can be written as

o’H
S - PH.= 0. (439)

where y is given in eq.(4.9) and often referred to as the wave number, meaning the
number of cycles per unit length. If 6>>1.0, a wave entering from the opposite surface
is attenuated to a negligible value when it propagates through the sheet. Therefore, the
solution of eq.(4.39) is simplified to
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H, = Hye " (4.40)

Z

where H is the field intensity at the surface. Since y is a complex number, eq. (4.40)
indicates a propagating wave whose amplitude dampens with the distance from the
surface.

Now, we must only express the real and imaginary parts of y in terms of J; and
tand to obtain the skin depth and phase lag. It follows from eq.(4.9) that y is written as

Y= 1J% (4.41)
where
2 2
Y, = 5 a'* cos¢ and Y = 5 o' sing. (4.42)
Taking the plus sign in eq. (4.19), we can write
1 12
cosp = (o + tand) (4.43)
and
. 1 12
sing = ——r (0" - tan5)" . (4.44)

Substituting eqs. (4.43) and (4.44) into eq. (4.42) gives

(Ocl/2 + 1;an6)1/2 ~ (Ocl/2 — tan5)1/2
5 and Y = 5

N s

v, = (4.45)

The obtained y, and y; are consistent with eqs. (4.37) and (4.38), respectively. It follows
from eq. (4.40) that the ratio H./H, is given by

i - ejwt—(y,Jrjy,-)Y — |Hz|ej(a)t+91) (446)
H, H,
Y
H —
where |HZ| =7 = ¢ O and 0, = —-v,Y. (4.47)
0

Figure 4.1 shows the approximate amplitude |H.|/H, and phase 6. as a function of
the normalized distance Y/J; for several values of tand. The amplitude diminishes
exponentially and the phase lags linearly with respect to the distance from the surface.
For higher values of tand, the amplitude diminishes faster, whereas the phase lags
slower.
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Figure 4.1 Approximate normalized amplitude |H.|/H, and phase 8. of the field as a function
of normalized distance Y/d, for several values of tand. Y is the distance measured

from the surface and J; is the conductor skin depth given by eq. (3.5).

4.8 Numerical Examples
4.8.1 Amplitude and Phase of the Field
(a) |H;|/Hy and @, versus y/d

First, we consider the case where the imaginary part of the intrinsic permeability " is
zero, that is, the intrinsic loss factor tand is zero. Figure 4.2 shows the normalized
amplitude |H.|/H, and the phase 6. obtained from eqgs. (4.24) and (4.25) for several
values of . The abscissa is the normalized distance from the middle of the sheet y/d,
where d is the thickness of the sheet. Therefore, y/d=0 refers to the middle and y/d=
0.5 to the surface of the sheet. The parameter & is, as given in eq.(3.4), the normalized
thicknesses given by the ratio of the sheet thickness d to the conductor skin depth J; as
follows:
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- -4.0

4 0[rad]
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Figure 4.2 Normalized amplitude |H.|/H, and phase 6. of the field versus y/d for several
values of @ in the case of tand=0. y/d=0 refers to the middle and y/d=0.5 to the
surface of the sheet. Dotted lines show the approximate [H.|/H, and 6. obtained
from eqgs.(4.36) and (4.38). Green broken line represents the instantaneous H,/H,

at the instant when the surface field reaches its maximum.
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(4.48)

Equation (4.48) shows that 0 is proportional to the sheet thickness d, the square root of
the product of the frequency w, the real part of the intrinsic permeability ', and
conductivity o.

Figure 4.2 clearly shows the magnetic field distribution formed within the sheet
when a uniform alternating magnetic field is continuously applied to the sheet, parallel
to its surface. The amplitude of the field |H.| diminishes and the phase of the field 6.
lags with the distance from the surface. For a larger value of 0, |H.| decreases more
rapidly and 0. lags faster.

The dotted lines in Fig.4.2 show the approximate values of [H.|/H, and 6. obtained
from eqs.(4.36) and (4.38) for #=3.2, 5.0, and 10.0. Figure 4.2 shows that provided the
skin depth is much smaller than the sheet thickness (#>>1.0) and the position is near the
surface, the approximate and accurate results are in good agreement. For 6#=10.0, the
approximation is valid even in the interior of the sheet.

Formation of the magnetic field distribution can be explained in two ways. One is a
quasistationary field view, in which the field distribution is formed as the result of
superposition of the uniformly distributed applied magnetic field on the opposite-phase
equilibrium magnetic field, which is produced by eddy currents, with its amplitude
reaching a maximum in the middle of the sheet. The other is a propagating damped-
wave view, in which the secondary magnetic fields created by multireflections at both
surfaces are superimposed on the primary fields created by the waves that enter the
sheet through both surfaces and propagate toward the opposite surfaces while
attenuating.

As noted below eq.(4.25), |H.|/Hy shown in Fig.4.2 gives the ratio of the amplitude
of the interior field to the amplitude of the surface field. Because of the phase lag, the
field in the interior of the sheet reaches a maximum value at a different time from when
the surface field reaches its maximum. The green broken line in Fig.4.2 represents the
instantaneous value of H./H, for #=2.0 at the instant when the surface field reaches its
maximum.

Next, we examine the way in which the field distribution depends on the intrinsic
tand. Figure 4.3 shows [H.|/H, and 6. as a function of y/d for five values of 6. Fig.
4.3 (a), (b), (c), (d), and (e) illustrate the results for 4=0.5, 1.0, 2.0, 3.2, and 5.0,
respectively, each showing the field distribution for tand = 0.1, 0.5, 1.0, and 2.0. Note
that the scale of [H.|/H, is common to all figures, but the scale of 0. is different from
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Figure 4.3 (a) Normalized amplitude [H.|/H, and phase 6, of the field versus y/d for §=0.5

and four values of tand.
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Figure 4.3 (b) Normalized amplitude |H.|/H, and phase 6, for 6=1.0.
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Figure 4.3 (c) Normalized amplitude |H.|/H, and phase 6. for 6=2.0.
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Figure 4.3 (d) Normalized amplitude [H.|/H, and phase 8, for §=3.2.
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Figure 4.3 () Normalized amplitude [H.|/H, and phase 0, of the field for §=5.0. Dotted lines
show approximate [H.|/H, and 6. obtained from eqs.(4.36) and (4.38).

figure to figure. It is clear from the figures that as tand increases, the field amplitude
diminishes more rapidly, whereas the phase lags more slowly. The dotted lines in Fig.
4.3(e) show the approximate |H.|/Hy and 6. obtained from eqs.(4.36) and (4.38). We see
that in the case of 0=5.0, the approximate curves agree quite well with the accurate
ones up to approximately the halfway point between the surface and the middle of the
sheet.

(b) |H;|/Hy and @, versus 0

Now, we would like to know how the amplitude and phase of the field at a fixed
position behave as @ is changed over a wide range. Figure 4.4 shows [H.|/H, and 6. as a
function of @ for five values of tand. Fig.4.4 (a) gives the results at y/d = 0.4, a position
near the surface, and Fig.4.4 (b) shows the results at y/d=0.1, a position near the middle
of the sheet. The figures clearly show that at the deeper position (y/d = 0.1) the
amplitude diminishes more rapidly and the phase lags faster as € increases.
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Figure 4.4 (a) Normalized amplitude [H.|/H, and phase 6. versus 6 at y/d=0.4 for five values
of tand.
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Figure 4.4 (b) Normalized amplitude |H.|/H, and phase &, versus & at y/d=0.1.
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4.8.2 Real Part and Imaginary Part of the Field

In Chapters 6 and 7, we will use the complex field representation given in eq.(4.28) to
derive expressions for the magnetic properties of the sheet. We will show that
integrating and averaging Re[H.] and Im[H.] over the cross section of the sheet are the
essential parts of the calculations. The distribution of Re[H.] and Im[H.] within the
sheet and how the fields at a fixed position vary as € changes may be helpful in
understanding the high-frequency behavior of the sheet. Here we show some numerical
examples of Re[H.]/Hy and Im[H.]/H) as a function of y/d or as a function of 6.

(a) Re[H;]/Hy and Im[H_]/H, versus y/d

Figure 4.5 shows Re[H.]/H, and Im[H;]/H, as a function of y/d for five values of tand.
Fig.4.5(a) gives the results for #=0.5 and Fig.4.5(b) the results for §=2.0. As the
amplitude of the field [H.| is given by [H.|=(Re’[H.]+Im’[H.])"* and the phase 6. by
6. = tan ' (Im[H.]/Re[H.]), the behavior of |H.| and 6. is directly related to that of
Re[H.] and Im[H.]. Therefore, to better understand the behavior of |H.| and 6., it is
worth comparing Fig.4.5(a) with Fig.4.3(a) for #=0.5 and Fig.4.5(b) with Fig. 4.3(¢c)
for =2.0.

(b) Re[H;]/Hy and Im[H;]/H, versus 8

Figure 4.6 shows Re[H.]/H, and Im[H.]/H, as a function of 8 for five values of tand.
Fig.4.6(a) gives the results at y/d=0.4, a position near the surface, and Fig.4.6 (b) gives
the results at y/d=0.1, deep in the interior of the sheet. For the same reason as in Section
4.8.2 (a), it is worthwhile to compare Fig. 4.6 (a) with Fig.4.4(a) for y/d =0.4 and Fig.
4.6 (b) with Fig.4.4 (b) for y/d=0.1. For example, although Im[H.]/H, at y/d=0.4 in Fig.
4.6(a) becomes almost flat in the region where 6 is greater than approximately 2.0, the
phase 0. in Fig.4.4(a) continues to lag as € increases. This can be understood from the
behavior of Re[H.]/Hy, which decreases rapidly as 6 increases, as shown in Fig.4.6(a).

Figure 4.6 (b) shows the typical behavior of Re[H.]/H, and Im[H.]/H, at a position
deep in the interior of the sheet. One of the noticeable features is that Re[H.]/Hy
becomes negative when 6 exceeds approximately 3.0. This is closely related to the
behavior of the phase 6. that lags continuously as @ increases. Since Im[H.]/H, is
negative up to approximately 6=8.0, the phase 6. passes —n/2[rad] when Re[H.]/H,
crosses zero from positive to negative. In this way, the continuous increase in . with
further increases in @ is closely related to the alternating changes in sign of Re[H.]/Hy
and Im[H.]/H,.

The other noticeable feature shown in Fig.4.6(b) is that Im[H.]/H, reaches a
maximum at approximately 6=2.0 and decreases thereafter. The behavior of Im[H.]/Hy
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Figure 4.5 (a) Normalized real Re[H.]/H, and imaginary Im[H.]/H, parts of the field as
functions of y/d for =0.5 and five values of tand.
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Figure 4.5(b) Re[H.]/H, and Im[H.]/H, versus y/d for §=2.0.

60



1.0

Re[H.]/Ho
tand=0.01
0.8 |- 0.1
0.5
0.6 - 2.0 104
" Im[H.]/H,
0.4+ 4-0.2

e / / 0
i tand=0.01 ¢ 0.5 1.0 20 \

| I 1 L 1 s 1

0 2.0 4.0 6.0 8.0 10.0
0

Figure 4.6 (a) Normalized real Re[H.]/H, and imaginary Im[H.]/H, parts of the field as

functions of @ at y/d=0.4 for five values of tand.
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Figure 4.6 (b) Re[H.]/H, and Im[H.]/H, versus € at y/d=0.1.
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is closely related with the phase lag of the field as well as with the diminution of the
field amplitude. In the region where @ is small, the effect of the phase lag prevails over
the effect of the diminishing amplitude, so that Im[H.]/H, increases as € increases.
However, after a certain point, depending on the value of tano, the diminishing
amplitude effect surpasses the phase-lag effect, and consequently, Im[H.]/H, decreases
monotonously.

In Chapter 6, we will introduce a factor, g(4,p), which is proportional to the average
value of Im[H;] ([Im[H;]],/). In Chapter 7, we will show that the eddy-current loss P,
is also closely associated with [Im[H.]],.. Hence, the characteristic pattern of Im[H.]/Hy
shown in Fig 4.6 (b) appears on the curves of g(6,¢) in Fig. 6.2 and those of P,; in Fig.
7.2.

4.8.3 Interpretation of Phase Behavior

As shown in Fig. 4.3, for a higher value of tand, the field amplitude [H.|/H, diminishes
more rapidly as the distance from the surface Y is increased, whereas the phase of the
field, 6., lags more slowly with Y. A similar dependence on tand is also seen in Fig. 4.4,
in which |H;|/H, and 6. are given as a function of #. One can readily understand that a
high tané corresponds to a high loss, but may not easily understand the reason why the
phase lag of the field decreases with an increase in tand. We now examine the way in
which phase behaves as tand is varied by using a phasor diagram. Figure 4.7 shows

—— Re[H:]/Hy

Y

tan §=2.0
1.0

Im[H.]/Ho

Figure 4.7 Phasor diagram of the field H, constructed using the values of Re[H.]/H, and
Im[H.]/H, calculated at y/d=0.3 for §=2.0 and four values of tand (Fig.4.3(c)).
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the phasor diagrams of the field H., constructed using numerical values of Re[H.]/H,
and Im[H.]/H, calculated at y/d=0.3 for #=2.0 and four values of tand (Fig. 4.3(c)).
The figure shows that both the imaginary and real parts of the field decrease as tand
increases. Studying the figures more closely, we see that Im[H.]/H, decreases more
rapidly than Re[H.]/Hy, which results in a decrease in 0..
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5. Frequency Characteristics of Intrinsic Permeability

5.1 Introduction

In Section 2.7, we explained that we use two kinds of permeability in this paper, the
intrinsic permeability x and the effective permeability x.. The intrinsic permeability is
inherent in magnetization mechanisms and accordingly it is a material constant. On the
other hand, the effective permeability is affected by demagnetizing fields (see Section
6.2) and consequently depends on the frequency as well as the geometry of the magnetic
object. The effective permeability of magnetic sheet will be fully discussed in Chapter
6.

In this chapter, we survey the frequency characteristics of the intrinsic permeability
[89]-[104]. We are primarily interested in the magnetization processes that influence the
intrinsic permeability in the relatively low RF range where most RF cavities for proton
rings operate. In particular, two important processes are reviewed here at some length,
that is, the relaxation in orientation of magnetic moments and the resonance of domain

wall motion.

5.2 Fundamentals of Magnetization

It is well known that spin plays a central role in magnetism and that a wide range of
magnetic phenomena is associated primarily with magnetic moments due to the spins
of electrons and orbital effects. A ferromagnetic material is divided into a number of
small regions termed magnetic domains or simply domains, each consisting of many
atoms whose magnetic moments are aligned in parallel with each other. As a result,
each domain spontaneously magnetizes to the saturation value, but the directions of
magnetization of the various domains are such that the object as a whole has no
net magnetization. The shape and dimensions of domains in thermodynamic equilibrium
are determined by the minimum free energy condition of the ferromagnetic substance.
At domain boundaries, there are transition layers where spins gradually change their
direction from one domain to the other to decrease the exchange energy of spin pairs.
These transition layers are called domain walls or occasionally Bloch walls.

When a magnetic object is subjected to an increasing external magnetic field, its
magnetization increases and finally reaches magnetization saturation. For an object with
no domain structure, the magnetization processes are dominated by the orientation of
magnetic moments of particles and the rotation of the vector of spontaneous
magnetization as a whole. If a domain structure exists, the magnetization process is
governed by motion of the domain walls and rotation of the domain magnetization. The

former is associated with a change in the volume of the domain by movement of its
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boundaries and the latter is associated with a rotation of the magnetization vector in a
domain of fixed volume. In some objects and in certain field ranges, only one
mechanism, either the domain wall motion or magnetization rotation, is operative; in
others, both are operative. In most cases, the rotation process is characteristic of the
change in magnetization in relatively high fields. The magnetization process in soft
magnetic alloys may be characterized less by domain wall motion and more by
magnetization rotation [91].

Considering the intrinsic permeability further, on a minute scale, the local
permeability inside a magnetic specimen is not homogeneous. This is because the
magnetic flux distribution within a domain is not uniform during the process of
magnetization by the domain wall motion and/or the domain rotation. For example, in
the case of a field applied parallel to a 180° boundary, the local relative permeability is
almost unity away from the boundary, but assumes extremely high values within the
boundary. The intrinsic permeability that can be measured at the quasistatic state is the
macroscopic one averaged over the entire volume of the specimen. Analyses in this
paper are carried out solely on the assumption that the macroscopic intrinsic
permeability is distributed uniformly throughout the specimen.

When an alternating magnetic field is applied to a specimen and its frequency is
swept, dispersion appears in the frequency response of the permeability. Since we are
discussing the intrinsic permeability, the dispersion due to eddy-current effects is not
considered. The dispersion of the intrinsic permeability arises mainly from the
relaxation and resonance absorption associated with magnetization processes. If the
frequency is beyond 1/z, where 7 is the relaxation time defined in the next section, the
magnetization can no longer follow the applied field, and as a result, we obtain a
permeability dispersion. In addition, when the frequency approaches a natural resonance
frequency of magnetic processes, dispersion arises from the resonant power absorption.

5.3 Relaxation

First, we examine how relaxation in the orientation of magnetic moments affects the

frequency behavior of the intrinsic permeability.

5.3.1 Relaxation Equation
The magnetization M(?) is given by

M(r) = xH(1), (5.1)

where y is the magnetic susceptibility and H(¢) is an external magnetic field. The
magnetic flux density B(7) is related to H(¢) through the intrinsic permeability x as
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follows:

B(t) = u[H(r)+M(2)] = o [H(t)+ xH(2)] = 1o (1+ x )H(z)
= o (1) = uH (7). (5.2)

Equation (5.2) shows that the relationship between the relative permeability u, and y is
given by u, =1+ y.
Consider a magnetic object where M, denotes its magnetization saturation value.

Assume that M; is determined by two contributors:
Ms: Mos+ Mw’ (53)

where M, is the saturation magnetization by orientation of magnetic moments and M,,
is the magnetization by a fast mechanism with a response time much faster than 7. In
general, when such an object is suddenly exposed to an external static magnetic field, a
certain length of time is required for the magnetization by orientation to build up to its
final value M,,, whereas M,, is reached instantaneously on the relaxation time scale.

The relaxation is characterized by a response time or relaxation time z, which is the
time required for the magnetization to fall from the equilibrium value to 1/e of the that
value, after the field is switched off. Figure 5.1 illustrates the time dependence of the
total magnetization M(¢) after a sudden application of a static magnetic field at /=0. The
instantaneous increase to M,, is associated with fast magnetization, and the orientation
of the magnetic moments then causes a slow increase in magnetization to the static
value M,. In the figure, M,(f) denotes the time-dependent magnetization due to
orientation of the magnetic moments.

Assuming the relaxation time of orientation is 7, we can write M(¢) as

t
M(z) =M, (1) + M, = Mos(l—e f] +M,. (5.4)
Differentiating both sides of eq. (5.4) with respect to ¢ leads to
() 1. -t
—l = M, e ". 5.5
0 - Mo (5.5)

From egs. (5.3), (5.4), and (5.5) we obtain the differential equation for M,(¢),

66



M(1)

Mo(t) Moy M

Figure 5.1 Time dependence of magnetization M(¢) after sudden application of a static

magnetic field to a magnetic object. M,, is the fast-mechanism magnetization.

M, (t) 1
~r +—M,(t) =—(M,-M,). .
M) = — (M- M, (5.6)
When an alternating magnetic field
H(t) = Hoejw[ (5 7)

is applied, eq.(5.6) can be employed if we make the following changes [105]. We
replace M, with a function of time M;(#), which represents the saturation value obtained
in a static field equivalent to the instantaneous value H(¢). Likewise, we replace M,,
with M,,(?). Then, eq. (5.6) is written as

M Dy, ) = Lm0 M 0], 58)

where M;(7) and M,,(¢) are given by

M, ()= x,Hye! and M, (t)= y,H,e'™. 5.9
s stH0 0 ( )
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Here, y; is the static susceptibility and y,, is the fast-magnetization susceptibility.

5.3.2 Dispersion of Permeability due to Relaxation

The next step is to solve eq. (5.8) to obtain the frequency characteristics of M,(¢), from
which we can derive the frequency response of the intrinsic permeability influenced by
the relaxation in orientation.

A solution of eq. (5.8), M,(¢), is given by a combination of the general solution to
the homogeneous equation, in which the term on the right-hand side is zero, and a
particular solution to the inhomogeneous equation:

Xs — X jot
M, (1)= Alw)e T+ =—" H,'". 5.10
(0= Alw)e 7+ Lo g, 5.10)
The first term is the general solution with the complex amplitude A(w), which depends

on the initial conditions, and the second term is the particular solution. If we assume
that M,(¢)=0 at =0, eq.(5.10) becomes

t
Mo(t) - _ %S .XW Hoe T 4 %S .ZW Hoejwt. (5.11)
1+ jot 1+ jot
Since we are presently not interested in transient behavior, the first term on the
right-hand side is omitted, resulting in

Xs = X jot
M (1) = =—2 H, /. 5.12
o() 1+jCOT 0 ( )

It follows from egs.(5.4), (5.9), and (5.12) that the total magnetization M(¢) can be

written as

M(1) = M, (1) + M, (1) = [% + x] Hoe™.  (5.13)

The magnetic flux density B(z) is then given by
B(r) = uo[H(t)+M(r)] = po| 1+, + LT Ao g pion, (5.14)
Y1+ jor

The susceptibilities y,, and y, are given by y, =uw—1 and y,=u,—1, where u,, is the
relative permeability due to fast magnetization and y; is the static relative permeability.
Equation (5.14) is then expressed as
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B(1) = HO[HW N %] H, oo 5.15)

We then obtain the frequency-dependent relative permeability u,(w) given by

MS_IIJ/W ’ . ”
w)=u,+ ——=>= (o) - o), ,
(o) = u, Tt o w(w) - ju (o) (5.16)
where
’ ﬂ _‘u
= —s W 5.17
‘ur(w) ‘LLW+ 1+(02T2 ( )
and
(4, — ) 01
” = J = . 5.18
.Ur(w) 1+ 0212 ( )

The real part originates from oscillations in phase with the external field, whereas the
imaginary part is attributed to oscillations 90° out of phase with the field. Equations
(5.17) and (5.18) are equivalent to those for the dielectric constant, which are frequently
referred to as the Debye equations. Studying eq.(5.17), we find that the real part is
nearly equal to u for very low frequencies (w7 <), and nearly equal to u, for very
high frequencies (wt>>1). This is consistent with the definition of y, and y, given in
eq.(5.9).
We can normalize u,(w) and u,/'(w) as

, (o) - p, 1
- = 5.19
.Ur(w)n U -, 1+ 0’12 (5.19)
and
(o ot
(o) = 19 . (5.20)

" u,—u, 1+6027:2

Figure 5.2 illustrates u,(w)|, and w1/ (w)|, as a function of wz. We see simple relaxation
behavior as the frequency increases from low values where the magnetization follows
the applied field variations to high values where it can no longer follow the field
variations. To explain the behavior more specifically, when @ is considerably less than
1/7, the orientation of the moments can follow the field variations and contribute their
full share to the magnetization, but when w is greater than 1/7, the orientation can no
longer follow the field variations and consequently the magnetization decreases rapidly
as the frequency increases. We can also see from the Fig. 5.2 that the imaginary part
w' (w)l,, to which the magnetic loss is proportional, exhibits a maximum at the frequency
1/z, around which there is a rather sharp drop in the real part ) (®)l,.
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Figure 5.2 Real part and imaginary part of normalized relative permeability obtained from
eqs.(5.19) and (5.20) as a function of wz, where w is the angular frequency and 7

is the relaxation time.

Dispersion of permeability due to the relaxation in orientation is found to occur in

many kinds of ferrites [92].

5.4 Resonances in Low RF Range

In this section, we outline three types of resonances, which occur in a relatively low RF
range and therefore might influence the performance of magnetic-core-loaded RF

cavities.

5.4.1 Resonance of Magnetization Rotation

If a ferromagnetic material contains either no domain walls or only immobile domain
walls, it can only be magnetized by rotation of the domain magnetization. This
mechanism was already mentioned in Section 5.2 and is called magnetization rotation.

Figure 5.3 shows the typical permeability spectra at room temperatures measured on
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Ni-Zn ferrites of various compositions [106]. The general characteristic of the spectra is
that ;. (¢ in the figure) remains constant in a certain frequency range, while at higher
frequencies, after a small rise, it drops fairly rapidly to a very small value. Snoek
explained this in terms of the resonance of magnetization rotation under the action of
the anisotropic field[107]. Another experiment on a Ni-Zn ferrite was in agreement with
this view [108]. This phenomenon is sometimes called natural resonance. In Fig.5.3,
the resonance feature does not appear as striking due to the use of the logarithmic scale.
Figure 5.3 also shows that the maximum of g’ (¢” in the figure) appears at a lower
frequency when g (¢’ in the figure) is higher in the low-frequency region. This is well
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Figure 5.3 Frequency dependence of real part and imaginary part of relative permeability (x'
and " in the figure) measured on Ni-Zn ferrites of various compositions [106].
The dashed line, which represents the Snoek limit, connects the points where u'

drops to half its low-frequency value.
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described by the following relationship between the resonance frequency f,, at which
absorption and dispersion set in, and the relative permeability before resonance y;-:

1
3mu,

Sl —=1) = M, (5.21)
Here, uo is the permeability of a vacuum; y,, the gyromagnetic constant; and Mj, the
spontaneous saturation magnetization. Equation (5.21) shows that for materials having
approximately the same value of M, the frequency f. is inversely proportional to ;.
The dashed line in Fig.5.3 was drawn by connecting the points where y; drops to half
its low-frequency value. This line is called the Snoek limit, which expresses a limitation
in the frequency performance of ferrites. Ferrites cannot have a permeability higher than
the Snoek limit, as long as cubic magnetocrystalline anisotropy is present [93].
Subsequently, it was discovered that this limit could be overcome by using a special
magnetocrystalline anisotropy. If the anisotropy in the c-plane is small, magnetization
rotation in this plane can occur. Let the anisotropy field for this magnetization rotation
be H,, while that for rotation out of this plane be H,. In this case, the relationship
between f. and y; becomes [109]

1 1 /H 1 /H
" 1) = M | = [ ¢ Z [ ez | 5.22
Jo (1) 37%% s(2 H, 2 HalJ (5.22)

The value inside the parentheses on the right-hand side is always greater than 1.0

because H,, is much greater than H,;, which means this limit is much higher than the
Snoek limit given in eq. (5.21). One of the materials that satisfy this condition is a
magnetoplumbite-type hexagonal crystal called Ferroxplana[110].

5.4.2 Domain Wall Resonance

A domain wall is a boundary between two adjacent magnetic domains and its movement
does not accompany any actual mass displacement. However, Doring found that a
moving wall exhibits inertia and has an apparent mass [111]. Therefore, when an
alternating field is applied, the wall oscillates back and forth about its initial position,
just like a mass on a spring acted on by an alternating force. When the frequency of the
applied magnetic field coincides with a natural oscillatory frequency of the wall,
resonance occurs which enhances the oscillation amplitude. Figure 5.4 shows the
frequency spectra of u;—1 (¢1—1 in the figure) measured on Mg-ferrites, in which two
dispersion regions are observed [112]. The dispersion at lower frequencies is attributed
to the domain wall resonance and the one at higher frequencies to the magnetization
rotation resonance [113][114]. Dispersion of intrinsic permeability due to domain wall
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resonance is reviewed in Section 5.5.
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Figure 5.4 Relative permeability spectra of Mg-ferrites, showing two resonances [112]: the
resonance at lower frequencies is attributed to domain wall resonance and the one

at higher frequencies is due to magnetization rotation resonance [113][114].
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5.4.3 Dimensional Resonance

Dimensional resonance is a type of resonance observed in low RF regions. This
resonance is not intrinsic to magnetic materials but is discussed here because of its
importance in applications of magnetic materials to RF accelerating cavities.

Assuming the relative permittivity and relative permeability of a material are ¢, and
11, respectively, the velocity of an electromagnetic wave is reduced by a factor (g,4,) "

as compared to that in a vacuum. Therefore, the wavelength in the material 4 is given by

A= —S (5.23)

Nen

where c is the velocity of light in a vacuum and f is the wave frequency. If one of the
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Figure 5.5 Dependence of the real part of relative permeability u; (uey in the figure) on the
dimensions of a sample of Mg-Zn ferrites. Sample cross sections are to scale for

each curve. The ordinate is normalized to the value at 1 [kHz], xf [115].
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dimensions of a sample is very close to an integer multiple of the half wavelength 1/2,
the electromagnetic wave resonates within the sample, giving rise to a standing wave.
This phenomenon is called dimensional resonance and was first observed by F.
G. Brockman et al. in samples of Mn-Zn ferrites with different dimensions [115]. Their
results are plotted on the left side of Fig. 5.5, in which sample cross sections are shown
to scale for each curve. The figure shows that the frequency response of permeability
exhibits a resonance feature and u;. (1o in the figure) drops sharply between 1 and 2
[MHz] for a core with cross-sectional dimensions of 1.25x2.5 [em?]. This drop in s, is
shifted to a higher frequency when the size of the cross section is reduced.

When designing a magnetic-core-loaded cavity, one has to avoid the dimensional

resonance by choosing appropriate material constants and size of the core.

5.5 Domain Wall Resonance
5.5.1 Equation of Domain Wall Motion

In this section, we examine the domain wall motion, emphasizing on the resonance of

the domain wall oscillations. The equation of motion of the wall per unit area is given
by

d*z(t dz(t

L d2l0) | daly)

o . kz(t) = 2M H(t), (5.24)

where z(¢) is the displacement of the wall from its equilibrium position; m, the apparent
mass of the wall per unit area and a measure of its inertia; f, the viscous damping
parameter; k, the restoring coefficient; M,, a spontaneous saturation magnetization of
the material; and H(?), the applied magnetic field given by eq.(5.7). The first term in
this equation, the product of the mass m and its acceleration, is the inertial term. This
represents the resistance of the spins to sudden rotation. The second term proportional
to velocity dz(t)/dt and represents a resistance to wall motion. The third term represents
a force due to crystal imperfections such as residual microstress and inclusions, which
hinder the motion of domain walls. The term on the right-hand side of the equation
represents the pressure acting on the 180°wall and should be replaced with v2M;H(?)
for a 90°wall.

Provided that n represents the number of walls per unit volume, a change in
magnetization produced when all the domain walls are displaced by z(¢) is given by
M;nz(f)= M,,(f). Multiplying both sides of eq. (5.24) by M,n leads to

" d’M,, (t) ‘B dM,, (1)

dt* dt

+ kM, (t) = 2MnH(z). (5.25)
This can be rewritten in the form
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d*M, (1)  dM,, (1) 2M’n

2
+ + oM (1) = £ — H(z), 5.26
with y = b and w; = i, (5.27)
m m

where y is the damping coefficient and wy is the natural resonance frequency of the
domain walls. We are primarily interested in the equilibrium state or the steady state
solution of eq.(5.26). Assuming the form

M, (t) = M,e’”, (5.28)
and substituting it into eq. (5.26), we obtain

_2M:n (0f -0?) - jyo

2
m(wf-0*) + 7’0’

M, H,. (5.29)

5.5.2 Dispersion of Permeability due to Domain Wall Resonance

Now, we write the magnetization M(?) as
M(z) = M, (1)+ M, (1) with M, (1) = x,Hee™, (5.30)

where M, (#) and y;, are the magnetization and the susceptibility for frequencies much
higher than wy, respectively. Then, the magnetic flux density B() is given by

B(r) = o [H()+ M(1)] = 1, [H()+ M, (1) + M, (1)]

Min o) — o’ 2M?n YO

2 N
=Uy| 1+, + m (a)g—a)z)2+ }/2(02 —J " ((03—(1)2)2+ ’}/2(02

jor
Hye™.

(5.31)

The expression inside the parentheses corresponds to the complex relative permeability
as a function of frequency, which means that eq.(5.31) can be expressed as

B(1) = o[ w (@) - jw(@)] Hye', (5.32)

2M:n w; - @’

s

where u (o) = w,+ (5.33)

(o5 - a)z)2 + 7’0’
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2M:
and w(w) = - =

) 5.34
m (Cog—a)z)2+ Yo’ (5:34)

with w, =1+ yp. It follows from eqs. (5.33) and (5.34) that for frequencies much lower
than wo,
2M Szn

wlo)=p,+—5=yu, ad p(o)=0, (5.35)

and for frequencies much higher than wy,
u(w) =, and  p(w)=0. (5.36)

We can see from egs. (5.35) and (5.36) that the difference between the real parts of the
relative permeability at very low and very high frequencies is given by

2M;
My = My = m—w” (5.37)
We can normalize u,(w) and u,/'(w) as
: (o) — i, 1—(/a,)"
w (o), = = 5.38
2Ms2n/ma)§ [1—(w/a)0)2}2+ (1/Q2)(a)/a)0)2 ( )
/ 1/0)(w/w)
and w(o)| = wlo) ( . (539
2Mn/mey [1_(6"/(00 )2 T"‘ (1/Q2)(a’/wo)2
where Q is given by
0= L _ _M_ (5.40)

4 B

Equation (5.40) is equivalent to a quality factor used in various kinds of resonance
systems. In this case, a high Q-value means a large dispersion of y; and high energy
absorption.

Figure 5.6 shows the normalized relative permeability obtained from eqgs.(5.38) and
(5.39) as a function of w/w, for three values of Q. We can see that when the frequency
of the applied field is very different from the natural resonance frequency wy, the real
part . (w)l, is approximately constant relative to frequency and the imaginary part
w1 (w)l, is virtually zero. In contrast, when the frequency is close to o, there are sudden
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Figure 5.6 Real and imaginary parts of normalized relative permeability obtained from

eqs.(5.38) and (5.39) as a function of w/w, for three values of Q.

changes in both the real and imaginary parts. The sharp peak in the imaginary part
reflects the resonance absorption of energy that occurs in the proximity to wo. |u.()l,|
is larger at low frequencies (w<wy) than at high frequencies (w> o) because the
amplitude of in-phase domain wall oscillations below resonance is much larger than the
amplitude of 180° out-of-phase oscillations above resonance.

If the inertia of the wall is very small or the value of the apparent mass m is such
that the first term on the left-hand side of eq.(5.25) is negligible, the equation reduces to
a relaxation equation similar to eq.(5.8). Then, the characteristic rapid change in y, near
the resonance disappears and is replaced by a rather slow change.
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5.6 Illustration of Typical Frequency Response of Permeability

Different sources of magnetization contribute to the intrinsic permeability in different

frequency regimes. Figure 5.7 is a typical frequency response of relative intrinsic

permeability, which is helpful in summarizing this section. The figure shows the

relative contributions of two different dispersion mechanisms: relaxation and resonance.

Since relaxation is a comparatively slow process, its contribution to the permeability

generally disappears at a lower frequency than the contribution from resonance.

Therefore, as the frequency of the external field is increased from a very low value, first

there is a rather slow drop in g, around the relaxation frequency 1/7(=w,.), followed

by a characteristic change in g, around the resonance frequency .

7/

Wr

4
Mr es

1/t (=)

1

1/t (=) 0o

Figure 5.7 Schematic of real and imaginary parts of relative intrinsic permeability as a function

of frequency for a magnetic material with a single relaxation at 1/7 and a single

resonance at wg. Ujs corresponds to residual losses.
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The bottom of Fig. 5.7 shows a schematic of x4, in which uj. represents the
imaginary part of the permeability corresponding to residual losses.

In general, the frequency behavior of permeability for any particular mechanism in
which there is an equilibrium configuration of magnetic moment can be described by a
driven damped-oscillator equation such as eq.(5.24). The resonant absorption belongs to
this type of mechanism. On the other hand, a freely rotating magnetic moment has no
equilibrium configuration and accordingly shows relaxation dynamics.

For most magnetic alloys with moderate conductivity, eddy currents become
influential at a lower frequency than the lowest relaxation frequency of magnetic
moments. In this case, the dispersion due to relaxation and resonance should be
completely masked by the dispersion due to the eddy currents, and as a result, the
frequency response of the effective permeability (not intrinsic permeability) depends
mainly on eddy currents. This is only speculation, and hence, it would be worthwhile
comparing measured values with estimated ones that include the effect of eddy currents,
such as estimations obtained from the expressions derived in the next chapter.
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6. Effective Permeability

6.1 Introduction

In Chapter 4, we used the intrinsic permeability x (=u'—ju") to obtain the magnetic
field distribution in the interior of the sheet. The reason for using x is that it originates
in magnetization mechanisms and hence determines the local relationship between B
and H. Measurement of the intrinsic permeability of a conductive magnetic material is
extremely difficult, if not impossible, because the measurement unavoidably involves
the eddy-current effects unless the frequency is very low. However, note that although
knowing the intrinsic permeability is essential for materials scientists and engineers, it is
not necessarily important for most users of magnetic materials. Users are primarily
interested in the apparent or macroscopic properties of a magnetic object, not in the
fundamental and microscopic properties. Therefore, they need another definition of
permeability appropriate for characterizing the magnetic properties of an object as a
whole. This definition of permeability must establish a relationship between the applied
magnetic field and the average magnetic flux density of the object, both of which can be
measured either directly or indirectly. This permeability is referred to as the effective or
apparent permeability. Earlier, we termed this the effective permeability and denoted it
by ue (=ue —ju'). To obtain accurate expressions of s, the fields H and B are integrated
and averaged over the whole volume of the object. In this chapter, we derive the
expressions for effective permeability of the magnetic sheet on the assumption that the
local relationship of B to H is determined by the intrinsic permeability that is not
influenced by the presence of eddy currents.

6.2 Definition of Effective Permeability

In most cases, it should not be a problem if we are unaware of whether we are using the
intrinsic or the effective permeability. However, in some cases, such as the one we are
currently dealing with, we must distinguish between intrinsic and effective. We
consulted several dictionaries and textbooks for the definition of permeability. 4 New
Dictionary of Physics[116] states that permeability is “the ratio of the magnetic flux
density in an object or medium to the external magnetic field strength inducing it.” This
is a typical definition appearing in most physics dictionaries and ferromagnetism
textbooks. However, to clarify the definition, we also need to define the term magnetic
flux density. A statement on the distinction between the intrinsic permeability and the
effective permeability is found in the Encyclopedic Dictionary of Condensed Matter
Physics[117]. Tt states that the effective permeability of an object depends on its
geometry and is related to the intrinsic permeability by the demagnetizing factor. In
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some textbooks, demagnetizing factor is defined as “when an object of finite size is
magnetized by an external magnetic field, the magnetic free poles appear on its ends,
which then produce a demagnetizing field directed opposite to the magnetization.” The
ratio of the demagnetizing field to the magnetization is called the demagnetizing factor,
which depends on the geometry of the object. This is the term used in the definition of
the effective permeability given above.

Here, we extend the definition of the effective permeability to the case where an
alternating magnetic field is applied to a conductive magnetic object. The eddy currents
induced inside the object produce a magnetic field whose direction is opposite to the
applied field. This demagnetizing field is added to the field produced by the magnetic
free poles and contributes to the demagnetizing factor and consequently to the effective
permeability. In the present model, the magnetic sheet extends infinitely and is
magnetized parallel to its surface; therefore, the demagnetizing field due to magnetic
free poles is zero. As a result, the demagnetizing factor comes exclusively from the
eddy currents. Note that in our treatment, the demagnetizing effect due to eddy currents
is naturally included in the expressions of H and B and does not explicitly appear as a
demagnetizing factor. It is quite reasonable to define the effective permeability of the
sheet as the ratio of the average magnetic flux density to the applied magnetic field that
induces it.

6.3 Relationship between x4 and u,

In Chapter 4, we discussed how the magnetic field H. varies with the depth under the
sheet surface. The magnetic flux density within the sheet, B., is locally related to H. by
B.=uH., where yu is the intrinsic permeability. Hence, the amplitude and phase of B.
vary with the distance from the surface in the same manner as those of H..

Now, let Hy be the amplitude of the applied magnetic field, and let [H.],, and [B.],,
be the magnetic field intensity and magnetic flux density averaged over the cross
section of the sheet, respectively. Then, from B.(y)= xH.(y), which holds for any value
of y, we can write the following relationship between the effective permeability x. and
the intrinsic permeability u:

[B.],= u[H,], = wH, (6.1)

This important equation forms the basis for the derivation of the effective permeability.
It is worthwhile emphasizing that p. expresses the relationship between H, and [B.],,,
whereas u expresses the relationship between [H.],, and [B.],,. Provided that the values
of Hy and u are given and [H.],, is known, we can obtain u, from eq.(6.1).

In the next section, using the field distribution obtained in Chapter 4, we derive the
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expression for [H.],,, and in the following section, we use it to obtain ..

av’

6.4 Average Magnetic Field Calculations

For the calculations in this section, we use the complex representation of H. given in eq.
(4.28), from which the average magnetic field [H.],, is expressed by

[H.], = [Re[H.]] +j[Im[H.]],. (6.2)

where [Re[H:]],, and [Im[H.]],, represent the average values of the real and imaginary
parts of the field, respectively. The average fields are obtained by integrating Re[H.]
and Im[H;.] over the cross section of the sheet S (=/yxd) shown in Fig. 3.2. The
integration of Re[H.] is then written as

a
21 J2 Re[H. ] dy
0

LRe[HZ |da

21,H, »
cosh(2a2) + cos(2b2)

d
J‘z [COSh (a,y+a,)cos(by—b,) + cosh (a,y—a,) cos (b,y+ b, )] dy.
0

(6.3)
Performing the integration, we obtain
J‘ ReI:Hz :I da = \/511(/)4dH0 cos(¢)sinh(2a, ) + sin(¢)sin(2b,)
s o6 cosh(2a, ) + cos(2b,)
= l,dH, (6, 9), (6.4)
where
f(@, ¢) _ 2 cos(¢) sinh(2a2) + sin(¢) sin(2b2) . 65)

a'’*e cosh(2a2) + cos(2b2)
Substituting a, and b, from eq.(4.21) into eq.(6.5) yields another form of f(6,¢),

1 Msinh(M6) + Nsin(N6)
a8 cosh(M8) + cos(NO)

f(6,9) = , (6.6)
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with
M = i(am + tanc()')l/2 and N = i(al/z - tan5)l/2, (6.7)

where the plus sign is for m=0 from eq. (4.11) and the minus sign is for m=1. The
average real part [Re[H.]],, is obtained from eq.(6.4) by dividing it by the cross-
sectional area S:

[Re[H.T],

1 1

— | Re|H, |da = — | Re|H, |dv

S J.S I: Z ] lod J.a [ Z ]

Likewise, the integration of Im[H;] over the cross section of the sheet is performed:

a
J Im[H, ] da = 21, Jz Im[H, ] dy
S

0

 214,dH, sin()sinh(2a,) - cos(¢)sin(2,)
oo cosh(2a,) + cos(2b,)

= —1,dH,g(6,9), (6.9)

V2 sin(9) sinh(2a, ) — cos(¢) sin(2b2).

h 0,0) = 6.10
WAETE g( ¢) a’e cosh(2a2) + cos(2b2) (6.10)
This can also be written as

1 Nsinh(M6) — M sin(NO
g(6,9) = (M6) (N6) (6.11)

a"’0  cosh(M8) + cos(N6)

Dividing eq. (6.9) by the cross-sectional area S, we obtain the average imaginary part:

[m[B,]] Hslm[nzjda _ loid J.Slm[HZ]da

= —H,4(6.9). (6.12)

It follows from eqs. (6.8) and (6.12) that [H.],, in eq.(6.2) is represented by

[H.] = H,[f(6.9) - jg(6.9)]- (6.13)

84



In the remainder of this paper, we will frequently see expressions including f(6,¢)
and/or g(0,¢). Equation (6.13) shows that the average real part of the field is
proportional to f(6,9) and the average imaginary part is proportional to g(6,¢).
Remembering this when we see expressions including f(6,¢) and/or g(6,¢) will help us
understand the meaning of the expressions.

If tand=0, then f(0,¢9) and g(6,p) are reduced to

_ 1 sinh(6) + sin(6)
1(0) = 6 cosh(8) + cos(8) (6.14)
and
_ 1 sinh(@) — sin(6)
8(0) = 6 cosh(6) + cos(6) (615)

These expressions agree with those in the ferromagnetism textbook [90]. In the textbook,
f(0) is used to express the ratio of the inductance of a coil to that at very low
frequencies and g(6) is used in the expression of the AC resistance of the coil caused by
eddy currents. This clearly shows that the coil inductance is related to the real part of
the magnetic field and that the coil AC resistance or eddy-current loss is related to the

imaginary part of the field.

6.5 Derivation of Effective Permeability

Now that the average magnetic field inside the sheet is known, we are ready to derive
the effective permeability .. From eq.(6.1), the average magnetic flux density [B.],, is
given by

[B.], = uHy= (u—ju)H,. (6.16)

We see from eqs. (6.1) and (6.2) that [B.],, can also be written as

[B.],=u[®], = (w-ju){[Re[H,]], +J[m[H]],}
= {u’ [Re[H_ ], +u”[Im[H, ]]av}—j{—u’[lm[Hzﬂav+ ,LL”[Re[HZ]]aV}.

(6.17)
Letting the real part of eq. (6.17) be equal to that of eq. (6.16), we have

iy = [Re[ ], + w[im[R.]],. 619

Replacing [Re[H.]],y and [Im[H:]], in eq.(6.18) with egs. (6.8) and (6.12), we obtain
the real part of the effective permeability:
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u, = w'f(6.9) —ug(6.9). (6.19)
Dividing both sides of eq.(6.19) by u' gives

He f(6.9) — (6, 9)tané. (6.20)

’

u

In the same manner, equating the imaginary part of eq. (6.17) with that of eq. (6.16),

we obtain
uHy = — ' [Im[H, ]+ " [Re[H, ]],. (6.21)

Substituting [Re[H:]],, from eq.(6.8) and [Im[H.]],, from eq. (6.12) into eq.(6.21)
yields the imaginary part of the effective permeability:

u = wf6,9) + ws(6,9). (6.22)

This can also be written as

Ko~ f(6.6) + 8(6.9) —

p — (6.23)

From the expressions of x; and ¢ together with those of f(0,9) and g(6,¢), we see that
the effective permeability is determined by the frequency w, the sheet thickness d, the
intrinsic permeability x, and the conductivity o.

It follows from egs.(6.1) and (6.13) that the relationship between the average
magnetic field within the sheet [H.],, and the applied magnetic field H, is given by

[H.], _ u
= — = fl6.¢) —jgl6.9). (6.24)
o = e r(o.0) - 5(o.0)
Expanding f(0,¢) and g(6,¢) into a power series of 6 and taking only the first term

of a fixed number and the second term of 6> we obtain the low-frequency
approximations of f(6,¢) and g(@,¢), which are given by

f(6,¢) =1- %02 tand and g(6,9) = éez. (6.25)

Then, x; from eq.(6.19) and w from eq.(6.22) are approximately written as

’ ’ 1 ”
o= W - S u6, (6.26)
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1
and - W (1-tan’5). (6.27)

These low-frequency approximations were already shown in Chapter 3 in eqgs.(3.54) and
(3.55).

6.6 Permeability as a Function of Frequency

In practice, it is advantageous to write the permeability in terms of the frequency f
instead of 6, because the measured permeability is usually given as a function of f. We
can rewrite f(6,¢) from eq.(6.5) and g(@,p) from eq.(6.10) as

k, cos(9)sinh(2k,\[f ) + sin(9)sin(2k,[f )

F(f’ ¢) B \/? cosh(2kl\/?) + cos(2k2\/?) (6:28)
K sin(¢) sinh(2k1\/?) — cos(9) sin(2k2\/?) 620
and G(f’ ¢) - \/7 cosh(2kl\/?) + cos(2k2\/?) ’ (€29
~1/2
with b = — ol (6.30)
k = %[(am and) ri'o] 6.31)
and k, = g[(aw— tan5) 77:,11’0‘}1/2, (6.32)

where ¢ is a function of tanod given in eq. (4.11), d is the thickness, and o is the
conductivity of the sheet. Using eqs. (6.28) and (6.29), we can rewrite y; given in eq.
(6.19) and ¢ in eq. (6.22) in the forms

u, = WF(f,9)-u G(f.9) (6.32)
and w = wFE(f.9)+ wG(f.9). (6.33)

6.7 Numerical Examples

Figure 6.1 shows f(6,¢) versus 6 for four values of tand. We see from the figure that
f(0,9) is nearly equal to 1.0 in the region where #<<1.0, and decreases rapidly as 6
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increases. Since f(6,p) is proportional to the average real part of the field [Re[H.]].,
this behavior can be inferred from the typical pattern of Re[H.] shown in Fig. 4.6.

Figure 6.2 plots g(0,¢) against 6 for four values of tand, showing that g(60,¢) is
nearly equal to zero when 0 is very small, gradually increases as @ increases, reaches its
maximum at #=1.3-2.3, and then decreases afterward. When tan¢ is rather high, the
value of 6 at which g(6,¢) reaches a maximum depends on the value of tand. However,
if tano is reduced to less than 0.1, the maximum always occurs when 6 is approximately
2.254, at which f(0,¢) is approximately 0.58. The reason why g(é, ), shown in Fig. 6.2,
is similar to Im[H.]/H,, shown in Fig. 4.6(b), is that g(6,¢) is proportional to the
average imaginary part of the field [Im[H.]],,. The difference between Fig. 6.2 and Fig.
4.6(b) is that Fig. 4.6(b) shows Im[H.]/H, at a fixed position and not for the average
value within the sheet. We will see in Chapter 7 that g(6,¢) is actually closely related to

VACKY

0 20 4.0 6.0 8.0 10.0

Figure 6.1 f(60, ) obtained from eq.(6.5) versus 6 for four values of tand. f(0, ¢) is

proportional to the average real part of the magnetic field inside the sheet.
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the eddy-current loss.

As mentioned above, if 6 decreases toward 0, f(6,¢p) approaches 1.0 and g(0,¢)
decreases toward 0. As a result, g/ in eq.(6.19) and y! in eq.(6.22) reduce to u’ and y”,
respectively. Thus, we have a natural consequence that in a very low frequency range,
the effective permeability, u. (=ue —jue), reduces to the intrinsic permeability, u
(=u'—ju").

Figure 6.3 shows the plots of u//u" as a function of € for four values of tano. The
behavior of w/u' is similar to that of f(6,¢) shown in Fig.6.1, because the main factor
determining p//u' is f(6, ), as given in eq.(6.20). In particular, when tand is very small,
el 1s almost equal to £(6,¢).

Figure 6.4 shows plots of u/u" versus @ for four values of tand. When tano is

very low, the second term on the right-hand side of eq.(6.23) is dominant over the first

04 -
03 - tand=0.1
g®.9) | P /o5
:‘,.-.~ 1.0
O .2 L ::::' '.»..‘....‘ 2 .0
01 F ___ T
A ~< T T
'/ ~ S T e e
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- T Tl e
T T e T
| 1 | L | L | s
0 2.0 4.0 6.0 8.0 10.0
0

Figure 6.2 g(0,p) obtained from eq. (6.10) versus 6 for four values of tand. g(8,¢) is
proportional to the average imaginary part of the magnetic field inside the

sheet.
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term, and consequently, the dependence of /i is nearly the same as that of g(6,¢).
We can also see this feature by comparing Fig. 6.4 with Fig. 6.2 for the case of
tano=0.1. As tand increases from a very low value, the influence of g(6,¢) gradually
decreases and instead f(6,p) becomes the dominant factor determining pg/u".

We assume in all of the numerical examples that the intrinsic tano is independent of
0, although it is generally a function of 6 or frequency f as discussed in Chapter 5.
Because of this assumption, the behaviors of f(6,¢), g(6,¢), u/u', and w/u” described
above are solely attributed to the effect of eddy currents. However, since the analyses
given in this paper do not rule out variations in tand, if the frequency response of tand
is known and included in the calculations, we can obtain more a realistic & dependence

of these variables.

1.0

0.8

tand=0.1

Ue/w ~

04

0 20 4.0 6.0 8.0 10.0

Figure 6.3 1./u' obtained from eq.(6.20) versus @ for four values of tand.
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Figure 6.4 u./u" obtained from eq.(6.23) versus 6 for four values of tand.
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7. RF Properties of Magnetic Sheet

7.1 Introduction

In Chapter 3, we obtained the approximate expressions for the AC magnetic properties
of the sheet, which are useful in low-frequency applications. We found in Chapter 4 that
as the frequency of the applied magnetic field increases, the induced eddy currents
become increasingly influential in changing the distribution of the magnetic field in the
interior of the sheet. The change in the field distribution results in a change in the
effective permeability as shown in Chapter 6. As a natural consequence, it also causes a
change in other magnetic properties of the sheet. In this chapter, we derive the accurate
expressions of the stored magnetic energy, overall magnetic loss, eddy-current loss,
hysteresis loss, and Q-value of the sheet by fully utilizing the field distributions
obtained in Chapter 4 and its integrations given in Chapter 6. The obtained expressions
are useful for estimating AC properties of magnetic sheets used in applications in a
wide frequency range from very low to RF frequencies.

7.2 Stored Magnetic Energy
The applied magnetic field H. is given by
H, = H,e". (7.1)

The average density of the stored magnetic energy W of the sheet, when it is placed in
the magnetic field H,o is given in eq.(3.10) and is written here again:

1 .
W= JV Re[ H B_ | v, (7.2)

where B. is the magnetic flux density within the sheet.

Making use of the real and imaginary parts of the field Re[H.] and Im[H.],
respectively, given in eqs.(4.29) and (4.30), together with the intrinsic permeability u
(=p'—ju"), we can write B; as

B, = uH, = (4~ ju") {Re[H ]+ jIm[H ]} &

{[wRe[H.]+u m[H.]]+ [ m[H,]-p"Re[H.]] } ™. (7.3)

It follows from H. in eq.(7.1) and B. in eq.(7.3) that the real part of H2B. is given by

Re[H B, | = H, {y'Re[H,]+p" Im[H,]}, (7.4)
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ot

where the time factors ¢/ in B, and e in Hyy cancel each other out. Substituting

eq.(7.4) into eq.(7.2) leads to

W = &{uj Re[H_ | dv+ u"j Im[HZ]dv] (7.5)
2V 14 14

The surface integrals of Re[H;] and Im[H;] extended over the cross section of the sheet
loxd shown in Fig.3.2 were performed in Chapter 6 and the results are given in egs.
(6.4) and (6.9). The volume integrals over the rectangular parallelepiped shown in Fig.
3.2 give the same expressions, because H. does not change in the z direction and the
length of the side in the z direction is the unit length. Then, substituting eqs. (6.4) and
(6.9) into eq.(7.5), we have

W= 23 [10/(0.0) - 178(0.0) ] (7.6)

The expression inside the brackets is equal to the real part of the effective permeability
Ue given in eq.(6.19). Thus, we finally obtain the simple and expected result:

1
W = Eu;Hg. (7.7)

If the magnetic field is applied at a very low frequency such that f(0,¢) is nearly
equal to 1.0 and g(é,¢) is nearly equal to zero (see Figs. 6.1 and 6.2), W reduces to

1
W, = Eu’HZ, (7.8)

which is consistent with eq. (3.17) in Chapter 3. From egs. (7.7), (7.8), and (6.20), the
ratio of Wto W is

%0 _ Z = £(6.9) - g(6.¢) tans. (7.9)

7.3 Overall Magnetic Loss

The time-averaged overall magnetic loss per unit volume, P, of the sheet placed in the
magnetic field H,o is given by eq. (3.19), which is written as

1 « 0B
P, = — | Re|H,Z=]av. 7.10
" 2VJV e[zoar}v (7.19)

From B. in eq.(7.3), 0B./0t can be expressed by
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aaBtz = o{[1Re[H,] - m[H,]] + [0/ Re[H, ]+ " Im[H, ]|} ™.

(7.11)
Using H.y from eq.(7.1) and 0B./0t from eq.(7.11), we have
* aB ” ’
Re|H—* | = wH,{u Re[H, ] -/ Im[H_]}. (7.12)
Substituting eq.(7.12) into eq. (7.10) leads to
a)HO ” ’
P, = 1’| Re[H, |av—-w | Im[H ]av | (7.13)
2V 14 14

In the same manner that eq.(7.6) was obtained, substituting the integrations of Re[H.]
and Im[H;] from egs. (6.4) and (6.9) into eq.(7.13) yields

oH

2
by = — [ wF(0.9) + 1'5(6.0) | (7.14)

We see that the expression inside the brackets in eq.(7.14) is the imaginary part of the
effective permeability u¢ given in eq.(6.22). Thus, P, is also expressed by

1
P, = 5 ou’H;. (7.15)

This is the simple and expected expression of the overall magnetic loss.
For very low frequencies, P, reduces to

1
P, = Ea),u”Hg, (7.16)

which is identical to eq. (3.23) in Chapter 3. Then, P, normalized by P, is given by

LR 1
PmO - ‘Ll” - f(9’¢) + g(e’d)) tan & . (717)

The overall magnetic loss per cycle per unit volume, P, ., is given by eq.(2.16).
Since we already have P, from eq. (7.15), instead of using eq. (2.16), we can readily
obtain P, . from P, by dividing it by the frequency f:

P,.= mwu’H;. (7.18)
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7.4 Eddy-Current Loss
7.4.1 Distribution of Electric Field and Current Density

Time-averaged eddy-current loss per unit volume of the sheet P, is given by eq. (3.26),

which is written as

1 *
‘= Sy JV Re[ JLE, | dv, (7.19)

where J, is the electric current density and E, is the electric field intensity in the x
direction. In the present model, these are the only current and field components that can
exist within the sheet. If we know the distribution of J, and E, along the y axis (see Fig.
3.3), we can derive the expression of the eddy-current loss from eq.(7.19). Since we
already know the distribution of B., we can obtain the distribution of J, and E, from
Faraday’s law, in which E, has a close relationship with B., as given below.

Faraday’s law, which states the relationship between the time rate of change in
magnetic flux and the induced voltage, is given by

CJ)E ‘ds = aB (7.20)

We perform the closed line integral along the path ¢, shown in Fig. 3.3, and the surface
integral over the area S (=2y0ly) enclosed by path c. Since the sheet extends infinitely
in the x direction, E, at y=yy is independent of position x, and E, =0 at every point over
the cross section. Then, the left-hand side of eq.(7.20) becomes

CﬁEx-ds = 2[,E,. (7.21)

Next, using 0B./0t from eq.(7.11), we write the right-hand side of eq.(7.20) as

J 9B, = -2l 0
s of

x J‘Oyn{ (1" Re[H.]- ' Im[H.]] +j[ 1 Re[H, ]+ " Im[H,]] } dy '™
(722)

Substituting eqgs.(7.21) and (7.22) into eq.(7.20) leads to the following expression of the
electric field E,, induced at y=yy:

Yo .
E, = —wjo {[wRe[B.]—wim[H ]|+ ;[ Re[H.]+u" Im[H.]]} dy e™".
(7.23)

The integrations of Re[H.] and Im[H.] are performed along the y axis from 0 to yo
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with the result being

wH,d .
E, = ¢ R+jI)e'™,
* V2 o6 [cosh(2a2) + cos(2b2)] ( v ) ¢

where R and / denote the expressions given in Appendix D.

7.4.2 Eddy-Current Loss Calculations
The current density J, induced by E, is given by

1
J,=0E, = —E.
p

Substituting eq.(7.25) into eq.(7.19) gives

1

P, = E | av.
od 2pVJ.v|X|dv

From eq.(7.24), we can write

E.[ = EE,

2072 g2
= @ Hyd — (R+ ).
2076 [cosh(Zaz) + cos(2b2)]

After various calculations to reduce [Ey|* to a simpler form, we obtain

|Ex |2 wzHg dz,u’zozl/z

267 [cosh(Zaz) + cos(2b2

If tano is very small, eq.(7.28) can be approximated by

2372 32 ,,72
Y WE RN
26 [ cosh(8) + cos(6)] d d

Substituting [E,|* from eq.(7.28) into eq.(7.26) leads to

2 Hg d ‘u/Zal/Z

P, =
« 26°p [cosh(2a2) + cos
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= )] [cosh(2a1y0) — COoS (2b1y0)].

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

o )] J’Oz [cosh (2a,y) — cos (2b1y):| dy, (7.30)



where a volume integral over the rectangular parallelepiped shown in Fig.3.2 is reduced
to a single integral with respect to y because E, varies only in the y direction. From the
beginning of this section to eq.(7.29), the symbol yy has been used to denote a fixed
position at which the expression of E, is derived. However, in eq.(7.30) it is now used
as an integral variable and the symbol is changed accordingly from y, to y. The
integration in eq.(7.30) is performed to give

w’HZ d*u*a’ sin(¢)sinh(2a,) — cos(¢)sin(2b,)

= 7.31
“ 22 6°p sin(2¢) cosh(2a, ) + cos(2b,) (7.31)
By using g(6,¢) from eq.(6.10), the following expression of P,; is obtained:
2772 12,02 12
O H;d1W «
P, = : .9). 7.32
“ = 716 sin(29) 8(09) (7.32)

Equation (7.32) shows that g(6,¢), which is proportional to the average imaginary part
of the field as given in eq. (6.12), is the important factor determining P.;. Equation
(7.32) should be the generalized expression of eq.(3.39) obtained in Chapter 3. We can
easily show that if we expand g(f,¢) into a power series of € and take only the lowest
term of 6, eq.(7.32) reduces to eq. (3.39).

Equation (7.32) can be expressed in a simpler form by using 6 from eq.(3.4) and J
from eq.(3.5):

1 ,
P, = E) wH o' g(0,9). (7.33)
This can also be rewritten as
1 , o
P = —wu"H;—— g(0,0). 7.34
ed 2 H o tand g( ¢) (7349

It follows from eqs. (7.16) and (7.34) that the ratio of P.s to P, is given by

P, o 1
“@ = 0,0) = o 6.,0). )
P, tan o g( (D) (tanﬁ * tan j g( (P) (7.35)

In this paper, we assume the magnetization of the sheet is microscopic and
distributed homogeneously as mentioned in Section 4.2. The expressions of
eddy-current loss given above are derived on the basis of this assumption, which allows
us to apply the classical electromagnetic theory. The loss calculated by this approach is
sometimes referred to as the classical eddy-current loss. It has been reported that

materials whose magnetization process is determined by domain wall displacements
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exhibit much higher eddy-current losses (typically two to three times as high as the
classical eddy-current loss) due to the so-called anomalous eddy-current contribution
[89][91][92] [95]. The reason for this large loss is that the change in magnetization due
to eddy currents is not uniform inside domains but is concentrated near the domain
walls [118][119][120][121]. Essentially, the magnetic response of the material away
from the domain wall is very weak and almost all the flux change is concentrated in the

narrow region of inhomogeneous magnetization that defines the wall.

7.5 Hysteresis Loss

Time-averaged hysteresis loss per unit volume, P, of the sheet placed in the magnetic
field H, is given by

1 o) i}
P = — Re| H. —% | dv, 7.36
"oy J v [ ¢ ot } (7.36)
where H. and B. are the magnetic field intensity and the magnetic flux density within
the sheet. It follows from H. given in eq.(4.28) and 0B./0¢ in eq.(7.11) that the real part
of H: (6B./0r) is written as

. 9B,
‘oot

o[

(7.37)

R{H } = op’{R’*[H, ] + Im’[H, ]} = ou”|H,[",
where [H.| is the amplitude of the field given in eq.(4.24). Replacing Re[H. (6B./0)] in
eq.(7.36) with eq.(7.37) leads to

d
2

P a),u”H(fJ’ cosh(2a,y)+ cos(2b,y)
=
0

cosh(2a2 ) + cos(2b2)

dy, 7.38
7 y (7.38)

where the volume V is replaced with /[oyxdx1 (see Fig.3.2), and the volume integral is
reduced to a single integral with respect to y. Performing the integration yields
ou’H; sinh(2a, )sin(¢) + sin(2b, )cos(¢)

= . 7.39
L V2 "6 sin(2¢) cosh(2a, ) + cos(2b, ) (7-39)

After more calculations, this is expressed in a simpler form:

7ry2
h= 28 [ (0.0) -1 s(6.6)]

1
70 U H tan§. (7.40)
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It can also be written as

P, = W tand, (7.41)

where W is the stored magnetic energy per unit volume given in eq. (7.7). Note that P,
is proportional to / and tand. The hysteresis loss normalized by P, is

S M (7.42)
PmO ‘U

Comparing eq.(7.42) with eq. (7.9), we see that P,/P,, is identical to W/Wj.

7.6 Verification of P.,, + P, =P,

Having obtained the expressions for the eddy-current loss P.; and the hysteresis loss Py,
we are now ready to verify that the sum of P,; and P, equals the overall magnetic loss
P,.. Before calculating the sum, we transform eq.(7.33) into a more suitable form for
summation. The factor au'g(6,p) in eq.(7.33) can be rewritten in terms of x., tand,, and
tand:

au'g(6,9) = (u+u"ans)g(6,9)

= wg(6.9) - tans [ 1, —p'f(6.9)]

= u,(tand, - tang), (7.43)
with tand, = ‘u—f and tand = ,u’ , (7.44)
M, u

where tand. is the effective loss factor of the sheet. This is the loss factor that we
regularly use and can obtain by ordinary measurements of magnetic properties of the
sheet. Using eq.(7.43), we can express eq.(7.33) by
1
P, = Ea),u;HO2 (tan S, — tan §). (7.45)

Then, the sum of P, from eq.(7.40) and P,; from eq.(7.45) is

1 1
P +P, = Eco,u;Hg tan6+5w,u;H§ (tan 8§, — tan &)

1 1
£ ou H; tan§, = Ewu;’Hg. (7.46)
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The result agrees exactly with the overall magnetic loss P, given in eq. (7.15).

7.7 Relationships between P,, P,, and P,

The relationships between P,, P,, and P.; can be derived from egs. (7.15), (7.40), and
(7.45). From egs. (7.15) and (7.45), we obtain

Py _y_ a0 (7.47)
P tans, '

m

Likewise, from egs. (7.15) and (7.40), we have

b, _ tand (7.48
P, tang, 48)
These two equations lead to the following natural consequence:
fu B o_ (7.49)
Pm Pm
The ratio of P.; to P, is given by
P, tan
= —= — 1. 7.50
P, tan o (7.50)

7.8 Q-value

In the previous sections, we obtained expressions for the stored magnetic energy, the
overall magnetic loss, the eddy-current loss, and the hysteresis loss. Making use of these
expressions, we can readily obtain the Q-value of the magnetic sheet.

We obtain the overall Q-value Q. by substituting the stored magnetic energy W
from eq.(7.6) and the overall magnetic loss P, from eq.(7.14) into the definition of the
Q-value given by eq. (2.23):

oW
P

m

wr(6.9) - u"g(6.9) _ 0, /(6.9) - 5(6.9)

0 0
Lf(6,0) + 1 g(6,9) f(6.9) + 0, 2(6.9)

Q, =

, (7.51)

where Q) is the intrinsic Q-value given by u'/u". The expression of O, can also be
obtained by substituting W from eq.(7.7) and P,, from eq.(7.15) into eq.(2.23):
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Mo
w’ tan s,

Q, = (7.52)
This widely used definition of the Q-value of a magnetic object is given by the ratio of
the real part of the effective permeability to the imaginary part and is equal to the
reciprocal of the effective loss factor. The derivation of eq. (7.52) is based on the
primary definition of the Q-value given in eq.(2.23), into which we introduce the
derived expressions of the stored magnetic energy and the overall magnetic loss. Thus,
we have demonstrated the validity of this popular definition of the Q-value using a very
orthodox method.

Next, let O, be the Q-value defined by the hysteresis loss. It follows directly from
W given in eq.(7.7) and P, in eq.(7.40) that Q, is given by

oW 1

On = P, tand

Q- (7.53)

Equation (7.53) is exactly equal to eq.(3.50) from Chapter 3, which was derived on the
assumption that the field is applied at a low frequency. This result clearly shows that O,
is determined solely by tand, in any frequency region, not only in low frequency
regions. However, it should be noted that O, is not necessarily constant, because the
intrinsic permeability is only constant when the frequency is considerably lower than a
lowest dispersion region as described in Chapter 5.

Likewise, let O.; be the Q-value defined by the eddy-current loss. Then, using W
and P.; from eq.(7.45), we obtain

oW 1

= = . 7.54
Qe P, tan §, — tan o (7:54)

The overall Q-value of the magnetic sheet is also obtained from eq.(2.26) as a
combination of O, from eq.(7.53) and Q., from eq.(7.54):
1 1

— = — + ! = tand, (7.55)
Qe Qh Qed “ .

This is consistent with the expression of O, given in eq. (7.52).

7.9 Low-Frequency Approximation

As discussed in Section 6.5, if the frequency of the applied magnetic field is fairly low,
the effective permeability u; and w reduce to egs. (6.26) and (6.27), respectively. They
can also be written as
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wo= (1 - éez tan5j, (7.56)

1 1
d 7~y 1+ — 6 — tané ||. 757
a He = H { 6 [tané o H (757

Using this low-frequency approximation of the effective permeability, we can reduce
the accurate expressions obtained in this chapter to approximate forms that can be used
only in low frequency regions.

Substituting . from eq.(7.56) into eq.(7.7) leads to the approximate form of the
stored magnetic energy:

W = %u' (1 —~ % 6° tan5] H;. (7.58)

Using eq.(7.15) and eq. (7.57), the approximate overall magnetic loss P,, is written as

- tan5H H;. (7.59)

6 tan o

1 1
P, = —a),u”[l + — 92(
2
By using the approximate forms of g(6,p) given in eq.(6.25) and u. in eq.(7.56), we
can reduce the eddy-current loss P,; given in eq.(7.33) and the hysteresis loss P, in eq.
(7.40) to approximate forms:

tand

> + tanﬁ]Hg (7.60)

1 1
P, = —wau'0’H;, = —ou’o’
12
1 ” 1 2 2
and P, = 5 ou”|1- 50 tand | Hy. (7.61)
Equations (7.56) and (7.57) are introduced into the first equation of eq.(7.52) to give the

approximate form of Q,:

1- i 6” tan &
3

0, = (7.62)

tano + l92 (1 - tan25) .
6

We obtain the approximate Q.; by substituting W from eq. (7.58) and P.; from eq.(7.60)
into eq.(2.25):
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6 1,
= - —6"tano |. :
Qe 6° (1 + tan’ 5) [ 3 o j (7.63)

Likewise, it follows from W and P, given in eq.(7.61) that the approximate O is given
by

-1
On u” tand

(7.64)

All of the approximate expressions obtained above agree precisely with those given
in Chapter 3, which were derived by assuming that the field was applied at a low
frequency. This agreement is a necessary condition for the accuracy of the expressions
obtained in this chapter and in Chapter 3.

7.10 Magnetic Properties as a Function of Frequency

The magnetic properties obtained in this chapter are expressed as a function of . We
can rewrite these expressions in terms of the frequency f by using F(f, ¢) given in eq.
(6.28) and G(f, @) in eq.(6.29). The results are as follow

W = %H& (W F(f.0) - u"G(f.9)]. (7.65)
P, = %wHS (W F(f.9) + 1w G(f.9)]. (7.66)
P, = %(nga WG(f,9), (7.67)

P, = %ng tand [ 1 F(f,9) - u” G(f.9)]. (7.68)

WF(f,¢)—wG(f.9)

d = .
o O F(7.0) + W G(/.0)

(7.69)

7.11 Numerical Examples

Figure 7.1 shows the normalized stored energy W/W; as a function of @ for four values
of tand. In Section 7.5, we found that W/Wj is equal to P,/P,o, where P, is the hysteresis
loss and P, is the overall magnetic loss at a very low frequency. Both W/W, and
Py/P, are equivalent to u./i', which is shown in the plots in Fig. 6.3. Chapter 6 shows
that u¢/u' is mainly dependent on f(6,¢), which is proportional to the average real part of
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Figure 7.1 Normalized stored energy W/ W, as a function of # for four values of tand. W, is
the stored energy at very low frequencies. W/W, is identical to P,/P,o, where P, is
the hysteresis loss and P, is the overall magnetic loss at very low frequencies.

The curves are the same as those of x./u' shown in Fig. 6.3.

the magnetic field, [ Re[H;]],. Therefore, the behaviors of W/W, and P,/P,o are closely
related to the behavior of [Re[H:]]..

Figure 7.2 illustrates the normalized eddy-current loss P.;/P, as a function of § for
several values of tand. As 6 increases from zero, the eddy-current loss increases
slowly, reaches a maximum, and then gradually decreases thereafter. The curves are
similar to those of the imaginary part of the field Im[H.] shown in Fig.4.6(b) and those
of g(6,p) shown in Fig.6.2. This is because the expression of P.;/P,o given in eq. (7.35)
includes g(6,9), which is proportional to [Im[H.]].,, the average imaginary part of the
field. From the discussion on Im[H.] in Subsection 4.8.2(b), the behavior of P.;/P,o in
Fig.7.2 can be explained from the two kinds of eddy-current effects: the amplitude
diminution and the phase lag of the field.
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Figure 7.2 Normalized eddy-current loss P.;/ P, as a function of 8 for five values of tand.

Fig.7.2 shows that P,.;/P, is very large for tand=0.1. This is because the expression
of P.4/Pyo includes a factor 1/tand, which causes P.q/P,o to increase substantially when
tano is much lower than 1.0. The dotted line in Fig.7.2 shows the case where the
maximum value of P, is equal to P, which occurs when tand =0.336.

Figure 7.3 shows P,,/Pyo as a function of # for four values of tand. As given in eq.
(7.17), Pu/Pyo is identical to ul/u", whose plots have already been shown in Fig. 6.4.
Since P, = P,+ P.4, the plots shown in Fig.7.3 are combinations of the plots of P,/Pyo
shown in Fig.7.1 and the plots of P.y/P,o shown in Fig.7.2.

Figure 7.4 shows Q./Qp as a function of @ for four values of tano. It follows from
eqs. (7.52) and (7.53) that Q./Q =tand/tand,. This ratio is equivalent to the ratio of the
hysteresis loss to the overall magnetic loss P,/P,, given in eq.(7.48). Referring to egs.
(7.47), (7.48), and (7.49), we can see that the portion under the curve in Fig.7.4 is P,/P,
and the portion above the curve corresponds to Pq/P,,.
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Figure 7.3 Normalized overall magnetic loss P,/P, as a function of & for four values of

tand. Curves are identical to those of w/i"” shown in Fig. 6.4.

As shown in Fig.7.4, 0./Qy is nearly constant in the region where 6 is larger than
approximately 4.0. This is explained by the behavior of u¢ and ¢ because Q./Qy is also
expressed by (ue/ue ) tand and tand is assumed to be constant. Equations (6.19) and
(6.22) show that for values of @ larger than approximately 4.0, the ratio w//u¢ is almost
independent of € and depends only on x' and u".

Figure 7.5 shows tand./tand as a function of 6 for four values of tand. It is obvious
from eqs. (7.52) and (7.53) that tand./tand in Fig.7.5 is just the reciprocal of Q./Qy
shown in Fig.7.4.
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Figure 7.4 Ratio of overall Q-value to intrinsic Q-value Q./Qy as a function of € for four

values of tand. 0./Q, is identical to P,/P,,.
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Figure 7.5 Ratio of effective loss factor to intrinsic loss factor tand./tand as a function of 6

for four values of tand. tand./tand is the reciprocal of Q./Q.
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8. Summary

RF properties of plane magnetic sheet made of lossy material, such as magnetic alloys,
were analyzed on the assumption that the sheet is infinitely wide and placed in a
uniform magnetic field applied parallel to its surface. Complex permeability and
nonzero conductivity were used in the calculations. The following is a summary of our

findings.

(1) Field Distribution within the Sheet

Maxwell’s equations were used to derive the distribution of the magnetic field within
the sheet. Numerical examples showed the distribution’s dependence on frequency,
thickness, and material constants. The following points apply to the field distribution:

* As the depth under the sheet surface Y increases, the field amplitude diminishes and
the phase of the field lags behind the phase at the surface. The field diminishes more
and the phase lags more as € increases, where =d/d; with d being the thickness
of the sheet and J,, the commonly used skin depth. Hence, 6 is proportional to the
square root of the frequency.

* When the intrinsic loss factor tano is higher, the amplitude diminishes more rapidly
as Y or 6 increases, whereas the phase lags more slowly. The effect of tand on
the amplitude behavior is obvious and the phase behavior can be explained from the
way in which the magnitude of the real and imaginary parts of the field vary as Y or
0 changes.

* In regions in which 6 >>1, the field amplitude can be expressed in an approximate
form, from which an expression of the skin depth for magnetic sheet can be derived.
This definition includes tand, as well as the frequency and conductivity, and
consequently is applicable to all magnetic sheets.

(2) Effective Permeability

The complex effective permeability, which characterizes the macroscopic magnetic
properties of the sheet, was derived by integrating and then averaging the complex
magnetic field over the cross section of the sheet. The following points apply to the
effective permeability:

+ The average magnetic field within the sheet is proportional to (f(6,¢)—jg(6,¢)) in
which ¢ is a function of tand. f(6,9¢) and g(6,9) are important parameters
determining the effective permeability and other magnetic properties of the sheet.

+ As 0 increases, the real part of the effective permeability x; monotonically

”

decreases, whereas the imaginary part ux; increases at the beginning, reaches a
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broad maximum, and then decreases thereafter.
* Both the real and imaginary parts of the effective permeability decrease as tano

increases.

(3) RF Magnetic Properties

The expressions of RF magnetic properties, such as the stored magnetic energy, the

magnetic loss, and the Q-value, were derived using the magnetic field distribution

within the sheet. The following points apply to the RF magnetic properties:

+ The overall magnetic loss is assumed to be composed of the hysteresis loss and the
eddy-current loss.

* The hysteresis loss is proportional to p/tand and the eddy-current loss is
proportional to (u¢ —uctand). This leads to the natural consequence that the
overall magnetic loss given by the sum of these two kinds of losses is proportional
to ue.

* The above expressions indicate that the hysteresis loss behaves in exactly the same
way as ue when 6 changes, while the 6 dependence of the eddy-current loss is
almost equal to that of u¢ if tano is fairly low, as is usually the case for magnetic
alloy cavity applications.

* The widely used relationship Q.,=1/tand,, where Q. and tand, are the effective Q-
value and loss factor of the sheet, respectively, was verified by using a very
orthodox method. This method used the primary definition of the Q-value
O=wW/P,, where w is the angular frequency; W, the stored energy; and P,, the
power dissipation.

* The Q-value defined by the hysteresis loss, Oy, is independent of 4, or the frequency,
and is equal to Qy, the intrinsic Q-value of sheet.

(4) Low-Frequency Approximation

The approximate expressions for the magnetic properties of the sheet were derived on

the assumption that the frequency of the applied magnetic field is much less than RF

frequencies. The following points apply to the frequency:

* The numerical results obtained from the approximate expressions in the low-0 region
were compared with those from the exact expressions. They agree quite well up to
0=0.4, which corresponds to a frequency range of approximately 10 to 100 [kHz],
depending on the thickness and the material constants of the sheet.
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Appendix A

Stored Magnetic Energy

In this Appendix, we first review the concept of stored magnetic energy and express it
in terms of field quantities. Then, we derive the expression of the magnetic energy
stored within an object that is placed in a magnetic field [122]-[128].

A.1 Energy Stored in a Magnetic Field

Consider a closed conducting loop with a current i which is initially zero. In the process
of increasing i from zero to a final value /, work is done on the system. This work
results in stored energy in the magnetic field surrounding the conductor. If we divide the
cross section of the conductor into » distinct current filaments, the magnetic energy in
the field around the current loop, Wy, is given by

1 n
W, = 52 I, ¢, (A1)
i=1

where /; is the current of the ith filament (or circuit) and ¢; is the flux linking the ith
filament due to all the other (n— 1) current filaments in the current loop. Equation (A.1)
is correct for the magnetic energy of n circuits in a medium for which the relationship
of B to H is linear. Equation (A.1) can be transformed into the following form, which is
applicable even when the relationship between B and H is nonlinear:

n o;
W= [ 1,60, (A2)
i=1 i0

where ¢; is the flux linking the ith circuit at the initial instant when all currents are
ZEero.

It is a simple matter to extend eq.(A.2) from a finite number of current filaments to
a continuous distribution of current. The increment in magnetic flux, d¢, can be

expressed by using the vector potential A in the form
09 = JéB-da: J. (VxSA)-da = CﬁéA-ds. (A.3)
S S c
We use Stokes’s theorem to transform the surface integral of VxOA over the surface S

into the line integral of OA along a closed curve ¢ bounding the surface. The current
distribution can be broken up into a network of current loops, with the typical one being
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a current tube of cross-sectional area do. For a current tube, we can write /ds=J-ndv,
where J is the current density and dv (=dods ) is the volume of an infinitesimal length
(ds) of a current tube. Using this relationship and eq.(A.3), we can transform eq. (A.2)
into the expression for a system of distributed currents:

W, = ”:OJ . 5A dv. (A.4)

This is the work required to set up a continuous current distribution and it is identical to
the magnetic energy stored around a current carrying system.

We can obtain an expression involving the magnetic fields rather than J and 0A by
using the vector identity

V- (SAxH) = H-(VxS8A)-S6A-(VxH) = H-6B-J-6A, (A.5)
where we use the relationships 0B=Vx0A and J=VxH. It follows from eq.(A.5) that
J-6A = H-6B + V- (Hx5A). (A.6)

Substituting eq. (A.6) into eq.(A.4) and applying the divergence theorem

J V- Fdv = J F-nda, (A7)
v s

we obtain

B A
W, = j H-dB dv + '[_[ (HxdA)- n da. (A8)
v JB, sd a4,

Here, V' is any volume bounded by a surface S enclosing all the sources of the field. If
we choose S to be a spherical surface at infinity, the second integral of eq. (A.8)
disappears, because the integrand diminishes with 7> (Hec7 > and Aocr '), whereas S
grows only with 7%, Therefore, the work done to build up a magnetic field from By to
the final value B is represented by the integral

B
W, = J. dvj H- dB. (A.9)
1% B,

This is the magnetic energy stored in the magnetic fields when they are brought up from
By to B. The present form is applicable to all magnetic media or materials, including
ferromagnetic substances.

Strictly speaking, the derivation of the result is based on the assumption that the
building up of the field takes place so slowly that it might be represented by a
succession of stationary states. Therefore, it is essential to determine whether this
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expression for the energy density remains valid when the fields vary at an arbitrary rate.
In Section B.1, we review the power balance equation known as Poynting’s theorem,
which is valid for any frequency. The theorem supports that the expression of the
density of energy stored in the electromagnetic field is the same as that in the stationary
or quasistationary regime.

Now, we assume that the relationship of B to H is linear and that the medium is
isotropic. Then, the relationship can be given by B=uH, where x is the permeability of
the medium and is at most a scalar function of position, which reduces to a constant if

the medium is homogeneous. In this case, the relationship
d(H-B) = dH-yH+H-dB = dB-H+H-dB = 2H-dB,

holds true, and we can write

H-dB = %d(H-B). (A.10)

Under these circumstances, Wy in eq. (A.9) is reduced to
1
W, = —j H-Bdv. (A.11)
2 Jv

We can assume this energy is distributed throughout the field with a density (H-B)/2,
which reduces to uH*/2 if u is a constant. Equation (A.11) is commonly used to

calculate the stored energy of magnetic media or materials.

A.2 Energy Stored in Magnetic Object

Our goal is to obtain the energy stored in a magnetic object when it is placed in a
magnetic field. We consider the question of the change in a system’s energy when a
magnetic object is introduced into a magnetic field of fixed current sources. Suppose
that initially the magnetic field H; has been established in a medium having linear and
isotropic permeability x; (Fig. A.1(a)). The energy of the field stored in a volume V'
(from eq.(A.11)), is given by

1

2 Jy
where B, is the magnetic flux density in the medium (B;=xH;). Then, with the sources
fixed in position, a magnetic object is introduced into the field. The object is assumed to

be initially unmagnetized but its magnetic properties are otherwise arbitrary. The
volume occupied by the object is denoted V, and the entire region outside is denoted
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B, = uH,

(a) (b)

Figure A.1 (a) Fields in a homogeneous medium before introducing a magnetic object.
(b) Fields after introducing a magnetic object of volume V,. The volume

of the medium outside the object is V.

Vi (Fig. A.1(b)). The energy of the system in this new state is

1 B
W,, = EJ. H-Bdv +J. dvj H.- dB. (A.13)
V, V, 0

The ultimate magnetic flux density in the medium B differs from the initial magnetic
flux density B; by an amount, B —B,, which arises from the polarization of the matter
contained within V. The change in energy is

Wy = Wy, = Wy,

I ’ 1
—J (H-B—Hl-Bl)dv+J dv (I H-dB——Hl-Bl). (A.14)
2 Jy, v, 0 2

This is the work done when introducing the object into the field, which must be equal to
the energy stored in the object. The assumption of fixed sources and the use of some
vector identities mean that the energy Wy in eq. (A.14) can be expressed in terms of
integrals extended over the volume V, occupied by the object, as follows:

B
W, = lj (HI-B—H-BI—H-B +2J H.dBjdv. (A.15)
2 Jy, 0

If the magnetic properties of the material within V, can be characterized by the
permeability u,, the relationship B=x,H holds true, and consequently, eq. (A.10),
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which can also be written as

B
2J H-JdB = H-B, (A.16)
0

is applicable to this case. Substituting eq. (A.16) into eq. (A.15) leads to

W, = lj (H,-B-H-B,) dv
2 Jv,
1
_ _J (1, — 14,) H, -H dv. (A.17)
2 Jy,
This can also be written as
1.[ My
W, = — - — |H,-B dv. A.18
) aro

It is important to note that B in eq.(A.18) is the magnetic flux density within the object,
whereas H; is the magnetic field intensity in the medium before the object is
introduced.

In general, in ferromagnetic materials, B and H do not have a linear relationship.
However, if the amplitude of the alternating magnetic field is not very large, the
permeability can usually be assumed to be a constant and then, eq.(A.18) can be used to
estimate the stored energy of a magnetic object placed in a magnetic field.
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Appendix B

Magnetic Power Loss

In Appendix A, the stored magnetic energy was expressed in terms of integrals of the
field vectors from eq.(A.18). The next step is to understand how to express the magnetic
power loss in terms of field vectors. We first review Poynting’s theorem, which is
essentially an energy conservation law that gives the relationship between the change in
energy stored in a given volume of space and the flow of energy through the surface
enclosing this volume. From this theorem, we obtain the general expression for the
magnetic power loss [122]-[128]. Then, taking a magnetic solenoid as an example, we
verify that the magnetic power loss of the solenoid, given in terms of B and H, is
exactly equivalent to the product of voltage and current, which is the common definition
of power loss.

B.1 Poynting’s Theorem

We mentioned at the end of Section A.l that the energy is expected to be distributed
throughout the field. If this hypothesis is tenable, any change in field intensity and
energy density must be associated with a flow of energy. The relationship between the
rate of change in the energy stored in the field and the energy flow can be deduced as a
general integral of Maxwell’s field equations, which are given by

0B
VXE = ——,
X o (B.1)
VxH:a—D+J, (B.2)
ot
V-D = p, V-B = 0. (B.3)

These four equations form the basis for all classical electromagnetic phenomena.

If there exists a continuous distribution of charge and current, the total rate of work
done by the fields in a finite volume V' is

I E-Jdv. (B.4)
\%4

This power represents a conversion of electromagnetic energy into mechanical or
thermal energy. It must be balanced by a corresponding power decrease in the
electromagnetic field within the volume V. To exhibit this conservation law explicitly,
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we use Maxwell’s equations to express eq.(B.4) in other terms. Solving J from eq.
(B.2) and substituting it into eq. (B.4) leads to

J E-Jdv = J [E-(VxH)—E-a—D dv. (B.5)
v v ot
If we employ the vector identity

V-(ExH) = H- (VXE)-E-(VxH), (B.6)

and use eq.(B.1), the first term in the brackets on the right-hand side of eq. (B.5) is

written as

E-(VxH)=-V-(ExH)+H-(VXE)
= —V-(ExH)—H-%—?. (B.7)

Substituting eq. (B.7) into eq. (B.5), we obtain

J E-Jdv = —j V-(ExH)dv—j E- L2 4 (B.8)
v v v ot ot

Using the divergence theorem given in eq. (A.7), the first term on the right-hand side of
eq.(B.8) can be transformed from a volume integral into a surface integral, such that eq.
(B.8) becomes

95 (ExH)-da +j E-Jdv = —J A L P (B.9)
s v v ot ot

This result was first derived by J. H. Poynting in 1884 and again in the same year by
O. Heaviside. The equation is known as Poynting’s theorem and is customarily
interpreted as follows: Since the term E-J has the dimension of power expended per
unit volume (watts per cubic meter), the terms on both sides of eq.(B.9) must represent
the power or the time rate of change in energy. Hence, the right-hand side of eq. (B.9)
represents the rate of decrease in electric and magnetic energy stored within the volume.
The term H-0B/0t, which represents the density of magnetic power loss, is consistent
with the expression of stored magnetic energy given in eq.(A.9) (see Section 2.3). This
supports the validity of eq. (A.9) even if the fields vary at an arbitrary rate.

The loss of available stored energy given on the right-hand side of eq.(B.9) must be
accounted for by the terms on the left-hand side. Since the second integral on the
left-hand side represents the power dissipated in the volume V' in Joule heat, then the
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first integral must represent the power flow out of the surface S enclosing the volume V.
The important consequence is that the integration of

ExH =S (B.10)

over an arbitrary closed surface gives the electromagnetic power flow from the inside to
the outside of the closed surface. S is termed the Poynting vector, which is interpreted
as the intensity of power flow per unit area whose normal is oriented in the direction of
the vector E xH.

Incidentally, Poynting’s theorem can be rewritten as the power balance equation in
the explicit complex form [128] as follows:

P =P+ B + j2o(W,,-W,;). (B.11)

e

Here,
P is the complex power delivered by the sources,
P, is the active or real power transmitted through the closed surface,
P, is the power lost to heat in the volume enclosed by the surface,
20 (W j— W, ;) is the reactive power,
o is the angular frequency,
W, 1s the reactive magnetic energy stored in the volume, and
W.; is the reactive electric energy stored in the volume.

B.2 Power Loss of a Magnetic Solenoid

As mentioned previously, the integrand on the right-hand side of eq.(B.9) represents the
density of electric and magnetic power loss, and it is evident that the second term
H-0B/ot gives the density of the magnetic power loss. Here, we perform a simple
thought experiment to verify that the magnetic power loss expressed in terms of
magnetic field quantities is consistent with the commonly used power loss defined by
the product of voltage and current.

We consider an infinitely long solenoid, which is a single-layer coil of fine wire
wound tightly around a solid magnetic cylinder having a permeability u (Fig.B.1). A
current i flowing through the wire produces a uniform magnetic field H within the
solenoid, which is expressed as

H = ni, (B.12)

where 7 is the number of turns per unit length. Let ¢ denote the interlinkage of
magnetic flux of the solenoid in a length /. Then it is written as

¢ = ma’lnB, (B.13)
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n [turns/m]

Figure B.1 Infinitely long solenoid made of a single-layer coil of fine wire wound tightly

around a solid cylinder of magnetic material.

where a is the radius of the cylinder and B is the magnetic flux density within the
solenoid, which is given by B=xH. The change in ¢ with time induces the voltage v on
the solenoid across the length / such that
oB
2
V=—-——=-maln—. B.14
ot ot (B.19)

It is common practice to express the power, or the change in energy per second, as a
scalar product of the voltage v and the current i. Now, we denote the magnetic energy
stored in the volume ¥ (=ma’l), by Wy. Then, the time rate of change in W) must be
equal to the power i-v_ Using eqgs. (B.12) and (B.14), this is written as
oB

= jv= —H-(nazl)g. (B.15)

ow,
ot

Let W, be the magnetic energy stored per unit volume, that is, W, =Wy/V. Then,
dividing both sides of eq. (B.15) by the volume ¥, we obtain the time rate of decrease in

the magnetic energy stored in a unit volume:

i oW, _ _p. 9B B.16)

‘V . —
% o ot

This is exactly the same as the second term in the parentheses on the right-hand side of
eq.(B.9).
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Next, we consider a capacitor made of two parallel conducting plates that extend
infinitely and are maintained at a constant potential difference. Performing a similar
thought experiment, we can show that the time rate of decrease in the electric energy
stored in a unit volume of the capacitor is given by

i-v _ JdW, oD

=—-E —, B.17
1% ot ot ( )

which agrees precisely with the first term in the parentheses on the right-hand side of eq.
(B.9). In eq. (B.17), i and v are the charging current and voltage, respectively, V is the
volume of the capacitor, 17, is the electric energy stored per unit volume, and E and D
are the electric field intensity and electric flux density in the capacitor, respectively.

In conclusion, the average density of magnetic power loss in the volume V' is given
by

1 oB
P.=—| H-= av B.18
8 \% Jv ot ( )
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Appendix C

Field Distribution within a Solid Magnetic Cylinder

In Chapter 4, we discussed the effect of eddy currents on the magnetic field distribution
in the interior of the magnetic sheet. The eddy-current effect can also be accurately
calculated for a specimen in the form of a solid cylinder. In this appendix, we derive the
expressions for the magnetic field distribution within a solid magnetic cylinder. The
field distribution is obtained in solving a field equation that governs the magnetic field
within the cylinder. Examples are given to show how the field distribution depends on
the material parameters and how it varies with the frequency of the applied magnetic
field.

C.1 Field Equation

We consider that the specimen is a solid cylinder or a wire made of a magnetic material
having complex permeability as well as nonzero conductivity. We assume that the
uniform magnetic field

H, = H,e'™, (C.1)

Z

is applied parallel to the cylinder axis as shown in Fig. C.1. We also assume that

(1) the solid magnetic cylinder is infinitely long, and

(2) the intrinsic permeability u is linear and isotropic.

On the basis of these assumptions and the configuration shown in Fig. C.1, we derive
the field equation, which is then solved to obtain the magnetic field distribution.

We start with Maxwell’s equations written in cylindrical coordinates, which are
composed of eight equations for six field components E,, E;, E., H,, H,, and H..
Under the conditions given above, only the two field components H. and E,; have a
nonzero value and the other four field components have a value of zero. Likewise, only
the two field gradients OE,/0r and OH./Or have a nonzero value and other four field
gradients are zero. That is,

oH oH
E-E=H=H,=0 d 0 70 _ = _ T2, Cc2
S A 0 Tz T e oz (€2

Therefore, only the following two equations remain significant:
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Figure C.1 Geometry and field components of an infinitely long solid cylinder of magnetic

material.
1 0 oH
-—|(7E, ) = = .
r or (r ¢) H or (€3
oH, JE,
and - or = O'E¢ + £ 7 (C4)

As mentioned in Section 4.3, the condition we/o<<1 is satisfied over a wide
frequency range up to at least microwave frequencies even for moderate conductors,
such as steel and magnetic alloys. Therefore, the second term on the right-hand side of
eq. (C.4) can be ignored. Solving eq. (C.4) for E, and substituting it into eq. (C.3), we
can eliminate E, and obtain the second-order differential equation for H.:
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o’H, 1 0H

or? " r or

‘- jo(u-ju")oH, = 0, (C.5)

where the time dependence ¢ is assumed and y in eq. (C.3) is replaced with the
complex intrinsic permeability p'—ju".

In order to solve eq. (C.5), which cannot be solved by elementary means, we
introduce a dimensionless complex parameter

p=v.r, (C.6)

where
1/49 "

= — a) - o = _j Ca C'7

\/ J ju’)o = - \/—R (C.7)
with

96=2—R=2, o, = 2 , tan5—‘u,
0, 0, ou'c 74

(C.8)

1
a=1+tan’s, and ¢, = Etan_l(tanS) — nm.

(n=0,1)

Here, R and D denote the radius and diameter of the cylinder, respectively, and tano is
the intrinsic loss factor. In the expression of ¢_, we use the form tan_l(tané) instead of 9,
because the term tand is customarily used as a measure of the quality of materials and is
often a given parameter. Then, p can be written as

/4
a’" 0 o T
= J-J < el — C.9

p I 75 R (C.9)
Changing the independent variable from » to p, we rewrite eq. (C.5) as

’H H

0 21+laz_|_HZ:(), (C.IO)

ap~  p dp

which is recognized as a Bessel’s differential equation of order zero.

C.2 Solution of Field Equation

There are two independent solutions to eq.(C.10), namely Jo(p) and No(p), which
are termed the first and second kind of ordinary Bessel function of order zero,
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respectively. The general solution is given by a combination of these two functions:

H. = AJy(p) + BNy(p), (C.11)

where 4 and B are the constants of complex numbers, which are chosen to match given
boundary conditions. The Bessel function of the second kind, No(p), which is often
referred to as the Neumann function, becomes infinite at p=0. Since in our case, the
magnetic field remains finite at p=0, the No(p) term is physically unacceptable and
must be excluded, and therefore, the constant B in eq. (C.11) should be zero.

The boundary condition at the surface of the cylinder requires that H. must be equal
to the applied field Hy. Then, at r=R, eq. (C.11) becomes

Hy, = AJ,(pr)» (C.12)
where
oo
Pr = Y.R=+-J \/EC o0 (C.13)

Thus, the constant 4 is determined as

A= _Ho (C.14)
Jo(pg)

Substituting eq.(C.14) for 4 and zero for B in eq.(C.11) and adding the time factor
¢’ we obtain the solution

JO(P) jot
= H, —/— /. C.15
) ’ Jo(pg) ‘ ( )

The function Jy(p) is expressed in a power series of p:

(o]

— (_1)'” 2m
Jop) = ), e ey L (C.16)

m=0

Equation (C.15) can be expressed in the explicit complex form by splitting Jo(p)
and Jo(pr) into the real and imaginary parts:

Ho-H Re[Jo(p)] + j Im[J,(p)] o
7 Y Re[Jo(pp)] + i Im[Jo(pp)]

(C.17)

The complex field H. can also be represented by a combination of the amplitude |H.|
and the phase 6.:

H. = 1] c.19)
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9 2 1/2
where |H |= H Re”[Jo(p)] + Im”[Jo(p)] (C.19)
: “1 Re*[Jo(pp)] + Im*[J,(pp)]

and 0. = tan

Z

L { Re[Jo(pp)| Im[Jo(p)] — Re[Jo(p)] Im[J,(pp)]

. C.20
Re[Jo(p)| Re[Jo(pr)] + Im[Jo(p)] Tm [T, (pp)] } (€20

Re[Jo(p)] and Im[Jo(p)] are expanded in a power series of 7/R:

Re[JO(p)] z (=" (O;i/, ] cos(4ma,) (;j "

m=0|: m‘

oo (—l)m 051/496 2(2m+1) ‘ )
+ n; [(2m+1)!]2 [ 2\/5 ] sm|:2(2m+l) ¢C:| (E)

(C.21)

and

- 1) 4 g Y2 2(2m+)
mIp)] = Y, Y [a 06] cos[2(2m+1)6, ] (Ej

= [em+1)]" | 242
+ i I:(_’l/r)lm:—l [O;\//icj sin 4m¢ ] ( j4m. (C22)

The functions at the surface Re[Jo(pr)] and Im[Jo(pr)] can be obtained by replacing r
with R in egs. (C.21) and (C.22).

If the cylinder material has no imaginary permeability part, in other words, if
tano=0, then a=1 and ¢,= —nz. Hence, eqgs. (C.21) and (C.22) reduce to

Re[Jo(p)] = Re[ Jo(y=jx)] = i ﬁ (%]4’" = Ber(x)  (C.23)

and

oo m

2(2m+1)
m[Jo(p)] = Im| J,(J=j0] = Y, ——— [zm+1)] @ = Beig(x), (C.24)
m=0

-
X = —.
where \/5 R (C.25)



The functions Ber(x) and Bei(x) imply Bessel real and Bessel imaginary functions, and
are sometimes called the Ber and Bei functions of Lord Kelvin, for which many tables
exist. The subscript of the Ber and Bei functions indicates the order of the function,
which is often omitted if it is zero. Substituting egs. (C.23) and (C.24) into egs. (C.19)
and (C.20), we obtain the approximate expressions of |H;| and 6. as follows:

12
Berz(x) + Beij (x)
H |= H 0 9 C.26
| Z| 0 [ Beroz(xR) + Beig(xR) ( )
and OZ — tan—l BCI'O(.XR) BCIO(X) B BCTO(.X) BCTO('XR) , (C27)
Ber,(x) Bero(xR) + Bei,(x) BCIO(XR)
0
where Xp = ——. (C.28)

These expressions agree with those found in textbooks on electromagnetic theory [127]
and ferromagnetism [89] [90] and are applicable to the case where the intrinsic tand of
the cylinder is negligible.

C.3 Numerical Examples

The amplitude |H.| and the phase 6. of the field are calculated from egs. (C.19) and
(C.20), which contain the exact forms of Re[Jo(p)] and Im[Jo(p)] given in egs.(C.21)
(C.22).

First, we examine the case where the intrinsic loss factor tand is zero. Figure C.2
shows the normalized amplitude |H.|/H, and the phase 6. for several values of .. The
abscissa is the normalized distance from the central axis /D, where D is the diameter of
the cylinder. Therefore, the position /D=0 refers to the central axis and »/D=0.5 to the
surface of the cylinder. The parameter 6. is given by eq.(C.8) and written as

D oo

6. = —=D : C.29
c =3 > (C.29)

This equation shows that 6. is proportional to the diameter D and is also proportional to
the square root of the product of the frequency w, the real part of intrinsic permeability
u', and the conductivity o. Figure C.2 clearly shows how the magnetic field is
distributed within the cylinder when the uniform alternating magnetic field is
continuously applied to the cylinder, parallel to its axis. The normalized amplitude
[H.|/H, diminishes and the phase 6. lags with the distance from the surface. For a larger
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Figure C.2 Normalized amplitude |H.|/H, and phase 0. of the field inside the solid cylinder

versus normalized distance 7/D for five values of 6. in the case of tand=0.

r/D =0 denotes the central axis and »/D=0.5 the surface of cylinder.
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Figure C.3 (e) for 6.=5.0.

value of 6., |[H.|/H, decreases more rapidly and 6. lags faster.

Next, we examine the way in which the field distribution depends on 6, and tand.
Figure C.3 shows |H.|/H, and 6. as a function of »/D for five values of 6. Fig. C.3 (a),
(b), (¢), (d), and (e) illustrate the results for 6.=0.5, 1.0, 2.0, 3.2, and 5.0, respectively,
each showing the field distribution for tand= 0.1, 0.5, 1.0, and 2.0. Note that the scale
of |H.|/Hy is common to all figures, but the scale of 6, is different from figure to figure.
We can see that as tano increases, the field amplitude diminishes more rapidly, whereas
the phase lags more slowly. The reason for this phase behavior was discussed in
Subsection 4.8.3, where the behavior was analyzed using the phasor diagrams of H..
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Appendix D

Electric Field Induced by Time-Varying Magnetic Field

In Section 7.4, we obtained the expression for the electric field E,, which is induced at
y=yo by the time-varying magnetic flux. It is written as
wH,d

E = R+ jI)e’™, 7.24
T J2ae [cosh(2a2)+cos(2b2)] ( v )e (724

where R and / are given by

R =y’ [(B+ D)cos(¢)—(A+C)sin(¢) | — u”[(A+C)cos(¢)+(B+D)sin(¢)] (D.1)
and

I=-p'[(A+C)cos(9)+(B+D)sin(¢) ] — u”[(B+D)cos(¢) - (A+C)sin(9) ],

(D.2)

with A = sinh(a,y, +a,) cos(b,y, —b,), (D.3)
B = cosh(ayy, +a,) sin(b,y, —b,), (D4)

C = sinh(a,y, —a,) cos(by, +b,), (D.5)

and D = cosh(ayy, —a,) sin(b,y, +b,). (D.6)
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