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Abstract 

RF magnetic properties of conductive plane magnetic sheets are analyzed to provide a 
basis for applications of magnetic alloy tapes to RF accelerating cavities. This paper 
reports on the effects of eddy current on the magnetic properties of the sheets when the 
frequency of the applied magnetic field increases up to RF frequencies. A nonuniform 
magnetic field distribution, formed within the sheet by eddy currents, is obtained by 
solving a field equation based on Maxwell’s equations, which include conductivity and 
complex permeability. The resulting distribution is used to derive expressions for RF 
magnetic properties of the sheet, such as effective permeability, magnetic power loss, 
and Q-value.  
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1. Introduction and Survey 

1.1 Background  

High energies and high beam intensities continue to be major goals in accelerator
science. The drive for higher energies comes principally from high-energy particle 
physics, where the Large Hadron Collider (LHC) is leading the field. A complementary 
drive is toward higher beam power or luminosity, for example, spallation neutron 
source (SNS), Japan Proton Accelerator Research Complex (J-PARC), SuperKEKB, 
and the SuperB Factory to be built at the University of Rome. In novel proton 
accelerators, such as J-PARC and SNS, high-intensity proton beams and a variety of 
intense secondary particle beams are required to pursue frontier science in particle and 
nuclear physics, material science, life science, nuclear technology, and so on.  
   In proton synchrotrons, an effective method for meeting the increasing demand for 
higher beam intensity is to increase the repetition rate, which essentially requires a 
higher RF accelerating voltage. Since the space allocated for RF accelerating cavities is 
usually limited, this measure is only possible if there is a cavity that can produce a much 
higher accelerating gradient than that obtained with a conventional RF cavity. The 
widely used ferrite-loaded RF cavities can only attain an accelerating gradient of 
approximately 10 [kV/m]. This limitation comes mainly from an anomalous RF-loss 
mechanism termed high-loss effect, which is observed at high RF magnetic fields [1]. 
Another factor limiting the accelerating gradient is a cooling problem due to the rather 
low Curie temperature (100 to 200!) of ferrites. 
 
1.2 Birth of MA Cavity  

In recent years, the development of highly permeable, soft magnetic alloys (MA) has 
been underway. The first attempt to apply MA materials to an accelerating cavity was 
made in CEA-LNS Saclay in the late 1980s to early 1990s. A test cavity loaded with 
cobalt-based amorphous alloy was built for MIMAS, the storage booster for the 
SATURNE II synchrotron [2][3]. The reason for building this cavity was to replace the 
two existing ferrite-loaded cavities with a single unit that affords the same performance 
in order to free up part of the ring for other instrumentation [3]. Although the work on 
this project slowed, the development of the cavity was continued for the Proton-Ion 
Medical Machine Study (PIMMS) at the European Organization for Nuclear Research 
(CERN) and for TERA, the Italian proton and light-ion synchrotron project for cancer 
therapy [4][5][6]. 
   In Japan, the development of a MA-loaded cavity was started in the mid-1990s. 
Early in the development of RF cavities for the J-PARC, which was then called the 
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Japan Hadron Project (JHP) and later the Japan Hadron Facility (JHF), the properties of 
numerous magnetic materials, including ferrites and MAs, were measured [7][8]. Shunt 
resistance, which describes the accelerating gradient of the cavity, is proportional to a 
µpQf-product of the loaded magnetic core, where µp  is the permeability in parallel 
circuit representation; Q, the quality factor; and f, the frequency. During the course of 
material surveying and research, it was found that the field dependence of the 
µpQf-product (hereafter, µpQf-value) of MA materials was drastically different from 
that of ferrites [9][10][11][12]. Although MAs exhibited lower µpQf-values than ferrites 
in low RF magnetic fields, even when the RF magnetic field was increased to levels 
well over 0.1[T], the µpQf-value remained at almost the same level as that in the low 
magnetic fields. This is in striking contrast to the behavior of ferrite µpQf-values, which 
decrease rapidly as the RF magnetic field is increased and above around 0.01[T] fall to 
values unsuitable for cavity applications. This remarkable feature of MA materials 
suggested the possibility of realizing a new high-accelerating-gradient cavity. Extensive 
measurements confirmed that amongst the MA materials that had been measured, an 
iron-rich nanocrystalline magnetic alloy had the highest µpQf-value and was best suited 
for RF cavity applications [13][14]. In this paper, we term this material iron-rich 
nanocrystalline magnetic alloy (hereafter, IRNC). IRNC is also called “Finemet”, which 
is a registered trade name owned by Hitachi Metals, Ltd. 
 
1.3 IRNC and MAs 

Although Fe-based amorphous alloys can produce a large magnetic flux density, they 
have been used for low-frequency applications only due to their inferior soft magnetic 
properties in the high frequency range as compared to those of Co-based amorphous 
alloys. After extensive research and development, a new class of Fe-based soft magnetic 
alloys with nanoscale grains, IRNC, was developed by crystallization from amorphous 
precursors [15][16][17]. IRNC is prepared by annealing amorphous alloys consisting of 
Fe, Si, B, and small amounts of Cu and Nb under substantial crystallization. The 
structure comprises randomly oriented ultrafine crystals in the order of 10 [nm] and 
even finer crystal grains distributed in the remaining amorphous phase. IRNC has a very 
high saturation magnetic flux density (over 1.3 [T]), low magnetostriction, as well as 
superior soft magnetic properties. The mechanism whereby IRNC exhibits these 
excellent soft magnetic properties is not fully understood yet. However, it is suggested 
that this may be attributed to the decrease in local magnetic anisotropy due to reduced 
grain size and a decrease in magnetostriction as the result of cancellation between the 
crystals and the amorphous phase [15]. 
   Most MA materials have moderate conductivity, which limits their usefulness in 
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high-frequency applications because of induced eddy currents. Power loss caused by 
eddy currents may exceed an acceptable level unless a magnetic object is made by 
laminating a very thin plate insulated electrically from its neighbors or by winding a 
very thin insulated tape. In accelerating cavity applications, an insulator-coated 
magnetic alloy tape of approximately 20 ["m] in thickness is wound into a toroidal core 
with a diameter of several tens of centimeters and heat-treated in an oven. The shunt 
resistance of an RF cavity is proportional to µpQf # ln [O.D./I.D.], where O.D. and I.D. 
denote the outer and inner diameters, respectively. This means that a larger O.D./I.D. 
makes shunt resistance higher and consequently leads to a higher accelerating gradient. 
Since MA cores are formed by winding, it is possible to fabricate large cores, with an 
O.D. greater than 1 [m]. This is a practical advantage over ferrites, whose ceramic 
nature makes them unsuitable for forming large cores because the cores are 
manufactured by pressing, with the size of the press being a limiting factor.   
 
1.4 Characteristics of MAs in Cavity Applications 

High-power measurements revealed that when the intensity of the RF field was varied 
over a wide range, IRNCs maintained a fairly high µpQf-value (≃5 [k$/m]) up to a 
magnetic field intensity of 0.2 [T], whereas the µpQf-value of ferrites was greatly 
reduced even at much lower field intensities [8][9][14]. It should be emphasized that 0.2 
[T] is not the ultimate magnetic field that IRNCs can hold but the maximum field that 
could be attained by using the then available RF measurement system, which had 
limited power capacity. This indicated that IRNCs have the potential to produce an 
accelerating gradient much higher than can be attained with ferrites. In addition, the 
IRNCs’ operations were quite stable even at very high magnetic fields because of their 
high heat resistance, based on a high Curie temperature of about 570℃. 
   Two distinctive features of IRNC material as seen from cavity applications are a 
high relative permeability and a low Q-value. High relative permeability compensates 
for a decreased µpQf-value due to a low Q-value and thereby helps to keep the cavity 
shunt resistance fairly high. Another advantage of the very high permeability of MAs is 
that accelerating structures can be much more compact than those loaded with ferrites. 
However, an applicable frequency range of MAs is limited due to eddy currents that 
make the relative permeability start to drop at a relatively low RF. A low Q-value of the 
core causes a broad cavity resonance, thereby making it possible for the cavity to 
operate over a wide frequency range without any cavity tuning system. The broad 
bandwidth of a low-Q cavity allows multi-harmonic RF operation, in which bunch 
properties can be manipulated, for instance, to reduce space-charge effects at injection, 
to match bunch shape and emittance between cascaded machines, and to avoid some 
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types of beam instabilities. A broad-bandwidth cavity is also suited to producing a 
pulsed sinusoid for barrier-bucket manipulations. In addition, a low-Q cavity has little 
memory of the beam that passed through it and, as a result, barely excites severe 
coupled-bunch instabilities. However, since the impedance of a low-Q cavity extends 
over a wide frequency range, the voltages at several revolution harmonics might be 
induced in the cavity and added to the accelerating voltage. To avoid the distortion of 
the accelerating voltage, which is much more serious at higher beam-current operation, 
the induced voltages must be compensated for by means of some kind of feedforward or 
feedback system. 
   The Q-value of the core can be increased by introducing a radial gap and controlled 
by a factor of more than 10 by changing the gap width. However, the µpQf-value or 
shunt resistance does not change much because the radial gap also reduces the effective 
permeability by an amount that almost cancels out the increase in Q-value. To 
summarize, the radial gap increases the effective Q-value while the shunt resistance R 
remains almost unchanged, which reduces R/Q. A low R/Q is beneficial with respect to 
beam instabilities and transient beam loading.  
   Regarding MA materials other than IRNC, tests of newly developed cobalt-based 
amorphous cores have been reported [18][19][20][21]. The permeability of the core was 
improved by adjusting the annealing temperature and by applying a magnetic field 
during heat treatment. The µpQf-value of the test cores with a 300 [mm] O.D. and 150 
[mm] I.D. was found to be approximately 1.6–1.9 times as high as that of IRNC [19]. A 
prototype RF cavity loaded with 12 cores of 550 [mm] O.D. and 310 [mm] I.D. was 
installed and beam-tested in the Heavy Ion Medical Accelerator in Chiba (HIMAC) at 
the National Institute of Radiological Sciences (NIRS). In the beam test, the cavity 
showed good acceleration performances [21]. However, the procedure for 
manufacturing large size cores for RF cavity applications has not yet been established, 
and consequently, the shunt resistance of the core still depends significantly on the core 
size and annealing/manufacturing parameters [19][20]. 
   Recently, to increase the accelerating voltage of J-PARC RF cavities, a new class of 
IRNC core has been developed, with a µpQf-value approximately twice that of 
conventional IRNC cores [22]. The increase in µpQf-value was achieved by introducing 
a new annealing method in which a magnetic field is applied during the crystallization 
process and by reducing the tape thickness from 18 ["m] to 13 ["m] [23]. 

1.5 Applications of MAs to RF Cavities  

RF cavities loaded with MA cores (mostly IRNC cores) worked or have been working 
as RF accelerating cavities or as special purpose cavities at numerous institutes 
worldwide. The following is a brief survey of MA-loaded cavity applications. 
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(a) Cavities for High-Energy Physics 

The first application of IRNC to RF cavities was made in collaboration between the 
High Energy Accelerator Research Organization (KEK) and Brookhaven National 
Laboratory (BNL). An MA-loaded cavity designed and built in KEK was successfully 
beam-tested in the alternating gradient synchrotron (AGS) at BNL in 1998. It was used 
as a barrier-bucket cavity to maximize the longitudinal bunching factor in a bucket- 
to-bucket beam transfer [24][25][26][27]. In 2000, a second harmonic RF system 
equipped with an MA-loaded cavity was installed in the KEK 12 [GeV] proton 
synchrotron (KEK-PS) to alleviate the space charge effects during the beam injection 
period [28][29]. Subsequently, in 2003, one of the ferrite-loaded cavities for the 
KEK-PS booster was replaced with a nonresonant MA-loaded cavity [30][31]. The new 
accelerating system, together with a new COD correction system, contributed to 
increasing the booster’s average beam intensity by up to 40 [%]. 
   At CERN, two MA-loaded cavities were built for a low-energy ion ring (LEIR) in 
collaboration with KEK. They cover a wide frequency range (0.35–5.0 [MHz]) without 
cavity tuning and allow multiharmonic operation [32][33]. Also at CERN, as part of the 
LHC injector upgrade program, an increase in the beam energy transferred from the 
proton synchrotron booster (PSB) to the proton synchrotron (PS) has been investigated 
as a possible upgrade scenario [34]. An RF cavity loaded with the abovementioned 
IRNC with an improved µpQf-value is being developed in order to increase the total 
accelerating voltage obtainable within the space allotted to the RF cavities [35]. In 
Fermilab, a 7.5 [MHz] single-gap RF cavity with five MA cores was built and tested as 
part of the Proton Driver Design Study [36]. The MA-loaded cavity was chosen to 
achieve the highest possible accelerating gradient and to reduce beam-loading effects. In 
addition, at Fermilab, a barrier RF system with an MA-loaded cavity was installed in 
the main injector to increase the luminosity of the Tevatron, which was shut down in 
September 2011 [37]. 
   One of the fruitful applications of MA is an induction-accelerating cell, which was 
built in the KEK-PS to demonstrate the feasibility of realizing an induction synchrotron. 
The induction-accelerating system successfully captured an injected 500 [MeV] single 
proton-bunch by a barrier bucket, and succeeded in accelerating it up to 6 [GeV] [38] 
[39][40][41][42]. 

(b) Cavities for Medical-Use Synchrotrons 
In the field of particle-beam therapy, MA-loaded cavities have been gaining a firm hold, 
because their suitability for untuned wideband operation is particularly favorable for 
medical-use synchrotrons characterized by a large RF swing between the injection 
energy and the top energy. In 1999, an MA-loaded cavity was installed in the HIMAC 
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at NIRS to accelerate carbon or heavier ions through a large frequency change of 1–8 
[MHz] with an accelerating gradient of 50 [kV/m] [43][44] [45].  
   Stimulated by the remarkable results at HIMAC, medical-use synchrotrons equipped 
with MA-loaded cavities have been built and are operating at a large number of 
institutes, including the Proton Medical Research Center (PMRC) at the University of 
Tsukuba [46][47], the Wakasa-wan Energy Research Center (WERC) [48][49], and the 
M. D. Anderson Cancer Center (MDACC) at University of Texas [50].   

(c) Cavities for FFAGs 

MA-loaded cavities have also been successfully applied to fixed-field alternating 
gradient accelerators (FFAG). In KEK, the 1 [MeV] proof-of-principle (POP) FFAG 
came into operation in 2000, and in 2006, the larger 150 [MeV] FFAG, a prototype for 
proton therapy and neutron production, first accelerated protons up to 100 [MeV] at a 
repetition rate of 100 [Hz] [51][52][53][54]. Subsequently, it was relocated to the 
Center for Accelerator and Beam Applied Science at Kyushu University to promote 
both research and educational activities at the university [55]. Beam commissioning and 
pilot research in nuclear, medical, and life sciences are being carried out from 2011 to 
2013 [56].  
   Another 150 [MeV] FFAG was built at the Kyoto University Research Reactor 
Institute (KURRI) to test accelerator-driven subcritical reactor (ADSR) operation 
[57][58]. The whole machine is a cascade of three FFAG rings, the beam of which was 
successfully accelerated up to 100 [MeV] in 2008 [59]. Also at KURRI, a project 
aiming at medical applications of FFAG accelerators is ongoing: an FFAG storage ring 
with energy/emittance recovery internal target (ERIT) has been constructed, which is 
intended to serve as an intense accelerator-based neutron source for boron neutron-
capture therapy (BNCT)  [60][61][62][63].  
   In France, a variable-energy (70–180 [MeV]) spiral-lattice FFAG equipped with two 
MA cavities was designed for a project, Recherche en ACCélérateurs et Applications 
Médicales (RACCAM) [64][65][66]. One aim of RACCAM is to show the feasibility of 
the application of FFAG beam to hadron therapy. FFAGs are also of interest for muon 
acceleration: at the Research Center for Nuclear Physics (RCNP) of Osaka University, a 
Phase Rotated Intense Slow Muon beam (PRISM) has been constructed, which aims to 
produce a high-quality and high-intensity muon beam by means of a phase rotating 
technique [67][68][69] [70]. 

(d) Others 

The first application of IRNC in the field of accelerators was not to an RF cavity but to 
a longitudinal impedance tuner, which was planned at KEK in 1996 to mitigate the 
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longitudinal space-charge effects in the KEK-PS [71][72]. The tuner was designed to 
compensate for the longitudinal space-charge impedance (negative inductance) and 
consisted of three units, each having four MA cores with 340 [mm] O.D. and 140 [mm] 
I.D. The beam test performed in 1997 showed that the tuner effectively reduced the 
space-charge impedance and proved that IRNC has a very high tolerance to radiation 
[73][74]. 
   A very short length (11.6 [cm]) beam chopper using three MA cores was developed 
for HIMAC and installed between the ion sources and the RFQ [75][76]. It operated 
stably at a chopping voltage of 5 [kV] with a rise and fall time of 10 [ns]. At the Center 
for Nuclear Study (CNS) at the University of Tokyo, an RF buncher using MA 
cut-cores was installed in the beam transport line of an ECR ion source HiECR 
[77][78][79]. The buncher operates in a wide frequency range (18–45 [MHz]) without 
tuning and successfully formed bunched beams of H+, O5+, and Ar8+. 
 
1.6 Cavities for J-PARC 

1.6.1 Progress of J-PARC  

As mentioned in Section 1.2, the MA (IRNC)-loaded cavity was originally designed in 
the mid-1990s in collaboration between KEK and the Institute for Nuclear Study (INS) 
at the University of Tokyo* to meet the challenging requirements for J-PARC RF 
cavities. Since then, it has been developed in INS and KEK and later in the Japan 
Atomic Energy Agency (JAEA). The J-PARC was a large-scale project and accordingly 
it took a long time before the design was finalized and the project was officially 
approved. During this period, besides developing their own cavities for J-PARC, the 
J-PARC (JHF) group energetically led activities in applying MA to other machines. 
Because of their efforts, a number of MA-loaded cavities were developed and worked 
well in various machines. These cavities have demonstrated that both high accelerating 
gradient and large frequency swing are practically achievable. 
   The J-PARC rings are composed of a 3 [GeV] rapid cycling synchrotron (RCS) and 
a 50 [GeV] synchrotron of the main ring (MR), now operating at a phase-I energy of 30 
[GeV]. Beam commissioning of the RCS started in October 2007. The first 3 [GeV] 
beam from the RCS was injected into the MR in May 2008, and user runs of the RCS 
started in December 2008 for the Materials and Life Science Facility (MLF). The MR 
proton beam reached the initial goal of 30 [GeV] in December 2008. In January 2009, 
the 30 [GeV] proton beam was successfully extracted from the MR and then transferred 
to the Hadron experimental hall. The first neutrino beam production was confirmed in 
April 2009 by observing the muons produced by the fast-extracted proton beam. In 
February 2010, the Tokai-to-Kamioka (T2K) collaboration detected the first neutrino 
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event at Super-Kamiokande, which is located 295 [km] away from Tokai. In the RCS, 
the beam intensity has been steadily increased and in November 2010 the beam power 
delivered to MLF went up to 200 [kW]. In the MR, the beam power to T2K beam line 
reached 145 [kW] in March 2011, shortly before the northeastern region of Japan was 
struck by a gigantic earthquake (officially called the Great Eastern Japan Earthquake) in 
which the J-PARC facility experienced considerable damage. 

*In 1997, the High Energy Accelerator Research Organization (present KEK) was established  
 by merging three laboratories: National Laboratory for High Energy Physics (old KEK) and 
 two related institutions of the University of Tokyo, INS, and Meson Science Laboratory. 
 
1.6.2 Build-up of Cavities 

J-PARC was the first accelerator to use MA cavities on a large scale. Beam tests of the 
RCS started with 10 RF accelerating cavities, each loaded with 18 noncut MA cores. 
The cavity is equipped with a low-loss inductor and a vacuum capacitor, with both 
connected in parallel to the cavity in order to adjust its Q-value and resonance 
frequency [80][81][82]. To increase the beam-capture efficiency, a second-harmonic RF 
voltage is added to the fundamental one in the early stages of acceleration [83]. 
Application of the second harmonic voltage maximizes the longitudinal bunching factor 
and thereby alleviates the space-charge effect that causes capture efficiency to 
deteriorate. An eleventh RF accelerating cavity was added in December 2008, and since 
then, the RF system has been working very well. The beam energy of the linac will be 
upgraded in the fiscal year 2013 from a provisional value of 181 [MeV] to the design 
value of 400 [MeV]. At about that time, a twelfth RF cavity will be installed to provide 
a total accelerating voltage sufficient to accept the upgraded beam and to accelerate it 
up to 3 [GeV] [84].  
   Beam tests of the MR started with four RF accelerating cavities, each loaded with 
18 radial-cut MA cores. A fifth RF accelerating cavity was added in August 2009 [84]. 
To reduce the space-charge effects that hamper increases in beam current, the first 
second-harmonic RF cavity was installed in August 2010, and shortly thereafter, a 
preliminary beam study using the second-harmonic cavity was performed [85]. By 
changing the tuning capacitors, the MR cavity is easily converted from the accelerating 
cavity to the second-harmonic cavity or vice versa. In October 2011, two more RF 
cavities were installed, and in December 2011, the first beam test after the earthquake 
began. At present, eight RF cavities are operational in the MR and the ninth (and last) 
cavity will be added during the 2012 summer shutdown [86]. 
  In the near future, to achieve the target beam-power of 750 [kW], the MR repetition 
cycle will be reduced from the present 2.56 [s] to 1.28 [s] [87]. The RF voltage required 
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for this high repetition rate is much higher than the present total RF voltage. Since space 
for cavities is limited, the accelerating gradient of the cavity must be increased 
considerably to obtain the necessary RF voltage. As mentioned in Section 1.4, a new 
class of IRNC core has been developed, with a much higher µpQf-value than the present 
core. Production of real-size cores (80 [cm] in diameter) has been started after 
completion of various tests of the manufacturing system. The system is mainly 
composed of a large oven for annealing the core and a larger magnet that can hold the 
whole oven between its pole pieces and generate a high magnetic field with acceptable 
uniformity [88]. Newly designed RF cavities loaded with these cores are expected to 
attain the required RF voltage within the capacity of the present RF power amplifiers 
and to fit in the present space for cavities [88]. 

1.7 Outline of the Paper 

The purpose of this paper is to give a detailed description of the RF magnetic properties 
of plane magnetic sheets made of lossy materials, such as soft magnetic alloys. Finite 
resistivity or nonzero conductivity of a material causes a flow of eddy current within the 
sheet, which plays an important role in determining the magnetic properties of the sheet. 
Throughout the analyses, complex permeability and nonzero conductivity are used so 
that the obtained results can be applied to any magnetic sheet having any value of tan" 
and conductivity. 
   The contents of the paper are organized into eight chapters. Chapter 2 reviews some 
fundamental equations of basic physical quantities, such as stored magnetic energy and 
magnetic power loss. From these equations, we obtain various expressions for magnetic 
properties of the sheet. We introduce two definitions of permeability—the intrinsic 
permeability and the effective permeability—which form the basic elements of the 
analyses in this paper. 
   In Chapter 3, approximate expressions for the AC magnetic properties of the sheet 
are derived on the assumption that the frequency of the applied magnetic field is much 
lower than RF frequencies. The derived expressions are useful for predicting the 
behavior of magnetic sheets when used at frequencies from very low to approximately 
100 [kHz]. These expressions can also be used as the references to which the accurate 
expressions derived in the following chapters must reduce when the frequency is  
assumed to be much lower than RF frequencies. 
   Chapter 4 discusses the distribution of the magnetic field in the interior of the sheet, 
which is essentially formed under the influence of eddy currents. We obtain the field 
distribution by solving a field equation that is based on Maxwell’s equations and 
governs the magnetic field inside the sheet. We derive an expression of skin depth for 
the magnetic sheet, which is applicable to all magnetic sheets because it includes tan" 
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and conductivity. We give some numerical examples of the field distribution to show 
the way it changes as a function of frequency, material constants, and thickness of the 
sheet. 
   Chapter 5 briefly surveys the frequency characteristics of the intrinsic permeability, 
which is inherent in magnetization mechanisms and is therefore a material constant. The 
main sources of dispersion in the frequency response of intrinsic permeability are the 
relaxation and resonance absorption associated with magnetization processes. We 
describe two dispersion sources in some detail, namely, the relaxation in orientation of 
magnetic moments and the resonance of domain wall motion. Both effects usually 
appear in a relatively low RF range in which most proton-ring RF cavities operate. 
   In Chapter 6, we derive the effective permeability that characterizes the macroscopic 
magnetic properties of the sheet. It represents the relationship between the average 
magnetic flux density within the sheet and the applied magnetic field strength. To 
obtain the complex effective permeability, the real and imaginary parts of the magnetic 
field are separately integrated and averaged over the cross section of the sheet. The 
effective permeability of the sheet is determined mainly by eddy current, and hence, it 
depends on the frequency and sheet thickness as well as the material constants. 
   In Chapter 7, we derive expressions for the RF magnetic properties of the sheet 
using the magnetic field distribution obtained in Chapter 4 and its integrations given in 
Chapter 6. Here, we obtain the expressions for the stored magnetic energy, overall 
magnetic power loss, eddy-current loss, hysteresis loss, and Q-value of the sheet. We 
give some numerical examples of these magnetic properties to show how they depend 
on the material constants and thickness and how they change as the frequency is varied 
over a wide range. 
   Appendix A takes a fundamental approach to the subject of stored energy and 
derives the equation for the stored magnetic energy of a magnetic object when it is 
placed in a magnetic field. Appendix B expresses the magnetic power loss in terms of 
field quantities and verifies that the expression agrees precisely with the commonly 
used power loss defined by the product of voltage and current. Appendix C discusses 
the distribution of magnetic field within a solid magnetic cylinder made of a material 
having complex permeability and nonzero conductivity.  
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2. Basic Physical Quantities 

In this chapter, we review some fundamental equations of basic physical quantities, 
such as stored magnetic energy and magnetic power loss. From these equations, we 
obtain expressions for various properties of magnetic materials under an alternating 
magnetic field. 
  
2.1 Stored Magnetic Energy 

Stored magnetic energy and magnetic power loss are important basic physical quantities 
of magnetic sheets. The quality factor, usually referred to as the Q-value, is another 
important quantity and is based on these two quantities. In this section, we review the 
expression for the stored energy of a magnetic object when it is placed in a magnetic 
field.  
   First, let H and B denote the magnetic field intensity and magnetic flux density in a 
medium, respectively. Then, the magnetic energy stored in a volume V is expressed (as 
derived in Appendix A) by  

                                               (2.1) 

where the symbol “ ! ” represents the scalar product of the two vectors H and B and 
 !H･dB represents the local density of the stored magnetic energy. If we assume that the 
relationship of B to H is linear and that the medium is isotropic, we can write B = µH, 
where µ  is the permeability and is a constant if the medium is homogeneous. The 
energy given in eq. (2.1) then reduces (as shown in Appendix A) to 

                                                
(2.2)

 

   Let us assume that a magnetic field has been established in a medium that is 
isotropic and homogeneous. A magnetic object is now introduced into the field, while 
the source of the field is maintained strictly constant. The energy stored in the object 
can be obtained from the change in energy of the system before and after the 
introduction of the object. If the magnetic properties of the medium and the object can 
be characterized by the permeability µ , the magnetic energy stored in the object is given 
by (Appendix A) 

                                       (2.3) 

WV = dv
V! H "dB,!
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1
2

H !B dv.
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where V is the volume occupied by the magnetic object; µ1, the permeability of the 
medium outside the object; µ2, the permeability of the object; H1,  the magnetic field 
intensity in the medium before introducing the object; and B2, the magnetic flux density 
within the object. If the configuration of the field and object is such that the magnetic 
polarization in the object does not affect the field in the medium, the field intensity in 
the medium is independent of the presence or absence of the object. In this case, H1 in 
eq. (2.3) is also the field intensity in the medium after the object is introduced. If the 
medium is not magnetic or µ1 is much lower than µ2, such that the condition µ1/µ2 <<1 is 
satisfied, the second term in parentheses in eq. (2.3) can be ignored, and thus, WV  can be 
written as 

                                              (2.4) 

The condition µ1/µ2 <<1 is satisfied for almost all ordinary proton-ring RF cavities in 
which magnetic cores are placed in a nonmagnetic medium, such as air or water. 
Therefore, we conclude that eq. (2.4) can be used to calculate the stored magnetic energy 
of the cores. 

   If H and B change sinusoidally, they can be represented by  

                       (2.5) 

where # is the angular frequency of the field and r is the generalized position. The 
scalar product of H and B can be obtained from the ordinary product of H* (the 
complex conjugate of H) and B, instead of performing a vector operation. Expressing 
variables as a complex conjugate enables a much easier calculation because the time 
factors of H* and B, e–j"t and ej"t respectively, cancel each other out. We can easily 
show that the scalar product of H and B is equal to the real part of the ordinary product 
of H* and B: 

                                         (2.6) 

Substituting eq. (2.6) into eq. (2.4), the average density of the magnetic energy stored in 
the object, W, becomes  

                                          
(2.7)

 

where V is the volume of the magnetic object; H1, the magnetic field intensity in the 
medium before introducing the object; and B2, the magnetic flux density within the 
object. 

WV =
1
2

H1 !B2 dv.
V"

H r, t( ) = H r( ) e j! t and B r, t( ) = B r( ) e j! t ,

H !B = Re H*B"# $%.

W =
1
2V

Re H1
*B2!" #$ dv

V% ,
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2.2 General Consideration of Magnetic Power Loss 

In this section, we review the energy conservation law, from which we can obtain the 
magnetic power loss expressed in terms of field quantities. Consider an arbitrary region 
in which there exists an electric field E with electric flux density D and conducting 
current density J, and a magnetic field H with magnetic flux density B. The question is 
“How can the energy relationship be represented inside a region whose volume and 
surface area are V  and S , respectively?” 
   By applying some mathematical operations to Maxwell’s equations in differential 
form, the following expression is derived (Appendix B): 

               (2.8) 

The result is essentially a power balance equation known as Poynting’s theorem, after J. 
H. Poynting who first derived this equation. The customary interpretation of eq. (2.8) is 
as follows. The right-hand side represents the rate of decrease in electric and magnetic 
energy stored within the volume V. From the conservation law of energy, the loss of 
available stored energy must be accounted for by the sum of the energy loss within the 
volume and the outward energy flow across the volume’s boundary surface S. Since the 
second term of the left-hand side is the power dissipated in Joule heat within the volume, 
the first term must be the power flow out of the closed surface S. The vector S = E # H is 
termed the Poynting vector, which represents the magnitude of energy-flux flow [W/m2] 
and direction of the energy flow.  
   Equation (2.8) is the general expression for all cases, because it is derived from 
Maxwell’s equations without any assumptions. This theorem is one of the most 
fundamental and useful relationships of electromagnetic theory. In eq. (2.8),  
H･#B/#t is the only term concerned with magnetic power loss, and therefore, it must 
represent the overall magnetic power loss including all types of power loss originating  
from all mechanisms. 
 
2.3 Overall Magnetic Power Loss  

It follows from the Poynting’s theorem given in eq. (2.8) that the average density of 
magnetic power loss in the volume, V, is given by 

                                             
(2.9)

 

As mentioned above, this is the expression of magnetic power loss that includes all 
types of losses, such as hysteresis loss, eddy-current loss, magnetic after-effect loss, and 
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so on. Hence, by using eq. (2.9), we can, in principle, obtain the overall magnetic power 
loss, provided the distribution of H and B that reflects all of these losses is known and 
manageable. However, in practice, it is only when the magnetic field distribution is very 
simple that we can express the overall magnetic power loss analytically. Using the 
complex conjugate representation given in eq. (2.6), we can rewrite eq. (2.9) as  

                                        
(2.10)

 

   A commonly used measure of power loss is the rate at which energy is expended, 
that is, the time-averaged power loss, which is expressed in watts or joules per second. 
To calculate the time-averaged power loss, the integration in time over a period T is 
necessary, in addition to integration in space. If H and B are steady-state sinusoidal 
time-varying functions, the time integral over T simply produces a factor of T/2. Then, 
dividing the result of integration by T, we obtain Pm, the time-averaged overall power 
loss per unit volume given by 

                                        
(2.11)

 

Magnetic energy dissipation comes from the irreversibility inherent in magnetizing 
mechanisms. It shows up at the macroscopic scale through the area enclosed by a B-H 
or hysteresis loop. From eq. (2.1), the average density of magnetic energy loss in 
volume V in one hysteresis cycle is                     

                                       
(2.12)

 

Equation (2.12) is another expression of magnetic energy loss, and it also embraces all 
types of magnetic losses, since it is derived from the general stored magnetic energy 
expression (eq. (2.1)). If H and B are periodic functions of time with a period T, eq. 
(2.12) can be written as 

                                    
(2.13)

 

Performing the time integral in eq.  (2.13), we obtain 
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(2.14)

 

Comparing eq. (2.14) with eq. (2.11), we can see a natural consequence that the magnetic 
energy loss per cycle (eq. (2.14) is equivalent to the magnetic energy loss per second (eq. 
(2.11) multiplied by the period T. 
   The power loss of a magnetic object placed in a magnetic field can be obtained in 
the same manner as used in Section 2.1. From eq. (2.11), the time-averaged overall 
magnetic loss per unit volume, Pm, is 

                                       
(2.15)

 

where H1 is the magnetic field intensity in the medium before introducing the object 
and B2 is the magnetic flux density within the object. Likewise, the overall magnetic 
loss per cycle per unit volume is given (from eq. (2.14)) by 

                                      
(2.16)

 

As stated before (below eq. (2.3)), if magnetic polarization of the object does not affect 
the field in the medium, H1 does not change even if the object is introduced. 
   In this section, two conventions are presented to express the magnetic power loss, 
namely, the energy loss per second (Pm) and the energy loss per cycle (Pm, c). Materials 
scientists usually use the energy loss per cycle because it is suited to basic materials 
research. On the other hand, engineers or users of magnetic materials prefer the energy 
loss per second because it is more convenient in practical use. As mentioned above, Pm, c 
= Pm T (=Pm /f ), where f is the frequency of the field. In this paper, we use Pm as a 
measure of magnetic power loss 
 
2.4 Power Loss due to Eddy Current 

2.4.1 Effects of Eddy Current 

When the magnetic flux in a conductor changes with time, an electric field is generated 
in the plane at right angles to the direction in which the flux is changing, resulting in a 
flow of currents within the conductor. These currents are referred to as eddy currents 
and depend on the geometry of the conductor specimen, on its resistivity, and on the 
frequency of alternation of the field. Their directions always counteract the change in 
field that produced them. The net effect of the flow of eddy currents is to prevent the 
field from penetrating immediately to the interior of the conductor. When the applied 
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field varies fast, the field strength in the interior may never be more than a small 
fraction of the field strength at the surface. Thus, the eddy currents produce a 
nonuniform field distribution over the cross section of the conductor, a phenomenon 
referred to as the skin effect. The skin effect expresses the tendency of alternating 
current to flow near the surface of a conductor. This effect becomes more pronounced at 
higher frequencies and, in particular, at microwave frequencies, an electromagnetic field 
can only survive in very close vicinity to the surface.  
   A magnetic material also suffers from the skin effect if it has finite resistivity or 
nonzero conductivity. Because of limited penetration of the applied magnetic field, the 
magnetic flux density also decreases from the surface toward the interior. This leads to a 
reduction in the average magnetic flux density within the material and consequently 
causes a reduction in effective permeability.   

2.4.2 Eddy-Current Loss 

Power dissipated due to eddy currents is referred to as an eddy-current loss, which 
increases with a decrease in resistivity of magnetic material. We will see in Chapter 3 
that in a low-frequency region where the influence of eddy currents is weak, the loss is 
precisely proportional to the reciprocal of resistivity. Ferrites that have been widely 
used in proton-ring RF cavities have high resistivity, and consequently, the eddy-current 
loss is insignificant compared to the hysteresis loss. On the other hand, the resistivity of 
magnetic alloys is considerably lower than that of ferrites, and as a result, the 
eddy-current loss of magnetic alloys is substantially higher than the hysteresis loss in 
the frequency range where most of the RF cavities for proton rings operate. 
   In principle, if the distribution of electric field induced within a magnetic object is 
known, the eddy-current loss can be calculated. For a magnetic object in which there is 
a time-varying magnetic flux density B, the following Faraday’s law holds: 

                                         
(2.17)

                                                 

where n  is a unit vector whose direction is outwardly normal to the surface S. Basically, 
the law states that a changing magnetic field will induce an electric field. More 
specifically, the equation indicates that the line integral of electric field E along any 
closed path c is equal to the rate of decrease in the magnetic flux through any surface S 
spanning that path. Provided that the distribution of B is known, we can obtain the 
distribution of both the electric field and the eddy current within the object from eq. 
(2.17). The magnitude of the eddy current depends on the magnitude of E and the 
resistivity of the object. If J denotes the eddy-current density, then the power loss in the 
object is given by 
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(2.18)

 

where Ped is the eddy-current loss expressed as time-averaged power loss per unit 
volume. Assuming J and E are steady-state sinusoidal time-varying functions, and 
performing the time integral in eq. (2.18), we obtain 

                                          
(2.19)

 

2.5 Hysteresis Loss  

2.5.1 Definition of Hysteresis Loss 

The analysis of magnetic loss into its constituent parts is difficult and still a matter of 
some debate. A conventional approach is that the overall magnetic loss is divided  
into two principal parts: hysteresis loss and eddy-current loss. The hysteresis loss 
is determined from the area enclosed by the so-called static hysteresis loop. This 
separation of losses is based on the assumption that there is something fundamental 
about the static hysteresis loss. However, this assumption is not necessarily true, 
because the loop is not completely static and the shape and area of the loop depend on 
the way in which the applied field changes with time. If the drive field changes 
sinusoidally and its frequency increases slowly from a very low value with a constant 
field-amplitude, the shape and area of the loop change. 
   The current view of magnetic loss is that virtually all observed losses in alternating 
magnetization are due to eddy currents. Any field change over time, such as the change 
caused by the domain wall motion and magnetization rotation, accompanies eddy 
currents that cause the power loss. This view implies that the so-called static hysteresis 
loss is due to the same cause, that no matter how slowly the loop is traversed, 
irreversible changes in magnetization occur and these changes generate eddy currents. 
In other words, the overall magnetic loss given by eq. (2.15) is precisely equal to the 
eddy-current loss in the current interpretation. However, since the term hysteresis loss is 
still widely used, we propose an improvement of the conventional approach, as 
explained in the following paragraph. 
   In this approach, the overall magnetic loss is divided into two parts: the hysteresis 
loss, which is no longer static but changes with the frequency, and the so-called 
classical eddy-current loss. In order to apply classical electromagnetic theory, the latter 
is calculated on the assumption that the magnetization is microscopic and distributed 
homogeneously. The word “classical” in “classical eddy-current loss” is hereafter 
omitted for simplicity. The hysteresis loss defined here is equivalent to the loop area of 
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the B-H loop in which H and B are the magnetic field intensity and the magnetic flux 
density within the object, both of which vary with the frequency and position. This 
hysteresis loss is distinct from the overall magnetic loss that is defined as the loop area 
of the B-H loop in which H is the magnetic field in the medium before introducing the 
object, and B  is the magnetic flux density within the object. Defined this way, for a 
known, simple field distribution, the eddy-current loss and hysteresis loss can be 
calculated separately; otherwise, it is extremely difficult to measure them separately 
even for a simple field distribution.  
 
2.5.2 Hysteresis Loss Equation 

As defined above, the time-averaged hysteresis loss per unit volume, Ph, of a magnetic 
object in a magnetic field is given by 

                                       
(2.20)

 

where H2 and B2 are the magnetic field intensity and magnetic flux density, respectively, 
within the object. Provided that H2 and B2 reflect all of the magnetization mechanisms 
functioning in the object, eq. (2.20) represents all types of magnetic loss arising from 
each mechanism. If the magnetic power loss definition given above is correct, the sum 
of Ph in eq. (2.20) and Ped in eq. (2.19) must agree with Pm in eq. (2.15), that is, 

                                                   (2.21) 

Since these three types of losses can be calculated separately for a flat magnetic sheet, 
under the simplified conditions given in the next chapter, we verify eq. (2.21) in the 
following chapters. 
   Likewise, the hysteresis loss per cycle per unit volume of a magnetic object, Ph,c, is 
represented by 

                                      
(2.22)

 

   The area inside a B-H loop displayed on an oscilloscope corresponds to the overall 
magnetic loss, not solely the hysteresis loss. If the B-H loop is traced as frequency 
increases, we observe that a coercive field Hc increases, the loop becomes more rounded, 
and the loop area increases until it reaches a maximum at a specific frequency (see 
Chapter 7). This behavior is, of course, attributed to the eddy current induced in the 
object by the rapid change in magnetic flux. We will see in Chapters 3 and 7 that the 
hysteresis loss decreases with an increase in the frequency, even when the overall 
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magnetic loss increases. This is because as frequency increases, both the magnetic field 
intensity and the magnetic flux density within the sheet diminish due to the eddy-current 
effect. However, it is shown in Chapter 7 that the Q-value defined by the hysteresis loss, 
Qh, is always equal to the intrinsic Q-value Q0,  which does not depend on frequency, as 
long as the frequency is within a nondispersive region. 
   Incidentally, the word “ hysteresis” is Greek, meaning “a coming late,” and is today 
applied to almost any phenomenon in which the effect lags behind the cause. Its first 
scientific use was by J. A. Ewing in 1881, referring to the magnetic behavior of iron. 
Incidentally, Ewing was a professor at the University of Tokyo from 1878 to 1883. 
During his five-year tenure at the university, he introduced his students to research on 
magnetism, and Japanese research in this field has flourished ever since [89]. 
 
2.6 Q-Value of Magnetic Materials 

In the materials-engineering field, a so-called loss factor or loss tangent has usually 
been used as a measure of a material’s quality. It is defined by the ratio of the imaginary 
part of the complex permeability of a material to its real part and is customarily referred 
to as tan", where " is sometimes called the loss angle. In electrical engineering, a 
quality factor Q, which is often referred to as the Q-value, has traditionally been used as 
a figure of merit of an oscillating system, such as a resonant circuit. It is defined by the 
ratio of the stored energy to the energy dissipated in one radian of an oscillation. Most 
proton-ring RF cavities are loaded with magnetic cores to make the cavity length short 
and to provide a means of dynamically tuning the cavity. Hence, it is advantageous to 
express the quality of the core by the Q-value, because cavity loss and core loss can 
then be treated in a unified manner. In Chapter 7, we demonstrate using an orthodox 
method that the Q-value of a material is exactly equal to the reciprocal of its loss factor, 
1/tan". 
   On the basis of the above definition, we can obtain the overall Q-value of a 
magnetic object, Qe, from the stored magnetic energy W (given in eq. (2.7)) and the 
time-averaged overall magnetic loss Pm (given in eq. (2.15)) as follows: 

                                                       
(2.23)

 
   A magnetic object, subjected to a high magnetic field at a high frequency can have 
several types of losses from different mechanisms. The Q-value can be defined for each 
loss mechanism. If there are a number of loss mechanisms in the magnetic object whose 
stored energy is W, the overall Q-value is defined as  

Qe =
!W
Pm

.
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(2.24)

 

with
                                                   

(2.25)
 

where Pn (n = 1, 2, 3,・・・) denotes the power loss due to each mechanism and Qn the 
corresponding Q-value. Equation (2.24) indicates that for Q-values obtained separately, 
the overall Q-value is obtained through their combination. However, it is very difficult 
to experimentally separate a power loss caused by one mechanism from those caused by 
other mechanisms. Theoretically, eq. (2.15) gives the overall magnetic loss and does not 
provide any way of distinguishing one mechanism from another. Nevertheless, as 
mentioned before, the eddy-current loss and the hysteresis loss can be calculated 
separately provided the field distribution is simple and easy to handle. It should be 
noted that hysteresis loss generally includes several types of losses arising from separate 
magnetization mechanisms and eq. (2.20) gives the sum of those losses. 
   Let Qh represent the Q-value defined by the hysteresis loss and Qed represent the 
Q-value defined by the eddy-current loss. Then, in our present model, in which the 
overall magnetic loss consists of the hysteresis loss and the eddy-current loss, the 
overall Q-value Qe is given (from eq. (2.24)) by 

                                                
(2.26)

 

If we know the stored energy, the hysteresis loss, and the eddy-current loss, we can 
obtain Qh and Qed from eq. (2.25) and then Qe from eq. (2.26). Equation (2.26) can 
therefore be used as an expression for cross-checking the value of Qe obtained from eq. 
(2.23). 
   If a device is comprised of several components, its Q-value is determined by the 
energy stored in the device and the sum of the power loss of each component. For RF 
cavities for proton rings, the power loss of the magnetic core is much higher than the 
cavity wall loss and the losses of other components. As a result, the Q-value of the 
cavity is almost equal to that of the magnetic core.  
  
2.7 Permeability 

The magnetic characterization of a magnetic object is based on the measurement of B 
as a function of H. The permeability µ , which is defined by the ratio of B to H, is the 
slope of a line from the origin to a particular point on the B-H curve shown in Fig. 2.1. 
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Therefore, it varies continuously as H increases from zero. Two special values of µ  are 
the initial permeability and the maximum permeability. The initial permeability µi is the 
limit approached by the permeability as B and H are decreased toward zero. The 
maximum permeability µm   is the highest value of permeability obtained by varying the 
amplitude of H, as illustrated in Fig. 2.1. 
   We are interested in an alternating magnetic field Hac swinging about the origin or 
about some operating point set on a B-H curve by applying a biasing field. A closed 
curve traced on the B-H plane by this field variation is sometimes referred to as a minor 
loop. If the swing is small, the incremental permeability µ$, defined by Bac/Hac, where 
Bac is the magnetic flux density created by Hac, can be regarded as a constant value. As 
the permeability we use in this paper is exclusively the incremental permeability, the 
word “incremental” and the subscript ! are omitted for simplicity. Incidentally, it is a 
simple matter to show that if the incremental permeability is a constant, a minor loop 
takes the shape of an exact ellipse.  
  
 
 

      

                
Figure 2.1 Virgin induction curve, part of a hysteresis loop and two minor loops. Three kinds 
          of permeability (µi, µm, and µ$) are also illustrated. 
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   In this paper, we use two definitions of permeability: intrinsic permeability and 
effective permeability. The intrinsic permeability µ (= µ%& jµ') is the permeability that is 
inherent in magnetization mechanisms and characterizes the local relationship between 
B and H. It is a material constant and does not depend on the geometry of a magnetic 
object, but is a function of the frequency because of the presence of some dispersion 
mechanisms. The frequency behavior of intrinsic permeability is briefly reviewed in 
Chapter 5. 
   The permeability definition we usually use is the effective permeability, which is 
defined by the ratio of the average magnetic flux density within the object to the applied 
magnetic field strength. Thus, it characterizes the macroscopic magnetic properties of 
the object and is expressed by µe (= µe$ & jµe '   ). The effective permeability is related to the 
intrinsic permeability by a demagnetizing factor, which is defined as the ratio of the 
demagnetizing field to the magnetization (see Section 6.2). While the demagnetizing 
factor essentially depends on the geometry of a magnetic object, if the object is 
somewhat conductive and used in an alternating magnetic field, it also depends on the 
eddy current. In particular, when the conductive object is used at high frequencies, eddy 
currents virtually determine the demagnetizing field and, consequently, the effective 
permeability.  
   We can easily measure the applied magnetic field Happl and can obtain the average 
magnetic flux density within an object, Bav, by measuring, for example, the inductance 
of the object. Then, by taking the ratio Bav/Happl, we can obtain the effective 
permeability "e. In Chapter 6, the expression of the effective permeability of magnetic 
sheet is derived using the magnetic field distribution obtained in Chapter 4.  
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3. Low-Frequency Properties of Magnetic Sheet  

3.1 Introduction 

Most applications use magnetic materials in an alternating magnetic field, because of 
which their magnetic properties in such applications differ from those they exhibit in a 
quasistatic state. In this chapter, we discuss the magnetic properties of a plane magnetic 
sheet in an alternating magnetic field applied at a low frequency. There are three 
reasons for deriving the approximate expressions applicable only to the low-frequency 
regions. First, the obtained expressions are sufficiently useful in low-frequency 
applications up to 10 [kHz] or even 100 [kHz], depending on the values of the material 
constants and thickness of the sheet. Second, since the expressions are simple and easily 
understood, they can help us interpret the behavior of magnetic materials when used in 
an alternating magnetic field. Third, these expressions can be used as references to 
which the expressions derived in the following chapters without any frequency 
assumptions must reduce when the frequency is much lower than RFs. This is a 
necessary condition for the accuracy of the expressions. 
 
3.2 Assumptions 

Figure 3.1 shows a cross section of a flat magnetic sheet of thickness d which extends 
infinitely in both x and z  directions. Assume a sinusoidal, time-varying, uniform 
magnetic field of small to moderate amplitude is applied in the z  direction, parallel to 
the sheet surface. The applied magnetic field induces some eddy currents, which hinder 
its penetration into the interior of the sheet. However, as long as the frequency is very 
low, the field can penetrate fairly well into the sheet, such that both the field 
nonuniformity and the eddy-current loss are very small. In this chapter, we deal with the 
case where the magnetic field is applied at such a low frequency (that is, the ratio of the 
sheet thickness to the skin depth is very small) that the effect of the eddy currents is 
quite weak.  
   To summarize, the analyses in this chapter are based on the following assumptions: 

   (1) the magnetic sheet is flat and extends infinitely in both x and z  directions, 
   (2) the intrinsic permeability of the sheet is linear and isotropic, and 
   (3) the frequency of the applied magnetic field is low enough to cause only very 

minor eddy currents. 

Assume that the applied magnetic field Hz0 is given by 

                                                     (3.1) Hz0 = H0 e
j! t .
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The magnetic field intensity Hz  and the magnetic flux density Bz  within the sheet are 
written as 

              (3.2) 

where ! (= !%& j!') is the intrinsic permeability. It is important to distinguish between 
the intrinsic permeability and the effective permeability, although at low frequencies, 
the two are very similar because the eddy-current effect is weak. 
 
3.3 Approximate Field Distribution 

To obtain the low-frequency magnetic properties of the sheet, we require the field 
distribution within the sheet in this frequency range. Even at low frequencies, the 
time-varying magnetic flux creates small eddy currents, which cause the field intensity 
to diminish slightly and the field phase to lag slightly behind the surface phase. As a 
result of this phase lag, the magnetic field has a small imaginary part in addition to a 
real part whose magnitude is slightly less than that of the applied field. Thus, Hz is 
represented in the complex form by the real part Re[Hz] and the imaginary part Im[Hz]: 

                       (3.3) 

 
 

          

   Figure 3.1 Field components in Cartesian coordinates in a flat magnetic sheet extending  
             infinitely in both x and z directions. 
    

Hz = H y( ) e j! t and Bz = µHz = "µ # j ""µ( )H y( ) e j! t ,

Hz = H y( ) e j! t = Re Hz"# $% + j Im Hz"# $%{ } e j! t .
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   The next step is to understand how the low-frequency approximations of Re[Hz] and  
Im[Hz] are expressed in terms of the frequency and the thickness and material constants 
of the sheet. Fortunately, we have obtained the exact expressions of magnetic field 
distribution (next chapter), from which we can obtain the low-frequency approximations. 
Then, we only need to reduce the exact expressions to approximate forms on the 
assumption that the field is applied at a low frequency. 
   The expressions of the field distribution are written as a function of !, which is 
defined as 

                              ! "
d
#s
,                              (3.4) 

where d  is the thickness of the sheet and "s is the skin depth given by 

                         !s =
2

" #µ $
,                        (3.5) 

with %  being the conductivity of the sheet material. The skin depth is discussed at some 
length in Chapter 4. The real and imaginary parts of the magnetic field given in eqs. 
(4.29) and (4.30) are expressed in terms of trigonometric and hyperbolic functions, both 
of which can be expanded into a power series of !. The expansions are written in a 
series of even powers of  !, a0 +(a2n!2n, where a0 is a constant, n is a positive integer 
(n = 1, 2, 3, ･･･ ), and  a2n is a coefficient of the (n+1)th term. Under the low frequency 
assumption, we take only the first and second terms from the expansions of Re[Hz] and 
Im[Hz] and ignore the other terms. Then, Re[Hz] and Im[Hz] can be approximately 
written as 

 

where tan" is the intrinsic loss factor given by !'/!%. It follows from eqs.  (3.6) and (3.7) 
that at the surface of the sheet (y = d/2 or y = d/2), 

                               (3.8) 

and in the middle of the sheet (y = 0), 
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4
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Im[Hz ] ! !
1
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,
,

-

.
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/
H0 , (3.7)

!

Re[Hz ]
H0

= 1 and
Im[Hz ]
H0

= 0,
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                 (3.9) 

In the following sections of this chapter, we use the approximate field distribution given 
in eqs. (3.6) and (3.7). 
 
3.4 Stored Magnetic Energy  

The average density of the stored magnetic energy W of a magnetic object when it is 
placed in a magnetic field is given by eq. (2.7). In the present case, the magnetic field 
Hz0 is applied parallel to a sheet surface of infinite width, and consequently, the 
magnetization of the sheet does not affect the field in the medium outside the sheet. 
Therefore, the field intensity in the medium remains unchanged regardless of the 
presence or absence of the sheet. As a result, H1 in eq. (2.7) is replaced with Hz0, and B2 
is replaced with Bz. Then, W is written as 

                                        (3.10) 

Figure 3.2 shows the rectangular parallelepiped over which the volume integral in eq. 
(3.10) is performed. The length of the sides are l0 in the x direction, d in the y direction, 
and one unit length in the z direction, so that the volume V is equal to l0d. 
   From eqs. (3.2) and (3.3), the magnetic flux density Bz  is given by 

             

Substituting Re[Hz] from eq. (3.6) and Im[Hz] from eq. (3.7) into eq. (3.11) yields the 
approximate expressions of Re[Bz] and Im[Bz]: 
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   Figure 3.2 Rectangular parallelepiped over which the volume integral is performed. 
 
 
The real part of H*

z0Bz is then given by 

   
(3.14)

 

Replacing Re[H*
z0Bz] in eq. (3.10) with eq. (3.14) gives 
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Performing the integration over the volume V and dividing the result by V, we find 
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If the magnetic field varies quasistatically or at a very low frequency, the second term in 
parentheses can be ignored, and thus, W reduces to a familiar form of stored magnetic 
energy: 

                                                    (3.17) 
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From eqs. (3.16) and (3.17), the ratio of W to W0 is given by 

                         
 

W
W0
! 1 !

1
3
" 2 tan# .                      (3.18) 

Equation (3.18) clearly shows that the stored energy decreases as ! or the frequency 
increases. This is attributed to the diminished magnetic field intensity due to the 
eddy-current effect.  
  
3.5 Overall Magnetic Loss 

The time-averaged overall magnetic loss per unit volume, Pm, of a magnetic object 
placed in a magnetic field is given by eq. (2.15). As mentioned in the previous section, 
H1 and B2 are replaced with Hz0 and Bz, respectively, and then Pm is written as 

                                      (3.19) 

From Bz given in eq. (3.11), ∂Bz /∂t  becomes 

                             (3.20) 

It follows from Hz0
  in eq. (3.1), ∂Bz /∂t  in eq. (3.20), and Im[Bz] in eq. (3.13) that we can 

obtain the real part of Hz0
* (∂Bz /∂t), 

     

Substituting eq. (3.21) for Re[Hz0
* (∂Bz /∂t)] in eq. (3.19), performing the integration 

over the volume V, and dividing the result by V, we obtain 

                      
  (3.22)
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If the magnetic field varies at a very low frequency, Pm reduces to 

                           
                   

(3.23) 

From eqs. (3.22) and (3.23), the ratio Pm/Pm0 is given by 

                                    
(3.24)

 

which increases with an increase in ! when tan" is lower than 1.0 and decreases when  
tan" is higher than 1.0. The magnetic loss is often expressed as the energy loss in one 
hysteresis cycle, Pm,c, which is given in eq. (2.16). Let us replace H1 and B2 in eq. (2.16) 
with Hz0 and Bz, respectively, and substitute eq. (3.21) for Re[Hz0

* ("Bz /#t)] in eq. (2.16). 
Then, performing the integration in eq. (2.16) over volume V, we obtain 
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The loss Pm,c can also be obtained by dividing Pm given in eq. (3.22) by the frequency 
f .  

3.6 Eddy-Current Loss 

3.6.1 Electric Field Distribution 

The time-averaged eddy-current loss per unit volume, Ped, is given by eq. (2.19). As 
shown in Fig. 3.1, the magnetic field exists only in the z direction, and accordingly, the 
electric field and current are induced only in the x direction. Therefore, Ped is given by 

                                        
(3.26)

 

where Jx and Ex denote the electric current density and the electric field intensity in the 
x direction, respectively. To evaluate the eddy-current loss of the sheet, we require the 
distribution of Jx and Ex in y, which can be obtained from the distribution of Bz using 
Faraday’s law. 
   Figure 3.3 shows a closed path c in an x-y cross section of the sheet. The path is 
composed of two segments of length l0 in the x direction and two segments of length 
2y0 in the y direction. We apply Faraday’s law, given in eq. (2.17), to this path c and the 
surface S enclosed by the path. Supposing that the operation of the derivative with 
respect to t and the operation of the surface integral can be interchanged, we can write 
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Figure 3.3 Closed path c and surface S enclosed by c in x-y cross section of the sheet. Line  
          integrals of Ex along c  and surface integral of ∂Bz /∂t over S  are performed to  
          obtain Ex at y = y0. 

                    

                                        (3.27) 

First, we perform the line integral of Ex along the closed path c. It is clear from the 
configuration shown in Fig. 3.1 that the induced Ex is antisymmetric with respect to the 
x  axis. To be more precise, the operation of replacing y with –y reverses the sign of Ex 
but does not change the magnitude of Ex. Since Ex at y = +y0 or y = & y0 is independent 
of position x, the left-hand side of eq.  (3.27) is given by 

                                                (3.28) 

   Next, we perform the surface integral of∂Bz /∂t over the area S (= 2y0l0). Making 
use of∂Bz /∂t given in eq. (3.20), we can write the right-hand side of eq. (3.27) as 

            (3.29) 

where Re[Bz] and Im[Bz] are given in eqs. (3.12) and (3.13). Performing the integral of 
eq. (3.29), we obtain 
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Substituting eqs. (3.28) and (3.30) into eq. (3.27) yields the Ex induced at y = y0: 

                                     (3.33) 

 
3.6.2 Calculations of Eddy-Current Loss  

The current density Jx induced by Ex is written as 

                       (3.34) 

where % is the conductivity and &  (=1/%) is the resistivity of the sheet material. Then, Jx 
in eq. (3.26) is replaced with Jx from eq. (3.34) to give 

 

By expanding (Re2 + Im2) in a power series of ! and taking only the first two terms, that 
is, the constant term and the !2 term, the following approximate expression is obtained 
from eq. (3.36): 

 

where Q0 is the intrinsic Q-value defined by 1/tan". Substituting｜Ex｜
2 given in eq. (3.37) 

into eq. (3.35) and performing the integral extending over the whole volume of the 
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rectangular parallelepiped shown in Fig. 3.2, we obtain 
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3.6.3 Discussions on Eddy-Current Loss 

Equation (3.39) clearly shows how each parameter is related to the eddy-current loss in 
the low-frequency range. The most important result is the strong dependence of Ped on 
the frequency # and the sheet thickness d as well as on the applied field intensity H0. 
First, the eddy-current loss is proportional to #2. This is because the induced field Ex is 
proportional to %, as shown in eq.  (3.33), and the power loss Ped is proportional to｜Ex｜

2 , 

as given in eq. (3.35). In most cases, #  and H0 cannot be chosen freely because they are 
usually determined by each application’s requirements and operational conditions.  
   The parameters d, &, and µ%2' can, in principle, be controlled to reduce the eddy- 
current loss. The most important parameter among them is d, because the eddy-current 
loss is proportional to d2.  Fortunately, reducing d  in manufacturing processes is not 
difficult as long as the amount of reduction is within an allowable limit. On the other 
hand, & is intrinsically connected with the manufacturing method itself and therefore 
cannot be controlled in ordinary manufacturing processes. Note that if & is anisotropic, 
it is & in the direction of the tape width (x in Fig. 3.1) that is important for the eddy- 
current loss, not & in the direction of the tape length (z in Fig. 3.1). This is because the 
eddy current flows perpendicularly to the magnetic flux that flows along the tape. 
   Another factor determining the eddy-current loss is µ%2', which is given (from eq. 
(3.38)) by 

                           !µ 2" = !µ 2+ !!µ 2.                      (3.40) 

If a magnetic sheet is used in a low-frequency range, or more precisely, if '≃  1 
 ( µ%>>µ'), only the real part µ% is responsible for the eddy-current loss. The eddy-current 
loss depends heavily on µ% because the magnetic flux ( is proportional to µ%, and 
therefore, a high µ% creates a large (, which in turn produces large eddy currents. 
Although lowering the value of µ% clearly helps to reduce eddy-current loss, it is not 
realistic because a higher µ% is desirable in most cases and a top priority in many 
applications. The adverse effect of a high µ% value on the eddy-current loss must be 
compensated for by reducing the thickness of the sheet. If a magnetic sheet is used in a 
dispersive frequency region, the imaginary part µ' might increase considerably, which 
might contribute to an increase in eddy-current loss. Note that µ' is the intrinsic 
permeability free from dispersion due to eddy currents and that for most sheet materials, 
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µ' is much lower than µ% as long as the magnetic sheet is used in a frequency region well 
below the lowest relaxation frequency (see Chapter 5). 
   The above discussions can be summarized as follows. It is desirable, but very 
difficult, to increase & by improving manufacturing methods and processes. It is 
important to avoid a reduction in µ% in order to retain the advantage of the very high µ% 
property of magnetic alloys. The only practical way of reducing the eddy-current loss is 
to make the thickness of the sheet as thin as possible while preserving the appropriate 
sheet strength. 
   The eddy-current loss given in eq. (3.39) can be rewritten by using !  from eq. (3.4) 
and the skin depth "s from eq. (3.5) as follows: 

                

(3.41)

 

where the !4  term is ignored. It follows from eqs. (3.23) and (3.41) that the ratio of Ped  
to Pm0 is given by 

                                        (3.42) 

Equation (3.42) shows that in a low-frequency region Ped /Pm0 is proportional to !2 or # . 
This is because Ped  is proportional to #2 while Pm0 is proportional to # . 
  
3.7 Hysteresis Loss 

The time-averaged hysteresis loss per unit volume, Ph, of a magnetic object placed in a 
magnetic field is given by eq. (2.20). In the present case, H2 and B2 are replaced with Hz 
and Bz, respectively, and then Ph is written as 

                                       (3.43) 

It follows from Hz in eq. (3.3) and ∂Bz /∂t in eq. (3.20) that Re[H*
z (∂Bz /∂t)] is represented 

by 

                (3.44) 

Substituting eqs. (3.6), (3.7), (3.12), and (3.13) into eq. (3.44) leads to the low-frequency 
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approximation of Re[H*
                                                               z (∂Bz /∂t)] given by 

            (3.45) 

Replacing Re[H*
                                                               z (∂Bz/∂t)] in eq. (3.43) with eq. (3.45), performing the integration over 

the volume V shown in Fig. 3.2, and dividing the result by V, we finally obtain 

                                    (3.46) 

   We see from eq. (3.46) that in a very low frequency region where the !2 term can be 
ignored, Ph is exactly proportional to # .  Equation (3.46) also shows that the second 
term in parentheses makes Ph shift slightly below the linear increase with an increase in 
# .  This is, of course, attributed to the eddy current, which slightly reduces both the 
magnetic field and the magnetic flux density and, as a result, causes a slight decrease in 
hysteresis loss. From eqs. (3.23) and (3.46), the ratio of Ph to Pm0 is written as 

                         
 

Ph
Pm0

! 1 !
1
3
" 2 tan# .                      (3.47) 

It is worth noting that Ph/Pm0 given in eq. (3.47) is identical to W/W0 given in eq. (3.18). 
Taking the sum of Ph from eq.  (3.46) and Ped from eq. (3.41) yields 

 

The result is exactly the same as the overall magnetic loss Pm given in eq. (3.22). This 
verifies the accuracy of eq. (2.21) in the low-frequency region. 
 
3.8 Q-Value 

The overall Q-value of the magnetic sheet, Qe, is obtained by introducing the stored 
magnetic energy W from eq. (3.16) and the overall magnetic loss Pm from eq. (3.22) into 
eq. (2.23) as follows: 
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(3.49)

 
   Now, let Qh be the Q-value defined by the hysteresis loss. Substituting W and the 
hysteresis loss Ph  from eq. (3.46) into eq. (2.25) gives 

              (3.50) 

It is interesting that Qh is determined solely by the intrinsic permeabilities µ% and µ' and 
is independent of ! . This can be explained mathematically by the behavior of W and Ph 
as #  changes. W and Ph vary with !  in exactly the same manner, and consequently, 
their dependence on !  is canceled out when W is divided by Ph. We will see in Chapter 
7 that the equation Qh = Q0 applies not only to low-frequency regions but to any 
frequency region. 
   Likewise, let Qed be the Q-value defined by the eddy-current loss. Substituting W 
and the eddy-current loss Ped from eq. (3.41) into eq. (2.25) yields 

                        (3.51) 

This can also be written as 

                       
(3.52)

 

Equation (3.52) shows that as the frequency decreases toward zero, Qed approaches 
infinity. This corresponds to the behavior of the eddy-current loss, which decreases 
toward zero when the frequency approaches zero, as shown in eq. (3.39).  
   The overall Q-value of the magnetic sheet is also obtained from eq. (2.26) using Qh 
from eq. (3.50) and Qed from eq. (3.51):   
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(3.53)

 

The result is consistent with eq. (3.49). If the frequency is very low, Qed becomes high 
enough to satisfy the condition Qed >> Qh so that Qe becomes almost equal to Qh. 
 
3.9 Expressions in Terms of Effective Permeability 

In Chapter 6, the accurate expression of the effective permeability of the sheet, µe, is 
derived and given in eqs. (6.19) and (6.22). If the frequency is low, the real part µe% and 
the imaginary part µe' are approximated by 

                                               
(3.54) 

and
                                   

(3.55)
 

By using these equations, we can rewrite W in eq. (3.16), Pm  in eq. (3.22), and the 
Q-value in eq. (3.49) as 

             
(3.56)

 

all of which are reasonable and expected results. Likewise, Ped in eq. (3.41) and Ph  in eq. 
(3.46) can be rewritten as 

                                     
(3.57) 

and                       
                    

(3.58)
                                         

where tan"e is the effective loss factor of the sheet given by µe'/µe%.  
 
3.10 Numerical Examples 

Figure 3.4 shows W/W0 as a function of ! (=  d/"s) for four values of tan", where W is 
the stored magnetic energy and W0 is that at very low frequencies. The results obtained 
from the approximate expression in eq. (3.18) are represented as dotted lines, and those 
from the accurate expression in eq. (7.9) as solid lines. As seen from Fig. 3.4, W/W0 
decreases as !  increases because of the reduced magnetic field intensity due to the eddy 
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current. W/W0 decreases faster for higher values of tan" because the field within the 
sheet diminishes more rapidly when tan" is higher, as will be shown in the next chapter. 
For tan" = 0.5, the approximate plot almost overlaps with the accurate one throughout 
the range of !  shown in the figure. As mentioned in Section 3.7, the ratio Ph /Pm0, where 
Ph is the hysteresis loss and Pm0 is the overall magnetic loss at very low frequencies, is 
identical to the ratio W/W0. 
 
 

   
 

Figure 3.4 Normalized stored energy W/W0 versus ! (= d /"s) for four values of tan". The  
          dotted lines show the low-frequency approximations obtained from eq. (3.18), and  
          the solid lines show the accurate results obtained from eq. (7.9). Normalized  
          hysteresis loss Ph/Pm0 is equal to W/W0. 
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   Figure 3.5 illustrates the normalized eddy-current loss Ped /Pm0 versus !  for four 
values of tan". The dotted lines show the low-frequency approximations obtained from 
eq. (3.42), and the solid lines show the accurate results obtained from eq. (7.35). Ped /Pm0 
behaves in a rather complex manner when tan" changes, and the reason for this can be 
mathematically explained using eqs. (3.42) and (7.35), both of which include the factor 
(1/tan" + tan"). For tan" = 0.1, the factor is quite large due to the predominance of the 
term 1/ tan", and consequently, Ped /Pm0 also becomes large. As tan" is increased from 
0.1, the factor continuously decreases until tan" reaches 1.0, where it reaches a 
minimum value of 2.0. If tan" increases beyond 1.0, the factor starts to increase, and 
therefore, the approximate Ped /Pm0 begins to increase as well. However, as the figure 
shows, the accurate Ped /Pm0 hardly increases when tan" increases beyond 1.0, because 
 

 

 

 
Figure 3.5 Normalized eddy-current loss Ped/Pm0 versus ! for four values of tan". The dotted 
          lines show the low-frequency approximations obtained from eq. (3.42), and the 
          solid lines show the accurate results obtained from eq. (7.35). 
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eq. (7.35) includes a factor, g(!,)), which decreases rapidly with an increase in tan", as 
will be demonstrated in Fig. 6.2. 
   Figure 3.6 shows the normalized overall magnetic loss Pm/Pm0 as a function of !  for 
four values of tan". The dotted lines show the low-frequency approximations obtained 
from eq. (3.24), and the solid lines show the accurate results obtained from eq. (7.17). 
Note that the ordinate in Fig.   3.6 starts at 0.6. We know from Figs. 3.4 and 3.5 that as !  
increases, the normalized hysteresis loss Ph /Pm0 decreases, whereas the normalized 
eddy-current loss Ped /Pm0 increases. Since Pm/Pm0 is given by the sum of these two 
normalized losses, the behavior of Pm/Pm0 shown in Fig. 3.6 must be explained by the 
behavior of these two losses. When tan" is lower than 1.0, the increase rate of eddy- 
current loss exceeds the decrease rate of hysteresis loss, so that Pm/Pm0 increases as 
!  increases. When tan" is higher than 1.0, the decrease rate of hysteresis loss exceeds 
 
 

  
 
Figure 3.6 Normalized overall magnetic loss Pm/Pm0 versus ! for four values of tan". The 
          dotted lines show the low-frequency approximations obtained from eq. (3.24), and  
          the solid lines show the accurate results obtained from eq. (7.17). 
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the increase rate of eddy-currnt loss and consequently Pm/Pm0 decreases as !  inceases.  
   The dotted lines in Fig. 3.7 show Qe/Q0 as a function of !  for four values of tan", 
where Qe is the approximate overall Q-value given in eq. (3.49) and Q0 is the intrinsic 
Q-value given by µ%/µ'. The solid lines show the accurate Qe/Q0 obtained from Qe given 
in eq. (7.51). Since Qe/Q0 is equal to the ratio of W/W0 to Pm/Pm0 ((W/W0)/(Pm/Pm0)  
= (W/Pm)/(W0/Pm0) = Qe/Q0), the behavior of Qe/Q0 shown in Fig. 3.7 can be interpreted 
from the behavior of W/W0 shown in Fig. 3.4 and that of Pm/Pm0 in Fig. 3.6. For  
example, consider the case of tan" = 0.1. While W/W0 decreases very slowly as !  
increases, Pm/Pm0 increases rather sharply. As a result, Qe/Q0 decreases appreciably 
with an increase in ! . 
 
 
  

 
  

Figure 3.7 Normalized overall Q-value Qe/Q0 versus ! for four values of tan". The dotted  
          lines show the low-frequency approximations obtained from the ratio of eq. (3.49)  
          to Q0, and the solid lines show the accurate results obtained from the ratio of eq.      
          (7.51) to Q0. 
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3.11 Frequency Range of Application 

We can easily determine the range of !  for which the approximate expressions obtained 
in this chapter are applicable. Close study of the figures in the previous section show 
that the approximate plots agree quite well with the accurate ones, at least up to !≃ 0.4. 
If tan" is lower than 0.1, the range in which the plots are in good agreement may be 
extended. Now, we are particularly interested in the frequency range in which !  is less 
than 0.4. It follows from eqs. (3.4) and (3.5) that the frequency at which !  is equal to 0.4 
is given by 

                          f!=0.4 =
0.16

" d2 #µ $
,                       (3.59) 

where d is the thickness of the sheet; µ%, the real part of the intrinsic permeability 
(=     µ %r    µ0 , where  µ %r  is the relative permeability); and %, the conductivity. Let us consider a 
numerical example: if d = 18 ["m], µ %r  =10,000, and % = 1)106 [S/m], then f! = 0.4 is  
12.5 [kHz]. If µ %r   decreases to 1,000 while the other parameters remain the same, f! = 0.4 

becomes 125 [kHz]. 
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4.  Field Distribution within Magnetic Sheet  

4.1 Introduction 

In Chapter 3, the magnetic properties of a plane magnetic sheet were discussed on the 
assumption that the magnetic field is applied at a low frequency. In this low-frequency 
range, the magnetic field distribution within the sheet is not much different from the 
uniform one. However, as the frequency increases, the eddy currents become more 
noticeable and more influential in altering the field distribution. In this chapter, the low 
frequency assumption is removed and the expressions useful for any frequency range 
are derived. 
   First, we derive a field equation that governs the magnetic field in the interior of the 
sheet and solve it to obtain the magnetic field distribution. In the following chapters, the 
field distribution obtained here will be used to derive the expressions for the effective 
permeability and other RF magnetic properties of the sheet, such as the magnetic power 
loss and the Q-value. 
   Effects of eddy currents on the magnetic properties of the sheet usually fall into one 
of three categories: 

   (1) the intensity of the field diminishes and the phase of the field lags behind that at  
      the surface, 
   (2) the effective permeability of the sheet changes, and 
   (3) the energy loss of the sheet increases. 

Category (1) is discussed in this chapter and categories (2) and (3) are discussed in 
Chapters 6 and 7, respectively. 
 
4.2 Assumptions 

Ferromagnetic materials are usually magnetized by the movement of magnetic walls, by 
the rotation of magnetic domains, or both. In fact, both mechanisms produce the same 
result because the spins in a region swept out by a moving wall have their orientation 
rotated through a definite angle. When studying the magnetic properties of a 
ferromagnetic material, we generally must take into account the domain structure of the 
material.  
   As regards materials for RF cavity applications, we are presently interested in 
magnetic alloys, such as the fine-structured soft magnetic alloys and the amorphous 
alloys. The fine-structured soft magnetic alloys, such as IRNC, are composed of 
nanometer-size, single-domain, crystalline grains in an amorphous phase. The 
amorphous alloys are noncrystalline materials and do not have definite rectilinear 
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domain walls. In both the fine-structured alloys and the amorphous alloys, the domain 
structure is less important and the magnetization is considered to be microscopic and 
distributed homogeneously. For this reason, it may be safe to assume that the 
magnetization can be regarded as a subject to which a standard method of classical 
electromagnetic theory is applied.   
   In the present and following chapters, we remove assumption (3) from Section 3.2, 
which states that a low-frequency field is applied and consequently the eddy-current 
effects are quite weak. However, assumptions (1) and (2), given below, remain, because 
these assumptions facilitate the calculation of the way in which the magnetic field 
decreases with depth below the surface: 

   (1) the magnetic sheet is flat and infinitely wide in both x  and z  directions, and 
   (2) the intrinsic permeability of the sheet is linear and isotropic.  

4.3 Field Equation 

Maxwell’s equations expressed in differential form are given in Appendix B (eqs. (B.1), 
(B.2), and (B.3)). We start with Maxwell’s equations written in Cartesian coordinates 
and composed of eight equations for six field components (Ex, Ey, Ez, Hx, Hy, and Hz). 
Because of the assumption that the uniform magnetic field is applied in the z direction, 
as shown in Fig. 3.1, only the two field components Ex and Hz have nonzero values, 
while the other four components are zero. Likewise, only the two field gradients #Ex/#y 
and #Hz/#y have nonzero values, while the other four field gradients are zero, that is,   

           
(4.1)

 

As a result, only the following two equations are significant: 

            

where *  and %  are the permittivity and the conductivity, respectively, of a sheet material. 
Since we are assuming that the electromagnetic fields vary sinusoidally in time, it is 
convenient to represent all field quantities as complex vectors with a time dependence 
ej"t. The second equation of eq. (4.3) is obtained by assuming this time dependence. In 
this paper, ej"t is sometimes omitted for the sake of simplicity. 
   For conductive materials, even if the conductivity is not as high as that of copper, 
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we can show that the condition #* /%<<1      is satisfied over a wide frequency range up to 
at least microwave frequencies. For instance, % /*  of a magnetic alloy with % ≃ 1)106  

[S/m] is in the order of 1017 [s&1], which is much higher than the frequencies we are 
interested in for particle acceleration. Hence, the displacement current in the magnetic 
sheet, * (#Ex/#t), is negligible compared to the conducting current %Ex. Therefore, from 
eq. (4.3), we obtain 

                                                      (4.4) 

Substituting eq. (4.4) into eq. (4.2) eliminates Ex to give the second-order differential 
equation for Hz as follows: 

                                                   (4.5) 

This can also be written as 

                                              (4.6) 

We use the complex intrinsic permeability µ given by 

                             µ = !µ " j !!µ .                          (4.7) 

Replacing µ in eq. (4.6) with eq. (4.7) leads to 

                                      (4.8) 

Now, we take a square root of the coefficient of Hz from eq. (4.8) and denote it by +:   
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,                          (3.5) 
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                             ! = 1 + tan2 " ,                        (3.38) 

 

   In this paper, tan" and Q0 are referred to as the intrinsic loss factor and intrinsic 
quality factor, respectively. The word “intrinsic” is derived from the term “intrinsic 
permeability,” which was introduced in Section 2.7 and will be described in further 
detail in Chapter 5. The skin depth "s, defined by eq. (3.5), is customarily used as a 
measure of penetration of the applied magnetic field into the interior of a magnetic 
object. It is the distance at which the amplitude of the field decays to 1/e of its surface 
value. However, "s is not applicable to all magnetic materials, because it does not 
include the imaginary part of the permeability µ'. It is considered to be the skin depth of 
a conductor or a magnetic material whose tan"  is much lower than 1.0. In this chapter, 
we introduce a new expression for the skin depth of magnetic sheet, which includes µ' 
and is therefore applicable to all magnetic sheets. When the distinction between these 
two definitions is necessary, we call "s,  defined by eq. (3.5), the conductor skin depth. 
   By using + given in eq. (4.9), we can rewrite eq. (4.8) as 

                                                
(4.12)

 

This is recognized as a homogeneous linear differential equation with a complex 
number coefficient. 
 
4.4 Solution of Equation 

We can express the general solution of eq. (4.12) by 

                                              (4.13) 

where C1 and C2 are the constants of complex numbers, chosen to satisfy the boundary 
conditions. With reference to Fig. 3.1, let the applied magnetic field be H0ej"t (eq. 
(3.1)); then, the boundary conditions to be satisfied at both surfaces of the sheet, that is, 
at y = +d/2 or at y = –d/2, are 

                          
(4.14)

 

By applying these boundary conditions to eq. (4.13), we can determine C1 and C2:  
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(4.15)

 

Substituting C1 and C2 into eq. (4.13) leads to the solution 

                                        

(4.16)

 

   Next, we transform eq. (4.16) into a form more suitable for calculating the field 
distribution. Let !  denote the ratio of the sheet thickness d to the skin depth "s,  

                                                           
(3.4)

 

then, + given in eq. (4.9) can be written as 

                                                  
(4.17)

 

It can also be expressed in an explicit complex form 

                                                    (4.18) 

with
                      

(4.19-1)
          

and
                       

(4.19-2)
          

 

The plus sign in the last terms of eq. (4.19) is for m =0, and the minus sign is for m =1 
(see eq.  (4.11)). We can also write 

                                                   
(4.20)
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and
                         

(4.21-2)
           

Using these expressions leads to another expression of Hz with the time factor ej"t: 

                    
(4.22)

 

   The complex field Hz can be expressed as a combination of the amplitude |Hz| and 
the phase !z : 

                                                
(4.23)

 

where
                          

(4.24)
                 

and             (4.25)          

Equation (4.24) gives the relationship between the amplitude of the interior field |Hz| 
and the amplitude of the surface field H0. The maximum values of these two amplitudes 
are reached at different times due to a time lag or a phase lag of the field, which is given 
by eq. (4.25). Fig. 4.2 shows an example of the difference between |Hz|/H0 and the 
instantaneous Hz/H0 at the instant when the surface field reaches its maximum. The 
phase lag !z  is closely related to the eddy-current loss as will be seen later. 
   If the intrinsic tan" given in eq. (4.10) is zero or µ' =  0, then eqs. (4.24) and (4.25) 
reduce to 

                              

(4.26)
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These expressions agree with those given in some textbooks on ferromagnetism [89] 
[90]. 

4.5 Real and Imaginary Part of the Field 

Instead of expressing Hz by the amplitude and phase, it is often convenient to express it 
by a combination of the real and the imaginary parts as follows:  

 

If tan" = 0, then eqs. (4.29) and (4.30) reduce to 

 

In Chapters 6 and 7, the complex field representation given in eqs. (4.28), (4.29), and 
(4.30) is used to derive the expressions for various magnetic properties of the sheet. 
 
4.6 Skin Depth from Field Distribution 

In the present and the following sections, we consider the behavior of the magnetic field 
in a frequency region where the skin depth is much smaller than the thickness of the 
sheet. In other words, we consider the case where the condition ! >> 1.0 is satisfied. In 
this frequency range, the amplitude of the field near the surface can be approximated 
from eq. (4.24) by 
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(4.33)

 

We use the inequalities, cosh(2a1y) >> cos(2b1y) and cosh(2a2) >> cos(2b2), which are 
valid under the condition, ! >>1.0. Using a1 and a2 from eqs. (4.19) and (4.21), we can 
rewrite eq. (4.33) as 

                            

(4.34) 

Then, replacing the axis y with Y, which is given by

Note that Y is the distance from the surface, whereas y is the distance from the  
middle of the sheet. Equation (4.36) shows that the amplitude of the field decays 
exponentially with the distance from the surface and at the depth of "s,m  below the 
surface, it becomes 1/e or 0.368 of the amplitude at the surface. The length "s,m  given in 
eq. (4.37) is hereafter referred to as the skin depth, while as mentioned before, the 
commonly used "s given by eq. (3.5) is called the conductor skin depth. We can see 
from eq. (4.37) that the skin depth "s,m  is somewhat shorter than the conductor skin 
depth "s depending on the value of intrinsic tan". It is quite evident that if tan" = 0,  
"s,m  reduces to "s. 
   A similar approximation can be applied to the phase lag !z. Provided that a1y >>1.0  
and a2 >>1.0 (these conditions are equivalent to y/"s >>1.0 and !>>1.0, respectively), 
we can use approximate expressions, tanh (a1y) ≃ 1.0 or –1.0 and tanh (a2) ≃ 1.0 or –1.0. 
The sign of plus or minus depends on the value of m given in eq. (4.11). As a result of 
the approximations, !z,  given in eq. (4.25), simplifies to 
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(4.38)

 

Equation (4.38) shows that the phase of the field lags linearly with respect to Y and at a 
depth of "s /('1/2–tan") 1/2,  the phase is exactly 1.0 [rad] behind the phase at the surface. 
It should be emphasized that this distance is somewhat greater than the skin depth "s,m . 
If tan"= 0, the depth at which the phase lag reaches 1.0 [rad] is exactly the same as the 
depth at which the amplitude decays to 1/e. 
   The general expression of the skin depth for conductive magnetic materials should 
include the complex permeability and the complex conductivity. As noted in Section 4.3, 
in the frequency range of interest, the imaginary part of the effective conductivity is 
much smaller than the real part and can be completely ignored. It is therefore safe to say 
that the skin depth given in eq. (4.37), that includes µ%, µ', and %, is the general 
expression for conductive magnetic sheets. The commonly used definition given by eq. 
(3.5) is the skin depth of a conductor or a magnetic material whose intrinsic tan"  is 
much less than 1.0. 
 
4.7 Skin Depth from Wave Number 

We consider the skin depth again from the viewpoint of damped-wave propagation. 
Equation (4.12) is the general wave or Helmholtz equation for Hz in a lossy (or 
conductive) material. It is only when the material is much less conductive and hence the 
displacement current is much higher than the conducting current that we obtain true 
wave propagation with less attenuation. However, in a magnetic sheet of moderate 
conductivity, a considerable amount of damping occurs during wave propagation. We 
can obtain the skin depth (eq. (4.37)) and phase lag (eq. (4.38)) more easily by solving 
eq. (4.12) under the condition !>>1.0. 
    Using the axis Y from eq. (4.35) as the distance measured from the surface, eq. 
(4.12) can be written as 

                                                
(4.39)

 

where + is given in eq. (4.9) and often referred to as the wave number, meaning the 
number of cycles per unit length. If !>>1.0, a wave entering from the opposite surface 
is attenuated to a negligible value when it propagates through the sheet. Therefore, the 
solution of eq. (4.39) is simplified to 
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(4.40)

 

where H0 is the field intensity at the surface. Since + is a complex number, eq. (4.40) 
indicates a propagating wave whose amplitude dampens with the distance from the 
surface. 
   Now, we must only express the real and imaginary parts of + in terms of "s  and 
tan" to obtain the skin depth and phase lag. It follows from eq. (4.9) that + is written as 

 

Taking the plus sign in eq. (4.19), we can write  

 

Substituting eqs. (4.43) and (4.44) into eq. (4.42) gives 

                 
(4.45)

 

The obtained +r and +i are consistent with eqs. (4.37) and (4.38), respectively. It follows 
from eq. (4.40) that the ratio Hz/H0 is given by 

                               
  (4.46)

 

where
                  

(4.47)
           

   Figure 4.1 shows the approximate amplitude |Hz|/H0 and phase !z as a function of 
the normalized distance Y /"s for several values of tan". The amplitude diminishes 
exponentially and the phase lags linearly with respect to the distance from the surface. 
For higher values of tan", the amplitude diminishes faster, whereas the phase lags 
slower. 
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Figure 4.1 Approximate normalized amplitude |! z|/H0 and phase !z of the field as a function  
                of normalized distance Y /"s for several values of tan". Y is the distance measured  
          from the surface and "s is the conductor skin depth given by eq. (3.5). 
 
 
4.8 Numerical Examples 

4.8.1 Amplitude and Phase of the Field 

(a) |Hz|/H0 and !z versus y/d 

First, we consider the case where the imaginary part of the intrinsic permeability µ' is 
zero, that is, the intrinsic loss factor tan" is zero. Figure 4.2 shows the normalized 
amplitude |Hz|/H0 and the phase !z obtained from eqs. (4.24) and (4.25) for several 
values of !. The abscissa is the normalized distance from the middle of the sheet y/d, 
where d is the thickness of the sheet. Therefore, y/d = 0 refers to the middle and y/d = 
0.5 to the surface of the sheet. The parameter ! is, as given in eq. (3.4), the normalized 
thicknesses given by the ratio of the sheet thickness d to the conductor skin depth "s as 
follows: 
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Figure 4.2  Normalized amplitude |Hz|/H0 and phase !z of the field versus y/d for several  
           values of ! in the case of tan"= 0. y/d = 0 refers to the middle and y/d = 0.5 to the 
           surface of the sheet. Dotted lines show the approximate |Hz|/H0 and !z obtained  
           from eqs. (4.36) and (4.38). Green broken line represents the instantaneous Hz/H0  
           at the instant when the surface field reaches its maximum.  
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(4.48)

 

Equation (4.48) shows that ! is proportional to the sheet thickness d, the square root of 
the product of the frequency #, the real part of the intrinsic permeability µ%, and 
conductivity %. 
   Figure 4.2 clearly shows the magnetic field distribution formed within the sheet 
when a uniform alternating magnetic field is continuously applied to the sheet, parallel 
to its surface. The amplitude of the field |Hz| diminishes and the phase of the field !z 
lags with the distance from the surface. For a larger value of !, |Hz| decreases more 
rapidly and !z lags faster. 
   The dotted lines in Fig. 4.2 show the approximate values of |Hz|/H0 and !z obtained 
from eqs. (4.36) and (4.38) for ! = 3.2, 5.0, and 10.0. Figure 4.2 shows that provided the 
skin depth is much smaller than the sheet thickness (!>>1.0) and the position is near the 
surface, the approximate and accurate results are in good agreement. For ! = 10.0, the 
approximation is valid even in the interior of the sheet.  
   Formation of the magnetic field distribution can be explained in two ways. One is a 
quasistationary field view, in which the field distribution is formed as the result of 
superposition of the uniformly distributed applied magnetic field on the opposite-phase 
equilibrium magnetic field, which is produced by eddy currents, with its amplitude 
reaching a maximum in the middle of the sheet. The other is a propagating damped- 
wave view, in which the secondary magnetic fields created by multireflections at both 
surfaces are superimposed on the primary fields created by the waves that enter the 
sheet through both surfaces and propagate toward the opposite surfaces while 
attenuating.  
   As noted below eq. (4.25), |Hz|/H0 shown in Fig. 4.2 gives the ratio of the amplitude 
of the interior field to the amplitude of the surface field. Because of the phase lag, the 
field in the interior of the sheet reaches a maximum value at a different time from when 
the surface field reaches its maximum. The green broken line in Fig. 4.2 represents the 
instantaneous value of Hz/H0 for ! =2.0 at the instant when the surface field reaches its 
maximum. 
   Next, we examine the way in which the field distribution depends on the intrinsic 
tan". Figure 4.3 shows |Hz|/H0 and !z as a function of y/d for five values of !. Fig. 
4.3 (a), (b), (c), (d), and (e) illustrate the results for ! = 0.5, 1.0, 2.0, 3.2, and 5.0, 
respectively, each showing the field distribution for tan" = 0.1, 0.5, 1.0, and 2.0. Note 
that the scale of |Hz|/H0 is common to all figures, but the scale of &z is different from  

            

! =
d
"s

= d # $µ %
2
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Figure 4.3 ( a )  Normalized amplitude |Hz|/H0 and phase !z of the field versus y/d for != 0.5  
           and four values of tan".  
 

   

        Figure 4.3 (b) Normalized amplitude |Hz|/H0 and phase !z for != 1.0.    
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      Figure 4.3 (c) Normalized amplitude |Hz|/H0 and phase !z for #= 2.0. 
 

  
         Figure 4.3 (d) Normalized amplitude |Hz|/H0 and phase !z for != 3.2.     
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Figure 4.3 (e) Normalized amplitude |Hz|/H0 and phase !z of the field for != 5.0. Dotted lines  
            show approximate |Hz|/H0 and !z obtained from eqs. (4.36) and (4.38).  
 
 
figure to figure. It is clear from the figures that as tan" increases, the field amplitude 
diminishes more rapidly, whereas the phase lags more slowly. The dotted lines in Fig. 
4.3(e) show the approximate |Hz|/H0 and !z obtained from eqs. (4.36) and (4.38). We see 
that in the case of !  =5.0, the approximate curves agree quite well with the accurate 
ones up to approximately the halfway point between the surface and the middle of the 
sheet. 
 
( b )  |Hz|/H0 and !z versus ! 

Now, we would like to know how the amplitude and phase of the field at a fixed 
position behave as ! is changed over a wide range. Figure 4.4 shows |Hz|/H0 and !z as a 
function of ! for five values of tan". Fig. 4.4 (a) gives the results at y/d = 0.4, a position 
near the surface, and Fig. 4.4 (b) shows the results at y/d = 0.1, a position near the middle 
of the sheet. The figures clearly show that at the deeper position (y/d = 0.1) the 
amplitude diminishes more rapidly and the phase lags faster as ! increases.       
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Figure 4.4 (a) Normalized amplitude |Hz|/H0 and phase !z versus ! at y/d=0.4 for five values  
            of tan".   

     
Figure 4.4 (b) Normalized amplitude |Hz|/H0 and phase !z versus ! at y/d = 0.1. 
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4.8.2 Real Part and Imaginary Part of the Field 

In Chapters 6 and 7, we will use the complex field representation given in eq. (4.28) to 
derive expressions for the magnetic properties of the sheet. We will show that 
integrating and averaging Re[Hz] and Im[Hz] over the cross section of the sheet are the 
essential parts of the calculations. The distribution of Re[Hz] and Im[Hz] within the 
sheet and how the fields at a fixed position vary as !  changes may be helpful in 
understanding the high-frequency behavior of the sheet. Here we show some numerical 
examples of Re[Hz]/H0 and Im[Hz]/H0 as a function of y/d or as a function of !. 
 
(a) Re[Hz]/H0 and Im[Hz]/H0 versus y/d 

Figure 4.5 shows Re[Hz]/H0 and Im[Hz]/H0 as a function of y/d for five values of tan". 
Fig. 4.5 (a) gives the results for !=  0.5 and Fig. 4.5 (b) the results for !=  2.0. As the 
amplitude of the field |Hz| is given by |Hz |= (Re2[Hz]+Im2[Hz])1/2 and the phase !z by 
!z = tan&1 (Im[Hz]/Re[Hz]), the behavior of |Hz| and !z is directly related to that of 
Re[Hz] and Im[Hz]. Therefore, to better understand the behavior of |Hz| and !z, it is 
worth comparing Fig. 4.5(a) with Fig. 4.3(a) for != 0.5 and Fig. 4.5 (b) with Fig.  4.3 (c) 
for != 2.0. 
 
(b) Re[Hz]/H0 and Im[Hz]/H0 versus ! 

Figure 4.6 shows Re[Hz]/H0 and Im[Hz]/H0 as a function of ! for five values of tan". 
Fig. 4.6 (a) gives the results at y/d  = 0.4, a position near the surface, and Fig. 4.6 (b) gives 
the results at y/d = 0.1, deep in the interior of the sheet. For the same reason as in Section 
4.8.2 (a), it is worthwhile to compare Fig. 4.6 (a) with Fig. 4.4 (a) for y/d = 0.4 and Fig. 
4.6 (b) with Fig. 4.4 (b) for y/d = 0.1. For example, although Im[Hz]/H0 at y/d = 0.4 in Fig. 
4.6(a) becomes almost flat in the region where ! is greater than approximately 2.0, the 
phase !z in Fig. 4.4 (a) continues to lag as ! increases. This can be understood from the 
behavior of Re[Hz]/H0, which decreases rapidly as ! increases, as shown in Fig.    4.6 (a). 
   Figure 4.6 (b) shows the typical behavior of Re[Hz]/H0 and Im[Hz]/H0 at a position 
deep in the interior of the sheet. One of the noticeable features is that Re[Hz]/H0 
becomes negative when ! exceeds approximately 3.0. This is closely related to the 
behavior of the phase !z that lags continuously as ! increases. Since Im[Hz]/H0 is 
negative up to approximately !=8.0, the phase !z passes &*/2 [rad] when Re[Hz]/H0 
crosses zero from positive to negative. In this way, the continuous increase in !z with 
further increases in ! is closely related to the alternating changes in sign of Re[Hz]/H0 
and Im[Hz]/H0. 
   The other noticeable feature shown in Fig. 4.6 (b) is that Im[Hz]/H0 reaches a 
maximum at approximately != 2.0 and decreases thereafter. The behavior of Im[Hz]/H0  
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Figure 4.5 (a) Normalized real Re[Hz]/H0 and imaginary Im[Hz]/H0 parts of the field as  
            functions of y/d for !=  0.5 and five values of tan". 
 

     
   Figure 4.5 (b) Re[Hz]/H0 and Im[Hz]/H0 versus y/d for !=  2.0.        
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Figure 4.6 (a) Normalized real Re[Hz]/H0 and imaginary Im[Hz]/H0 parts of the field as  
            functions of ! at y/d = 0.4 for five values of tan". 
 

     
            Figure 4.6 (b) Re[Hz]/H0 and Im[Hz]/H0 versus ! at y/d =  0.1. 
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is closely related with the phase lag of the field as well as with the diminution of the 
field amplitude. In the region where ! is small, the effect of the phase lag prevails over 
the effect of the diminishing amplitude, so that Im[Hz]/H0 increases as ! increases. 
However, after a certain point, depending on the value of tan", the diminishing 
amplitude effect surpasses the phase-lag effect, and consequently, Im[Hz]/H0 decreases 
monotonously. 
  In Chapter 6, we will introduce a factor, g(!,)), which is proportional to the average 
value of Im[Hz] ([Im[Hz]]av). In Chapter 7, we will show that the eddy-current loss Ped 
is also closely associated with [Im[Hz]]av. Hence, the characteristic pattern of Im[Hz]/H0 
shown in Fig 4.6 (b) appears on the curves of g(!,)) in Fig. 6.2 and those of Ped in Fig. 
7.2. 
 
4.8.3 Interpretation of Phase Behavior 

As shown in Fig. 4.3, for a higher value of tan", the field amplitude |Hz|/H0 diminishes 
more rapidly as the distance from the surface Y is increased, whereas the phase of the 
field, !z, lags more slowly with Y. A similar dependence on tan" is also seen in Fig. 4.4, 
in which |Hz|/H0 and !z are given as a function of !. One can readily understand that a 
high tan" corresponds to a high loss, but may not easily understand the reason why the 
phase lag of the field decreases with an increase in tan" . We now examine the way in 
which phase behaves as tan" is varied by using a phasor diagram. Figure 4.7 shows  
 
           

 

        
 
Figure 4.7 Phasor diagram of the field Hz constructed using the values of Re[Hz]/H0 and  
          Im[Hz]/H0 calculated at y/d = 0.3 for ! = 2.0 and four values of tan" (Fig. 4.3(c)). 
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the phasor diagrams of the field Hz, constructed using numerical values of Re[Hz]/H0 
and Im[Hz]/H0 calculated at y/d = 0.3  for !=  2.0 and four values of tan" (Fig. 4.3(c)). 
The figure shows that both the imaginary and real parts of the field decrease as tan" 
increases. Studying the figures more closely, we see that Im[Hz]/H0 decreases more 
rapidly than Re[Hz]/H0,  which results in a decrease in !z. 
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5. Frequency Characteristics of Intrinsic Permeability  

5.1 Introduction 

In Section 2.7, we explained that we use two kinds of permeability in this paper, the 
intrinsic permeability µ and the effective permeability µe. The intrinsic permeability is 
inherent in magnetization mechanisms and accordingly it is a material constant. On the 
other hand, the effective permeability is affected by demagnetizing fields (see Section 
6.2) and consequently depends on the frequency as well as the geometry of the magnetic 
object. The effective permeability of magnetic sheet will be fully discussed in Chapter 
6. 
   In this chapter, we survey the frequency characteristics of the intrinsic permeability 
[89]-[104]. We are primarily interested in the magnetization processes that influence the 
intrinsic permeability in the relatively low RF range where most RF cavities for proton 
rings operate. In particular, two important processes are reviewed here at some length, 
that is, the relaxation in orientation of magnetic moments and the resonance of domain 
wall motion.  
 
5.2 Fundamentals of Magnetization 

It is well known that spin plays a central role in magnetism and that a wide range of 
magnetic phenomena is associated primarily with magnetic moments due to the spins  
of electrons and orbital effects. A ferromagnetic material is divided into a number of 
small regions termed magnetic domains or simply domains, each consisting of many 
atoms whose magnetic moments are aligned in parallel with each other. As a result, 
each domain spontaneously magnetizes to the saturation value, but the directions of 
magnetization of the various domains are such that the object as a whole has no  
net magnetization. The shape and dimensions of domains in thermodynamic equilibrium 
are determined by the minimum free energy condition of the ferromagnetic substance. 
At domain boundaries, there are transition layers where spins gradually change their 
direction from one domain to the other to decrease the exchange energy of spin pairs. 
These transition layers are called domain walls or occasionally Bloch walls. 
   When a magnetic object is subjected to an increasing external magnetic field, its 
magnetization increases and finally reaches magnetization saturation. For an object with 
no domain structure, the magnetization processes are dominated by the orientation of 
magnetic moments of particles and the rotation of the vector of spontaneous 
magnetization as a whole. If a domain structure exists, the magnetization process is 
governed by motion of the domain walls and rotation of the domain magnetization. The 
former is associated with a change in the volume of the domain by movement of its 
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boundaries and the latter is associated with a rotation of the magnetization vector in a 
domain of fixed volume. In some objects and in certain field ranges, only one 
mechanism, either the domain wall motion or magnetization rotation, is operative; in 
others, both are operative. In most cases, the rotation process is characteristic of the 
change in magnetization in relatively high fields. The magnetization process in soft 
magnetic alloys may be characterized less by domain wall motion and more by 
magnetization rotation  [91].  
   Considering the intrinsic permeability further, on a minute scale, the local 
permeability inside a magnetic specimen is not homogeneous. This is because the 
magnetic flux distribution within a domain is not uniform during the process of 
magnetization by the domain wall motion and/or the domain rotation. For example, in 
the case of a field applied parallel to a 180° boundary, the local relative permeability is 
almost unity away from the boundary, but assumes extremely high values within the 
boundary. The intrinsic permeability that can be measured at the quasistatic state is the 
macroscopic one averaged over the entire volume of the specimen. Analyses in this 
paper are carried out solely on the assumption that the macroscopic intrinsic 
permeability is distributed uniformly throughout the specimen. 
   When an alternating magnetic field is applied to a specimen and its frequency is 
swept, dispersion appears in the frequency response of the permeability. Since we are 
discussing the intrinsic permeability, the dispersion due to eddy-current effects is not 
considered. The dispersion of the intrinsic permeability arises mainly from the 
relaxation and resonance absorption associated with magnetization processes. If the 
frequency is beyond 1/, , where ,  is the relaxation time defined in the next section, the 
magnetization can no longer follow the applied field, and as a result, we obtain a 
permeability dispersion. In addition, when the frequency approaches a natural resonance 
frequency of magnetic processes, dispersion arises from the resonant power absorption. 
 
5.3 Relaxation 

First, we examine how relaxation in the orientation of magnetic moments affects the 
frequency behavior of the intrinsic permeability. 

5.3.1 Relaxation Equation  

The magnetization M(t) is given by 

                                                     (5.1) 

where - is the magnetic susceptibility and H(t) is an external magnetic field. The 
magnetic flux density B(t) is related to H(t) through the intrinsic permeability µ as 

M t( ) = !H t( ),
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follows: 

            (5.2) 

Equation (5.2) shows that the relationship between the relative permeability µr and - is 
given by µr =1+ -. 
   Consider a magnetic object where Ms denotes its magnetization saturation value. 
Assume that Ms is determined by two contributors: 

                           Ms = Mos + Mw ,                         (5.3) 

where Mos is the saturation magnetization by orientation of magnetic moments and Mw 
is the magnetization by a fast mechanism with a response time much faster than , . In 
general, when such an object is suddenly exposed to an external static magnetic field, a 
certain length of time is required for the magnetization by orientation to build up to its 
final value Mos, whereas Mw is reached instantaneously on the relaxation time scale. 
   The relaxation is characterized by a response time or relaxation time , ,  which is the 
time required for the magnetization to fall from the equilibrium value to 1/e of the that 
value, after the field is switched off. Figure 5.1 illustrates the time dependence of the 
total magnetization M(t) after a sudden application of a static magnetic field at t = 0. The 
instantaneous increase to Mw is associated with fast magnetization, and the orientation 
of the magnetic moments then causes a slow increase in magnetization to the static 
value Ms. In the figure, Mo(t) denotes the time-dependent magnetization due to 
orientation of the magnetic moments. 
   Assuming the relaxation time of orientation is , , we can write M(t) as  

                          (5.4) 

Differentiating both sides of eq. (5.4) with respect to t leads to 

                                                 (5.5) 

From eqs. (5.3), (5.4), and (5.5) we obtain the differential equation for Mo(t), 

 

B t( ) = µ0 H t( ) +M t( )!" #$ = µ0 H t( ) + %H t( )!" #$ = µ0 1 + %( )H t( )

= µ0 µrH t( ) = µH t( ).

M t( ) = Mo t( ) + Mw = Mos 1! e
! t
"#

$%
&
'(
+ Mw .

dMo t( )
dt

=
1
!
Mos e

" t
! .
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Figure 5.1 Time dependence of magnetization M(t) after sudden application of a static  
           magnetic field to a magnetic object. Mw is the fast-mechanism magnetization.  
  
 
 

                                 (5.6) 

   When an alternating magnetic field 

                                                     (5.7) 

is applied, eq. (5.6) can be employed if we make the following changes [105]. We 
replace Ms with a function of time Ms(t), which represents the saturation value obtained 
in a static field equivalent to the instantaneous value H(t). Likewise, we replace Mw 
with Mw(t). Then, eq. (5.6) is written as 

                      (5.8) 

where Ms(t) and Mw(t) are given by 

                       (5.9) 

dMo t( )
dt

+
1
!
Mo t( ) =

1
!

Ms " Mw( ).

H t( ) = H0e
j! t

dMo t( )
dt

+
1
!
Mo t( ) =

1
!
Ms t( ) " Mw t( )#$ %&,

Ms t( ) = !s H0 e
j" t and Mw t( ) = !wH0 e

j" t .
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Here, -s is the static susceptibility and -w is the fast-magnetization susceptibility. 
 
5.3.2 Dispersion of Permeability due to Relaxation  

The next step is to solve eq. (5.8) to obtain the frequency characteristics of Mo(t), from 
which we can derive the frequency response of the intrinsic permeability influenced by 
the relaxation in orientation. 
   A solution of eq. (5.8), Mo(t), is given by a combination of the general solution to 
the homogeneous equation, in which the term on the right-hand side is zero, and a 
particular solution to the inhomogeneous equation:  

                              (5.10) 

The first term is the general solution with the complex amplitude A(#), which depends 
on the initial conditions, and the second term is the particular solution. If we assume 
that Mo(t) = 0 at t = 0, eq. (5.10) becomes 

                         (5.11) 

Since we are presently not interested in transient behavior, the first term on the 
right-hand side is omitted, resulting in 

                                           (5.12) 

It follows from eqs. (5.4), (5.9), and (5.12) that the total magnetization M(t) can be 
written as 

                   (5.13) 

The magnetic flux density B(t) is then given by 

              (5.14) 

The susceptibilities -w and -s are given by -w = µw &1 and -s = µs &1, where µw is the 
relative permeability due to fast magnetization and µs is the static relative permeability. 
Equation (5.14) is then expressed as 
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                              (5.15) 

We then obtain the frequency-dependent relative permeability µr (#) given by

                            (5.16) 

where 

 

The real part originates from oscillations in phase with the external field, whereas the 
imaginary part is attributed to oscillations 90° out of phase with the field. Equations 
(5.17) and (5.18) are equivalent to those for the dielectric constant, which are frequently 
referred to as the Debye equations. Studying eq. (5.17), we find that the real part is 
nearly equal to µs for very low frequencies (#,<<1), and nearly equal to µw for very 
high frequencies (#,>>1). This is consistent with the definition of -s and -w given in  
eq. (5.9).  
   We can normalize µr% (%) and µr'(%) as 

 

Figure 5.2 illustrates µr% (#)｜ n and µr'(#)｜n as a function of #,. We see simple relaxation 
behavior as the frequency increases from low values where the magnetization follows 
the applied field variations to high values where it can no longer follow the field 
variations. To explain the behavior more specifically, when #  is considerably less than 
1/, , the orientation of the moments can follow the field variations and contribute their 
full share to the magnetization, but when # is greater than 1/, , the orientation can no 
longer follow the field variations and consequently the magnetization decreases rapidly 
as the frequency increases. We can also see from the Fig. 5.2 that the imaginary part 
µr'(#)｜n, to which the magnetic loss is proportional, exhibits a maximum at the frequency 
1/, , around which there is a rather sharp drop in the real part µr% (#)｜ n.

B t( ) = µ0 µw +
µs ! µw
1 + j"#

$
%&

'
()
H0 e

j" t .

µr !( ) = µw +
µs " µw
1 + j!#

= $µr !( ) " j $$µr !( ),

 

!µr "( ) = µw +
µs # µw
1 + " 2$ 2

, (5.17)

and

!!µr "( ) = µs # µw( )"$
1 + " 2$ 2

. (5.18)

 

!µr "( ) n =
!µr "( ) # µw
µs # µw

=
1

1 + " 2$ 2
(5.19)

and

!!µr "( ) n =
!!µr "( )

µs # µw
=

"$
1 + " 2$ 2

. (5.20)
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Figure 5.2 Real part and imaginary part of normalized relative permeability obtained from  
           eqs. (5.19) and (5.20) as a function of #,, where # is the angular frequency and ,  
           is the relaxation time. 
 
 
   Dispersion of permeability due to the relaxation in orientation is found to occur in 
many kinds of ferrites [92]. 
 
5.4 Resonances in Low RF Range  

In this section, we outline three types of resonances, which occur in a relatively low RF 
range and therefore might influence the performance of magnetic-core-loaded RF 
cavities.   

5.4.1 Resonance of Magnetization Rotation  

If a ferromagnetic material contains either no domain walls or only immobile domain 
walls, it can only be magnetized by rotation of the domain magnetization. This 
mechanism was already mentioned in Section 5.2 and is called magnetization rotation. 
Figure 5.3 shows the typical permeability spectra at room temperatures measured on 
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Ni-Zn ferrites of various compositions [106]. The general characteristic of the spectra is 
that µr%  (µ%  in the figure) remains constant in a certain frequency range, while at higher 
frequencies, after a small rise, it drops fairly rapidly to a very small value. Snoek 
explained this in terms of the resonance of magnetization rotation under the action of 
the anisotropic field [107]. Another experiment on a Ni-Zn ferrite was in agreement with 
this view [108]. This phenomenon is sometimes called natural resonance. In Fig. 5.3, 
the resonance feature does not appear as striking due to the use of the logarithmic scale. 
   Figure 5.3 also shows that the maximum of µr' (µ' in the figure) appears at a lower 
frequency when µr%  (µ% in the figure) is higher in the low-frequency region. This is well 

 
 

         

Figure 5.3 Frequency dependence of real part and imaginary part of relative permeability (µ% 
          and µ' in the figure) measured on Ni-Zn ferrites of various compositions [106].  
          The dashed line, which represents the Snoek limit, connects the points where µ% 
          drops to half its low-frequency value. 
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described by the following relationship between the resonance frequency fr, at which 
absorption and dispersion set in, and the relative permeability before resonance µr% : 

                        fr !µr "1( ) =
1

3#µ0
$ gMs .                     (5.21) 

Here, µ0 is the permeability of a vacuum; +g, the gyromagnetic constant; and Ms, the 
spontaneous saturation magnetization. Equation (5.21) shows that for materials having 
approximately the same value of Ms, the frequency fr is inversely proportional to µr% . 
The dashed line in Fig.5.3 was drawn by connecting the points where µr%  drops to half 
its low-frequency value. This line is called the Snoek limit, which expresses a limitation 
in the frequency performance of ferrites. Ferrites cannot have a permeability higher than 
the Snoek limit, as long as cubic magnetocrystalline anisotropy is present [93]. 
Subsequently, it was discovered that this limit could be overcome by using a special 
magnetocrystalline anisotropy. If the anisotropy in the c-plane is small, magnetization 
rotation in this plane can occur. Let the anisotropy field for this magnetization rotation 
be Ha1, while that for rotation out of this plane be Ha2. In this case, the relationship 
between fr and µr%  becomes [109] 

                        (5.22) 

The value inside the parentheses on the right-hand side is always greater than 1.0 
because Ha2 is much greater than Ha1, which means this limit is much higher than the 
Snoek limit given in eq. (5.21). One of the materials that satisfy this condition is a 
magnetoplumbite-type hexagonal crystal called Ferroxplana [110]. 

5.4.2 Domain Wall Resonance 

A domain wall is a boundary between two adjacent magnetic domains and its movement 
does not accompany any actual mass displacement. However, Döring found that a 
moving wall exhibits inertia and has an apparent mass [111]. Therefore, when an 
alternating field is applied, the wall oscillates back and forth about its initial position, 
just like a mass on a spring acted on by an alternating force. When the frequency of the 
applied magnetic field coincides with a natural oscillatory frequency of the wall, 
resonance occurs which enhances the oscillation amplitude. Figure 5.4 shows the 
frequency spectra of µr%  &1 (µ1 &1 in the figure) measured on Mg-ferrites, in which two 
dispersion regions are observed [112]. The dispersion at lower frequencies is attributed 
to the domain wall resonance and the one at higher frequencies to the magnetization 
rotation resonance [113][114]. Dispersion of intrinsic permeability due to domain wall  
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resonance is reviewed in Section 5.5. 
 
 

      

 

Figure 5.4 Relative permeability spectra of Mg-ferrites, showing two resonances [112]: the  
           resonance at lower frequencies is attributed to domain wall resonance and the one 
           at higher frequencies is due to magnetization rotation resonance [113][114]. 
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5.4.3 Dimensional Resonance 

Dimensional resonance is a type of resonance observed in low RF regions. This 
resonance is not intrinsic to magnetic materials but is discussed here because of its 
importance in applications of magnetic materials to RF accelerating cavities. 
   Assuming the relative permittivity and relative permeability of a material are *r and 
µr, respectively, the velocity of an electromagnetic wave is reduced by a factor (*r µr)&1/2  
as compared to that in a vacuum. Therefore, the wavelength in the material . is given by 

                          ! =
c

f "rµr
,                        (5.23) 

where c is the velocity of light in a vacuum and f  is the wave frequency. If one of the 
 

 

     
 

Figure 5.5 Dependence of the real part of relative permeability µr%  (µ%eff in the figure) on the 
          dimensions of a sample of Mg-Zn ferrites. Sample cross sections are to scale for 
          each curve. The ordinate is normalized to the value at 1 [kHz], µ%1 [115]. 
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dimensions of a sample is very close to an integer multiple of the half wavelength ./2, 
the electromagnetic wave resonates within the sample, giving rise to a standing wave. 
This phenomenon is called dimensional resonance and was first observed by F. 
G. Brockman et al. in samples of Mn-Zn ferrites with different dimensions [115]. Their 
results are plotted on the left side of Fig. 5.5, in which sample cross sections are shown 
to scale for each curve. The figure shows that the frequency response of permeability 
exhibits a resonance feature and µr%  (µ%eff in the figure) drops sharply between 1 and 2 
[MHz] for a core with cross-sectional dimensions of 1.25 ! 2.5 [cm2]. This drop in µr%  is 
shifted to a higher frequency when the size of the cross section is reduced. 
   When designing a magnetic-core-loaded cavity, one has to avoid the dimensional 
resonance by choosing appropriate material constants and size of the core. 
 
5.5 Domain Wall Resonance 

5.5.1 Equation of Domain Wall Motion 

In this section, we examine the domain wall motion, emphasizing on the resonance of 
the domain wall oscillations. The equation of motion of the wall per unit area is given 
by 

                               (5.24) 

where z(t) is the displacement of the wall from its equilibrium position; m, the apparent 
mass of the wall per unit area and a measure of its inertia; /, the viscous damping 
parameter; k, the restoring coefficient; Ms, a spontaneous saturation magnetization of 
the material; and H(t), the applied magnetic field given by eq. (5.7). The first term in 
this equation, the product of the mass m and its acceleration, is the inertial term. This 
represents the resistance of the spins to sudden rotation. The second term proportional 
to velocity dz(t)/dt and represents a resistance to wall motion. The third term represents 
a force due to crystal imperfections such as residual microstress and inclusions, which 
hinder the motion of domain walls. The term on the right-hand side of the equation 
represents the pressure acting on the 180°wall and should be replaced with √2MsH(t) 
for a 90°wall.  
   Provided that n represents the number of walls per unit volume, a change in 
magnetization produced when all the domain walls are displaced by z(t) is given by  
Msnz(t)! Mw(t). Multiplying both sides of eq. (5.24) by Msn leads to 

                       (5.25) 

This can be rewritten in the form 

m
d 2z t( )
dt 2

+ !
dz t( )
dt

+ kz t( ) = 2MsH t( ),

m
d 2Mw t( )
dt 2

+ !
dMw t( )
dt

+ kMw t( ) = 2Ms
2nH t( ).
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                        (5.26) 

with                  ! =
"
m

and #0
2 =

k
m
,                (5.27)                              

where +  is the damping coefficient and #0 is the natural resonance frequency of the 
domain walls. We are primarily interested in the equilibrium state or the steady state 
solution of eq. (5.26). Assuming the form 

                                                  (5.28) 

and substituting it into eq. (5.26), we obtain 

                                 (5.29) 

 
5.5.2 Dispersion of Permeability due to Domain Wall Resonance 

Now, we write the magnetization M(t) as 

                  (5.30) 

where Mh(t) and -h are the magnetization and the susceptibility for frequencies much 
higher than #0, respectively. Then, the magnetic flux density B(t) is given by 

 
The expression inside the parentheses corresponds to the complex relative permeability 
as a function of frequency, which means that eq. (5.31) can be expressed as 

                                 (5.32) 

where                         (5.33)              
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B t( ) = µ0 !µr "( ) # j !!µr "( )$% &' H0e
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and                !!µr "( ) = 2Ms
2n

m
# "

"0
2 $" 2( )2 + # 2" 2

,                (5.34)                    

with µh =1+ -h. It follows from eqs. (5.33) and (5.34) that for frequencies much lower 
than #0, 

                       (5.35) 

and for frequencies much higher than #0,  

                                  (5.36) 

We can see from eqs. (5.35) and (5.36) that the difference between the real parts of the 
relative permeability at very low and very high frequencies is given by 

                                                 (5.37) 

   We can normalize µr% (%) and µr'(%) as 

             (5.38) 

and      !!µr "( ) n =
!!µr "( )

2Ms
2n m"0

2 =
1 Q( ) " "0( )

1# " "0( )2$
%

&
'
2
+ 1 Q2( ) " "0( )2

,     (5.39)      

 

 

Equation (5.40) is equivalent to a quality factor used in various kinds of resonance 
systems. In this case, a high Q-value means a large dispersion of µr%  and high energy 
absorption. 
   Figure 5.6 shows the normalized relative permeability obtained from eqs. (5.38) and 
(5.39) as a function of #/#0 for three values of Q. We can see that when the frequency 
of the applied field is very different from the natural resonance frequency #0, the real 
part µr% (#)｜ n is approximately constant relative to frequency and the imaginary part  
µr'(#)｜n is virtually zero. In contrast, when the frequency is close to %0, there are sudden  
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  Figure 5.6 Real and imaginary parts of normalized relative permeability obtained from 
            eqs. (5.38) and (5.39) as a function of #/#0 for three values of Q. 
 

changes in both the real and imaginary parts. The sharp peak in the imaginary part 
reflects the resonance absorption of energy that occurs in the proximity to #0.｜µr% (#)｜ n｜
is larger at low frequencies (#<#0) than at high frequencies (#>#0) because the 
amplitude of in-phase domain wall oscillations below resonance is much larger than the 
amplitude of 180° out-of-phase oscillations above resonance.  
   If the inertia of the wall is very small or the value of the apparent mass m is such 
that the first term on the left-hand side of eq. (5.25) is negligible, the equation reduces to 
a relaxation equation similar to eq. (5.8). Then, the characteristic rapid change in µr%  near 
the resonance disappears and is replaced by a rather slow change. 
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5.6 Illustration of Typical Frequency Response of Permeability 

Different sources of magnetization contribute to the intrinsic permeability in different 
frequency regimes. Figure 5.7 is a typical frequency response of relative intrinsic 
permeability, which is helpful in summarizing this section. The figure shows the 
relative contributions of two different dispersion mechanisms: relaxation and resonance. 
Since relaxation is a comparatively slow process, its contribution to the permeability 
generally disappears at a lower frequency than the contribution from resonance. 
Therefore, as the frequency of the external field is increased from a very low value, first 
there is a rather slow drop in µr%  around the relaxation frequency 1/,  (=#rel) , followed 
by a characteristic change in µr%  around the resonance frequency "0. 
 
 

   

Figure 5.7 Schematic of real and imaginary parts of relative intrinsic permeability as a function 
          of frequency for a magnetic material with a single relaxation at 1/,  and a single 
        resonance at #0. µ'res corresponds to residual losses. 
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   The bottom of Fig. 5.7 shows a schematic of µr', in which µ'res represents the 
imaginary part of the permeability corresponding to residual losses. 
   In general, the frequency behavior of permeability for any particular mechanism in 
which there is an equilibrium configuration of magnetic moment can be described by a 
driven damped-oscillator equation such as eq. (5.24). The resonant absorption belongs to 
this type of mechanism. On the other hand, a freely rotating magnetic moment has no 
equilibrium configuration and accordingly shows relaxation dynamics. 
  For most magnetic alloys with moderate conductivity, eddy currents become 
influential at a lower frequency than the lowest relaxation frequency of magnetic 
moments. In this case, the dispersion due to relaxation and resonance should be 
completely masked by the dispersion due to the eddy currents, and as a result, the 
frequency response of the effective permeability (not intrinsic permeability) depends 
mainly on eddy currents. This is only speculation, and hence, it would be worthwhile 
comparing measured values with estimated ones that include the effect of eddy currents, 
such as estimations obtained from the expressions derived in the next chapter. 
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6. Effective Permeability 

6.1 Introduction 

In Chapter 4, we used the intrinsic permeability µ (= µ%& jµ') to obtain the magnetic 
field distribution in the interior of the sheet. The reason for using µ is that it originates 
in magnetization mechanisms and hence determines the local relationship between B 
and H. Measurement of the intrinsic permeability of a conductive magnetic material is 
extremely difficult, if not impossible, because the measurement unavoidably involves 
the eddy-current effects unless the frequency is very low. However, note that although 
knowing the intrinsic permeability is essential for materials scientists and engineers, it is 
not necessarily important for most users of magnetic materials. Users are primarily 
interested in the apparent or macroscopic properties of a magnetic object, not in the 
fundamental and microscopic properties. Therefore, they need another definition of 
permeability appropriate for characterizing the magnetic properties of an object as a 
whole. This definition of permeability must establish a relationship between the applied 
magnetic field and the average magnetic flux density of the object, both of which can be 
measured either directly or indirectly. This permeability is referred to as the effective or 
apparent permeability. Earlier, we termed this the effective permeability and denoted it 
by µe  (= µe$         &  jµe 0                  ). To obtain accurate expressions of µe, the fields H and B are integrated 
and averaged over the whole volume of the object. In this chapter, we derive the 
expressions for effective permeability of the magnetic sheet on the assumption that the 
local relationship of B to H is determined by the intrinsic permeability that is not 
influenced by the presence of eddy currents.  
  
6.2 Definition of Effective Permeability 

In most cases, it should not be a problem if we are unaware of whether we are using the 
intrinsic or the effective permeability. However, in some cases, such as the one we are 
currently dealing with, we must distinguish between intrinsic and effective. We 
consulted several dictionaries and textbooks for the definition of permeability. A New 
Dictionary of Physics [116] states that permeability is “the ratio of the magnetic flux 
density in an object or medium to the external magnetic field strength inducing it.” This 
is a typical definition appearing in most physics dictionaries and ferromagnetism 
textbooks. However, to clarify the definition, we also need to define the term magnetic 
flux density. A statement on the distinction between the intrinsic permeability and the 
effective permeability is found in the Encyclopedic Dictionary of Condensed Matter 
Physics[117]. It states that the effective permeability of an object depends on its 
geometry and is related to the intrinsic permeability by the demagnetizing factor. In 
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some textbooks, demagnetizing factor is defined as “when an object of finite size is 
magnetized by an external magnetic field, the magnetic free poles appear on its ends, 
which then produce a demagnetizing field directed opposite to the magnetization.” The 
ratio of the demagnetizing field to the magnetization is called the demagnetizing factor, 
which depends on the geometry of the object. This is the term used in the definition of 
the effective permeability given above.  
   Here, we extend the definition of the effective permeability to the case where an 
alternating magnetic field is applied to a conductive magnetic object. The eddy currents 
induced inside the object produce a magnetic field whose direction is opposite to the 
applied field. This demagnetizing field is added to the field produced by the magnetic 
free poles and contributes to the demagnetizing factor and consequently to the effective 
permeability. In the present model, the magnetic sheet extends infinitely and is 
magnetized parallel to its surface; therefore, the demagnetizing field due to magnetic 
free poles is zero. As a result, the demagnetizing factor comes exclusively from the 
eddy currents. Note that in our treatment, the demagnetizing effect due to eddy currents 
is naturally included in the expressions of H and B and does not explicitly appear as a 
demagnetizing factor. It is quite reasonable to define the effective permeability of the 
sheet as the ratio of the average magnetic flux density to the applied magnetic field that 
induces it. 
 
6.3 Relationship between µ and µe 

In Chapter 4, we discussed how the magnetic field Hz  varies with the depth under the 
sheet surface. The magnetic flux density within the sheet, Bz , is locally related to Hz  by 
Bz =µHz, where µ is the intrinsic permeability. Hence, the amplitude and phase of Bz 
vary with the distance from the surface in the same manner as those of Hz .  
   Now, let H0  be the amplitude of the applied magnetic field, and let [Hz]av and [Bz]av 
be the magnetic field intensity and magnetic flux density averaged over the cross 
section of the sheet, respectively. Then, from Bz(y) =  µHz(y), which holds for any value 
of y, we can write the following relationship between the effective permeability µe and 
the intrinsic permeability µ: 

                                          (6.1) 

This important equation forms the basis for the derivation of the effective permeability. 
It is worthwhile emphasizing that "e expresses the relationship between H0 and [Bz]av, 
whereas µ expresses the relationship between [Hz]av and [Bz]av. Provided that the values 
of H0 and µ are given and [Hz]av is known, we can obtain µe from eq. (6.1). 
   In the next section, using the field distribution obtained in Chapter 4, we derive the 

Bz!" #$av = µ Hz!" #$av = µeH0.
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expression for [Hz]av, and in the following section, we use it to obtain µe.  

6.4 Average Magnetic Field Calculations 

For the calculations in this section, we use the complex representation of Hz given in eq. 
(4.28), from which the average magnetic field [Hz]av  is expressed by 

                                 (6.2)                                                    

where [Re[Hz]]av and [Im[Hz]]av represent the average values of the real and imaginary 
parts of the field, respectively. The average fields are obtained by integrating Re[Hz] 
and Im[Hz] over the cross section of the sheet S (= l0#d ) shown in Fig. 3.2. The 
integration of Re[Hz] is then written as 

 
                                                                  (6.3)                                                                                                                                                 
Performing the integration, we obtain 

 
where             

             
       (6.5)              

Substituting a2 and b2 from eq. (4.21) into eq. (6.5) yields another form of f (!,)), 

                          
(6.6) 

Hz!" #$av = Re Hz!" #$!" #$av + j Im Hz!" #$!" #$ av ,

Re Hz!" #$ da
S% = 2 l0 Re Hz!" #$

0

d
2% dy

=
2 l0H0

cosh 2a2( ) + cos 2b2( ) &

cosh a1y + a2( ) cos b1y ' b2( ) + cosh a1y ' a2( ) cos b1y + b2( )!" #$
0

d
2% dy.

Re Hz!" #$ da
S% =

2 l0d H0

&1 4'
cos (( ) sinh 2a2( ) + sin (( ) sin 2b2( )

cosh 2a2( ) + cos 2b2( )

= l0d H0 f ', (( ), (6.4)

f !, "( ) =
2

#1 4!
cos "( ) sinh 2a2( ) + sin "( ) sin 2b2( )

cosh 2a2( ) + cos 2b2( ) .

f !, "( ) =
1

#1 2!
M sinh M!( ) + N sin N!( )
cosh M!( ) + cos N!( ) ,
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where the plus sign is for m =0 from eq. (4.11) and the minus sign is for m =1. The 
average real part [Re[Hz]]av is obtained from eq. (6.4) by dividing it by the cross- 
sectional area S: 

                   
(6.8)

 

   Likewise, the integration of Im[Hz] over the cross section of the sheet is performed: 

        

where        g !, "( ) =
2

#1 4!
sin "( ) sinh 2a2( ) $ cos "( ) sin 2b2( )

cosh 2a2( ) + cos 2b2( ) .        (6.10)        

This can also be written as 

                g !, "( ) =
1

#1 2!
N sinh M!( ) $ M sin N!( )
cosh M!( ) + cos N!( ) .            (6.11) 

Dividing eq. (6.9) by the cross-sectional area S, we obtain the average imaginary part:  

            

It follows from eqs. (6.8) and (6.12) that [Hz]av  in eq. (6.2) is represented by 

                                   (6.13) 

 

with
M = ± !1 2 + tan"( )1 2 and N = ± !1 2 # tan"( )1 2 , (6.7)

Re Hz!" #$!" #$av =
1
S

Re Hz!" #$ da
S% =

1
l0d

Re Hz!" #$ dv
a%

= H0 f &, '( ).

Im Hz!" #$ da
S% = 2 l0 Im Hz!" #$

0

d
2% dy

= &
2 l0d H0

'1 4(
sin )( ) sinh 2a2( ) & cos )( ) sin 2b2( )

cosh 2a2( ) + cos 2b2( )

= & l0d H0 g (, )( ), (6.9)

Im Hz!" #$!" #$av =
1
S

Im Hz!" #$ da
S% =

1
l0d

Im Hz!" #$ da
S%

= & H0 g ', (( ). (6.12)

Hz!" #$av = H0 f %, &( ) ' j g %, &( )!" #$.
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   In the remainder of this paper, we will frequently see expressions including f (!,)) 
and/or g(!,)). Equation (6.13) shows that the average real part of the field is 
proportional to f (!,)) and the average imaginary part is proportional to g(!,)). 
Remembering this when we see expressions including f (!,)) and/or g(!,)) will help us 
understand the meaning of the expressions. 
   If tan" = 0, then f (!,)) and g(!,)) are reduced to 

 

These expressions agree with those in the ferromagnetism textbook [90]. In the textbook, 
f (!) is used to express the ratio of the inductance of a coil to that at very low 
frequencies and g(!) is used in the expression of the AC resistance of the coil caused by 
eddy currents. This clearly shows that the coil inductance is related to the real part of 
the magnetic field and that the coil AC resistance or eddy-current loss is related to the 
imaginary part of the field. 
 
6.5 Derivation of Effective Permeability 

Now that the average magnetic field inside the sheet is known, we are ready to derive 
the effective permeability µe. From eq. (6.1), the average magnetic flux density [Bz]av  is 
given by 

                                     (6.16) 

We see from eqs. (6.1) and (6.2) that [Bz]av  can also be written as 

 
                                                                 (6.17)                                                                                                                                                                                    
Letting the real part of eq.  (6.17) be equal to that of eq.  (6.16), we have  

                             
(6.18)

 

Replacing [Re[Hz]]av and [Im[Hz]]av in eq. (6.18) with eqs. (6.8) and (6.12), we obtain 
the real part of the effective permeability: 

f !( ) =
1
!

sinh !( ) + sin !( )
cosh !( ) + cos !( ) , (6.14)

and

g !( ) =
1
!

sinh !( ) " sin !( )
cosh !( ) + cos !( ) . (6.15)

Bz!" #$av = µe H0 = %µe & j %%µe( ) H0.

Bz!" #$av = µ Hz!" #$av = %µ & j %%µ( ) Re Hz!" #$!" #$ av + j Im Hz!" #$!" #$ av{ }
= %µ Re Hz!" #$!" #$ av+ %%µ Im Hz!" #$!" #$ av{ } & j & %µ Im Hz!" #$!" #$ av+ %%µ Re Hz!" #$!" #$ av{ }.

!µe H0 = !µ Re Hz"# $%"# $% av + !!µ Im Hz"# $%"# $% av.
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                                        (6.19) 

Dividing both sides of eq. (6.19) by µ% gives 

                                       
(6.20)

 

   In the same manner, equating the imaginary part of eq. (6.17) with that of eq. (6.16), 
we obtain 

                            (6.21) 

Substituting [Re[Hz]]av from eq. (6.8) and [Im[Hz]]av from eq. (6.12) into eq. (6.21) 
yields the imaginary part of the effective permeability: 

                                        (6.22) 

This can also be written as 

                                      (6.23) 

From the expressions of µe$  and µe '       together with those of f (!,)) and g(!,)), we see that 
the effective permeability is determined by the frequency #, the sheet thickness d, the 
intrinsic permeability µ, and the conductivity %. 
   It follows from eqs. (6.1) and (6.13) that the relationship between the average 
magnetic field within the sheet [Hz]av  and the applied magnetic field H0 is given by 

                             
(6.24)

 

   Expanding f (!,)) and g(!,)) into a power series of !  and taking only the first term 
of a fixed number and the second term of ! 2, we obtain the low-frequency 
approximations of f (!,)) and g(!,)), which are given by 

             
 
f !, "( ) ! 1 #

1
6
! 2 tan$ and g !, "( ) ! 1

6
! 2.          (6.25) 

Then, µe$  from eq. (6.19) and µe '       from eq. (6.22) are approximately written as 

                                                (6.26) 
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and                                   (6.27)                         

These low-frequency approximations were already shown in Chapter 3 in eqs. (3.54) and 
(3.55). 
 
6.6 Permeability as a Function of Frequency 

In practice, it is advantageous to write the permeability in terms of the frequency f 
instead of ! , because the measured permeability is usually given as a function of f. We 
can rewrite f (!,)) from eq. (6.5) and g(!,)) from eq. (6.10) as 

                (6.28) 

and            (6.29)       

with                                          (6.30)                          

                                      (6.31)                     

and                                   (6.32)                 

where )  is a function of tan" given in eq. (4.11), d  is the thickness, and % is the 
conductivity of the sheet. Using eqs. (6.28) and (6.29), we can rewrite µe$ given in eq. 
(6.19) and µe '       in eq. (6.22) in the forms 

                                        (6.32) 

and                                    
(6.33)

                      

 
6.7  Numerical Examples 

Figure 6.1 shows f (!,)) versus !  for four values of tan". We see from the figure that 
f (!,)) is nearly equal to 1.0 in the region where !<<1.0 , and decreases rapidly as !  
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,
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increases. Since f (!,)) is proportional to the average real part of the field [Re[Hz]]av, 
this behavior can be inferred from the typical pattern of Re[Hz] shown in Fig. 4.6. 
   Figure 6.2 plots g(!,)) against !  for four values of tan", showing that g(!,)) is 
nearly equal to zero when !  is very small, gradually increases as !  increases, reaches its 
maximum at !=1.3–2.3 , and then decreases afterward. When tan" is rather high, the 
value of !  at which g(!,)) reaches a maximum depends on the value of tan". However, 
if tan" is reduced to less than 0.1, the maximum always occurs when !  is approximately 
2.254, at which f (!,)) is approximately 0.58. The reason why g(!,)), shown in Fig. 6.2, 
is similar to Im[Hz]/H0, shown in Fig. 4.6 (b), is that g(!,)) is proportional to the 
average imaginary part of the field [Im[Hz]]av. The difference between Fig. 6.2 and Fig. 
4.6 (b) is that Fig. 4.6 (b) shows Im[Hz]/H0 at a fixed position and not for the average 
value within the sheet. We will see in Chapter 7 that g(!,)) is actually closely related to 

    

  
      Figure 6.1 f (!, )) obtained from eq. (6.5) versus ! for four values of tan". f (!, )) is  
               proportional to the average real part of the magnetic field inside the sheet. 
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the eddy-current loss. 
   As mentioned above, if !  decreases toward 0, f (!,)) approaches 1.0 and g(!,)) 
decreases toward 0. As a result, µe$  in eq. (6.19) and µe '     in eq. (6.22) reduce to µ% and µ0, 
respectively. Thus, we have a natural consequence that in a very low frequency range, 
the effective permeability, µe    (= µe$ & jµe ' ), reduces to the intrinsic permeability, µ 
(=µ%& jµ0). 
   Figure 6.3 shows the plots of µe$ /µ% as a function of !  for four values of tan". The 
behavior of µe$ /µ% is similar to that of f (!,)) shown in Fig. 6.1, because the main factor 
determining µe$ /µ% is f (!,)), as given in eq.  (6.20). In particular, when tan" is very small, 
µe$ /µ% is almost equal to f (!,)). 
   Figure 6.4 shows plots of µe '   /µ0 versus ! for four values of tan". When tan" is 
 very low, the second term on the right-hand side of eq. (6.23) is dominant over the first 

 

 

  
 

     Figure 6.2  g(!,)) obtained from eq. (6.10) versus ! for four values of tan". g(!,)) is     
               proportional to the average imaginary part of the magnetic field inside the 
               sheet. 
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term, and consequently, the dependence of µe '       /µ0 is nearly the same as that of g(!,)).  
We can also see this feature by comparing Fig. 6.4 with Fig. 6.2 for the case of  
tan"= 0.1. As tan" increases from a very low value, the influence of g(!,)) gradually  
decreases and instead f (!,)) becomes the dominant factor determining µe '           /µ0. 
   We assume in all of the numerical examples that the intrinsic tan" is independent of 
!, although it is generally a function of !  or frequency f as discussed in Chapter 5. 
Because of this assumption, the behaviors of f (!,)), g(!,)), µe$ /µ%, and µe '   /µ0 described 
above are solely attributed to the effect of eddy currents. However, since the analyses 
given in this paper do not rule out variations in tan", if the frequency response of tan" 
is known and included in the calculations, we can obtain more a realistic !  dependence 
of these variables. 
 
 
 

    
     

         Figure 6.3  µe$ /µ% obtained from eq. (6.20) versus ! for four values of tan". 
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    Figure 6.4  µe '   /µ0 obtained from eq. (6.23) versus ! for four values of tan".  
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7. RF Properties of Magnetic Sheet 

7.1 Introduction 

In Chapter 3, we obtained the approximate expressions for the AC magnetic properties 
of the sheet, which are useful in low-frequency applications. We found in Chapter 4 that 
as the frequency of the applied magnetic field increases, the induced eddy currents 
become increasingly influential in changing the distribution of the magnetic field in the 
interior of the sheet. The change in the field distribution results in a change in the 
effective permeability as shown in Chapter 6. As a natural consequence, it also causes a 
change in other magnetic properties of the sheet. In this chapter, we derive the accurate 
expressions of the stored magnetic energy, overall magnetic loss, eddy-current loss, 
hysteresis loss, and Q-value of the sheet by fully utilizing the field distributions 
obtained in Chapter 4 and its integrations given in Chapter 6. The obtained expressions 
are useful for estimating AC properties of magnetic sheets used in applications in a 
wide frequency range from very low to RF frequencies. 
 
7.2 Stored Magnetic Energy 

The applied magnetic field Hz0 is given by 

                                                     (7.1) 

The average density of the stored magnetic energy W of the sheet, when it is placed in 
the magnetic field Hz0 is given in eq. (3.10) and is written here again: 

                                         
(7.2)

 

where Bz is the magnetic flux density within the sheet. 
   Making use of the real and imaginary parts of the field Re[Hz] and Im[Hz], 
respectively, given in eqs. (4.29) and (4.30), together with the intrinsic permeability µ 
(=µ%& jµ0), we can write Bz as 

     (7.3) 

It follows from Hz0 in eq. (7.1) and Bz in eq. (7.3) that the real part of H*
z0Bz is given by 

                         (7.4) 

Hz0 = H0 e
j! t .

W =
1
2V

Re Hz0
* Bz!" #$ dv

V% ,

Bz = µHz = !µ " j !!µ( ) Re Hz#$ %& + j Im Hz#$ %&{ } e j' t

= !µ Re Hz#$ %& + !!µ Im Hz#$ %&#$ %& + j !µ Im Hz#$ %& " !!µ Re Hz#$ %&#$ %&{ } e j' t .

Re Hz0
* Bz!" #$ = H0 %µ Re Hz!" #$ + %%µ Im Hz!" #${ },
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where the time factors ej"t in Bz and e& j"t in H*
z0 cancel each other out. Substituting  

eq.  (7.4) into eq. (7.2) leads to 

                     (7.5) 

The surface integrals of Re[Hz] and Im[Hz] extended over the cross section of the sheet 
l0)d  shown in Fig. 3.2 were performed in Chapter 6 and the results are given in eqs. 
(6.4) and (6.9). The volume integrals over the rectangular parallelepiped shown in Fig. 
3.2 give the same expressions, because Hz does not change in the z direction and the 
length of the side in the z direction is the unit length. Then, substituting eqs. (6.4) and 
(6.9) into eq.  (7.5), we have  

                   W =
1
2
H0
2 !µ f ",#( ) $ !!µ g ",#( )%& '(.                (7.6) 

The expression inside the brackets is equal to the real part of the effective permeability 
µe$  given in eq. (6.19). Thus, we finally obtain the simple and expected result: 

                                                     (7.7) 

   If the magnetic field is applied at a very low frequency such that f (!,)) is nearly 
equal to 1.0 and g(!,)) is nearly equal to zero (see Figs. 6.1 and 6.2), W reduces to  

                                                     (7.8) 

which is consistent with eq. (3.17) in Chapter 3. From eqs. (7.7), (7.8), and (6.20), the 
ratio of W to W0 is  

                                  (7.9) 

 
7.3 Overall Magnetic Loss  

The time-averaged overall magnetic loss per unit volume, Pm, of the sheet placed in the 
magnetic field Hz0 is given by eq.      (3.19), which is written as 

                                       (7.10)                                                               

From Bz  in eq. (7.3), #Bz /#t can be expressed by 

W =
H0

2V
!µ Re Hz"# $% dv + !!µ Im Hz"# $% dv

V&V&"
#'

$
%(
.

W =
1
2

!µe H0
2.

W0 =
1
2

!µ H0
2,

W
W0

= !µe
!µ
= f ", #( ) $ g ", #( ) tan% .

Pm =
1
2V

Re Hz0
* !Bz

!t
"

#
$

%

&
' dv

V( .
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 (7.11) 

Using Hz0 from eq. (7.1) and #Bz /#t from eq. (7.11), we have 

                      (7.12) 

Substituting eq. (7.12) into eq. (7.10) leads to 

                    (7.13) 

In the same manner that eq. (7.6) was obtained, substituting the integrations of Re[Hz] 
and Im[Hz] from eqs. (6.4) and (6.9) into eq. (7.13) yields  

                  Pm =
!H0

2

2
""µ f #,$( ) + "µ g #,$( )%& '(.               (7.14) 

We see that the expression inside the brackets in eq. (7.14) is the imaginary part of the 
effective permeability µe '        given in eq. (6.22). Thus, Pm is also expressed by 

                                                  (7.15) 

This is the simple and expected expression of the overall magnetic loss. 
   For very low frequencies, Pm reduces to  

                          Pm0 =
1
2
! ""µ H0

2,                        (7.16) 

which is identical to eq. (3.23) in Chapter 3. Then, Pm normalized by Pm0  is given by 

                               (7.17) 

   The overall magnetic loss per cycle per unit volume, Pm,c , is given by eq. (2.16). 
Since we already have Pm from eq. (7.15), instead of using eq. (2.16), we can readily 
obtain Pm,c  from Pm by dividing it by the frequency f :  

                                                    (7.18) 

 
 

!Bz

!t
= " ##µ Re Hz$% &' ( #µ Im Hz$% &'$% &' + j #µ Re Hz$% &' + ##µ Im Hz$% &'$% &'{ } e j" t .

Re Hz0
* !Bz

!t
"

#
$

%

&
' = (H0 ))µ Re Hz"# %& * )µ Im Hz"# %&{ }.

Pm =
!H0

2V
""µ Re Hz#$ %& dv ' "µ Im Hz#$ %& dv

V(V(#
$)

%
&*
.

Pm =
1
2
! ""µe H0

2.

Pm
Pm0

= !!µe
!!µ

= f ", #( ) + g ", #( ) 1
tan$

.

Pm,c = ! ""µe H0
2.
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7.4 Eddy-Current Loss 

7.4.1 Distribution of Electric Field and Current Density 

Time-averaged eddy-current loss per unit volume of the sheet Ped is given by eq. (3.26), 
which is written as  

                                         
(7.19)

 

where Jx is the electric current density and Ex is the electric field intensity in the x 
direction. In the present model, these are the only current and field components that can 
exist within the sheet. If we know the distribution of Jx and Ex along the y axis (see Fig. 
3.3), we can derive the expression of the eddy-current loss from eq. (7.19). Since we 
already know the distribution of Bz , we can obtain the distribution of Jx and Ex from 
Faraday’s law, in which Ex has a close relationship with Bz ,  as given below. 
   Faraday’s law, which states the relationship between the time rate of change in 
magnetic flux and the induced voltage, is given by   

                                          
(7.20)

 

We perform the closed line integral along the path c, shown in Fig. 3.3, and the surface 
integral over the area S  (=2y0l0) enclosed by path c. Since the sheet extends infinitely 
in the x direction, Ex at y= y0 is independent of position x, and Ey =  0 at every point over 
the cross section. Then, the left-hand side of eq.  (7.20) becomes 

                                                 
(7.21)

 

Next, using #Bz /#t from eq.  (7.11), we write the right-hand side of eq. (7.20) as   

                                                                                                                                           
Substituting eqs. (7.21) and (7.22) into eq. (7.20) leads to the following expression of the 
electric field Ex, induced at y= y0:  

 
The integrations of Re[Hz] and Im[Hz] are performed along the y  axis from 0 to y0 

Ped =
1
2V

Re Jx
*Ex!" #$ dv

V% ,

 
Ex !ds =

c!" #
$Bz
$t

! da
S" .

 
Ex !ds =

c!" 2 l0Ex .

!
"Bz
"t

# da =
S$ !2 l0%

& ''µ Re Hz() *+ ! 'µ Im Hz() *+() *+ + j 'µ Re Hz() *+ + ''µ Im Hz() *+() *+{ } dy
0

y0

$ e j% t .

(7.22)

Ex = !" ##µ Re Hz$% &' ! #µ Im Hz$% &'$% &' + j #µ Re Hz$% &' + ##µ Im Hz$% &'$% &'{ } dy
0

y0

( e j" t .

(7.23)
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with the result being 

                 
(7.24)

 

where R and I denote the expressions given in Appendix D. 
 
7.4.2 Eddy-Current Loss Calculations 

The current density Jx induced by Ex is given by 

                                                (7.25) 

Substituting eq. (7.25) into eq. (7.19) gives 

                                           (7.26) 

From eq. (7.24), we can write 

                 (7.27) 

After various calculations to reduce｜Ex｜
2 to a simpler form, we obtain 

       (7.28) 

If tan" is very small, eq. (7.28) can be approximated by  

         (7.29) 

Substituting｜Ex｜
2 from eq. (7.28) into eq. (7.26) leads to 

  Ped =
! 2H0

2 d "µ 2#1 2

2 $ 2% cosh 2a2( ) + cos 2b2( )&' ()
cosh 2a1y( ) * cos 2b1y( )&' () dy,

0

d
2+  (7.30) 

Ex =
! H0d

2 "1 4# cosh 2a2( ) + cos 2b2( )$% &'
R + j I( ) e j! t ,

Jx = ! Ex =
1
"
Ex .

Ped =
1

2!V
Ex

2

V" dv.

Ex
2 = Ex

* Ex

=
! 2H0

2 d2

2 "1 2# 2 cosh 2a2( ) + cos 2b2( )$% &'
2 R2 + I 2( ).

Ex
2 =

! 2H0
2 d2 "µ 2#1 2

2$ 2 cosh 2a2( ) + cos 2b2( )%& '(
cosh 2a1y0( ) ) cos 2b1y0( )%& '(.

Ex
2 =

! 2H0
2 d2 "µ 2

2# 2 cosh #( ) + cos #( )$% &'
cosh 2#

d
y0

(
)*

+
,-
. cos 2#

d
y0

(
)*

+
,-

$
%/

&
'0
.



97

where a volume integral over the rectangular parallelepiped shown in Fig. 3.2 is reduced 
to a single integral with respect to y because Ex varies only in the y direction. From the 
beginning of this section to eq. (7.29), the symbol y0 has been used to denote a fixed 
position at which the expression of Ex is derived. However, in eq. (7.30) it is now used 
as an integral variable and the symbol is changed accordingly from y0 to y. The 
integration in eq. (7.30) is performed to give  

       Ped =
! 2H0

2 d2 "µ 2#1 4

2 2 $ 3% sin 2&( )
sin &( ) sinh 2a2( ) ' cos &( ) sin 2b2( )

cosh 2a2( ) + cos 2b2( ) .      (7.31) 

By using g(!,)) from eq. (6.10), the following expression of Ped is obtained: 

                                      (7.32) 

Equation (7.32) shows that g(!,)), which is proportional to the average imaginary part 
of the field as given in eq. (6.12), is the important factor determining Ped.  Equation 
(7.32) should be the generalized expression of eq. (3.39) obtained in Chapter 3. We can 
easily show that if we expand g(!,)) into a power series of ! and take only the lowest 
term of !, eq. (7.32) reduces to eq. (3.39).  
   Equation (7.32) can be expressed in a simpler form by using ! from eq. (3.4) and "s 
from eq. (3.5): 

                       Ped =
1
2
!H0

2" #µ g $,%( ).                     (7.33) 

This can also be rewritten as 

                     Ped =
1
2
! ""µ H0

2 #
tan$

g %,&( ).                   (7.34) 

It follows from eqs. (7.16) and  (7.34) that the ratio of Ped to Pm0 is given by 

              

Ped
Pm0

=
!
tan"

g #,$( ) =
1
tan"

+ tan"
%
&'

(
)*
g #,$( ).            (7.35) 

   In this paper, we assume the magnetization of the sheet is microscopic and 
distributed homogeneously as mentioned in Section 4.2. The expressions of 
eddy-current loss given above are derived on the basis of this assumption, which allows 
us to apply the classical electromagnetic theory. The loss calculated by this approach is 
sometimes referred to as the classical eddy-current loss. It has been reported that 
materials whose magnetization process is determined by domain wall displacements 

Ped =
! 2H0

2 d2 "µ 2#1 2

4$ 2% sin 2&( ) g $,&( ).
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exhibit much higher eddy-current losses (typically two to three times as high as the 
classical eddy-current loss) due to the so-called anomalous eddy-current contribution 
[89][91][92] [95]. The reason for this large loss is that the change in magnetization due 
to eddy currents is not uniform inside domains but is concentrated near the domain 
walls [118] [119] [120] [121]. Essentially, the magnetic response of the material away 
from the domain wall is very weak and almost all the flux change is concentrated in the 
narrow region of inhomogeneous magnetization that defines the wall. 
  
7.5 Hysteresis Loss 

Time-averaged hysteresis loss per unit volume, Ph, of the sheet placed in the magnetic 
field Hz0 is given by 

                                        
(7.36)

 

where Hz and Bz are the magnetic field intensity and the magnetic flux density within 
the sheet. It follows from Hz given in eq. (4.28) and 1Bz / #t in eq. (7.11) that the real part 
of H*

z   (1Bz / #t) is written as 

             
(7.37)

 

where |Hz| is the amplitude of the field given in eq. (4.24). Replacing Re[H*
z   (1Bz / #t)] in 

eq. (7.36) with eq. (7.37) leads to 

                          
(7.38)

 

where the volume V is replaced with l0#d#1 (see Fig. 3.2), and the volume integral is 
reduced to a single integral with respect to y. Performing the integration yields 

               
(7.39)

 

After more calculations, this is expressed in a simpler form:      

      

Ph =
1
2V

Re Hz
* !Bz

!t
"

#
$

%

&
' dv

V( ,

Re Hz
* !Bz

!t
"

#
$

%

&
' = ( ))µ Re2 Hz"# %& + Im2 Hz"# %&{ } = ( ))µ Hz

2 ,

Ph =
! ""µ H0

2

d
cosh 2a1y( ) + cos 2b1y( )
cosh 2a2( ) + cos 2b2( )0

d
2# dy,

Ph =
! ""µ H0

2

2 #1 4$ sin 2%( )
sinh 2a2( )sin %( ) + sin 2b2( )cos %( )

cosh 2a2( ) + cos 2b2( ) .

Ph =
! ""µ H0

2

2 "µ
"µ f #, $( ) % ""µ g #, $( )&' ()

=
1
2
! "µeH0

2 tan* . (7.40)
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It can also be written as 

                                                   (7.41) 

where W is the stored magnetic energy per unit volume given in eq. (7.7). Note that Ph  
is proportional to W  and tan'. The hysteresis loss normalized by Pm0 is 

                                                     
 (7.42)

 

Comparing eq.  (7.42) with eq.  (7.9), we see that Ph /Pm0 is identical to W/W0. 
 
7.6 Verification of Ped + Ph =  Pm  

Having obtained the expressions for the eddy-current loss Ped and the hysteresis loss Ph, 
we are now ready to verify that the sum of Ped and Ph equals the overall magnetic loss 
Pm. Before calculating the sum, we transform eq. (7.33) into a more suitable form for 
summation. The factor 'µ%g(!,)) in eq. (7.33) can be rewritten in terms of µe$ , tan"e, and 
tan": 

                         
(7.43)

 

with
                            

(7.44)
                   

where tan"e is the effective loss factor of the sheet. This is the loss factor that we 
regularly use and can obtain by ordinary measurements of magnetic properties of the 
sheet. Using eq. (7.43), we can express eq. (7.33) by 

                                   
(7.45)

 

Then, the sum of Ph from eq. (7.40) and Ped from eq. (7.45) is 

                     

            

Ph = W ! tan" ,

Ph
Pm0

= !µe
!µ
.

! "µ g #,$( ) = "µ + ""µ tan%( ) g #,$( )

= "µ g #,$( ) & tan% "µe & "µ f #,$( )'( )*

= "µe tan%e & tan%( ),

tan!e = ""µe
"µe

and tan! = ""µ
"µ
,

Ped =
1
2
! "µe H0

2 tan#e $ tan#( ).

Ph + Ped =
1
2
! "µe H0

2 tan# +
1
2
! "µe H0

2 tan#e $ tan#( )

=
1
2
! "µe H0

2 tan#e =
1
2
! ""µe H0

2. (7.46)
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The result agrees exactly with the overall magnetic loss Pm given in eq.  (7.15).  
 
7.7 Relationships between Pm, Ph, and Ped 

The relationships between Pm, Ph, and Ped can be derived from eqs.  (7.15), (7.40), and 
(7.45). From eqs. (7.15) and (7.45), we obtain 

                                                 (7.47) 

Likewise, from eqs. (7.15) and (7.40), we have 

                                                    (7.48)     

These two equations lead to the following natural consequence:  

                                                   
(7.49)

 
The ratio of Ped to Ph is given by 

                                                 (7.50) 

7.8 Q-value  

In the previous sections, we obtained expressions for the stored magnetic energy, the 
overall magnetic loss, the eddy-current loss, and the hysteresis loss. Making use of these 
expressions, we can readily obtain the Q-value of the magnetic sheet. 
   We obtain the overall Q-value Qe by substituting the stored magnetic energy W 
from eq. (7.6) and the overall magnetic loss Pm from eq. (7.14) into the definition of the 
Q-value given by eq. (2.23): 

                               

where Q0 is the intrinsic Q-value given by µ%/µ'. The expression of Qe can also be 
obtained by substituting W  from eq. (7.7) and Pm from eq. (7.15) into eq. (2.23): 

Ped
Pm

= 1 !
tan"
tan"e

.

Ph
Pm

=
tan!
tan!e

.

Ped
Pm

+
Ph
Pm

= 1.

Ped
Ph

=
tan!e
tan!

" 1.

Qe =
!W
Pm

=
"µ f #,$( ) % ""µ g #,$( )
""µ f #,$( ) + "µ g #,$( ) =

Q0 f #,$( ) % g #,$( )
f #,$( ) + Q0 g #,$( ) , (7.51)
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                                               (7.52) 

This widely used definition of the Q-value of a magnetic object is given by the ratio of 
the real part of the effective permeability to the imaginary part and is equal to the 
reciprocal of the effective loss factor. The derivation of eq. (7.52) is based on the 
primary definition of the Q-value given in eq. (2.23), into which we introduce the 
derived expressions of the stored magnetic energy and the overall magnetic loss. Thus, 
we have demonstrated the validity of this popular definition of the Q-value using a very 
orthodox method. 
   Next, let Qh be the Q-value defined by the hysteresis loss. It follows directly from 
W given in eq. (7.7) and Ph in eq. (7.40) that Qh is given by 

                                         (7.53) 

Equation (7.53) is exactly equal to eq. (3.50) from Chapter 3, which was derived on the 
assumption that the field is applied at a low frequency. This result clearly shows that Qh 
is determined solely by tan", in any frequency region, not only in low frequency 
regions. However, it should be noted that Qh is not necessarily constant, because the 
intrinsic permeability is only constant when the frequency is considerably lower than a 
lowest dispersion region as described in Chapter 5. 
   Likewise, let Qed be the Q-value defined by the eddy-current loss. Then, using W 
and Ped from eq. (7.45), we obtain 

                                      (7.54) 

   The overall Q-value of the magnetic sheet is also obtained from eq. (2.26) as a 
combination of Qh from eq. (7.53) and Qed from eq. (7.54):   

                                   (7.55) 

This is consistent with the expression of Qe given in eq. (7.52). 
 
7.9 Low-Frequency Approximation 

As discussed in Section 6.5, if the frequency of the applied magnetic field is fairly low, 
the effective permeability µe$  and µe '    reduce to eqs. (6.26) and (6.27), respectively. They 
can also be written as 

Qe = !µe
!!µe

=
1

tan"e
.

Qh =
!W
Ph

=
1
tan"

= Q0.

Qed =
!W
Ped

=
1

tan"e # tan"
.

1
Qe

=
1
Qh

+
1
Qed

= tan!e.
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Using this low-frequency approximation of the effective permeability, we can reduce 
the accurate expressions obtained in this chapter to approximate forms that can be used 
only in low frequency regions. 
   Substituting µe$  from eq. (7.56) into eq. (7.7) leads to the approximate form of the 
stored magnetic energy:  

                                      (7.58) 

Using eq. (7.15) and eq. (7.57), the approximate overall magnetic loss Pm is written as  

                         
(7.59)

 

By using the approximate forms of g(!,)) given in eq. (6.25) and µe$  in eq. (7.56), we 
can reduce the eddy-current loss Ped given in eq. (7.33) and the hysteresis loss Ph  in eq. 
(7.40) to approximate forms: 

 

Equations (7.56) and (7.57) are introduced into the first equation of eq. (7.52) to give the 
approximate form of Qe: 

                                     (7.62) 

We obtain the approximate Qed  by substituting W from eq. (7.58) and Ped from eq. (7.60) 
into eq. (2.25): 

  

!µe ! !µ 1 "
1
3
# 2 tan$

%
&'

(
)*
, (7.56)

and !!µe ! !!µ 1 + 1
6
# 2 1

tan$
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/
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1
2
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1
3
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&'
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1
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Ped !
1
12

!" #µ $ 2H0
2 =

1
12

! ##µ $ 2 1
tan%

+ tan%
&
'(

)
*+
H0
2 (7.60)

and Ph !
1
2
! ##µ 1, 1

3
$ 2 tan%

&
'(

)
*+
H0
2. (7.61)

 

Qe !
1 ! 1

3
" 2 tan#

tan# + 1
6
" 2 1 ! tan2 #( )

.
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(7.63)

 

Likewise, it follows from W and Ph given in eq. (7.61) that the approximate Qh is given  

 
   All of the approximate expressions obtained above agree precisely with those given 
in Chapter 3, which were derived by assuming that the field was applied at a low 
frequency. This agreement is a necessary condition for the accuracy of the expressions 
obtained in this chapter and in Chapter 3. 

7.10 Magnetic Properties as a Function of Frequency 

The magnetic properties obtained in this chapter are expressed as a function of ! . We 
can rewrite these expressions in terms of the frequency f by using F (f ,)) given in eq.        
(6.28) and G(f ,)) in eq. (6.29). The results are as follow 

                                (7.65) 

                             (7.66) 

                                          (7.67) 

                          (7.68) 

and                                   (7.69)                      

7.11 Numerical Examples 

Figure 7.1 shows the normalized stored energy W/W0 as a function of !  for four values 
of tan". In Section 7.5, we found that W/W0 is equal to Ph /Pm0, where Ph is the hysteresis 
loss and Pm0 is the overall magnetic loss at a very low frequency. Both W/W0 and 
Ph /Pm0 are equivalent to µe$ /µ%, which is shown in the plots in Fig.  6.3. Chapter 6 shows 
that µe$ /µ% is mainly dependent on f (!,)), which is proportional to the average real part of 
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Figure 7.1 Normalized stored energy W/W0  as a function of !  for four values of tan". W0  is 
          the stored energy at very low frequencies. W/W0  is identical to Ph/Pm0,  where Ph is 
          the hysteresis loss and Pm0 is the overall magnetic loss at very low frequencies. 
          The curves are the same as those of µe$ /µ% shown in Fig. 6.3 . 

 
 
 
the magnetic field, [Re[Hz]]av. Therefore, the behaviors of W/W0 and Ph /Pm0 are closely 
related to the behavior of [Re[Hz]]av. 
   Figure 7.2 illustrates the normalized eddy-current loss Ped /Pm0 as a function of !  for 
several values of tan". As !  increases from zero, the eddy-current loss increases 
slowly, reaches a maximum, and then gradually decreases thereafter. The curves are 
similar to those of the imaginary part of the field Im[Hz] shown in Fig. 4.6(b) and those 
of g(!,)) shown in Fig. 6.2. This is because the expression of Ped /Pm0 given in eq. (7.35) 
includes g(!,)), which is proportional to [Im[Hz]]av, the average imaginary part of the 
field. From the discussion on Im[Hz] in Subsection 4.8.2(b), the behavior of Ped /Pm0 in 
Fig.7.2 can be explained from the two kinds of eddy-current effects: the amplitude 
diminution and the phase lag of the field. 
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 Figure 7.2 Normalized eddy-current loss Ped/Pm0 as a function of !  for five values of tan". 
 
 
   Fig.7.2 shows that Ped /Pm0 is very large for tan" = 0.1. This is because the expression 
of Ped /Pm0 includes a factor 1/ tan", which causes Ped /Pm0 to increase substantially when 
tan" is much lower than 1.0. The dotted line in Fig. 7.2 shows the case where the 
maximum value of Ped  is equal to Pm0, which occurs when tan" = 0.336. 
   Figure 7.3 shows Pm /Pm0 as a function of !  for four values of tan". As given in eq. 
(7.17), Pm /Pm0 is identical to µe '   /µ0,  whose plots have already been shown in Fig. 6.4. 
Since Pm = Ph + Ped, the plots shown in Fig. 7.3 are combinations of the plots of Ph/Pm0 
shown in Fig. 7.1 and the plots of Ped /Pm0 shown in Fig. 7.2. 
   Figure 7.4 shows Qe /Q0 as a function of !  for four values of tan". It follows from 
eqs. (7.52) and (7.53) that Qe /Q0 = tan" /tan" e. This ratio is equivalent to the ratio of the 
hysteresis loss to the overall magnetic loss Ph /Pm given in eq. (7.48). Referring to eqs. 
(7.47), (7.48), and (7.49), we can see that the portion under the curve in Fig. 7.4 is Ph/Pm 
and the portion above the curve corresponds to Ped/Pm. 
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  Figure 7.3 Normalized overall magnetic loss Pm/Pm0 as a function of !  for four values of  
         tan". Curves are identical to those of µe'/µ0 shown in Fig. 6.4 . 
 
   As shown in Fig. 7.4, Qe /Q0 is nearly constant in the region where !  is larger than 
approximately 4.0. This is explained by the behavior of µe$  and µe '   because Qe/Q0 is also 
expressed by (µe$ /µe '   ) tan" and tan" is assumed to be constant. Equations  (6.19) and 
(6.22) show that for values of !  larger than approximately 4.0, the ratio µe$ /µe '    is almost 
independent of !  and depends only on µ$ and µ0. 
   Figure 7.5 shows tan "e/tan" as a function of ! for four values of tan". It is obvious 
from eqs. (7.52) and (7.53) that tan"e /tan" in Fig. 7.5 is just the reciprocal of Qe /Q0  
shown in Fig. 7.4. 
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  Figure 7.4 Ratio of overall Q-value to intrinsic Q-value Qe/Q0 as a function of !  for four  
            values of tan". Qe/Q0 is identical to Ph/Pm. 
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Figure 7.5 Ratio of effective loss factor to intrinsic loss factor tan  "e/tan" as a function of !  
          for four values of tan". tan  "e/tan" is the reciprocal of Qe /Q0. 
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8. Summary 

RF properties of plane magnetic sheet made of lossy material, such as magnetic alloys, 
were analyzed on the assumption that the sheet is infinitely wide and placed in a 
uniform magnetic field applied parallel to its surface. Complex permeability and 
nonzero conductivity were used in the calculations. The following is a summary of our 
findings. 

 (1) Field Distribution within the Sheet 

Maxwell’s equations were used to derive the distribution of the magnetic field within 
the sheet. Numerical examples showed the distribution’s dependence on frequency, 
thickness, and material constants. The following points apply to the field distribution:

 ・As the depth under the sheet surface Y increases, the field amplitude diminishes and 
   the phase of the field lags behind the phase at the surface. The field diminishes more 
   and the phase lags more as ! increases, where !=d/"s with d being the thickness    
   of the sheet and "s, the commonly used skin depth. Hence, ! is proportional to the  
   square root of the frequency. 
 ・When the intrinsic loss factor tan" is higher, the amplitude diminishes more rapidly  
  as Y or ! increases, whereas the phase lags more slowly. The effect of tan" on  
  the amplitude behavior is obvious and the phase behavior can be explained from the 
  way in which the magnitude of the real and imaginary parts of the field vary as Y or  
  ! changes. 
・In regions in which ! >>1, the field amplitude can be expressed in an approximate  

   form, from which an expression of the skin depth for magnetic sheet can be derived. 
   This definition includes tan", as well as the frequency and conductivity, and 
   consequently is applicable to all magnetic sheets. 

 (2) Effective Permeability

The complex effective permeability, which characterizes the macroscopic magnetic 
properties of the sheet, was derived by integrating and then averaging the complex 
magnetic field over the cross section of the sheet. The following points apply to the 
effective permeability: 

・The average magnetic field within the sheet is proportional to (f (!,))( jg(!,))) in  
   which ) is a function of tan". f (!,))  and g(!,)) are important parameters  
   determining the effective permeability and other magnetic properties of the sheet. 
 ・As ! increases, the real part of the effective permeability µe$ monotonically  
   decreases, whereas the imaginary part µe '   increases at the beginning, reaches a  
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   broad maximum, and then decreases thereafter.  
 ・Both the real and imaginary parts of the effective permeability decrease as tan" 
   increases. 

(3) RF Magnetic Properties 

The expressions of RF magnetic properties, such as the stored magnetic energy, the 
magnetic loss, and the Q-value, were derived using the magnetic field distribution 
within the sheet. The following points apply to the RF magnetic properties:

 ・The overall magnetic loss is assumed to be composed of the hysteresis loss and the 
  eddy-current loss. 

 ・The hysteresis loss is proportional to µe$ tan" and the eddy-current loss is  
   proportional to (µe '  (µe$ tan"). This leads to the natural consequence that the  
  overall magnetic loss given by the sum of these two kinds of losses is proportional  
  to µe '  .    

 ・The above expressions indicate that the hysteresis loss behaves in exactly the same 
  way as µe$  when ! changes, while the ! dependence of the eddy-current loss is 
  almost equal to that of µe '   if tan" is fairly low, as is usually the case for magnetic  
  alloy cavity applications. 

 ・The widely used relationship Qe =1/tan"e , where Qe and tan"e  are the effective Q- 
   value and loss factor of the sheet, respectively, was verified by using a very 
   orthodox method. This method used the primary definition of the Q-value  
   Q = #W/Pm, where # is the angular frequency; W, the stored energy; and Pm, the 
   power dissipation. 
 ・The Q-value defined by the hysteresis loss, Qh, is independent of !, or the frequency,  
   and is equal to Q0 , the intrinsic Q-value of sheet.

(4) Low-Frequency Approximation 

The approximate expressions for the magnetic properties of the sheet were derived on 
the assumption that the frequency of the applied magnetic field is much less than RF 
frequencies. The following points apply to the frequency: 

 ・The numerical results obtained from the approximate expressions in the low-! region  
   were compared with those from the exact expressions. They agree quite well up to  
  !≃ 0.4, which corresponds to a frequency range of approximately 10 to 100 [kHz], 
  depending on the thickness and the material constants of the sheet.  

  
  
   



111

Appendix A 

Stored Magnetic Energy  

In this Appendix, we first review the concept of stored magnetic energy and express it 
in terms of field quantities. Then, we derive the expression of the magnetic energy 
stored within an object that is placed in a magnetic field [122]–[128]. 

A.1 Energy Stored in a Magnetic Field 

Consider a closed conducting loop with a current i which is initially zero. In the process 
of increasing i from zero to a final value I, work is done on the system. This work 
results in stored energy in the magnetic field surrounding the conductor. If we divide the 
cross section of the conductor into n distinct current filaments, the magnetic energy in 
the field around the current loop, WV, is given by 

                           WV =
1
2

Ii !i
i=1

n

" ,                        (A.1) 

where Ii is the current of the ith filament (or circuit) and $i is the flux linking the ith 
filament due to all the other (n%1) current filaments in the current loop. Equation (A.1) 
is correct for the magnetic energy of n circuits in a medium for which the relationship 
of B to H is linear. Equation (A.1) can be transformed into the following form, which is 
applicable even when the relationship between B and H is nonlinear: 

                          WV = Ii !"i
"i0

"i

#i=1

n

$ ,                        (A2)                         

where $i0 is the flux linking the ith circuit at the initial instant when all currents are 
zero.  
   It is a simple matter to extend eq. (A.2) from a finite number of current filaments to  
a continuous distribution of current. The increment in magnetic flux, "$, can be 
expressed by using the vector potential A in the form 

                        (A.3) 

We use Stokes’s theorem to transform the surface integral of ")"A over the surface S 
into the line integral of "A along a closed curve c bounding the surface. The current 
distribution can be broken up into a network of current loops, with the typical one being  

 
!" = !B #da

S$ = % &!A( ) #da
S$ = !A #ds.

c!$
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a current tube of cross-sectional area d%. For a current tube, we can write I ds = J・ndv, 
where J is the current density and dv (= d%ds ) is the volume of an infinitesimal length 
(ds) of a current tube. Using this relationship and eq. (A.3), we can transform eq. (A.2) 
into the expression for a system of distributed currents: 

                                               (A.4) 

This is the work required to set up a continuous current distribution and it is identical to 
the magnetic energy stored around a current carrying system.    
   We can obtain an expression involving the magnetic fields rather than J and "A by 
using the vector identity 

               (A.5) 

where we use the relationships "B =")"A and J =")H. It follows from eq. (A.5) that  

                                      (A.6) 

Substituting eq. (A.6) into eq. (A.4) and applying the divergence theorem  

 

Here, V is any volume bounded by a surface S enclosing all the sources of the field. If 
we choose S to be a spherical surface at infinity, the second integral of eq. (A.8) 
disappears, because the integrand diminishes with r&3 (H# r&2 and A# r&1), whereas S 
grows only with r2. Therefore, the work done to build up a magnetic field from B0 to 
the final value B is represented by the integral 

                                              (A.9) 

This is the magnetic energy stored in the magnetic fields when they are brought up from 
B0 to B. The present form is applicable to all magnetic media or materials, including 
ferromagnetic substances. 
   Strictly speaking, the derivation of the result is based on the assumption that the 
building up of the field takes place so slowly that it might be represented by a 
succession of stationary states. Therefore, it is essential to determine whether this 

WV = J !"A dv
A0

A

## .

! " #A $H( ) = H " ! $ #A( ) % #A " ! $H( ) = H "#B % J "#A,

J !"A = H !"B + # ! H $ "A( ).

 

! "F dv
V# = F "n da
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we obtain

WV = H "dB dv
B0

B

#V# + H $ dA( ) " n da
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A
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V! H " dB.
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expression for the energy density remains valid when the fields vary at an arbitrary rate. 
In Section B.1, we review the power balance equation known as Poynting’s theorem, 
which is valid for any frequency. The theorem supports that the expression of the 
density of energy stored in the electromagnetic field is the same as that in the stationary 
or quasistationary regime. 
   Now, we assume that the relationship of B to H is linear and that the medium is 
isotropic. Then, the relationship can be given by B=µH, where µ is the permeability of 
the medium and is at most a scalar function of position, which reduces to a constant if 
the medium is homogeneous. In this case, the relationship  

           

holds true, and we can write 

                                               (A.10) 

Under these circumstances, WV in eq. (A.9) is reduced to 

                                               (A.11) 

We can assume this energy is distributed throughout the field with a density (H･B)/2, 
which reduces to µH2/2 if µ is a constant. Equation (A.11) is commonly used to 
calculate the stored energy of magnetic media or materials. 
 
A.2 Energy Stored in Magnetic Object  

Our goal is to obtain the energy stored in a magnetic object when it is placed in a 
magnetic field. We consider the question of the change in a system’s energy when a 
magnetic object is introduced into a magnetic field of fixed current sources. Suppose 
that initially the magnetic field H1 has been established in a medium having linear and 
isotropic permeability µ1 (Fig. A.1(a)). The energy of the field stored in a volume V 
(from eq. (A.11)), is given by 

                                             (A.12) 

where B1 is the magnetic flux density in the medium (B1 =µ1H1). Then, with the sources 
fixed in position, a magnetic object is introduced into the field. The object is assumed to 
be initially unmagnetized but its magnetic properties are otherwise arbitrary. The 
volume occupied by the object is denoted Va and the entire region outside is denoted                                       

d H ! B( ) = dH ! µH +H ! dB = dB !H +H ! dB = 2H ! dB,

H ! dB =
1
2
d H ! B( ).

WV =
1
2

H ! B dv
V" .

WV1 =
1
2

H1 ! B1 dv
V" ,
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   Figure A.1 (a) Fields in a homogeneous medium before introducing a magnetic object. 
         (b) Fields after introducing a magnetic object of volume Va. The volume 
                of the medium outside the object is Vb. 
 
 

Vb (Fig. A.1(b)). The energy of the system in this new state is 

                             (A.13) 

The ultimate magnetic flux density in the medium B differs from the initial magnetic 
flux density B1 by an amount, B &B1, which arises from the polarization of the matter 
contained within Va. The change in energy is 

         
(A.14) 

This is the work done when introducing the object into the field, which must be equal to 
the energy stored in the object. The assumption of fixed sources and the use of some 
vector identities mean that the energy WV in eq. (A.14) can be expressed in terms of 
integrals extended over the volume Va occupied by the object, as follows: 

                   (A.15) 

   If the magnetic properties of the material within Va can be characterized by the 
permeability µ2, the relationship B = µ2H holds true, and consequently, eq. (A.10), 

WV 2 =
1
2

H ! B dv
Vb" + dv

Va" H ! dB.
0

B

"

WV = WV 2 ! WV1

=
1
2

H " B !H1 " B1( ) dv + dv
Va# H " dB !

1
2
H1 " B1

0

B

#( ).Vb#

WV =
1
2

H1 ! B "H ! B1 "H ! B + 2 H ! dB
0

B

#$
%&

'
()
dv

Va# .



115

which can also be written as 

                                               (A.16) 

is applicable to this case. Substituting eq. (A.16) into eq. (A.15) leads to  

                                     (A.17) 

This can also be written as 

                                      (A.18) 

It is important to note that B in eq. (A.18) is the magnetic flux density within the object, 
whereas H1 is the magnetic field intensity in the medium before the object is 
introduced.  
   In general, in ferromagnetic materials, B and H do not have a linear relationship. 
However, if the amplitude of the alternating magnetic field is not very large, the 
permeability can usually be assumed to be a constant and then, eq. (A.18) can be used to 
estimate the stored energy of a magnetic object placed in a magnetic field.  
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Appendix B 

Magnetic Power Loss 

In Appendix A, the stored magnetic energy was expressed in terms of integrals of the 
field vectors from eq. (A.18). The next step is to understand how to express the magnetic 
power loss in terms of field vectors. We first review Poynting’s theorem, which is 
essentially an energy conservation law that gives the relationship between the change in 
energy stored in a given volume of space and the flow of energy through the surface 
enclosing this volume. From this theorem, we obtain the general expression for the 
magnetic power loss [122]–[128]. Then, taking a magnetic solenoid as an example, we 
verify that the magnetic power loss of the solenoid, given in terms of B and H,  is 
exactly equivalent to the product of voltage and current, which is the common definition 
of power loss. 
  
B.1 Poynting’s Theorem 

We mentioned at the end of Section A.1 that the energy is expected to be distributed 
throughout the field. If this hypothesis is tenable, any change in field intensity and 
energy density must be associated with a flow of energy. The relationship between the 
rate of change in the energy stored in the field and the energy flow can be deduced as a 
general integral of Maxwell’s field equations, which are given by 

                                             (B.1) 

                                          (B.2) 

                                    (B.3) 

These four equations form the basis for all classical electromagnetic phenomena. 
   If there exists a continuous distribution of charge and current, the total rate of work 
done by the fields in a finite volume V is  

                                                (B.4) 

This power represents a conversion of electromagnetic energy into mechanical or 
thermal energy. It must be balanced by a corresponding power decrease in the 
electromagnetic field within the volume V. To exhibit this conservation law explicitly, 

! " E = #
$B
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! " H =
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+ J,
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E ! J dv
V" .



117

we use Maxwell’s equations to express eq.  (B.4) in other terms. Solving J from eq. 
(B.2) and substituting it into eq. (B.4) leads to 

                         (B.5) 

If we employ the vector identity 

                         (B.6) 

and use eq.  (B.1), the first term in the brackets on the right-hand side of eq.   (B.5) is 
written as 

                        (B.7) 

Substituting eq. (B.7) into eq. (B.5), we obtain 

           (B.8) 

Using the divergence theorem given in eq. (A.7), the first term on the right-hand side of 
eq. (B.8) can be transformed from a volume integral into a surface integral, such that eq. 
(B.8) becomes 

             (B.9) 

  This result was first derived by J. H. Poynting in 1884 and again in the same year by 
O. Heaviside. The equation is known as Poynting’s theorem and is customarily 
interpreted as follows: Since the term E･J has the dimension of power expended per 
unit volume (watts per cubic meter), the terms on both sides of eq. (B.9) must represent 
the power or the time rate of change in energy. Hence, the right-hand side of eq. (B.9) 
represents the rate of decrease in electric and magnetic energy stored within the volume. 
The term H･#B/#t, which represents the density of magnetic power loss, is consistent 
with the expression of stored magnetic energy given in eq. (A.9) (see Section 2.3). This 
supports the validity of eq.  (A.9) even if the fields vary at an arbitrary rate. 
   The loss of available stored energy given on the right-hand side of eq. (B.9) must be 
accounted for by the terms on the left-hand side. Since the second integral on the 
left-hand side represents the power dissipated in the volume V in Joule heat, then the 
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first integral must represent the power flow out of the surface S enclosing the volume V. 
The important consequence is that the integration of  

                                                       (B.10) 

over an arbitrary closed surface gives the electromagnetic power flow from the inside to 
the outside of the closed surface. S is termed the Poynting vector, which is interpreted 
as the intensity of power flow per unit area whose normal is oriented in the direction of 
the vector E)H.  
   Incidentally, Poynting’s theorem can be rewritten as the power balance equation in 
the explicit complex form [128] as follows:  

                                     (B.11) 
Here, 
     Ps  is the complex power delivered by the sources,  
     Po  is the active or real power transmitted through the closed surface,  
     Pl  is the power lost to heat in the volume enclosed by the surface,  
     2# ( Wm,j(  We,j)  is the reactive power, 
   # is the angular frequency,  
     Wm,j  is the reactive magnetic energy stored in the volume, and  
     We,j  is the reactive electric energy stored in the volume. 
 
B.2 Power Loss of a Magnetic Solenoid 

As mentioned previously, the integrand on the right-hand side of eq. (B.9) represents the 
density of electric and magnetic power loss, and it is evident that the second term  
H・#B/#t gives the density of the magnetic power loss. Here, we perform a simple 
thought experiment to verify that the magnetic power loss expressed in terms of 
magnetic field quantities is consistent with the commonly used power loss defined by 
the product of voltage and current.  
   We consider an infinitely long solenoid, which is a single-layer coil of fine wire 
wound tightly around a solid magnetic cylinder having a permeability µ (Fig. B.1). A 
current i flowing through the wire produces a uniform magnetic field H  within the 
solenoid, which is expressed as 
                                                          (B.12) 

where n is the number of turns per unit length. Let ! denote the interlinkage of 
magnetic flux of the solenoid in a length l . Then it is written as 

                                             (B.13) 

E ! H " S

Ps = Po + Pl + j 2! Wm, j "We, j( ).

H = n i,

! = "a2 l nB,
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  Figure B.1 Infinitely long solenoid made of a single-layer coil of fine wire wound tightly 
            around a solid cylinder of magnetic material. 
 
 
where a  is the radius of the cylinder and B is the magnetic flux density within the 
solenoid, which is given by B  = µH. The change in ! with time induces the voltage v on 
the solenoid across the length l such that   

                                          (B.14) 

   It is common practice to express the power, or the change in energy per second, as a 
scalar product of the voltage v and the current i. Now, we denote the magnetic energy 
stored in the volume V  ( = *a2l ), by WV. Then, the time rate of change in WV must be 
equal to the power i・v. Using eqs. (B.12) and (B.14), this is written as 

                                      (B.15) 

Let Wm be the magnetic energy stored per unit volume, that is, Wm = WV/V. Then, 
dividing both sides of eq. (B.15) by the volume V, we obtain the time rate of decrease in 
the magnetic energy stored in a unit volume: 

                                            (B.16) 

This is exactly the same as the second term in the parentheses on the right-hand side of 
eq. (B.9). 
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.
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   Next, we consider a capacitor made of two parallel conducting plates that extend 
infinitely and are maintained at a constant potential difference. Performing a similar 
thought experiment, we can show that the time rate of decrease in the electric energy 
stored in a unit volume of the capacitor is given by 

                                            (B.17) 

which agrees precisely with the first term in the parentheses on the right-hand side of eq. 
(B.9). In eq. (B.17), i  and v  are the charging current and voltage, respectively, V is the 
volume of the capacitor, We is the electric energy stored per unit volume, and E and D 
are the electric field intensity and electric flux density in the capacitor, respectively. 
   In conclusion, the average density of magnetic power loss in the volume V is given 
by 

                                            (B.18) 
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Appendix C 

Field Distribution within a Solid Magnetic Cylinder 

In Chapter 4, we discussed the effect of eddy currents on the magnetic field distribution 
in the interior of the magnetic sheet. The eddy-current effect can also be accurately 
calculated for a specimen in the form of a solid cylinder. In this appendix, we derive the 
expressions for the magnetic field distribution within a solid magnetic cylinder. The 
field distribution is obtained in solving a field equation that governs the magnetic field 
within the cylinder. Examples are given to show how the field distribution depends on 
the material parameters and how it varies with the frequency of the applied magnetic 
field. 
 
C.1 Field Equation 

We consider that the specimen is a solid cylinder or a wire made of a magnetic material 
having complex permeability as well as nonzero conductivity. We assume that the 
uniform magnetic field  

                                                    (C.1) 

is applied parallel to the cylinder axis as shown in Fig. C.1. We also assume that 

(1) the solid magnetic cylinder is infinitely long, and 
(2) the intrinsic permeability µ is linear and isotropic. 

On the basis of these assumptions and the configuration shown in Fig. C.1, we derive 
the field equation, which is then solved to obtain the magnetic field distribution. 
   We start with Maxwell’s equations written in cylindrical coordinates, which are 
composed of eight equations for six field components Er, E), Ez, Hr, H), and Hz. 
Under the conditions given above, only the two field components Hz and E) have a 
nonzero value and the other four field components have a value of zero. Likewise, only 
the two field gradients #E)/#r and #Hz/#r have a nonzero value and other four field 
gradients are zero. That is, 

          (C.2)  

Therefore, only the following two equations remain significant: 

 

Hz0 = H0 e
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Er = Ez = Hr = H! = 0 and
"E!

"!
=

"E!

"z
=

"Hz

"!
=

"Hz

"z
= 0.
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Figure C.1 Geometry and field components of an infinitely long solid cylinder of magnetic  
          material. 
 
 

 

   As mentioned in Section 4.3, the condition #*/%<<1 is satisfied over a wide 
frequency range up to at least microwave frequencies even for moderate conductors, 
such as steel and magnetic alloys. Therefore, the second term on the right-hand side of 
eq. (C.4) can be ignored. Solving eq. (C.4) for E) and substituting it into eq. (C.3), we 
can eliminate E) and obtain the second-order differential equation for Hz: 

 

1
r

!
!r

rE"( ) = # µ
!Hz

!t
, (C.3)

and #
!Hz

!r
= $E" + %

!E"

!t
. (C.4)
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                          (C.5) 

where the time dependence ej"t is assumed and µ  in eq. (C.3) is replaced with the 
complex intrinsic permeability µ%& jµ'.  
   In order to solve eq. (C.5), which cannot be solved by elementary means, we 
introduce a dimensionless complex parameter 

                                                          (C.6) 

where  

 

Here, R and D denote the radius and diameter of the cylinder, respectively, and tan  " is 
the intrinsic loss factor. In the expression of )c, we use the form tan&1(tan  ") instead of ", 
because the term tan" is customarily used as a measure of the quality of materials and is 
often a given parameter. Then, & can be written as 

                                           
(C.9)

 

Changing the independent variable from r  to &, we rewrite eq. (C.5) as 

                                          (C.10) 

which is recognized as a Bessel’s differential equation of order zero. 
 
C.2 Solution of Field Equation 

There are two independent solutions to eq. (C.10), namely J0(&) and N0(&), which  
are termed the first and second kind of ordinary Bessel function of order zero, 

!2Hz

!r2
+
1
r
!Hz

!r
" j# $µ " j $$µ( )%Hz = 0,

! = " c r,

! c = " j# $µ " j $$µ( )% = " j &1 4'c
2R

e" j(c , (C.7)

with

'c =
2R
)s

=
D
)s
, )s =

2
# $µ %

, tan) = $$µ
$µ
,

& = 1 + tan2 ) , and (c =
1
2
tan"1 tan)( ) " n* .

+

,

-
-

.

-
-

(C.8)

n = 0, 1( )

! = " j #1 4$c
2

e" j%c r
R
.

!2Hz

!"2
+
1
"

!Hz

!"
+ Hz = 0,
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respectively. The general solution is given by a combination of these two functions: 

                                           (C.11) 

where A and B are the constants of complex numbers, which are chosen to match given 
boundary conditions. The Bessel function of the second kind, N0(&), which is often 
referred to as the Neumann function, becomes infinite at &= 0. Since in our case, the 
magnetic field remains finite at &= 0, the N0(&) term is physically unacceptable and 
must be excluded, and therefore, the constant B in eq. (C.11) should be zero.   
   The boundary condition at the surface of the cylinder requires that Hz must be equal 
to the applied field H0. Then, at r = R, eq. (C.11) becomes 

 
Thus, the constant A is determined as 

                                                     (C.14)                                                                  

Substituting eq. (C.14) for A and zero for B in eq. (C.11) and adding the time factor  
ej"t, we obtain the solution  

                                              (C.15) 

The function J0(&) is expressed in a power series of &: 

                                    (C.16) 

   Equation (C.15) can be expressed in the explicit complex form by splitting J0(&) 
and J0(&R) into the real and imaginary parts: 

                            (C.17) 

The complex field Hz can also be represented by a combination of the amplitude |Hz| 
and the phase !z: 

                                                 (C.18) 

Hz = AJ0 (!) + BN0 (!),

 

H0 = AJ0 (!R ), (C.12)
where

!R = " c R = # j
$1 4%c
2

e# j&c . (C.13)

A =
H0

J0 (!R )
.

Hz = H0
J0 (!)
J0 (!R )

e j" t .

J0 (!) =
"1( )m

22m m!# m +1( )m=0

$
% !2m .

Hz = H0
Re J0 (!)[ ] + j Im J0 (!)[ ]
Re J0 (!R )[ ] + j Im J0 (!R )[ ] e

j" t .

Hz = Hz e
j ! t+"z( ),
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where                      (C.19)               

and         (C.20)   

Re[J0(&)] and Im[J0(&)] are expanded in a power series of r/R: 

 

The functions at the surface Re[J0(&R)] and Im[J0(&R)] can be obtained by replacing r 
with R in eqs. (C.21) and (C.22).  
   If the cylinder material has no imaginary permeability part, in other words, if 
tan"= 0, then ' = 1 and )c = (n2. Hence, eqs. (C.21) and (C.22) reduce to 

          (C.23) 

and 

   
 
(C.24)

 

where                                                 (C.25)                             
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and
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The functions Ber (x) and Bei (x) imply Bessel real and Bessel imaginary functions, and 
are sometimes called the Ber and Bei functions of Lord Kelvin, for which many tables 
exist. The subscript of the Ber and Bei functions indicates the order of the function, 
which is often omitted if it is zero. Substituting eqs. (C.23) and (C.24) into eqs. (C.19) 
and (C.20), we obtain the approximate expressions of |Hz| and !z as follows:  

                                (C.26) 

 

These expressions agree with those found in textbooks on electromagnetic theory [127] 
and ferromagnetism [89] [90] and are applicable to the case where the intrinsic tan" of 
the cylinder is negligible. 
 
C.3 Numerical Examples 

The amplitude |Hz| and the phase !z of the field are calculated from eqs. (C.19) and 
(C.20), which contain the exact forms of Re[J0(&)] and Im[J0(&)] given in eqs. (C.21)  
 (C.22).  
  First, we examine the case where the intrinsic loss factor tan" is zero. Figure C.2 
shows the normalized amplitude |Hz|/H0 and the phase !z for several values of !c. The 
abscissa is the normalized distance from the central axis r/D, where D is the diameter of 
the cylinder. Therefore, the position r/D  =  0 refers to the central axis and r/D =  0.5 to the 
surface of the cylinder. The parameter !c is given by eq. (C.8) and written as 

                                           
 (C.29)

  

This equation shows that !c is proportional to the diameter D and is also proportional to 
the square root of the product of the frequency #, the real part of intrinsic permeability 
µ%, and the conductivity %. Figure C.2 clearly shows how the magnetic field is 
distributed within the cylinder when the uniform alternating magnetic field is 
continuously applied to the cylinder, parallel to its axis. The normalized amplitude 
|Hz|/H0 diminishes and the phase !z lags with the distance from the surface. For a larger 

Hz = H0
Ber0

2 x( ) + Bei0
2 x( )
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1 2
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where xR =
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2
. (C.28)
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.
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Figure C.2 Normalized amplitude |Hz|/H0 and phase !z of the field inside the solid cylinder  
           versus normalized distance r/D for five values of !c in the case of tan"= 0. 
           r/D = 0 denotes the central axis and r/D =  0.5 the surface of cylinder. 
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      Figure C.3 (a)  Normalized amplitude |Hz|/H0 and phase !z of the field inside the 
                   solid cylinder versus r/D for !c = 0.5 and four values of  tan". 

 

    

Figure C.3 (b) for !c = 1.0. 
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Figure C.3 (c) for !c = 2.0. 
 

    

Figure C.3 (d) for !c = 3.2.    
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Figure C.3 (e) for !c = 5.0. 
 
 

value of !c, |Hz|/H0 decreases more rapidly and !z lags faster. 
   Next, we examine the way in which the field distribution depends on !c and tan". 
Figure C.3 shows |Hz|/H0 and !z as a function of r/D for five values of !c. Fig. C.3 (a), 
(b), (c), (d), and (e) illustrate the results for !c = 0.5, 1.0, 2.0, 3.2, and 5.0, respectively, 
each showing the field distribution for tan"= 0.1, 0.5, 1.0, and 2.0. Note that the scale 
of |Hz|/H0 is common to all figures, but the scale of !z is different from figure to figure. 
We can see that as tan" increases, the field amplitude diminishes more rapidly, whereas 
the phase lags more slowly. The reason for this phase behavior was discussed in 
Subsection 4.8.3, where the behavior was analyzed using the phasor diagrams of Hz. 
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Appendix D 

Electric Field Induced by Time-Varying Magnetic Field 

In Section 7.4, we obtained the expression for the electric field Ex, which is induced at 
y = y0 by the time-varying magnetic flux. It is written as 

                  (7.24) 

where R and I are given by 

 (D.1)   

and 

    

                                                                  (D.2)                                                                      

with                                 (D.3)                     

                                    (D.4) 

                                    (D.5) 

and                                 (D.6)                                             

Ex =
! H0d

2 "1 4# cosh 2a2( ) + cos 2b2( )$% &'
R + j I( ) e j! t ,

R = !µ B+ D( )cos "( ) # A + C( )sin "( )$% &' # !!µ A+ C( )cos "( ) + B + D( )sin "( )$% &'

I = ! "µ A + C( )cos #( ) + B + D( )sin #( )$% &' ! ""µ B + D( )cos #( ) ! A + C( )sin #( )$% &',

A = sinh a1y0 + a2( ) cos b1y0 ! b2( ),

B = cosh a1y0 + a2( ) sin b1y0 ! b2( ),

C = sinh a1y0 ! a2( ) cos b1y0 + b2( ),

D = cosh a1y0 ! a2( ) sin b1y0 + b2( ).
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