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In Cardoso et al. [6] it was claimed that quasinormal modes which any stationary, spherically symmetric
and asymptotically flat black hole emits in the eikonal regime are determined by the parameters of
the circular null geodesic: the real and imaginary parts of the quasinormal mode are multiples of
the frequency and instability timescale of the circular null geodesics respectively. We shall consider
asymptotically flat black hole in the Einstein-Lovelock theory, find analytical expressions for gravitational

quasinormal modes in the eikonal regime and analyze the null geodesics. Comparison of the both
phenomena shows that the expected link between the null geodesics and quasinormal modes is violated
in the Einstein-Lovelock theory. Nevertheless, the correspondence exists for a number of other cases and
here we formulate its actual limits.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

Recent progress in black-hole observations in the gravitational
and electromagnetic spectra as well as theoretical efforts to test
strong gravity via black holes [1-5] makes it important to under-
stand possible correlations between characteristics of both fields
in the vicinity of a black hole. In [6] it was stated that parame-
ters of the unstable circular null geodesics around any stationary
spherically symmetric and asymptotically flat black holes, such as
the angular velocity Q. and the principal Lyapunov exponent A, are
in the remarkable correspondence with the quasinormal modes [7]
that the black hole emits in the eikonal (short wavelengths or high
multipole number ¢) part of its spectrum. There it was shown that
the eikonal quasinormal frequencies of the four and higher dimen-
sional Schwarzschild black hole are

wn=Qct—i(n+1/2)|Al, (1)

where n is the overtone number. In addition, it was argued that the
above formula must be valid for all stationary, spherically symmet-
ric non-asymptotically flat black holes, allowing for the outgoing
wave boundary condition in the far region (for example, asymptot-
ically de Sitter black holes).
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The issue of rotating black holes was also addressed in [6]. For
slowly rotating black holes, the eikonal real oscillation frequen-
cies are linear combinations of the orbit’s precessional and orbital
frequencies, while for Kerr black holes of arbitrary spin the link
between photon spheres and eikonal quasinormal modes is more
complicated [10]. At the same time it has been recently noticed
that the association of the characteristics of the null geodesics with
quasinormal modes is more based on the history of the specific
black-hole models than an actual and generic constraining link [8].
The essential element of the correspondence is the event horizon:
when the event horizon is replaced by the reflecting surface [9] or
a wormhole throat [8], the correspondence (1) is not observed.

The arguments of [6] for spherically symmetric black holes im-
plied the applicability of the WKB formula developed in [11] for
a particular, though quite wide, class of effective potentials, which
have the form of the potential barrier with a single extremum out-
side the event horizon and approach constant values at the horizon
and spacial infinity (or de Sitter horizon). This requirement cer-
tainly cannot be guaranteed ad hoc, so that, if one supposes that
this initial setting is not valid for some black hole, then the coun-
terexample would be straightforward. At the same time, there are
a number of cases where the correspondence do works and even
more cases where it is erroneously believed to be working (exam-
ples of both can be found in [12,36,37] and references therein).
Therefore, here we are interested in testing the possible corre-
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spondence in even the narrower setup: Assuming that radiation of
gravitational waves by a spherical black hole is governed by “the
WKB-well-behaved” effective potential with a single extremum, we
would like to learn how broad the set of situations is, in which
the relation (1) between null geodesics and quasinormal modes is
guaranteed?

With this aim we shall consider the situation when the WKB
formula is accurate and even exact in the eikonal regime, and, nev-
ertheless, the relation (1) is not fulfilled. We shall show that there
is a counterexample (suggested by the Einstein-Lovelock theory)
to the claimed correspondence. The Einstein-Lovelock theory of
gravity [13] is the most general mathematically consistent metric
theory, leading to second order equations of motion in arbitrary
number of spacetime dimensions D. It is natural generalization of
Einstein theory in D > 4 and may represent string theory mo-
tivated quantum corrections to the classical geometry in higher
dimensions. Thus, this discussion gives us also an excuse to find
analytic formulas for the eikonal quasinormal modes for gravita-
tional perturbations of higher curvature corrected black holes and
complement, in this way, a recent WKB analysis of quasinormal
spectrum of Lovelock black holes, which was done in [14].

The paper is organized as follows: Sec. 2 gives the basic for-
mulas for calculations of the principal Lyapunov exponent and
the angular velocity for the unstable null geodesics in spherically
symmetric spacetimes. In Sec. 3 the Lyapunov exponents and the
angular velocity are found for the asymptotically flat Einstein-
Gauss-Bonnet black hole. Sec. 4 shows that the frequencies predi-
cated by the Lyapunov exponent and angular velocity are different
from those given by the WKB formula for the generic Einstein-
Lovelock black hole. In Sec. 5, analytical formulas for quasinormal
modes in the eikonal (i.e. high multipole numbers ¢) regime are
written down in terms of black-hole parameters for the Einstein-
Gauss-Bonnet case. In Sec. 6 we discuss the obtained results and
formulate actual limits of the correspondence.

2. Null geodesics in the background of spherically symmetric
black holes

A static, spherically symmetric metric in D-dimensional space-
time has the form:
ds® = f(r)dt* — Ldﬂ —r2dQ2, (2)

&)
where the functions f(r) and g(r) represent solutions of the
field equations under consideration and dQ% isa n=D — 2)-
dimensional sphere. Let us consider geodesic particle motion
around such a black hole and restrict attention to stability of
null circular orbits. The stability can be analyzed in terms of the
so called Lyapunov exponents [15]. This kind of analysis for the
Schwarzschild black hole was developed for the first time in [16].
In [17] it was shown that when a system consisting of any finite
number of particles moves under the action of a scalar potential
at a constant kinetic energy, then the Lyapunov exponents come in
pairs which sum to the same constant. The equations of motions
can be written in the following schematic way
dX;
o = i), (3)
A small deviation from a given orbit to a nearby curve through the
small perturbation §Xj,

Xi — Xi +6Xi, (4)
implies the linearization of the equation of motion

déXi(t)
dt

= Kij(t)sX(¢), (3)

where
0H;
Kij(® = 3~ (6)
J1Xi(®)

is called the infinitesimal evolution matrix. The solution to the lin-
earized equation can be expressed in terms of the evolution matrix
Lij:

3Xi(t) = Lij(t)5X;(0). (7)
The evolution matrix obeys the relations

Lij(®) = KimLmj(t),  Lij(0) = &j. (8)

The principal Lyapunov exponents are given by

b= lim L (L“'(t)) 9)
t—oo t \ Lj;(0)

The general conditions for the existence of the above limit are
given by the Oseledets theorem [18]. Following Cardoso et al.
[6], one can see that the principal Lyapunov exponent for null
geodesics around a static, spherically symmetric metric (2) is

1 2 (d? f
h= ﬁ/ T (drzrzLx (10)

where the tortoise coordinate is defined as dr/dr, = /g(r) f(r).
The coordinate angular velocity for the null geodesics is

1/2
Cc

Qc= , (11)
Tc

where 1. is the radius of the circular null geodesics, satisfying the
equation

2fe=rcfi. (12)

With the above formulas at hand, one is able to analyze sta-
bility and angular velocity of particles orbiting around arbitrary
static spherically symmetric black hole. Recent discussion of the
general features and instabilities of the null geodesics in the ar-
bitrary spherically symmetric spacetimes and Lyapunov exponents
has been suggested in [19].

3. Null geodesics in the background of the
Einstein—-Gauss-Bonnet black hole

Here we shall consider the null geodesics in the black-hole
background within the Einstein-Gauss-Bonnet theory. The La-
grangian of the D-dimensional Einstein-Gauss-Bonnet theory has
the form:

L£=—=2A 4R +Kk(Ryuvio R — 4R, R*Y + R?), (13)

where k =« /((D — 3)(D — 4)). The metric function of the asymp-
totically flat Einstein-Gauss-Bonnet black hole is given by [20]

2 2
8
P, s (14)

JO=80 =1+, ~ sy T ooy

where w is the mass parameter. It is well known that Gauss-
Bonnet black holes, as well as their Lovelock generalizations, are
gravitationally unstable when the coupling constant « (and higher
order constants in the case of the Lovelock theory) are not small
enough [21]. Therefore, in order to obtain concise and easily inter-
pretable analytical expressions, one can expand all the necessary
relations in terms of small parameter «. Thus, the radius of the
circular geodesics can be written as follows
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Fe =Teg + a1 + reaa® + O@3). (15)

When expanding in terms of the Gauss-Bonnet coupling, from here
and on we shall imply that the corresponding dimensionless pa-
rameter is oz/rf_,, where ry is the black hole radius. In order to
measure everything in terms of the black-hole radius it is suffi-
cient to re-parameterize the mass @ as a function of radius ry as
in eq. (4) of [30]. The equation for the null circular orbits (12) for
the metric (14) reads

ud —D)—i—rD/z\/(D—Z) ((D —2)rP + 8rap) =0. (16)

Substituting (15) into (16), one can find the coefficients of the ex-
pansion (15), which are:

D—2 \¥v
reo=| —— s Tel = —
“ <(D—1)M> “

3
D-2 D=3
24 ((D—w)
(D2 —4D +3)°

In the same way one can expand the angular velocity 2. (given by
(11)) of the null geodesics in terms of «:

1
D—2 \D-3
4P

D2—4D +3

s

T2 =— (17)

D-2

o _ [P3 o=
o D—l((D—w) -

3
D—2 \D-3
2 (P55
VD —3(D — 1)32

Using (10) we can show that the principal Lyapunov exponents has
the form

1 D
— D=3 2 D=3
©-3(2%:)"" 2w ()
5= ( ) _ ( ) s
D—1 D—1

+ 0@ (18)

i
.

— -3
2(3(D — 8)D +28) (ﬁ)
(D —3)(D —1)3/2

Here we expanded the Lyapunov exponents until the second order
in o, because there will be situation in which the difference be-
tween XA and the eikonal quasinormal modes appears only at the
second order. Notice, that the Lyapunov exponents are not invari-
ant measures and should be interpreted with care [22].

a4+ 0 (a3). (19)

4. Gravitational perturbations of the Einstein-Lovelock black
hole

The natural generalization of the second order in curvature
Gauss-Bonnet term to arbitrary order is given by the Lovelock the-
ory [13]. A static spherically symmetric black-hole solution in the
Einstein-Lovelock gravity is given by the general form (2), where
(see [20,23])

fOy=1-r2y . (20)

The function v (r) satisfies the following relation

D -2 Sy m %
W<xp(r)>57(w(r>+22amw(r) )=rD—_], (21)
where

2m-2
~ _ Om _ Om (D —3)!
=" [l (0-2-p =T (D—1—2m)’

p=1

and @y, =0 for any D — 2 < 2m, implying that W (v) is a finite
polynomial of . Here we are interested only in the solutions to
the above algebraic equations which describe the branch having
the Einsteinian limit. In other words, we require that our black-
hole metric goes over into the corresponding Tangherlini metric
[24] when o, — 0.

Following [25], we shall define a new function T(r) as:

p3dW  (D—2)rP3 (

T =r = > 1+Zm62m1p(r)m1>. (22)

m=2

The gravitational perturbation equations can be treated sepa-
rately for irreducible representations, so that scalars, vectors and
tensors relatively the (D — 2)-dimensional rotation group obey
separate sets of equations. In [25] it was shown that after the
decoupling of the angular variables, the perturbations equations
are reduced to the corresponding second-order master differential
equations

CEENE
<W - @ + Vi(r*)> Wi(t,re) =0, (23)

where W; are the wave functions for each type of perturbation:
scalar, vector and tensor. In the eikonal regime, the effective po-
tentials for all three types of gravitational perturbations can be
approximated as follows

(IO (1
w=2 (g r +0 (7))

_ 2 fOT'( 1
o=t ((D—B)rr(r)w(@))’ =

/ 2 "
fFORT' (N —TMT"(1)) Lo (1)>
(D —=2)rT'(r)T(r)

14

For further calculations it is useful to re-write the above formulas
for the effective potentials symbolically as

_p2(fi® 1
Vi=¢ ( ") +O<£>>, (25)

where, i stands for tensor (t), vector (v) and scalar (s) types of
gravitational perturbations. Thus,

wm:ﬁ(

_fOrT'(m) T
fc(r)—i(D_‘l)T,(r), fV(r)_i(D—@T(r)’
(P2 _ "
by = TOCT'? ~TOT" () 26)

(D =2T'(NT([T)
At high ¢, once the effective potential has the form of the poten-
tial barrier, falling off at the event horizon and spacial infinity, the
WKB formula found in [11] (for improvements and extensions of
this formula, see [26-28]) can be applied for finding quasinormal
modes:

Qo(ro)
2QP(ro)

=in+1/2). (27)

Here, the second derivative Qéz) = d?Qq/dr? is evaluated at the
extremum ro of the function Qg. An example of such a “good”
effective potential is shown on Fig. 1. Notice that in the Einstein-
Lovelock theory such behavior of the potential barrier takes place
only for sufficiently small values of the coupling constants, which
correspond to the stable black hole. Otherwise, the effective po-
tential may have a negative gap near the event horizon, which
becomes deeper when ¢ is increased. It is important that in the
eikonal regime ¢ — oo the WKB formula (27) for potentials, like
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Fig. 1. Effective potentials for the scalar-type gravitational perturbations of the
asymptotically flat Einstein-Gauss-Bonnet black hole. Here, the black-hole radius
ry=1, D=6, o =1/10 ¢ =3 (black, bottom), £ =4 (blue), £ =10 (red, top). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

the one in Fig. 1, is exact. In the eikonal limit for each type of per-
turbations

12
Q- fi (28)
r

Then we observe that

2 fi(ro) =ro f{ (ro), (29)

i.e. as f(r) does not coincide with fj(r), then the position of the
effective potential’s extremum ro must not coincide (in the gen-
eral case) with the location of the null circular geodesic r.. The
WKB formula for quasinormal modes is also different from the Ein-
steinian ones, as now it includes f;(r) instead of f(r):

e a2 [ @y
woNmi = ¢ 2 i 7 Fo <dr£r2>r0' (30)

Thus, it is evident that, even when the effective potential has the
form of the barrier, i.e. the WKB formula (27) can be applied and
is exact, in the general case:

o Radius of the circular null geodesics r. does not coincide with
the position of the extremum of the effective potential rjg in
the eikonal regime;

e The WKB formula for quasinormal modes include now the
functions f; which are not identical to f(r), so that eikonal
quasinormal frequencies are different for each type of gravita-
tional perturbations (scalar, vector, tensor) and different from
the ones expected for the test scalar field.

Each of the above two reasons is sufficient for the breakdown of
the proposed correspondence. Thus, it is evident from our general
consideration of the Lovelock black holes that the characteristics
of the null geodesics and eikonal quasinormal modes are not nec-
essarily linked by the formula (1). In the next section we shall
write down analytical formulas for the eikonal quasinormal modes
in terms of parameters of the Einstein—-Gauss-Bonnet black holes
and show the discrepancy between QN modes and null geodesics
explicitly.

5. Eikonal quasinormal modes in the Einstein—Gauss-Bonnet
theory

Here we shall derive analytical expressions for quasinormal
modes in the regime of large multipole number ¢ for all three
types of gravitational perturbations of the Einstein-Gauss-Bonnet
black hole.

Tensor type. Let us start from finding the position rg of the ex-
tremum of the effective potential, which can be expanded in terms
of small «:

ro =roo 4 ro1a + ropa® 4+ O(@?). (31)

Then, eq. (29) expanded in « gives us the values of the coefficients
roi. Thus, for the tensor type of perturbations one has

1
= 420 -5 (25%)""
) Ol =T s gDz 19D — 12

_( D-2
r°°_(<D—1m

(32)

3
_ D=3
8(D(D(D(2D — 19) + 49) + 5) — 64) (meﬁ,L)

To2 = 3
(D —3)?(D?—5D +4)
In a similar way one can find coefficients for the two other types of
gravitational perturbations. From the above we can see that while
roo given by (32) coincides with rq given by (17), that is not so for
ro1 and r¢q and all the higher corrections. In other words, while the
positions of the null circular orbit and extremum of the effective
potential coincide in the D-dimensional Schwarzschild space-time,
they do not when the «-correction is turned on.

Expanding the real part of (30) in &, one can see that the real
oscillation frequency over the multipole number ¢ is

Rew) [D=3( D-2 b3
¢ _VD—1<(D—1)M> "

3
D-3 (_D-2 \D-3
6(D —2),/ p= ((D—])M)

D3 —8D%+19D — 12

while the damping rate, characterized by Im(w), obeys the rela-
tion:

a+0 (az) , (33)

Im(w) _(D—3)<ﬁ)ﬁ _zﬂ(ﬁ>%a+
(1+3)

D—1 D—1
5
2(D(D((D — 4)D(4D — 21) + 144) — 616) + 484) (ﬁ) b3 ,
(D —4)2(D —3)(D —1)52 ¢
+0 (a3> (34)

It is interesting to notice that while Re(w)/¢ differs from the one
expected from the angular velocity of null geodesics already in the
linear order in o, the value of Im(w)/(n + 1/2) differs from the
Lyapunov exponent, given by (19), only at the second and higher
orders in «.

Vector type. In a similar fashion, the position of the extremum
of the effective potential is given by:

1
D-2 \D-3
D-2 7D 2((D—1)/L>
roo=\ -~~~ , lnl=——77—">"",
(D—-Dp D-1
3
p—2 \D-3
2(D((D —2)D — 23) + 36) (W)

rop =—
. (D2 —4D +3)°
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The real oscillation frequency Re(w) obeys the following relation

Re) [D—=3( D-2 \©=3
¢ D—1<(D—1)M> -
3

D=3
20(D — 2; _4D<_’(_D21§M) +0(e?). (36)

The relation for the damping rate Im(w) reads

1 D

Imw) P- ()" 2om ()"
(n N %) B D—1 - D—1
_5_

20(D((D — 18)D + 51) — 41) ((D 1)M> o
(D—3)(D—1)>/2

Here, again, we see that the damping rate differs from the
one expected from the Lyapunov exponent only at the second and
higher orders in «.

Scalar type. The position of the extremum of the effective po-
tential is given by:

+0 <a3) YD

-3

([ D—2 \7D 40 -2) (#55)
roo_((D—UM) L s VY, B B
3 _
8(D(D((D —6)D —5)+39) —32) (25;) "
oy — :
. (D —2) (D2 —4D +3)°

The real oscillation frequency Re(w) obey the relations:

Rew) [D—3( D-2 ﬁ_
¢ D—1<(D—1)M>

3

20,/ 853 @D - 3) ()" .

D2 —4D +3 +0(«?). (38)

The damping rate Im(w), again can be found as a series expansion
in small «:

1 D

0-3 ()" 2en ()"

Im) B n
(n + %) - b-1 D—1
5 __
2(D(3D(13D — 54) + 232) — 116)a2 (ﬁ) =
(D-3)D—-1)72un
40 <a3>. (39)

The damping rate of the scalar type of gravitational perturba-
tions differs from those of vector and tensor ones, again, only at
the second and higher orders in «. Notice that the higher order
correction one wishes to find for the QN frequencies, the higher
orders he needs to reach in the expansion of the position of the
extremum of the effective potential.

A test scalar field. For a test scalar field in the background
of the Einstein-Gauss-Bonnet or Einstein-Lovelock black hole, the
dominant centrifugal term in the effective potential is simply
f(r)e£+1)/r?, so that up to a different function f(r) (which now
includes Lovelock coupling constants) all the deductions of [6] are
strict and valid at all steps. Thus, the quasinormal frequencies of
the test scalar field will evidently satisfy (1), while the frequencies
of gravitational perturbations are different for all three types and

are different from those for the test scalar field even in the eikonal
regime.

One should also remember that all the above formulas are ob-
tained in the dominant (in terms of 1/¢-expansion) order of the
eikonal regime. In order to use it for accurate estimations of quasi-
normal modes with sufficiently low ¢, one must take into consid-
eration the next order of the 1/¢-expansion everywhere. At o« =0,
we reproduce the eikonal formulas found for the D-dimensional
Schwarzschild black holes [27]. However, we used here different
units and in order to reproduce, for example, eqgs. (12, 13) of [27],
one should take in our formulas u© — (1/2)(D —2) k.

6. Discussion

Though perturbations and quasinormal modes of black holes
and branes in the Einstein-Gauss-Bonnet and Lovelock theories
were considered in a number of papers [31-33] for various types
of asymptotical behavior (flat, dS, AdS), no explicit analytical for-
mula for the eikonal quasinormal frequencies of the gravitational
perturbations of asymptotically flat black hole was presented. At
the same time, the eikonal regime is special in Gauss-Bonnet and
Lovelock theories, because, at sufficiently large values of coupling
constants it bring a special kind of instability. Here we have found
analytical expressions for quasinormal modes of gravitational per-
turbations of the Einstein-Gauss-Bonnet black hole. When the
Gauss-Bonnet coupling constants approaches zero, the analytic ex-
pressions for w obtained here describe eikonal quasinormal modes
of the D-dimensional Schwarzschild black hole. The gravitational
quasinormal modes coincide with those for a test scalar field [27,
29] only in the Einsteinian limit.

In our opinion, the broad belief that the eikonal quasinor-
mal modes and unstable null geodesics are necessarily linked by
eq. (1) at least for any spherically symmetric stationary black holes,
brought a number of misinterpretations in the current literature.
For example, “the universal upper bound” for quasinormal modes
of arbitrary spherical black holes given by eq. (39) in [36], as well
as its extension to the Gauss-Bonnet theory suggested by eq. (69)
in [37], does not take into account possibility of different features
of the eikonal regime of gravitational perturbations, so that their
arguments are compulsory only for test fields.

Therefore, a clear determination of the boarders of such an as-
sociation between the two phenomena must have been spoken
out. Here we have learnt that although the association of the null
geodesics with eikonal quasinormal modes exists in some cases,
the range of its applicability is considerably constrained. Namely,
the correspondence can be guaranteed for any stationary, spheri-
cally symmetric, asymptotically flat black holes only provided the
two following conditions are fulfilled:

e Perturbations are described by a “good” (from the WKB point
of view developed in [11]) effective potential, i.e. the poten-
tial barrier with a single extremum, implying the two turning
points and decaying at the event horizon and infinity.

e One is limited by perturbations of test fields only, and not
of the gravitational field itself or other fields, which are non-
minimally coupled to gravity.

In principle, the first condition must be satisfied for a test field
in the background of a black-hole with well defined horizon, once
f(r) is positive everywhere outside the event horizon, so that the
second condition alone is sufficient. This may be not true for more
exotic objects, such as wormholes, naked singularities etc.

Rather unexpectedly, we have found that the damping rate of
all three types of gravitational perturbations differs from that of
a test scalar field (and consequently from the one predicted by
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the Lyapunov exponent) only at the second and higher orders of
the Gauss-Bonnet coupling «. This certainly cannot be interpreted
on behalf of the correspondence, first, because it concerns only
the imaginary part of w, and, second, because the relatively small
difference for the Im(w) at small & simply means that the damp-
ing rate is less sensitive to small curvature corrections than Re(w).
It would be interesting to find analytical expressions for eikonal
quasinormal modes in terms of black-hole parameters in the most
general case of the Lovelock theory in a similar way it was done
here for the Gauss-Bonnet black hole. However, as in the general
case even the metric coefficients cannot be easily written in the
explicit form, the final expressions may appear to be too much
involved. Notice, that perturbations of a black hole in the non-
linear electrodynamics also show the non-standard behavior in
the eikonal regime [34], so that it would be reasonable to check
whether the correspondence works in this case. At the same time,
for example, when analyzing test fields in the conformal gravity
[35], the correspondence is fulfilled according to our conclusions
above.
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