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In Cardoso et al. [6] it was claimed that quasinormal modes which any stationary, spherically symmetric 
and asymptotically flat black hole emits in the eikonal regime are determined by the parameters of 
the circular null geodesic: the real and imaginary parts of the quasinormal mode are multiples of 
the frequency and instability timescale of the circular null geodesics respectively. We shall consider 
asymptotically flat black hole in the Einstein–Lovelock theory, find analytical expressions for gravitational 
quasinormal modes in the eikonal regime and analyze the null geodesics. Comparison of the both 
phenomena shows that the expected link between the null geodesics and quasinormal modes is violated 
in the Einstein–Lovelock theory. Nevertheless, the correspondence exists for a number of other cases and 
here we formulate its actual limits.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Recent progress in black-hole observations in the gravitational 
and electromagnetic spectra as well as theoretical efforts to test 
strong gravity via black holes [1–5] makes it important to under-
stand possible correlations between characteristics of both fields 
in the vicinity of a black hole. In [6] it was stated that parame-
ters of the unstable circular null geodesics around any stationary 
spherically symmetric and asymptotically flat black holes, such as 
the angular velocity �c and the principal Lyapunov exponent λ, are 
in the remarkable correspondence with the quasinormal modes [7]
that the black hole emits in the eikonal (short wavelengths or high 
multipole number �) part of its spectrum. There it was shown that 
the eikonal quasinormal frequencies of the four and higher dimen-
sional Schwarzschild black hole are

ωn = �c � − i(n + 1/2) |λ|, (1)

where n is the overtone number. In addition, it was argued that the 
above formula must be valid for all stationary, spherically symmet-
ric non-asymptotically flat black holes, allowing for the outgoing 
wave boundary condition in the far region (for example, asymptot-
ically de Sitter black holes).
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The issue of rotating black holes was also addressed in [6]. For 
slowly rotating black holes, the eikonal real oscillation frequen-
cies are linear combinations of the orbit’s precessional and orbital 
frequencies, while for Kerr black holes of arbitrary spin the link 
between photon spheres and eikonal quasinormal modes is more 
complicated [10]. At the same time it has been recently noticed 
that the association of the characteristics of the null geodesics with 
quasinormal modes is more based on the history of the specific 
black-hole models than an actual and generic constraining link [8]. 
The essential element of the correspondence is the event horizon: 
when the event horizon is replaced by the reflecting surface [9] or 
a wormhole throat [8], the correspondence (1) is not observed.

The arguments of [6] for spherically symmetric black holes im-
plied the applicability of the WKB formula developed in [11] for 
a particular, though quite wide, class of effective potentials, which 
have the form of the potential barrier with a single extremum out-
side the event horizon and approach constant values at the horizon 
and spacial infinity (or de Sitter horizon). This requirement cer-
tainly cannot be guaranteed ad hoc, so that, if one supposes that 
this initial setting is not valid for some black hole, then the coun-
terexample would be straightforward. At the same time, there are 
a number of cases where the correspondence do works and even 
more cases where it is erroneously believed to be working (exam-
ples of both can be found in [12,36,37] and references therein). 
Therefore, here we are interested in testing the possible corre-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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spondence in even the narrower setup: Assuming that radiation of 
gravitational waves by a spherical black hole is governed by “the 
WKB-well-behaved” effective potential with a single extremum, we 
would like to learn how broad the set of situations is, in which 
the relation (1) between null geodesics and quasinormal modes is 
guaranteed?

With this aim we shall consider the situation when the WKB 
formula is accurate and even exact in the eikonal regime, and, nev-
ertheless, the relation (1) is not fulfilled. We shall show that there 
is a counterexample (suggested by the Einstein–Lovelock theory) 
to the claimed correspondence. The Einstein–Lovelock theory of 
gravity [13] is the most general mathematically consistent metric 
theory, leading to second order equations of motion in arbitrary 
number of spacetime dimensions D . It is natural generalization of 
Einstein theory in D > 4 and may represent string theory mo-
tivated quantum corrections to the classical geometry in higher 
dimensions. Thus, this discussion gives us also an excuse to find 
analytic formulas for the eikonal quasinormal modes for gravita-
tional perturbations of higher curvature corrected black holes and 
complement, in this way, a recent WKB analysis of quasinormal 
spectrum of Lovelock black holes, which was done in [14].

The paper is organized as follows: Sec. 2 gives the basic for-
mulas for calculations of the principal Lyapunov exponent and 
the angular velocity for the unstable null geodesics in spherically 
symmetric spacetimes. In Sec. 3 the Lyapunov exponents and the 
angular velocity are found for the asymptotically flat Einstein–
Gauss–Bonnet black hole. Sec. 4 shows that the frequencies predi-
cated by the Lyapunov exponent and angular velocity are different 
from those given by the WKB formula for the generic Einstein–
Lovelock black hole. In Sec. 5, analytical formulas for quasinormal 
modes in the eikonal (i.e. high multipole numbers �) regime are 
written down in terms of black-hole parameters for the Einstein–
Gauss–Bonnet case. In Sec. 6 we discuss the obtained results and 
formulate actual limits of the correspondence.

2. Null geodesics in the background of spherically symmetric 
black holes

A static, spherically symmetric metric in D-dimensional space-
time has the form:

ds2 = f (r)dt2 − 1

g(r)
dr2 − r2d�2

n, (2)

where the functions f (r) and g(r) represent solutions of the 
field equations under consideration and d�2

n is a (n = D − 2)-
dimensional sphere. Let us consider geodesic particle motion 
around such a black hole and restrict attention to stability of 
null circular orbits. The stability can be analyzed in terms of the 
so called Lyapunov exponents [15]. This kind of analysis for the 
Schwarzschild black hole was developed for the first time in [16]. 
In [17] it was shown that when a system consisting of any finite 
number of particles moves under the action of a scalar potential 
at a constant kinetic energy, then the Lyapunov exponents come in 
pairs which sum to the same constant. The equations of motions 
can be written in the following schematic way

dXi

dt
= Hi(X j). (3)

A small deviation from a given orbit to a nearby curve through the 
small perturbation δXi ,

Xi → Xi + δXi, (4)

implies the linearization of the equation of motion

dδXi(t) = Kij(t)δX j(t), (5)

dt
where

Kij(t) = ∂ Hi

∂ X j

∣∣∣∣
Xi(t)

(6)

is called the infinitesimal evolution matrix. The solution to the lin-
earized equation can be expressed in terms of the evolution matrix
Li j :

δXi(t) = Li j(t)δX j(0). (7)

The evolution matrix obeys the relations

L̇i j(t) = Kim Lmj(t), Li j(0) = δi j. (8)

The principal Lyapunov exponents are given by

λ = lim
t→∞

1

t

(
L jj(t)

L jj(0)

)
. (9)

The general conditions for the existence of the above limit are 
given by the Oseledets theorem [18]. Following Cardoso et al.
[6], one can see that the principal Lyapunov exponent for null 
geodesics around a static, spherically symmetric metric (2) is

λ = 1√
2

√
− r2

c

fc

(
d2

dr2∗
f

r2

)
r=rc

, (10)

where the tortoise coordinate is defined as dr/dr∗ = √
g(r) f (r). 

The coordinate angular velocity for the null geodesics is

�c = f 1/2
c

rc
, (11)

where rc is the radius of the circular null geodesics, satisfying the 
equation

2 fc = rc f ′
c . (12)

With the above formulas at hand, one is able to analyze sta-
bility and angular velocity of particles orbiting around arbitrary 
static spherically symmetric black hole. Recent discussion of the 
general features and instabilities of the null geodesics in the ar-
bitrary spherically symmetric spacetimes and Lyapunov exponents 
has been suggested in [19].

3. Null geodesics in the background of the 
Einstein–Gauss–Bonnet black hole

Here we shall consider the null geodesics in the black-hole 
background within the Einstein–Gauss–Bonnet theory. The La-
grangian of the D-dimensional Einstein–Gauss–Bonnet theory has 
the form:

L = −2� + R + k(Rμνλσ Rμνλσ − 4 Rμν Rμν + R2), (13)

where k = α/((D − 3)(D − 4)). The metric function of the asymp-
totically flat Einstein–Gauss–Bonnet black hole is given by [20]

f (r) = g(r) = 1 + r2

2α
− r2

2α

√
1 + 8αμ

(D − 2)rD−1
, (14)

where μ is the mass parameter. It is well known that Gauss–
Bonnet black holes, as well as their Lovelock generalizations, are 
gravitationally unstable when the coupling constant α (and higher 
order constants in the case of the Lovelock theory) are not small 
enough [21]. Therefore, in order to obtain concise and easily inter-
pretable analytical expressions, one can expand all the necessary 
relations in terms of small parameter α. Thus, the radius of the 
circular geodesics can be written as follows
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rc = rc0 + rc1α + rc2α
2 +O(α3). (15)

When expanding in terms of the Gauss–Bonnet coupling, from here 
and on we shall imply that the corresponding dimensionless pa-
rameter is α/r2

H , where rH is the black hole radius. In order to 
measure everything in terms of the black-hole radius it is suffi-
cient to re-parameterize the mass μ as a function of radius rH as 
in eq. (4) of [30]. The equation for the null circular orbits (12) for 
the metric (14) reads

r3μ(1 − D) + rD/2
√

(D − 2)
(
(D − 2)rD + 8rαμ

) = 0. (16)

Substituting (15) into (16), one can find the coefficients of the ex-
pansion (15), which are:

rc0 =
(

D − 2

(D − 1)μ

) 1
3−D

, rc1 = −
4
(

D−2
(D−1)μ

) 1
D−3

D2 − 4D + 3
,

rc2 = −
24

(
D−2

(D−1)μ

) 3
D−3(

D2 − 4D + 3
)2

. (17)

In the same way one can expand the angular velocity �c (given by 
(11)) of the null geodesics in terms of α:

�c =
√

D − 3

D − 1

(
D − 2

(D − 1)μ

) 1
D−3 +

2α
(

D−2
(D−1)μ

) 3
D−3

√
D − 3(D − 1)3/2

+O(α2) (18)

Using (10) we can show that the principal Lyapunov exponents has 
the form

λ =
(D − 3)

(
D−2

(D−1)μ

) 1
D−3

√
D − 1

−
2μ

(
D−2

(D−1)μ

) D
D−3

√
D − 1

α +

2(3(D − 8)D + 28)
(

D−2
(D−1)μ

) 5
D−3

(D − 3)(D − 1)5/2
α2 + O

(
α3

)
. (19)

Here we expanded the Lyapunov exponents until the second order 
in α, because there will be situation in which the difference be-
tween λ and the eikonal quasinormal modes appears only at the 
second order. Notice, that the Lyapunov exponents are not invari-
ant measures and should be interpreted with care [22].

4. Gravitational perturbations of the Einstein–Lovelock black 
hole

The natural generalization of the second order in curvature 
Gauss–Bonnet term to arbitrary order is given by the Lovelock the-
ory [13]. A static spherically symmetric black-hole solution in the 
Einstein–Lovelock gravity is given by the general form (2), where 
(see [20,23])

f (r) = 1 − r2 ψ(r). (20)

The function ψ(r) satisfies the following relation

W (ψ(r)) ≡ D − 2

2

(
ψ(r) +

∞∑
m=2

α̃mψ(r)m

)
= μ

rD−1
, (21)

where

α̃m = αm

m

2m−2∏
(D − 2 − p) = αm

m

(D − 3)!
(D − 1 − 2m)! ,
p=1
and α̃m = 0 for any D − 2 ≤ 2m, implying that W (ψ) is a finite 
polynomial of ψ . Here we are interested only in the solutions to 
the above algebraic equations which describe the branch having 
the Einsteinian limit. In other words, we require that our black-
hole metric goes over into the corresponding Tangherlini metric 
[24] when αm → 0.

Following [25], we shall define a new function T (r) as:

T (r) ≡ rD−3 dW

dψ
= (D − 2)rD−3

2

(
1 +

∞∑
m=2

mα̃mψ(r)m−1

)
. (22)

The gravitational perturbation equations can be treated sepa-
rately for irreducible representations, so that scalars, vectors and 
tensors relatively the (D − 2)-dimensional rotation group obey 
separate sets of equations. In [25] it was shown that after the 
decoupling of the angular variables, the perturbations equations 
are reduced to the corresponding second-order master differential 
equations(

∂2

∂t2
− ∂2

∂r2∗
+ V i(r∗)

)

i(t, r∗) = 0, (23)

where 
i are the wave functions for each type of perturbation: 
scalar, vector and tensor. In the eikonal regime, the effective po-
tentials for all three types of gravitational perturbations can be 
approximated as follows

Vt(r) = �2
(

f (r)T ′′(r)
(D − 4)rT ′(r)

+O
(

1

�

))
,

V v(r) = �2
(

f (r)T ′(r)
(D − 3)rT (r)

+O
(

1

�

))
, (24)

V s(r) = �2
(

f (r)(2T ′(r)2 − T (r)T ′′(r))
(D − 2)rT ′(r)T (r)

+O
(

1

�

))
.

For further calculations it is useful to re-write the above formulas 
for the effective potentials symbolically as

V i = �2
(

f i(r)

r2
+O

(
1

�

))
, (25)

where, i stands for tensor (t), vector (v) and scalar (s) types of 
gravitational perturbations. Thus,

ft(r) = f (r)rT ′′(r)
(D − 4)T ′(r)

, f v(r) = f (r)rT ′(r)
(D − 3)T (r)

,

f s(r) = r f (r)(2T ′(r)2 − T (r)T ′′(r))
(D − 2)T ′(r)T (r)

. (26)

At high �, once the effective potential has the form of the poten-
tial barrier, falling off at the event horizon and spacial infinity, the 
WKB formula found in [11] (for improvements and extensions of 
this formula, see [26–28]) can be applied for finding quasinormal 
modes:

Q 0(r0)√
2Q (2)

0 (r0)

= i(n + 1/2). (27)

Here, the second derivative Q (2)
0 ≡ d2 Q 0/dr2∗ is evaluated at the 

extremum r0 of the function Q 0. An example of such a “good” 
effective potential is shown on Fig. 1. Notice that in the Einstein–
Lovelock theory such behavior of the potential barrier takes place 
only for sufficiently small values of the coupling constants, which 
correspond to the stable black hole. Otherwise, the effective po-
tential may have a negative gap near the event horizon, which 
becomes deeper when � is increased. It is important that in the 
eikonal regime � → ∞ the WKB formula (27) for potentials, like 
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Fig. 1. Effective potentials for the scalar-type gravitational perturbations of the 
asymptotically flat Einstein–Gauss–Bonnet black hole. Here, the black-hole radius 
rH = 1, D = 6, α = 1/10 � = 3 (black, bottom), � = 4 (blue), � = 10 (red, top). (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

the one in Fig. 1, is exact. In the eikonal limit for each type of per-
turbations

Q 0 	 ω2 − f i
l2

r2
(28)

Then we observe that

2 f i(r0) = r0 f ′
i (r0), (29)

i.e. as f (r) does not coincide with f i(r), then the position of the 
effective potential’s extremum r0 must not coincide (in the gen-
eral case) with the location of the null circular geodesic rc . The 
WKB formula for quasinormal modes is also different from the Ein-
steinian ones, as now it includes f i(r) instead of f (r):

ωQNMi = �

√
f i0

r2
0

− i
(n + 1/2)√

2

√
− r2

0

f i0

(
d2

dr2∗
f i

r2

)
r0

. (30)

Thus, it is evident that, even when the effective potential has the 
form of the barrier, i.e. the WKB formula (27) can be applied and 
is exact, in the general case:

• Radius of the circular null geodesics rc does not coincide with 
the position of the extremum of the effective potential ri0 in 
the eikonal regime;

• The WKB formula for quasinormal modes include now the 
functions f i which are not identical to f (r), so that eikonal 
quasinormal frequencies are different for each type of gravita-
tional perturbations (scalar, vector, tensor) and different from 
the ones expected for the test scalar field.

Each of the above two reasons is sufficient for the breakdown of 
the proposed correspondence. Thus, it is evident from our general 
consideration of the Lovelock black holes that the characteristics 
of the null geodesics and eikonal quasinormal modes are not nec-
essarily linked by the formula (1). In the next section we shall 
write down analytical formulas for the eikonal quasinormal modes 
in terms of parameters of the Einstein–Gauss–Bonnet black holes 
and show the discrepancy between QN modes and null geodesics 
explicitly.
5. Eikonal quasinormal modes in the Einstein–Gauss–Bonnet 
theory

Here we shall derive analytical expressions for quasinormal 
modes in the regime of large multipole number � for all three 
types of gravitational perturbations of the Einstein–Gauss–Bonnet 
black hole.

Tensor type. Let us start from finding the position r0 of the ex-
tremum of the effective potential, which can be expanded in terms 
of small α:

r0 = r00 + r01α + r02α
2 +O(α3). (31)

Then, eq. (29) expanded in α gives us the values of the coefficients 
r0i . Thus, for the tensor type of perturbations one has

r00 =
(

D − 2

(D − 1)μ

) 1
3−D

, r01 = −
4(2D − 5)

(
D−2

(D−1)μ

) 1
D−3

D3 − 8D2 + 19D − 12
, (32)

r02 =
8(D(D(D(2D − 19) + 49) + 5) − 64)

(
D−2

(D−1)μ

) 3
D−3

(D − 3)2
(

D2 − 5D + 4
)2

.

In a similar way one can find coefficients for the two other types of 
gravitational perturbations. From the above we can see that while 
r00 given by (32) coincides with rc0 given by (17), that is not so for 
r01 and rc1 and all the higher corrections. In other words, while the 
positions of the null circular orbit and extremum of the effective 
potential coincide in the D-dimensional Schwarzschild space–time, 
they do not when the α-correction is turned on.

Expanding the real part of (30) in α, one can see that the real 
oscillation frequency over the multipole number � is

Re(ω)

�
=

√
D − 3

D − 1

(
D − 2

(D − 1)μ

) 1
D−3 +

6(D − 2)

√
D−3
D−1

(
D−2

(D−1)μ

) 3
D−3

D3 − 8D2 + 19D − 12
α + O

(
α2

)
, (33)

while the damping rate, characterized by Im(ω), obeys the rela-
tion:

Im(ω)(
n + 1

2

) =
(D − 3)

(
D−2

(D−1)μ

) 1
D−3

√
D − 1

−
2μ

(
D−2

(D−1)μ

) D
D−3

√
D − 1

α +

2(D(D((D − 4)D(4D − 21) + 144) − 616) + 484)
(

D−2
(D−1)μ

) 5
D−3

(D − 4)2(D − 3)(D − 1)5/2
α2

+ O
(
α3

)
(34)

It is interesting to notice that while Re(ω)/� differs from the one 
expected from the angular velocity of null geodesics already in the 
linear order in α, the value of Im(ω)/(n + 1/2) differs from the 
Lyapunov exponent, given by (19), only at the second and higher 
orders in α.

Vector type. In a similar fashion, the position of the extremum 
of the effective potential is given by:

r00 =
(

D − 2

(D − 1)μ

) 1
3−D

, r01 =
2
(

D−2
(D−1)μ

) 1
D−3

D − 1
,

r02 = −
2(D((D − 2)D − 23) + 36)

(
D−2

(D−1)μ

) 3
D−3(

D2 − 4D + 3
)2

. (35)
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The real oscillation frequency Re(ω) obeys the following relation

Re(ω)

�
=

√
D − 3

D − 1

(
D − 2

(D − 1)μ

) 1
D−3 −

2α(D − 2)

√
D−3
D−1

(
D−2

(D−1)μ

) 3
D−3

D2 − 4D + 3
+ O

(
α2

)
. (36)

The relation for the damping rate Im(ω) reads

Im(ω)(
n + 1

2

) =
(D − 3)

(
D−2

(D−1)μ

) 1
D−3

√
D − 1

−
2αμ

(
D−2

(D−1)μ

) D
D−3

√
D − 1

−

2α2(D((D − 18)D + 51) − 41)
(

D−2
(D−1)μ

) 5
D−3

(D − 3)(D − 1)5/2
+ O

(
α3

)
. (37)

Here, again, we see that the damping rate differs from the 
one expected from the Lyapunov exponent only at the second and 
higher orders in α.

Scalar type. The position of the extremum of the effective po-
tential is given by:

r00 =
(

D − 2

(D − 1)μ

) 1
3−D

, r01 =
4(D − 2)

(
D−2

(D−1)μ

) 1
D−3

D2 − 4D + 3
,

r02 = −
8(D(D((D − 6)D − 5) + 39) − 32)

(
D−2

(D−1)μ

) 3
D−3

(D − 2)
(

D2 − 4D + 3
)2

.

The real oscillation frequency Re(ω) obey the relations:

Re(ω)

�
=

√
D − 3

D − 1

(
D − 2

(D − 1)μ

) 1
D−3 −

2α
√

D−3
D−1 (2D − 3)

(
D−2

(D−1)μ

) 3
D−3

D2 − 4D + 3
+ O

(
α2

)
. (38)

The damping rate Im(ω), again can be found as a series expansion 
in small α:

Im(ω)(
n + 1

2

) =
(D − 3)

(
D−2

(D−1)μ

) 1
D−3

√
D − 1

−
2αμ

(
D−2

(D−1)μ

) D
D−3

√
D − 1

+

2(D(3D(13D − 54) + 232) − 116)α2
(

D−2
(D−1)μ

) 5
D−3 −1

(D − 3)(D − 1)7/2μ

+ O
(
α3

)
. (39)

The damping rate of the scalar type of gravitational perturba-
tions differs from those of vector and tensor ones, again, only at 
the second and higher orders in α. Notice that the higher order 
correction one wishes to find for the QN frequencies, the higher 
orders he needs to reach in the expansion of the position of the 
extremum of the effective potential.

A test scalar field. For a test scalar field in the background 
of the Einstein–Gauss–Bonnet or Einstein–Lovelock black hole, the 
dominant centrifugal term in the effective potential is simply 
f (r)�(� + 1)/r2, so that up to a different function f (r) (which now 
includes Lovelock coupling constants) all the deductions of [6] are 
strict and valid at all steps. Thus, the quasinormal frequencies of 
the test scalar field will evidently satisfy (1), while the frequencies 
of gravitational perturbations are different for all three types and 
are different from those for the test scalar field even in the eikonal 
regime.

One should also remember that all the above formulas are ob-
tained in the dominant (in terms of 1/�-expansion) order of the 
eikonal regime. In order to use it for accurate estimations of quasi-
normal modes with sufficiently low �, one must take into consid-
eration the next order of the 1/�-expansion everywhere. At α = 0, 
we reproduce the eikonal formulas found for the D-dimensional 
Schwarzschild black holes [27]. However, we used here different 
units and in order to reproduce, for example, eqs. (12, 13) of [27], 
one should take in our formulas μ → (1/2)(D − 2)μ.

6. Discussion

Though perturbations and quasinormal modes of black holes 
and branes in the Einstein–Gauss–Bonnet and Lovelock theories 
were considered in a number of papers [31–33] for various types 
of asymptotical behavior (flat, dS, AdS), no explicit analytical for-
mula for the eikonal quasinormal frequencies of the gravitational 
perturbations of asymptotically flat black hole was presented. At 
the same time, the eikonal regime is special in Gauss–Bonnet and 
Lovelock theories, because, at sufficiently large values of coupling 
constants it bring a special kind of instability. Here we have found 
analytical expressions for quasinormal modes of gravitational per-
turbations of the Einstein–Gauss–Bonnet black hole. When the 
Gauss–Bonnet coupling constants approaches zero, the analytic ex-
pressions for ω obtained here describe eikonal quasinormal modes 
of the D-dimensional Schwarzschild black hole. The gravitational 
quasinormal modes coincide with those for a test scalar field [27,
29] only in the Einsteinian limit.

In our opinion, the broad belief that the eikonal quasinor-
mal modes and unstable null geodesics are necessarily linked by 
eq. (1) at least for any spherically symmetric stationary black holes, 
brought a number of misinterpretations in the current literature. 
For example, “the universal upper bound” for quasinormal modes 
of arbitrary spherical black holes given by eq. (39) in [36], as well 
as its extension to the Gauss–Bonnet theory suggested by eq. (69)
in [37], does not take into account possibility of different features 
of the eikonal regime of gravitational perturbations, so that their 
arguments are compulsory only for test fields.

Therefore, a clear determination of the boarders of such an as-
sociation between the two phenomena must have been spoken 
out. Here we have learnt that although the association of the null 
geodesics with eikonal quasinormal modes exists in some cases, 
the range of its applicability is considerably constrained. Namely, 
the correspondence can be guaranteed for any stationary, spheri-
cally symmetric, asymptotically flat black holes only provided the 
two following conditions are fulfilled:

• Perturbations are described by a “good” (from the WKB point 
of view developed in [11]) effective potential, i.e. the poten-
tial barrier with a single extremum, implying the two turning 
points and decaying at the event horizon and infinity.

• One is limited by perturbations of test fields only, and not 
of the gravitational field itself or other fields, which are non-
minimally coupled to gravity.

In principle, the first condition must be satisfied for a test field 
in the background of a black-hole with well defined horizon, once 
f (r) is positive everywhere outside the event horizon, so that the 
second condition alone is sufficient. This may be not true for more 
exotic objects, such as wormholes, naked singularities etc.

Rather unexpectedly, we have found that the damping rate of 
all three types of gravitational perturbations differs from that of 
a test scalar field (and consequently from the one predicted by 
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the Lyapunov exponent) only at the second and higher orders of 
the Gauss–Bonnet coupling α. This certainly cannot be interpreted 
on behalf of the correspondence, first, because it concerns only 
the imaginary part of ω, and, second, because the relatively small 
difference for the Im(ω) at small α simply means that the damp-
ing rate is less sensitive to small curvature corrections than Re(ω). 
It would be interesting to find analytical expressions for eikonal 
quasinormal modes in terms of black-hole parameters in the most 
general case of the Lovelock theory in a similar way it was done 
here for the Gauss–Bonnet black hole. However, as in the general 
case even the metric coefficients cannot be easily written in the 
explicit form, the final expressions may appear to be too much 
involved. Notice, that perturbations of a black hole in the non-
linear electrodynamics also show the non-standard behavior in 
the eikonal regime [34], so that it would be reasonable to check 
whether the correspondence works in this case. At the same time, 
for example, when analyzing test fields in the conformal gravity 
[35], the correspondence is fulfilled according to our conclusions 
above.
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