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Search for the Standard Model Higgs boson produced in
association with a pair of top quarks and decaying into
a bb-pair in the single lepton channel at /s = 8 TeV
with the ATLAS experiment at the LHC

Abstract

This thesis focuses on the search for the Standard Model Higgs boson produced in association
with a pair of top quarks, t#H, using 20.3 fb~! of pp collision data at /s = 8 TeV, collected
with the ATLAS detector at the Large Hadron Collider during 2012. The search is designed
for the H — bb decay mode and is performed in the single lepton channel, characterised
by an isolated electron or muon, missing transverse energy and at least four jets. In order
to improve the sensitivity of the search, events are categorised according to their jet and
b-tagged jet multiplicities into nine analysis regions. The discrimination between signal and
background, the latter being dominated by #t-+jets production, is obtained by employing

neural networks in signal-enriched regions.

No significant excess of events above the background expectation is found and an observed
(expected) upper limit of 3.6 (2.6) times the Standard Model cross section is obtained at
95% confidence level. The search in the single lepton channel significantly contributes to the
combination of various ttH searches carried out by ATLAS Collaboration at /s = 7 and
8 TeV, yielding a measured (expected) significance for the observation of the ttH production

process of 2.30 (1.50).
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CHAPTER ].

Preface

I would like to start my dissertation by mentioning that I am greatly honoured to have been
chosen by the Consejo Nacional de Ciencia y Tecnologia (CONACyT), México and the Deutscher
Akademischer Austauschdienst (DAAD), Germany to pursue my doctoral studies in the renowned
Georg-August-Universitat Gottingen, where the ingenious scientists created what is known today
as modern science [1, 2]. Needless to say that both this “Gottingen’s light of the physics history
and modern science creation” and the outstanding levels of my teachers, in Mexico, Germany
and at the Conseil Européen pour la Recherche Nucléaire (CERN), have supported my inspir-
ation, enthusiasm, and responsibility to work hard under their supervisions. My studies during

the last years have been motivated by two main research topics:

— test the Standard Model of particle physics (SM) at the new high energy frontier available
at the Large Hadron Collider (LHC) by performing a precise measurement of the top quark
pair production cross section in proton-proton (pp) collision data at a centre-of-mass energy
of /s =T TeV [3];

— reveal the presence or confirm the absence of a SM Higgs boson signal produced in asso-
ciation with a pair of top quarks (¢tH) using pp collisions data at a centre-of-mass energy
of \/s =7 [4] and 8 TeV [5].

The author has also coordinated the validation of the properties of particle-level simulated
events from Monte Carlo event generators in order to ensure the correctness of all event generator
configurations and production samples used in physics analyses within the ATLAS Collaboration,

documented in Ref. [6].

The present dissertation is focused on the search for the SM Higgs boson produced in asso-
ciation with a pair of top quarks and decaying into a bb-pair in the single lepton channel at
/s =8 TeV with the ATLAS experiment at the LHC.

The construction of higher and higher energy accelerators, with the LHC being the break-

through to a new energy regime and a symbol of leadership in particle physics, has led the
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international high-energy physics community to achieve remarkable progress in the understand-
ing of the nature of matter. The first conceptual design of the LHC was published in 1995 [7], for
installation in the tunnel of the Large Electron-Positron Collider (LEP) [8], and after 13 years
the first proton beam was injected in the LHC and the exploration of the new high energy fron-
tier began. From that time onward, it has primarily delivered high-energy pp collision data to
four major detectors installed at the LHC, A Toroidal LHC ApparatuS (ATLAS) [9], Compact
Muon Solenoid (CMS) [10], A Large Ion Collider Experiment (ALICE) [11] and Large Hadron
Collider beauty (LHCb) experiment [12]. During the year 2012, the ATLAS detector recorded
a large amount of pp collision data at a centre-of-mass energy of /s = 8 TeV, and these data
allowed the international physics community participating in the ATLAS experiment to study

the rarest processes being produced with very small cross sections.

After decades of long search for the Higgs boson, in July 2012, both ATLAS and CMS exper-
iments announced the observation of a new boson with a mass of approximately 126.0 GeV and
125.3 GeV, respectively [13, 14]. Lately, several other measurements [15, 16, 17, 18, 19, 20, 21,
22, 23] were published confirming the presumption that the new particle is the SM Higgs boson

and leaving us a milestone in the history of particle physics and in our understanding of Nature.

This thesis deals with one important question that remains open, that is, the Higgs boson
production in association with a pair of top quarks, ttH, a production mechanism which has
not yet been observed due to its small production cross section in the SM. The measurement of
the ttH production rate would provide a direct measurement of the Yukawa coupling of the top
quark to the Higgs boson and is instrumental in determining ratios of Higgs boson couplings in
a model independent way. Such a measurement could help in distinguishing a SM Higgs boson
from more complex Higgs sectors, e.g., as predicted by supersymmetry [24], and shed light on

the details of the generation of fermion masses.

As of today, there is a clear signal of the observed boson in the H — ZZ®), H — WW®),
H — vy and H — 777~ decays at a mass of 125.09 4= 0.21 GeV, while no significant excess
has been found yet in searches targeting the dominant Higgs boson decay mode into bottom
quarks (H — bb) [25, 26]. The overwhelming pp — bb + X multijet background precludes
the possibility of a search for Higgs bosons produced via gluon fusion followed by the H — bb
decay. However, the search for the SM Higgs boson in association with a top quark pair with
subsequent Higgs boson decay into bottom quarks t#H(H — bb), as presented in this thesis,
reduces this background significantly. Moreover, the search is simultaneously sensitive to the

Yukawa coupling between the top quark and the Higgs boson and the H — bb branching ratio.

In order to indicate the presence or confirm the absence of a signal of a Higgs boson in
association with a pair of top quarks being produced under the SM assumption, 20.3 fb~! of
pp collision data at /s = 8 TeV, collected with the ATLAS detector during 2012 are analysed.
The final state which maximises the number of expected signal events in the given dataset is

used, that being designed for the specific H — bb decay mode. The search is performed in



the single lepton channel, characterised by an isolated electron or muon with high transverse
momentum and a large number of jets. In order to discriminate between signal and background
events, the latter being dominated by the production of top-quark pairs in association with
additional jets, a neural network is used. In addition to taking into account several object
kinematics, global event variables, event shape variables and object pair properties, two variables
calculated using the matrix element method are used as input to the neural network. In order to
improve the sensitivity of the search, events are categorised according to their jet and b-tagged
jet multiplicities. Multiple signal and control regions are analysed separately and combined
statistically to maximise the overall sensitivity to a small signal and substantially reduce the

uncertainties from the background predictions.

The thesis is organised as follows.

Chapter 2 gives a brief introduction to the Standard Model, followed by a description of the
gauge theories and the Brout-Englert-Higgs mechanism. A brief overview of the experimental
verifications of the SM theory predictions is given. The phenomenology of the SM Higgs boson
and the top quark is reviewed, and the motivations of the search presented in the thesis are

discussed.

Chapter 3 introduces the LHC machine and the ATLAS detector which was used to perform
the presented measurement, their designs and performance-related parameters are summarised.
In order to maintain a high performance of the ATLAS detector during data-taking periods,
several shifts in the ATLAS Control Room and offline Pixel Detector shifts were taken by the

author.

In Chapter 4, a description of the dataset used for the search is presented. Monte Carlo event
generators are used to simulate the signal and background samples, and corrections derived for
the MC predictions are described. The contribution of the author includes dealing with the
most notable feature found in the /s = 8 TeV top physics analyses: the disagreement between
the top quark pair MC simulation and data. A reweighting procedure was developed, which
demonstrated an improved agreement between the data and the MC prediction and was used in
the analysis. Furthermore, a series of studies within ATLAS and the theory community towards

the understanding and improvement of the top pair production modelling was triggered.

The primary physics object reconstruction (e.g. tracks, leptons and jets) and their perform-
ance within the ATLAS detector are discussed in Chapter 5, and the event preselection is
presented. The author’s contribution consists in studies towards the calibration of MC samples
for the top quark analyses within the ATLAS Collaboration.

Chapter 6 is devoted to the multivariate analysis strategy developed in order to discriminate
the signal from background processes. The operating principle of an artificial neural network
is given and several studies and comparisons are discussed. The author’s contribution includes

the definition and validation of the variables entering the neural network discriminator, tests of
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the preprocessing steps applied to the input variables, validation of new discriminating variables

and studies in order to enhance the sensitivity of the analysis.

The evaluation of the systematic uncertainties and the statistical extraction of the final result
by means of a profile likelihood ratio technique are discussed in Chapter 7. The author’s contri-
bution includes the evaluation of the associated systematic uncertainties for the top-quark pair

reweighting procedure and studies on the signal modelling uncertainties.

Chapter 8 presents the main results of the search, as well as the combination of the individual
ttH searches performed by ATLAS in other decay topologies. Finally, Chapter 9 concludes the

thesis together with an outlook towards the future measurements of ttH production.

Throughout the dissertation, the “natural units” convention (A = ¢ = 1) is adopted. There-
fore, the International System (SI) units are modified to [m] = GeV (mass), [t] = 1/GeV (time)
and [d] = 1/GeV (length).



CHAPTER 2

Theoretical Background and Motivation

In the first part of this Chapter, a brief introduction to the Standard Model (SM) of particle
physics, the theory that describes the fundamental constituents of our universe and interactions
between them, is given. Section 2.1 introduces the particles and fundamental forces, followed by
a description of the gauge theories and the Brout-Englert-Higgs mechanism (following Refs. [27,
28, 29]). A brief overview of the experimental verifications of the SM theory predictions is given.
The phenomenology of the SM Higgs boson is discussed in Section 2.2. Finally, Section 2.3 gives
the motivation for the search of the SM Higgs boson in association with a pair of top quarks

and its importance in the SM framework.

2.1. The Standard Model of Particle Physics

The SM of particle physics is the current description of the fundamental constituents of our
universe and interactions between them, developed as a result of a large amount of experimental
and theoretical research. The model is a milestone in the development of the most fundamental
theory of matter and outlines the boundaries of the present knowledge of particle physics, beyond
which the region of qualitatively new phenomena and their respective models begin. The aim
of the SM is to provide an unified theoretical description of the three fundamental interactions
(strong, weak and electromagnetic, the last two being unified in a single Electroweak (EW)

interaction), which are dominant at the particle physics scales.!

The SM describes the structure of matter in a spatial scale of 10713—10717 cm and relies
on the concept of gauge symmetry within a Quantum Field Theory (QFT) framework. The
generalised Lagrangian mechanics formalism is applied to the particles and fields, which are
described by operators dependent on the space-time point x. The Lagrangian density £ is a
functional of the fields ¢)(x) and their space-time derivatives d,1, and its exact form is fixed by

physical requirements of the local gauge and relativistic invariance, and invariance with respect

!The theory of gravity is not yet incorporated into the SM.
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to groups of internal symmetry. Once the Lagrangian is fixed, the equations of motion are

obtained by means of the action principle:

68 =46 [/ d*z L1, a,ﬂ/;)} =0. (2.1)

The theory has a gauge symmetry if there is a continuous group of local transformations of the
fields (called gauge group) for which the action S remains unmodified. Since each continuous
symmetry of L yields a conserved current [30] and, hence, a conserved charge, the conservation
laws are accounted for by symmetries of the Lagrangian density of the SM under gauge trans-
formations of fields. A key concept of Spontaneous Symmetry Breaking (SSB) of the EW part
of the theory provides masses of the gauge bosons and matter fermions [31, 32, 33, 34, 35].

2.1.1. Particle Content and Fundamental Interactions

The fundamental particles are grouped into fermions, spin-1/2 particles obeying Fermi-Dirac
statistics, which are further sub-divided into leptons and quarks, and gauge bosons, spin-1
particles that obey Bose-Einstein statistics. The SM fermion sector is organised in three gener-
ations. According to the predictions of relativistic quantum mechanics, each fermion has a cor-
responding anti-particle. The SM theory states that twelve elementary (without sub-structure)
fermions are the basic building blocks of matter. Out of these, six are charged or neutral leptons.
Charged leptons undergo electromagnetic and weak interactions, while the neutral ones only in-
teract weakly. Table 2.1 lists the electric charges, masses and the dates of discovery of the

leptons.

Generation Lepton Charge [e]  Mass [MeV]|  Date of discovery

. e~ ~1 0.511 1897 [36]
v, 0 <2x1076 1956 [37]
0 e ~1 105.658 1936 [38]
” 0 <0.19 1962 [39]
- T ~1 1776.86 + 0.12 1975 [40]
v, 0 < 18.2 2000 [41]

Table 2.1.: The experimentally measured leptons and the dates of their discovery [42]. The uncer-
tainties in the electron and muon masses are extremely small and, thus, not included.

The existence of a selection rule forbidding the electromagnetic decays of charged leptons
is empirically postulated and an additive quantum number lepton flavour is assigned to each
lepton, assumed to be conserved in all leptonic processes. However, due to the discovery of
neutrino oscillations [43, 44, 45], the conservation law of the separate leptonic flavour is only

approximate.
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In addition to leptons there are currently observed six elementary quarks [46, 47] (and their
corresponding anti-quarks), which participate in strong interactions in addition to the EW ones.
They carry fractional electric charge and are sub-divided into three generations as well. All
hadrons discovered up to now, both with integer and half-integer spins, and masses ranging
from m o = 135 MeV to my(11020) = 11019+8 MeV, can be seen as bound states of a quark and
an antiquark (mesons) or three quarks (baryons) and are arranged into multiplets accordingly
to their spin and parity assignment. Mesons are hadrons with integer spin and null baryon
number, while baryons are particles with half-integer spin and integer baryon number. The
clear evidence for baryon number conservation comes from the stability of the lightest baryon,
the proton - its mean lifetime is measured to be 7, > 10%° years [42]. An additional quantum
number called colour is introduced [48] for the quarks to accommodate for the Pauli exclusion
principle [49] within some baryons. Table 2.2 lists the electric charges, masses and the dates of

discovery of the quarks.

Generation Quark Charge [e] Mass Date of discovery
I +2/3 2.310-F MeV 1968 [50, 51]
d -1/3 4.8702 MeV 1968 [50, 51]
- ¢ +2/3  1.2754+0.025 GV 1974 [52, 53]
s -1/3 95 + 5 MeV 1968 [50, 51]
- t +2/3  173.34+0.76 GV 1995 [54, 55]
b ~1/3 4.18 £ 0.03 GeV 1977 [56]

Table 2.2.: Overview of the quark properties and the dates of their discovery. The u-, d-, and s-
quark masses are estimates of so called “current-quark masses”, in a mass independent
subtraction scheme at a scale y ~ 2 GeV. The ¢- and b-quark masses are the “running”
masses in the MS scheme [42]. The top quark mass corresponds to the current measured
world average [57].

In general, each member of a lepton or quark generation has a bigger mass than the corres-
ponding particle of a lower generations. The ordinary baryonic matter is made of particles from
the first generations. Charged particles from the second and third generations are observed only

in high-energy environments or experiments, given their short lifetimes.

The SM describes the interactions of charged particles with the electromagnetic forces, the
weak decays of nuclei and particles, and the strong interactions, which give rise to bound states
of mesons and baryons. The corresponding theoretical parts of the SM are called Quantum Elec-
trodynamics (QED), the theory of weak interactions and Quantum Chromodynamics (QCD).
All the three types of fundamental interactions are mediated by the exchange of gauge bosons.
Fach interaction is described by a QFT based on a Lie algebra, which describes the gauge

symmetry of the interaction. The SM is based on a gauge group:

SU(3)C X SU(Q)L X U(l)y, (2.2)
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where C, L and Y denote respectively the colour, the left-handed chiral fields of the weak theory
and the hypercharge Y = 2(Q — T3) [58, 59|, where @ is the electric charge and T3 = 03/2 is the
third component of isospin. The weak interaction maximally violates the parity symmetry, and
thus the SU(2)r, Lie algebra acts only on left-handed fermions. Apart from the neutrinos, which
are taken to be only left-handed in the SM, all others fermions are both left and right-handed.
The finite range of the strong interaction arises from confinement, which bounds the quarks
inside mesons or baryons. Table 2.3 summarises the interactions described by the SM and their

gauge bosons properties.

Force Carrier Mass Gauge group  Date of discovery
Electromagnetic v <1078 eV U(l)y 1900 [60, 61]
Weak w+, 20 80.385 £ 0.015 SU(2)p, 1983 [62, 63, 64, 65]
91.188 + 0.002
Strong 8 gluons 0 SU3)¢c 1979 [66, 67

Table 2.3.: Summary of the interactions described by the SM, along with the gauge bosons properties
and dates of their discovery [42].

2.1.2. Gauge Invariance and Quantum Electrodynamics

Generally speaking, gauge invariance means that the Lagrangian of a system does not depend
on the phase of the complex-valued fields, and thus gauge invariance means local phase invari-
ance [27]. The origin of this symmetry principle lies in the Electromagnetic (EM) theory and is
related to the fact that the EM 3-vector potential A and the scalar potential ¢ are not unique for
given physical fields E and B. The transformations of A and ¢ which preserve the fields £ and
B are called gauge transformations. The associated invariance of the Maxwell equations is called
gauge invariance. In terms of the 4-vector potential A, = (¢, —ff) and a 4-vector differential

operator 0, = (0/0t, 6), a gauge transformation is then specified by?:
1
Ay — A=A+ O, (2.3)

where e denotes the electric charge.

The Maxwell equations for the free EM field can be written in a Lorentz covariant form:
a,LLF/.Ll/ = 07 (2.4)

where F,, = 0,A, — 0, A, is the EM field strength tensor. Under the gauge transformation

defined by Eq. 2.3, the strength tensor remains unchanged. Thus, the tensor is gauge invariant,

2Greek indices (p,vy... = 0,1,2,3) are used to denote the 4-component quantities, while the Latin indices
(4,7,... = 1,2,3) are used for spatial components. Upper indices can be lowered by using the metric tensor
guv = g"” = diag(+1,—1,—1,—1). A summation on the repeated Greek indices is assumed. A contravariant
4-vector is defined as A" = (A°, A), while a covariant 4-vector is defined as A, = (A°, —A).
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which means the Maxwell equations are Lorentz-covariant and gauge invariant field equations.
The Lagrangian density (referred to as Lagrangian in the following) of the free Maxwell field is
given by:
1
LM = —ZFWF’“’. (2.5)

The gauge principle and phase invariance can be looked upon as a kind of internal space
rotational invariance. The set of all such transformations forms a group, in this case a unitary

Abelian group U(1) group. Consider the Dirac Lagrangian for a fermion of mass m:

Lp = P(x) (iv" 0y — m) ¥(x), (2.6)

where the Dirac spinor 9 (z) is defined as ¥(z) = (¥1(z),..,v4(z))T with 4 complex-valued
components, ¥(z) satisfy ¥ (z) = ¥ (2)7°, and 4* are the Dirac matrices. The Lagrangian given
by Eq.2.6 is invariant under the global U (1) symmetry:

P(x) = ¥ (x) = exp (ia) P(2), (2.7)

where « is a real constant. If instead of a constant «, one considers a function a(x) dependent

on the space-time coordinate x, one obtains a continuous local transformation:

() = ' (z) = exp [io(z)] () (2.8)

and the Lagrangian defined by Eq. 2.6 is not any more invariant under this transformation. The

invariance of the Lagrangian can be restored by coupling the Dirac field to the Maxwell field:
Lpem = ¢ (x) [in" (8 — ieAy) —m] ¥ (), (2.9)
where the common derivative is substituted with the gauge covariant derivative defined as:
Oy — D,y = 0, —ieA,. (2.10)

The second term in Eq. 2.9, ei'y“A#w can be considered as the interaction of the Dirac field
with the EM field j*A,, where j# = elpy") is the EM 4-vector current operator associated to
the U(1) symmetry of the field A4,,.

In general, a gauge principle specifies a procedure for obtaining the interaction terms from
the free Lagrangian by searching a continuous local symmetry. This procedure is accompanied
by the inclusion of additional fields (such as the EM field) by means of the covariant derivative
given by Eq. 2.10 and local transformations of the fields, such as Eq. 2.3 and Eq. 2.8. In this
way, the extended Lagrangian will be covariant with respect to a new extended group of local
transformations. Thus gauge invariance requires the introduction of vector bosons, which act as

quanta of new interactions.

The complete QED U(1) gauge invariant Lagrangian is thus given by:

1 —
Lqep =~ FuwF" + () [iy" Dy = m)(x) = Loy + L0 + Liar, (2.11)
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where the interaction term is defined by:
Lot = ey Ayap = j1A,,. (2.12)

In summary, by deriving interactions from the requirement of local phase invariance, the gauge
principle provides a conceptual basis for the SM. The gauge theories of the Yang—Mills type [68]
are used to model the weak interaction between quarks and leptons and the strong interaction

between quarks, as described by the following sections.

2.1.3. Electroweak Theory

The EW theory [69, 70, 71] is based on the same principle of gauge invariance as QED and
unifies the EM and weak interactions as different manifestations of the same force. It unifies the
U(1)y group inherent for the EM interaction and the SU(2)r, isospin group of weak interaction,
which include both charged and neutral currents. The charged currents change the flavour of

the left-handed fermion fields, whereas neutral currents conserve the flavour.

The theoretical prediction [72] and experimental proof [73] of the parity non-conservation in
the weak interactions is reflected by the index L of the gauge group SU(2)r,, which implies that
the weak isospin current couples exclusively to left-handed fermions. The wvector minus axial
vector coupling structure of the weak theory is introduced by the right-handed and left-handed
Spinors:

YR = Prp = 5(1+9°)¢
Y =Py = 3(1—9°)

where Ppg 1, are the chirality operators and ~® is the product of the four Dirac matrices. Hence,

(2.13)

in the SM, the fermions appear as families with left-handed doublets of quarks @’ and leptons
¢ and right-handed singlets of quarks u%, (d%) and leptons el (v4):

w(.0.00 5-(),0,.0);

uy = ugr, Cr, tg; ds =dgr, Sr, br; (2.14)

7 _ . T __ e I T
€r = €R, MR, TR; Vgr =Vg, Vg, Vg

The left-handed fields are grouped into isospin doublets (7' = 1/2), while the right-handed
fields form isospin singlets (7" = 0), and are invariant under weak isospin transformations. The
EW gauge symmetry SU(2)r x U(1)y group is thus associated with the weak isospin 7' and
a weak analogue of hypercharge?, weak hypercharge Y. Under SU(2)y, the left-handed fields
transform as doublets, while the right-handed ones do not transform. The electric charge ) can
be expressed as the sum of one of the generators of the SU(2) group (the third component of
the weak isospin T3) and the weak hypercharge as: Q = (T35 + Y/2).

The EW theory requires the existence of four massless carrier particles, two electrically charged

and two neutral, to mediate the unified EW interaction. However, the short range of the weak

3Hypercharge is the average charge of the weak isospin multiplet.
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2.1. The Standard Model of Particle Physics

force indicates that it is carried by massive particles. This implies that the underlying symmetry
of the theory is broken by some mechanism that gives mass to the particles exchanged in weak
interactions, the three vector bosons W* and Z°, but not to the photons exchanged in EM
interactions. The experimental proof [62, 63, 64, 65] of the existence of EW force carriers
supported the unified theory of weak and EM interactions, given that the masses of the bosons

were in agreement with their predicted values.

2.1.4. Spontaneous Symmetry Breaking and the Brout-Englert-Higgs
Mechanism

The Abelian gauge invariant model leading to the spontaneously broken local U(1) symmetry
considered in the works of F. Englert and R. Brout [74], G. Guralnik, C. R. Hagen, and
T. Kibble [75] and P. Higgs [76, 77] deals with a complex scalar field p(z) = (o1 + ip2),

which interacts with a real vector field A, () through the Lagrangian:
1 » N
L= —3FuwF"™ + (Dup) Do = V (|, (2.15)
where [}, is the field strength tensor, D, is defined in Eq. 2.10 and
V() = —p21el* + Al (2.16)

is the potential of a scalar field with constants A\, u € R. There are three possible situations for

the configuration of the potential given by Eq. 2.16:
e if )\ is negative, then V is unbounded and corresponds to a potential with no stable minima;

o if —p2 > 0 and A > 0, the potential energy function has a unique stable minimum at
loo| = vl = 0, as shown in Figure 2.1a;

e in the case when —p? is negative and ) is positive, the potential energy function has two

minima at |¢g| = p1/V/\, as shown in Figure 2.1b.

The Lagrangian defined by Eq. 2.15 is invariant under the gauge transformations given by
Eqgs. 2.3 and 2.8. In order to find the ground (minimal energy) state of the system, one has to

evaluate the energy functional, which for the scalar field ¢(z) is defined as:

Ep)= L)L, (2.17)

where ¢ = dpp and L = [ d3zL, and which is gauge invariant as well. Thus if (A2, V%) is a

Vac) is also a ground state

ground (or vacuum) state of the system, (A} + 19,a(z), exp [io(z)] ¢
for any arbitrary function of a(x). The latter conclusion implies that there exists a continuum
set of field configurations minimising the energy of the system. An arbitrary, but unique ground

state from this set of configurations is chosen. Without loss of generality, the choice of a(x) = 0

11
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V [(100 GeV)]
V [(100 GeV)]

-300  -200  -100 0 100 200 300 -300  -200  -100 0 100 200 300
lo] [GeV] lol [GeV]

(a) (b)

Figure 2.1.: The potential V of the scalar field ¢ as defined by Eq. 2.16 in the case of (a) —u? > 0
and (b) —u? < 0. Parameters used are |p?| ~ (88.4 GeV)? and A ~ 0.129. Adopted
from [78].

leaves the minimum field configuration as:
AC =0, ©™ =p/V2. (2.18)

Field excitations above the ground state are studied, and in the case of the scalar field are
described by two real fields x(x) and 6(z) such that:

1
T)=— + x(z) +i0(x)] . 2.19
olx) = 5 lpo + x(x) + i0(z) (219)
Substituting Eq. 2.19 in the Lagrangian given by 2.15 and limiting to quadratic-order terms

only, the quadratic Lagrangian takes the form:

1 1 1
£3 = _ZB’“’BW + 3 (eapo)2 BB, + 5(8Mx8“x) — 122, (2.20)

where B, = A, — 0,0/ (epo) and B, = 0,B, — 0,B,, is the weak field strength tensor.

The Lagrangian in Eq. 2.20 represents the sum of the Lagrangian of a massive vector field
B, with mass my = epy = e,u/ﬁ and the Lagrangian of massive scalar field x with mass
my = /2. It is invariant under gauge transformations and reveals the appearance of a mass for
the vector field and disappearance of the field 0(x). Herein lies the essence of the Brout-Englert-
Higgs mechanism: in the spectrum of field excitations, besides the vector massive field, a scalar

field appears. This scalar field is the so called Higgs field, and its quantum is the Higgs boson.

2.1.5. Mass Generation of Gauge Bosons

In nature, the gauge bosons of the weak interaction are observed to be massive as seen from
Table 2.3, and thus an explicit mechanism to break the underlying EW symmetry of SU(2)p, x
U(1)y is introduced via the Brout-Englert-Higgs mechanism [69, 70, 71]. Before the electroweak

spontaneous symmetry breaking (EWSSB), the Lagrangian of the model can be written as

12



2.1. The Standard Model of Particle Physics

(a,b,c=1,2,3):

1 L1

where [}, = oW — 8VW/ff + ggé“ch#bWw with ¢ the structure constants of SU (2), and
Wi (x) and By, are the gauge fields of SU(2)r and U(1)y groups, respectively. The potential of

B;WB“V + (DMO)TDHSO - V(QDTa ©), (2.21)

the scalar field is given by V(¢f, ) = A ((pTga — %U2)2, where v is a real number.

®1

P2
relative to U(1)y. The covariant derivative of the field ¢ is equal to:

The model includes one scalar field doublet ¢(z) = with a weak hypercharge Y = 1/2

Dy = (O — ig2TaWyi — ig1Y By) @, (2.22)

where T® are the generators? of SU(2)r, with coupling strength go and Y = 1/2 is the generator

of U(1)y with coupling g;. For the ground state, one can choose the following field values:

0
a:B :0’ vac: 5 223
e = b=l <U/¢§> (223)

By using the unitary gauge configuration (defined by Eq. 2.3), the small (linear) field per-

turbations near the ground state (see Eq. 2.19) are considered:

0
o) = ( v+ H2)] V2 ) ’ (224)

where v € R and H(z) is a real scalar field. Two complex fields are introduced:
1
wE Wl T2

such that (Wu_ )* = WJ . Also two real fields are introduced:

1 1
Zy, = (92W) —1Bu); Ay = = (1 W2+ g2By) (2.26)

Vi + 95 91 + 95
: 2 2 _ (3)2 2
chosen to satisfy Z2 + (A,)" = (W?)" + B2

Hence, the covariant derivative given by Eq. 2.22 is rewritten as:

o i —iZWrH -
W\ g g Werd | T aitd , g (2.27)
v20m oz Vln 2z on

and contains two terms: one linear and one quadratic with respect to Wj , £, and H field

perturbations. Therefore, the quadratic-order part of the Lagrangian (2.21) after the EWSSB

4The generators of SU(2)y are given by Hermitian matrices T = %T“, where 7% are the Pauli matrices. Given

that the generators do not commute, the SU(2)r group is called non-Abelian.
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is given by:
c® = _lp g Lypcpeomw 1z zw
- _Z 124 _5 uv _1 (2%
1 1 1
+m%ﬂﬂW“W+y@zzwhﬂ@HmHyimwﬁ, (2.28)

where W, = 9, WF — 9,W;F and Z,,, = 8,2, — 8,2,

The Lagrangian in Eq. 2.28 describes the massless vector field A, (associated to the EM
photon field), the massive complex vector field I/VMi with a mass my = gav/2 (W boson field),
the massive real vector field Z, with a mass mz = v\/g7 + g3/2 (Z boson field), and a massive
real scalar field H (Higgs boson field) with a mass mpy = vV2X. A priori, the Higgs boson mass
my is not predicted by the theory and depends on the free parameter A\, which represents the
Higgs self-coupling, while the masses of the vector bosons are fixed once go and v are known.

Moreover, by introducing the weak mixing angle 8y, such that:
92

Vi g3

the mixture of Z,, and A, fields in Wg and By, is specified (see Eq. 2.26), and the masses of the

weak gauge bosons are related via myz = myy/ cos Oy .

cos by = (2.29)

In summary, the EWSSB of the SM is described by four fundamental parameters: the coupling
strengths ¢; and g2 and the Higgs potential parameters A and p. In the SM, the vacuum expect-
ation value of the Higgs field is given by v = 2my /g2 ~ (\/iGF)_l/2 ~ 246 GeV, determined
by the Fermi coupling G from muon lifetime measurements [42]. The free parameter, A, is ob-
tained from the recent measurements [13, 14] of the Higgs boson mass at the LHC experiments,
and implies that A ~ 0.129 and |u?| ~ (88.4 GeV)2.

2.1.6. Yukawa Coupling and Fermion Masses

The SM operates with the families of left-handed doublets and right-handed singlets of quarks
and leptons, as given by Eq. 2.14. Given that the SU(2), group acts only on the left components
of the fermion fields, this creates a fundamental problem concerning the masses of these particles:
the mass term for a Dirac fermion —m(1;9g + 1 gi1) couples to both components and, thus, is
not invariant under SU(2)r,. Nevertheless, in a theory with SSB, there is a way of giving fermion
masses via a Yukawa coupling to a scalar field. The Yukawa interaction is used in the SM to
describe the coupling between the Higgs field and massless quark and lepton fields through a

coupling constants g.

For example, considering such a coupling between the electron doublet L§ = (Vee) ;- the Higgs

doublet ¢ and the right-component of the electron field ep, the effective Yukawa Lagrangian is:

£§[ukawa = —Je <Zz¢€R +ER§0TL%) ) (230)
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2.1. The Standard Model of Particle Physics

which is SU(2)r, invariant. If the spontaneous symmetry is broken and excitations above the

ground state (see Eq. 2.23) are considered, then the Lagrangian in Eq. 2.30 becomes:
gel ~ Je _ _ _
LY kawa = —% (erer +erer) — 7% (erer +erer) H=—m, (ee) — g. (ee) H. (2.31)

The first term in Eq. 2.31 is identified as the electron mass term (m. = ge.v/v/2), while the
second term describes the interaction between the Higgs field and the electron-positron pair.
The same mechanism is considered for other charged leptons, while the mass term for neutrinos
is currently omitted from the SM [42].

The Yukawa interaction between quarks and the Higgs field is given by:
LY e = —THQp0uly — THQpds, + [hec, (2.32)

where “h.c.” means hermitian conjugate and pc = iTe¢™* is the charge conjugate of the Higgs
doublet constructed in such a way to preserve the SU(2)r, invariance of the Yukawa interaction.
I'y,q define 3 x 3 complex Yukawa matrices (in family space) of the up- and down-type quarks,
respectively, and i,j are the generation labels. After the Higgs field acquires a vacuum expect-
ation value, the quarks become massive. The physical states are obtained by diagonalising the
Yukawa matrices by unitary transformations V' in order to obtain the diagonal mass matrices
for f =wu,d:

v
E.
As a result, the charged-current interactions couple to the physical quarks, and the unitary
Cabibbo-Kobayashi-Maskawa (CKM) [79, 80] matrix (Voxy = Vu7LVdT’ ;) defines the mixing

between the weak eigenstate basis and the physical mass eigenbasis of the down-type quarks.

My =V Ty (Vi)' (2.33)

In summary, the fermions acquire mass within the SM through a renormalisable Yukawa
interaction between the Higgs field and the fermions. A direct consequence of the SSB mechanism
is that the strength of the coupling g; of the Higgs field to a massive fermion f is proportional
to its mass gr = v2my/v.

2.1.7. Quantum Chromodynamics

The SM component that describes the strong interactions of coloured quarks and gluons is
known as QCD. It is a theory formulated in terms of coloured states at the Lagrangian level,

but observed in terms of hadrons in nature.

Historically, its development began with the “Eightfold Way” classification [81, 82] of bary-
ons and mesons and the suggestion that hadrons are composed of elementary objects, called
quarks [46, 47]. Deep Inelastic Scattering (DIS) experiments [83], which can be viewed as the
scattering of virtual photons off the nucleon, allow the study of the latter inner substructure.
The scaling hypothesis [84], expected for scattering from almost-free point-like constituents, was
experimentally confirmed [85], and based on these studies the parton model was formulated [86].

The identification of partons as quarks and gluons opened the door for the development of the
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Parton Distribution Function (PDF)s, which describe the probability of finding a parton carry-
ing a fraction of the proton momentum, discussed more in detail in Section 4.2. High precision
data on DIS and other high energy processes confirm the scaling behaviour predicted by QCD

theory over a very wide kinematic range, as shown in Figure 2.2a.

The dynamics governing quarks systems was associated with the non-Abelian gauge theory
generated by colour symmetry [87] and described by the SU(3)¢ group [88], where “C” denotes
the colour charge conserved in strong interaction. The Lie algebra of this group implies 8 massless
generators called gluons, which mediate colour interaction between quarks. As a consequence
of the non-Abelian structure of QCD, the gluons also carry colour charge themselves and can
therefore couple to each other. The gluon self-interactions in QCD induces a particular feature
in the dependence of the strong coupling constant gs (also denoted as as = g2/47) on the
momentum scale Q? of the interaction, as shown in Figure 2.2b. Asymptotic freedom [89]
approach implies that as(Q?) is small at large Q% > 1 GeV (short distance), so that quarks
and gluons are weakly coupled, and the processes can be calculated in perturbation theory. For

small Q? values (large distances), as(Q?) is large, which leads to colour confinement.

H1and ZEUS

e HERANCep04fb™
m HERANCe'p05fb™
\s=318 GeV
O Fixed Target
=== HERAPDF2.0 € p NNLO
=== HERAPDF2.0 €'p NNLO

October 2015

v Tdecays (N3LO)

a DIS jets (NLO)

0 Heavy Quarkonia (NLO)

o e'e” jets & shapes (res. NNLO)
® c.w. precision fits (NNLO)

v pp—> jets (NLO)

v pp —> tt (NNLO)

Q)

03+

02+

01| : ::."""A" 5T T
— QCD 0g(M,) = 0.1181 + 0.0013

100 1000

" Q[Gev]
(b)

Figure 2.2.: (a) Illustration of scaling violations as seen in the inclusive DIS data compared to QCD
predictions [83]. (b) Running of the QCD strong coupling constant as(Q?) as a function
of the momentum scale y/Q? [42].

Based on these properties and measurements, QCD evolved as a field theory described by the
following Lagrangian (a =1, ..,8):

1 . » A .
ﬁQCD = _ZG;U/ (GM )a + Z 1/} [’VYMDM - mk] ¢k7 (234)
k
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where the covariant derivative is given by D, = 8, — igsTo G}, and the field strength tensor for

the non-Abelian gluon fields G, is denoted by:
G, = 0,G — 0,G% + g5 f"° GG (2.35)

Here f?¢ are the SU(3) structure constants and T are the SU(3) generators (1% = 3%, where
A% are the Gell-Mann matrices) satisfying the commutation relation [T, 7% = if2T¢. The n;
independent quark fields (ny = 6 in SM) are labelled by flavour f(= u,d, ¢, s,t,b), distinguished
in the QCD Lagrangian only by their masses. By construction, the Lagrangian in Eq. 2.34
possesses exact colour gauge symmetries and is consistent with the properties of hadronic weak
interactions [90]. Moreover, the Lagrangian in Eq. 2.34 can be represented as a sum of three
terms:

Lqep = LG + Lq + Lt (2.36)

where Lg = —%GZV (G*)* describes the gluon massless field, £, = >/ @k [iv10,, — my] P*

characterises the massive quark fields, and L = J4' GZ corresponds to the interaction between
—k

the gluon fields GJ; and the quark currents J* = g, Zf b ART AP

In summary, the analysis of hadronic scattering and final state objects by applying perturb-
ative aspects of QCD framework not only played an essential role in the development of collider
physics, but also contributed to the verification of the EW sector of the SM through the discov-
eries of the W and Z bosons and of the bottom and top quarks.

2.1.8. Summary and Experimental Success of the Standard Model

In the previous sections, the particles, interactions and symmetries contemplated by the SM
theory description were presented. One can summarise the Lagrangian of the SM after EWSSB

as a sum of several terms:

Lsm = Lyin+Lo+HLn+Lyvv+Lyvvv+Lavv+Luavv+Lann+Luanna+Ly+Lqgep, (2.37)

and the full mathematical expression can be found elsewhere [29]. Figure 2.3 schematically
illustrates the different terms of Eq. 2.37 as tree level Feynman diagrams, which are described
below. The kinetic term Ly, describes the free movement of the fermions and bosons. The term
L describes the weak charged-current interaction mediated by the W-bosons and Ly denotes
the weak neutral-current interaction mediated by v/Z bosons. The non-Abelian gauge nature
of the SM predicts the existence of gauge boson self-interactions, which are denoted by Ly vy
and Lyyyy in the case of triple and quartic vector boson interactions and Lygy and Lyggy
in the case of the Higgs boson self-interactions. The interaction of the Higgs boson to the gauge
bosons is represented by Lrvy and Ligyy. The Yukawa interaction between the Higgs field
and the fermions described in Section 2.1.6 is denoted by Ly. The non-Abelian structure of the
QCD theory is contained in the Lqcp term defined in Eq. 2.34.
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Figure 2.3.: Schematic illustration of the Lagrangian terms describing the SM at leading order.

The SM incorporates 18 free parameters:

9 fermion masses (Yukawa couplings to the Higgs field);

4 mixing angles of the unitary CKM [79, 80] matrix;

the vacuum expectation value v ~ 246 GeV [42];

the Higgs boson mass (my = 125.09 £ 0.24 GeV [25]) responsible for breaking the SM gauge

symmetry with a “Mexican hat” shaped potential, illustrated in Figure 2.4a;

3 couplings g1, g2 and g5 for the SM gauge groups U(1)y, SU(2)r and SU(3)¢, respectively.

The SM has been tested in many ways, especially during the past 30 years at lepton (LEP,
SLC), lepton-hadron (HERA) and hadron colliders (TEVATRON, LHC). The validity of the theory
and constrains of new physics scenarios are assessed by performing global fits to the fundamental
parameters entering the EW sector of the SM. Figure 2.4b shows a comparison of the global
fit results with the direct measurements, as well as with the indirect determinations for each
observable. Using the measured Higgs boson mass in the fit over-constrains the EW sector,
allowing a consistency test of the theory and yielding a x? of 17.8 for 14 degrees of freedom.
Figure 2.5a shows an impressive agreement over many orders of magnitude between various SM

cross section predictions and experimental measurements using pp collisions data at /s = 7 and
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8 TeV collected with the ATLAS experiment. Figure 2.5b indicates the excellent compatibility
of the measurements of the properties of the Higgs boson, particularly the coupling constants

to each fermion and weak gauge boson, with the SM prediction.

In summary, the SM based on the SU(3)c x SU(2)r, x U(1)y gauge symmetry has been firmly
established as the theory of the strong and electroweak interactions. It is a keystone of particle
physics, but besides the large number of free parameters, there are several unresolved issues
which the theory is yet not able to explain. These questions include: the problem of neutrino
masses [91], dark energy and dark matter [92], baryon-antibaryon asymmetry [93], the hierarchy

problem and naturalness [94, 95], and finally the inclusion of quantum gravity [96].

Hm Global EW fit

-0 Measurement
TTTTTTTTTTTT HH‘HH TTTTTTTTT

M ®
M,, ° -
M —!0——

M, -

r, e
o-gad hd -
R —ei=mly

I

lep

AO.I ° n

FB
A (LEP)
A, (SLD)

lept

sin’Q_; Q) —

Vi$)

L.I “ ll+

>
Q
£Eo
g
2
4
N

HHHH‘HH‘HHHHHH
3 -2 -1 0 1 2 3
Opgrect - O)/ Oy

indirect

(a) (b)

Figure 2.4.: (a) Illustration of the “Mexican hat” shape of the Higgs field potential as defined by
Eq. 2.16 with z2, A > 0. (b) Comparison of the fit results with the indirect determination
in units of the total uncertainty, defined as the uncertainty of the direct measurement
and that of the indirect determination added in quadrature. The indirect determination
of an observable corresponds to a fit without using the corresponding direct constraint
from the measurement [97].
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Figure 2.5.: (a) Summary of several SM total production cross section measurements performed by
the ATLAS experiment [98]. (b) Summary of the fit for deviations in the coupling as
function of particle mass for the combination of ATLAS and CMS data. The dashed
(blue) line indicates the predicted dependence on the particle mass in the case of the SM
Higgs boson [26].
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2.2. Phenomenology of the Standard Model Higgs Boson

This Section briefly reviews the phenomenology of the SM Higgs boson at the LHC. The domin-
ant production processes and major decay modes of the Higgs boson, along with the theoretical
predictions of the cross sections and branching fractions, are presented. Finally, the interpreta-
tion of the measurements at the LHC based on signal strengths, coupling constants and other

properties are discussed.

2.2.1. SM Higgs Boson Production and Decay

The SM Higgs boson couplings to gauge bosons V', fermions f and self-couplings are summarised

in the following Lagrangian [42]:

£H,Int = —9uf (Hfﬂ + (5vV'uV'u (gvaH + QH%HZ) + gHé{H H3 + gHng H47 (2.38)

where V. = W¥*,Z and d = 1 and 67 = 1/2. The summary of the couplings g is presented
in Table 2.4. The dominant mechanisms for SM Higgs boson production and decay involve the
coupling of H to weak W and Z bosons, and the third generation quarks and leptons. The
couplings to neutrinos, electrons, muons and light quarks (u,d, s, c) are extremely small. The
coupling to gluons is induced at leading order by a one-loop graph in which the Higgs boson
couples to a virtual quark-antiquark pair. Similarly, the Higgs boson couples to photons via

loops of virtual W+W ™ pairs and a virtual gg-pair [99].

!
------- JHfT
Yukawa coupling to fermions a
!
Juyry = my /v
Voo v
\\
H ™.
——————— JHVV o .- JHHVV
Couplings to weak vector bosons " et
e
7
v 1%
gavv = v my
VW= JHHVV = =3
H / H
4 N ,
7z N ,
,/ H \\\ -
——————— ¢ gnnn i O JHHHH
. . H
Higgs self-coupling B SR
N H // \\
H
— 3m%—[ 3m2
JHHE = = gHHHH = —#*

Table 2.4.: Summary of the SM Higgs boson couplings following the notation in Ref. [42].
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The four main production mechanisms of the SM Higgs boson at the hadron colliders are:
gluon fusion (ggF), vector boson fusion (VBF), associated production with a vector boson (VH)
and associated production with heavy quarks (qgH with ¢ = b,t). Table 2.5 summarises the
representative diagrams for these mechanisms, as well as the production cross sections calculated

at /s = 8 TeV, and Figure 2.6a shows the cross sections as a function of the Higgs boson mass.

Production mode LO diagram Cross section [pb] Order in pQCD
g
t,b
‘ o 147% NNLO + NNLL (QCD),
ggF production 19.2771, 79 NLO (EW)
)
q
v
. oy +2.8% NNLO (QCD),
VBF production e 15873 0% NLO (QCD+EW)
q/

WH: 0.70+4-3% NNLO (QCD)
. —4.6% ’
VH production 7H: 0_412:2;? NLO (EW)
g q
ttH: 0.13T1L9 NLO (QCD)
_ . -—— H o —17.4
qqH production bbH: 0.20112% NNLO (QCD)
g q

Table 2.5.: Summary of the SM Higgs boson production cross sections at the LHC for my = 125 GeV
at /s = 8 TeV [100]. Representative Feynman diagrams for the production processes are
shown. Information about the perturbative QCD (pQCD) order of the calculations is given.

The total SM Higgs boson production cross section at the LHC for my = 125 GeV at
Vs =8 TeV is 22.3 + 2.0 pb. The gluon fusion mechanism (g9 — H + X), mediated by the
exchange of a virtual quark loop, is the leading production mode at the LHC due to the dom-
inant gluon PDF within the incoming protons. This production channel has a cross section of
the order of 19.3 pb for my = 125 GeV at /s = 8 TeV [100], and receives large contributions
from higher-order QCD corrections [101].

Vector boson fusion (WtW ™~ — H or ZZ — H), with the W or Z bosons being radiated of a

quark, has an order of magnitude smaller cross section than ggF production. The characteristic
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final state with two highly energetic forward jets with a large rapidity gap between them is a
distinctive experimental signature used to suppress other SM background processes.

The associated production with vector bosons (WH, ZH) is an EW process at leading order
and QCD corrections account for only 5% of the cross section. These production modes provide
a relatively clean environment for studying the decay of the Higgs boson and testing the HVV
coupling.

The Higgs boson production in association with a heavy quark-antiquark pair is highly sup-
pressed, with cross sections of the order of 0,7, ~ 203 fb and 0,757 ~ 130 fb, and total theoretical
uncertainties of 10 —20%. The bbH production is an extremely challenging process overwhelmed
by different backgrounds, and has not been studied experimentally so far. However, the distinct
signatures of the ttH decay, discussed more in detail in Section 2.3.2, provide a rather clean
environment to identify the Higgs boson and the top quarks, and therefore provide relevant
information about the Yukawa coupling between the top quark and the Higgs boson. Further-
more, associated Higgs production with a single heavy quark, particularly the top quark, has
the potential of measuring the sign of the top quark Yukawa coupling, but feature a rather small

cross section [100].

The total width for a boson with a mass of 125 GeV is predicted to be I'y ~ 4 MeV [42].
Hence, the Higgs boson has a very short lifetime (77 ~ 10722 s), and one can only observe the
decay products. The branching ratio (BR)s of the SM Higgs boson are shown in Figure 2.6b as
a function of its mass, and the decay modes to bb, WW ™), 7t7= ¢g, c¢ and ZZ™ account in
total for over 99% of the total width.
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Figure 2.6.: (a) SM Higgs boson production cross section at /s = 8 TeV as a function of the
Higgs boson mass. (b) The branching ratios for the main decays of the SM Higgs boson
near my = 125 GeV. In both figures, the theoretical uncertainties are indicated as a
band [102].

The Higgs boson is favoured to decay into the heaviest kinematically accessible particles, and,

hence, the main decay mode is into bb pairs with a BR of 57.5 +1.9% [42]. However, at hadron
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colliders the H — bb channel is overwhelmed by the background from the inclusive production of
pp — bb+ X via the strong interaction, and thus VH production is generally considered in order
to reject large QCD backgrounds. The use of b-tagging techniques in the final states, described
in more detail in Section 5.3, helps to further reduce the different backgrounds. The H — 77 is
the next largest BR decay channel into fermions. Due to the presence of neutrinos (from leptonic
decays of the 7-lepton) or jets (from hadronic decays), it is considered as a challenging channel.
Decays of the Higgs boson into cc-pairs are extremely difficult to distinguish from QCD dijet
events, and the clean decay to H — u* ™ has a very small BR.

The decays into weak bosons (H — Vv v = W, Z) provide good sensitivity and are
experimentally studied in all the decays of the gauge bosons, i.e. in the case of H — WW*),
the leptonic, semi-leptonic and full hadronic final states. The so called golden channel (H —
A 411) leads to a narrow invariant four-lepton invariant mass peak on top of a relatively
smooth and small background. The H — v decay mode provides a very clear and distinctive
signature of two isolated and highly energetic photons with a narrow invariant mass peak, and
is one of the main channels studied at the LHC. Other decay modes (H — Z~, gg, J/v~,..)
have rather low BRs and/or are hidden by the large amount of QCD background.

2.2.2. Higgs Boson Discovery and Measurements at the LHC

It took almost 50 years after the formulation of the Higgs mechanism, described in Section 2.1.4,
and a large number of experimental searches at the four LEP experiments [103] and CDF and D@
experiments [104] at the TEVATRON, until in 2012 the ATLAS and CMS collaborations reported
the observation of a new particle with a mass of approximately 125 GeV and Higgs-boson-like
properties [13, 14]. The discovery, driven by the high resolution mass channels H — ~v and
H — ZZ% — 44, was observed as a narrow peak over a quite smooth background of the

invariant mass distribution of two photons and of four leptons, respectively (Figure 2.7).

Since the discovery of the Higgs boson, the LHC experiments have studied the properties of the
new boson, such as mass, coupling constants and spin-parity, in order to test the compatibility
of the particle with the SM. Generally, the study of these properties is performed in individual

channels, then all the measurements are combined to maximise the statistical power.

The mass of the Higgs boson is not predicted by the SM, but once specified, the production
cross sections and BRs of the Higgs boson are all predicted by the theory. The mass measurement
also provides an important self-consistency test of the EW theory given that radiative corrections
involving the Higgs boson contribute to the SM prediction for the W-boson mass. Moreover, a
discrepancy between the SM prediction extracted from the precision electroweak fits and directly
measured mass would indicate clear evidence for new physics. The combination of ATLAS and
CMS data for the two high resolution H — 4 and H — ZZ®*) — 4¢ channels yields a mass of
the Higgs boson of [25]:

mpy = 125.09 + 0.21(stat.) £ 0.11(syst.) GeV = 125.09 + 0.24 GeV. (2.39)
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Figure 2.7.: The distribution of (a) the diphoton invariant mass m.., spectrum in the H — 7~y search
and (b) the four leptons system mass my; in the H — ZZ*) — 44 search as observed by
the ATLAS experiment [15, 16].

The measurement is found to be consistent both between the different decay channels and

between the two experiments, and agrees with the expectation from electroweak fits [97].

The experiments at the LHC also measure the signal strengths uf , defined as the ratios of the

(2
measured Higgs boson production rate and BRs to the corresponding SM predictions such that:

f o; X BRf
;=

: (2.40)
0i,SM X BRéM

where the subscript ¢ and superscript f indicate the production mode and decay channel, re-
spectively. A global signal strength p that corresponds to a single multiplier that scales all cross
section times BR products is measured by ATLAS and CMS to be u = 1.09J_r8:%(1) [26], consistent

with the SM prediction of p = 1 within uncertainties.

Assuming SM values for the Higgs boson BR, the five main Higgs boson production processes
are studied with independent signal strengths piger, pvBr, pwh, pza and pyzy. The result
of a combined analysis of the ATLAS and CMS data, shown in Figure 2.8a, illustrates the
compatibility between the data and the SM prediction. In a similar manner, the decay-based

WW o m™ and pb? are studied, assuming that the Higgs boson

signal strengths p?7, p?%, p
production cross sections are the same as given by the SM. Figure 2.8b presents the results of
the decay signal strengths for the combination of ATLAS and CMS, and separately for each

experiment.
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Figure 2.8.: (a) Production and (b) decay signal strengths as a result of the combination of ATLAS
and CMS data, and separately for each experiment. The error bars indicate the 1o (thick
lines) and 2¢ (thin lines) intervals [26].

The measured and expected significances® of the Higgs boson production processes and decay

channels as measured by the ATLAS and CMS experiments are presented in Table 2.6.

Measured significance (o) Expected significance (o)

Production process

ggF 6.3 6.0
VBF 5.4 4.6
VH 3.5 4.2
ttH 4.4 2.0
Decay channel

H—ZZ 7.6 5.6
H—-WW 6.8 5.8
H — vy 5.0 4.6
H—711 5.5 5.0
H — bb 2.6 3.7

Table 2.6.: Measured and expected significances for the observation of Higgs boson production pro-
cesses and decay channels for the combination of ATLAS and CMS data. Significances for
ggF production and H — ZZ, H — WW and H — ~7 decay channels are quoted for
ATLAS measurements only [26].

5The significance is quantified by a p-value, the probability for a background only experiment to give a result at
least as signal-like as observed in the data. A p-value of 2.87 x 1077 corresponds to a five-standard-deviation
excess over the background-only prediction [105].
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2.3. Top Quark and its Coupling to the SM Higgs Boson

Quantum numbers of the measured boson, which in the SM is a scalar CP-even particle, i.e.
JP = 0%, where J denotes the spin and P the parity, are determined in dedicated measurements.
Comparisons to alternative hypotheses with J¥ = 07,1, 17, 2%* cigenstates in fits to distribu-
tions of kinematic variables based on the H — vy, H — ZZ®) — 40 and H - WW* — evev
decay channels are performed [106]. In all cases, the SM quantum numbers are favoured while
the alternative hypotheses are rejected at more than 99% confidence level. Moreover, measure-
ments of fiducial and differential cross sections for Higgs boson production in different decay

channels are well in agreement with the SM predictions [107, 108, 109].

Summarising the current status of the Higgs measurements at the LHC:
e the ggF and VBF productions are directly observed with significances larger than 50 each;
e the observed significance for the VH production process is above 30;

o the H— ZZ®) H - WW® H — vy and H — 777~ decays are observed each above
5o significance, and therefore the coupling of the Higgs field to bosons and fermions is

directly confirmed;

e no significant signal, i.e. above three standard deviations, is yet observed in the decay

modes to b-quarks;

e the global signal strength u = 1.O9f8&(1) is consistent with the SM prediction within 1o;

e the Higgs boson mass is measured to be mp = 125.09 + 0.24 GeV;

e the properties of the new particle, including its spin, CP properties, and coupling strengths
to SM particles, are consistent within the uncertainties with those expected for the SM

Higgs boson.

The observed significance for the ttH process is 4.40, whereas only 20 is expected, corres-
ponding to a measured excess of 2.30 with respect to the SM prediction. This thesis presents a

search which directly contributed to this result, and is discussed in detail in the following.

2.3. Top Quark and its Coupling to the SM Higgs Boson

The heaviest known elementary particle described by the SM is the top quark [2, 110]. The
discovery of the top quark in 1995 at FERMILAB [54, 55] was a great success of the SM predictions,
as it confirmed the existence of the weak isospin partner of the bottom quark. At the LHC,
the ATLAS and CMS experiments have accumulated millions of top quark events, sustained by
data from the LHCb experiment in forward kinematic regions [111]. The top quarks has a mass®

close to the scale of EWSSB, and in many physics models Beyond Standard Model (BSM) it

5The world combined measurements of the top quark mass from TEVATRON and LHC experiments is m; =
173.34 £ 0.76 GeV [57].
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is predicted to have a very large coupling to new resonances [112]. Due to its large mass,
the predicted top quark lifetime 7 ~ 5 x 10725 s (which agrees with the direct experimental
measurement [113]) implies that it decays before forming bound hadrons.

The production mechanisms of top quark pairs, followed by a discussion of the corresponding
decay channels are briefly reviewed in the following. The coupling of the top quark to the Higgs
field, is discussed in Section 2.3.2.

2.3.1. Top Quark Physics

At the LHC, the top quarks are produced dominantly in pairs through ¢q — tt and gg — tt
processes (at leading order in QCD), as illustrated in Figure 2.9.
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Figure 2.9.: Leading order Feynman diagrams for the ¢ production in the case of (a-c) gg fusion and
(d) ¢G annihilation processes.

9
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Assuming a top quark mass of 173.34 GeV, the production cross section at next-to-next-to-
leading order (NNLO) in QCD that includes resummation of next-to-next-to-leading logarithmic
(NNLL) soft gluon terms [114, 115, 116, 117, 118] amounts to oy = 246.73752371193  where
the first uncertainty is from scale dependence and the second from uncertainties on the PDFs.
Figure 2.10a summarises the experimental status of ¢f production cross sections measurements,
showing an excellent agreement with the theoretical predictions. Any deviation of the measured
value from the SM prediction could signal the presence of new physics in the production or
decay, and are sensitive to the gluon PDF of the proton, the strong coupling constant and
the top-quark mass. One must notice that the measured experimental uncertainties exceed the
precision of the theoretical calculations [3].

In addition to the production process shown in Figure 2.9, top quarks can also be produced
as single top quarks via the weak interaction. The measurements [119, 120] of such processes
constitute a direct probe of the Wtb-vertex, leading to a direct determination of the CKM matrix

element |Vj| and of the b-parton density.

Given that the CKM matrix elements obey the relation |Vi| > |Visl, |Vid|, and [Vip| = 1.021 £
0.032 [42], the top quarks decay almost exclusively through ¢ — Wb. Consequently, the W-boson
decay modes characterise the signature of ¢ final state, which are summarised in Table 2.7. At
Born level all three leptonic W-boson decay modes have the same probability, but due to higher

order corrections this symmetry between the decay modes is slightly broken [42].
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2.3. Top Quark and its Coupling to the SM Higgs Boson

Decay mode | Branching fraction [%)]
W — qq 67.41 + 0.27 (6/9)
W — e, 10.71 + 0.16 (1/9)
W — up, | 10.63 £ 0.15 (1/9)
W — 77, 11.38 + 0.21 (1/9)

T — eVels 17.83 £+ 0.04

T — My Vr 17.41 £ 0.04

Table 2.7.: Measured branching fractions of the W-boson. The values expected at Born level are
shown in parenthesis. The BRs of the leptonic 7 decay modes are also presented [42].
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Figure 2.10.: (a) Summary of LHC and TEVATRON measurements of the ¢ production cross section
as a function of centre-of-mass energy compared to theoretical calculations [121]. (b)
Ilustration of t pair decay topologies.

Therefore one can identify three different decay topologies, as illustrated in Figure 2.10b and

summarised below:

e all-hadronic channel contains only jets in the final state and has a large BR ~ 46% and
characterised by high QCD multijet background;

e [epton-plus-jets or single lepton channel corresponds to events where only one of the W-
bosons decays into leptons, and is characterised by the presence of one isolated lepton, a
neutrino and four jets. It accounts for 43.8% of the total decays or 29.2% if only decays

to electron or muon are considered;
e dilepton final state is defined by two oppositely charged leptons, two neutrinos and two

jets from the b-quarks. This channel has low selection efficiency, but a high t¢ purity is

achieved.
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The leptonic decays of T-leptons to an electron or muon and two neutrinos (with BRs shown
in Table 2.7) have the same reconstructed signatures as the events where the W-boson decays
directly to an electron or a muon. Therefore, these events are considered to be part of the

lepton-plus-jets channel.

Direct measurements of the top quark properties have been performed by the ATLAS experi-
ment, which include charge [122] and charge asymmetry [123], spin correlations [124], W-boson
polarisation in ¢t events [125], and others [126, 127, 128], and no deviations from the SM expecta-
tions are observed. Measurements of the production of ¢¢ pairs in association with photons [129],
W or Z bosons [130], and additional heavy-flavour jets [131] are also found to be in good agree-

ment with the SM expectations.

2.3.2. Associated Production of the Higgs Boson with a Pair of Top Quarks

The SM predicts that the Yukawa coupling of the Higgs field to the top quark g; is proportional
to the top quark mass, as described in Section 2.1.6. Therefore, by using the world combined
top quark mass mentioned in Section 2.3 and the vacuum expectation value introduced in Sec-
tion 2.1.5, the coupling is g; = v/2m;/v ~ 0.9965. Being the only quark with such a strong
coupling to the SM Higgs boson, the top quark provides the most important contribution to the
radiative correction Am%[ ~ —|g¢|? to the Higgs boson mass, as shown in Figure 2.11a. Any
deviation of the coupling from its SM value may have strong consequences for the naturalness

problem [95] and give insights into the scale of new physics [132].

The value of g; can be indirectly constrained through measurements involving the dominant
Higgs boson gluon fusion production, which receives large contributions from loop diagrams
involving the top quark, as illustrated in Figure 2.11b. In addition, the decay of the Higgs
boson to a pair of photons, depicted in Figure 2.11c, involves loop diagrams’ with top quark
contribution. These indirect measurements are found to be consistent with the SM Yukawa

coupling prediction within ~ 30% uncertainties [133].

While these loop-induced processes are mildly sensitive to the value of g;, a direct determ-
ination can only be obtained by measuring the production cross section of the Higgs boson in
association with top quarks, e.g. ttH or tH, with the former having a six times larger cross sec-
tion in the SM. A measurement of the ¢t¢H production rate provides a direct test of the Yukawa
coupling between the top quark and the Higgs boson, as shown in Figure 2.11d.

Due to its small production cross section (o777 ~ 130 fb) compared to the dominant Higgs
boson production channels, this mechanism has not been directly observed. The pp — ttH
process can be studied in a variety of final states, depending on the top quark decay topo-
logy (all-hadronic, lepton-plus-jets or dilepton) and the Higgs decay mode (bb, WW ™), 7+7—
AR ..). In order to use the largest branching fraction of 57.5 £ 1.9% for a 125 GeV Higgs

boson, the search presented in this thesis is designed to be primarily sensitive to the H — bb

It is assumed that there are no BSM particles in the loops entering ggF production and H — v~ decay.
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(a) (b) (d)

Figure 2.11.: (a) One-loop radiative correction to the Higgs mass due to the top quark couplings.
Representative Feynman diagrams for (b) the ggF production of a Higgs boson through
a top quark loop, (c) Higgs boson decay to a pair of photons through a top quark loop,
and (b) the associated production of the Higgs boson with a pair of top quarks.

decay, although other Higgs boson decay modes are also included as signal. The topology of
the tt system which maximises the expected signal sensitivity in the given dataset is chosen,
that being the single lepton decay mode. The total signal cross section for the decay mode
ttH — (I*vb)(qgb)(bb) is expected to be ~ 33 fb at /s = 8 TeV. Hence, based on an integrated
luminosity of 20.3 fb~!, one expects a total of 670 events in the single lepton final state.

Previous searches of direct ttH production in the single lepton and dilepton channels were per-
formed by the CDF experiment at the TEVATRON, as well as the ATLAS and CMS experiments
at the LHC, as summarised in Table 2.8.

Collaboration Beam /s [ TeV] Data set [fb~!] tf decay Method Upper limit Ref.

CDF b 1.96 9.45 1L ANN  20.5 (12.6) [134]
ATLAS pp 7 4.7 1L Kin. it 13.1 (10.5)  [4]

CMS pp 7,8 5.1,19.7 1L,2L  BDT  4.1(3.5)  [135]

CMS pp 8 19.5 1L MEM 5.5 (4.2)  [136]

Table 2.8.: Previous searches for ttH production in single lepton (1L) and dilepton (2L) decays of the
tt system. The techniques to separate the SM Higgs signal from background are denoted:
artificial neural networks (ANN), boosted decision trees (BDT), kinematic reconstruction
method (Kin. fit) and matrix element method (MEM). The results are given in terms of
observed and expected (in parenthesis) 95% confidence level upper limit on oz relative
to the SM prediction.

In summary, the search for the SM Higgs boson production in association with a top-quark
pair with subsequent Higgs decay into bottom quarks is simultaneously sensitive to the Yukawa
coupling of the top quark ¢; and the H — bb branching ratio, with the only assumption that
the Higgs boson is a narrow scalar particle. Moreover, the observation of the ttH production
mode would allow for a direct measurement of g;, to which other Higgs production modes are

only sensitive through loop effects.
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CHAPTER 3

Experimental Setup

The main objective in a particle physics experiment is, often, to produce new particles by
carrying out collisions. The choice of beam particle is governed by the particular objectives
of the experiment. The particles that constitute the beam must be stable, and it should be
possible to produce and accelerate them in large numbers. Hence the most obvious choices are
electrons, positrons, protons and anti-protons. The lower energy loss from synchrotron radiation
is the main argument in favour of a hadron collider when a greater energy reach is the primary
motivation, as is the case of the Large Hadron Collider (LHC).

In the first part of this Chapter, the LHC is briefly introduced. Section 3.2 describes the
ATLAS detector which was used to take data analysed in this thesis. The performance of the
ATLAS sub-detectors is described in Section 3.3.

3.1. The Large Hadron Collider

The Large Hadron Collider [137] is a two-ring, superconducting accelerator and collider installed
in a 27 km tunnel previously constructed for the Large Electron Positron (LEP) collider, located
at the border of France and Switzerland and hosted by Conseil Européen pour la Recherche
Nucléaire (CERN). The LHC has eight arcs and straight sections, which are approximately
528 m long. Four of the straight sections provide shelter for the LHC detectors whilst the other
four are used for machine utilities, radio frequency, collimation and beam abort.

The two high-luminosity detectors are located at diametrically opposite straight sections.
A Toroidal LHC ApparatuS (ATLAS) detector [9] is located at point 1 and Compact Muon
Solenoid (CMS) [10] at point 5, which also incorporates the small angle scattering experiment
TOTal Elastic and diffractive cross section Measurement (TOTEM) [138]. A Large Ion Collider
Experiment (ALICE) [11] is located at point 2 and the Large Hadron Collider beauty (LHCb)
experiment [12] at point 8, which also contain the injection systems for the two rings. The

beams only cross from one ring to the other at these four main interaction points. Two smaller
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experiments, Large Hadron Collider forward (LHCf) [139] and Monopole and Exotics Detector
at the LHC (MoEDAL) [140] are located at point 1 and point 8, respectively.

The acceleration stage path of the protons, whose collisions are used in the present thesis,

traverses through a long injection chain located at CERN laboratory, as shown in Figure 3.1.

CMS

LHC

LINAC2

Figure 3.1.: CERN accelerator complex [141].

The protons are produced by a Duoplasmatron ion-source and extracted with 91 keV energy
followed by a 750 keV four-vane Radio Frequency Quadrupole (RFQ), and injected into the
Linear Accelerator 2 (LINAC2), a 30 m long linear accelerator with an extraction energy of
50 MeV. During the acceleration, protons are being split in bunches using the Radio Frequency
(RF) cavities. After the extraction from the LINAC2, the protons are injected into the Proton
Synchrotron Booster (PSB), a 157 m long synchrotron that accelerates the protons up to 1.4 GeV.
The protons from the PSB are injected into the 628 m ring of the Proton Synchrotron (PS) and
accelerated up to 26 GeV, and then transferred to the underground Super Proton Synchrotron
(SPS), a 6.9 km long circular accelerator capable to increase the protons energy up to 450 GeV.

The heavy-ion acceleration follows a different path. Ions are produced in an ion-source, go
through Linear Accelerator 3 (LINAC3) and the Low Energy Ion Ring (LEIR) before following
the same path as the protons from the PS.

The final stage of acceleration is the LHC, a 26.7 km long circular collider lying approximately
100 m under ground, as depicted in Figure 3.2.
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Figure 3.2.: The underground position of the LHC and SPS rings. Adapted from [142].

The LHC consists of a total of 9593 superconducting magnets, 1232 of which are main di-
poles and 392 main quadrupoles. In order to obtain high quality data for the experiments in
the collision points with the desired rates, the beam parameters are precisely controlled. The
experiments are located in the interaction regions consisting of 13 main quadrupoles left and

right of the interaction point, and out of those 3 triplets are used for final focusing of the beam.

The first proton beam was injected in the LHC on the 10 September 2008. After an incident
related to the main dipoles that took almost one year to recover and resume the operations, the
LHC restarted on the 23 October 2009 and saw its first ion beam on the 7 November 2009. The
first collisions at /s = 7 TeV took place on the 30 March 2010.

One of the main parameters of a beam produced in colliders is the instantaneous machine
luminosity £, defined as the number of particles passing each other per unit time through a
unit transverse area at the interaction point. The event rate Neven‘m which is the number of

scatterings per unit time, is given by:
Nevent = Eo'eventa (31)

where Oevent 1S the cross section for the studied event and luminosity £ depends only on the
beam parameters. At the LHC, particles do not circulate in a continuous stream but are bunched
together. Assuming that the two beams have Njo particles in each bunch and these bunches

meet each other with a certain beam crossing frequency fc, then luminosity is:
L o foN1N2S;t, (3.2)

where S represents the transverse size of the beams at the interaction point. The quantities
fc, Ni2 and S, ! cannot be increased arbitrarily, as they depend not only on the initial number
of produced particles, but also on effects as inter-particle electrical repulsion or back-reaction

on the accelerating mechanism [42].

Table 3.1 shows the values of the main LHC performance-related parameters from 2010 to
2012 and the design values. Even though the beam size is naturally larger at lower energy,
in 2012 the LHC has achieved 77% of design luminosity at four-sevenths of the design energy,

which demonstrates the outstanding system performance of the LHC.
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Parameter 2010 2011 2012 Design value
Proton-beam energy [TeV] 3.5 3.5 4.0 7.0
Bunch spacing [ns] 150 75/50 50 25
Maximum number of bunches 368 1380 1380 2808
Mean interactions per crossing 8 17 38 ~ 23
Peak luminosity (1033 cm=2 s71) 02 3.7 7.7 10.0

Maximum luminosity in one fill [pb™!] 6 122 237 -
Stored beam energy [MJ] ~28 ~110 =~ 140 362

Table 3.1.: An overview of the performance-related parameters of the LHC during the 2010-2012
years [143].

3.2. The ATLAS Detector

The ATLAS detector is one of the two largest general purpose detectors installed at the LHC
and surrounds nearly the entire solid angle around the ATLAS collision point. It takes its name
from the largest magnet system incorporated in it, a toroidal magnet. The detector has an
approximately cylindrical geometry and consists, as many other detectors of the same type, of
an Inner Detector (ID) tracking system surrounded by an Electromagnetic Calorimeter (ECAL)
and a Hadronic Calorimeter (HCAL) and a Muon Spectrometer (MS). In addition, it contains a
set of solenoidal and toroidal magnets, which are used to bend the tracks of electrically charged
particles due to the Lorentz force while travelling through a magnetic field. From the curvature
of the track the momentum measurements of charged particles is possible. Charged particles,
like electrons and charged hadrons, are detected both in the ID and in the ECAL. Neutral
hadrons and photons are not detectable via tracking in the ID. They are measured after their
interactions with the calorimeters. Photons are detected by the ECAL, while neutral hadrons
are detected by the energy they deposit in the HCAL.

To measure the particle energy and momentum in a broad pr spectrum (from hundreds of
MeV to some TeV), and to have an efficient particle identification, ATLAS is divided into sub-
detectors employing different technologies, with different granularity and radiation resistance,

that surround the interaction point, as shown in Figure 3.3.

The innermost ID is a precision tracking system operating in a solenoidal magnetic field. It
covers the central rapidity region and provides measurements of the direction, momenta and

charge of the particles produced in the collision, and reconstructs vertices from tracks.

The middle layer consists of the calorimetric system, divided into ECAL and HCAL, which
provide the energy measurements of both neutral and charged particles. The high-granularity
ECAL allows the measurement of the energy and position of the EM showers formed by photons

and electrons by interacting with the detector material via alternating pair creation and brems-
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strahlung effect. Due to the interactions of the hadronically showering particles with the dense
material of the HCAL, this system is able to determine their energies with high precision.

Finally, the outermost detector is the muon spectrometer that, in combination with a dedic-
ated toroidal magnetic field, measures the muon momenta. Muons are generally reconstructed
as minimum ionising particles. Hence, they propagate through all the systems leaving traces of
ionized particles and reach the muon spectrometer, which records their trajectories and provides
a reliable estimate of the muon energy.

Weakly interacting particles as neutrinos or certain new particles foreseen by SM extensions
do not interact with the detector and their signatures can be determined from the energy balance

of the event.
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Figure 3.3.: Schematic illustration of typical detector at a hadron collider experiment. It also shows
the interaction of various particles with the different sub-components.

In order to establish the expected performance of the detector, one determines the intrinsic
accuracies and resolutions of the sub-detectors using test beams. The expected performance in
terms of energy and momentum resolution of the individual components of the ATLAS detector
evaluated during the commissioning phase is presented in Table 3.2.

The ID accuracy is sufficiently small to distinguish two close-by tracks. The inner-most module
measures hits with a precision of 10 pm in the transverse direction (R — ¢) and 115pm in the
longitudinal direction (Z).

In the calorimetry, the resolution in energy and the linearity in the response are the import-
ant parameters. For the muon spectrometer, the time resolution is important for the trigger

chambers, while the position accuracy is more relevant for precision chambers.

3.2.1. Geometry and Coordinate System

The ATLAS detector coordinate system, shown schematically in Figure 3.4, is a right-handed

Cartesian system with the origin defined at the nominal beam interaction point at the centre of
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ATLAS component Expected resolution 7 coverage
Measurement Trigger

Tracking system opp /P ~ 0.05% pr & 1% +2.5
ECAL op/E ~10%/VE ©0.7% +3.2 +2.5
Hadronic calorimetry:
- barrel/end-cap op/E ~ 50%/VE & 3% +3.2 +3.2
- forward op/E ~100%/VE @ 10% 31<|n <49 31<]n <49
Muon spectrometer opr /DT < 3.5% at pr < 200 GeV +2.7 +2.4

opr /P < 10% at pr ~ 1 TeV +2.7 +24

Table 3.2.: Expected ATLAS sub-detector resolution and 1 coverage [9].

the detector (X,Y,Z = 0). The positive X-axis is perpendicular to the direction of the beam
and aligned with the local horizon, pointing to the centre of LHC; the Y-axis is perpendicular to
the X-axis and to the beam axis, with the positive direction pointing upwards; and the Z-axis
is parallel to the beam direction. The rapidity y is defined as:

1 E+pz
= -1 3.3
y 2n<E_pZ), (3.3)

which for highly relativistic particles (m < p) can be approximated by the pseudo-rapidity:

1 1+ cos@ 0
n= 5111 <]_—COS@> = —Intan <2> y (34)

where 6 is the polar angle (angle between the Z-axis and the emerging particle direction), and

the transverse momentum, pr, is computed as pr = psin 6.

Y

X

Figure 3.4.: ATLAS detector coordinate system.
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3.2.2. Magnet System

The ATLAS magnet system is completely based on superconducting magnets, built in hybrid
configuration of solenoidal and toroidal coils, providing the bending power for momentum meas-
urements. The magnet system is composed of four elements: the Central Solenoid (CS), covering
the inner tracker, two End-Cap Toroid (ECT) and the Barrel Toroid (BT) as a part of the muon
spectrometer (Figure 3.5). The CS is placed inside the ECAL in order to avoid mechanical and
technological constrains on the calorimeter, and provides a 2 T field. In order to preserve the
performance of the calorimeters, a careful minimisation of the material used in the CS was per-
formed. Given a toroid configuration for both the barrel and the end-cap magnets, the charged
particles cross the detector almost perpendicularly to the field, with a high bending power even
in forward directions. The toroidal magnet structure is open, with eight coils in the central
region (in separated cryostats) and eight coils for each end-cap (in a common cryostat). The BT
provides a magnetic field between 0.15 T and 2.5 T, with an average of 0.5 T, and the end-cap
parts field vary between 0.2 and 3.5 T (1 T average) [9].

. Endcap toroid
Barrel toroid

(a) (b)

Figure 3.5.: (a) ATLAS detector magnet system and (b) magnetic field map [9].

3.2.3. The Inner Tracking Detector

The ID tracking system of the ATLAS experiment [144] provides efficient and precise track
reconstruction of the products of the LHC collisions. The ID is composed of three sub-detectors:
Pixel Detector, Semiconductor Tracker (SCT) and Transition Radiation Tracker (TRT). The
hits recorded in the individual sub-detectors are used to reconstruct the trajectories of charged
particles inside the tracker. All three sub-systems are split into a barrel part and two end-caps.
As mentioned previously, the entire ID is surrounded by a superconducting solenoid coil which
produces a 2 T axial magnetic field. Figure 3.6a shows a schematic view of the ID barrel, and

Figure 3.6b shows a cut-away view of one of the Inner Detector end-caps [145].

The Pixel Detector is the closest to the beryllium beam-pipe, as the first layer is located

only 50.5 mm from the interaction point, and thus high granularity is required given the large
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R=1082mm

(a) (b)

Figure 3.6.: Schematic view of (a) the ATLAS ID barrel and (b) end-cap shown together with all of
their components. The distances to the interaction point are also denoted [145].

particle density after the collisions. Each of the layers is equipped with silicon sensors that are
segmented into small elements, the pizels, with a minimum element size of 50 x 400 pm?. The
depletion layer, which measures the charge deposition caused by the ionisation of a charged
particle, is contained in each of the 13, 22 and 31 millions of pixels in the three layers in the
barrel, respectively, and in 6.6 millions of pixels in three discs on each end-cap. The three layers
in the barrel and three discs on each end-cap cover the central (|| < 2.5) region and provide an
experimental resolution of 10 pm x 115 pm for the particle position, playing a fundamental role
not only in the high precision measurement of the impact parameter of the tracks, but also in
reconstruction of secondary vertices.

The technology used in the Semiconductor Tracker is very similar to that of the Pixel Detector.
The material used is silicon, and the geometry is comparable: four coaxial cylinders form the
barrel part of the SCT at |n| < 1.4, and nine discs with detector modules in the region 1.4 < || <
2.5 constitute the SCT end-caps. The sensitive SCT module is segmented in silicon micro-strips,
each 80 pm wide and 126 mm long. The SCT typically provides eight strip measurements (four
space-points) for particles emerging in the beam-interaction region, and the achieved resolution
reaches 17pm in R — ¢ and 580 pm in the longitudinal direction [146].

The Transition Radiation Tracker is located around the SCT and provides tracking informa-
tion in individual axial drift tubes, as well as particle identification via transition radiation. The
main component of this sub-detector is a set of thin-walled polyimide tubes (or straws) of 4 mm
diameter, filled with a gas mixture (70% Xe + 27% CO2 + 3% O2) at a slight overpressure.
The axis of revolution of these tubes is a 31 pm-diameter gold-plated tungsten anode. The free
electrons created through ionisation produced by a passing charged particle undergo avalanche
multiplication near the wire. The space between the straws is filled up by a radiator material
where transition radiation photons may be emitted by highly relativistic charged particles as
they cross the traversing boundary between materials with different dielectric constants. This
effect allows one to distinguish between electrons and hadrons at low energies. The TRT straw

layout is designed so that charged particle tracks with transverse momentum pt > 0.5 GeV and
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with pseudorapidity |n| < 2.0 cross about 35 straws, providing an intrinsic accuracy of 130 pm
in the R — ¢ direction.

The combination of pixel and silicon trackers at small radii with the TRT at a larger radius
gives very robust track and vertex reconstruction, and high precision in both R — ¢ and Z

coordinates.

3.2.4. Calorimetry System

The intrinsic resolution of calorimeters improves with growing energy, which makes them very
well suited to measure the energy of the particles produced during the collisions by means
of absorption. Some of the main tasks of the Calorimetry System installed in the ATLAS
detector, shown in Figure 3.7, are an accurate measurement of the energy and position of
electrons and photons, a measurement of the energy and direction of jets and of the missing

transverse momentum.

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr eleciromagnetic

el A

LAr electromagnetic
barrel

Figure 3.7.: Schematic illustration of ATLAS calorimetry system surrounding the ID [9)].

The Electromagnetic Calorimeter

The ATLAS Electromagnetic Calorimetry in the region of |n| < 3.2 is based on an accordion-type
Liquid Argon (LAr) calorimeter. Its main part is a lead-LAr sampling detector with accordion-
shaped electrodes and lead absorber plates providing complete ¢-coverage without azimuthal
cracks. Incident particles shower in the absorber material and subsequently the LAr is ionised.
Under the influence of the electric field between the grounded absorber and powered electrode,
the ions and electrons drift, the latter inducing a pulse to be collected. The ECAL is divided
into a barrel part (covering |n| < 1.475) and two end-caps (1.375 < |n| < 3.2). Each end-cap
is divided into two coaxial wheels: an outer wheel and an inner wheel covering, respectively,

1.375 < |n| < 2.5 and 2.5 < |n| < 3.2. The spatial granularity of the cells in the (n — ¢) plane
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depends on the value of |n| and the calorimetric longitudinal sampling (layer) concerned, as
shown in Figure 3.8a. The first layer measures the early development of the electromagnetic
shower and is segmented very finely in 7: (An x A¢) = (0.0031 x 0.1). The second and third
layers use a coarser granularity: (Anx A¢) = (0.025 x 0.0245) and (An x A¢) = (0.05 x 0.0245)
in the central region, respectively. In the range |n| < 1.8, the ECAL is preceded by a thin liquid-
argon layer pre-sampler with a (An x A¢) = (0.025 x 0.1) granularity to recover the energy lost
in the upstream material (cryostat, superconducting coil, inner detector, etc.). The structure
of the ECAL was optimised for the SM Higgs boson searches with decays into H — -~ and
H — Z7Z — ete~eTe™, and its energy resolution, both in the barrel and end-cap regions, is
given by: op/E ~ 10%/vE and a constant term between 0.60% and 0.78%.

The Hadronic Calorimeter

In the central region |n| < 1.7, the ATLAS Hadronic Tile calorimeter, located behind the
solenoid coil and the ECAL, uses steel as absorber and scintillating tiles as active medium. The
calorimeter is split in a barrel (covering || < 1.0) and two extended barrel parts (covering
0.8 < |n| < 1.7). The light emitted by the interacting particles in the absorber and diffused
into the active medium is read by wavelength shifting fibers into two separate photo-multipliers.
Each barrel is divided into 64 trapezoidal modules of size A¢ ~ 0.1, made of steel plates and

scintillating tiles, approaching a radial depth of ~ 7.4 interaction lengths, shown in Figure 3.8b.

The Hadronic End-Cap Calorimeter (HEC) is a copper/liquid-argon sampling calorimeter
which provides hadronic coverage for 1.5 < |n| < 3.2. It uses parallel copper plate absorbers
orthogonal to the beam axis and consists of two consecutive wheels with absorber thickness of 25
and 50 mm, respectively. The granularity in (n—¢) of the HEC varies depending on the pseudo-
rapidity region: (AnxA¢) = (0.1x0.1) in the region 1.5 < |n| < 2.5 and (Anx A¢) = (0.2x0.2)
in the 2.5 < |n| < 3.2 region.
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¢
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Figure 3.8.: Schematic view of (a) a central barrel module of the ECAL and (b) a module of the
Hadronic Tile calorimeter [9].
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The Forward Calorimeter

In the forward region (3.1 < |n| < 4.9), the calorimetry is covered by the Forward Calorimeter
(FCal) using LAr as active medium and copper (electromagnetic part) and tungsten (hadronic
part) as absorbers. The FCal consists of copper rods parallel to the beam axis inside an outer
tube with 250 mm liquid argon gap in between, which cope with the extremely high radiation
levels and have a granularity of (Anx A¢) =~ (0.1x0.1). The hadronic calorimetry is located just
behind the electromagnetic FCal module. It uses two longitudinal samplings with tungsten rods
and matrix, and an increased gap thickness of 375 and 500 mm, and segmented in (An x A¢) ~
(0.2 x 0.2). A summary of the energy resolutions of all ATLAS calorimeters is shown in Table
3.2.

3.2.5. Muon Spectrometer

The need of high quality reconstruction of muons over large range in transverse momentum has
driven the primary design of the ATLAS detector. The MS includes barrel chambers arranged
in three cylindrical layers and covering the central region (|| < 1) and the end-cap chambers
(extending to n = 2.7)!. The spectrometer determines the trajectories of muons bent by the
magnetic field created by the toroidal magnets (3.2.2), allowing the measurement of muon charge
and momentum. The muon tracks are measured at three points away from the interaction point
in the MS. Thus, it is possible to determine the muon transverse momentum from the sagitta s:
pr = L%qB/8s, where L is the length of the trajectory of the muon in a constant magnetic field

of intensity B and ¢ is the electric charge of the muon.

In both the barrel and end-cap chambers, two types of detectors are present: an effective
trigger system based on chambers with fast response, and precision tracking chambers for ac-
curate measurements of the properties of muons. The first type corresponds to Resistive Plate
Chamber (RPC) and Thin Gap Chamber (TGC), while the second consists of the Monitored
Drift Tube (MDT) and Cathode Strip Chamber (CSC), as can be seen in Figure 3.9.

In the barrel region (|n| < 1.05), the RPCs deliver track information within 15-25 ns after the
passage of the particle. The chambers consist of two parallel resistive plates filled in between with
a gas mixture easily ionised at muon crossing. The applied potential difference (9.8 kV) enables
the formation of an avalanche along the ionising tracks towards the anode which constitutes a
signal. In the end-cap (1.05 < |n| < 2.4), the TGCs provide short drift time (< 25 ns) and high
rate capability. They use a similar multi-wire proportional chamber technology as the RPCs,
but tolerate the higher particle flux.

The MDTs cover the range of |n| < 2.7 and are used for tracking in the barrel and end-cap
chambers. They consist of three to eight layers of drift tubes, operating with Ar/COy gas. The
central tungsten-rhenium anode collects the free electrons that result from ionisation produced
by the passing muon, allowing the sub-system to reach an average spatial resolution of 35 pm

per chamber in the Z-direction.

Except for n = 0 due to services gap.
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Thin-gap chambers (T&C)

Cathode strip chambers (CSC)

End-cap toroid
Monitored drift tubes (MDT)

Figure 3.9.: Schematic illustration of the ATLAS Muon Spectrometer [9].

The CSCs are multiwire proportional chambers with the wires oriented in the radial direction
and with cathode planes segmented into strips in orthogonal directions. The position of the
track is obtained by interpolating between the charges induced on adjacent cathode strips. The
expected resolution of the chambers that cover the forward region (2.0 < || < 2.7) is 40 pm in

R-direction and about 5 mm in the transverse plane.

3.2.6. Forward and Luminosity Detectors

The ATLAS experiment has detectors also in the most forward regions to provide inputs about
very forward particle flow including the measurement of the instantaneous luminosity, trigger
events and control the general behaviour of the experiment.

LUminosity Cherenkov Integrating Detector (LUCID) consists of two symmetric arms de-
ployed at about 17 m from the ATLAS interaction point. The main aim of this detector is to
monitor the luminosity delivered by the LHC machine to the ATLAS experiment.

Absolute Luminosity For ATLAS (ALFA) provides a luminosity measurement looking at
elastic scattering at small angles (3urad). In order to achieve this measurement, the two de-
tector stations have to be placed far away from the interaction point (240 m) and as close as
possible to the beam.

Zero-Degree Calorimeters (ZDC) aim to detect forward neutrons and photons with |n| > 8.3,
in both proton-proton and heavy-ion collisions. It measures the luminosity recorded by ATLAS.
Moreover, its inputs are used to reduce backgrounds created by beam-gas and beam-halo effects,
by requiring a tight coincidence from its two arms.

Beam Pick-up based Timing system (BPTX) stations are located along the LHC on both
sides of atlas, 175 m away from the interaction point. They are used for both L1-trigger and for

the monitoring beams and timing signals.
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Minimum Bias Trigger Scintillators (MBTS) consist of two sets of scintillator counters installed

in the inner face of the LAr end-cap cryostat. They are used to trigger on minimum bias events.

3.2.7. Trigger System

The bunch spacing of 50 ns between proton-proton collisions at the LHC during the 2012 data-
taking corresponds to a 20 MHz bunch crossing rate. Nevertheless, only a small fraction of these
collisions results in interesting physics events, and the amount of data collected by ATLAS is
far too large to allow every event to be recorded.

To reduce the total data flow without losing interesting physics processes, a Trigger and Data
Acquisition system (TDAQ) [147] was developed and relies on the information provided by
the various sub-detectors of the ATLAS detector. It is composed of a hardware-based Level-1
trigger, and a software-based High Level Trigger (HLT), which is subdivided into Level-2 and
Event Filter (EF), as can be seen in Figure 3.10. The data acquisition system receives and

buffers the event data from the detector-specific readout electronics.
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Figure 3.10.: Overview of ATLAS trigger and data acquisition system [148].

The Level-1 uses reduced granularity signals sent from the calorimeters or muon detectors
to identify the position and energy of electromagnetic clusters, whereas Level-2 and EF have
access to the full-granularity data and to the information from the Inner Detector. In addition,
the Level-1 triggers identify the Region of Interest (Rol) within the detector to be investigated
by the HLT. The event frequency is substantially reduced with respect to the Level-1, and the
Level-2 has up to 40 ms to take a decision. The accepted event frequency at Level-2 is ~ 6.5 kHz.
The EF employs the same reconstruction algorithms used by the offline analyses and uses all
possible information coming from the sub-detectors and data calibrations. The frequency rate
at this stage drops to about 1 kHz. Trigger rates can be controlled by changing thresholds or
applying different sets of selection cuts. The selectivity of a set of cuts applied to a given trigger

object in the menu is represented by the terms loose, medium, and tight.
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3.3. Performance of the ATLAS Detector

During the Run I of the LHC, the ATLAS detector fraction of operational channels was >95%,
with overall Data Quality (DQ) losses of less than 1% for each individual system. Table 3.3
summarises the operational fraction of each of the ATLAS sub-detectors at the end of the 2012
data-taking. An impressive performance and stability was ensured by continuous monitoring

and improvements of data-taking methods.

Subdetector Number of channels Operational fraction

Pixel Detector 80 x 109 95.0%

SCT 6.3 x 106 99.3%

TRT 350 x 103 97.5%

ECAL 170 x 103 99.9%

Tile Calorimeter 9800 98.3%

Hadronic End-Cap Calorimeter 5600 99.6%
Forward LAr Calorimeter 3500 99.8%
Level-1 Calorimeter Trigger 7160 100%
Level-1 Muon RPC Trigger 370 x 103 100%
Level-1 Muon TGC Trigger 320 x 10? 100%
MDT 350 x 10° 99.7%

CSC 31 x 103 96.0%

Barrel Muon Chambers 370 x 103 97.1%
End-cap Muon Chambers 320 x 103 98.2%

Table 3.3.: Approximate values of the operational fraction of each of the ATLAS sub-detectors.
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CHAPTER 4

Dataset and Monte Carlo Event Generation

The analysis presented in this dissertation aims to indicate the presence or confirm the absence
of a signal of a Higgs boson produced in association with a pair of top quarks under the Standard
Model assumptions.

The dataset used in this search was collected by the ATLAS experiment during the first
years of the LHC operation, from Autumn 2009 to February 2013, referred to as Run I. Several
characteristics of the data-taking during the proton-proton run in 2012, including the pile-up
effect, are described in Section 4.1. An important step described in Section 4.2 is to accurately
predict the evolution of the entire event from the initial pp collisions until the detection of the
final stable hadrons in the ATLAS detector.

Monte Carlo (MC) techniques are used to model these processes, as well as provide full
simulation of the ATLAS detector geometry and material properties. A summary of the MC
generators and their parameters used to simulate the signal and background samples is presented
in Section 4.3. Achieving the best possible modelling of the physics processes is a key aspect of
this analysis, and therefore several corrections to the MC predictions are described.

Although the ATLAS detector has excellent lepton identification capabilities, non-prompt
leptons and non-leptonic particles, referred to as “Lepton misID” background, may enter the
data used for the search. This background contribution is known to be modelled poorly by MC

simulation, and its effect is estimated using data-driven method described in Section 4.4.

4.1. ATLAS Data Sample

During the full Run I period of the LHC, the ATLAS experiment collected pp collision data
at centre-of-mass energies of /s =7 TeV and 8 TeV corresponding to an integrated luminosity
of 5.1 fb~! and 21.3 fb~!, respectively, together with some small amounts of pp data at /s =
900 GeV and /s = 2.76 TeV. In addition, 158 bt of lead-lead collision data at nucleon-
nucleon centre-of-mass energy of 2.76 TeV and 30nb~! of proton-lead data at a nucleon-nucleon

centre-of-mass energy of 5 TeV were recorded.
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Period Dates JL£ [fb™Y  Peak £ [10%3 cm~2s71]
A 04/04-20/04  0.84 5.5
B 01/05 - 18/06 5.30 6.7
C  01/07-23/07 154 6.2
D 24/07-22/08  3.37 7.3
E  23/08-16/09  2.70 7.6
G 26/09-07/10  1.30 7.3
H  13/10-26/10  1.56 7.5
I 27/10-02/11  1.06 7.3
J o 02/11-25/11 2.7 7.4
L 30/11-05/12  0.89 7.5

Table 4.1.: Characteristics of the data-taking periods during the 2012 stable beam runs in /s = 8
TeV pp collisions.

In the year 2012, the LHC delivered a total of 22.8 fb~! integrated luminosity to the AT-
LAS detector during stable beams in /s = 8 TeV proton-proton collisions, of which 21.3 fb~!
was recorded. The recorded luminosity was determined from a preliminary calibration of the
luminosity scale derived from van der Meer (vdM) beam-separation scans performed in Novem-
ber 2012, where the two beams are displaced against each other in the horizontal and vertical
planes and their overlap is measured [149]. The final 21.3 fb~! dataset is sub-divided into 10
periods, a time-interval with approximately uniform data-taking conditions. The starting date
of each period, the recorded integrated luminosity ([£) and the peak luminosity (Peak L) are
summarised in Table 4.1. ATLAS sub-divides each period into runs corresponding to a shorter
period of data-taking (up to 24 hours subject to the LHC beam lifetime and the ATLAS detector
performance).

During data-taking, a first quality assessment is performed by the 24/7 shift crew in the
ATLAS Control Room. To quickly determine and investigate problems with the data-taking of
the ongoing run, shifters monitor several stages of the acquisition and processing chain using
simple algorithms to check for data corruption, de-synchronisation of the sub-detectors and run
automatic data quality checks on selected events [150].

The cumulative luminosities delivered by the LHC (green), recorded by the ATLAS detector
(vellow), and certified to be good after data quality checks (blue) during stable pp beams at
/s = 8 TeV centre-of-mass energy are shown as a function of time in Fig. 4.1a. The recorded
luminosity reflects the TDAQ inefficiency, as well as the inefficiencies of the so called warm start:
when the stable beam flag is set, the ID and the muon system ramp the high-voltage.

The presence of the pile-up noise, defined as the occurrence of several independent, inelastic

pp collisions during one or more subsequent bunch-crossings, induces significant performance
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Figure 4.1.: (a) Cumulative luminosity and (b) mean number of interactions per crossing as
seen by the ATLAS detector during the 2012 stable beam runs in /s = 8 TeV pp
collisions.

degradation on the physical objects measured by the detector. In particular, this effect can
be characterised by the appearance of overlapping jets and the reduction in the precision of
the jet energy measurement [151]. Figure 4.1b shows the distribution of the mean number of
interactions per crossing (< p >) which can be used to quantify the overall pile-up conditions,
and reaches a maximum of ~ 40.

One differentiates between in-time pile-up (additional pp interactions within the same bunch-
crossing) that can be roughly described by the number of reconstructed collision vertices in
one event, and out-of-time pile-up. The latter refers to the additional collisions from previous
and following bunch-crossings that affect the response of the detector, in particular the ATLAS
calorimeter system, with a time-response larger than two subsequent bunch-crossings. The
object reconstruction and identification algorithms have evolved with time particularly to adapt

to and compensate for the degradation of the detector performance due to these effects.

4.2. Monte Carlo Event Simulation

The ATLAS simulation chain, whose main task is to provide a realistic estimate of the ATLAS
detector material properties and response to the produced events as well as simulate a wide range
of signal and background physics processes expected at the LHC, is a chain of four well-defined
steps [152], as depicted in Figure 4.2.

ATLAS Monte Carlo Event Simulation

Event Generation Detector Simulation Digitisation Reconstruction

Figure 4.2.: ATLAS MC event simulation steps.
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The event generation using a Monte Carlo generator, which mimics the initial pp collision and
encompasses its fragmentation and hadronisation stages, is followed by the simulation of the
ATLAS detector geometry and material properties. Both for data and MC generated events,
the digitisation step converts the currents and voltages into a response of the read-out system
of the ATLAS detector, and finally the collisions are reconstructed, which will be discussed in
detail in Chapter 5.

Event generation

The generation of events using MC generators is split up according to the factorisation prin-
ciples [153, 154, 155] and can be separated into the hard-scattering of the partons, the parton
shower, the hadronisation of the partons and the subsequent decays of hadrons and charged
leptons. These different phases of the generation, corresponding to different kinematic regimes,
are pictorially illustrated in Fig. 4.3 for a ttH event produced by an MC event generator at the
LHC. The hard-scattering is depicted as big red circle, followed by the decay of the top quarks
and the Higgs boson (small red circles) and additional hard radiation (red lines). The rem-
nants of the incoming protons experience secondary hard or semi-hard interactions defined as
the underlying event, represented by the purple ellipse. The transition of the final-state partons
to colourless hadrons occurs during the hadronisation process (light green ellipses) and those
hadrons then decay (dark green circles). In the following, a more detailed discussion of the

different phases is given.
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Figure 4.3.: Pictorial representation of a ttH event as produced by an event generator [156].

Calculation of hard scattering cross section

The calculation of the production cross sections of any physical process in pp collisions can be
separated in two energy regimes [155]. The short-distance (high-energy regime) part describes
the parton-parton cross section (¢) evaluated using perturbative QCD calculations, and the long-
distance (low-energy regime) piece characterises in a phenomenological way the internal structure

of the proton, factored into the PDF. The separation is set by an arbitrary factorisation scale
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pp. The hard scattering cross section for the process pp — N at the centre-of-mass energy +/s
in a pp collisions, schematically shown in Figure 4.4 for the pp — tt production, can be written

as:

Opp—sN = Z /dI1d932/f1(331,Q2)f2(962,Q2) X d12N(pE, pr)  (4.1)

1,2=q,q,9

— Z /dxldxz/d‘bx X f1($17Q2)f2($27Q2)2

1,2=q4,q,9

1
r1T28

(Mg n 2 (®n, pirs iR, (4.2)

where f; and fo denote the PDFs of the interacting partons 1 and 2 (summation runs over all
qq, g9, qg and gg pairs) carrying some fractions z1 2 of the initial proton’s momenta P; o and
Q? is the energy scale of the scattering process. The partonic cross section Gio_,y is expressed
in terms of the Lorentz-invariant phase space element d®y and the corresponding transition
matrix element Mis_,n for a final state NV evaluated according to perturbation theory as a sum
of the Feynman diagrams [157, 158]. Due to the complexity of the integration over the full phase
space, Monte Carlo sampling methods are applied [159].

P, — t
x;P;
000000¢
X2P2 -
P

Figure 4.4.: Schematic representation of the top-quark pair production using the factorisation prin-
ciples.

The inclusion of higher order perturbative QCD corrections, which include one-loop virtual
exchange and real emission of one additional parton, is, in part, possible due to the decrease
of the strong coupling constant a5(Q?) at high values of the hard probing scale Q2. Thus, the
partonic cross section &12,y in Eq. 4.1 can be expressed as a power expansion of the strong
coupling ag(pd):

G125N = [6L0 + as(pR)onLo + O (& (1R))] 1o n (4.3)

where 61,0 is the leading-order (LO) tree-level parton-parton cross section and dnr,o is the next-
to-leading order (NLO) QCD correction to the parton-parton cross section. The renormalisation
scale ug is introduced in order to deal with infra-red (IR) divergences occurring at higher-orders
in perturbation theory due to both real and virtual corrections [160, 161]. Typically, both the
factorisation up and renormalisation ur scales are set equal and chosen to be of the order of
the scale Q2 of the hard scattering process. Large logarithmically enhanced terms due to soft-
gluon radiation are “resummed”, reaching next-to-next-to-leading logarithmic (NNLL) accuracy
of QCD corrections in the case of the ¢t production [114].
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4. Dataset and Monte Carlo Event Generation

Figure 4.5 shows the predictions of the cross sections in proton - (anti)proton collisions as a
function of centre-of-mass energy for several SM processes calculated at NLO in perturbation
theory. One can notice that the total cross section (otet) is orders of magnitude higher than the
cross section for the production of the SM Higgs boson at my = 125 GeV, shown in the bottom
of the figure.

proton - (anti)proton cross sections
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Figure 4.5.: SM proton - (anti)proton cross sections as a function of centre-of-mass energy. The
dashed lines indicate the centre-of-mass energies of 1.96, 7 and 14 TeV, while the solid
line indicates 1/s = 8 TeV. On the left side the cross section of different physics processes
(indicated in blue) are shown, while on the right side the event rate is shown for an
instantaneous luminosity of 1033 cm=2 s~! [162].

Parton distribution functions

The parton distribution functions play a central role not only in the calculation of the cross sec-
tion in Equation 4.1, but also in the modelling of parton showers and hadronisation effects. A
generic PDF f;(z;,Q?) describes the probability of finding a parton of type i with a momentum
fraction 2 when a proton is probed at the scale Q2. As the actual form of f;(z;, @?) cannot
be predicted with perturbative QCD theory, a parametrised functional form of z; is fitted to
experimental data at the starting scale Q% and then propagated to any higher scale Q? using the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations, introduced in Eq. 4.4.
The available data for the PDF determination comes mainly from deep-inelastic scattering ex-
periments at HERA, neutrino data, as well as Drell-Yan and jet production at the TEVATRON
and LHC colliders. An example of the values used by the MSTW 2008 NLLO PDFs at scales of
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MSTW 2008 NLO PDFs (68% C.L.)
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Figure 4.6.: Q3-dependence of zf(x,Q?) as a function of the momentum fraction x for the MSTW
2008 NLO PDFs at scales of (left) Q> = 10 GeV? and (right) Q2 = 10* GeV? [163].

Q% = 10 GeV? and Q? = 10* GeV?, including the associated one-sigma (68%) confidence level

uncertainty bands are shown in Figure 4.6.

Parton Shower and Hadronisation
In order to describe fully the physics processes, the MC generators are usually interfaced to
hadronisation and showering programs. Parton shower models provide a relation between the
partons from the hard interaction (Q? > Agcp) to partons near the energy scale of Agep.
Here Agcp ~ 250 MeV is defined as the transition energy between the high-energy and low-
energy regions, i.e. it is the non-perturbative scale of QCD. A commonly used approach for
parton shower models is the leading-logarithm approximation, where showers are modelled as a
sequence of splittings of a parton a to two partons b and ¢. The QCD theory allows three types
of possible branchings, ¢ — qg, ¢ — gg and g — ¢, while only two branchings exist in QED
theory, namely ¢ — ¢v and | — [y. The differential probability dP, for a branching of QCD
emissions is given by the DGLAP evolution equations [164, 165, 166]:

dP, =) as—(t)Pa_}bc(z)dtdz. (4.4)

” 27 ’

The sum in Eq. 4.4 runs over all possible branchings and P, . denotes the corresponding
DGLAP splitting kernel. The evolution parameter ¢ is defined as ¢ = log(Q?/ Aéo p), and z is
the momentum fraction of the parton b compared to parton a. The implementation of parton

showers is achieved with MC techniques.

In the context of event generators, hadronisation indicates the process by which a set of
coloured partons (after showering) is transformed into a set of colour-singlet hadrons, which may
then subsequently decay further. A schematic representation of the two discussed hadronisation

models is presented in Figure 4.7.
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(a) (b)

Figure 4.7.: A schematic representation of the parton showers with (a) string and (a) cluster hadron-
isation models [167].

The string fragmentation model called Lund model [168] and implemented in PYTHIA [169] is
a proposal for the hadronisation of a colour field, illustrated in Figure 4.7a. QCD confinement
theory predicts that the colour field lines created between a quark-antiquark pair with no in-
termediate gluons are concentrated in a colour flux tube stretched between the ¢ and ¢ acting
as a string with a tension independent of the separation between the two of them!. During the
temporal evolution, the non-perturbative creation of quark-antiquark pairs breaks the string via
the process (¢7) — (¢q’) + (¢’q). The gluons in the Lund model are represented as transverse
“kinks”; these are always coupled to 2 strings, as a gluon is a colour octet. A heuristic step in
the entire system consists in identifying the stable states of the string with the invariant masses
of the stable hadrons. For each breakup vertex, the dynamical description of the fragmentation

is physically motivated by the quantum mechanical tunnelling probability:

2
Prob(m?, p%) o exp <—%) exp <—7TI]?> ) (4.5)

where m is the mass of the produced quark and pr is the non-perturbative transverse momentum

imparted to it by the breakup process.

In the cluster fragmentation model [170], implemented in HERWIG [171] and with an alternative
implementation [172] in SHERPA [156], the colour-singlet clusters of partons are formed after
the perturbative phase of jet development and then decay into observable hadrons. The colour
preconfinement property is used as the basis for the cluster hadronisation, which is local in colour
and independent of the hard process and the energy. As can be seen from Figure 4.7b, the gluons

that remain after the parton shower are split non-perturbatively into quark-antiquark pairs. The

'This idea is consistent with the Regge phenomenology, heavy quarkonium spectra and lattice QCD, which
indicate a value of the string tension x ~ 1 GeV/fm ~ 0.2 GeV? [42].
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cluster fragmentation model has fewer parameters than the string one, and incorporates a natural

mechanism for generating transverse momenta of the particle during the hadronisation.

Multiple-parton interactions

Eq. 4.1 describes only a single parton-parton interaction within a pp collision. However, in reality,
several parton-parton interactions can occur within the same collision event, a phenomena known
as multiple-parton interactions (MPI). Most of the MPI lead to soft additional jets in the event
which cannot be reconstructed in the detector due to their small energies. Still these effects

must be taken into account, and are described by phenomenological models [173].

The main MC event generators used in the present search are described below:

Multi-purpose event generators: PYTHIA [174] or HERWIG [171] include all aspects of the
proton-proton collisions: the description of the proton via an interface to PDF sets, initial-state
shower models, the hard scattering process and the subsequent resonance decays, the simulation
of final-state showering, MPI, the hadronisation modelling and further particle decays. They
provide an extensive list of leading order matrix element calculations and cover a wide range
of physics processes. Higher order corrections are modelled by parton showers, but they also
include the corresponding phase-space parametrisations for 2 — 1, 2 — 2 and some 2 — 3
production channels in the framework of the SM and some new physics extensions.

Multi-leg generators: ALPGEN [175], MADGRAPH [176] or SHERPA [156] provide tree-level
matrix element calculations, particularly for the production of vector bosons in association with
additional partons. The combination of the hard scattering calculation with the parton shower-
ing mechanisms requires special treatment to avoid double counting of the parton showering
already produced at matrix element level, thus various ME+PS matching schemes (CKKW [177]
or MLM [178]) are used.

MC generators using fixed-order NLO calculations: MCQNLO [179] and POWHEG [180]
include fixed-order NLO corrections and produce additional parton radiation with exact tree-
level matrix element calculations and virtual loop corrections. The current implementation of
PoOwHEG in the POWHEG-BOX framework allows for an automated matching of a generic NLO
matrix element to the parton shower provided by PYTHIA or HERWIG schemes and foresees that
the hardest emission is generated first, and the subsequent softer radiations are passed to the

showering generator.

Detector simulation and digitisation

A detailed simulation of the ATLAS detector geometry and material properties is based on the
GEANT4 package [181], a transport code widely used for studies of hadronic and electromagnetic
cascades induced by high-energy particles. A detailed detector description is crucial for accur-
ately modelling, for example, missing transverse energy, track reconstruction efficiencies, and
calorimeter response. Thus, the ATLAS detector is described using 4806839 volumes, distributed
among the inner detector (38%), calorimetry (32%) and muon system (30%) [152]. A fast sim-

ulation of the calorimeter response [182] provides large statistics to supplement full simulation
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studies, but the accuracy of the reconstruction of several calorimetry components might not be
described precisely. The energies deposited in the sensitive portions of the detector are recorded
as hits, containing the total energy deposition, position and time. The correct description of the
recorded data is also achieved by the reproduction of the defects in the real sensors by repro-
ducing various conditions data (e.g. calibrations, noisy and dead channels or misalignment) for
the specific run.

In a second step, the digitisation of the simulated detector interactions is performed and the
nominal data reconstruction algorithms are applied. The digitisation software transforms the
output from the GEANT4 simulation into the actual output format of the detector, the Raw Data
Object (RDO). Finally, the reconstruction step, discussed in detail in Chapter 5, is identical for
digitised MC events and real data: the output from the readout electronics is reconstructed as

tracks and energy depositions and saved as Event Summary Data (ESD).

4.3. Monte Carlo Data Samples

Table 4.2 provides a summary of some of the relevant parameters of the MC samples used in

the analysis.

Process Generator PDF set Fragmentation Normalisation Cross-
model section [pb]
Signal
ttH PowHEL CT10NLO PyTHIA 8.1 NLO 0.13
Background
tt +jets PowHEG 3.0 CT10 PyTHIA 6.425 NNLO+NNLL 252.9
tt+V  MADGRAPH 5 CTEQ6L1 PYTHIA 6.425 NLO 0.4
W +jets ALPGEN 2.14 CTEQG6L1 PyYTHIA 6.425 NNLO ~ 3.8 x 104
Z+jets ALPGEN 2.14 CTEQG6L1 PyYTHIA 6.425 NNLO ~1.5x 104
Single top POWHEG 3.0 CT10 PyTHIA 6.425 aNNLO 52.6
Diboson  ALPGEN 2.14 CTEQ6L1 HERWIG 6.520 NLO 33.5

Table 4.2.: List of generators and parameters used for the different processes. Information is given
about the perturbative QCD (pQCD) highest-order accuracy used for the normalisation of
the different samples, the fragmentation/hadronisation model and PDF sets considered.

All samples using HERWIG are also interfaced to JimMy 4.31 [183] to simulate the underly-
ing event. All simulated samples utilise PHOTOS 2.15 [184] to simulate photon radiation and
TAuOLA 1.20 [185] to simulate 7-lepton decays. Events from minimum-bias interactions are sim-
ulated with the PyYTHIA 8.1 generator with the MSTW2008 LO PDF set and the AUET2 [186]

tune. They are superimposed on the simulated MC events, matching the luminosity profile of
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the recorded data. The contributions from these pileup interactions are simulated both within
the same bunch crossing as the hard-scattering process and in neighbouring bunch crossings.

In the following, the simulation of each background and of the signal is described in detail.
For all MC samples, the top quark mass is set to m; = 172.5 GeV and the Higgs boson mass is
set to mpy = 125 GeV.

4.3.1. Signal Model

The ttH signal process is modelled using NLO matrix elements obtained from the HELAC-
Oneloop package [187] interfaced to POWHEG-BoOX [188], and referred to as POWHEL samples.
They are inclusive in Higgs boson decays and are produced using the CT10NLO PDF set and
factorisation and renormalisation scales set to up = pr = my + mpy/2. The PowHEL ttH
sample is showered with PyTHIA 8.1 [189] with the CTEQ6L1 PDF and the AU2 underlying-
event tune [190]. The ttH cross section and Higgs boson decay branching fractions are taken
from (N)NLO theoretical calculations collected in Ref. [102].

4.3.2. Background Modelling

tt+jets background

The tt+jets sample is generated using the POWHEG-BoOX 2.0 NLO generator [180, 191] with
the CT'10 parton distribution function set [192]. It is interfaced to PyTHIA 6.425 [174] with
the CTEQG6L1 PDF set [193] and the Perugia2011C [194] underlying-event tune. The sample
is normalised to the top++2.0 [195] theoretical calculation performed at NNLO in QCD that
includes resummation of NNLL soft gluon terms [114, 115, 116, 117, 118].

The measurement of differential cross section for ¢ production in pp collisions at /s = 7 TeV
observed a mismodelling of the top quark pt and the pr of the ¢t system [196]. Figure 4.8 shows
that POWHEG+PYTHIA prediction clearly overshoots the data at high jet ptTOP and pfﬁ_.

Since achieving the best possible modelling of the tf+jets background is a key aspect of this
analysis, a reweighting is applied to tt+light and tt+c¢ events in POWHEG+PYTHIA based on
the ratio of measured differential cross sections at /s = 7 TeV in data and simulation as a
function of top quark pr and ¢t system pr [196]. It was verified using the simulation that the
ratio derived at /s = 7 TeV is applicable to /s = 8 TeV simulation. It is not applied to
the tf+bb component since that component was corrected to match the best available theory
calculation. Moreover, the measured differential cross section is not sensitive to this component.
The reweighting significantly improves the agreement between simulation and data in the total
number of jets (primarily due to the ¢t system pp reweighting) and jet pr (primarily due to
the top quark pr reweighting). This can be seen in Fig. 4.9, where the number of jets and the
scalar sum of the jet pr (H%ad) distributions in the exclusive 2-b-tag region are plotted in the
single-lepton channel before and after the reweighting is applied. Several studies concerning
the options to assign systematic uncertainties due to the reweighting method can be found in

Appendix A.
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The irreducible background of the ttH(H — bb) signal is the production of a pair of top
quarks in association with a bottom quark-antiquark pair (¢f 4+ bb). Theory predictions for
the tf + bb component of the total background play a key role in the regions with high jet
and b-jet multiplicities - regions which show a high sensitivity to the t¢H signal. The tt-+jets
sample is generated inclusively, but events are categorised depending on the flavour of partons
that are matched to particle jets that do not originate from the decay of the ¢t system. The
matching procedure is done using the requirement of AR < 0.4. Particle jets are reconstructed
by clustering stable particles excluding muons and neutrinos using the anti-k; algorithm with a
radius parameter R = 0.4, and are required to have py > 15 GeV and |n| < 2.5. Events where
at least one such particle jet is matched to a bottom quark not originating from a top quark
decay are labelled as tf+bb events. Similarly, events which are not already categorised as tf-+bb,
and where at least one particle jet is matched to a charm quark not originating from a W boson
decay, are labelled as tt+cc events. Events labelled as either t{+bb or ti+cé are generically
referred to as tt+HF events (HF for “heavy flavour”). The remaining events are labelled as
tt+light-jet events, including those with no additional jets.

Since POWHEG+PYTHIA only models t£+bb via the parton shower, an alternative tt+jets
sample is generated with the MADGRAPHS 1.5.11 LO generator [176] using the CT10 PDF set
and interfaced to PYTHIA 6.425 for showering and hadronisation. It includes tree-level diagrams
with up to three extra partons (including b- and c-quarks) and uses settings similar to those in
Ref. [135]. To avoid double-counting of partonic configurations generated by both the matrix
element calculation and the parton-shower evolution, a parton—jet matching scheme [178] is
employed.

Fully matched NLO predictions with massive b-quarks have become available recently [197]
within the SHERPA with OPENLOOPS framework [156, 198] referred to in the following as
SHERPAOL. The SHERPAOL NLO sample is generated following the four-flavour scheme? us-
ing the SHERPA 2.0 pre-release and the CT10 PDF set. The renormalisation scale is set to
UR = Hz’:t,{,b,?} E%/ f, where Er; is the transverse energy of parton ¢, and the factorisation and
resummation scales are both set to (Et; + Erjz)/2.

For the purpose of comparisons between tt+jets event generators and the propagation of
systematic uncertainties related to the modelling of t+HF, as described in Sect. 7.1.3, a finer
categorisation of different topologies in tt+HF is made. In particular, the following categories

are considered:

e if two particle jets are both matched to an extra b-quark or extra c-quark each, the event
is referred to as tf 4 bb or tt + c¢;

e if a single particle jet is matched to a single b(c)-quark the event is referred to as tt+b
(tt+c);

2In the four-flavour scheme, the proton PDF does not contain b-quarks and they are generated at the matrix
element level.
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e if a single particle jet is matched to a bb or a cé pair, the event is referred to as t{+B or

tt+C, respectively.

Figure 4.10 shows the relative contributions of the different t#+bb event categories to the
total tf4+bb cross section at generator level for the POWHEG+PYTHIA, MADGRAPH+PYTHIA
and SHERPAOL samples. Contributions from events where heavy flavour is produced via mul-
tiparton interaction or final state radiation, labeled “tt+MPI” and “tt+FSR” respectively, are
not included in the SHERPAOL calculation. One observes that POWHEG+PYTHIA is able to
reproduce reasonably well the t+HF content of the MADGRAPH tt+jets sample, which includes
a LO tf 4 bb matrix element calculation, as well as the NLO SHERPAOL prediction.
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Figure 4.10.: Relative contributions of different categories of tf+bb events in POWHEG+PYTHIA,
MADGRAPH+PYTHIA and SHERPAOL samples [5].

The relative distribution across categories is such that SHERPAOL predicts a higher contri-
bution of the ¢t + B category, as well as every category where the production of a second bb
pair is required. The modelling of the relevant kinematic variables in each category is in reas-
onable agreement between POWHEG+PYTHIA and SHERPAOL. Some differences are observed
in the very low regions of the mass and pr of the bb pair, and in the pr of the top quark and tt
systems.

The dedicated prediction from SHERPAOL at NLO accuracy in QCD for the t£+bb contribution
is expected to model more accurately this important background than POWHEG+PYTHIA, which
models tf + bb via parton shower. Thus, a reweighting procedure is implemented to tt+bb events
from POWHEGH+PYTHIA to reproduce the NLO tf+bb prediction from SHERPAOL for relative
contributions of different categories as well as improve the kinematics modelling, as detailed in
Ref. [199]. The inclusive £ 4 bb cross-section is kept constant throughout all the reweightings.

The relative cross-section in each category is adjusted to the NLO prediction. T'wo independent
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kinematic reweightings are derived to improve the agreement in their kinematics: the first
reweighting is based on the pr of the top and ¢t systems. The second reweighting is chosen to
be on the pr and 7 of the heavy-flavour jet in the topologies with only one additional heavy
flavour jet. In the topologies with two or more heavy flavour jets the reweighting is based on the
AR and pr of the dijet system not coming from the top quark decay [199]. These reweightings,
improve the modelling of the rest of the variables, though some minor differences remain.

In the absence of an NLO calculation of tt+c¢ production, the MADGRAPH-+PYTHIA sample

is used to evaluate systematic uncertainties on the tt+c¢ background.

tt + V background
The production of a ¢t pair in association with a vector boson (W/Z) is one of the irreducible
backgrounds. Samples of ¢t + V are generated with MADGRAPH 5 and the CTEQ6L1 PDF
set. PYTHIA 6.425 with the AUET2B tune [200] is used for showering. The t¢ + V samples are
normalised to the NLO cross-section predictions [201, 202].

W/Z+jets background

Samples of W/Z+jets events, and diboson production in association with jets, are generated
using the ALPGEN 2.14 [175] leading-order generator and the CTEQ6L1 PDF set. Parton
showers and fragmentation are modelled with PyTHIA 6.425 for W/Z+jets production and with
HERWIG 6.520 [171] for diboson production. The W +jets samples are generated with up to five
additional partons, separately for W +light-jets, Wbb+jets, Wec+jets, and Wetjets. Similarly,
the Z+jets background is generated with up to five additional partons separated in different
parton flavours. Both are normalised to the respective inclusive NNLO theoretical cross sec-
tion [203]. The W/Z+jets background is estimated from simulation reweighted to account for
the difference in the W/Z pr spectrum between data and simulation [204]. The heavy-flavour
fraction of these simulated backgrounds, i.e. the sum of W/Z +bb and W/Z4-cé processes, is
adjusted to reproduce the relative rates of Z events with no b-tags and those with one b-tag
observed in data [205].

Diboson and single top backgrounds
The diboson+jets samples are generated with up to three additional partons and are normalised
to their respective NLO theoretical cross sections [206].

Samples of single top quark backgrounds are generated with POWHEG-BoOX 3.0 using the
CT10 PDF set. The samples are interfaced to PYTHIA 6.425 with the CTEQG6L1 set of parton
distribution functions and Perugia2011C underlying-event tune. Overlaps between the ¢t and Wt
final states are removed [207]. The single top quark samples are normalised to the approximate
NNLO theoretical cross sections [208, 209, 210] using the MSTW2008 NNLO PDF set [163, 211].

4.3.3. Tag Rate Function Method

When requiring high jet and d-tag multiplicity in the analysis, the number of available MC events
is significantly reduced, leading to large fluctuations in the resulting distributions for certain

samples. This can negatively affect the sensitivity of the analysis through the large statistical
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uncertainties on the templates and unreliable systematic uncertainties due to shape fluctuations.
In order to mitigate this problem, the probability of a jet to be b-tagged is calculated separately
for tt+light, tf+cc and tf+bb events and parametrised as functions of the true jet flavour, pr and
1. This allows all events in the sample before b-tagging is applied to be used in predicting the
normalisation and shape after b-tagging [212]. This prediction agrees well with the normalisation

and shape obtained by applying the b-tagging algorithm directly, as shown in Figure 4.11.
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Figure 4.11.: Distributions of H2 in (> 6j, > 4b) analysis region for (a) tf+light and (b) tZ+bb
MC samples. The distributions obtained with the TRF method (red dashed line) are
compared to those using the b-tagging algorithm directly (blue dots).

4.4. Data Driven Background Estimate

Though the probability for a multi-jet event to pass the event selection is very low, the production
cross section is several orders of magnitude larger than that of top quark pair production, and
due to fake leptons the multi-jet events can contribute to the background. This background is
determined in a data-driven way employing the so-called matrix method. The matrix method
[213] helps determine the number of fake leptons in a selected event sample. It exploits differences
in identification between real and fake leptons, and is based on selecting two categories of events
using loose and tight lepton selection requirements. The tight lepton selection is by definition
the standard lepton selection used in the analysis, while the loose one is obtained reducing some
of the lepton identification requirements. In this way, all the leptons passing the tight selection
(tight leptons) also pass the loose lepton selection. Based on these loose and tight lepton
selections, two data samples are defined, differing only in the lepton identification criteria (loose
or tight), while keeping the same kinematic selections. The tight sample contains mostly events
with real leptons, while the loose one is enriched in events with fake or non-prompt leptons.
Kinematic distributions and normalisations are derived by measuring the relative efficiencies
of leptons from known real and fake sources under different selection criteria [214]. The real

efficiencies for electrons and muons are extracted in the real lepton dominated region of the
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dilepton invariant mass distributions using Z — 71~ events, shown in Figure 4.12a. The fake

efficiencies are obtained in the fake lepton dominated region defined by the high impact para-

meter significance (d‘gig > 5.0), depicted in Figure 4.12b. After parametrising these efficiencies

in terms of relevant kinematic parameters, they are applied to the measured data to estimate

their expected contributions.
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Figure 4.12.: (a) Distribution of the invariant mass m,, of opposite sign charge muon pairs with
one loose and one tight muon. The real efficiencies are obtained in the signal region,
and the fake lepton contamination is determined in the side bands and subtracted. (b)
Distribution of the transverse impact parameter significance di'® in pu+> 1 jets events
for data and real lepton expectation from simulated events. The region between the top
of the stacked simulated sources and the data is assumed to come from the non-prompt
and fake lepton background contribution [214].
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CHAPTER 5

Object Reconstruction and Event Selection

The search presented in this thesis involves several different primary physics objects: charged
leptons, particularly electrons and muons, and jets, which originate from hadronised quarks
and gluons. The reconstruction of these objects, starting from the recorded electronic detector
signals and employing the ATLAS experiment’s reconstruction software framework, ATHENA
[152], is discussed in this Chapter. After the object reconstruction performance is tested on
data and compared with MC simulation, specific parametrised corrections or “scale factors” are
derived. These factors reflect the level of disagreement between MC simulation and data in the
object reconstruction efficiency, isolation, energy resolution and scale.

Charged particle tracks and vertex reconstruction is discussed in Section 5.1. Electrons and
muons reconstruction in the tracking detectors and calorimeters is introduced in Section 5.2.
Jet reconstruction is outlined in Section 5.3. The algorithms which identify the flavour of a jet
experimentally are described in Section 5.4. Finally, Section 5.5 summarises the offline event

preselection.

5.1. Tracks and Vertices

Tracks produced by the charged particles traversing the ATLAS detector are reconstructed
within the ID acceptance (|n| < 2.5) using a x2-fit [215]. The charged particles follow a cir-
cular trajectory in the transverse plane of the ID magnetic field and are described by a set of
parameters with respect to the primary vertex: the inverse transverse momentum ¢/pr, where
q is the particle charge, the azimuthal (¢) and polar (f) angles, and the transverse (dp) and
longitudinal (zp) impact parameters. The inside-out pattern recognition sequence begins with
finding a three-dimensional space-point seed in the silicon layers (Pixel detector and SCT) and
then propagates outwards to include hits from the TRT. This sequence provides the baseline

algorithm for an efficient reconstruction of primary charged particles'. The second back-tracking

!Primary particles are defined as particles produced in a pp collision with a mean lifetime greater than 3x 107! s
or produced from the subsequent decays or interactions of particles with a lifetime shorter than 3 x 107! s.
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sequence, in which TRT track segment seeds are extrapolated inwards by adding silicon layer
hits, is mainly designed to reconstruct tracks from secondary interactions. The final track can-
didates are required to fulfil a set of quality criteria based on the number of hits in the ID and
do and zp values with respect to the nominal beam-line. The increased detector occupancy due
to high pile-up events degrades the track parameter resolution and decreases the reconstruction
efficiency. Thus, tighter requirements on the track and vertex reconstruction algorithms are

applied to suppress the rate of fake tracks [216].

The vertex reconstruction algorithm is well adapted to the LHC high pile-up running condi-
tions, where on average 21 pp collisions occur per bunch crossing (see Figure 4.1b). The primary
vertex is reconstructed by a dedicated algorithm in the HLT that fits tracks and primary event
vertices in real time, as well as by an offline reconstruction algorithm that exploits the high
tracking efficiency and resolution of the ID through an unbinned maximum-likelihood fit [217].
The algorithm is able to reconstruct multiple interactions simultaneously taking into account
the track-sharing and close-by vertices. The beam spot position, a luminous region inside the
ATLAS detector where pp interactions occur, is used as a three-dimensional constraint and its
shape and position are determined by the overlap of the LHC beams. Vertex resolutions of
about ox ~ oy ~ 18 =23 pym and o7 ~ 42 — 52 mm were typically achieved in the 2012 dataset,

as presented in Figure 5.1.
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Figure 5.1.: Two dimensional distribution of the reconstructed primary vertices with at least 5 tracks
in the transverse (a) and horizontal (b) planes [217].

5.2. Lepton Reconstruction and Selection
The ATLAS detector is designed to be highly efficient in the detection of charged leptons over

a large pr and rapidity range. By making use of the tracking systems, precise measurements of

the properties such as charge, direction and momentum of charged leptons are possible [218].
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Muons are identified using several reconstruction algorithms (leading to different muon types)
given the available information from the ID, MS and the calorimeter sub-detector systems. The

several types are:

— Stand-Alone (SA) muons: the muon trajectory is reconstructed only by combining the hits
in the MS. The track is extrapolated back to the point of closest approach to the beam

line, taking into account the estimated energy loss of the muon in the calorimeters;

— Segment-tagged (ST) muons: a track in the ID is classified as a muon if, once extrapolated
to the MS, it is associated with at least one local track segment in the MDT or CSC

chambers;

— Calorimeter-tagged (CaloTag) muons: a track in the ID is identified as a muon if it can
be associated to an energy deposit in the calorimeter compatible with a minimum ionizing

particle;

— Combined (CB) muons: track reconstruction is performed independently in the ID and
the MS taking into account the muon energy loss in the calorimeter. This reconstruction
type is used in the present analysis as it exhibits excellent resolution and efficiency for
muons with pp < 100 GeV.

Additional quality requirements are applied to the ID tracks used for the CB muons, with
the pseudorapidity being limited by the ID acceptance to |n| < 2.5. These include requirements
of minimal number of hits in the Pixel, SCT and TRT detectors, together with at least one
hit in the innermost Pixel detector layer. In order to select the muons originating from the
considered hard-scattering primary vertex, they are required to fulfil an impact parameter cut of
|z0| < 2 mm. The requirement of the muon transverse momentum pp > 25 GeV is used to obtain
a 90% efficiency from the chosen single muon trigger chain, that being a logical disjunction (OR)
of the triggers EF mu24i _tight and EF mu36_tight. The trigger with the lowest pt threshold
includes an isolation requirement on the candidate lepton, resulting in inefficiencies at high-
pr that are recovered by the second trigger with higher pt threshold. In addition, muons are
required to satisfy a pp-dependent track-based isolation requirement to deal with high pile-up
conditions or in boosted configurations where the muon is close to a jet: the scalar sum of the
track pr in a cone of radius AR < 10 GeV/pr around the muon (excluding the muon track
itself) must be less than 5% of the muon pr.

A set of corrections is applied to the MC events to compensate for isolation and trigger
mismodelling, as well as a muon momentum smearing correction. The muon reconstruction
efficiencies have been measured in 2012 data using a tag-and-probe method with samples of
very high purity, consisting of Z — p*p~ decays. As can be seen from the Figure 5.2, the
reconstruction efficiency of the muon algorithms as a function of pr and 7 is of the order of 99%

for most of the parameter space.
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Figure 5.2.: Muon reconstruction efficiencies determined from data and MC simulations, as a function
of (a) muon pr and (b) 7 for different muon types [218].

Electrons are triggered by and reconstructed from energy deposits (clusters) in the ECAL
that are associated to a reconstructed track in the ID. They are characterised using several sets
of identification criteria with different levels of background rejection and signal efficiency, which
rely on the shapes of electromagnetic showers in the calorimeter as well as on tracking and
track-to-cluster matching quantities. These requirements are optimised in order to provide good
separation between signal (isolated) electrons and background from hadrons misidentified as
electrons, non-isolated electrons (e.g. from semileptonic decays of heavy-flavour particles), and
electrons from photon conversions in the tracker material. Variables describing the longitudinal
and transverse shapes of the EM showers in the calorimeters, the properties of the tracks in
the inner detector, as well as the matching between tracks and energy clusters are used to

discriminate against the different background sources.

The tight selection criteria used in the present analysis make full use of the particle-identification
tools available for electron identification and require the largest possible rejection of non-isolated
electrons. Stricter requirements on track quality in the presence of a track extension in the TRT
detector, on the ratio of the EM cluster energy to the track momentum, and a veto on re-
constructed photon conversion vertices associated with the cluster leaves the tight selection
with an efficiency of 80% for electrons coming from Z decays and a rejection against jets faking

electrons of 10° as estimated from MC samples.

Electron candidates are required to match the lowest unprescaled single electron trigger in
2012 data-taking, EF_e24vhi mediuml, or a single electron trigger EF_e60 _mediuml to recover
the efficiency loss at high-Ep. The candidates are selected with |ng| < 2.47, excluding the
transition region of 1.37 < |nq| < 1.52 in the ECAL and Er > 25 GeV (Er = E/ cosh(n), where
the energy is taken from the cluster, E), and the direction from the associated track, ngack)-
To reduce the significant background from non-prompt electrons, i.e. from decays of hadrons
(in particular heavy flavour) produced in jets, electron candidates are required to be isolated. A

n-dependent 90% efficient isolation cut is used, based on the sum of transverse energies of cells
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(a) Reconstruction and identification efficiency as a function of Er for different selection
criteria, compared to MC expectation for electrons from Z — ete™ decays [219]. (b)
Di-electron mass distribution in Z — ete™ decays in data and MC simulation with and
without the resolution corrections [220].

Figure 5.3.:

around the direction of each candidate, in a cone of size AR = 0.2, excluding cells associated
with the electron and is corrected for leakage from the electron cluster itself. A further 90%
efficient isolation cut is made on the scalar sum of the track pp around the electron in a cone
of size AR = 0.3. The longitudinal impact parameter of the electron track with respect to the
selected event primary vertex is required to be less than 2 mm.

Using the full 2012 data set, the reconstruction and identification efficiencies of central elec-
trons in the ATLAS detector are determined with the tag-and-probe method from J/¢ and
Z decays. The combined efficiency to reconstruct and identify an electron coming from the
Z — ete” decay with Er ~ 25 GeV is around 68% for the tight cuts.

the combined efficiencies to reconstruct and identify electrons as a function of Ep for different

Figure 5.3a shows
selection criteria, compared to MC expectation for electrons from Z — eTe™ decays.

The electron energy resolution in the ATLAS calorimeter is measured by exploiting the recon-
structed di-electron invariant mass (mee) in Z — ete™ decays in both MC simulation and data
events. Figure 5.3b shows that after all corrections the me. distribution in data and simulation
agree at the level of 1% in the mass range 80 < me. < 100 GeV, rising to 2% towards the low

end of the interval.

5.3. Jet Reconstruction and Selection

Collimated sprays of energetic hadrons, known as jets, are the dominant final state objects of
high-energy pp interactions at the LHC. They are key ingredients for many physics measurements

and for searches for new phenomena. The most widely accepted jet definition for hadron collider
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experiments involves a clustering of calorimeter cells in a pseudorapidity-azimuth n — ¢ metric,
which has the virtue of taking into account the Lorentz boost of jet systems. The properties
that should be met by a jet definition are defined by the “Snowmass Accord” [221]:

1. Simple to implement in an experimental analysis;

2. Simple to implement in the theoretical calculation;

3. Defined at any order of perturbation theory;

4. Yields finite cross sections at any order of perturbation theory;

5. Yields a cross section that is relatively insensitive to hadronisation effects.

The fourth requirement implies the so-called infrared and collinear safety (IRC) condition, i.e.
the jet configuration is independent of the emission of a soft (infrared) or collinear particle [222].
In order to calculate cross sections in perturbation theory, the jet definition must be insensitive

to the presence of infinitesimally soft gluons, as illustrated in Figure 5.4.

jet jet jet jet jet

soft divergence

@ (b) (©

Figure 5.4.: An example illustrating the infrared un-safety of a jet algorithm. (a) Initially, two jets
are found by the algorithm. (b) The addition of a loop diagram divergence does not affect
the jet configuration. (c) The addition of a soft angular emission leads to the algorithm
to find a new jet [222].

Sequential recombination jet algorithms are specifically designed to satisfy the IRC condition
and thus to be usable for calculations at any order in perturbation theory. Typically, they
work by calculating a distance d;; between clusters ¢ and j, and then recombine? them pairwise
according to a given order, until some condition is met. The procedure is repeated until all
clusters are either part of a jet, or a jet itself. The distance definition can be written as [223]:

ARZ,
. 2p 2
dij = min(p's, pr;) —pz AR;; = \/(yi — )%+ (¢ — 05)?, (5.1)
where pr;, y; and ¢; are respectively the transverse momentum, rapidity and azimuth of the i-th
cluster. The parameter p is chosen to be p = —1, dubbed the “anti-k;” algorithm [223, 224]. This

value favours clusterings that involve hard particles rather than soft particles (p = 1 algorithm)

2 A four-momentum recombination scheme is used: the merging of two objects is performed via a four-momentum
sum producing massive jets.
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or energy-independent clusterings (p = 0), and the jets grow outwards around hard “seeds”.
Since the algorithm involves a combination of energy and angle in its distance measure, this is a
collinear-safe growth (a collinear branching automatically gets clustered right at the beginning
of the sequence). The result is an IRC safe algorithm that gives circular hard jets. A radius

parameter R = 0.4 has been chosen for this search to handle high multiplicity final states.

In ATLAS, jets are observed as groups of topologically-related energy deposits or “clusters”
in the Calorimetry System constructed from adjacent calorimeter cells that contain a significant
signal above noise. Prior to jet finding, a local cluster weighting (LCW) calibration scheme [225,
226] is applied to correct the cluster energies for the effects of dead material, non-compensation
and out-of-cluster leakage. Firstly, calorimeter clusters are classified as either electromagnetic or
hadronic by considering properties such as the energy density of the cluster, isolation and shower
depth in the calorimeters. Secondly, the energy falling outside clustered cells is estimated based
on cluster isolation, and finally, the amount of energy falling in inactive areas of the detector is
estimated from the position and energy deposited in each layer of the calorimeter. The jets are
calibrated using energy- and n-dependent calibration factors, derived from simulations, to the

mean energy of stable particles inside the jets.

The calorimeter clusters have initially been calibrated using test-beam measurements with
electrons to provide a correct response for EM showers coming from electrons and photons.
Hence, at first the jet energy is measured at the EM-scale, which correctly reproduces the
energy of particles produced in EM showers. Given that the reconstructed jets contain all kinds
of hadrons, corrections have to be applied to the jet energy. The Jet Energy Scale (JES) is
further calibrated for clusters identified as originating from hadronic deposits employing single

pion MC simulation. The calibration procedure is shown schematically in Figure 5.5.
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Figure 5.5.: Schematic overview of ATLAS jet calibration stages [227].

First a jet is corrected to point back to the primary vertex, and the effect of pile-up is removed

using an area based subtraction algorithm. The JES calibration is derived as a correction which

E.LCW

ot ) to the truth jet energy derived from MC

relates the reconstructed LCW jet energy (

(Ef5h). The average jet response R = Ejf™ /EIM™, the inverse of the calibration correction
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factor, is shown in Figure 5.6a as a function of nget (the pseudorapidity of the jet relative to
the geometric centre of the detector). Further corrections are applied to the jets which reduce
the difference in response between gluon and quark initiated jets and also correct for jets which
are not fully contained in the calorimeter. A final residual calibration is derived using in-situ
measurements and is applied only to data.

To reduce the contamination due to pileup jets, the scalar sum of the pr of tracks matched to
the jet and originating from the primary vertex is required to be at least 50% of the scalar sum
of the pr of all tracks matched to the jet. This is referred to as the Jet Vertex Fraction (JVF),
and may be interpreted as an estimate of the fraction of energy in the jet that can be associated
with the hard-scatter interaction, as shown in Figure 5.6b for simulated MC events. A value
of —1 is assigned to calorimeter jets which do not have associated tracks. The JVF criterion is

only applied to jets with pp < 50 GeV and |n| < 2.4.

4 10°ET — 3

@ SAETT T LI T T T T ™3 n - . N . 4

8 q3f ee-wcev  ATLAS Simulation Preliminary S f  4THAS Smulaton Prelipnary 1

n ““E  mE=60GeV E o = — ee + jets B

2 1.2 4E=110Gev 2012 JES: AntikT. R=04 3 2 I Antik, R=0.4, LC+JES 1

E +E=400GeV scale 3 -

9 14E tElToocev 3 o0t 20<p,<50 GeV, i< 2.4 =

© 1;_ 3 £ Pile-up jets 1 E

[} E S, E - . 7 3

2 oF P aiee < ety E| [ Hard-scatter jets ]

S . ;‘"M’ +‘“ou e 4, cn,,'* :‘NM“E L B

&  0.8F T i, Ty Y 3

2 TE et o ] Lo 3 108

i XA - * T 3 g

3 E A -, 3 F

‘g 0‘6? E r

w  0.5F = r

04 3 107 |
0.3 I L I I I I I L. E ; RESRESHRR RIS
-4 3 2 1 0 1 2 3 4 1 -0.5 0 0.5 1
Jetn, Jets JVF
(a) (b)

Figure 5.6.: (a) Energy response as a function of nge for LCW-scale “anti-k;”, R = 0.4 jets before
calibration [227]. (b) JVF distribution for (blue) hard-scatter and (red) pile-up jets with
20 < pp < 50 GeV and || < 2.4 in simulated events [228].

5.4. b-tagging Algorithms and Performance

The ability to identify experimentally the flavour of a jet, separating b-jets from c- and light-
flavour parton (u-, d-, s-quark or gluon g) jets, is an important ingredient of the ATLAS physics
programme and plays a crucial role in the analysis presented in this thesis. A number of
algorithms able to identify jets originating from b-quarks, referred to as b-tagging, have been
developed in ATLAS based on the presence of soft electrons or muons as decay products of ¢- and
b-hadrons (a hadron containing a ¢ or b-quark), or on the relatively long lifetime of b-flavoured
hadrons (1072 s), resulting in a significant decay length L,,. A b-hadron with pr = 50 GeV
will have a significant mean flight path length < L >= ~cr, travelling on average about 3 mm
in the transverse direction before decaying and, therefore, leading to topologies with at least one
vertex displaced from the point where the hard-scatter collision occurred. Therefore, displaced

secondary decay vertices of these b-hadrons can be reconstructed, as shown in Figure 5.7. The
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5.4. b-tagging Algorithms and Performance

impact parameter, which is the distance of closest approach of an extrapolated track to the
primary vertex, tends to be relatively large for tracks stemming from a displaced vertex, while
tracks from the primary vertex have impact parameters compatible with zero once the tracking

resolution has been accounted for.

jet axis

decay length ny

track
impact

parameter /...~ secondary vertex

primary vertex

Figure 5.7.: Schematic view of a b-hadron decay inside a jet resulting in a secondary vertex which is
significantly displaced with respect to the primary vertex [229].

The algorithm used in the present analysis, being one of the most common and powerful
ones in ATLAS, is a multivariate algorithm (MV1) that combines information from the impact
parameters of displaced tracks as well as topological properties of secondary and tertiary decay
vertices reconstructed within the jet [230]. The performance of the b-tagging algorithms is
characterised by the efficiency of tagging a b-jet, ¢, and the probabilities of wrongly tagging as
a b-jet a jet originating from a ¢ quark, €., or a light-flavour parton, ¢;, referred to as the b-tag
efficiency, c-tag efficiency and mistag rate, respectively [231]. The chosen fixed cut on the MV1
output (defined as a working point) corresponds to 70% efficiency to tag a b-quark jet, with a
light jet rejection factor of 137 and a charm jet rejection factor of 5, as determined for b-tagged
jets with pr > 20 GeV and || < 2.5 in simulated ¢¢ events. The data/simulation efficiency scale
factors (SF) are defined as: SF = edata/esim where €4t (e5M) are the jet tagging efficiencies
measured in data (simulation), respectively.

The b-tag efficiency has been measured using a combinatorial likelihood approach using in-
formation from multiple jets in the event (PDF calibration) in an enriched ¢t data sample with
two oppositely charged leptons in the final state [231].

The c-tag efficiency is measured using a sample of jets containing D* mesons, by comparing
the yield of D* mesons before and after the tagging requirements, while the mistag rate has been
measured in an inclusive jet sample. The scale factors for the MV1 algorithm at the operating
point corresponding to a 70% b-tag efficiency in simulated tf events are shown in Figure 5.8.
As can be seen, the b-jet tt calibration SF is consistent with unity with a total uncertainty of
2—8%, the c-jet D* calibration SF is in the range of 0.9 — 1.0 with a total uncertainty of 8 — 15%
and the mistag rate SF is in the range of 1.1 — 1.5 with a total uncertainty of 15 — 40%.

73



5. Object Reconstruction and Event Selection

L 1.2 ——— - T 1.6 5 £ 3
5 _ A e e e | 5 E T 9
g ATLAS Preliminary _[Ldt:zosfb“ 3 [ wvi o, =70% ATLAS Preliminary S 245 ATLAS Preliminary J'Ldt:zo.afb’l, 5=8Tev T
° L s=8TeV ] > r s=8Tev 2 228 —
g § 14T pawzor fra=203m7 fe g TUE mvig=7o% <12

3 o F e Scale factor D* (stat) g ¥ o Scale factor (stat) El
e I L - B £ . Scale factor (stat+syst) -
k] [ i = L [ scale factor D* (stat+syst) ] 181 ./ 3
£ TRy 3 M 1 8.k ]
= -+ i 5 16 =
3 2 [ il = E — 1
& 0.9F B I +_+— 1 e, E
L T 1.24— — —
[  POF (tot. erron) MV1, [, = 70% L = =
0.8~ e PDF (stat. eror) B 0‘85 ] E B
. | . . Ll e L L L ] 0.8 L -

20 30 40 17 10 50 100 150 200 250 300 30 40 50 100 200 300

jet et
Jet p_ [GeV] p‘T [GeV] pr [Gev]

(a) (b) (c)

Figure 5.8.: Data/simulation scale factor for (a) b-tag, (b) c-tag and (c) mistag rate for central
jets as a function of jet pp for the 70% MV1 working point including statistical
only (black lines) and total errors (green shaded region) [231, 232].

5.5. Event Preselection

The experimental signature of a t#H (H — bb) event in the single lepton decay topology of the
tt system is characterised by an isolated electron or muon with high transverse momentum, a
characteristic that is crucial for triggering, and a large number of jets. This determines the

offline event preselection:

e only events collected using a single electron or single muon trigger under stable beam

conditions and for which all detector subsystems were operational are considered;

e events accepted by the trigger are required to have at least one reconstructed vertex with

at least five associated tracks, consistent with the beam collision region in the x—y plane;

e events are required to have exactly one central (|n| < 2.5) reconstructed electron or muon
with pr > 25 GeV that has been matched to the corresponding HLT object (within
AR < 0.15);

e the event is required to have at least four central jets with pt > 25 GeV, |n| < 2.5 after
the JVF selection was applied;

e at least two of the selected jets have to be b-tagged by the MV1 algorithm;

e 10 jet should originate from instrumental effects, such as large noise signals in one or
several channels of the hadronic end-cap calorimeter, coherent noise in the electromagnetic

calorimeter, or non-collision backgrounds.

When candidates selected using the criteria above overlap geometrically, the following pro-

cedures are applied, in the following order:

e muons are rejected if they are found within AR < 0.4 of any jet with pt > 25 GeV and
|JVF| > 0.5;
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e in order to avoid double-counting of electrons as jets, the single closest jet to an electron

is removed if lying within AR < 0.2 of a selected electron;

e electrons are rejected if they are found within AR < 0.4 of any remaining jet with pp > 25
GeV and |JV F| > 0.5 in order to further suppress background from non-isolated electrons;

e if a muon candidate shares the same track as a selected electron in the ID, the full event

is discarded.
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CHAPTER 6

Multivariate Analysis Strategy

Signal events from the SM Higgs boson production in association with top-quarks with single
lepton decay topology, where each parton coming from a top quark or a W-boson decay can
give rise to a separate jet, is characterised by the presence of 6 non-overlapping high-pr jets,
out of which 2 are light- and 4 are b-quark jets, one charged lepton and missing transverse
momentum from the escaping neutrino. However, the limited detector acceptance and the b-
tagging efficiency need to be taken into account. In order to calibrate the background prediction
and constrain the related systematic uncertainties in signal-depleted regions with lower jet and
b-tagged jet multiplicities, events are classified in several signal and control regions. To max-
imise the sensitivity of the search, a Neural Network (NN) is used to discriminate signal from

background processes.

The classification of selected events into exclusive categories, referred to as regions, according
to the number of reconstructed jets and jets identified as b-quark jets by the b-tagging algorithm
(b-jets) is described in Section 6.1. The motivation for the application of a multivariate approach
is given in Section 6.2. A brief introduction to the operating principle of an artificial neural
network, its characteristic features and usage in the present thesis is outlined in Section 6.3.
A large number of input variables are inspected for their discriminating power between the
ttH signal and total background in each of the regions where an NN is used. This study is
described in Section 6.4. The modelling of the relevant input variables and the correlations
between them in each analysis region, as well as the over-training tests of the NN output is

presented in Section 6.5. The final discriminant distribution are summarised in Section 6.6.

6.1. Event Classification

After the event preselection described in Section 5.5, the main background processes, discussed
in Section 4.3, come from the SM production of tt+jets and single top quarks, as well as W- or

Z-boson production in association with jets. Small contributions arise from the associated pro-
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duction of a vector boson V' (V = W, Z) and a tt-pair (tt+ V') and from diboson (WW, W Z, ZZ)
production. Multijet events also contribute to the selected sample via the misidentification of a

jet or a photon as an electron or the presence of a non-prompt electron or muon.

The preselected events are further classified according to their event topology, defined by
the number of jets with pr > 25 GeV and the number of b-tagged jets. In the following, a
given region with m jets of which n are b-tagged jets is referred to as (mj, nb). A total of 9
independent topologies are considered in this search. Three topologies with exactly 5 jets out
of which at least 4 jets are b-tagged, or with > 6 jets out of which 3 or > 4 jets are b-tagged,
are referred to as signal-enriched regions. Assuming SM production cross sections, these three
regions have the largest signal-to-background ratio S/B > 1% (where S and B denote the
expected signal for a SM Higgs boson with mpy = 125 GeV, and background, respectively) and
S/v/B > 0.3, and provide most of the sensitivity to the signal. The remaining six regions
are referred to as signal-depleted regions and consist of (4j, 2b), (4j, 3b), (4j, 4b), (5j, 2b),
(5j, 3b) and (> 6j, 2b). They are almost purely dominated by different backgrounds and are
used to constrain systematic uncertainties, thus improving the background prediction in the
signal-enriched regions. Figure 6.1a shows the S/v/B and S/B ratios for the different regions
under consideration and the expected proportions of different backgrounds in each region are
shown in Fig. 6.1b. The event yields prior to the fit described in Section 7.2 for the different
regions considered in the analysis are summarised in Table 6.1. A visual comparison of the
predicted yields to data prior to the fit is shown in Figure 6.2 in all analysis regions. Although
a normalisation discrepancy in the regions with high contribution from ¢t+HF component is
observed, data agree with the SM expectation within the total uncertainties on the yields of
10%-20%.

78



6.1. Event Classification

ATLAS Simulation Single lepton
is = 8 TeV, 20.3 fb* m,, = 125 GeV
4j,2b 4j,3b 4j,4b
D10l s/B<0.1%| L10} s/B=02%| 210} S/B=1.4%
(92] (7)) (0p]
0.5 0.5} 0.5}
0.0_ 0_0_ 0_0_

o | 5i2b o | 503D o | 5iz4b
Dol siB=01%| "L1of s/B=04% ‘L10} S/B=25%
(9p] (7)) )
0.5} 0.5}
o | 26j2b o | 26j3Db o | 26)24b
1.0} S/B=0.2% 1.0} S/B =1.0% 1.0} S/B =4.0%
(7))
0.5¢
4j,2b 4j,3b 4j,4b ATLAS
Simulation
my = 125 GeV
Vs =8TeV
5j,2b 5j,3b 5j,24b [ Jti+light
[ ]ti+cT
B tt+bb
[ ti+v
[ Jnon-tt
>6j,2b >6j,3b >6j,24b
@ % % Single lepton

(b)

Figure 6.1.: (a) S/V/B value for each of the regions (assuming SM production cross-sections). Each
row shows the plots for a specific jet multiplicity (4, 5, >6), and the columns show the b-jet
multiplicity (2, 3, >4). Signal-enriched regions are shaded in red, while all the others are
shown in blue. The S/B ratio for each region is also noted. (b) Fractional contributions of
the various backgrounds to the total background prediction in each considered region [5].
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Table 6.1.: Pre-fit event yields for signal, backgrounds and data in each of the analysis regions. The
quoted uncertainties are the sum in quadrature of the statistical and systematic uncertain-

80

4j,2b 4j,3b 4j,4b
ttH (125) 31+ 3 134 2 2.0+03
ti+ light 77000£7500 6200 750 53+ 12
tt + ce 4900+3000 6804+ 390 21+ 12
tt + bb 18004+1100 680+ 380 44+ 25
WHjets 51003000 220+ 130 5.5+3.3
Z+jets 1100+ 600 50+ 27 09+£0.6
Single top 4900+ 640 340+ 60 6.8+1.6
Diboson 220+ 71 114+ 41 0.2+40.1
tt+V 120+ 40 15+ 5.1 0.9+0.3
Lepton misID 1600+ 620 100+ 37 3.5+1.3
Total 96000 £9500 8300+1100 140+ 34
Data 98 049 8752 161
5j,2b 5j,3b 5j,>4b
ttH (125) 41+ 2 23+ 2 6.2+ 0.8
tt+ light 3800045500 3500+520 61+ 15
tt + cc 4300+£2400 8104+460 43+ 25
tt + bb 1700+ 880  890+480 110+ 63
W+jets 19004+1200 140+ 87 5.9+ 3.9
Z+jets 410+ 240 29+ 17 1.5+ 0.9
Single top 1900+ 360 190+ 41 8.3+ 1.3
Diboson 97+ 39 8.0+ 34 0.4+ 0.2
tt+V 150+ 48 26+ 9 3.1+ 1.0
Lepton misID 460+ 170 70+ 28 83&£ 3.7
Total 490004+ 7000 5700+980 250+ 75
Data 49 699 6199 286
>6j,2b >6j,3b >6j>4b
ttH (125) 64+ 5 40+ 3 16+ 2
tt+ light 1900044400 2000+ 460 52+ 17
tt+ cc 3700+£2100 850+ 480 79+ 46
tt + bb 1400+ 770 970+ 530 250+ 130
W +jets 910 £ 620 97+ 66 8.6+ 6.2
Z+jets 180+ 120 194+ 12 15+ 1.0
Single top 840+ 220 120+ 35 12+ 3.7
Diboson 50+ 24 6.0+ 30 05£ 0.3
tt+V 180+ 59 45+ 14 85+ 28
Lepton misID 180+ 66 21+ 8 1.1+ 0.5
Total 26000 £5800 420041000 430+ 150
Data 26185 4701 516

ties on the yields.
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Figure 6.2.: Comparison of prediction to data in all analysis regions before the fit to data. The
signal, normalised to the SM prediction, is shown both as a filled red area stacked on the
backgrounds and separately as a dashed red line. The hashed area corresponds to the
total uncertainty on the yields [5].

Analysis Strategy

The SM ¢tH signal contribution is shown in Figure 6.2 as a filled red area stacked on the
backgrounds, and in several regions, predominantly the control regions, the ttH signal yield is
not even visible on top of the large background. Therefore, improving the separation between
signal and background processes and constraining the systematic uncertainties is essential. The
latter can be done by studying separately events with 2, 3 and > 4 b-tagged jets, where insights
are gained on the heavy-flavour content of the t{+jets sample, which varies strongly as a function
of the b-tag multiplicity, and other systematic uncertainties like b-tagging, jet energy calibration

and tt+jets modelling, discussed in Section 7.1.

In the most sensitive (> 6j, > 4b) region the signal significance reaches S/v/B ~ 0.8 and the
signal-to-background ratio is 4%. Thus, a cut-and-count approach to extract the signal is not
useful given the tiny amount of signal and the large systematic uncertainties on the background
estimation. In a previous search for t#H (H — bb) in the single lepton channel at /s = 7 TeV
with the ATLAS experiment [4], an attempt was made to kinematically reconstruct the final
states. In the (> 6j, > 4b) region it was possible to form a Higgs boson candidate by assigning
to it the two b-tagged jets that did not originate from the top quarks. The analysis observed
a relatively low matching efficiency in the most signal-like region: only in 7.5% of events all
jets considered in the kinematic fit were found to match the partons from the decays of the
top quarks and Higgs boson, and in 20.2% of events the two b-quarks coming from the Higgs

boson were correctly matched, as shown in Figure 6.3a. The reconstructed mass of the Higgs
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boson candidate (m,;) after the kinematic fit is shown in Figure 6.3b. It was found that the
low matching efficiency comes from the large combinatorial background (in the case of an event
with exactly six jets, there are 180 permutations to be inspected) as well as acceptance effects,

where all the products from the ttH decay might not be present in the event.
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Figure 6.3.: (a) Distribution of the reconstructed mass of the Higgs boson candidate after the kin-
ematic fit for simulated t#H signal in the (> 6j,> 4b) region. Several distributions for
the subset of events with different matching criteria are overlaid. (b) Comparison of the
normalised distributions of m,; between ¢t H and total background in the same region [4].

Given the lack of single variables that exhibit clear separation between signal and background,
the low matching efficiencies of the reconstruction algorithms and the large number of physics
objects in the final state, the present search for the Higgs boson produced in association with
a pair of top quarks is an ideal ground for the application of a multivariate approach. In order
to maximise the sensitivity of the search, each region is analysed separately and later combined
statistically to test for the presence of a signal. To discriminate signal from background in each of
the regions with significant expected signal contribution, a neural network is trained to separate
the ttH signal from the main tt+jets background. These include three signal-enriched regions:
(5j, > 4b), (> 6j, 3b) and (> 6, > 4b) topologies. In addition to the signal regions, a dedicated
neural network is employed in the (5], 3b) region to separate tt+light from ¢tt+HF backgrounds,
referred to as NNHF. The outputs of the NN trainings provide four discriminant distributions
that feature different shapes between signal and background processes. These shapes, obtained
using MC predictions, are used as templates in a fit to the discriminant distribution observed
in data in order to determine the contribution of the signal process. The scalar sum of the jet
transverse momenta (H%ad), considering all selected jets, is used as the discriminating variable in
the regions with low signal sensitivity. The H%ad variable provides a good discrimination between
various processes and helps constraining the combined effect of several sources of systematic
uncertainty given the large number of events in the control regions. The signal-to-background
discrimination is therefore provided by the combination of the event categorisation depending

on jet and b-tagged jet multiplicities, the H%ad distribution in signal-depleted regions, and four
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NN discriminants. The summary of the discriminants used in the analysis regions is given in
Table 6.2.

Region 2 b-jets 3 b-jets > 4 b-jets

4jets  Hhad  prhad Hhad
5jets  Hiad  NNHF NN
> 6 jets  Hbad NN NN

Table 6.2.: Summary of the discriminants used in the analysis regions. The NN in the (5j,> 4b),
(> 6j, 3b) and (> 6j, > 4b) regions is trained to separate the t¢H signal from the main
tt+jets background. In the (5, 3b) region, a dedicated NN separates tt+light from t{+HF.
In the rest of the regions, the H2*d distribution is used.

6.3. Machine Learning Technique

Classification of objects or events is an important task in high-energy physics. Common examples
are the identification of leptons, photons and b-quark jets in ATLAS, and the discrimination of
signal events from background processes in multiple physics analyses [233]. The characterisation
of these objects or events generally involve multiple quantities, referred to as input variables.
These may be, for example, the four-vectors of particles, object kinematics, global event variables
or event shape variables. In the case where no single variable exhibits a clear separation between
signal and background, it is necessary to treat the input variables in a fully multivariate way, thus
extracting the result with maximum precision. This requires an examination of the correlations
between the variables and a study of their relevance for a certain problem, with the aim to
reduce the number of variables without losing important information.

The availability of large amounts of data, along with challenging scientific problems charac-
terised by multivariate analyses, paved the way for the development of automated algorithms for
learning from data, known as machine learning algorithms [234]. The primary goal of machine
learning techniques is to provide reliable predictions by using a mathematical model which is
solved either analytically or numerically by using some optimisation criteria. In the following, a
brief introduction to the operating principle and usage in the present thesis of one of the most
popular and widely used machine learning algorithm, the Artificial Neural Network (ANN), is

given.

6.3.1. Artificial Neural Networks

A key factor of the ANN is the possibility of combining the information from several input
variables into one output discriminant that exploits the nonlinear relationships between these
variables. The discriminating power of an ANN, also known under the name of multilayer
feed-forward NN or Multilayer perceptron (MLP), can outperform the traditional classification

methods, provided that the training procedure is carefully monitored.
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The term neural network originates in attempts to find mathematical representations of in-
formation processing in biological systems [235]. A biological neuronal circuit consists of a
multitude of interconnected neurons, each with a cell body and two or more dendrites, as de-
picted in Figure 6.4a. The dendrites receive signals from other neurons and send them to the
cell body, which elaborates a response. When the signal surpasses a certain threshold, the cell
body sends an electrical stimulus along a single azon. This axon branches into fine extensions
(telodendria) and ends at the synaptic knobs, junctions that allow an electrical signal to pass

between the neighbouring neurons.

An ANN mimics the behaviour of the biological neuronal networks and consists of an inter-
connected group of processing elements (referred to as neurons or nodes) arranged in layers.

Figure 6.4b shows a schematic representation of a mathematical model of a neuron.

Cell body

Axon Telodendria -

/ Golgi apparatus
Endoplasmic -

reticulum !\ﬁ
Mitochondrion ‘\ Dendrite

/
/ \\g Dendritic branches

(a) (b)

Figure 6.4.: (a) Structure of a typical biological neuron. (b) Schematic representation of an artificial
neuron.

A=3 Lowixi @ f(A)=TZe'A‘1 °

The first layer, known as the input layer, receives the input variables (x1,z2,..,24). Each
connection to the neuron is characterised by a weight (wj,ws,..,wy) which can be excitatory
(positive weight) or inhibitory (negative weight). Moreover, each layer may have a bias (zg = 1),
which can provide a constant shift to the total neuronal input net activation (A). Thus, the
neuron combines all the input values to a single quantity taking into account the corresponding

connection weight:
d d
A:Zwil‘i+w0 :Zwixi. (6.1)
i=1 i=0

Each neuron processes the information it receives with an activation function (f), and produces
a response value f(A), sending the result to the next layer. The activation function is generally a
nonlinear function, and the most common choice for classification purposes is to use the sigmoid®

function:
2

=—7F-1 6.2
l+e 4 7 (6.2)

f(4)

!The term sigmoid refers to the S-shape of the function.
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which maps the interval (—oo, +00) to an output interval [—1, +1]. The sigmoid function behaves
linearly for values of A ~ 0, shows a nonlinear trend for high values of A and saturates for large
values.

In the human brain, the output of a neuron can be again connected to its own inputs, either
directly or by a loop consisting of a chain of neurons, a layout called recurrent. The ANNs
built for a classification task do not depend on a recurrent topology, and are designed as feed-
forward networks. In this case the neurons can be grouped into m layers and it is only allowed
to connect the input connections of a layer n to the output connection of layer (n — 1). The last
layer represents the final response of the ANN, which in the case of d input variables and ngs

nodes in the hidden layer can be expressed as:

ng d
o=f (D wifQ_wiw) |, (6:3)
§=0 i=0

where w; denotes the input-to-hidden layer weights at the hidden unit j.

The ANN architecture or topology plays an important role for classification purposes, being
a heuristic selection based on complexity adjustment and parameter estimation. A two-layer
NN can only implement a linear decision boundary between signal and background samples,
while three- and higher-layer networks can implement arbitrary decision boundaries and regions
and model every possible analytical dependency between the inputs. In general, multilayer net-
works with one hidden layer are sufficient to model these dependencies to an arbitrary accuracy,
provided that the number of neurons in the hidden layer is sufficiently large [236]. Figure 6.5
gives an example of a two- and three-layer network with two input nodes and depicts the de-
cision boundaries achieved by these network topologies between signal (R;) and background
(R2) regions.

Given the initial connection to neurobiology, one has to mention that the human brain consists
of 50 — 100 x 10° neurons and about 10 synaptic connections, and therefore the topology of

an ANN is generally limited by computational resources.

The weights and thresholds are the network parameters, whose values are learned during
the training phase by looping through the training data several hundreds of times. These
parameters are determined by minimising an empirical loss function over all the events N in the
training sample and adjusting the weights iteratively in the multidimensional space, such that

the deviation E of the actual network output o from the desired (target) output y is minimal:

N
1 1
E = N 3:1 log <2(1 + Yuou + e)> , (6.4)

with € being a small reqularisation constant to avoid numerical problems for untrained networks.
The non-uniform convergence of weights (referred to as learning rates) can affect the quality of
the final output, and the network can lose performance throughout the full range of inputs. The

optimal learning rate 7,,; which insures that the local error minimum w* is found in a single
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two layer \ R

T

-X

Figure 6.5.: An example of a two (upper-left) and three-layer (lower-left) networks with two input
nodes. Given an adequate number of hidden units, arbitrary nonlinear decision bound-
aries between regions R; and Ry can be achieved, as shown on the right hand side [235].

learning step is found via a gradient descent method. This technique, schematically represented
in Figure 6.6, can be geometrically interpreted as a descent along the steepest direction of
the error function in a single dimension. The learning procedure is done by the combined
method of back-propagation and gradient descent, i.e. the change of each weight Aw is adjusted
proportionally to the gradient of the error loss function Aw = —ng—g. The learning rate 7 is
adapted individually for each weight during the training. Since the target value is not known
for the hidden nodes, the error has to be propagated from the output node backwards to the
hidden layer in order to perform the learning of the input-to-hidden weights, and the chain rule

for differentiation is applied for the gradient descent.

During the training process, the weights are systematically reduced in addition to the variation
calculated by the gradient descent technique. Generally, the training error decreases monoton-
ically during training, but an excessive training can lead to poor generalisation capabilities, i.e.
the network may be over-training the data. Thus, the performance of the network is periodically
tested on a separate set of data, and the simplest stopping criterion is to end the training when

the error on the test data begins to increase.
Lastly, minimising the loss function in the machine learning approach is equivalent to max-

imising the Bayesian posterior probability. Thus, a network trained to discriminate a signal

process (s) with y, = 1 from a background process with y, = 0 can directly approximate the
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4 N < Nopt 4 n = Nopt | Mopt <N <21 L N>t

| » W | > WV | » W 1 W
w* w* w* wX

Figure 6.6.: The effect of different learning rates with a gradient descent approach in a one dimensional
quadratic error function. From left to right: n < n,, assures a slow convergence, n =
Nopt finds the error minimum in one step, Nopr < N < 2myp: Tepresents an oscillatory
convergences, and in the 7 > 2, case the system diverges. Adapted from [235].

Bayesian posterior probability:
p(x)

where x = (21, x2,..,24) and p(s) is the prior probability of s.

p(slz) =

6.3.2. Usage case: NeuroBayes Neural Network

The multivariate method chosen in the search presented in this dissertation is an ANN provided
by a commercial NEUROBAYES package [237]. NEUROBAYES implements a three layer feed-
forward NN applied to solve the classification task between signal and background processes. It
also makes use of three distinctive features: a very effective variable pre-processing step which
improves the performance of the NN, a ranking procedure based on the statistical separation
power and the correlation of input variables, and a Bayesian regularisation for the training

procedure which prevents the over-training.

In order to find the global minimum of the loss function and reach optimal conditions for a fast
initial learning, all the input variables given to NEUROBAYES are standardised before the actual
network training [238]. During the first phase of this pre-processing, the input distributions
are transformed to a flat output distributions. This is achieved via a monotonous variable
transformation performed by integrating the input variable distributions. Given the probability

density distribution f(¢) of a variable, the transformation defined as:

F(t):/t. f(thHat, (6.6)

is applied to each input variable ¢ [239]. After this step, each input distribution is transformed
into a gaussian with a mean of 0 and standard deviation of 1 by a linear scaling. Finally,
NEUROBAYES pre-processing deals with one of the main problems of any multivariate analysis:
the unknown correlation of the input variables. The Pearson correlation coefficients p,g of the

already pre-processed values of two input variables ay and By in a given event N are defined
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as: . _
Yei*(ay —a) - (By — B)

Pap = —)
VIR (o —@)2 /SR (B — B)?

where the variable mean is defined as @ = 1/N Y. %%® ax, and analogously for Sy. The decor-

(6.7)

related variables are obtained by diagonalising the covariance matrix of the transformed input
variables (shown in Figure 6.7a for a set of 12 variables) using the Jacobi iterative method [240].
The remaining correlation to the target (where target is defined as 1 for signal events and 0
for background events and is shown in the first column/row of Figure 6.7a) represents the ad-
ded importance of each of the input variables to the classification. Based on this information,
NEUROBAYES is able to prune variables with less relevance and this procedure is used in the
automatic ranking of variables in an iterative manner. The ranking of the variables is used in
the following to keep only the most important variables according to their statistical separation

and correlations in order to keep the analysis as simple as possible.

After the pre-processing step, the NEUROBAYES network is trained as described in Sec-
tion 6.3.1 based on the minimisation of the entropy loss function (see Eq. 6.4) performed with a
more efficient BFGS algorithm [241, 242]. The architecture of the three layer ANN implemented
in NEUROBAYES is shown in Figure 6.7b, and the configuration options are listed in Table 6.3.

10

11

12

13

- -
N M T 0 N ® o9 o NonM e °

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0,‘4 0.6 0.8 1 130 ®

(a) (b)

Figure 6.7.: (a) Example of a covariance matrix. The numbers on the axes correspond to the 12
input variables (2-13), and the variable 1 stands for the bias node. The correlation can
be extracted according to the colour spectrum on the z-axis in [%]. (b): Example of the
three-layer NEUROBAYES NN architecture. The thickness of the lines corresponds to the
absolute values of the weights between the nodes.

Several advanced performance-related issues were studied during the training procedure:

bayesian regularisation of the loss function [239], adding a momentum term to the learning

rule, using a weight decay method, pruning the connections with small weights and controlling
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6.4. Discriminating Input Variables

the learning speed. The optimisation of some of these parameters was the subject of a dedicated

study that is documented in Appendix B.

Parameter Value

Number of variables d

Number of nodes in the hidden layer d+2

Interval for updating weights 50 events
Learning speed factor 1
Maximum learning speed 0.01

# of iterations 100

Table 6.3.: Configuration options of the NEUROBAYES training.

6.4. Discriminating Input Variables

The large number of physics objects in the ttH(H — bb) single lepton final state allows for
a combination of several quantities and properties of a given event, and thus provides better
separation of the signal from the background processes. The choice of the input variables that
enter the NN training is made independently in each region through the ranking procedure
implemented in the NEUROBAYES package, as outlined in Section 6.3.2. In the (> 6j, > 4b)
(> 6j, 3b) and (5j, > 4b) regions, the ttH sample with a Higgs boson mass of 125 GeV is used
as a signal sample and trained against the tt+jets background, composed of tt+light-jets, tt+cc
and tf+bb events. Although the signal sample is inclusive in Higgs boson decays, the H — bb
decay is the dominant contribution in the signal-enriched regions, as shown in Figure 6.8. Thus,
the analysis is optimised to the decay of the Higgs boson into b-quarks, and the separation
between signal and background profits from the nature of the additional b-quarks produced in
the events, as well as the different production mechanisms.

4j,2b 4j,3b 4j,4b ATLAS
Simulation

my = 125 GeV
(s=8TeV
5j,2b 5j,3b 5j,24b I tiH, H-.bb

[ JttH, Howw
Wl tH, H- T
[JttH, H-gg

[ JtiH, H- others

D
N
0

26j,2b 26j,3b
Single lepton

v
o
IV,
N
o

Figure 6.8.: Contribution of various SM Higgs boson decay modes to the analysis regions [5].
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In the (5], 3b) region, the ti+HF events are considered as signal and t{+light-jet events as
background. The separation between the tt+HF and t{+light events is achieved by exploiting
the different origin of the third b-jet, which in the case of tt+HF events, is likely to originate
from one of the additional heavy-flavour quarks, whereas in the case of t{+light events, the third

b-jet is often matched to a c-quark from the hadronically decaying W boson.

During the training, the admixture of signal to background events was chosen to be 50%
signal and 50% background, where the different background processes are weighted according to
their number of expected events. In the case of ttH and tt-+jets MC samples, events processed
through a fast simulation of the calorimeter response are used for the training in order to
increase the available statistics, while a statistically independent set of events processed through
full simulation of the detector geometry and response is used for the validation of the variables.
In the (> 6j,> 4b) region a maximum of seven jets are used to build the kinematic variables,

first using all the b-tagged jets, and then incorporating the untagged jets with the highest pr.

6.4.1. Kinematic and Event Topology Variables

Different kind of kinematic and event topology variables provide good separation between the
signal and the background processes. In total more than 300 variables, which can be classified
in several classes described below, were inspected for their discriminating power between the

ttH signal and background:
— object kinematics include pt and 7 of the lepton, and of each jet and b-tagged jet;

— global event variables include scalar and vectorial sum of the transverse momentum
of jets and b-tagged jets, invariant mass of the vector combination of all the objects in
the event, number of jets above a given pr threshold (30, 40, 60 and 80 GeV), and the
missing transverse energy. These variables aim to kinematically separate the signal from
the main tt+jets background, and particularly to help in distinguishing the jets originated

from gluon radiation from those coming from the Higgs boson decay;

— event shape variables include several combinations of the eigenvalues (A1, A2 and A3)

of the normalised 3 x 3 momentum tensor [243], with its elements defined as:

> it

My, = S0 (6.8)
where ¢ runs over all the considered objects, and the indices a,b run over the z,y, z
components of the object vector momenta. Discrimination between background and signal
is achieved, for example, identifying the spherical configurations of the events via sphericity
S and aplanarity A, defined as S = 3/2(A; + A2) and A = 1.5X2. Other variables such
as centrality, circularity, planarity, thrust and the Fox-Wolfram moments [244] are tested.
Each of the variables were built using three definitions: computed using all jets and the

lepton, built either using all the jets only or only the b-tagged jets;
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6.4. Discriminating Input Variables

— object pair properties include combinations of two objects with smallest or largest
vector sum pr, smallest or largest AR distance and smallest or largest invariant mass,
as well as the averages of these values. The pair properties aim to exploit the angular
distance or the mass as natural choice for distinguishing the signal events. In the case
of the mass of the combination of the two untagged jets with the smallest AR, mMin AR

under particular conditions mimics the mass of the hadronically decaying W-boson. Some

other dijet pair combinations could be interpreted as originating from the decay of a Higgs
boson into a pair of b-quarks, as in the case of mg‘gn AR and mg]loax PT “which exhibit a peak
at the Higgs mass for the signal events. The mass of the jet triplet with the largest vector
sum pr, mjjj, represents a simple reconstruction of the hadronically decaying top quark
mass. Each of the variables characterising the object pair properties were tested by using
four definitions: computed using any pair of jets (j7), built using one b-tagged jet and any

other jet (bj), using two b-tagged jets (bb) or two untagged jets (uu).

As a result of the ranking procedure, a saturation effect in terms of the correlation to the
target (where target is defined as 1 for signal events and 0 for background events) is observed

for all the regions, as depicted in Figure 6.9.

Corr. to target (arb. units)

Corr. to target (arb. units)
N
N

T [T T[T T[T
8
T[T T T[T T T[T T

5}, 3b 5j,24b
20 25
18 20
16
| | | | | | | | | 15 | | | | | | | |
5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 0 35 a0 45
Number of variables Number of variables
(a) (b)
F 38
34— —e c
E i/.,' 36— md
2 £
E 34—
5 B 2 L
£ F £ 32|
5 F E
& 28 S E
8 F ) 8 30— )
8 >6j, 3b 5 F 26j,24b
s F § 28
2 2l =
5 F 5 26
© 2b ° ok
£ A
20 C
2
18— -
C | | | | | | | L 200 | | | | | | | |
5 T 5 20 25 0 35 40 45 5 T 5 20 25 0 35 40 45
Number of variabl Number of variabl
(c) (d)

Figure 6.9.: Saturation of the separation power (correlation to target) as a function of the number of
variables considered in the training in (a) (5j, 3b) (b) (5j,> 4b) (d) (> 6j, 3b) and (d)
(> 6j, > 4b) regions.

The evolution of the discriminating power between signal and background suggests that a
training with more than ten variables in the three signal-enriched regions does not provide any

significant improvement in separation. The choice of variables within the different topologies
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6. Multivariate Analysis Strategy

was further reduced by minimising the cases where the discriminant appears in only one region.
Given this study, a compromise of complexity against separation power was found when choosing
10 variables in each region to be used in the training. In the case of the NNHF in the (5j, 3b)
region, a good discrimination between tt+HF and tt+light events is achieved by using 7 input

variables.

6.4.2. The Matrix Element Method

In addition to the kinematic variables, two variables calculated using the Matrix Element Method
(MEM) [245], are included in the NN training in (> 6j, 3b) and (> 6j,> 4b) regions. This
computationally demanding method links the theoretical calculations and observed quantities
in one, making the most complete use of the kinematic information of a given event. It is based
on a probabilistic approach, in which it is required to calculate the probability density function
of an observed event to be consistent with a physics process i described by a set of parameters a.

This probability density function P; (z|a) is defined as:

4 ) a)l?
Pi(elo) = G [ v £ ) 7 ) L i) amwi) 09

and is obtained by numerical integration over the entire phase space of the initial- and final-
state particles. In this equation, & and y represent the four-momentum vectors of all final-state
particles at reconstruction and parton level, respectively. The flux factor F and the Lorentz-
invariant phase space element d®  describe the kinematics of the process. The transition matrix
element M; is defined by the Feynman diagrams of the hard process. The transfer functions
W (y|x) map the detector quantities & to the parton level quantities y. Finally, the cross

Xp

section o} P normalises P; to unity taking acceptance and efficiency into account. Eq. 6.9 can

be visualised schematically in Figure 6.10 for the t¢H process.

The assignment of reconstructed objects to final-state partons in the hard process contains
multiple ambiguities. The process probability density is computed for each allowed assignment
permutation of the jets to the final-state quarks of the hard process. A process likelihood
function can then be built by summing the process probabilities for the N, allowed assignment

permutation:

Np
Li(zlo) = PP (z|a). (6.10)
p=1

The process probability densities are used to distinguish signal from background events by

calculating the likelihood ratio of the signal and background processes contributing with fractions

fbkg:
, __ Lig(z]a)
Tsig (@) = %fbkgﬁbkg @) (6.11)
g
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Figure 6.10.: A schematic visualisation of the content of the t£H process probability using MEM. The
internal structure of the proton, factored into the PDF and coloured in green, describes
the production mechanism. The transition matrix element of the hard-scattering depic-
ted in blue contains all the leading order information regarding the dynamics of the ttH
process. The final phase, shown in red, maps the detector quantities to the parton level
quantities taking into account the ATLAS detector response. Adapted from [246].

The ratio in Eq. 6.11, according to the Neyman—Pearson lemma [247], is the most powerful
discriminant between signal and background processes, assuming all components of Eq. 6.9 are

fully calculated.

Matrix element calculation methods are generated with MADGRAPH 5 in LO, and the trans-
fer functions are obtained from simulation following a similar procedure as described in [248].
For the modelling of the parton distribution functions the CTEQG6L1 set from the LHAPDF
package [249] is used. The integration is performed using VEGAS [250] using adaptive MC
techniques [251].

The signal hypothesis is defined as a SM Higgs boson produced in association with a top-
quark pair in Figure 6.10. The Higgs boson is required to decay into a pair of b-quarks, while
the top-quark pair decays into the single lepton channel. For the background hypothesis, only
the diagrams of the irreducible tf 4 bb background are considered. Since it dominates the signal-
enriched regions, inclusion of other processes does not improve the separation between signal
and background. Calculation of the probability density function of the signal and background
is only performed in the (> 6j, 3b) and (> 6j, > 4b) regions.

Only six reconstructed jets are considered in the calculation: the four jets with the highest
value of the probability to be a b-jet returned by the b-tagging algorithm and two of the remaining
jets with an invariant mass closest to the W boson mass of 80.4 GeV. Assignment permutations
between the two light quarks of the hadronically decaying W-boson and between the two b-
quarks originating from the Higgs boson or gluon result in the same likelihood value and are
thus not considered. As a result, there are in total 12 and 36 assignment permutations in the
(> 6j,> 4b) and (> 6j, 3b) region, respectively, which need to be integrated.
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Using the t#H process as the signal hypothesis and the tf + bb process as the background
hypothesis, a slightly modified version of Eq. (6.11) is used to define the likelihood ratio D1:

Ly
D1= , (6.12)
Ligg + o Ligipp

where o = 0.23 is a relative normalisation factor chosen to optimise the performance of the
discriminant given the finite bin sizes of the D1 distribution. In this definition, signal-like and

background-like events have D1 values close to one and zero, respectively.

The logarithm of the summed signal likelihoods SSLL defined by Eq. (6.10) and the ratio D1
defined by Eq. (6.12) are added to the list of the top ten kinematic input variables in both the
(> 6j, 3b) and (> 6j,> 4b) regions. The final rankings of the variables considered in each of
the regions where an NN is used are listed in the Table 6.4. The D1 variable provides the best
separation between ttH signal and the dominant tf+bb background in the (> 6j,> 4b) region.
The SSLL variable further improves the NN performance.

6.5. Validation of Input Variables

The use of multivariate techniques requires the input variables used in the NN discriminant to be
well modelled by the MC simulation. Multiple steps are performed to verify the good modelling

of the relevant input variables in each analysis region.

First, the variables are validated in topologies consisting of 4, 5 or > 6 jets of which exactly
2 are b-tagged, which provide a sample depleted of expected signal (the predicted signal-to-
background ratio in these regions is below 0.2%, see Figure 6.1a) and dominated by ti+jets,
which is the main background in this search. The main drawback of these regions is the low

tt+HF fraction of the background composition, as depicted in Figure 6.1b.

Insights on the heavy-flavour content of the tt+jets sample are gained by validating the vari-
ables in regions with similar contribution from tf + bb and tf + ¢ consisting of 4, 5 or > 6 jets

of which exactly 3 are b-tagged.

The (5j, > 4b), (> 6j, 3b) and (> 6j, > 4b) regions (blinded at the first stage of the analysis)
are used not only to validate the kinematic variables, but also to check the variables constructed
using the MEM, as described in Section 6.4.2. Moreover, the distributions of each variable were
verified for different signal and background MC generators, and those showing large variations

among generators were discarded.

Figures 6.11-6.14 show the shape and data to prediction comparisons between signal and
backgrounds for the top four input variables in each region where a NN is used. All the com-
parisons between data and prediction are presented prior to the profile likelihood fit described

in Section 7.2, and are referred to in the following as pre-fit.
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Figure 6.11.: Top: comparison of tt+HF and tt-+light background for the four top-ranked input
variables in the (5j, 3b) region normalised to unit area. Bottom: comparison between
data and prediction for the four top-ranked input variables in the (5j, 3b) region before
the fit. The last bin contains the overflow. The bottom panel displays the ratio of data
to the total prediction. The hashed area represents the uncertainty on the background.
The SM ttH signal signal prediction, normalised to the total background, is overlaid.
The plots include (a, €) my™ 7, (b, f) mmim 4% (¢, g) pipin A% and (d, h) mpy™ 47 [5].

6.5.1. Variable Correlation Studies

Although the neural networks are typically described in terms of neurons and activation func-
tions, it is useful to think of them as simply a specific class of nonlinear functions which take ad-
vantage of the correlation between input variables to distinguish signal from background events.
Therefore, it is useful to inspect the correlations between the input variables and validate their

modelling in the MC simulation.

Figure 6.15 shows the comparisons between data and prediction for the top four input variables
in the regions where a NN is used of the 1-dimensional event-by-event correlation coefficient , ,,

defined for each pair of variables x and y as:

r—T yY—y
= — , 6.13
Ka,y o 7y ( )

where Z(y) and 0,(0y) denotes the ensemble mean and standard deviation of z(y), respectively.

A good agreement between data and prediction of the x coefficients is observed.

As it was mentioned in Section 6.3.2, before the actual NN training, a standardisation of

each input variable is performed. This option, widely used in machine learning algorithms to
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Figure 6.12.: Top: comparison of ttH signal and total background for the four top-ranked input
variables in the (5j, > 4b) region normalised to unit area. Bottom: comparison between
data and prediction for the four top-ranked input variables in the (5j, > 4b) region before
the fit. The last bin contains the overflow. The bottom panel displays the ratio of data
to the total prediction. The hashed area represents the uncertainty on the background.
The SM ttH signal signal prediction, normalised to the total background, is overlaid.
The plots include (a, e) Centrality, (b, f) H1, (c, g) Nio' and (d, h) m&» A% [5].

remove undesired effects during learning, typically exploits the mean value of each input variable.

Therefore, profile distributions of the mean values of the input variables used during the training

phase are verified. Figure 6.16 shows the comparisons between data and prediction of the top

three input variables profiles in the regions where a NN is used. A good agreement between data

and SM expectations is observed, reassuring the good modelling achieved by the MC simulations

and giving confidence in the overall training procedure.

Finally, Figure 6.17 shows the linear correlation coefficients (introduced in Eq. 6.3.2) between

input variables extracted from the data sample, the total background sample and their difference
in (5j, 3b), (5j,> 4b), (> 6j, 3b) and (> 6j,> 4b) regions, respectively. Although several high

correlation coefficients between pairs of variables are observed, this does not influence the per-

formance of the training due to the decorrelation step performed by NEUROBAYES. Moreover,

the differences between the correlation matrices are found to be consistent between data and

MC simulation.
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Figure 6.13.: Top: comparison of ttH signal and total background for the four top-ranked input
variables in the (> 6j, 3b) region normalised to unit area. Bottom: comparison between
data and prediction for the four top-ranked input variables in the (> 6j, 3b) region
before the fit. The last bin contains the overflow. The bottom panel displays the ratio
of data to the total prediction. The hashed area represents the uncertainty on the
background. The SM ¢tH signal signal prediction, normalised to the total background,
is overlaid. The plots include (a, ) NJ%°, (b, f) Centrality, (c, g) H1 and (d, h) SSLL [5].

6.5.2. Cross-Validation Test

After the NEUROBAYES training is finished, information about the learning process can be
accessed to quantify the over-training of the neural network, which could lead to a bias in the
final discriminator. For this purpose, the quality of the training is checked by performing a
cross-validation test: the training signal and background samples are partitioned into two equal
sub-samples. Out of these, one is retained as a testing sample, while training is performed
on the other sub-sample, respectively. The way to detect an over-training is by comparing the
performance results between training and testing samples. Figure 6.18 shows the cross-validation
test of the 4 neural network discriminants, where the signal and background distributions for
the testing and training samples are superimposed. The shape differences between the training
and testing samples are minimal and only due to reduced statistics of the samples, as expected

from solid neural network training.
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Figure 6.14.: Top: comparison of ttH signal and total background for the four top-ranked input vari-
ables in the (> 6j, > 4b) region normalised to unit area. Bottom: comparison between
data and prediction for the four top-ranked input variables in the (> 6j, > 4b) region
before the fit. The last bin contains the overflow. The bottom panel displays the ra-
tio of data to the total prediction. The hashed area represents the uncertainty on the
background. The SM ttH signal signal prediction, normalised to the total background,
is overlaid. The plots include: (a,

e) D1, (b, f) Centrality, (c, g) p';

6.6. Final Analysis Discriminants

jetb

and (d, h) H1 [5].

In the (4, 2b), (4, 3b), (4j, 4b), (5j, 2b) and (> 6j, 2b) regions, the H124 distribution is used as
discriminating variable. A dedicated NN is employed in the (5], 3b) region to separate between
the tt+HF and tt+light-jet production. In the (5j,> 4b), (> 6j, 3b) and (> 6j,> 4b) regions,
a NN output is used to separate the tH signal from the background processes. Figures 6.19,

6.20 and 6.21 show the comparison of the various discriminant variables in each of the analysis

channels considered. Separation between the signal and background is visible in the normalised

distributions. Good pre-fit agreement between data and prediction is observed within for all the

NN discriminants, as a result of the correct modelling of the selected input variables in data by

the MC simulation.

98



6.6. Final Analysis Discriminants

Variable Definition NN rank
> 6j,> 4b | > 6j, 3b | 5j,> 4b | 5j, 3b
D1 Neyman—Pearson MEM discriminant 1 10 - -
Centrality Scalar sum of. the pr divided by sum of 9 9 1 )
the E for all jets and the lepton
piets pr of the fifth leading jet 3 7 - -
71 Se.cond F(.)X7Wolfram moment computed 4 3 9 i
using all jets and the lepton
ARPE Average AR for all b-tagged jet pairs 5 6 5 -
SSLL Logarithm of the summed signal likelihoods 6 4 - -
minin AR Mass of the combination of the two b-tagged 7 19 4 4
jets with the smallest AR
A T Mass of the combination of a b-tagged jet and 3 3 i i
] any jet with the largest vector sum pr
ARMEX PT AR between the two b-tagged jets with the 9 i i i
bb largest vector sum pr
A nggl, ?bR AR between the lepton and the combination 10 1 10 )
of the two b-tagged jets with the smallest AR
min AR Mass of the combination of the two untagged
min ) ) 11 9 - 2
jets with the smallest AR
Aplany_je; 1.5\2, where Ag is the. seC(.)nd eigenvalue of Fhe 12 ) 8 )
momentum tensor built with only b-tagged jets
Ni(e)t Number of jets with pp > 40 GeV - 1 3 -
min AR Mass of the combination of a b-tagged jet and i 5 i i
bi any jet with the smallest AR
ymax PT Mass of the combination of any two jets with ) ) 6 )
J the largest vector sum pr
Hhad Scalar sum of jet pr - - 7 -
ymin AR Mass of the combination of any two jets with ) ) 9 )
! the smallest AR
max pr Mass of the combination of the two b-tagged i i i 1
bb jets with the largest vector sum pr
pmin AR Scalar sum of the pr of the pair of untagged i i i 3
Touu jets with the smallest AR
e m Mass of the combination of the two b-tagged ) ) ) 5
jets with the largest invariant mass
AR™n AR | Minimum AR between the two untagged jets - - - 6
_ Mass of the jet triplet with the largest vector ) ) ) 7
iii sum pr
Table 6.4.: The definitions and rankings of the variables considered in each of the regions where an

NN is used.
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Figure 6.15.: 1-dimensional event-by-event correlations between (a) m@i® 28 and m[ ™ T in the

100

5j 3b region b m in Versus p in
)5 ’ bb I';uu
min AR

H1 in the (5j,> 4b) region and (d) m{p versus Ni%t in the (5j,> 4b) region,
(e) NI and Centrality in the (> 6, 3b) region, (f) SSLL versus H1 in the (> 6j, 3b)
region, (g) D1 versus Centrality in the (> 6, > 4b) region and (h) H1 versus pis* in the
(> 6j, > 4b) region. The bottom panel displays the ratio of data to the total prediction.
The hashed area represents the statistical uncertainty on the background.
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Figure 6.16.: Comparisons between data and prediction of the profile distributions of the mean values
of top three input variables in the (a-c) (5j, 3b), (d-f) (5j,> 4b), (g-i) (> 6j, 3b) and

(j-1) (= 6j,> 4Db) regions. Profiles are shown in bins of the corresponding NN output in
each region. The bottom panel displays the ratio of data to the total prediction.

101



6. Multivariate Analysis Strategy

S
<
S
s
s
8
5
3
&=
5

g
<
K]
s
]
£
8
3
£
5

Linear correlation (%)

g g e 0%
§ 5 e 40
] 5 303
g 2 e 0l
§ § Aplanarity, §
£ £ £

Linear correlation (%)

in o
AR
ot
my .
o
Aplanarity,
& k4

maxp,

AR
Ry
o
Aplanarity,
o

o
H1
Centrality
o
&R
SSLL
ME_D1

Linear correlation (%)

v
oo

H
o
oo

Aplanarity

i

iz
xEs
E g
5
o

(k)

(c)

o
m
Ry
.

N
e
H1

g
N
o

Centrality

(f)

Centralty
NG
ssLL
D1

H1

N

D1
Centrality

ssLL

s,
)
ARG
&Ry,

g
Aplanarity,
o

o
H1
Centrality
g
&R
SSLL
ME_D1

H1
o

Aplanarity

)

Figure 6.17.: Linear correlation matrices of the input variables in the (a-c) (5], 3b), (d-f) (5j,> 4b),
(g-1) (> 6j, 3b) and (j-1) (> 6j,> 4b) regions extracted from the data sample (left), the

sum of MC background sample (middle) and their difference (right).
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Figure 6.18.: Neural network output comparisons between the training and the evaluation samples
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Figure 6.19.: Comparisons of the H32d discriminant variable used in (a-b) (4j, 2b), (c-d) (4, 3b) and
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(e-f) (4j, 4b) regions. Left: comparison of the distributions normalised to unit area.
Right: comparison between data and prediction before the fit. The last bin contains
the overflow. The bottom panel displays the ratio of data to the total prediction. The
hashed area represents the uncertainty on the background [5].
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Figure 6.20.:

(e) (f)

Comparisons of the H2*d discriminant variable used in (a-b) (5j, 2b) region and the
NN output distributions in (c-d) (5j, 3b) and (e-f) (5j, > 4b) regions. Left: comparison
of the distributions normalised to unit area. Right: comparison between data and
prediction before the fit. The last bin contains the overflow. The bottom panel displays
the ratio of data to the total prediction. The hashed area represents the uncertainty on
the background [5].
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(e) (f)

Comparisons of the H2 discriminant variable used in (a-b) (> 6j, 2b) region and
the NN output distributions in (c-d) (> 6j, 3b) and (e-f) (> 6j, > 4b) regions. Left:
comparison of the distributions normalised to unit area. Right: comparison between
data and prediction before the fit. The last bin contains the overflow. The bottom
panel displays the ratio of data to the total prediction. The hashed area represents the
uncertainty on the background [5].

Figure 6.21.:
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CHAPTER

Systematic Uncertainties and Statistical
Interpretation

In contrast to the statistical errors, the systematic uncertainties caused by the imperfect calib-
ration of the ATLAS detector or an incomplete knowledge of the various parameters affecting
the search are not reduced with increased amount of data and, hence, have to be carefully eval-
uated in dedicated studies. Sources of systematic errors arise both from uncertainties on physics
objects identification, reconstruction and energy resolution, on the signal and background mod-
elling with event generators and the theoretical knowledge of the production cross-sections, as

well as on the integrated luminosity for the analysed data set.

Section 7.1 contains a description of the several sources of systematic uncertainties that affect
the normalisation of signal and background and/or the shape of their final discriminant distri-
butions. Although the analysis technique described in Section 6.2 results in a relatively high
signal-to-background ratio, a statistically significant observation of the rare SM ttH process is
not expected using the dataset used in the current thesis. However, exploiting the constrain-
ing power from the background-dominated regions one is able to reduce the degradation of the
sensitivity of the search due to systematic uncertainties. A likelihood function defined to sim-
ultaneously model, or “fit” the yields of the various regions is maximised. Section 7.2 describes
the details of the likelihood function and the limit setting procedure used to obtain the final

result of the search presented in the next Chapter 8.

7.1. Sources of Systematic Uncertainties

A summary of the sources of systematic uncertainty considered in the analysis is presented in
Table 7.1.
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7. Systematic Uncertainties and Statistical Interpretation

Table 7.1.:

Several of the systematic uncertainties are split into several components for a more accurate
treatment. A total of 113 components determined to be normalisation-only, shape-only, or to
affect both shape and normalisation are applied. The breakdown of systematic uncertainties,
such as the 22 sub-components of the JES or the 12 sub-components of light-jet tagging ef-
ficiency uncertainty, provides flexibility to the fit model and preventing false over-constraints.
The independent sources of systematic uncertainty are considered uncorrelated, however, if cor-

relations exist between individual sources, components or among processes, they are maintained.
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Systematic uncertainty Type Components
Luminosity N 1
Physics Objects

Electron SN 5
Muon SN 6
Jet energy scale SN 22
Jet vertex fraction SN 1
Jet energy resolution SN 1
Jet reconstruction SN 1
b-tagging efficiency SN 6
c-tagging efficiency SN 4
Light-jet tagging efficiency SN 12
High-pr tagging efficiency SN 1
Background Model

tt cross section N 1
tt modelling: pr reweighting SN 9
tt modelling: parton shower SN 3
tt+heavy-flavour: normalisation N 2
tt+cc: pr reweighting SN 2
tt+cé: generator SN 4
tt+bb: NLO Shape SN 8
W +jets normalisation N 3
W pr reweighting SN 1
Z+jets normalisation N 3
Z pr reweighting SN 1
Lepton misID normalisation N 3
Lepton misID shape S 3
Single top cross section N 1
Single top model SN 1
Diboson+jets normalisation N 3
tt + V cross section N 1
tt + V model SN 1
Signal Model

ttH scale SN 2
ttH generator SN 1
ttH hadronisation SN 1
ttH PDF SN 1

List of the sources of systematic uncertainty considered in the analysis. An “N” means
that the uncertainty is taken as normalisation-only for all processes and channels affected,
whereas an “S” denotes systematic uncertainties that are considered shape-only in all
processes and channels. An “SN” means that the uncertainty is taken on both shape and
normalisation. Some of the systematic uncertainties are split into several components.



7.1. Sources of Systematic Uncertainties

The dominant sources of experimental uncertainty on the signal and background yields come
from the b-tagging efficiency and jet energy scale and resolution. Other sources of uncertainty
are c- and light-tagging efficiencies, lepton resolutions and identification and the luminosity cal-
culation. In the following, the four categories of the systematic uncertainties considered in the
analysis are described: luminosity, uncertainties on physics objects, uncertainties on background

modelling and signal modelling systematics.

7.1.1. Luminosity

The uncertainty on the integrated luminosity in the 8 TeV data set used in this analysis is 2.8%
derived from beam-separation scans [149]. This systematic uncertainty is applied to all contri-
butions determined from the MC simulation, and therefore the multijet background outlined in

Section 4.4 is not affected by this uncertainty.

7.1.2. Uncertainties on Physics Objects

Several sources of systematic errors arise from uncertainties on the object reconstruction de-
scribed in Section 5 and originating from the corrections applied to MC simulation of the recon-

struction efficiency, isolation, energy resolution and scale.

Leptons

Uncertainties associated with the lepton selection arise from the reconstruction, identification,
isolation and trigger efficiencies, as well as their momentum scales and resolutions, and are
estimated using Z — ee, pp, J/Yv — ee, pyp and W — ev, pv decays [218, 219]. In total,

uncertainties associated with electrons (muons) include five (six) components.

Jets

Uncertainties associated with the jet selection arise from the JES, JVF requirement, Jet Energy
Resolution (JER) and jet reconstruction efficiency. Among these, the JES uncertainty has the
largest impact on the analysis. The JES and its uncertainty are derived from a combination of
test-beam data, LHC collision data, simulation and in situ measurements [252]. The jet energy
scale uncertainty is split into 22 uncorrelated categories: 2 sources of modelling and statistical un-
certainties on the extrapolation of the jet calibration from the central region (n-intercalibration),
one source of high-pt jet behaviour, 2 sources of uncertainties on the calorimeter response and
calibration of the jets originating from light quarks or gluons, one b-jet energy scale uncertainty,
4 uncertainties due to modelling of in-time and out-of-time pile-up, and 12 uncertainties on in
situ jet energy corrections grouped into 3 statistical, 3 detector, 4 modelling and 2 mixed cat-
egories. These sources have different jet pr and n dependencies and are treated as uncorrelated.
Figure 7.1 shows the relative uncertainty associated with the calibration of jets depending on

their pp and 7. In particular, the uncertainty is at most 4% in the lowest transverse momentum
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7. Systematic Uncertainties and Statistical Interpretation

region and decreases to 1.5% for high-pr jets. In the present search, the largest JES uncertainty

arises from the 7 dependence of the JES calibration in the end-cap regions of the calorimeter.
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Figure 7.1.: Fractional in-situ and sample dependent JES uncertainty as a function of (a) pr for
central jets and (b) n for pr = 40 GeV jets. The total uncertainty (all components
summed in quadrature) is shown as a blue filled region topped by a solid black line.
Several distributions for the different JES compositions are overlaid [227].

The JER is measured using the width of the distribution of the balance between jets and
well measured photons or reconstructed Z bosons, as well as between dijets [227]. Figure 7.2a
displays the individual measurements of the resolution in the central region and the associated
1 — 3% uncertainty as a function of jet pr. The energies of the jets in MC simulation are
smeared in order to describe these observations, and the corresponding systematic uncertainty

is propagated to the normalisation and shape of the final discriminants.

The efficiency of the JVF requirement is measured using Z — u™p~+jets events and a
disagreement is found between data and MC simulation, as shown in Figure 7.2b. Therefore, a
corresponding uncertainty is evaluated and propagated to the analysis by varying the nominal
JVF cut value.

The jet reconstruction efficiency is found to be 0.2% lower for MC simulation than in data
for jets with pr < 30 GeV, and above this threshold the agreement is found to be consistent.
The systematic uncertainty which covers the potential jet reconstruction mis-modelling effects
is evaluated by randomly removing 0.2% of the jets with pr < 30 GeV and recomputing the

jet-related variables.

Heavy- and light-flavour tagging

A total of six (four) uncorrelated sources of uncertainty affecting the b(c)-tagging efficiency
are considered [231]. Each of these uncertainties corresponds to an eigenvector resulting from
diagonalising the matrix containing the information about the total uncertainty per jet pr bin
and the bin-to-bin correlations. The number of components is equal to the number of pr bins

used in the calibration, as can be seen from Figure 5.8a (rebinned to six bins) and Figure 5.8b.
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Figure 7.2.: (a) Jet resolution as a function of jet pr in the central n region. Three in-situ meas-
urements are shown displaying their compatibility [227]. (b) Mean jet multiplicity as a
function of the average number of interactions < p > in central Z — pu-+jets events
before and after several JVF cuts were applied [253].

The uncertainties on the b-tagging efficiencies range from < 1% to 9.3%, and the uncertainties
on c-jets reconstructed as b-jets range between 6% and 12% depending on p only. An additional
uncertainty is assigned due to the extrapolation of the b-tagging efficiency measurement to the
high-pr region. Twelve uncertainties are considered for the light-jet tagging that depend on jet
pr and 7, and have a range of 9 —19%. These systematic uncertainties are taken as uncorrelated

between b-jets, c-jets, and light-flavour jets.

7.1.3. Uncertainties on Background Modelling

Given that tt+jets production represents the largest source of background in the search, several
systematic uncertainties affecting its modelling are considered: the uncertainty on the production
cross-section, uncertainties due to the choice of parton shower and hadronisation model, and
uncertainties on the data-driven reweighting procedure described in Section 4.3.2. Additional
uncertainties are assigned to account for the limited knowledge of ¢t production in association
with heavy-flavour jets. The small contributions from the non-tt sources (W/Z+jets, single top,
diboson productions and misidentified lepton backgrounds) represent a minor fraction of the

total background and do not represent a large uncertainty in the analysis.

tt+jets modelling

The inclusive tf production cross-section is calculated at NNLO in QCD with an uncertainty
of +5%/-6%, which includes uncertainties from the PDF and ag choices and knowledge of the
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7. Systematic Uncertainties and Statistical Interpretation

top quark mass. The PDF and ag uncertainties are calculated using the PDF4LHC prescrip-
tion [254] with the MSTW2008 68% CL NNLO, CT10 NNLO [255] and NNPDF2.3 5f FFN [256]
PDF sets, and are added in quadrature to the scale uncertainty. This uncertainty acts on both
tt+light, tf + bb and tf + ¢ components.

An uncertainty due to the choice of parton shower and hadronisation model, as introduced
in Section 4.2, is derived by comparing events produced with nominal POWHEG interfaced with
PyTHIA to events produced with POWHEG and interfaced with an alternative fragmentation
model given by HERWIG. The effects on the shapes are compared, symmetrised and applied to
the shapes predicted by the default model. Since the change of the parton shower model leads to
two separate effects — a change in the jet multiplicity and a change of the heavy-flavour content
— the parton shower uncertainty is represented by three parameters, one acting on the tt-+light
contribution and two others on the tt+cé and tf+bb contributions. These three parameters are

treated as uncorrelated in the fit.

As discussed in Section 4.3.2, to improve the agreement between data and the ¢f simulation,
a reweighting procedure is applied to ¢t MC simulation events based on the difference in the
top quark pr and ¢t system pr distributions between data and simulation at /s = 7 TeV [196].
The nine largest uncertainties associated with the experimental measurement of top quark and
tt system pr, representing approximately 95% of the total experimental uncertainty on the
differential cross-section measurement, are considered as separate uncertainty sources in the
reweighting applied to the MC prediction. The largest uncertainties on the measurement of
the differential distributions include radiation modelling in ¢f events, the choice of generator to
simulate ¢t production, uncertainties on the components of jet energy scale and resolution, and
flavour tagging. The effect of applying the tt reweighting can be seen in different kinematic
distributions shown in Figure 7.3 for the cases of initial/final state radiation (ISR/FSR) and
MC generator model systematic reweightings. The measurement is performed on the inclusive
tt sample and the size of the uncertainties applicable to the tt+c¢ component is not known.
Thus, two additional uncorrelated uncertainties are assigned to tt-+c¢ events, consisting of the
full difference between applying and not applying the reweightings of the ¢t system pt and top
quark pr, respectively. The effect of these uncertainties on the unfolded pr top and pr 4 spectra,
the values of the obtained reweighting factors and the normalisation uncertainties on each of

the tt+light-jet and ¢t + c¢ background processes are documented in Appendix A.
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Figure 7.3.: Effects of applying the systematic uncertainty reweightings associated to (a-f) ISR/FSR

and (g-1) MC generator model in the differential cross-section measurement. Reweighting
using the (left) up, (middle) nominal and (right) down shifts are shown. Distributions of
(a-c, g-i) jet multiplicity in the exclusive 2 b-tag region and (d-f, j-1) H2*d in the exclusive
4 jet region are presented. The bottom panel displays the ratio of data to the total
prediction. The hashed area represents the statistical uncertainty on the background.
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7. Systematic Uncertainties and Statistical Interpretation

Detailed comparisons of t£4+bb production between POWHEG+PYTHIA and an NLO prediction
of tt+bb production based on SHERPAOL within the acceptance of the search have shown that the
cross sections agree within 50% of each other [197]. Therefore, a systematic uncertainty of 50% is
applied to the tf+bb component of the tf+jets background obtained from the POWHEG+PYTHIA

MC simulation.

Eight systematic uncertainties related to the modelling of the t£+bb background arise from the
reweighting procedure for relative contributions of different categories and kinematics modelling
described in Section 4.3. Three scale uncertainties, including changing the functional form of the
renormalisation scale to ur = (mtmbg)l/ 2. changing the functional form of the factorisation jp
and resummation jg scales to pup = g = Hz‘:t,f,b,é E%/’ ? and varying the renormalisation scale
ur by a factor of 2 and 1/2 with respect to the nominal SHERPAOL prediction are evaluated. The
effect of these systematic uncertainty across the different ¢t£+bb categories is shown in Figure 7.4a.
Additionally, the shower recoil model uncertainty (CSS KIN) and two uncertainties due to
the PDF choice in the SHERPAOL Next-to-Leading Order (NLO) calculation using alternative
NNPDF [256] and MSTW [163] sets are considered, as displayed in Figure 7.4b.
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Systematic uncertainties on the tZ4bb contribution based on (a) scale variations and (b)
PDF choice and shower recoil model of the SHERPAOL simulation across the different
tt+bb categories [5].

Figure 7.4.:

The renormalisation scale choice and the shower recoil scheme have a large effect on the
modelling of t£+bb. They provide large shape variations of the NN discriminants resulting in the
fourth and sixth leading uncertainties in the present analysis. Two uncertainties due to tf-+bb
production via multiparton interaction and final-state radiation which are not present in the
SHERPAOL NLO calculation, as seen from Figure 4.10, are applied. Overall, the uncertainties
on tt + bb normalisation and modelling result in about a 55% total uncertainty on the tf + bb

background contribution in the most sensitive (> 6j,> 4b) region.
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7.1. Sources of Systematic Uncertainties

In the absence of an NLO prediction for the tt+c¢ production, a 50% uncertainty is applied to
the tf+c¢ component, and these normalisation uncertainties both on t£+bb and tf+cc are treated
as uncorrelated. Dedicated systematic uncertainties on the tt+cc background estimate are de-
rived from the comparisons between nominal POWHEG+PYTHIA and MADGRAPH+PYTHIA,
since the LO multi-leg generator includes the tt+cc process in the matrix element calcula-
tion. Four systematic uncertainties are derived from the simultaneous variation of factorisa-
tion and renormalisation scales, matching threshold and c-quark mass variations in the MAD-

GRAPH+PYTHIA tt simulation, as detailed in Ref. [257].

W/Z+jets modelling

As discussed in Section 4.3, the W/Z+jets contributions are obtained from the simulation and
normalised to the inclusive theoretical cross sections, and a reweighting is applied to improve the
modelling of the W/Z boson pr spectrum. The full difference between applying and not applying
the W/Z boson pr reweighting, described in Section 4.3.2, is taken as a systematic uncertainty,
which is then assumed to be symmetric with respect to the central value. A conservative
normalisation uncertainty on the W/Z+jets cross sections of 48% is adopted, which covers both
the normalisation as well as W/Z+heavy-flavour composition. Additional uncertainties are
assigned due to the extrapolation of the W/Z-+jets estimate to high jet multiplicity following
the predictions from Berends scaling [258].

Misidentified lepton background modelling

Systematic uncertainties on the data-driven misidentified lepton background estimate, intro-
duced in Section 4.4, receive contributions from the sample size in data, particularly at high jet
and b-tag multiplicities, from the subtraction of the prompt-lepton contribution as well as from
the uncertainty on the lepton misidentification rates, estimated in different control regions [214].
The statistical uncertainty is uncorrelated among the different jet and b-tag multiplicity bins. An
uncertainty of 50% associated with the lepton misidentification rate measurements is assumed,
which is taken as correlated across jet and b-tag multiplicity bins, but uncorrelated between elec-
tron and muon channels. Uncertainty on the shape of the misidentified lepton background arises

from the prompt-lepton background subtraction and the misidentified lepton rate measurement.

Uncertainties on single top, diboson and ¢t + V backgrounds

An uncertainty of +5%/-4% is assumed for the theoretical cross sections of single top production,
corresponding to the weighted average of the theoretical uncertainties on s-, t- and Wi-channel
productions [208, 209]. The uncertainty on the diboson background rate includes an uncertainty
on the inclusive diboson NLO cross-section of £5% [206] and uncertainties to account for the
extrapolation to high jet multiplicity. Finally, an uncertainty of £30% is assumed for the
theoretical cross sections of the tt+V [201, 202] background. An additional radiation uncertainty

on tt+V modelling is assessed by varying the strong coupling ag in the matrix element calculation
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by a factor of two up and down with respect to the nominal value, while simultaneously varying
the amount of initial state radiation in PYTHIA shower model, as shown in Figure 7.5a. The
tt + Z background with Z boson decaying into a bb pair is an irreducible background to the
ttH(H — bl_)) signal, and as such, has kinematics and an NN discriminant shape similar to those

of the signal, as documented in Appendix B.

A summary of the uncertainties for each of the considered background processes that affect

only the normalisation rates of their respective contributions are given in Table 7.2.

Physics process Normalisation uncertainty [%]
tt inclusive +5/-6
tt+ bb + 50.0
tt 4 cc + 50.0
tt+V + 30.0
Single top +5/-4
W +jets + 48.0
W+jets (extrap. 5 jet events) + 24.0
W+jets (extrap. > 6 jet events) + 24.0
Z+iets + 48.0
Z+jets (extrap. 5 jet events) + 24.0
Z+jets (extrap. > 6 jet events) + 24.0
Diboson + 24.5
Diboson (extrap. 5 jet events) + 24.0
Diboson (extrap. > 6 jet events) + 24.0

Table 7.2.: Summary of the normalisation uncertainties for each of the background processes
considered, prior to the fit on data.

7.1.4. Uncertainties on Signal Modelling

Five sources of systematic uncertainties on the ttH signal modelling are considered: factorisa-
tion and renormalisation scale variations, change of the static to dynamic functional form of the
scale, PDF, parton shower, fragmentation model and NLO generator uncertainties. To evaluate
the impact of the choice of factorisation and renormalisation scales on the ¢t H signal kinematics,
dedicated NLO POWHEL are generated with the default static scale up = ur = my +mpg /2 var-
ied by a factor of two up and down. The effect of the variations on t¢H distributions was studied
at particle level and the nominal POWHEL tfH sample was reweighted to reproduce these vari-

ations. In a similar way, the nominal sample is reweighted to reproduce the effect of replacing the

functional form by the dynamic scale up = ur = (mymbmi )% Significant differences are ob-

served in the tt H system distributions when comparing the different scale variations as presented
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Figure 7.5.: (a) Systematic uncertainties on the ¢t + Z contribution based on the radiation modelling.
(b) The effect of the scale variation uncertainties on the #tH signal as seen in the pr
distribution of the t#H system. Distributions are normalised to unity.

in Figure 7.5b, and explained by the fact that the t¢H system kinematics are sensitive to extra
QCD radiation. The effect of the PDF uncertainty on the ttH signal is evaluated following the
recommendation of the PDF4LHC prescription [254]. The uncertainty in the parton shower and
fragmentation is evaluated by comparing POWHEL+PYTHIAS and POWHEL+HERWIG samples,
while the uncertainty due to a generator choice is evaluated by comparing POWHEL+PYTHIAS8
with MADGRAPH5_AMC@NLO [259] interfaced with HERWIG++ [260, 261].

Tables summarising the pre-fit contributions of the different normalisation systematic uncer-
tainties on signal and main background processes in the signal-enriched regions are documented

in Appendix A.

7.2. Statistical Methods

The SM Higgs boson produced in association with a pair of top quarks is searched for by
performing a binned profile likelihood fit to the data on the distributions of the discriminants in
nine analysis regions, described in Section 6.2. The statistical procedure presented below allows

the reduction of the impact of the systematic uncertainties outlined in Section 7.1 on the search.

7.2.1. Likelihood Function and Profiling

The distributions of the discriminants from each of the considered regions are combined to test
for the presence (or absence) of a signal, assuming a Higgs boson mass of my = 125 GeV. This
is achieved by comparing the compatibility of the data with the background-only (b-only) and
signal-plus-background (s + b) hypotheses, where the signal is allowed to be scaled by a signal-
strength factor u, defined as the ratio of the observed/expected ttH cross-section to the SM
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cross-section:

OuH
ttH

The definition in Eq. 7.1 allows to represent the b-only hypothesis with an absence of any ttH
signal by p = 0, while a value of u = 1 coincides with the s + b hypothesis, where the Higgs

boson is produced with SM kinematics.

The compatibility measure can be based on the number of events found in designated regions
of certain histograms. The expected number of events in the bin ¢ of a given histogram is
supposed to be given by:

E;,=p-s;+ b, (7.2)

where s; and b; correspond to the number of expected signal and background events, respectively,
in the bin ¢. The data follow a Poisson probability distribution around its expected number of
events, the statistical analysis is based on a binned likelihood function L constructed as a product

of Poisson probability terms over all bins N of each distribution used in the fit:

(Ei)™

L(p) =

exp (—E;), (7.3)
i=0
where n; represents the number of observed events. The best estimate for p is obtained by

maximising the likelihood or, equivalently, minimising the negative logarithm of the likelihood.

However, the signal and background expectations are affected by statistical and systematic
uncertainties. The effect of these uncertainties on the predictions are modelled by a set of nuis-
ance parameters, 0, that encode the effects of systematic uncertainties on s; and b; expectations.
Therefore, the total number of expected events in a given bin depends on p and 6. The nuisance
parameters are implemented in the likelihood function as functional forms, which are represen-
ted by different functions. In general, systematic uncertainties are assumed to have a Gaussian

prior centred around zero with a width o that corresponds to the given uncertainty.

By convention [262], a value of § = 0 corresponds to the nominal central value of the prediction,
while values of § = 41 represent the 10 variations of that particular systematic uncertainty.
The interpolation of the available 10 shape distributions for a given systematic uncertainty
into a continuous function of the parameter 6 is achieved by using the vertical morphing tech-
nique [263]. The template morphing adjusts the (vertical) contents of each histogram bin as a

linear or quadratic function of the 6 parameter, schematically illustrated in Figure 7.6.

Hence, the full likelihood is written as:

N i
£(u,0) = H (p - Sz'(@)n:r! bi(9))

=0

b
exp (1 5:(0) + bi(0)) - [ [ p(6k), (7.4)
k=1

where p(f) represents the functional form of the priors for each of the P nuisance parameters.

The nuisance parameters 6 adjust the expectations for signal and background according to the
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Figure 7.6.: Tllustration of a quadratic interpolation in vertical template morphing which translates
the available +10 shape distributions for a given systematic uncertainty into a continuous
function of the parameter 6. Adapted from [264].

corresponding systematic uncertainties, and their fitted values correspond to the amount that
fits better the data.

The goal of building a likelihood based test is to provide frequentist confidence intervals, which

are constructed using a profile likelihood ratio as test statistic g, [265]:

qu=—2In (W) , (7.5)
L(,0)

where /i and 0 are the values of the parameters that maximise the likelihood function (with the

constraints 0 < i < p), and éu are the values of the nuisance parameters that maximise the

likelihood function for a given value of u. In this way, the nuisance parameters representing the

systematic uncertainties are marginalised through profiling: foz" each value of u the values of 6

~

are chosen such that the log-likelihood in the numerator, £(u,6,,), is maximal.

7.2.2. Limit Setting

Within the theory of Neyman-Pearson hypothesis testing, the usual way of quantifying the level
of compatibility between the data and a given hypothesis is to compute a p-value. It is defined
as the probability, under assumption of the hypothesis in question, of obtaining a value with
equal or lesser compatibility compared to the level found with the observed data. In addition to
the p-value, one often calculates the significance, defined as the number of standard deviations
Z at which a Gaussian random variable of zero mean would give a one-sided tail area equal to

the p-value, as illustrated in Figure 7.7a.
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7. Systematic Uncertainties and Statistical Interpretation

Given the value of the test statistic on data g.ps, the compatibility of the result with the s+ b
hypothesis or the b-only hypothesis is given by the p-values:

s = | Flals+b)dg (7.6)
Qobs
Qobs

- / f(qlb)da, (7.7)

as illustrated in Figure 7.7b.
The confidence level (CL) of the signal hypothesis is given by [266, 267] :

_ CLS+b _ Ps+b
CL, 1—p

CLs(1) (7.8)

and in the absence of a statistically significant excess of events above the background expectation,
a 95% CL upper limit on p is set by adjusting p until the value of CLg = 0.05 is reached using
the asymptotic approximation [265].

~~ @
\>-</ -~
9- qobs
0.15
f(q|s+b)
01l f(alb)
p-value 005 P,
/ : ps+h
| ol k
— Z— X -10 0 10 a
(a) (b)

Figure 7.7.: (a) The relation between the significance Z and the p-value. (b) Example distribution
of the test statistics for b-only and s + b hypothesis [265].

In summary, the test statistic defined in Eq. 7.5 is used to measure the compatibility of
the observed data with the background-only hypothesis, and to make statistical interpretations
about the value of pu, such as upper limits using the CLg method as implemented in the ROOFIT
package [268, 269].
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CHAPTER 8

Results and Combinations

In this Chapter, the main result of the search for the SM Higgs boson production in association
with a top quark pair in the single lepton channel is presented. Following the statistical procedure
described in Section 7.2, the results of the binned likelihood fit to data and limits on ttH
production are given in Section 8.1. The combination of the single lepton analysis presented in
this thesis with the search for t£H(H — bb) in the opposite-charge dilepton ¢ decay channel
is outlined in Section 8.2. Finally, Section 8.3 describes the combination of all ttH searches
exploiting different final states within ATLAS.

8.1. Results and Limits on ttH Production

The final result of the search is obtained by performing a simultaneous fit to the data on the
distributions of the discriminants in nine analysis regions, introduced in Section 6.1. The fit
is performed under the signal-plus-background hypothesis, where the signal-strength parameter
1 is the parameter of interest in the fit and is allowed to float freely, but is required to be
the same in all fit regions. The normalisation of each background is determined from the fit
simultaneously with p. Contributions from tt, W/Z+jets production, single top, diboson and
tt+V backgrounds described in Section 4.3 are constrained by the uncertainties of the respective
theoretical calculations, by the uncertainty on the luminosity, and by the data themselves.
Statistical uncertainties mentioned in Section 7.1 in each bin of the discriminant distributions

are taken into account by dedicated parameters in the fit.

The analysis regions have different contributions from various systematic uncertainties, al-
lowing the fit to identify the values of the nuisance parameters which best reflect the available
data while penalising the fit for uncertainties pulled far from their central values. The H%ad
variable used in the control regions defined in Section 6.1 allows constraints to be set on the
combined effect of several sources of systematic uncertainty given the large number of events.

For example, the highly populated (4j, 2b) provides a powerful constraint on the overall nor-

121



8. Results and Combinations

malisation of the ¢t background. The (4j, 2b), (5j, 2b) and (> 6j, 2b) regions are almost pure
in tt+light-jets background and provide an important constraint on ¢t modelling uncertainties
both in terms of normalisation and shape. Uncertainties on c-tagging are reduced by exploiting
the large contribution of W — ¢s decays in the tt+light-jets background populating the (4j, 3b)
region. Finally, the consideration of regions with exactly 3 and > 4 b-jets, having different
fractions of t+bb and tt+cé backgrounds, provides the ability to constrain uncertainties on the
tt+bb and t{+cc normalisations. This is possible, while simultaneously searching for a signal,
owing to the good signal-to-background separation in such channels obtained through the usage

of NN discriminants.

The large available data sample allows the determination of the tf+bb and tf+cé normalisa-
tions with precision of approximately 15% and 30%, respectively, compared to the initial 50%
uncertainty. The final result does not significantly depend on the exact value of the assumed
prior uncertainty, as long as it is larger than the precision with which the data can constrain
it. However, even after the reduction, the uncertainties on the tt+bb and the t{+c¢ background

normalisation are the leading uncertainties in the analysis.

A visual comparison of the yields after the fit is shown in Figure 8.1 in all analysis regions,
reflecting an excellent agreement with the SM expectation within the uncertainties. The postfit
uncertainties decrease significantly in all regions due to constraints provided by data and cor-
relations between different sources of uncertainty introduced by the fit to the data. The post-fit
event yields for the different regions considered in the analysis are summarised in Table 8.1.
Figure 8.2 shows the comparison of data and post-fit prediction for the discriminating variables
(either Hiador NN discriminants) for each of the regions considered. Tables summarising the
post-fit contributions of the different normalisation systematic uncertainties on signal and main
background processes in the signal-enriched regions are documented in Appendix A. Figure 8.3
shows a comparison of data and post-fit prediction for the top four most highly discriminating

variables in the NN. Good agreement with the SM expectation is observed.

ATLAS +  Data [EtHH (125)

Events

10° Vs=8Tev, 20.3 bt O v [ ti+light
Single lepton ] nontt [ ti+c§
10° v Totalunc. [l  ti+bb

T H (125)

10* Post-fit

=
o
T =TT

=

N

o
T

R I e o

Data / Pred
—
°
°
[}

75E
0.5E °
ay?

51206125120 51,20 61,35, 280, 28R 24°
Figure 8.1.: Comparison of prediction to data in all analysis regions after the fit to data. The signal,
normalised to the fitted u, is shown both as a filled stacked area and separately as a

dashed line. The hashed area corresponds to the total uncertainty [5].
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43,2b 4j,3Db 43,4Db
ttH (125) 48+ 35 20 15 3.0£2.2
tt+ light 78000£1600 6300+160 56+ 5
tt+ cc 64001800 8504220 26+ 7
tt + bb 2500+ 490 970 £+ 150 63+ 8
W +jets 3700 £1100 1704+ 51 4.0+£1.2
Z+jets 1100+ 540 494+ 25 1.1+£0.6
Single top 4700+ 320 330+ 28 6.8+0.7
Diboson 220+ 65 11+ 4 0.3=£0.1
tH+V 120+ 38 16+ 5 09+£0.3
Lepton misID 1100+ 370 8+t 26 2.6+1.0
Total 98000+ 340 8800+ 82 160+ 6
Data 98 049 8752 161
5j,2b 5j,3b 5j,>4b
ttH (125) 60+ 44 34+ 25 944 6.9
tt+ light 3800041000 36004120 65+ 6
tt + cc 4800£1200 9304+£230 51+ 12
tt + bb 2400+ 360 1300£180 150+ 20
W +jets 1200+ 420 87+ 31 4.0+ 15
Z+jets 370+ 200 28 16 14+ 0.8
Single top 1700 £ 150 190+ 18 8.2+ 0.7
Diboson 94+ 35 80+ 31 0.5+ 02
t+V 140+ 43 26 8 3.2+ 1.0
Lepton misID 340+ 110 444+ 16 5.7+ 2.2
Total 500004+ 220 62004+ 54 300+ 10
Data 49 699 6199 286
>6j,2b >6j,3b >6j,>4b
ttH (125) 89+ 65 57+ 42 24+ 17
tt+ light 19000700 2100+ 87 58+ 5
tt + ce 3700890 890+210 85+ 21
tt + bb 2000+310 14004+190 330+ 37
W +jets 4504+ 170 514+ 19 44+ 1.9
Z+jets 150+ 86 16+ 9 124+ 0.7
Single top 730+ 83 110+ 14 11+ 2
Diboson 45+ 20 56+ 2.6 0.5+ 0.2
tH+V 170+ 52 424+ 13 8.2+ 2.5
Lepton misID 120+ 41 14+ 5 1.1+ 0.5
Total 26000160 4600+ 55 520+ 18
Data 26185 4701 516

Table 8.1.: Post-fit event yields under the signal-plus-background hypothesis for signal, backgrounds
and data in each of the analysis regions. The quoted uncertainties are the sum in quadrature
of statistical and systematic uncertainties on the yields, computed taking into account
correlations among nuisance parameters and among processes.
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Figure 8.2.: Comparison of data and prediction after the fit for the discriminant variable used in (a)
(43, 2b), (b) (4, 3b), (c) (4), 4b), (d) (5], 2b), (e) (5j, 3b), (f) (5j,> 4b), (g) (= 6j, 2b),
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(h) (> 6j, 3b) and (i) (> 6j, > 4b) regions. The fit is performed on data under the signal-
plus-background hypothesis. The last bin in all figures contains the overflow. The bottom
panel displays the ratio of data to the total prediction. The hashed area represents the
uncertainty on the background. The dashed line shows ttH signal distribution normalised
to background yield. The t£H signal yield (solid) is normalised to the fitted signal-strength

w after the fit [5].



8.1. Results and Limits on ttH Production

3., FATLAS 31600 ATLAS 3 [ ATLAS
212005 5=8Tev + Data [l fiH (125) (314 Fis=8Tev + Data [l iH (125) Data [l tiH (125) O1200- 5_gTev + Data [l tiH (125)
31000: 20.3 o O v [ tislight 5 1400¢ 20.3 b O v [ tislight v [ fislight e [ 2031’ O v [ tisight
o " Mg T1200E i foct i foce 1000~ : c
S F single lepton U ront O] fisce 12005 gingle tepton L roni 0 e Single lepton LJ ront [ e 277F single tepton I ronf [ ez
% 800 51:3b % Totalunc. [l t+bb ;2:1000} 5j,3b 7, Totalunc. [l tt+bb 5j,3b % Totalunc. [l {i+bb. 3 800 5j,3b % Totalunc. [l ti+bb.
& F Post-fit & 800k Post-fit Post-fit E Post-fit

600 E E 600F

6001~ 600F [
400 £ E 400
400~ 400

2001 200F 2007 200
9 105 " B 1 o5t B 105k 9 105
g 125 TR, S h | g 1254 SRS Ths g 125 s T LT B e A
2 075 RS asC ANNUES | L TR % 078 BN K & 7T e ! I |
o 5 o 5 < 5 ol 5l
g 0 50 100 150 200 250 300 350 400 g %% 50 100 150 200 250 300 350 ‘Dﬁ 0 50 100 150 200 250 300 350 400 g o 50 100 150 200 250 300 350

max p, min AR min AR min AR
my, " [GeV] mi" 47 [GeV] p A7 [GeV] mgp' " [GeV]
(a) (b) (c) (d)
8 100 ATLAS m S 200FATLAS @ £ 250F ATLAS @ g 160F- ATLAS m
S _ + Data [l fiH (125) = - + Data [l iH (125) 3 - + Data [l iH (125) _ + Data [l tiH (125)
2 5=8 Tev @V 0] tilight 2 1805 =8 Tev @V O tislight i 5=8 Tev v O fislight N is=8 Tev @V O] light
< 20310 noni [ e | 8 160520310 &) nont [ ikt 200]-20-3 b ond [ s | 20310 noni [ fiven
% 8%Csinglelepton 7 Towlunc. [ ti+bb @) 4oF Single lepton 7z Totalunc. @ ti+bb Singlelepton 77  Totalunc. [l  ti+bb £ 120=single fepton 77 Totalunc. B f+0b
5j,24b [] tiH (125) norm 120 5j,24b [] tiH (125) norm 5j,24b [] tiH (125) norm 1 5j,24b [] tiH (125) norm
150

3
=)

st-fit

Post-fit Post-fit

Post-fit

=
1)
IS)

o o T o o % %
g 7 5 5 B 77
3 3 3% rk el
8 04 05 06 07 08 09 1 & s 8 50 100 150 200 252R300 350
i min
Centrality mgp" A% [GeV]
(e) (f) (9) (h)
FATLAS 31000 ATLAS 82200 ATLAS ﬁmoo ATLAS
_ + Data [l fiH (125) =] [ s= + Data [l ffH (125) S _ + Data [ItHH (125) ] _ + Data [l ttH (125)
5= 'B T‘eV v [ ti+light @ [ fs=8 Iev v [ tivlight 52000 5= ? Iev v O fislight § 5= ? T‘ev Vv [ fi+light
20.3 fo nonti O tiece € goof-20:3f0 O noni O] fikee £1800E-20.3 fb o nonti O tisct f1120020.3 fb =] nonti O fisce
Single lepton 7~z Totalunc. B ti+bb & [ singlelepton 7z  Totalunc. [  ti+bb 51 1600F Single lepton 7z Totalunc. [l ti+bb Single lepton 7z Totalunc. B ti+bb
>6j,3b [] tiH (125) norm L >6j,3b [] ftH (125) norm 1400 26j,3b [] tiH (125) norm 10001 > 6j,3b [] tiH (125) norm
600~
1500 - Post-fit [ + Post-fit 1200 Postfit 800 s Post-fit
F 400 4, 600 e
1000~ r
E [ 400
E 2001~
. 200
o 5 ° °
B 1. B 1.25 3 B 1.25
o L 4 £ e b o
< s .4 E o = < L e = 2/
s 05 s 0 E 8 05 -
= T2 38 45 6 7 8 £ 0203040506070809 1 & 8 80 75 70 65 60 -55 -50
o Centrality SSLL
(i) () (k) @
3 ATLAS 8 ATLAS E ATLAS 3 ATLAS
~ 350 - + Data [l ttH (125) o - -+ Data [llttH (125) - + Data [lltiH (125) -~ - + Data [l tiH (125)
2 s 8 Tev v [ fislight % 8Tev v [ fislight @ s 8Tev v [ fvlight 2 s 8TV o v [ fislight
@ 300 20-3fb =] nonti O] ti+cS H 20.3 b =] noni O] tehee 2 20.3fb o noni O] i+t I3 20.3fb o nontt O fivce
w Single lepton 7 Totalunc. [l ti+bb & Single lepton 77 Totalunc. [l ti+bb 1 Single lepton 7 Totalunc. [l  i+bb w Singlelepton 77 Totalunc. [l  i+bb
250F 26j,24b  []tiH (125) norm 26j,24b  [JiH (125) norm 1] 26j,24b [ 1H(125) norm 26j,24b [ H(125) norm

Post-fit

___Postit Post-fit Post-fit

Data / Pred
Dal:l Pred
Data / Pred
Data / Pred

%32 03 04 05 06 07 08 09 1 20 30 40,50 60 70 80 90 100 . -
D1 Centrality 5" leading jet P, [GeV] H1

(m) (n) (o) (p)

Figure 8.3.: Post-fit comparison of data and prediction for the four top-ranked input variables in the
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ratio of data to the total prediction. The hashed area represents the uncertainty on the
background. The dashed line shows ttH signal distribution normalised to background
yield. The ttH signal yield (solid) is normalised to the fitted signal-strength pu after the
fit [5].
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The obtained signal strength for mpy = 125 GeV is found to be:
uw=12+13. (8.1)

Following the statistical procedure discussed in Section 7.2, the observed (expected) p-value of
the excess given the background-only hypothesis is 15% (16%) which corresponds to an observed
(expected) significance of the signal is 1.0 (1.0) standard deviations. The observed limits, those
expected with and without assuming a SM Higgs boson with my = 125 GeV are summarised in
Table 8.2. A signal 3.6 times larger than predicted by the SM is excluded at 95% CL using the
CLg method. A signal 2.6 times larger than for the SM Higgs boson is expected to be excluded
in the case of no SM Higgs boson, and 3.6 times larger in the case of a SM Higgs boson.

Observed | —20 —1lo Median +1lo +20 | Median (u=1)
3.6 14 1.9 2.6 3.7 49 3.6

Table 8.2.: Observed and expected (median, for the background-only hypothesis) 95% CL upper limits
on o(ttH) relative to the SM prediction, assuming my = 125 GeV. The 68% and 95%
CL around the expected limits under the background-only hypothesis are also provided,
denoted by +1o and +20, respectively. The expected (median) 95% CL upper limits
assuming the SM prediction for o(ttH) are shown in the last column.

8.2. Combination with the Dilepton Channel

The single lepton analysis presented in this thesis is combined with the search for ttH(H — bb)
in the opposite-charge dilepton ¢t decay channel using the same data set at /s = 8 TeV [5]. The
dilepton analysis requires two opposite-charge leptons with at least two jets, of which at least
two must be b-tagged, and pursues a very similar strategy by categorising the events according to
the jet and b-tagged jet multiplicity. The dominant background in the signal-enriched (> 4j, 3b)
and (> 4j, > 4b) regions of the dilepton topologies comes from tf + bb events. In these regions,
a neural network is built using kinematic information in order to separate the ttH signal from
tt background. An additional NN is used to separate signal from background in the (3j, 3b)

channel, which adds sensitivity to the signal.

Given that the selections of the two analyses are completely orthogonal, and the systematic
uncertainties treatment is based on the same fit model, the combination of both analyses is
performed on the distributions of the discriminants in nine analysis regions in the single lepton
channel and six regions in the dilepton channel. The fitted signal strength for the combined
analysis is found to be u(mpy = 125 GeV) = 1.5 + 1.1. The observed limits, those expected
with and without assuming a SM Higgs boson with, for each channel and their combination are
shown in Figure 8.4.

Two event displays of the reconstructed events with the highest NN outputs in both single

lepton and dilepton channels are shown in Figure 8.5.
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8.2. Combination with the Dilepton Channel
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Figure 8.4.: 95% CL upper limits on o(ttH) relative to the SM prediction for the individual channels
as well as their combination. The observed limits (solid lines) are compared to the
expected (median) limits under the background-only hypothesis and under the signal-
plus-background hypothesis assuming the SM prediction for o(ttH) and pre-fit prediction
for the background [5].

The effect of various systematic uncertainties on the fitted value of p and the constraints
provided by the data are shown in Figure 8.6. As expected, the largest uncertainty on the fitted
value of j arises from the uncertainty in normalisation of the irreducible £+ bb background. This
uncertainty is reduced after the fit by more than one half from the initial 50%. Moreover, the
tt + bb background normalisation nuisance parameter is pulled up by about 40%, resulting in an
increase in the observed tf + bb yield with respect to the POWHEG+PYTHIA prediction. Most of
the reduction in uncertainty on the ¢£+bb normalisation is the result of the significant number of
data events in the signal-enriched regions dominated by tf+bb background. The tf+bb modelling
uncertainties affect the shape of this background and have also have a significant effect on . The
tt + c¢ normalisation uncertainty is ranked third and its pull is slightly negative, caused by the
interplay between the tt+c¢ normalisation uncertainty and several other systematic uncertainties
affecting the ¢t + c¢ background yield. The effect of the light-jet tagging systematic uncertainty
is explained by the relatively large fraction of the tf+light background in the signal region with
four b-jets in the single lepton channel. The tt+light-jet events enter the 4-b-tag region through
a mistag as opposed to the 3-b-tag region where tagging a c-jet from a W boson decay is more
likely. Since the amount of data in the 4-b-tag regions is not large this uncertainty cannot be
constrained significantly. Other leading uncertainties include b-tagging and some components of
the JES uncertainty. The tf + Z background with Z — bb is an irreducible background to the
ttH signal as it has the same number of b-jets in the final state and similar event kinematics.
Its normalisation has a notable effect on p, du/do(tt + V) = 0.3, and the uncertainty arising

from the tf + V normalisation cannot be significantly constrained by the fit.
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8. Results and Combinations

Run Number: 214086, Event Number: 136250502
Date: 2012-11-06 02:47:13 CET
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Figure 8.5.: Event displays of the reconstructed events with the highest NN output in (a) single lepton
and (b) dilepton channels. The single lepton event contains six jets, out of which four
are b-tagged jets (blue cones) and the rest are light-flavour jets (white cones), and one
muon (orange line). The dilepton event contains four b-tagged jets, one electron (green
line) and one muon. The missing transverse momentum is depicted as red dotted line.
The two-dimensional histogram displays the energy deposits of the objects as a function
of  and ¢, as calculated from the calorimeter cells.
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8.2. Combination with the Dilepton Channel
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measured signal strength. The points, which are drawn conforming to the scale
of the bottom axis, show the deviation of each of the fitted nuisance parameters,
é, from 6y, which is the nominal value of that nuisance parameter, in units of
the pre-fit standard deviation Af. The error bars show the post-fit uncertainties,
09, which are close to 1 if the data do not provide any further constraint on that
uncertainty. Conversely, a value of g9 much smaller than 1 indicates a significant
reduction with respect to the original uncertainty. The nuisance parameters are
sorted according to the post-fit effect of each on p (hashed blue area) conforming
to the scale of the top axis, with those with the largest impact at the top [5].
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8. Results and Combinations

8.3. Combination of ttH Searches within ATLAS

In order to increase the sensitivity of the search for t¢tH production, the different individual
ttH searches performed by ATLAS at /s = 7 and 8 TeV are combined [270]. The combination

includes the searches for:
e {tH(H — bb) in the single lepton ¢t decay topology presented in this thesis;
e {tH(H — bb) in the opposite-charge dilepton ¢ decay channel introduced in Section 8.2;
e ttH(H — bb) in the all-hadronic tf decay channel using data at /s = 8 TeV [270];

o ttH(H — (WW® 77, 2Z*)) — leptons) with two same-charge leptons (e or u), three
leptons, four leptons, two hadronically decaying 7-leptons plus one lepton and one hadron-

ically decaying 7-lepton plus two leptons in the final state using data at /s = 8 TeV [20],

o ttH(H — ~v) at /s = 7 and 8 TeV in both the hadronic and leptonic (e or p) t¢ pair
decay channels [271].

The result of the t#H(H — bb) combination leads to an observed signal strength of p =
1.4 + 1.0, summarised in Figure 8.7a. Figure 8.7b shows the observed signal strength of the
individual t#H channels (H — bb, H — vy and H — (WW® 77, ZZ®*)) — leptons) and the
ttH combination, and the latter yields a best-fit value of u = 1.7+0.8. The observed (expected)
significance of the combined ¢tH result is 2.30 (1.50). In summary, the analysis of the single
lepton ¢t decay topology described in this thesis represents the most sensitive search to date
for the ttH production, and significantly contributes to the combination of various ¢t H searches
within ATLAS.
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T
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total ttH (H- bb) — total /s=8 TeV, 20.3 fb™*
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Figure 8.7.: Summary of the measurements of the signal strength u for (a) ttH (H — bb) production
for the individual H — bb channels and for their combination and (b) the individual chan-
nels and for their combination, assuming my = 125 GeV. The total (tot) and statistical
(stat) uncertainties of p are shown. The SM expectation is shown as the grey line [270].
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cHAPTER 9O

Conclusions and Qutlook

In this thesis a search for the Standard Model Higgs boson produced in association with a
pair of top quarks using 20.3 fb~! of pp collision data at /s = 8 TeV collected with the
ATLAS detector during the first run of the Large Hadron Collider has been presented. The
search focuses on H — bb decays, and is performed in the single lepton decay topology of the
tt system, characterised by an isolated electron or muon with high transverse momentum and a
large number of jets. The main source of background to this search comes from top quark pairs
produced in association with additional jets. Selected events are classified into nine categories
according to their jet and b-tagged jet multiplicities in order to improve the sensitivity of the
search and constrain in situ the systematic uncertainties affecting the background prediction.
The discrimination between signal and background is obtained by employing neural networks in
the signal-enriched regions. In addition to taking into account several object kinematics, global
event variables, event shape variables and object pair properties, two variables calculated using
the matrix element method are used as input to the neural network. As a result of the fit,
the large uncertainty in the prefit background prediction decreases significantly in all regions
due to constraints provided by data and correlations between different sources of uncertainty
introduced by the fit to the data regions, which results in a sizeable increase in the search
sensitivity. No significant excess of events above the background expectation is found for a
SM Higgs boson with a mass of 125 GeV, and an observed (expected) 95% CL upper limit of
3.6 (2.6) times the SM cross section is obtained at 95% confidence level. By performing a fit
under the signal-plus-background hypothesis, the ratio of the measured signal strength to the
SM expectation is found to be: p;;7 = 1.2 + 1.3.

Comparing the exclusion limits presented in this thesis to previous searches of ttH production
performed by ATLAS and CMS experiments at the LHC in all decay channels [26], the analysis
described in this thesis represents the single most sensitive search to date for the t¢H production
at /s = 7 and 8 TeV. Moreover, the presented search significantly contributes to the combination

of various ttH searches within ATLAS, yielding to an observed (expected) significance of the
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9. Conclusions and Outlook

combined ¢tH result of 2.30 (1.50). The further combination of the Higgs boson production
processes and decay channels using ATLAS and CMS data at /s = 7 and 8 TeV leads to an
observed significance for the tt H process of 4.40, whereas only 2.00 is expected. This corresponds

to a measured excess of 2.30 with respect to the SM prediction.

Given the encouraging results obtained at /s = 7 and 8 TeV data by the LHC experiments,
the observation of ttH production is expected to be one of the highlights of the early physics
program during the Run II at the LHC. At /s = 13 TeV, the ttH production cross-section
increases by a factor 3.9 compared to /s = 8 TeV, while the cross section for the inclusive tt
production is only increased by a factor of 3.3 [102]. Assuming the same model of the systematics
uncertainties, one can estimate that a 30 evidence of the t¢H(H — bb) production in the single
lepton ¢t decay channel is possible only with a data set of more than 100 fb=! at /s = 13 TeV.
However, in a combination of all decay channels of the Higgs boson and tt system, evidence
would be possible with ~ 20 fb=! collected at /s = 13 TeV by the ATLAS experiment. Of
course, one should bare in mind the ATLAS detector Phase-0 upgrades during the 2013-2015
shutdown period. The centrepiece of this upgrade is the insertable B-layer, a 4th silicon tracker
module installed directly on a smaller beam pipe, and which would greatly improve tracking,
vertex and b-jet identification [272]. Further optimisations of the object reconstruction and

selection would also play an important role.

Concerning the analysis prospects of the single lepton mode and focusing on ttH(H — bb)
decays, numerous improvements in background modelling and multivariate techniques can be
exercised in order to achieve higher sensitivity. These include: improvement in the agreement
between existing LHC measurements and SM predictions for the top quark transverse momentum
distribution via the NNLO corrections [273], use of tf + bb differential measurements [131, 274]
in order to refine the MC predictions of this dominant background, extended applications of
the matrix element method [275], adoption of “boosted” jet reconstruction techniques in events
containing high transverse momenta top quarks or Higgs bosons [276] and improvement in

separation between signal and background by employing deep neural networks [277].

At the time of completing this thesis, the CMS Collaboration has presented the first results of
the search for ttH production in pp collisions at a centre-of-mass energy of /s = 13 TeV, leading
to an observed (expected) upper limit of u < 2.6 (3.6) at 95% CL [278]. The combination of
different Higgs boson decays (diphoton decay, decays with leptons in the final state and the
decay to a bottom quark pair) results in a signal strength of 7 = 0.1575:93 [279].

Summarising, in this dissertation the foundation for further analyses towards the observation
of ttH production and a direct measurement of the Yukawa coupling between the top quark
and the Higgs boson is given. Quoting David Hilbert: “Statt des torichten Ignorabimus heiffe
im Gegenteil unsere Losung: Wir missen wissen, Wir werden wissen” (“In place of the foolish

ignorabimus let stand our slogan: we must know, we will know”).
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APPENDIX A

Additional Material on Systematic Uncertainties

The correction of tt+jets background described in Section 4.3.2 is based on the ratio of measured
differential cross sections at /s = 7 TeV in data and simulation as a function of top quark pr
and pr of the tf system.

One of the possible options to assign systematic uncertainties due to the reweighting is to
take full size of the reweighting as an uncertainty and symmetrize the effect (as done for the
case of the tf + c¢ component). In this case the reweighting uncertainty is very large for the
variables that depend on jet momenta and by far larger than any other POWHEG+PYTHIA
related systematic variations used in the analysis. Figure A.1 shows the effect of the envelope

of all nine sources of data driven reweighting uncertainties on the top quark and ¢t pr.

5

Normalized

1/ Default

tT Powheg+Pythia mc12

.............

——— Default
..... Rew tt P, *seqtopp,

Rew ttp_ UP x seq top p, UP

Rew tTp DOWN x seq top p. DOWN

Ty

| |
200 300 00 500

| |
500 700 800 500
p.

Normalized

1T Powheg+Pythia mc12

Default
..... Rew fp xseqtopp,

RewtfprUszeq topp_ UP

Rew tf p DOWN x seq top p DOWN

Figure A.1.: The effect of the full envelope of the data-driven uncertainties on (left) pr of the ¢ system
and (right) top quark pr distributions applied on the POWHEG+PYTHIA prediction.

Given that the reweighting is derived based on the experimental measurements, it is natural
to use the systematic error breakdown as calculated in the measurement of top-quark pair
differential cross sections and derive reweighting functions for each of the largest systematic

.o ¢ 7
uncertainties for p1¥ and p.
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A. Additional Material on Systematic Uncertainties

The normalisation uncertainties on each of the tf+light-jet and ¢t + c¢¢ background processes
for the associated systematic uncertainties in the differential cross-section measurement derived
during the top reweighting and prior to the fit to data are shown in Table A.1.

The largest individual systematic uncertainties calculated as a percentage of the cross-section
in each bin of ptT(’p and ptTf are presented in Figure A.2. These contributions cover approximately
85% of the uncertainty on p# and 95% of the uncertainty on top quark pr. Each contribution

is represented by a nuisance parameter in the fit.

(4j, 2b)  (4j,3b) (4, 4b) (5, 2b) (5j,3b) (5j,>4b) (=6j,2b) (>6j,3b) (= 6j>4b)

b-tag efficiency
tt + light +0.20 - - +0.32 - - +0.53 +0.57 +0.62
tt + cc +0.21 - - +0.34 - - +0.60 +0.63 +0.68

Fragmentation model

tt + light - - - +0.62 +0.54 +0.61 +1.7 +1.7 +1.9
tt + cc +0.35 - - +0.96 +0.96 +0.96 +2.2 +2.2 +2.4
Initial/final state radiation
tt + light +0.68 +2.2 +2.2 +6.1 +5.6 +5.7 +10.3 +10.2 +10.6
tt + ce +4.2 +4.2 +3.9 +8.1 +8.0 +8.0 +11.3 +11.5 +11.8
Jet energy resolution
tt + light +0.25 +0.74 +0.75 +1.9 +1.7 +1.8 +3.4 +3.4 +3.5
tt + cc +1.3 +1.3 +1.2 +2.6 +2.6 +2.6 +3.8 +3.9 +4.0

Close-by jets JES
tt + light +0.22 - - +0.70 +0.70 +0.73 +1.1 +1.1 +1.2
tt 4 cc +0.50 +0.52 +0.54 +0.81 +0.82 +0.84 +1.2 +1.2 +1.3

Effective detector nuisance parameter 1 JES
tt + light +0.00 - - +0.55 +0.53 +0.57 +1.1 +1.1 +1.2
tt+ cc +0.33 - - +0.69 +0.71 +0.73 +1.3 +1.3 +14

n-intercalibration JES

tt + light — - — +0.61 +0.55 +0.57 +1.2 +1.2 +1.3
tt + cc +0.37 - — +0.83 +0.82 +0.83 +1.4 +1.4 +1.5
Variation of b-jet energy scale
tt + light - - - +0.22 - - +0.35 - -
tt + cc - - - +0.23 - - +0.40 - -
MC Generator model
tt + light +0.75 +1.3 +1.4 +1.6 +1.4 +1.4 +2.9 +2.8 +2.8
tt + cé +1.0 +0.99 +0.89 +2.3 +2.2 +2.2 +3.1 +3.1 +3.0

Table A.1.: Normalisation uncertainties (expressed in % ) on each of the ti+light-jet and ¢t + cc
background processes for the associated systematic uncertainties in the differential cross-
section measurement derived during the top reweighting, prior to the fit to data. A “-”
sign indicates an uncertainty of < 0.01.
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Figure A.2.: The largest individual systematic uncertainties calculated as a percentage of the nor-
malised differential cross section in each bin of (upper part) p’?” and (lower part) pf.
Up and down variations of b-jet energy scale, b-tag efficiency, close-by jets JES, effect-
ive detector nuisance parameter 1 JES, n-intercalibration JES, fragmentation model,
initial/final state radiation, jet energy resolution and MC generator model are shown.
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A. Additional Material on Systematic Uncertainties

Tables of systematic uncertainties in the signal regions

Tables A.2, A.3 and A.4 show pre-fit and post-fit contributions of the different normalisation

systematic uncertainties (expressed in %) on signal and main background processes in the signal-

enriched regions.

The “Lepton efficiency” category includes systematic uncertainties on electrons and muons

listed in Table 7.1. The “Jet efficiency” category includes uncertainties on the jet vertex fraction

and jet reconstruction. The “tt heavy-flavour modelling” category includes uncertainties on the

tt+bb NLO shape and on the tf+cé pr reweighting and generator. The “Theoretical cross

sections” category includes uncertainties on the single top, diboson, W/Z+jets and ¢t + V

theoretical cross sections. The “ttH modelling” category includes contributions from ttH scale,

generator, hadronisation model and PDF choice.

5j,>4b
Pre-fit Post-fit
ttH (125) tf + light tf4+cc tE+bb | tHH (125) tt + light tf+cc tL+bb

Luminosity +2.8 +2.8 +2.8 +2.8 +2.6 +2.6 +2.6 +2.6
Lepton efficiencies +1.5 +1.4 +1.4 +1.5 +1.3 +1.3 +1.3 +1.3
Jet energy scale +3.8 +8.0 +5.4 +5.3 +3.1 +2.9 +2.0 +2.5
Jet efficiencies +1.4 +2.4 - +0.5 +0.6 +1.1 - +0.2
Jet energy resolution +0.1 +0.9 +0.6 +3.8 +0.1 +0.5 +0.3 +2.0
b-tagging efficiency +10 +5.6 +5.3 +8.9 +5.5 +3.1 +3.0 +4.9
c-tagging efficiency +1.6 +6.4 +13 +3.3 +1.4 +5.6 +11 +2.8
Light jet-tagging efficiency +0.7 +19 +3.9 +1.6 +0.4 +11 +2.3 +0.9
High prtagging efficiency - - - - - - - -

tt modelling: reweighting - +2.6 +3.7 - - +2.3 +3.3 -

tt modelling: parton shower - +1.9 +21 +17 - +0.6 +13 +10
tt heavy-flavour: normalisation | — - +50 +50 - - +28 +14
tt heavy-flavour: modelling +5.7 +8.9 +6.5 +2.0 +4.0 +6.0
Theoretical cross sections - +6.2 +6.3 +6.2 - +4.1 +4.1 +4.1
ttH modelling +4.6 - - - +4.6 - - -

Total +13 +24 +58 +55 +8.0 +8.7 +24 +13

Table A.2.: Pre-fit and post-fit contributions of the different normalisation systematic uncertainties
(expressed in %) on signal and main background processes in the (5j, > 4b) region.
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>6j,3b

Pre-fit Post-fit
ttH (125) tf + light tt+cc tt+bb | t#H (125) tf + light tf+cc tt+bb
Luminosity +2.8 +2.8 +2.8 +2.8 +2.6 +2.6 +2.6 +2.6
Lepton efficiencies +1.4 +1.5 +1.4 +1.5 +1.3 +1.3 +1.3 +1.3
Jet energy scale +5.8 +13 +10 +9.2 +2.2 +5.1 +4.3 +3.5
Jet efficiencies +1.8 +4.8 +2.8 +2.6 +0.8 +2.1 +1.3 +1.2
Jet energy resolution +0.1 +3.0 +2.1 +1.4 +0.1 +1.6 +1.1 +0.7
b-tagging efficiency +4.1 +5.2 +5.0 +5.5 +2.2 +2.9 +2.7 +2.9
c-tagging efficiency +0.8 +4.7 +6.0 - +0.5 +4.1 +5.1 -
Light jet-tagging efficiency - +5.2 +1.8 - - +3.0 +1.0 -
High prtagging efficiency - - - - - - - -
tt modelling: reweighting - +5.1 +5.9 - - +4.6 +5.2 -
tt modelling: parton shower - +9.0 +16 +10 - +2.6 +10 +5.6
tt heavy-flavour: normalisation | — - +50 +50 - - +28 +14
tt heavy-flavour: modelling - +10 +15 +12 - +3.5 +8.1 +10
Theoretical cross sections - +6.2 +6.2 +6.3 - +4.1 +4.1 +4.1
ttH modelling +2.8 - - - +2.7 - - -
Total +8.5 +23 +57 +54 +4.8 +4.3 +23 +14

Table A.3.: Pre-fit and post-fit contributions of the different normalisation systematic uncertainties
(expressed in %) on signal and main background processes in the (> 6j, 3b) region.

>6j,>4b
Pre-fit Post-fit
ttH (125) tf + light tf+cc tE+bb | ttH (125) tf + light tf+cc tf+bb

Luminosity +2.8 +2.8 +2.8 +2.8 +2.6 +2.6 +2.6 +2.6
Lepton efficiencies +1.4 +1.4 +1.4 +1.5 +1.3 +1.3 +1.3 +1.3
Jet energy scale +6.4 +13 +11 +9.2 +2.3 +5.3 +4.7 +3.6
Jet efficiencies +1.7 +5.2 +2.7 +2.5 +0.7 +2.3 +1.2 +1.1
Jet energy resolution +0.1 +4.4 +2.5 +1.6 +0.1 +2.3 +1.3 +0.8
b-tagging efficiency +9.2 +5.6 +5.1 +9.3 +5.0 +3.1 +2.9 +5.0
c-tagging efficiency +1.7 +6.0 +12 +2.4 +1.4 +5.1 +10 +2.1
[-tagging efficiency +1.0 +19 +5.2 +2.1 +0.6 +11 +3.0 +1.1
High pr tagging efficiency | £0.6 - +0.7 +0.6 +0.3 - +0.4 £0.3
tt: pr reweighting - +12 +13 - — +5.1 +5.8 -

tt: parton shower - +13 +16 +11 - +3.6 +10 +6.0
tt+HF: normalisation — - +50 +50 - — +28 +14
tt+HF: modelling - - +11 +8.3 - - +8.1 +7.1
Theoretical cross sections | — +6.3 +6.3 +6.3 - +4.1 +4.1 +4.1
ttH modelling +2.7 - - - +2.6 - - -
Total +12 +32 +59 +54 +6.9 +9.2 +23 +12

Table A./.: Pre-fit and post-fit contributions of the different normalisation systematic uncertainties
(expressed in %) on signal and main background processes in the (> 6j, > 4b) region.
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APPENDIX B

Neural Network Studies

Optimisation of the Neural Network Training

For the purpose of improving the performance of the neural network, several benchmark
studies are performed. The neural network implemented in this thesis offers extra options that
can be tuned to improve the performance, such as: choice of the number of nodes in the hidden
layer, learning speed, type of the regularisation, shape treatment of the input variables in the
preprocessing step or choice of the loss error function. Several combinations were tested in order

to provide the best separation between signal and background, and show no over-training.

The Gini index [280], defined as G = SB/(S + B), where S and B are the number of signal
and background events, is used to quantify the improvement of the NN training. The variation
in the number of hidden nodes as a function of the normalised Gini index is shown in Figure B.1,

and the observed change in performance is minimal.

Changes in the maximum learning speed from are shown in Figure B.2a. The use of different
regularisation schemes is tested in Figure B.2b. The study of shape treatment options of the
input variables is shown in Figure B.2c. Finally, the performance of the NN is checked by using

an alternative quadratic loss function, as can be seen from Figure B.2d.

Overall, the neural network was found to be stable under the change of several options, and the

NN discriminants perform well in separating the signal from background in all studied regions.

139



B. Neural Network Studies
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Figure B.1.: Variation in the number of hidden nodes with respect to the default option. Comparisons
in (a) (5j, 3b), (b) (5j,> 4b), (c) (> 6j, 3b) and (d) (> 6j, > 4b) regions are shown.
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Neural Network Separation Studies

Figure B.3 shows the comparison of the normalised NN output distributions between ttH
signal process and total background, between ttH signal process and tt + V background and
between tt+light-jet and tt+HF events. Overall, one observes similarities between the expected
signal and tt+V (V = W, Z) background NN outputs. Particularly, the tt+ Z background with
Z — bb is an irreducible background to the ¢tZH signal as it has the same number of b-jets in the
final state and similar event kinematics. Separation between tt+light from tt+HF backgrounds

is visible in the dedicated network employed in the (5j, 3b) region.
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B. Neural Network Studies

Figure B.3.: Comparisons of the normalised NN output distributions in the (a-c) (5j, 3b), (d-f)
(5j,> 4b), (g-i) (> 6j, 3b) and (j-1) (> 6j,> 4b) regions. Outputs between (left) ttH
signal process and total background, (middle) ttH signal process and ¢t + V background
and (right) ¢Z+light-jet and ¢t+HF events are shown. The distributions are normalised
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