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Abstract

For a composition / whose last part exceeds 1, we can define the multiple ¢-value 7(7) as the
sum of all the terms in the series for the multiple zeta value ¢ (/) whose denominators are
odd. In this paper we show that if I is composition of n > 3, then t(/) = (— 1"~ +(1) mod
products, where I is the reverse of I, and both sides are suitably regularized when I starts or
ends in 1. This result is not true for multiple zeta values, though there is an argument-reversal
result that does hold for them (and for multiple 7-values as well). We actually prove a more
general version of this result, and then use it to establish explicit formulas for several classes
of multiple #-values and interpolated multiple z-values.
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1 Introduction

We define multiple zeta values ¢ (ny, ..., ng) and multiple z-values ¢(n1, ..., ng) by

1
t(ny,ny..., ng) = Z

niygn2 ng
1<ky <kp<---<k¢ kl k2 kf

and

t(ny, n ng) = Z 1
LN .., ng) = 2k; — DM 2ky — D)2 -+ (kg — 1)
I<ki<ky<--<kg
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respectively. The series converge provided n, > 1. We note that the set of multiple zeta
values and the set of multiple ¢-values are both algebras under the “stuffle” product, e.g.,

1(2)(3,2) = 1(2,3,2) +1(5,2) +2(3,2,2) + (3, 4).

More formally, both the multiple zeta values and the multiple ¢-values are homomorphic
images of a subalgebra of the quasi-symmetric functions QSym. Now QSym can be regarded
as the vector space on words in noncommuting variables zj, z2, ..., with a commutative
product * defined inductively by

il * Zjv = zi(u *zjv) —I—zj(z,-u * V) +zi+j(u * V).

Then QSym has a subalgebra QSym? generated by 1 and all words ending in z;, i > 1; there
are homomorphisms ¢, 7 : QSym® — R given by

{(Zil o 'Zik) = {(ilv BRI lk)

t(ziy o zi) = @1, .0y ig).
By the result of Malvenuto and Reutenauer [19], QSym is a polynomial algebra on Lyndon
words in the z;, and the only Lyndon word ending in z1 is z; itself. Thus QSym = QSymO[zl 1,
and we can extend the homomorphisms above to homomorphisms QSym — R[7] by sending
z1 to T. We denote these by reg’. ¢ and reg}. ¢ respectively. Itis convenient to set 7 = 0 in the
first case and T = log 2 in the second. We will typically work with the stuffle regularization,
and so for notational simplicity we shall suppress the asterisk from the notation and write

regy = regy, unless we need to clarify which type of regularization is in use.
Our principal result is as follows.

Theorem 1.1 (Symmetry Theorem) If I is a composition of n > 3, then
reg’}zlog (D) = (— ! reg’}zlog ,t(I) (mod products),
where I is the reverse of I.

We will in fact prove a stronger version of this result in Theorem 2.21, which holds for
Mt V’s at any roots of unity, and provides the neglected product terms via a generating series
identity involving MrV’s and MZV’s. (We will use a result of Murakami [20] to replace
MZV’s with MtV’s to establish our claim in the case of classical MrV’s.)

We can define interpolated multiple 7-values ¢ in the same way as Yamamoto [23] defined
interpolated multiple zeta values, e.g.,

11(2,1,3) = 1(2,1,3) +rt(3,3) + rt(2, 4) + r*(6).
Then 1 = ¢, and we write #* for t!. The preceding result has the following corollary.
Corollary 1.2 For any composition I of n > 3,
reg’}zlogz () = (=" ! reg*}zlogQ t"(I) (mod products).

Proof Induct on the length of , using the definition of the interpolated multiple z-value; to
start the induction, note that 7(n) is decomposable for n > 4 even. ]

Using the Hopf algebra structure on the interpolated multiple z-values (see [16], or
alternatively [10, Lemma 4.2.2], [11, Lemma 3.3], at least for r € {0, /2, 1}), we can prove
the following result.
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Theorem 1.3 (Stuffle antipode) For any composition I,

«(—-1

regr_jogat (1) = (=1) g7 _jog2 t'="(I) (mod products),

where £(1) is the length (number of parts) of I.

Proof Let (§!, >rl<, A) be the Hopf algebra with underlying vector space o' =Qz1, 22, ...),

the interpolated product >7<, and the deconcatenation coproduct A. As shown in [16], this
Hopf algebra has antipode S = S1=2"T R, where R reverses words, T (w) = (—1)! @y,
and

SPen= Y Pz,

Lu-ulp=I

where for a composition / = (i1, ..., i), 2y denotes the word z;, - - - z;,, |[I| ==i1+---+i,
and LI is juxtaposition of compositions. By induction one can show that § has the alternative
formula

Sy =Y. (=Dfz %k (1)

Lu-Ule=I

Since (9!, %, A) is commutative, S is an algebra homomorphism and an involution. Apply
S to both sides of Eq. (1) to get

=y (DOFSIIRE )k x BTT R, ©)

Liu-ulp=I

and then apply reg’}=10g2 "= reg*}:k)g2 t o X" to both sides of the latter equation to get

regi_ogat (D= (=D D Fregh_ ot () regi g0t T Uk,
Lhu---ulp=I
from which the conclusion follows. ]

Theorems 1.1 and 1.3 imply the following.

Corollary 1.4 For any composition I, with sum |I| > 3,
regy_joga t' (1) = (==t g7 _jog2 (I = (=HI=4D €27 _jog2 t177(I)  (mod products).

In particular, if |/| > 3 then

[T1=£(I)

reg7_jog t(1) = (=1) regr_joga *(I)  (mod products)

and
reg7 joga t ”(I)=0 (mod products),

if |7] and €(I) have opposite parity. A parity theorem for MZV’s, which reduces ¢ (/) to
lower depth (mod products), if |/| and £(/) have opposite parity, is well-known. Extensions
to arbitrary roots of unity and to multiple polylogarithm functions are established in [22].
(This is also related to the result from [12, §2.6], holding on the torus, which we adapt and
utilize for our result.)
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Remark 1.5 Since both multiple 7-values and multiple zeta values are images of homomor-

phisms from (5’)1, ;, A) to the reals, Theorem 1.3 holds for multiple zeta values. (In fact,
Theorem 1.3 can also be deduced from [2, Theorem 1.2].) But Theorem 1.1 fails for multiple
zeta values. For example,

£(2,3)+¢*(3,2) = ¢ (3)

but
£(2,3) —¢(3,2) = —10¢(5) + 5¢(2)¢(3).

Outline The remainder of this paper is organized as follows. In Sect. 2 we give a proof of
Theorem 2.21, which as indicated above implies Theorem 1.1. For this we first establish
an identity on MZV’s and Mt V’s truncated to order M (Proposition 2.15), then using some
analytic results from Appendix A, we pass to the limit M — oo in order to obtain an identity
among MZV’s and MrV’s at roots of unity (Theorem 2.17), with ‘non-degenerate’ angles
®1, ..., Gm, such that ¢1, ¢, o1 + - - - + P, # 0. Using the asymptotic expansion recalled
in Sects. 2.3 and 2.2, we extend this identity to all angles ¢y, ..., ¢, by considering how
¢; — 0, to establish the Symmetry Theorem in generating series form. After application of
some motivic results expressing MZV’s via MtV’s [20] we obtain the Symmetry Theorem
as stated above (Theorem 1.1).

In Sect. 3 we give three applications of these results. First in Sect. 3.1, to the computa-
tion of 1 (3, {2}", 3), where {a}" denotes the string a, . . ., a with n repetitions. This requires
Zagier’s evaluation of ¢ ({2}, 3, {217) [24], Murakami’s evaluation of 7({2}¢, 3, {2}?) [20],
and the Ohno—Zagier Theorem [21] to evaluate certain MZV combinations. Second in
Sect. 3.2, to formulas for #(1, {1}, 1) and (1, {2}", 1). This requires the evaluations of
regr_jog2 1 ({2}%, 1,{2}) and regr_joq5 t({1}%, 1, {1}*) given in [6, 7], and an apparently
new evaluation (Proposition 3.6) for reg;_ ({1}, 1). Finally in Sect. 3.3, to generat-
ing series formulas for the interpolated multiple ¢-values of the form ({1}, 2¢ + 2) and
122 + 2, {1}?", 2¢ + 2). This requires solving a pair of simultaneous generating series
relations, one obtained from the stuffle antipode (Theorem 1.3) and one obtained from the
Symmetry Theorem (Theorem 2.21) by a certain infinite series of differentials. We also
explicitly treat the case 1/(2, {1}, 2), for odd and even n, in particular giving a conjectural
evaluation in odd weight (Conjecture 3.10).

2 Regularized version of the Symmetry Theorem
2.1 Polylogarithms and regularization

We recall the definition of the multiple polylogarithm functions (MPL’s) in several variables,
whose asymptotic expansion will be important in the sequel.

Definition 2.1 (Multiple polylogarithm) For |x;| < 1,i = 1, ..., d, the multiple polyloga-
rithm is defined by

ky kaq

. ‘xl .. .xd
Lin,,.ng (X1, ..o, Xg) = Z g

I<ki<ky<--<kq 1 d
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Corollary 2.3.10 in [25] shows that the series defining Li,, . ., (x1,...,x4) in fact
converges (but perhaps only conditionally), for |x;| <1,i=1,...,d if and only if
(xa,nq) # (1, 1).

The behavior of Li,, ... n,_,1(X1, ..., Xa—1, X4) as x4 — 1 (which is actually dependant
on how x; — 1, and on whether ny_; = 1 and then on how x;_; — 1) can be used to
define various notions of regularization. This allows us to make sense of identities and results
even in cases where not all of the objects of interest actually converge; in order to apply the
symmetry result to the convergent value #(1, 1, 2), one necessarily needs to make sense of
the divergent value 7(2, 1, 1) somehow. One can then show that

(L, 1,2)+1(2,1,1) ==t (1, D) +t(1)2(1,2) + %t(2)§'(1, 1), 3)

where ¢ is stuffle-regularized with 7(1) = log 2, and ¢ is stuffle-regularized with ¢(1) = 0.

To this end, we more formally introduce the stuffle regularization of multiple poly-
logarithms, and related objects, and indicate how one computes it. Polylogarithms can be
multiplied with the stuffle product, generalizing the formula which holds for multiple zeta
values and multiple 7-values. For example

Liz 3(a, b) Lij(c) = Lij2,3(c, a, b) + Liz 1 3(a, c, b) + Liz 31(a, b, ¢)
+ Lip 4(a, bc) + Liz 3(ac, b).

Ignoring convergence issues for the moment and viewing Lij (1) as a formal object (this is
made rigorous by considering truncated versions, and allowing the summation bound to tend
to infinity), any multiple polylogarithm of the form

Linl ,,,,, ng {1}k (X1, ..., X, {l}k),

n times
with (ng, x¢) # (1, 1), where {a}" denotes the string «, ..., a with n repetitions, can be
written as a polynomial in Lij (1) with convergent polylogarithm coefficients. This is accom-
plished by considering

. |
Li ng,{l}k(xlsn-sxé,{l}k): %Llnl ,,,,,

+ (terms with < k trailing (n;, x;) = (1, 1) entries)

me (g1 (1 xe, (D Lig (1)

and recursively applying the process to all of the terms on the right-hand side.
We shall write

regf Li,, oy i (1. oy xe, {135

to denote this stuffle-regularization polynomial, where Lij (1) is replaced by the indeterminate
T. This is called the stuffle regularization with parameter 7', and also applies to MZV’s and
Mt V’s. As in the introduction, we shall suppress the asterisk, and write reg; = reg}., unless
we need to clarify which type of regularization is in use.

With this formalized, the identity in Eq. (3) is then written as

1(1,1,2) + regf_jgn (2.1, 1) =

1
—1(2) reg’;:bgz t(1,1) + reg“}zlogz t(Hr(1,2) + Et(Z) regy_o (1, 1).
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After regularization, this states
2t(1,1,2) +¢(1,3) —2¢(1,2) log2 — #(3) log 2
2 1 1 , 1
+t(2)log=2 + Et(4) - 7(2) + Zt(2)€(2) =0,

which can be directly checked using the tables in [15, Appendix A].

2.2 Asymptotic expansions of polylogarithms

We recall the setup of the asymptotic expansion of polylogarithms introduced in [12, §2.10].
Lemma 2.18 [12] establishes that, for |x;| < 1, with (n¢, x¢) # (1, 1), the power series

f(e) = Liy,

has an asymptotic expansion (as ¢ — 07), which is a polynomial in log(e), whose coeffi-
cients are explicitly computable Q-linear combinations of lower depth MPL’s. Moreover the
polynomial has degree k, and weight w = n| + - - - + ng + k counting log(¢) as weight 1.
It is instructive to review the proof of this claim, by way of an example, as we will utilize a
similar setup with x; — 1 through roots of unity in order to establish the regularized version
of the Symmetry Theorem.

More formally, we refer to [9, §3.7.4] for the preliminaries about logarithmic asymptotic
expansions of continuous functions. In particular, we make the following definition.

po gk (1 xe, {1 = e}

yeres

Definition 2.2 [9, §3.7.4] Let f: (0, 7) — C be a continuous function, 0 < 7 < 1. We say
that f admits a logarithmic asymptotic expansion of degree r if it can be written

[ = fole) + ) arlog's,

k=0

with | fo(e)] = O(g!'~?) for some § < 1, a € C.

‘We shall then write

,
reg®™™ f(e) == Z axlogk e
k=0
to denote this logarithmic asymptotic expansion.
If it exists, this logarithmic asymptotic expansion is unique [9, Lemma 3.237], as one can
recover

ar =1 S0
" iS0log
Upon knowing as+1, ..., ar, one can then find
0 =Y  agloght
a, = lim f( ) Zk-s-H k 10g ,
t—0 log® ¢

to determine the entire logarithmic asymptotic expansion.
In order to compute the asymptotic expansion of

F@© =Liy @ xa (1=},

.....
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with (ng, xq) # (1, 1), we apply the stuffle product to see

Li,, et 01, xg, {1 — e} - Lig(1 — &)

=kLi,, (1 xg (1= e}

+ (terms with < k trailing (n;, x;) = (1 — ¢, 1) entries).

,,,,,

By recursion, we obtain that f(¢) is a sum of products of terms of the form
Lit(1 —¢) and Lin,,. m O1(1 =)' o ye(I=e)P),  (ye,me) # (1, 1).
Since
Jim Liny,.ome 1 (1= €)' ye(1 = €)P) = Limy ome V1 -+ Ye)
exists (as a convergent polylog), we claim that this value at ¢ = 0 is the entire asymptotic

expansion. Indeed it amounts to the differentiability of the multiple polylogarithm at this
point, as we can see that forany 0 < § < 1,

mLiml ..... me(yl(l_8)1)17'”»)’6(1_8)1]@)_Liml ,,,,, mg(ylanwye)

li
S e1=3
— lim S(SLiml ..... mg(yl(l —8)p‘,-~-,ye(1 _S)pe)_Liml ..... me(yla---s)’e)
e—0 &
d .
= a Liy,,.., me(yl(l—é‘)pl,...,yg(l—8)p")
e=0
=0.

..... me(V1(1 =)y (1 —e)P?)
..... me (L= &) ye(1 —e)Pe) = O(e'%),any 1 — § < 1.

Finally, as
Lij(1 —¢) = —loge

exactly, we therefore have that the asymptotic expansion of f(¢) is given just as the sum of
products of the individual asymptotic expansions.

Example 2.3 For example with x # 1, we compute using the stuffle product that
Lijj1(x,1—¢6,1—¢) =
Lijj(1—e1—ex)+ %Li3(x(l — o))+ %Liz,l((l — &) x)
+ Lij2(1 —&,x(1 —¢)) — %Lim(x, (1 —)%) —Lij(1 —¢&)Lip1(1 — &, x)

—Lij(1 — &) Lia(x(1 — &) + %Lil(x) Lij (1 — &)
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The asymptotic expansions of each term are now readily found by the above analysis, and
we have

regasym Li],l’l(x, 1-— &, 1-— 8) =

1 1 1
Liy (1, 1, x) + 5Li3(x) +Lij2(1, x) — ELil,z(x, D+ ELiZ,l(Lx)
1
+ Lip.1(1, x) loge + Lis(x) log & + ELil(x)logze.

Of significant interest and use will be the constant term of such an asymptotic expansion;
write [logo elreg®™¥™ f(g) = reggsym f(e) to denote this constant term. In particular, we
will use this to make sense of identities in a limiting case, in terms of regularized values of
multiple zeta values and multiple ¢-values.

By extending the argument above, we notice that the asymptotic expansion of

Liy g (1t 1 Xas {(@))),
. . 0 . .
with (ng, x4) # (1, 1) and a(¢) with «(g) 2251 (for sufficiently nice o) depends only on
the asymptotic expansion of Lij (x(¢)). The constant term of

reg™y™ Linl ng, {1} (X1, 00y Xd, {a(g)}k)

.....

therefore only depends on the constant term of the asymptotic expansion of Li; («(¢)). The
stuffle product structure used to obtain this asymptotic expansion means that the constant
term is obtained by the stuffle regularization, with regularization parameter given by

Ty = [log” €] reg®Y™ Li; ((¢)).
We have established the following lemma.

Lemma 2.4 (Asymptotic expansion and stuffle regularization) For a(s) — 1 ase — 0T,
the constant term [log® €]A in the asymptotic expansion

A =reg™"Li,  ,oqw(xr, .. X, {a(e)})
is given by
[log’e]A = regr—g, L, g i (K15 -5 Xds (1y%).
Here regl_q, denotes the stuffle regularized version of Liy, ., 1y (x1, ..., xd, (135, with

regularization parameter
Ty = regy_g, Lir(1)
given by

Ty = [log” €] reg®Y™ Li; ((¢)).

Remark 2.5 Note that this claim depends very strongly on fact that the indices 1 come with
the same argument «(¢). The asymptotic expansion of

Li,, k(1 cxa A1 1 —8)
is instead connected to the shuffle regularization. For this we refer to Proposition 2.20 in [12]

in particular, and Sections 2.9—2.10 in [12] for the broader context.
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As an example of the effect that the change of argument «(¢) makes to the asymptotic
expansion — something with which we must contend later — let us consider the distribution
relations (cf. Lemma 2.21 [12]).

Example 2.6 (Regularized distribution relations) The following holds for all & > 0 as every
term is convergent

. o
Y LG =), 50 =) = = Lin 111, (1 = )%, (1 = 2)%).
s1,82,83€{£1}

On the left-hand side, index 1 comes with argument 1 — ¢ in the case of non-convergent
MPL’s. We then have Lij (1 — ¢) = —log e. The constant term of (the asymptotic expansion
of) this is 0. On the right-hand side however, index 1 comes with argument (1 — ¢)2, and
instead we have

Lij((1 — &)%) = —loge — log(2 — ¢).
So the constant term in the asymptotic expansion of
reg®™ Lij (1 — €)?) = —log2 — loge

is —log2.
The following regularized version of the distribution relation holds, with different regu-
larization parameters on the left-hand and right-hand sides:

. 1 .
Z reg;:OLlnl,l,l(sleZs 53) = =T reg;=_]og2 Liy, 1,11, 1, 1).
51,82,53€{£1}

2.3 Asymptotic expansions for zeta and t-values

We now focus on multiple zeta values and multiple 7-values for the remainder of the paper.

Definition 2.7 (MZV’s and MtV’s) The multiple zeta values, respectively multiple z-values,

with signs €1, ..., &, € {z € C : |z| = 1} are defined by
k
Ely s Em ) slf‘-ns,,;”
¢ n n = Z k"l...k”m’
v m O<ky <<k 1 m
k
t(m,...,s,,,)__ Z slf‘-ns,,{"
niyeonm) 2%kt — 1Y - 2k — 1)
1» m Ok ek, (2k1 ) 2k )

Essentially ¢ is given by just restricting Li to arguments on the unit circle, for notational
emphasis, although ¢ is a genuinely distinct object. We will apply a similar prescription for
the asymptotic expansion to the following setup involving these MZV’s and MtV’s,

t(exp(Znikqﬁl), e exp(2nik¢m)> : (exp(Znik¢1), R exp(27rik¢m)>

ni,...,Ny ny,...,Ny

where ¢; = ¢; (¢). In particular we shall need compute the asymptotic expansions as & — 0
(the direction from above is important!) of

7 (exp(Zlnine) ) ’
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75  Page 10 of 49 S. Charlton, M. E. Hoffman

for f = ¢, t, as a polynomial in log(1 — ¢>7¢). Because we will use only this version of the
asymptotic series for the remainder of the paper, there will be no confusion between this the
previous version in Sect. 2.2; we will therefore also denote this by reg®Y™, with only a slight
abuse of notation. The same argument as in Lemma 2.4 allows us to relate the constant term
of the asymptotic expansion (when each index 1 comes with the same sign exp(2mwic(g)))
and the stuffle regularizations of ¢ and . Likewise, the asymptotic expansion of an MZV or
MtV which converges as ¢ — 07 in this prescription is just the MZV or MtV evaluated at
& = 0. So we just need to deal with the basic depth 1 cases.

Lemma 2.8 (Asymptotic expansion of t) The asymptotic expansion of t (CXP(ZI” i"s)), for
n #0 € Z, is given by

2mi 2 1
reg®m t(exp( lﬂlne)> = log (T> -3 log(1 — exp(2mie)).
n

Proof One can evaluate the following series, for ¢ € (0, %), as

= exp(imrne) arctanh(exp(imne))

. 1 Tne i
= exp(mns)(z log cot <T> + Z)

t<exp(2nin8)> _ Z exp(2rinek)

1 = 2k —1

This is extended by periodicity to R\%Z. Note there is a jump discontinuity in the imaginary
part at each % More precisely

lim Im exp(iy'rne)(1 log cot (—ng) + E) = T
e—0F 2 2 4 4
lim Im exp(inns)(l log cot (@) + E) = —z,
e—0~ 2 2 4 4

where lim,_,o- = limg_) 1 - returns us to the original range of definition of the series.
We also have

. 1 7 .
log(1l — exp(2mie)) = > log(2 - (1 —cos(2me))) + <_§ + 7T8>1.

The following limit computations using the above establish the asymptotic series is a linear
polynomial, and then compute for us the constant term, giving the claim. First, assuming
n>0

t(exp(ﬂ:Znins))
. 1 1
lim - = ——.
e—0* log(l — exp(2mie))) 2
Then
. exp(2rineg) 1 . 1
lim ¢ + —log(1 — exp(2rmie)) =log2 — —logn
e—0F 1 2 2
—271 1 1 .
SE%L t(exp( lmne)> + 3 log(1 — exp(2mie)) = log2 — 3 logn — %

The two cases +n combine to the expression involving the square root by taking

3log(—1) = . O
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Lemma 2.9 (Asymptotic expansion of ¢) The asymptotic expansion of ;(eXp(ZI" i"e)), for
n #0 € Z, is given by

exp(2mine)

regasym ¢ ( X

) = —logn — log(1 — exp(2mie)).
Proof One can evaluate the following series, for ¢ € (0, %), as

exp(2rineg) ad exp(2rinek) .
g( | ) Z — % - —log(1 — exp(2rineg)).

k=1

This is extended by periodicity to R\%Z. Similar computations to the above give the claimed
asymptotic series. O

2.4 Truncated identity

We establish an identity here for the generating series of truncated multiple ¢-values with
signs exp(2migy), ..., exp(2wig,, ), which through careful analysis of the limit via the above
asymptotic series will give the identity necessary for the proof of Theorem 1.1.

Let ¢1, ..., ¢m € R, and define the following truncated series (cf. Goncharov [12, §2.6]
as M — oo, wherein he obtains instead a distribution on the m-torus). We use variables
Y1, - .-, ¥Ym to minimize the otherwise inevitable confusion between variables #; and the mul-
tiple #-values themselves. Let us also write e(x) := exp(2imrx), and pre-emptively introduce
the notation y; ; = y; — y; for later convenience.

Definition 2.10 (¢z-Bernoulli series) The t-Bernoulli series Bfw of depth m, truncated to order
M is defined as:

Z €(¢lkl + - +¢mkm)

BL@1. e b | V1o ym) = .
m YL I ki — 1= y1) - 2y — 1 — y)

—M<ki<--<kpm<M
In the limit, the ¢-Bernoulli series B}, of depth m is given as

Bt(¢1,-.~,¢m|y1,~-~,ym)ZA}i_T)nOOBfw(¢>1,-~,¢m|y1,---,ym).

The motivation for this name comes from the fact that in the limit M — oo, the depth 1
case can be evaluated via depth 1 multiple 7-values, i.e. partially via Bernoulli numbers, as
shown in Proposition 2.13 below. (See [12, §2.6] for the corresponding Bernoulli series in
the case of MZV’s.)

Definition 2.11 (Truncated MZV’s and M¢V’s) The multiple zeta values, respectively mul-
tiple r-values, with signs €1, ..., &, € {z € C : |z| = 1}, truncated to order M are defined
by

kl km
¢ (81,...,8,”). Z g em
M = TR
ny,...,n
1 m 0<ky <-<km<M ky ko

ki .

. (81,...,8,”): e\l - em .

M Z — ny... — nm
ny, ...,y O<ky < kpy <M 2ky = 1) Cky — 1)

@ Springer
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For (n,,, &,) # (1, 1), both infinite series converge. Corollary 2.3.10 in [25] gives a proof
that, for |x;| < 1, the multiple polylogarithm Li,,  ,, (x1, ..., X;) converges if (and only
if) (n,,, X)) # (1, 1), which implies the claim for ;. Using the representation

PRI & ey
tM(&‘l am) VEL - Em Z S1S2---Sm§2M<Sh/8 Sm /sm)!
ni,.

Nlyenn, Ny m R [

S1yeesSmel£1)

we get the result for M#V’s, as (e, ny) # (1, 1) implies (£./€,,, n,,) # (1, 1), and so each
of the 2 MZV sums also converges. The (non-truncated) multiple zeta values and multiple
t-values with signs €1, . .., &, are obtained via the limits as M — o0, i.e.

Ely.-»Em . Ely -+ Em Ely ey Em . Ely.- -, Em
¢ = lim ¢y , t = lim 1y .
Ni, ..., Ny M— o0 nl, ..., Ny nl, ..., Ny M—o0 Ny, ..., Ny
We now assemble the truncated MZV’s and MtV’s of fixed depth m into a generating
series, as follows.

Definition 2.12 (Generating series for truncated MZV’s and MtV’s) The generating series

of depth m truncated MZV’s, respectively Mt V’s, with phases ¢1, . .., ¢, (or equivalently,
with signs e(¢1) = exp(mipy), ..., e(dpn) = exp(2mwipy,)) are defined by

Li @1y oG | Vi) = Y w(g@l)’""g((p"’))yi”_l !
>1

ny, ...,y

Lily @1,y @ | Y1y ym) = Z tM<€(¢l)""’€(¢m)>y;”*1...yfnmfl.

Nlyenn, Ny

In the case m = 1, we can evaluate the series B/’w as follows.

Proposition 2.13 The following identity holds

k
By |y = Y elpik)

_M<Ei<M 2k; — 1=y
= Lify (o1 | y1) — e(@) Ly, (=1 | —y1).

Proof Apply the geometric series

00
2k1 — 11—y Z 2ky — 1)”"'] ’

n=0

to obtain

k
By@ilyn= 2(2,:( ”’;iﬂif

—M<ki <M n=0

- e(kipr) 0
=Z< Z (2:1_111)n+1>y1'

n=0 “—M<k <M
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Now observe

ekig)  wn etkig) L e—kipp)
Z (2ky — 1)n+1 - Z_ Qk; — 1)n+l +klZ=0 (—2ky — 1)n+1

—M<ki<M

M+1

_ e(kigr) " e(—ki¢1)
Z (2k1 1)n+1 ( 1) €(¢ ) Z (2k 1)ﬂ+]

. (i(f;) (=) e (*fl;‘p;))

which leads to the claimed generating series identity. O

In particular, we obtain

B'(¢1 | y1) = Li'(¢1 | y1) — e@D LI (=1 | —y1),

as M — oo (with ¢; € R\ Z), reducing B’ (41 | y1) to a generating series of depth 1 MzV’s
with signs e(£¢1).

Now we seek to evaluate the 7-Bernoulli series B;W (@1, Im | Y1, ..., ym) of depth m
in two different ways, via the MZV and MtV generating series introduced above.

Evaluation 1: Firstly, decompose the indexing set
m

M <ki<- <kn<M=J{(-M <k <+ <k; 0 <kjj1 < <hkn <M},
j=0

appearing in the series B w( @1, P I Y1, ..., Ym). We find

Z e(prkr + -+ dukp)
Qkp =1 —=y1) -k — 1 = yw)

M= <kj<0<kjyi<-<M

_ Z e(jrrkjrr + -+ Pmkm)
2kt =1 —=y1) - Ckm — 1 = ym)

O<kjqi<--<knm<M
e@r+-+¢)) e(—¢jk; — - — P1k))

x ) ; A/ B
0<k}<“'<ki§M+l ( 2k]+l y/)( 2k1+1 y])

where ké =1—ke fort =1,..., j. Notice the truncation bound of the right-hand factor is
M + 1 instead of M. So directly, we have
Bl(P1, ..o | Y1s ooy Ym)
m
=Y (=De@1+ -+ )Ly (D410 P | Yjtts s ) €
Jj=0 Xl:it/l,l+1(—(i)j,...,—(]§1 |—yj,...,—y1).

Remark 2.14 Note that all terms in Eq. (4), except for j = 0, m are products. In particular
there is no term like

1 ..
;»Cl?u((pZ,u-sQSm|y2,---,ym)
i

which could introduce lower depth irreducibles to the result. This is unlike the corresponding
case for the usual polylogarithms and MZV’s as given in [12, §2.6]. The lack of such a term
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75 Page 14 of 49 S. Charlton, M. E. Hoffman

for MtV’s is ultimately the reason for the symmetry without lower depth irreducibles, as
given in Theorem 1.1.

Evaluation 2: On the other hand, consider the decomposition (proven in [12, Lemma 2.8])

1 _i 1
(k1 —y1) -+ (ki — ym) = kj =) Tligjkisj = i)

where k; j = k; — kj, and y; ; = y; — y;. Replacing k; by 2k; — 1, we obtain

m
e($rki + -+ + Gukn)
Bi@1, s |31, ) =) > = :
j=l =M<ky<-<kn<M @k =1=yj) - TTij i j =i )

In the inner sum, where j is fixed, set k; = k; ; for i > j and kf = —k;j fori<j.
For i <j, we see k; = kj — k; >0, and for i > j, kKl = k; — k; > 0 also. Moreover
k;‘+1 < k}+2 <<k, <M—kjandM+k; > ki > k) >--- > k}_l, since k,, < M and
ki > —M. Note also that

Brki+ -+ Gk = D — ikl + (B1+ o+ ) k> pik].

i<j i>j
This means

vaj(¢l,~-~,¢m |y1’~~~7)7m)

>y (%

j=1—-M<k;<M 0<k;._1<.--<k;§M+kj

e(—=piky — - — i1k
[Tic; (=2 = yi))

L 2@+t k) 3 €@Ky + -+ duky,)
(kj—=1=y;) l_[i>j(2k,{_)’i,j) ’

0<k}+] <wo<kj, <M—k;
In terms of the Liy generating series, we obtain

By (@1 sbm | Y15y ym)

- , ,

= Znmi Z(—l)]—l Z <£1M+kj(_¢j71» e, —01 | %yj,jfl, ey %yj,l) 5)

j=1 —M<k;<M

Xg(((bl + -+ dmk))
2k —1- )

. 1 1
Lisg—kc; (Pjt1s s Pm | 3Yj41,js - jym,j)>~

Overall, by equating the representations Eqs. (4) and (5), we have obtained the following
result.

Proposition 2.15 With y; ; ‘= y; — y;, and e(x) ‘= exp(2mix), the following generating
series identity holds for all ¢y, ..., ¢, and all M,
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m

D (=D e@r 4+ $NLy (Dia1s - b | Yitts s )
=0 X Liy ((=pj. i =1 | —=yjo.oos—y1)
1 m . ]
= ST do=nimt Y (EIM+k_,~(—¢j—1,-~-,—¢1 | 3¥7. =1 350
=1 —M<ki<M
! T e+ ddk))

@k —=T1—=yj)) ] ]
X Lis—kj @jtis s @m | 3Yj41js e es j)’m,j))-

We now wish to take lim s, o, but this requires some careful analysis to justify the result.
In particular, we should take ¢1, ¢, € R\ Z, so every MZV and MtV appearing in the above
generating series does not end in the pair (¢, n) = (exp(2ri-integer), 1) = (1, 1). Thatis to
say, so that every involved MZV and MtV is convergent, although perhaps only conditionally.
We return to the analytic issues momentarily.

We introduce the generating series of (non-truncated) MZV’s and Mt V’s as follows.

Definition 2.16 (Generating series for MZV’s and MtV’s) The generating series of all
MZV’s, respectively Mt V’s, of depth m with phases ¢y, . .., ¢, (or equivalently, with signs
e(pr) = expmipy), ..., e(pn) = exp(Rmigpy,)) are defined by

Li@1 . bm | V1 ym) = Y c(g(@)’”"g(%))y’f"lwy;’r‘l,

ny, ...,y

Lit(¢1’-~-s¢m [ Yiseoos Ym) = Z t<€(¢l)’.“,€(¢m))y?l_l"'yZM71'

Ny, ...,y

If ¢y € R\ Z, every MZV in Lips (1, .-, &m | Y1, ..., Ym) is convergent, and we have
for example:

lim Lip (1, .-s P | Y1 ooy Ym) = Li(D1, - Gy | Y15 V),
M—o0

Likewise for the corresponding (truncated) MsV generating series.
Using Proposition A.4, we can rigorously justify passage to the limit limy_, « . This
proposition states essentially that

M

lim _ = FGS,
Mﬁoo];fMHu?M kSk

for sufficiently nice sequences fy — F, gr — G and convergent series s; with 21211 sk = S.
The truncated MZV’s and Mt V’s are sufficiently nice, as per Proposition A.2, so we can
apply Proposition A.4 term-by-term to the generating series in Proposition 2.15 (splitting
the bidirectional sum into k < 0,k = 0 and k > 0 as necessary). We have also from
Proposition 2.13 that

Z e((P1+ -+ k)
(ij —1 —yj)

=B'(@1+ -+ dm | y))

—00<k;j<00

as per the definition of B'(¢ | y), at least if ¢ + -+ + ¢, € R\Z. Therefore we have
obtained the following result.
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Theorem 2.17 Withy; ; := yi —yj, and e(x) := exp(2wix), the following generating series
identity holds for all ¢, . .., ¢, whenever ¢y, P, 1 + -+ + ¢ € R\Z:

m
D (=Die@r+ -+ DL (Do b | Yjrts o Ym)
j=0 Xﬁil(—¢j,...,—¢1 |—yj,...,—y1)
1 < ,
= 2ot 2D T =1 | 3yt 3
=l X B (14 -+ dm | y))
X LUjats s B | 5Yj1jr s 5Vmj)-

2.5 Regularization statement

We turn the above generating series identity, which holds for ¢1, ¢y, 1+ - - + o € R\Z,
into the corresponding identity for asymptotic series to obtain a result in the case where some
d)l' — 0.

Firstly, we establish a relation when changing variables between two different regulariza-
tion parameters. Extend the stuffle regularization reg; = reg} by linearity to the coefficients
of the generating Li(¢1, ..., Pr | y1, ..., yr) of MZV’s (correspondingly MzV’s), and we
have the following.

Proposition 2.18 The following relation between regularized MZVs (respectively MtVs)
holds, where we assume ¢, # 0:

regr Li(@1, ..., Pm, {O}a [ Y1 ooy Yo Yl oo oy Ymta)
(T — 8"

o
= D regs L@t s b O 31 ms Yot Yk =

i=0
Proof On the level of zeta values, this is equivalent to the claim
B bm (1) w Gl (1} (T — 827
reg”(n],...,nm,{l}a =2 sty ) e

This was shown in [6, Lemma 2.5]; the proof therein relies only on the properties of the
Hopf algebra, and so holds unchanged for M#V’s. A version holding for classical multiple
zeta values (with no signs) is essentially given in [18], whose proof is generalized in [6,
Lemma 2.5]. ]

It will be notationally convenient to write

Liriy(@1, s Bm | Y1, -+ Ym) = 18874 LUBL, « s G | Y1, -+ Ym),

and correspondingly £i’T:t0 for regr_,, Li". At this point we have left behind any need for
truncated MZV’s (where the truncation parameter was always M), moreover we shall always
be writing Lir—, to indicate how the regularization parameter is specialised. Therefore there
should be no confusion. Similarly we shall also write

BzT:tO(¢ | y) = regT:t() B,(¢ | )’),

to denote the regularization with parameter T = #( of the 7-Bernoulli series (of depth 1) from
Definition 2.10 (expressed via Li’ using Proposition 2.13).
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Let¢ = (¢ ", be given, and without loss of generality, assume each ¢; € [0, 1). We split
into three cases at this point: ¢ # 0and ¢ + - +ém # 0,9 F0and ¢1 + -+ + ¢ = 0;
and ¢ = 0, where 0 denotes the zero vector of appropriate length.

Case I, ¢ # 0and ¢ + -+ + ¢m # 0: Then necessarily we can find some ¢, # 0 with
1 < n < m. We consider the small perturbation (j)l( = ¢; + ¢; where

— 1<i<n
ci=1e@n—1—m) i=n
e n<i<m.

That is, with the condition ¢] + - - - + ¢, = ¢1 + - - - + ¢y, # 0, and with ¢{, ¢;, # 0. By
choosing ¢ sufficiently small, we land in the case where ¢i, s ¢)i + -+ ¢, #0, with
the additional assumption ¢, + ¢, # 0.

From Theorem 2.17 we obtain the following identity, using the ¢! parameters,

DD et gt et )

IO L@t ity e bt O | Vit e Ym)
X Li'(—qﬁi,‘ —Cjyeey =1 —C1 | =Yj, ey —Y1)
1 X .
= > D =1 Li=gj =iy =1 =1 | 51 39j0) (6)
/=1 X B (¢1 4+ b | V))
X Ei(¢j+1 +Cjgtts s P+ Cm | %yj_,_],_,', e, %y,n,j).

Now we shall compute the constant term of the asymptotic expansion, using the results from
Sect. 2.3 and the general theory from Sect. 2.2. The key observation is that in each of these
generating series, any signs of the form e(¢; + c;) = e(e) (if j > n and ¢; = 0), at the end
and e(¢; + ¢i) = e(—¢) (if i < n and ¢; = 0), at the start are separated by a term with sign
e(pn 4+ cn) = e(pn) # 1, as ¢ — 0, since ¢, # 0 by assumption. The constant term in the
asymptotic expansion may then be computed by the corresponding stuffle regularization via
Lemma 2.4.

For example, when Q =(0,0,0, 11—0, 0), we might encounter (in the perturbed series) the
term

_fe(=e), e(—e), e(—e), e(d+2e), e(e)
Z_g( 1, 2, 1, 101, 1 )

‘We then have that

1
0¢1 _ J2mie asym » _ L1, 1 Q(m)» 1)
[og"(1 = ™) reg™™ Z = regyot (1, €100 ).

since [log?(1 — e271¢)] reg®¥™ ¢ (g(lg) ) = 0 by Lemma 2.9. The case of M#V’s is analogous;

we use Lemma 2.8, to get [log®(1 — e>¢)] reg®¥™ ¢ (g(f) ) = log2 asthe regularization
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parameter. So applying this regularization prescription to the above generating series identity
in Eq. (6) gives, for¢ #0and ¢; + - + ¢y # 0,

YD e+ + SN LiLoga @Dt B | Vit )

ot ,
! X‘ClthlogZ(_d)j""!_¢l [ =Yjseees —=Y1)
Pl @
= gt 2D T im0 = L 3y )
=1
! XB%:log2(¢l+"'+¢m|yj)
X LAT=0(@jt1s s @ | BV i1 s e s 3 Ym ) -

Case 2, ¢ # 0 and ¢ + - -+ + ¢p = 0: Then necessarily we can find some ¢, # 0 with
1 < n < m. We consider the small perturbation ¢lf = ¢; + ¢; where

—& 1<i<n
ci=1e@n—m) i=n
e n<i<m.

sothatg) +---+ ¢, =1+ +dn+e=¢ #0,and ¢] # 0, ¢, # 0. We note that the
constant term of the asymptotic expansion of B (g | y) is given as follows

regy” " B'(e | y) =regy” " (Li'(e | y) — exp(2mie) Li' (—e | —Y))
= Li7_10g2 0 19) = L7 o5 1z O 1Y)
i

7 + B’T=10g2(0 [ ¥),

using reggsymt (g(f)> = log2 and reggsymt (2(?9)) = log2 — % from Lemma 2.8, and
the fact that the only divergent MtV in EiIT:ro (0 | y) is regr_,, t(1). (Alternatively, use

Proposition 2.18.) That is to say, we pick up an extra % contribution in this case.
From Theorem 2.17, we obtain the following identity using the ¢, parameters:

Yo(—Del@r 4+ ¢+ 1+ +c))e)

10 X L@+ ity e b A O | Vit e Ym)
X l:it(—d)j —Cj,...,—(Pl —C] | —Vj, ...,—yl)
1 & )
= 2ot 2D T L = et == e gy )
/=t x B'(e | y))
X LU@j41 + Cjttveeesbm+ Cm | FVjd1js s 5Ymj)-
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Upon taking the constant term in the asymptotic expansion, we find the following identity:

m
D (=D e+ + DL ioga @iats s b | Vjr1s oo )
=0 X Lilr g2 (—js - =Pt | =¥js oo —¥1)
1 m ) 8
= St 2D Lo (=t =1 | 3ot YD) ®)
J=1 it
% (5 +Briog20 1 37)
X Lir—0(@jt1s s @ | 5Yir1je s 3Ymg)

With the following lemma, we can eliminate the additional % term above, and hence obtain

that the same identity as in Eq. (7) of Case 1 holds, also when ¢ + - - - + ¢, = 0.

Lemma 2.19 The following holds for all ¢ # 0 with ¢1 + - -+ + ¢ = 0.

m

D N R L B2 7N S RETRRE S 7R)) ©)
j=1 .

/ X Lir—0(@j 1. b | 3Yjr1j o 3Ymj) = 0.

Proof We consider a similar small perturbation ¢, = ¢; + ¢;, where n is such that ¢, # 0
and

—& 1<i<n
ci=1e@n—m) i=n
e n<i<m,

giving @’ with @] +- - -+¢;, = 0. Expanding the above claim for 9’ , wherein no regularization
is necessary, via the shuffle product, one can show that the combination

m
D DT L= = ] it 3 YD) (10)
/=] X L@y by | 3Vj1js s 3Im ) =0

is identically O.
To show this, we first translate into a generating series for iterated integrals. Namely from
[12, Equation (26)], we have

LiP1s - P | V1o s Ym) =

(_1)mI(§(_¢l — =), e(—p2— - —Pw), .. e(=Pm) | V1, - Ym)s
where
ZX1y ey Xm | Y1y e evy Ym) = Z Ly, .. nm(xl,.--,xm)y?'_l"'yﬁ,'”_l,
ni,..., nm>1
is the generating series of iterated integrals with fixed depth m, and arguments x1, ..., Xx,.
Here I, n, (X1, ...y ) = 1(0; x1, {0} =1, ... xp, {01, 1), with
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dtl le
I(xo; X1, ..., XN XN+1) = A A
X

0<I < <IN<XN+I tl — X1 tN — XN

the iterated integral over a family of differential forms.
By making the change of power-series variables

TV Ym) =T Y101+ Y20 s VU2 + o Vi),

Theorem 2.9 in [12] shows that Z' satisfies the shuffle product formula, namely

T e X | Ve V)T Gt <o Xt | Yl + > Yt

= Z T (Xo(1), - - Xontt) | Yo+ s Yoimte))s

ngm,l

where X, ¢ is the set of (m, £)-shuffles of {1, ..., m 4 £}, i.e. the set of all permutations o
of {1,...,m+ ¢}, suchthato (1) <o) <--- <o(m)ando(m +1) <o(m+2) <
c<o(m+40).
In particular, with y; ; = y; — y;, we find

Ci(—d)},l,--.,—ﬁ | %yj,j—l,.-., %yj,l)
=T (@ + o). e@) y+ - +).....ed)
1 1 1 1
| 3Yjj—1>3Yj=2.j—1s++» 3¥3.2> 3¥2.1),
and
Y ’ 1. . . 1 X
£1(¢j+1’-"v¢m | FYVj41,js s j)’m,])
=T (e(~¢)y = —¢p) e(—) 1y — - — D)) ... e(—),)
1 1 1
[ 3Yj41.j> 3Yj42. =15+ s 3 Ymm—1)-
Consider now the variables x; = g(—d)lf R ¢,)andt; = %yH_ 1,;- From the condition

¢+ - + ¢, = 0 it follows that g(¢}_1 + -+ ¢]) = Xpmt1—i. Upon translation of the
claimed identity in Eq. (10) into these coordinates we find it is equivalent to

m
DN o x i )T G Xt [ 2jgn) =0
j=1

But this identity holds in any shuffle algebra (compare, e.g., [13, Ex. (29)]). Then Eq. (9)
follows by taking the constant term in the asymptotic expansion, which (by the previous
discussion) is equivalent to taking the stuffle regularization with 7 = 0, and so completes
the proof. O

Case 3, ¢ = 0:In this case, it is no longer possible to guarantee the indices 1 with phase ¢ are

separated from the indices 1 with phase —e, since there is no non-zero phase at which to split.

e(—¢).e(e).e(e)
11,1

That is, we would encounter say ¢ ( ) whose asymptotic series is not obtained

in
2 ’

by the stuffle regularization directly, as we separately regularize reg?)sym e (Q(Ta)) = —

and regy”" ¢ (e"pl(e)) =0, giving a ‘hybrid’ form.
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Instead we take the small perturbation ¢, = &. From Theorem 2.17 and taking the constant
term in the asymptotic series (using Lemmas 2.8 and 2.9), we obtain

m
Z(_l)'lﬁit]‘zlogz({o}mij | Vjd1s ey ym)»CitT:](’gz_%i({O}j | Vs eees =y1)
Jj=0
(11)
= am 12( D/ iz i OV 1 3yt 3050)
j=1

< (5 By 10020139 Eir=oOV" 7 | 3711 by,

We will now apply induction to show that all of the regularizations above can be replaced by
the standard ones Liz—p and Ei’T:k’gz, up to an additional constant. In particular, we make
the following claim.

Lemma 2.20 The following identity holds

m

D =D Lo {0V Lyt s Ym) L2 ((0V | =y, ooy =y1)
Jj=0
T 12( D/ Lir—o(OY ™ 3y =10 30 (12)
i=1 X Bl 10g2(0 | ) Lir=0(0Y" ™/ | 3yj41js s 3¥m.j)
_ nil,(%) m even
0 m odd.

Proof We prove this by induction on m, first establishing the base cases.

Case m = 1: In the case m = 1, we obtain from Eq. (11) that

. . i
LiT—10g2(0 | y1) — Elrzlogz,%r(o [ —y1) — (3 + Btrzlogz(o | y1)) =

Expanding using the regularization change of variables in Proposition 2.18, we obtain the
case m = 1 of this lemma, as the terms i% cancel.

Case m = 2: Likewise, when m = 2, we obtain from Eq. (11) that

LiT=10g2(0, 0 | y1, y2) — Lir=10g2(0 | y2)£i7~=]0g2_i7ﬂ(0 | —=y1)

. 1 /i .
+ Lig_jogp iz (0,0 [ —y2, —=y1) = 5(; + B —1og2 (0 | y1)>ﬁlr=0(0 | 3320

+ z:m__m(m zyzo( + By 1ng(om))—o

Expanding this out with the regularization change of variables in Proposition 2.18, we find
‘CitT=log2(Ov 0 | Y1, y2) - ‘CitT=10g2(0 | _yl)[:ithlogZ(O | y2) + ﬁitT:logZ(O’ 0, | —y2, _yl)

1, .. .
= 5 (£ir=0(0 | 3320 Br16g2(0 | Y1) = Lir=0(0 | 732,10 By 16420 | 1))

_ . 1 [in
+?(£1’T=]0g2(0Iyz)—ﬁl’r=1ogz(0|—Y2) Br_ 10g2(0|y2)) 2! <?) =0
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The first term on line 3 is just case m = 1 of Lemma 2.20, for power series variables (y2),
which we already showed is equal to 0. We therefore obtain the case m = 2 of this lemma,
including the claimed constant.

Induction hypotheses: Now we assume the following identities hold for depth < m, namely
Eq. (12), and the following shuffle product formula:

m
D (=0T Liroo(OY T Sy 1 3D

= G odd, (13)

x Lir=o({0)" 7 | %yj+1vj’ s %ym,j) = 0 " otherwise

The shuffle product identity is quickly verified for m = 1, as series on the left hand side are
‘depth 0’, and so the left hand side is trivially 1. Whereas for m = 2, the left hand side is

Lir=0(0 | $y2.1) + (=D Lir=o(0 | 1y21) =0,
and so trivially vanishes. We may proceed to the case m > 3.

Case m > 3: By Proposition 2.18, we have the following change of regularization parameter
results,

j : [
. ; . i (—im/2)
El’T:logz_%,({O}’ | =Yjiee =) = ;)ﬁltrzlogz({()}] R e
, = : (—im)!
Lir——iz {0V %yj_j,l,..., %yj,l) = Zﬁirzo({O}’_l_[ | %y_j,j—l,---» %yj,eﬂ) TR
=0

Now consider the depth m case of Eq. (11), and with the above change of regularizations;

we find the following combination is 0,
m

> (=1 Lif_ tog2((0)""” T Yjsts o m)

j=0 : l
. _ (=im/2)
X (Z ‘C'llT:logZ({O}] | =Yjrees =Yet1) - -
=0 '
j—1 o\
(—im)
- oom- 12( n/~ ](ZEIT 0(OF ™ 2371 3072 3V ) ¢! )
= (=0 '
(7 + Br_10g2(0 | y/))
x Lir=o({0Y" ™ | 3¥j41, s os 3ym,j) = 0.

Now switch the summation order of j and m in both (double) sums, and re-index both j
sums with j — j — ¢ (keeping the same variable for notational ease with y-subscripts). We
find (simplifying some powers at the same time)

) ¢ ,m—L
Z (lﬂ/ : <Z( 1)JEIT logz({o}m = |yj+g+1,...,)’m)

£=0
x Lir_ log2({0} | =Yjtes-oos —Yet1)

)t 1
_Z E’ 2m Z ] Z( 1)] I‘CIT 0({ }j 1| Yj+e, 1+l 1 yj+(é+( —2 ...’}_/+g£+])
£=0 ’

j=1
( ) + BT 10g2(0 | )’/+€))

X LiT:()({O}m—./—e | yj+/5451.j+é’ .

Ym,j+t
Aty — o,
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We notice that the £ = m term of the first sum contributes only (ix / 2) , as the £if_| 0g2 series
have ‘depth 0’ and are simply 1. Whereas, the £ = 0 terms are the combination we wish
to evaluate to prove Eq. (12) in the case m. The remaining terms evaluate by the induction
hypothesis; in particular we find:

m
> 1 Lo 0V |yt Y £ o2 (O | =¥y —y1)
j=0

1
— o= 12( D/ Lir—o(OY ™ | Ay jots 3720 - 3Y0)

j=1
(7 + Bl _1og2(0 | )’j))
x ciT-o<{0}"’*-" | Ay it Svm )
. 1
(/2" o (171/2)K
=TT ) Z( D7 L 10 2 (0" 78 | yjgests oo ym)
’ (=1
X [’lT log2({0} | _y/-‘rea ceey —YZ+])
1 m—~ ) A
~ w1 D DT Lirco(OY T 1 3y jereats 3V e2s s 3Vt
j=1 i
x (? + B7 16920 | YJ‘H))
x Lir=o({0)" 775 | 3y jtert jres - %ym,ju)}.

Apply the induction hypotheses (shuffle product, and Eq. (12), for cases < m), we find the
right hand side is given as follows

/2" " (i 2)t (i /2)m—¢ 1 in (im)ym—t-1
T ; o (5”‘ foven” “op —gy1  amt-l T‘Sm‘e"d“'W)
. m m—1 Y] m—_
_(171/2) _ (i /2) _ym— [(171/2)
m! 2 o OV T
=1
RCO =N Ik . (iz/2)"
N m! ; m! =D ( >_( o m!

via the binomial theorem. By comparing the real and imaginary parts, and considering the
cases where m is even, or m is odd, we establish Eq. (12) and the shuffle product identity
Eq. (13) for the case m > 3. This proves the lemma. O

We can therefore state the following identity, by combining the individual cases from
Egs. (7), (8) (after removing the ‘7 term with Lemma 2.19, and Eq. (12)).

Theorem 2.21 (Symmetry Theorem, generating series form) Let y; ; == y; —y;, and e(x) =
exp(2mix). Then for every choice of m and every choice of ¢ = (¢1, ..., m), following
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generating series identity holds:

D= e+ + DL g (@it B | Yjts oo Ym)
j=0

X Lif_joga(=@js s =P1 | =Vjs ooy =21)
. o
w1 Z(—l)l 1£1T:0(—¢j_1, ces =01 | %yj.j_l, ey %yj.l)
j=1
x B%=10g2(¢1+' <+ | Yj)
X ﬁiT:O(‘pj.H, e O | %yjﬂ,j, ey %ym,j)
%(%)m ¢ = 0and m even,
0 otherwise.

This theorem provides a version of the Symmetry Theorem in which the product terms
consist of products of multiple 7-values, and products of multiple zeta values. In order to
establish the claim as stated in Theorem 1.1, we must convert the multiple zeta products into
multiple ¢ products.

To that end, we recall the following result from [20] relating multiple -values and multiple
zeta values.

Theorem 2.22 (Murakami, Theorem 8 in [20]) The motivic t-values t™(kq, ..., kq),
ki € {2, 3} are a basis for motivic multiple zeta values.

This is a result about so-called ‘motivic’ objects, the technical details of which are not so
important here. Upon applying the period map, the upshot of Murakami’s result is that every
multiple zeta value can be written as a linear combination of multiple z-values, in fact of the
special form #(ky, ..., kq), ki € {2, 3}.

Consider then the case ¢ = 0 of Theorem 2.21. We see that by extracting the coefficient

of ym=1l...ymm=1 and writing every multiple zeta value as a linear combination of multiple
t-values via Murakami’s Theorem, the following holds. For ny + - - - + n,, > 3,

€7 jog2 (t(nl, ) (=DM gy nl)) =0 (mod products of ¢’s).
This proves the version of the Symmetry Theorem given in Theorem 1.1.

Remark 2.23 We point out that the only non-trivial case of weight < 2, namely (n1, ny) =
(1, 1), gives

reg _jga (1. 1) + (=D?(1, 1)) = regj_j 00 (t(1)* = £(2)).

The Symmetry Theorem therefore does not hold in this case, since #(2) is irreducible, at
least when viewed as a multiple ¢-value. But 7(2) = %2 could be viewed as decomposable

relative to alternating multiple ¢-values; it is a product 7 x 7, where 7 = —4¢(1) is a strictly
alternating 7-value. (Recall the notation k means the sign of argument k is ¢ = —1 in the
framework of alternating MZV’s and M¢V’s.)

In the case ¢ € {0, %}’"\{(0, ..., 0)}, we have the following relationship between alter-
nating 7-values and alternating multiple zeta values.

Theorem 2.24 (Charlton, Corollary 8.26 in [6]) The stuffle regularized motivic multiple
t-values t™*(ky, ..., kq), ki € {1, 2} (with regularization parameter t™*(1) = log™(2))
are a basis for motivic alternating multiple zeta values.
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After application of the period map, we have that every alternating multiple zeta value can
be written as a linear combination of multiple ¢-values of the form reg?zlog Sk, . ka),
ki € {1, 2}, regularized with reg’;:10g2 t(1) =log?2.

Generally in the case ¢ € {0, %}’" \{(0, ..., 0)} we have a corresponding symmetry result.

By extracting the coefficient of y"1=! ... y"»=1 and writing every alternating multiple zeta
value as a linear combination of alternating 7-values, the following symmetry result holds.

Corollary 2.25 The following symmetry result holds, for any choice of ¢; = £1:

Ely-vasEm P— Emsy .-y €1
* ni+--+n #{e;=—1}
regr— ! + (D" m(—1) t
’ 10g2<<n17---»nm) Ny o vy N

=0 (mod products of alternating t’s).

3 Applications

In this section we apply the Symmetry Theorem to obtain a number of evaluations of multiple
t-values, multiple 7-star values, and multiple t”-values.

3.1 Evaluations of t(3, {2}", 3) and t*(3, {2}", 3)
3.1.1 Evaluation of t(3, {2}", 3)

Here we will establish the following evaluation for (3, {2}", 3). In the following section we
shall also obtain a similar expression for the corresponding 7*-values.

Theorem 3.1 (Evaluation of ¢(3, {2}", 3)) We have the following evaluation for t (3, {2}", 3)
as a polynomial in Riemann zeta values.

n+2
1) {—9+6”c(2)c(2n+4)

13, {2)".3) = (—*

4 2

724

+ ) s =27 =270 @2r 4+ DE@s + 1) - (=17 T

q+r+s=n+2 2ot
q,r,s>1

+ Z 2rs(2 =272 =272 (2r + D¢ 2s + 1)}.

r+s=n+2
r,s>1

Proof We start by extracting the coefficient of )’12 Y2 Vntl y,% _, from the generating series
expression in Theorem 2.21, in the case ¢ = 0. In this case, the Symmetry Theorem reads
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m
DGt DL Y (N TR TR Y Vs AW (N I TR )
Jj=0

m

j—1 e 1 1
Zl(—1>" Liz=0© | 3Yjj-1:--+3Vj.1) (14)
J=

_ {nll,(”;)m m even,

2m71
X B _10g2(0 | YD LiT=0O | 3Yj41js -0 3 ¥m.j)

0 m odd.

Combining all of the contributions and rearranging slightly gives the following identity
as the coefficient of ylzyg .- ~y,,+1y3+2 in Eq. (14):

n n—1

. . 1 . .
263, 421".3) = Y _r(2). 32" 3) — st Y e@2), ey 3)
i=0

i=0 o (15)
1 . .
- @3 +2) c@2). 3,2 3)).
i=0

At this point we have a reduction of 7(3, {2}", 3) to more familiar objects, and can proceed
to reduce the right-hand side. It will be convenient to make use of the shuffle regularization
to understand the MZV combination appearing in Eq. (15).

Remark 3.2 (Shuffle regularization) We give a brief reminder of the shuffle regularization of
MZV’s. One can write any MZV as an iterated integral in the following way

c(n,..ong) = (DO 1L {0y Loy, (16)
where
dey dry
I(xo; X1, .., XN XN+1) = —— A A/
X0<t] <--<tN <XN41 I —x IN — XN
Viewing x1, ..., xy asaword w = x7 - - - xy over the alphabet {0, 1} (in the case of MZV’s),

one obtains a product structure on these integrals via the shuffle product L. The shuffle
product is inductively defined by

aw) W bwy = a(wy W bwy) + b(aw; L wy),

and the integral (with fixed bounds) extended to formal linear combinations of words. Then
any integral 7(0; x1,...,xn; 1) with x; = 0 or xy = 1 (therefore non-convergent) may
be written as a polynomial in 7(0; 0; 1) and 7(0; 1; 1) with MZV coefficients. Replacing
1(0;0; 1) and 1(0; 1; 1) by the same indeterminate 7 (in order to preserve duality under
t; — 1 —t;), we obtain the shuffle-regularization polynomial reg“TJ 10; x1,...,xy; 1).
Finally regLTu ¢(ny, ..., ny) is defined as regy’ of the corresponding integral from Eq. (16)

We note now that the zeta combination in the second line of Eq. (15) can be obtained from
the following shuffle regularization, with reg“TJZO 1(0;0;1) = reg“TJ:O 1(0;1;1) =0.1e.,

n—1

32", 4 +2) 2y, 3,027, 3) = —(= )" regy 1(0; 0,{1,0)",1,0,0; 1)
i=0

= —regr_o c(1, 2" 1.
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The second equality follows by applying duality. The first equality holds by direct calculation
since

— (=) regt 1(0; 0, {1,0)",1,0,0; 1)
=0
—
= (—1)"[1(0; {1,0",1,0,0; 1) reg_, 1(0; 0; 1) —31(0; {1,0}", 1,0,0,0; 1)

n—1

— 237 1: (1,01, 1,0,0, {1,077, 1,0,0: 1
i=0
n—1 ) '
=30({2)", H+2) 2y, 3,217 3.
i=0

With this in mind, the reduction for 7(3, {2}", 3) from Eq. (15) can be written as

1 n ) . 2 n—1 . .
1(3,{2}",3) = 3 > o2y 32 3) — 2’2('134 32y, ey ,3)
= i=0 (17)
2
+ 212(% regf_o ¢(1, {2} 1).

We now apply the following shuffle-antipode identity (reversing the integral string, cf.
Equation (28) in [13])

m

D DO i wa, - wis DIO; Wiy Wyt wigr; 1) =0,

i=0
which implies that 7(0; wy, wa, ..., wy; 1) + (=D)™IO0; wy, wy—1,...,wi; 1) = 0
(mod products). This identity applied to regLTuzo ¢(1, {2}, 1) shows that

n n
reg_g (Z (L 2Y, DEA D+, 1, D= c2), hedl, {2}"*’)) =0, (18)
i=0 i=0
the main term of which gives regLT“=0 ({(1, 2y, D+ ({237, 1, 1)) = 0 (mod products).
At this point we will find it convenient to reformulate everything in terms of generating
series. To this end, we introduce the following general notation.

Definition 3.3 (General generating series for ¢ and t) We define the following notation
representing the generating functions of MZV’s, respectively M V’s, whose arguments have
the form (e, {B}", v), for arbitrary «, B, y, as follows.

o0
Gatpry W) =Y _ regy_g ¢(a, {BY", y)ul* P17,
n=0

o0
Gy, () =Y 1egi_jopn t°(@, {BY", y)ul Y,
n=0

where @ € {{J, , '/, r}. Thatis, G (g), (1) is the generating function of the shujfle-regularized
MZV’s reg“ﬁzo ¢ (o, {B}", y) weighted by the MZV weight, and G;{' ) (u) is the correspond-
ing generating function of stuffle-regularized (interpolated) MrV’s reg*}zlog2 t* (o, {B}", p).
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It is also convenient to introduce the following similar generating series for MZV’s and
M:V’s of arguments with two repeating blocks of 2’s:

Flu,v) = Y (=D"Pr((2),3, 21w,

a,b=0

Flu,v) = Y (=D*"Pr((2), 3, 2)")u*v?.
a,b=0

We know from Zagier [24], that F (u, v) is given as follows (after slightly rewriting Zagier’s
expression)

Fu,v)= Y (=D“Pr(2),3, 2" v

a,b>0
= sm(;;v) [A(u +v)+Au — v)—ZA(U)]—wpg(lﬁ_v)_lg(u_v)]’
Tuv muv

where A(z) = Y02, ¢(2r + 1)z% and B(z) = Y 02, (1 — 272)¢(2r + 1)z*". Likewise,
from Murakami [20], we know—with the same series A(z) and B(z)—that

Ft(lzt, U) — Z (_1)a+bt({2}a, 3’ {2}b)142av2b
a,b>0

() )
e () ()]

The series Gg 213 (u) encapsulates the M7 V’s that we want to evaluate. We note that by Eq. (17)
it can expressed as follows:

1
G () = 5 Giop)? = 1 Gpp(5)? + 2 Giiay (5). (19)
By Eq. (18), we have
GionW)Gpym) + Gy (u) — Gy (w)Grpy(u) =0,
or equivalently
Gippn () = (G{z}l(u)Gl{z}(u) - G{2}11(M)>G{2}(M)_1- (20)

(We abuse the notation for G )1 slightly, as 11 is treated as the string 1, 1 in the generating
series.) We now recall the following standard result.

ad oo 2n .
=Y e = T sinh(rru)
Gy(u) = nzo;“({2} Jut = n§=0 TP

Then by taking lim,_,o F(u, v) we find

2
iGy3(in) = u3F(u, 0) = —2uA(u) + —usin(wu)B'(u),
T
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so that (recall A and B are even, so B’ is odd)
%
Gy () = 2uA(iu) + —uB' (i) sinh(ru).
b4

Since ¢ ({2}*, 3) = ¢ (1, {2}"*!) by duality, and regy_, ¢ (1) = 0 gives no additional contri-
bution, we immediately also have that

2
Gipy(u) = Gpy3(u) = 2uA(iu) + —luB’(iu) sinh(mu).
b

Likewise, we find, by taking lim,_,¢ F' (u, v), that

1 u 1 u Tu
iGly () =’ F'(u,0) = —u?A'( = ) + zu?B'( = —
1 {2}3(1M) u (u, 0) 2” ) +2M > CcoS > )

Gl () = —%uzA/<IEM> - %uzB’<1§) cosh <L2u)

Therefore we need only consider G 21 (t) and G211 (¢), both of which can be handled in
a similar way. Namely by duality and shuffle regularization we find

so that

n—1
regilo C({2)", 1) = regf_o(—=1)" 110 0, (1,01 1) = =2 Y " z({2} .3, 21" 1)
i=0
reg_o C({2)", 1. 1) = regyo (= 1)"*?1(0; 0, 0, {1,0}"; 1)
n—1
=33 @Ay -4 YD r@)3 2V .3, 2.
i=0 i+j+k=n—2

The first one can be expressed as —2 times the sum of all MZV’s of weight w = 2n + 1,
depth d = n and height 7 = n, and hence evaluated via the Ohno—Zagier Theorem. The
latter consists of all weight w = 2n + 2, depth d = n and height h = n MZV’s, although
the coefficients are not constant, so does not evaluate immediately with the Ohno—Zagier
Theorem, but can be tweaked to allow this. (In both cases, the sums obtained are symmetric
sums, and hence are rational polynomials in Riemann zeta values, though these may be
difficult to evaluate explicitly.) To this end, recall the Ohno—Zagier theorem.

Theorem 3.4 (Ohno-Zagier, [21]) The generating series obtained by summing all MZV’s of
fixed weight w, height h and depth d is given by

po(x,y,2) = Z Z ;(k)}xw—d—hyd_hzh_l

w>d+h © wt(k)=w
h=d  dp(l)=d

ht(k)=h
1 . 1 m m m m
=xy_2[1—exp(m22m;<m><x +y" =" = p >)}

where

x+yEJ/x+y)? -4z
a, B = 5 .

@ Springer



75  Page 30 of 49 S. Charlton, M. E. Hoffman

For the sum corresponding to reg’s_, ¢ ({2}", 1), we find
T=0

Z(Zg({Z}’ o l)) 70(0 0,2)
_! ex < E =T 1 "4“(271))' E (="' @n+ 1)

n=1 n=1

Whereas, for the following sum, related to that for regLTuzo c({2}", 1, 1), we have

> ( D@3 2Y. 3 2 + ) c2y. 4, {2}"*f>>z"
n=0 “i+j+k=n—1 i=0

1 32¢0

=33 —>0,0,2)

1 (_ )n71 n - n—1 2" :
=5 exp <Z 2 ;(2n)> : (Z(—l) cQn + 1))

n=1

1 n* 1
+—exp(z( ) ”;(2@)2(—1)” Y+ D"c@n+2).

2z n

n=1 n=1

In order to deal with the series appearing above, we make the following observations. Firstly

sinh(nﬁ))
7z )’

n—1
Z( L) =~ log (M + iV = iv5) = g

using the Taylor expansion

log (1 —2) = yz 4 ) 1), @1

k=2

along with the reflection formula I'(1 — z)I'(1 4+ z) = wz csc(irz) for the gamma function.
Moreover

D@+ 1) = —AGVR),
n=1

SO

Z (Z {( 3’ {2}}1—i)>zn — A(l\/E) smh(nﬁ) , (22)
n=0 T[Zﬁ

o0

Z( (.3 2y.3, {2}">+Zc({z}",4, {2}"—">>z"

n=0 “i+j+k=n—1
sinh (77 4/2) th(rr \/2)
Tz

= —— (A(i«/Z)2 +¢(2) - 2t(2) +2t(2) csch(nﬁ)2>. (23)
The second through fourth terms in the second identity come from explicitly summing

277/Z

oo

D =D m A+ De@n +2)7"

n=1
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On the other hand, we first have the following identity (with (T denoting the shuffle of the
argument strings, rather than the shuffle product of the associated MZV’s):

ay _ - i a—iy __ 8n2a+4 a+3
({2} m{4})—§§({2}’47{2} )—m( a )

This follows by simplifying the result

c(2) M4 = (2™ c(2) — (a +2)¢ ({2}

2a+2 72 p2a+4
= ——— — - 2 —_
2+ 6 “TPa1s)
where * denotes stuffle product, or alternatively by taking k = n — 1 = a + 1 in

[14, Theorem 1.4]. Then

O grtt 43
(Eemaor)e £ ST )
= 2n+06)!\ n (24)

n=0
cosh(w/z) = sinh(w./z) ) sinh(14/7)
22 + 2mz5/2 @ w32

With appropriate changes of variables, and combining the above series, we find the following.
From —2 times Eq. (22) we have

2
Goy(u) = ;A(iu) sinh(u),

whereas from —3 times Eq. (23) minus Eq. (24) we have

Tu 1 sinh(ru)
2 smh(nu) 2

5 sinh (7 u)

t@u?’ + 2u2A(iu)

Goynw) = #

Substituting these various results into Eq. (20) we find (after some straightforward simplifi-
cation) that

() = (G 211 (1) — G{z}l(u)Gl{z}(u)) -Gy
_1 ) u? i3 smh(ﬂu)

Now substitute this into Eq. (19), and after some further straightforward simplification, we
find

4

4 . 2 . 5
. _ ) 4 ut fiu u* _ riu
Ghiya(w) = 1Qu® =t — A (5) - 5B <5>

4 . .
u iu iu Tu Tu
—— A= )B( = )cosh | =— ) —2t(2)%u® csch? [ =— ).
4 2 2 2 2
It is now a straightforward exercise to extract the evaluation given in the statement of
Theorem 3.1 at the start of the section. And so Theorem 3.1 is proven. O
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3.1.2 Evaluation of t*(3, {2}", 3)

By applying o X" to Eq. (2) from the proof of Theorem 1.3, setting » = 1, and recombining
the last k — 1 products via Eq. (2) in reverse, we find that

(3, {2)",3) = (=113, {2}, 3) + (=D e2y, 3 (2", 3).

j=0
Hence, in terms of generating series, we find
Gly3(u) = Gy (in) +1G i3 (1) Gy, (w).
We have the results that

Gl = — A () _ L2p cosh [ X
Bt = 2 2 2 2

1 iu TU
I* t,x 2 2
, Loy . u
Giays () = iGlpy () Gy () = ” (2) 2" (2) ec( 2 )

the second of which follows from similar consideration, relating G 2(u) G (u) and
(u) or G (u) via Theorem 1.3; a formula for Gt (u) follows from hmu%o F’(u v),

whlle one sees that G (u)Gt }(1u) = 1and Gt (u) = cosh( ") according to Equation 3.5
in [15]. Using these results we obtain the followmg generating series expression, after some
simplification using the fact that A" and B’ are odd functions.

4 2 4 2
1% — O — A L
G3{2}3(u) tQu t@u™ + 3 2 + 2 2

u4A, u B u U 22 5 (TTu
() (5) e (5) e ()

Recall E,, is the Euler number, defined via

1 2 > En "

cosh(z) et4e? =

It is then, as before, a routine exercise to extract the following explicit evaluation from the
above generating series.

Theorem 3.5 (Evaluation of t*(3, {2}", 3)) We have following evaluation of t*(3, {2}", 3).

(3, {2}, 3) =

n+2
9+ 6n
(Z) {L;(zmz 4

24

+ Y 2822727 @r 1) @s + 1) x (= 1) "’2‘1 '

r+s+q=n+2 2g)!
r,s,q>1

+ Y 2rs2-27)Q2 - 2720 @r + DE2s + 1)},

r+s=n+2
r.s>1

where E, is defined via Eq. (25).
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3.2 Evaluations of t(1, {2}", 1), t(1, {1}", 1), and their t* counterparts
3.2.1 Evaluation of t(1, {2}", 1)

Extracting the coefficient of y;---y,41 in Eq. (14) (i.e., the Symmetry Theorem Theo-
rem 2.21, with ¢ = 0), we find the following

. 2 n

* 8’1=0 17 * i —i

€27 _0g2 21(1, {2}", 1) = > <7) + E reg7 _jog2 (t({2}’, D2y, 1))
’ i=0

n—1

1 . .
= Ja! @ Y _regi_o (c(2, ey ).

i=0
Recall from Definition 3.3 that G;’{'ﬁ}y (u) is our general notation for the generating function of

stuffle-regularized Mt V’s of the form reg"}zlog L1, {BY", y)u lel+21B1+1¥1 whereas with the
zeta generating series Gg), (1) it was more convenient to utilize the shuffle regularization.
Since there is a single trailing 1, we know (see [18, Theorem 1]) that

regr_o £ (2)", 1) = regz_ £ ({2)", 1),
so we can evaluate this using the generating series
2
G2y1(u) = —A(iu) sinh(mru),
b1

from above. Hence in terms of generating series, we have

2
Gl (w) = _% + (Gt{z}l(”))z - 2“2’(2)(0{2}1(%))2'

From [6, Theorem 3.3], we have that

D (=D regr o0, 1(12)9, 1,421 - 202 2007
a,b>0

= %cos(nx)(A(x -+ AKX +y) (26)

1
+ 5 cos(my)(B(x —y) + B(x + y) + 2log?2),

so that by taking y — 0 we find

Giz}l(u) = u cosh <%>A<I§> + uB(%u) +ulog?2.

Hence we have the following identity for the generating series of regy_j,5 7(1, {2}", 1):

G (u)——ﬂJrl tog24+ A (M )+ B(™ ) cosh (= 2—1A u 2sinh T
ien==m o 108 2 2 2 2%\2 2 )

This establishes that regr_jog0 1(1, {2}", 1) is a polynomial in single Riemann zeta values
and log 2, and an explicit formula for it can be extracted easily from this generating series.
The general regularization (for n > 0) can be recovered as

regr (1, {2}, 1) = regy_jog0 1 (1, {2)")(T —log2) +regr_jog2 t(1, {2}, 1),
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which is now a polynomial in Riemann zeta values, log 2, and the regularization parameter
T, on account of the evaluation

iu Tu iu
regr _iog2 Gl () = uA<E> + u cosh (7> <B(§> + log 2),

which follows from Eq. (26) by taking x — 0.
3.2.2 Evaluation of t*(1, {2}", 1)

Now using the same argument as in Sect. 3.1.2, we find
regr_jog2 (1, {2}, 1) =
n
regr_joga (— (=D)"t(1 {2}, D+ YD/ (2, Der((2)" /. 1)),
j=0
from the shuffle-antipode in Theorem 1.3. We therefore have the generating series identity
Gy ) = (Gl () — iGlyy, ()G i3, (w)).
Likewise

Gy () = =Gy ()G 3\ ()

=u 7 ulog u 7 sec > )
So we find

G ()—”2”2+”21 22+”23 "N B(L) +21002
ep =TT Ty 08 2 °\2 2 i

) () () ()

Hence regr_joq2 t*(1, {2}, 1) is a polynomial in single zeta values and log 2. The general
regularization can be recovered using the stuffle product of t*-values, giving (for n > 0)

regr t*(1, {2}, 1) = *(1, {2}")(T —log2) + 1eg7_jog2 (1, {2}, 1),

which is then a polynomial in Riemann zeta values, log?2, and T. (That *(1, {2}"), and
generally r*({2}7, 1, {2}?), is a polynomial in single zeta values and log 2 follows from the
stuffle antipode, as in Sect. 3.1.2.)

3.2.3 Evaluation of t(1, {1}, 1)

Recall the notation k means the sign of argument k is ¢ = —1 in the framework of alternating
MZV’s and MrV’s. From the case Q = (0, {%}", 0) of Theorem 2.21, we can extract the
following identity:

regr_jog2 26(1, (T}, 1) = —8,=0t (2) + Y _ regr_joen t (T}, DE((T)" ™, 1)
i=0
n—1
~ regr_g %((1 — (DMEIYL D = Y =D eI, DeIy T 1)).

i=0

27
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From [7], we know that t({T}” l) is a polynomial in Riemann zeta values, Dirichlet beta
values (recall B(n) = Zk —0 Ok Ji)l),, = —t(n)),and log 2. This follows from the more general

generating series identity for ¢ ({1}%, 1, ) givenin Theorem 1.1 [7]. Settingy = 0, x = —u
therein leads to the following explicit result verifying this,

=3 (o (7)o () o3 )
23] () () o)

CRO=3WG+D-vE-H-vE+H+vE -D) =) Ben "

r=1

where

One further ingredient we need is an evaluation for ¢ ({1}", 1) as a polynomial in single
zeta values and log 2.

Proposition 3.6 (regy_( ¢ ({1}™, 1) evaluation) The following regularized generating series
evaluation holds.

L(x) =) regr_o(=1)"¢{TY, Dx"
r=0 (28)

_1_ F(l)(— log2 —2A(x) +n<cot <E> —Cot(ﬂx))>
X ra-nraen e 2 ’

where

1 oo
AQ = () = S +2) + ¥ (1 —2) = Y ¢@r + D,

r=1
with ¥ (x) = % log I' (x) the logarithmic derivative of the gamma function T (x).

Proof We begin by considering the multiple polylog generating series

k
Kx2) = Z( D Lipy (=11, 22" —ZH< - 1) )

r=0k<r

Splitting into the odd- and even-indexed terms, and rewriting each via Pochhammer symbols
gives

(r=2m+2) H(] _ (_1)kx)zr:_1. {_%}m {]%}m-‘rl 72m+2

p k r X {%}erl m+ DV
B Dhx\z  {1=35), 15, 2
r=2m+1 E(l— p )r_z~{%}mm!.

Each summation runs from m = 0, and gives a  F| hypergeometric series (up to an additive
constant in the former case), so that
Itx
22

1 1 X I4x 1—
K(xiz)==—=-F| >, % :Z|+z2k
X X
@Springer
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Now notice that

r—1

Ligyn (=1}, 2) = Lit@) Lipr (1)) = Y Liggen (1), 2, (=177

i=0
_ ZLi{l}i’Z,{l}rfl—i({—l}i’ -z, {_l}r—l—i)’

so that on rearranging and taking the generating series of both sides, we find

z—>1-

li 1)" Ligg1 ({—1 log(l — )| ———2—+—
m (Z( )" Ligyr+1 (=1}, 2)x" + log( Z)<r(1—§)r(“2”‘)

= Z(—l)’ regr_o L ({TY, Dx"

r=0
as z — 17. Here we have used both that Lij (z) = —log(1 — z), and that

r)

_1r Tr r=—_
> =D7edT)x IR

r=0
(For the latter, see Equation 13 in [4] or Equation 12 in [5].) That is to say
1
L(x) = lim K(x;z)+ log(1 — Z)<¢>
o OIS r - HrE

so once we evaluate the limit, we will find an expression for the desired generating series.
The Ramanujan asymptotic for O-balanced , F7’s says that

T'(a)T(b) _2F1[ ab

NUEY)) ath Z] =—log(l = 2) =2y =¥ (&)=Y (b)+ O((1 — 2) log(l — 2)),

as z — 17 (see Corollary 20 [8]). We use this to evaluate the limit for L (x), and after some
simplification we find

1 r'(3) mx
L(x) = ; — 1"(1_)25)21"(]‘5X)<_10g2 — 2A(.x) +JT<COt <7> - COt(ﬂx))),

as claimed. O
Along with Eq. (27), this Proposition establishes that €87 _jog2 t(1, {1}, 1) is a polyno-
mial in Riemann zeta values, Dirichlet beta values and log 2. More precisely, from Eq. (27)

we have the following generating series identity

1{1}1(”)
2 1 2 2 u u u u
1O+ SGl W+ ?<2<L<§) _ L(—E)) +uL<§>L<—E>>.
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The combination involving L simplifies in a significant way (to the first bracketed term
below), so that no gamma functions survive. In particular, we find

G’ (n) = _MZT(Z + o Lzuz cot ) mx? tan u
1} 16 4 16 4 16 4
u? u 2 um
+ 3 <2A<5> + log 2) sin <7> }
N u? Tu . Tu 24 +loe?2
— 1| cos | — sin [ — ()
8 4 4 &
u u u 2
— Al = Al =) —-2C( = log2t .
<8> * (4) C<2> *loe }

An explicit formula for reg7—log2 t(1, {1}, 1) can then be extracted from this generating

series. As before, the general regularization regy ¢(1, {1}, 1) can be recovered using the
stuffle product.

3.2.4 Evaluation of t*(1, {1}", 1)

Likewise, a corresponding identity for regy t*(1, {1}, 1) can be derived using the stuffle
antipode as in Sect. 3.1.2. Specifically

Gty ) = =G 5, (—1) = Gl ()G .

where G (u) GII{T} (—u)G'{’ﬁ (u), and G’{ﬁ (u)GiT}(—u) = | using similar considera-

tions. Smce
umw . (um
{1}(14) = cos ) sin e

from [15, Corollary 6.1, proof], we can unwind these generating series relations to obtain
explicitly
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3.3 Evaluations of t/2({1}", 2¢ + 2) and t"2(2¢ + 2, {1}?", 20 + 2)

From Theorem 1.3, in the case r = % we observe the following:

regr_jog2 t ({1}, 2¢ +2) stuffle regr_jog2(— D" 1"(2¢+2,{1}")  (mod products).

On the other hand, from Corollary 1.2, we have
regr_joga (1", 20 +2) "E tegr 00 (=" 1126 +2, {1}")  (mod products).

Because of the opposite signs in each case, both of these ¢/>-values must be reducible indi-
vidually. In fact, an argument based on the hypothetical ‘derivation with respect to log 2’
[15, Conjecture 2.1 and thereafter] (formalized somewhat in [6, Remark 5.9]) suggests that
2({1}", 2) should not contain any terms of the form logk 2 -u, k < n, with u indecompos-
able. This does not preclude terms of the form logk 2 -u - v, but does force t‘/z({l}”, 20+ 2)
to be especially simple.

In fact, from Theorems 2.21 and 1.3 we can extract suitable generating series identities
which give the following evaluation of # ({1}, 2£+2) as a polynomial in log 2 and Riemann
zeta values.

Theorem 3.7 The following generating series identity holds:

1272 sec ()‘7”) sec (”4—”) F(% —

sr(1 - §-)r(+5-HTd+

) .
)

In particular, t ({1}, 2 + 2) is always a polynomial in log 2, and Riemann zeta values.

ISE

R, )=y 1"({1)", 20 + 2)u"22 2 =
n, >0

29

ENES

We postpone the proof until the end of the section; we immediately have the following
corollaries.

Corollary 3.8 The following MtV
172042, (1", 20 +2)
is always a polynomial in log 2 and Riemann zeta values.

Again recall from Definition 3.3 that G;‘;ﬁ}y (u) is the general notation for the generating
function of stuffle-regularized Mt V’s of the form reg’}:logz 1 (a, {B)", y)ulel+nBl+v

Proof This follows immediately with the stuffle antipode Theorem 1.3, since > ({1}?, 2£42)
is always a polynomial in log 2 and Riemann zeta values. In particular
t,'2 t,'2 t,'2 t,'2

Gy 2642 + G 1y 20402 (-1) = G(i) 2040 G (1) 50 (- 0). =

A particularly interesting case occurs for £ = 0, wherein #7(2, {1}, 2) appears to be
a rational multiple of (4 4 n) in each weight. From the previous Corollary we have the
following special case.

Corollary 3.9 The following evaluation holds:

1/ 3+21’l
R A, 2) = Syt 4 2n),
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Proof We have (after some straightforward simplification) that

G{ll/Z (I/l) — Ztl/z({l}i, 2)ui+2

i=0
r 92 P — 401+ 4y 0
S Ry = e 2T 7t(T)
u u
P94 =0 r(1+45ra-4%)
From the stuffle antipode in Theorem 1.3, we have the generating series identity
t,'2 t,'2 t 1
G2{1]2(“) + G2{1}2(_”) = 1}2(”)G 2(_u)-
Using Eq. (30), we find
2,2
t /z Ty 2 (Y
G —u) = t —
L) + ( u) 1 an ( 2 >
which is equivalent to the claimed evaluation. O

This evaluation only holds for even weight; in odd weight #72(2, {1}*"*!, 2) appears to
evaluate in a similar straightforward way. Since 7(2n + 1) is (conjecturally) irreducible the
Symmetry Theorem likely cannot be applied to establish the evaluation, and some new tech-
nique will be necessary. We therefore leave the odd weight case as the following conjecture.

Conjecture 3.10 (Resolved in Theorem 3.1 [1]) The following evaluation holds:

+

122, (1)L 2) = S

t(5 + 2n).
Remark 3.11 We have checked this conjecture using the Data Mine [3] up to weight 11 (the
relevant limit of the Data Mine for alternating MZV’s). Thereafter, we have also verified
numerically to 1000 decimal places in weights 13 and 15.

The reader using the tables in [15, Appendix A] to check this conjecture in weight 7
should be aware of a misprint. The formula for 7(2, 1, 2, 2) there in [15] (corresponding to
1(2,2, 1, 2) in the convention of the present paper) should read

15 11
12,1,2,2) = —3—2t(7) t(3)t(4) + ﬁgt(Z)t(S)

the formula as printed has an incorrect coefficient for #(2)(5).

Remark 3.12 In the interim, a proof of Conjecture 3.10 has been obtained by the first named
author together with K. C. Au using the machinery of creative telescoping. The details
of this proof can be found in Section 5 of [1]. Although this settles the conjecture, the
current mechanistic proof does not explain why the evaluation should hold; we would still
be interested in seeing a conceptual proof of Conjecture 3.10.

Remark 3.13 A two-variable generating series expression for £ (2¢ + 2, {1}*",2¢ + 2) is
not as straightforward to find. It requires taking the Hadamard (coefficient-wise) product of
R(u, A) with R(—u, ), viewed as power series in A. (This Hadamard product can be given
implicitly through an integral representation.) However, by repeated differentiation, one can
extract any particular G 2 ¢4 (1) and the corresponding series for ¢ he42, (132, 20+2).
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For example,

Gl = 3 ()

i=0
4 4 2.4 Tu 1 u
ad mu“sec () '3 — 7
=5 Rwow = (42) (§ 3)(#—21//“)(1—5)),
4102 |, = 64F(1 — %) F(j + 1) 4
where ¢V (z) = d : +1 log I"(z) is the order n polygamma function. Therefore

o0
, . . 1 A )
Do Pt = GG ()

2.6
= nSluZ tanz(%)(nz—%p(l)(l—%)) <712 — 21/f(1)(1+%>).

Remark 3.14 In contrast to the case 1/2(2, {1}", 2) in Conjecture 3.10, where a similarly
simple evaluation seems to hold in odd weight, no such simple evaluation holds seems to
hold for the higher ¢/2(2¢ + 2, {1}°4, 2¢ + 2) analogues, viz:

1P(4,1,1,1,4)

involves (1, 1,9) and 4 other irreducible alternating MZV’s of weight 11.
Similarly, t'/z({l}l ,2¢ 4 1), with an odd final argument > 1, does not appear to evaluate
nicely, as already

t(1,3) = —lm 3)
9 - 2 9

involves an irreducible weight 4 alternating MZV. Likewise in weight 5 with 12(1,1,3) we
already involve ¢ (1, 1, 3).

Proof of Theorem 3.7 For simplicity, let us write

['itT=10g2(Q [ Y1 Ym) = »Citj'=]og2(y17 ces Ym),s
and likewise for Liz—o(y1, ..., Ym), as the first tuple will here always be the zero tuple. We
note then that
k=2
. (ru)* 9" . _
Lioioga(ur}) = Y =) Lijoga(ur)™™! W)
n=0 ’ w=0
o0
=3 Y tlrsiamrs ia )ou"
n=d I=(iy,..., iq) >k
|I|=n -
ig>k
The sum of derivatives step-by-step eliminates those indices (i1, ..., ig—1,ig) which end
withiy =1,2,...,k — 1. (Since k > 2, we do not need to explicitly regularize above.)

We therefore want to evaluate the following (for k even, and already specializing to
r=1/2):

k=2 }’l 8’1

'/’ (u) Z 21 3T°% ([:lT 10g2({ }d) Z M. p ‘3Wn

Ci}zlogz({%}d_l, W)). (31)
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Take the following generating series with respect to k, and we find after switching the order
of summation and (formally) summing the infinite series of differential operators, that

R(u, %) = Z i (u)( )

k even (32)
o 2)\2 d

_24)\2 ( ‘CIT logZ({ }d)+D£1T log2({ }d : W))

where D denotes the (formal) differential operator

D= cosh smh

BW’WO +2 8W|WO

We interpret and understand the application of an infinite series of differentials aaw to a

function f via the Taylor series of f. Specifically exp()» |W D f W) = f(), via its
Taylor series (assuming convergence at the relevant points), Wthh we then extend (formally)
to the hyperbolic trigonometric combination above.

Likewise,

k
o (
S(u, ) = Z Gk{{}(u)<;>
keven (33)

= 222ud J o
_24)\2 ( [’lT lOgZ({ } )+D‘C1T logZ(W { } ))

From the stuffle antipode Theorem 1.3, we find
R(u. ) G (—u) = S(~u, 1) = 0. (34)

Now write down the case y = ({%}d_l, W) of the Symmetry Theorem (given in Theo-
rem 2.21) to obtain

d—1

D DL (U5 WILi oo (= 514717
i=0

— (=D Lo (=W, (51D
1 d-2 i
- F Z(_l)l ([’ithlogZ(%) - [’ithlog2(_%))
0 X Liro({0)) Lir—o ({021, W2y

- (_%)dil([’itT:k)gZ(W) - [’itT:IOgZ(_W))['iT=0 ({W—Tuﬂ}d—l)

. d
1 [in
= 8devenﬁ(7> .
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After taking Y 07 | eu?, using the following results, we find that

)

ZﬁiIT:]ogZ({%}, W' ™! -e}’”/zr(ii_i_ + Z(_l)lﬁitTﬂogZ(_W’ (=5hu™!
i=0 2

= .
u
— ﬂeyu/ZF(l -

S ;(t@) ~an( )

This requires the following results obtainable via standard arguments and evaluations, as we
indicate below.

INERINE

SIS

. . b Ty
‘CIIT:log2(y) - EltT:10g2(_y) = b tan (7)3 (36)
s ) ) " r(lgu
3 L (81D () = G (—u) = eW”M, 37)
i=0 F(i - Z)
o iy i e
;ﬁszo({O} Y =iy (38)
S Lipco((0f !y = o - T 0Td =) (39)

P I'a+y) r'l—x-y
Firstly, Eq. (36) comes from just explicitly evaluating the generating series, using known
formulas for t(Zn) in terms of ¢ (2n). Secondly, Eq. (37) requires recognizing the sum as an
expression for G {1} ( u), which is then evaluated using the results of Section 6.2 [17], and
a variant of Equation (40) therein. Then Eq. (38) involves the generating series for ¢ ({n}%)
[4, Equation 11], or rather the extension to the Hopf algebra [17, Equation 32] in the case
n = 1, and well-known Taylor series log I'(1 + z) already mentioned (a variant given in
Eq. (21)). Finally Eq. (39) involves the generating series for ({1}/,d + 1), d > 1, given in
[4, Equation 10], and the result in Eq. (38).

Now write E(t) = 2;0:0 regr_g c{WHe = % Using [14, Lemma 1] (after apply-
ing the homomorphism taking elementary symmetric functions to MZV’s), we find

ZCIT oy =14 D Y regpo&lin, ., inx" Y

n=k>1I=(i1,....i)
[I|=n

_ E((% - 1)x)E(—x)—‘ - ﬁ:lr_(iilxy))

These results suffice to obtain Eq. (35).

Now apply D to both sides of Eq. (35). The left-hand side can be rewritten using
Egs. (32) and (33); the right-hand side is evaluated via the formal interpretation of
exp()\% ‘ W=O) f(W) = f()) as discussed above. We obtain after some simplification

" 42272
RGu, 2) - G (=) + S(—u, 2) = ——
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Solving Egs. (34) and (40) simultaneously leads to the claimed result for R(u, 1) and, as a
by-product, a formula for S(u, A), namely

A2 AT Tu rl —
R,y = 3 thquy, 20 +2pum2i2 = 2 (uz )“ec(;‘ ) _ (f
(=0 Sr(1—5—r(l+5-5) TG+

| e YU/2 3272 gec (Xl) SCC( u)
Su,r) = €8y _1ogn 1720 + 2, (1)U 22H? = 2 a)
P S5+ D +5 )

)
3

INERINE

El

As before, S(u, A) for the general regularization parameter 7 can also be recovered, via the
stuffle antipode Theorem 1.3, as eT ~1982% §(y;, 1), This completes the proof. O

Appendix A: Tails of multiple zeta values, and an analytic result

In this Appendix, we gather some results on the growth and convergence rate of the truncated
MZV’s, and a useful analytic result Proposition A.4 which we need when taking the limit as
M — oo in the truncated generating series identity Proposition 2.15. Although the following
is probably well known in the literature, we include it for the sake of completeness.

Definition A.1 (Tails of multiple zeta values) Let gy, ..., &, € C, with |g]| = 1, and
ny,...,nm € Z=o be given. Let M € Z-o, we then define the >-tail {- ) and the
>>-tail sy of an MZV as follows,

k k

¢ Ely ooy Em ) Z g e
>M = )
Ny, ..., 0y Kk

ki <-<kpm 1
km>M
k k
¢ ElyeesEm ) Z gl e
M = —_—.
AV TR Kk

M<ki<..<ky 1
Note that (in the convergent case)
Ely ey Em Ely -y Em Ely -y Em
§< >_§M< >:§>M< >,
i, ..., Ny i, ..., Ny i, ..., Ny

so ¢~ represents the usual tail of the series. The behaviour of ¢~ jy as M — oo tells us the
rate of convergence of £y to ¢.

PropositionA.2 Let ¢1,...,8, € C, with |g;| = 1, and let ny,...,n,; € Z-y with
(&m,nm) # (1, 1) be given. Then there exist J, J' > 0 € R such that the following asymp-
totics hold as M — o0,

Ely vy Em 10g1M Elyeves Em logJ/M
=0 , =0 .
é‘>M(nl,...,nm) ( M M Nly..., Ny M
Proof We treat first the depth 1 cases {>M(8> = {>>M<8) , for any (e, n) # (1, 1).
n n
Case (g, 1), with ¢ # 1: We have that

o0

> L= f
&,

k=M+lk 0

) 1 M
Z (en)¥ldr = 871/ (e1) dr
—ol—et

k=M+1 !
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Since ¢ # 1, the denominator 1 — (et) never attains the value 0 on the interval [0, 1]. Let
C = (min{|1 —&t] | € [0, l]})_1 > 0, then we estimate

()] = [ [0 = [ a = €

M+1
Remark A.3 We can estimate C~! as

cl_ {Isin(args)l arge € (0,7/2) U (37/2,2m)

(enyM
1 — (et)

1 arge € /2,37 /2].

This follows by computing the turning point, where ¢ = exp(if), of

1 —et] = \/(1 — cos(0)1)2 + sin(0)t,

which occurs at ¢ = cos(f). For & = arg e in the range [/2, 3t /2], cosine is negative, so
this turning point does not occur in the interval # € [0, 1]. One sees then that the minimal
value occurs at the left end point + = 0, which gives value C -1 = 1. Otherwise, C~! is
given by |1 — g cos(0)| = |sin(0)] .

Case (g, n), with n > 2: In this case, we know the series ¢ (fl) converges absolutely, so we
find thatn — 1 > 1, and

o0
1 ©  qr —f_n+1
< — < =
S —ft p—

"
k=M+1 =M

k
X

k>M

o0
1 1 _1
=————=0M").
=y n—1M""

This establishes the depth 1 result for £- 7 (1) = & () whenever (g, n) # (1, 1).
Now we inductively show that same result for higher depth.

Case higher depth, ¢\ : Firstly consider the ¢, ) case, wherein

ki km 00 ki
: (81,...,8m) gl e &) ; £, ... Em
>M = Z ni m Z ny S>>k :
1 > M<ky<-<kp kl ki ki=M+1 k] 25 s
€2y ... Em
§>>k1< )
na,...,nym

and can apply the induction assumption to obtain that for some J, and C’, this is

So we estimate

e e ad 1

Ire s &m

IsMm = E i ,
Niyenn, Ny ki

ki=M+1

o0 J

1 log” ki

<c Y = .
=M1 k' ki

With the integral test, we further estimate that this is

[e9) J
< C// 10% xdx.
M X +1

By partial integration, one sees that

/ log(x)’ | Py(log(x))

x = :
ok ok
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for some polynomial P; of degree J. So the estimate on s a7 is

< C/M _ 0<10g1M)
= Wk v ’
proving the ¢y case.
Case higher depth, ¢~ pr: Now consider the ¢ js case, wherein
Ely - s Em 8If‘ 812,1
§>M<n1, cee nm> = kl(Z;km W

kjy>M

By inserting the condition k; < M < k;1 in all possible compatible ways throughout the
summation index, we see

k
; <8],..., ) 511” gy
>M E 2 2 hm
ni,..
1 i=10<ki<..kj_ 1<Mk1 km
<ki<...<km

Ely ..., &1 Eiyeoiy Em
( )§>>M< )
R RS | i, ..., Ny

log”t M logji/ M

log(M 0 O ————

(ccoen + o*51Y) o2

for some polynomials Q;, using standard results about the growth of truncated MZVs, and
the induction assumption in the case 5. One then sees this sum has order

log?" M
-o[%%)
M

for some J”, as claimed. This completes the proof of -y case, and the proposition. O

%
-2

We need the following result about the convergence of infinite sums of a particular form,
in order to pass from the generating series identity involving truncated MZV’s and MtV’s
to a generating series identity which holds in the limit. It holds when ( ;)72 and (gx)72
are the series of truncated MZV’s and Mt V’s, by the previous result Proposition A.2, and is
used to deduce Theorem 2.17 from Proposition 2.15.

Proposition A4 Let (fi)p2, and (gr)72, be convergent sequences with limits F' and G,
respectively. Assume that the tails of F and G satisfy the following convergence rate condition

log/ M log” M
F—fM=0(°g ) G—gM:0<0g )

M M

forsome J, J’ > 0. Furthermore, assume that Z,fozl s = S is a convergent series, with sy =
O (k™%), for some ¢ > 0. (That is, the sequence is perhaps only conditionally convergent.)
Then

llm ZfMJrkgM Sk = FGS.
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Proof Write

M M
3 fusgmoksk = Y (F = (F = fur )G — (G — Gy—i)s

k=1 k=1
M M
= Z FGsy — Z(F — fm+k)Gsi (41)
k=1 k=1
M M
— > F(G=Gu-wski+ Y (F = fui)(G — Gu—i)st.
k=1 k=1

The big- O condition implies that (except for M = 1), we can find the following absolute
bound on F — fj, and likewise G — gy there exists C such that for all M > 1,

log’ M
F — <C .
|F — ful = i

J
This follows since there exists k, ng such that for all M > ng, |F — fy| < k ¥7 as

J
per the definition of big-O. Then since logMM > 0 for M > 1, one can choose larger k to
ensure the first terms M = 2, ..., no terms also satisfy this inequality. We now analyse each
summand of Eq. (41) in turn.

First summand: The first summand gives

M [e’s)
Z FGsy — FG Zsk = FGS,

which is the main contribution to our claimed result. Now we show all other summands of
Eq. (41) tend to O as M — oo.

Second summand: The second summand is

M
log/ (M +k) C'
sGZCOg( +k C
M+ k ke

M
Y (F = fu1)Gs
k=1

M
log’ 2M) 1
/
k=1
log’ 2M) X

78.
M P k

<Gcc’

By considering Riemann sums for the integral fOM k—®dk (assuming, without loss of
generality, that 0 < ¢ < 1),

Te =
k=1 k
hence

M

D (F = fur)Gsi

k=1

log/ M) M'~¢

<Gcc’
M 1—¢
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as M — oo.

Third summand: Writing the third summand in Eq. (41) as

M M—1
Y F(G=Gu-)si =F ) (G~ Gu-i)sk+suF (G~ Go)
k=1 k=1

we need only consider the behaviour of the sum Z,i”:_]l since sy — Oas M — oo. We have

M—1 M—1

log/ (M —k) C’
G—Gy_psi| <y c/—=——"—"_"2. —
;( M—k)Sk| < 1; Uk T

Now (ignoring the constant C’C”") decompose the sum on the right-hand side into terms with
k < [ M /2] and those with k > | M /2], namely

M—1 M—1

log? (M —k) M 10! (M —k log” (M — k
Z O(gjw(_ k)ks) = Z O(g]w(_ k)ks) + Z O(gju(_ k)ke ) : (4’2)
k=1 k=1 k=M /2] +1

In the first sum, we can make the estimate

logj/(M —k) - logJ/M
M —k - M /2]

to obtain the upper bound

M/2) M/2]

log”’ (M — k) _ log” M L log/’ M |M/2)'¢
M-k T M2] = kT M/2] 1—¢

as before, which we see goes to 0 as M — oo. In the second sum, we reverse the summation
via k' = M — k, to obtain

S ewon Y ek
_ - ’ _ e
k=|M/2]+1 (M — k)k* k=1 k(M — k)

With the bound k¥’ < |(M — 1)/2] < [M/2] < M/2 < M, we can bound the sum above

by
1 log’ |M/2) M
¥ =M <1+l°g(7))’

and see it also goes to 0 as M — o0. So by Eq. (42) the third summand in Eq. (41) goes to
0as M — oo.

log]’ LM /2] L((M-1)/2]

M2 =
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Fourth summand: Finally, we bound the fourth summand in Eq. (41) as follows:

M
D (F = fus)(G = Gy)sk

k=1
M og! (M + k) log” (M — k) 1
<cc'c” — 4 (F— G-G
< TR v —r = TE 0)Sk
M—1 ’
log(2M)”’ log” (M — k) 1
<cc'c” — 4+ (F — G — Go)st,
< X e T 0)sk

k=1
but the argument above for the third summand, together with the facts F — fjy — 0 and
sy — 0as M — oo, shows that the fourth summand in Eq. (41) also goes to 0.

Conclusion: The first summand in Eq. (41) is the only one which survives, so we have proved
the proposition. O
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