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Abstract
For a composition I whose last part exceeds 1, we can define the multiple t-value t(I ) as the
sum of all the terms in the series for the multiple zeta value ζ(I ) whose denominators are
odd. In this paper we show that if I is composition of n ≥ 3, then t(I ) = (−1)n−1t( Ī ) mod
products, where Ī is the reverse of I , and both sides are suitably regularized when I starts or
ends in 1. This result is not true for multiple zeta values, though there is an argument-reversal
result that does hold for them (and for multiple t-values as well). We actually prove a more
general version of this result, and then use it to establish explicit formulas for several classes
of multiple t-values and interpolated multiple t-values.

Keywords Multiple zeta values · Multiple t-values · Alternating MZV’s · Alternating
MtV’s · Parity theorem · Hopf algebra · Stuffle product · Motivic MZV’s · Special values ·
Generating series
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1 Introduction

We define multiple zeta values ζ(n1, . . . , n�) and multiple t-values t(n1, . . . , n�) by

ζ(n1, n2 . . . , n�) =
∑

1≤k1<k2<···<k�

1

kn11 kn22 · · · kn�

�

and

t(n1, n2 . . . , n�) =
∑

1≤k1<k2<···<k�

1

(2k1 − 1)n1(2k2 − 1)n2 · · · (2k� − 1)n�
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respectively. The series converge provided n� > 1. We note that the set of multiple zeta
values and the set of multiple t-values are both algebras under the “stuffle” product, e.g.,

t(2)t(3, 2) = t(2, 3, 2) + t(5, 2) + 2t(3, 2, 2) + t(3, 4).

More formally, both the multiple zeta values and the multiple t-values are homomorphic
images of a subalgebra of the quasi-symmetric functions QSym. NowQSym can be regarded
as the vector space on words in noncommuting variables z1, z2, . . . , with a commutative
product ∗ defined inductively by

zi u ∗ z jv = zi (u ∗ z jv) + z j (zi u ∗ v) + zi+ j (u ∗ v).

Then QSym has a subalgebra QSym0 generated by 1 and all words ending in zi , i > 1; there
are homomorphisms ζ, t : QSym0 → R given by

ζ(zi1 · · · zik ) = ζ(i1, . . . , ik)

t(zi1 · · · zik ) = t(i1, . . . , ik).

By the result of Malvenuto and Reutenauer [19], QSym is a polynomial algebra on Lyndon
words in the zi , and the onlyLyndonword ending in z1 is z1 itself. ThusQSym = QSym0[z1],
andwe can extend the homomorphisms above to homomorphismsQSym → R[T ]by sending
z1 to T .We denote these by reg∗

T ζ and reg∗
T t respectively. It is convenient to set T = 0 in the

first case and T = log 2 in the second. We will typically work with the stuffle regularization,
and so for notational simplicity we shall suppress the asterisk from the notation and write
regT = reg∗

T , unless we need to clarify which type of regularization is in use.
Our principal result is as follows.

Theorem 1.1 (Symmetry Theorem) If I is a composition of n ≥ 3, then

reg∗
T=log 2 t(I ) = (−1)n−1 reg∗

T=log 2 t( Ī ) (mod products),

where Ī is the reverse of I .

We will in fact prove a stronger version of this result in Theorem 2.21, which holds for
MtV’s at any roots of unity, and provides the neglected product terms via a generating series
identity involving MtV’s and MZV’s. (We will use a result of Murakami [20] to replace
MZV’s with MtV’s to establish our claim in the case of classical MtV’s.)

We can define interpolated multiple t-values tr in the sameway as Yamamoto [23] defined
interpolated multiple zeta values, e.g.,

tr (2, 1, 3) = t(2, 1, 3) + r t(3, 3) + r t(2, 4) + r2t(6).

Then t0 = t, and we write t� for t1. The preceding result has the following corollary.

Corollary 1.2 For any composition I of n ≥ 3,

reg∗
T=log 2 t

r (I ) = (−1)n−1 reg∗
T=log 2 t

r ( Ī ) (mod products).

Proof Induct on the length of I , using the definition of the interpolated multiple t-value; to
start the induction, note that t(n) is decomposable for n ≥ 4 even. ��

Using the Hopf algebra structure on the interpolated multiple t-values (see [16], or
alternatively [10, Lemma 4.2.2], [11, Lemma 3.3], at least for r ∈ {0, 1/2, 1}), we can prove
the following result.
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Theorem 1.3 (Stuffle antipode) For any composition I ,

reg∗
T=log 2 t

r (I ) = (−1)�(I )−1 reg∗
T=log 2 t

1−r ( Ī ) (mod products),

where �(I ) is the length (number of parts) of I .

Proof Let (H1,
r∗,�) be the Hopf algebra with underlying vector spaceH1 = Q〈z1, z2, . . .〉,

the interpolated product
r∗, and the deconcatenation coproduct �. As shown in [16], this

Hopf algebra has antipode S = �1−2r T R, where R reverses words, T (w) = (−1)�(w)w,

and

� p(zI ) =
∑

I1�···�Ik=I

pk z|I1| · · · z|Ik |,

where for a composition I = (i1, . . . , in), zI denotes the word zi1 · · · zin , |I | := i1 +· · ·+ in
and � is juxtaposition of compositions. By induction one can show that S has the alternative
formula

S(zI ) =
∑

I1�···�Ik=I

(−1)k z I1
r∗ · · · r∗ zIk . (1)

Since (H1,
r∗,�) is commutative, S is an algebra homomorphism and an involution. Apply

S to both sides of Eq. (1) to get

zI =
∑

I1�···�Ik=I

(−1)�(I )−k�1−2r R(zI1)
r∗ · · · r∗ �1−2r R(zIk ), (2)

and then apply reg∗
T=log 2 t

r = reg∗
T=log 2 t ◦ �r to both sides of the latter equation to get

reg∗
T=log 2 t

r (I ) =
∑

I1�···�Ik=I

(−1)�(I )−k reg∗
T=log 2 t

1−r ( Ī1) · · · reg∗
T=log 2 t

1−r ( Īk),

from which the conclusion follows. ��

Theorems 1.1 and 1.3 imply the following.

Corollary 1.4 For any composition I , with sum |I | ≥ 3,

reg∗
T=log 2 t

r (I ) = (−1)|I |−1 reg∗
T=log 2 t

r ( Ī ) = (−1)|I |−�(I ) reg∗
T=log 2 t

1−r (I ) (mod products).

In particular, if |I | ≥ 3 then

reg∗
T=log 2 t(I ) = (−1)|I |−�(I ) reg∗

T=log 2 t
�(I ) (mod products)

and

reg∗
T=log 2 t

1/2(I ) = 0 (mod products),

if |I | and �(I ) have opposite parity. A parity theorem for MZV’s, which reduces ζ(I ) to
lower depth (mod products), if |I | and �(I ) have opposite parity, is well-known. Extensions
to arbitrary roots of unity and to multiple polylogarithm functions are established in [22].
(This is also related to the result from [12, §2.6], holding on the torus, which we adapt and
utilize for our result.)
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Remark 1.5 Since both multiple t-values and multiple zeta values are images of homomor-

phisms from (H1,
r∗,�) to the reals, Theorem 1.3 holds for multiple zeta values. (In fact,

Theorem 1.3 can also be deduced from [2, Theorem 1.2].) But Theorem 1.1 fails for multiple
zeta values. For example,

ζ(2, 3) + ζ �(3, 2) = ζ(2)ζ(3)

but

ζ(2, 3) − ζ(3, 2) = −10ζ(5) + 5ζ(2)ζ(3).

Outline The remainder of this paper is organized as follows. In Sect. 2 we give a proof of
Theorem 2.21, which as indicated above implies Theorem 1.1. For this we first establish
an identity on MZV’s and MtV’s truncated to order M (Proposition 2.15), then using some
analytic results from Appendix A, we pass to the limit M → ∞ in order to obtain an identity
among MZV’s and MtV’s at roots of unity (Theorem 2.17), with ‘non-degenerate’ angles
φ1, . . . , φm, such that φ1, φm, φ1 + · · · + φm 
= 0. Using the asymptotic expansion recalled
in Sects. 2.3 and 2.2, we extend this identity to all angles φ1, . . . , φm by considering how
φi → 0, to establish the Symmetry Theorem in generating series form. After application of
some motivic results expressing MZV’s via MtV’s [20] we obtain the Symmetry Theorem
as stated above (Theorem 1.1).

In Sect. 3 we give three applications of these results. First in Sect. 3.1, to the computa-
tion of t(3, {2}n, 3), where {a}n denotes the string a, . . . , a with n repetitions. This requires
Zagier’s evaluation of ζ({2}a, 3, {2}b) [24], Murakami’s evaluation of t({2}a, 3, {2}b) [20],
and the Ohno–Zagier Theorem [21] to evaluate certain MZV combinations. Second in
Sect. 3.2, to formulas for t(1, {1}n, 1) and t(1, {2}n, 1). This requires the evaluations of
regT=log 2 t({2}a, 1, {2}b) and regT=log 2 t({1}a, 1, {1}b) given in [6, 7], and an apparently

new evaluation (Proposition 3.6) for regT=0 ζ({1}m, 1). Finally in Sect. 3.3, to generat-
ing series formulas for the interpolated multiple t-values of the form t 1/2({1}n, 2� + 2) and
t 1/2(2� + 2, {1}2n, 2� + 2). This requires solving a pair of simultaneous generating series
relations, one obtained from the stuffle antipode (Theorem 1.3) and one obtained from the
Symmetry Theorem (Theorem 2.21) by a certain infinite series of differentials. We also
explicitly treat the case t 1/2(2, {1}n, 2), for odd and even n, in particular giving a conjectural
evaluation in odd weight (Conjecture 3.10).

2 Regularized version of the Symmetry Theorem

2.1 Polylogarithms and regularization

We recall the definition of the multiple polylogarithm functions (MPL’s) in several variables,
whose asymptotic expansion will be important in the sequel.

Definition 2.1 (Multiple polylogarithm) For |xi | < 1, i = 1, . . . , d, the multiple polyloga-
rithm is defined by

Lin1,...,nd (x1, . . . , xd) =
∑

1≤k1<k2<···<kd

xk11 · · · xkdd
kn11 · · · kndd

.
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Corollary 2.3.10 in [25] shows that the series defining Lin1,...,nd (x1, . . . , xd) in fact
converges (but perhaps only conditionally), for |xi | ≤ 1, i = 1, . . . , d if and only if
(xd , nd) 
= (1, 1).

The behavior of Lin1,...,nd−1,1(x1, . . . , xd−1, xd) as xd → 1 (which is actually dependant
on how xd → 1, and on whether nd−1 = 1 and then on how xd−1 → 1) can be used to
define various notions of regularization. This allows us to make sense of identities and results
even in cases where not all of the objects of interest actually converge; in order to apply the
symmetry result to the convergent value t(1, 1, 2), one necessarily needs to make sense of
the divergent value t(2, 1, 1) somehow. One can then show that

t(1, 1, 2) + t(2, 1, 1) = −t(2)t(1, 1) + t(1)t(1, 2) + 1

2
t(2)ζ(1, 1), (3)

where t is stuffle-regularized with t(1) = log 2, and ζ is stuffle-regularized with ζ(1) = 0.
To this end, we more formally introduce the stuffle regularization of multiple poly-

logarithms, and related objects, and indicate how one computes it. Polylogarithms can be
multiplied with the stuffle product, generalizing the formula which holds for multiple zeta
values and multiple t-values. For example

Li2,3(a, b)Li1(c) = Li1,2,3(c, a, b) + Li2,1,3(a, c, b) + Li2,3,1(a, b, c)

+ Li2,4(a, bc) + Li3,3(ac, b).

Ignoring convergence issues for the moment and viewing Li1(1) as a formal object (this is
made rigorous by considering truncated versions, and allowing the summation bound to tend
to infinity), any multiple polylogarithm of the form

Lin1,...,n�,{1}k (x1, . . . , x�, {1}k),

with (n�, x�) 
= (1, 1), where {a}n denotes the string
n times︷ ︸︸ ︷

a, . . . , a with n repetitions, can be
written as a polynomial in Li1(1)with convergent polylogarithm coefficients. This is accom-
plished by considering

Lin1,...,n�,{1}k (x1, . . . , x�, {1}k) = 1

k
Lin1,...,n�,{1}k−1(x1, . . . , x�, {1}k−1)Li1(1)

+ (terms with < k trailing (ni , xi ) = (1, 1) entries)

and recursively applying the process to all of the terms on the right-hand side.
We shall write

reg∗
T Lin1,...,n�,{1}k (x1, . . . , x�, {1}k)

to denote this stuffle-regularization polynomial, whereLi1(1) is replaced by the indeterminate
T . This is called the stuffle regularization with parameter T , and also applies to MZV’s and
MtV’s. As in the introduction, we shall suppress the asterisk, and write regT = reg∗

T , unless
we need to clarify which type of regularization is in use.

With this formalized, the identity in Eq. (3) is then written as

t(1, 1, 2) + reg∗
T=log 2 t(2, 1, 1) =

− t(2) reg∗
T=log 2 t(1, 1) + reg∗

T=log 2 t(1)t(1, 2) + 1

2
t(2) reg∗

T=0 ζ(1, 1).

123



   75 Page 6 of 49 S. Charlton, M. E. Hoffman

After regularization, this states

2t(1, 1, 2) + t(1, 3) − 2t(1, 2) log 2 − t(3) log 2

+ t(2) log2 2 + 1

2
t(4) − 1

2
t(2)2 + 1

4
t(2)ζ(2) = 0,

which can be directly checked using the tables in [15, Appendix A].

2.2 Asymptotic expansions of polylogarithms

We recall the setup of the asymptotic expansion of polylogarithms introduced in [12, §2.10].
Lemma 2.18 [12] establishes that, for |xi | ≤ 1, with (n�, x�) 
= (1, 1), the power series

f (ε) = Lin1,...,n�,{1}k (x1, . . . , x�, {1 − ε}k)
has an asymptotic expansion (as ε → 0+), which is a polynomial in log(ε), whose coeffi-
cients are explicitly computableQ-linear combinations of lower depth MPL’s. Moreover the
polynomial has degree k, and weight w = n1 + · · · + n� + k counting log(ε) as weight 1.
It is instructive to review the proof of this claim, by way of an example, as we will utilize a
similar setup with xd → 1 through roots of unity in order to establish the regularized version
of the Symmetry Theorem.

More formally, we refer to [9, §3.7.4] for the preliminaries about logarithmic asymptotic
expansions of continuous functions. In particular, we make the following definition.

Definition 2.2 [9, §3.7.4] Let f : (0, τ ) → C be a continuous function, 0 < τ ≤ 1. We say
that f admits a logarithmic asymptotic expansion of degree r if it can be written

f (ε) = f0(ε) +
r∑

k=0

ak log
k ε,

with | f0(ε)| = O(ε1−δ) for some δ < 1, ak ∈ C.

We shall then write

regasym f (ε) :=
r∑

k=0

ak log
k ε

to denote this logarithmic asymptotic expansion.
If it exists, this logarithmic asymptotic expansion is unique [9, Lemma 3.237], as one can

recover

ar = lim
t→0

f (t)

logr t
.

Upon knowing as+1, . . . , ar , one can then find

as = lim
t→0

f (t) − ∑r
k=s+1 ak log

k t

logs t
,

to determine the entire logarithmic asymptotic expansion.
In order to compute the asymptotic expansion of

f (ε) = Lin1,...,nd ,{1}k (x1, . . . , xd , {1 − ε}k),
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with (nd , xd) 
= (1, 1), we apply the stuffle product to see

Lin1,...,nd ,{1}k−1(x1, . . . , xd , {1 − ε}k−1) · Li1(1 − ε)

= k Lin1,...,nd ,{1}k (x1, . . . , xd , {1 − ε}k)
+ (terms with < k trailing (ni , xi ) = (1 − ε, 1) entries).

By recursion, we obtain that f (ε) is a sum of products of terms of the form

Li1(1 − ε) and Lim1,...,me (y1(1 − ε)p1 , . . . , ye(1 − ε)pe ), (ye,me) 
= (1, 1).

Since

lim
ε→0

Lim1,...,me (y1(1 − ε)p1 , . . . , ye(1 − ε)pe ) = Lim1,...,me (y1, . . . , ye)

exists (as a convergent polylog), we claim that this value at ε = 0 is the entire asymptotic
expansion. Indeed it amounts to the differentiability of the multiple polylogarithm at this
point, as we can see that for any 0 < δ < 1,

lim
ε→0

Lim1,...,me (y1(1 − ε)p1 , . . . , ye(1 − ε)pe ) − Lim1,...,me (y1, . . . , ye)

ε1−δ

= lim
ε→0

εδ Lim1,...,me (y1(1 − ε)p1 , . . . , ye(1 − ε)pe ) − Lim1,...,me (y1, . . . , ye)

ε

= 0 · d

dε

∣∣∣∣
ε=0

Lim1,...,me (y1(1 − ε)p1 , . . . , ye(1 − ε)pe )

= 0.

In particular, we have that

Lim1,...,me (y1(1 − ε)p1 , . . . , ye(1 − ε)pe )

− regasym Lim1,...,me (y1(1 − ε)p1 , . . . , ye(1 − ε)pe ) = O(ε1−δ), any 1 − δ < 1.

Finally, as

Li1(1 − ε) = − log ε

exactly, we therefore have that the asymptotic expansion of f (ε) is given just as the sum of
products of the individual asymptotic expansions.

Example 2.3 For example with x 
= 1, we compute using the stuffle product that

Li1,1,1(x, 1 − ε, 1 − ε) =
Li1,1,1(1 − ε, 1 − ε, x) + 1

2
Li3(x(1 − ε)2) + 1

2
Li2,1((1 − ε)2, x)

+ Li1,2(1 − ε, x(1 − ε)) − 1

2
Li1,2(x, (1 − ε)2) − Li1(1 − ε)Li1,1(1 − ε, x)

− Li1(1 − ε)Li2(x(1 − ε)) + 1

2
Li1(x)Li1(1 − ε)2.

123



   75 Page 8 of 49 S. Charlton, M. E. Hoffman

The asymptotic expansions of each term are now readily found by the above analysis, and
we have

regasym Li1,1,1(x, 1 − ε, 1 − ε) =
Li1,1,1(1, 1, x) + 1

2
Li3(x) + Li1,2(1, x) − 1

2
Li1,2(x, 1) + 1

2
Li2,1(1, x)

+ Li1,1(1, x) log ε + Li2(x) log ε + 1

2
Li1(x) log

2 ε.

Of significant interest and use will be the constant term of such an asymptotic expansion;
write [log0 ε] regasym f (ε) =: regasym0 f (ε) to denote this constant term. In particular, we
will use this to make sense of identities in a limiting case, in terms of regularized values of
multiple zeta values and multiple t-values.

By extending the argument above, we notice that the asymptotic expansion of

Lin1,...,nd ,{1}k (x1, . . . , xd , {α(ε)}k),

with (nd , xd) 
= (1, 1) and α(ε) with α(ε)
ε→0−−→ 1 (for sufficiently nice α) depends only on

the asymptotic expansion of Li1(α(ε)). The constant term of

regasym Lin1,...,nd ,{1}k (x1, . . . , xd , {α(ε)}k)
therefore only depends on the constant term of the asymptotic expansion of Li1(α(ε)). The
stuffle product structure used to obtain this asymptotic expansion means that the constant
term is obtained by the stuffle regularization, with regularization parameter given by

T0 = [log0 ε] regasym Li1(α(ε)).

We have established the following lemma.

Lemma 2.4 (Asymptotic expansion and stuffle regularization) For α(ε) → 1 as ε → 0+,

the constant term [log0 ε]A in the asymptotic expansion

A = regasym Lin1,...,nd ,{1}k (x1, . . . , xd , {α(ε)}k)
is given by

[ log0 ε]A = reg∗
T=T0 Lin1,...,nd ,{1}k (x1, . . . , xd , {1}k).

Here reg∗
T=T0

denotes the stuffle regularized version of Lin1,...,nd ,{1}k (x1, . . . , xd , {1}k), with
regularization parameter

T0 := reg∗
T=T0 Li1(1)

given by

T0 = [log0 ε] regasym Li1(α(ε)).

Remark 2.5 Note that this claim depends very strongly on fact that the indices 1 come with
the same argument α(ε). The asymptotic expansion of

Lin1,...,nd ,{1}k (x1, . . . , xd , {1}k−1, 1 − ε)

is instead connected to the shuffle regularization. For this we refer to Proposition 2.20 in [12]
in particular, and Sections 2.9−2.10 in [12] for the broader context.
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As an example of the effect that the change of argument α(ε) makes to the asymptotic
expansion – something with which we must contend later – let us consider the distribution
relations (cf. Lemma 2.21 [12]).

Example 2.6 (Regularized distribution relations) The following holds for all ε > 0 as every
term is convergent

∑

s1,s2,s3∈{±1}
Lin1,1,1(s1, s2(1 − ε), s3(1 − ε)) = 1

2n1−1 Lin1,1,1(1, (1 − ε)2, (1 − ε)2).

On the left-hand side, index 1 comes with argument 1 − ε in the case of non-convergent
MPL’s. We then have Li1(1− ε) = − log ε. The constant term of (the asymptotic expansion
of) this is 0. On the right-hand side however, index 1 comes with argument (1 − ε)2, and
instead we have

Li1((1 − ε)2) = − log ε − log(2 − ε).

So the constant term in the asymptotic expansion of

regasym Li1((1 − ε)2) = − log 2 − log ε

is − log 2.
The following regularized version of the distribution relation holds, with different regu-

larization parameters on the left-hand and right-hand sides:

∑

s1,s2,s3∈{±1}
reg∗

T=0 Lin1,1,1(s1, s2, s3) = 1

2n1−1 reg∗
T=− log 2 Lin1,1,1(1, 1, 1).

2.3 Asymptotic expansions for zeta and t-values

We now focus on multiple zeta values and multiple t-values for the remainder of the paper.

Definition 2.7 (MZV’s and MtV’s) The multiple zeta values, respectively multiple t-values,
with signs ε1, . . . , εm ∈ {z ∈ C : |z| = 1} are defined by

ζ

(
ε1, . . . , εm

n1, . . . , nm

)
:=

∑

0<k1<···<km

ε
k1
1 · · · εkmm

kn11 · · · knmm ,

t

(
ε1, . . . , εm

n1, . . . , nm

)
:=

∑

0<k1<···<km

ε
k1
1 · · · εkmm

(2k1 − 1)n1 · · · (2km − 1)nm
.

Essentially ζ is given by just restricting Li to arguments on the unit circle, for notational
emphasis, although t is a genuinely distinct object. We will apply a similar prescription for
the asymptotic expansion to the following setup involving these MZV’s and MtV’s,

t

(
exp(2π ikφ1), . . . , exp(2π ikφm)

n1, . . . , nm

)
, ζ

(
exp(2π ikφ1), . . . , exp(2π ikφm)

n1, . . . , nm

)
,

where φi = φi (ε). In particular we shall need compute the asymptotic expansions as ε → 0+
(the direction from above is important!) of

f

(
exp(2π inε)

1

)
,
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for f = ζ, t, as a polynomial in log(1− e2π iε). Because we will use only this version of the
asymptotic series for the remainder of the paper, there will be no confusion between this the
previous version in Sect. 2.2; we will therefore also denote this by regasym, with only a slight
abuse of notation. The same argument as in Lemma 2.4 allows us to relate the constant term
of the asymptotic expansion (when each index 1 comes with the same sign exp(2π iα(ε)))
and the stuffle regularizations of ζ and t . Likewise, the asymptotic expansion of an MZV or
MtV which converges as ε → 0− in this prescription is just the MZV or MtV evaluated at
ε = 0. So we just need to deal with the basic depth 1 cases.

Lemma 2.8 (Asymptotic expansion of t) The asymptotic expansion of t
(
exp(2π inε)

1

)
, for

n 
= 0 ∈ Z, is given by

regasym t

(
exp(2π inε)

1

)
= log

( 2√
n

)
− 1

2
log(1 − exp(2π iε)).

Proof One can evaluate the following series, for ε ∈ (0, 1
n ), as

t

(
exp(2π inε)

1

)
=

∞∑

k=1

exp(2π inεk)

2k − 1
= exp(iπnε) arctanh(exp(iπnε))

= exp(iπnε)
(1
2
log cot

(πnε

2

)
+ iπ

4

)
.

This is extended by periodicity toR\ 1
nZ. Note there is a jump discontinuity in the imaginary

part at each k
n . More precisely

lim
ε→0+ Im exp(iπnε)

(1
2
log cot

(πnε

2

)
+ iπ

4

)
= π

4

lim
ε→0− Im exp(iπnε)

(1
2
log cot

(πnε

2

)
+ iπ

4

)
= −π

4
,

where limε→0− = lim
ε→ 1

n
− returns us to the original range of definition of the series.

We also have

log(1 − exp(2π iε)) = 1

2
log(2 · (1 − cos(2πε))) +

(
−π

2
+ πε

)
i.

The following limit computations using the above establish the asymptotic series is a linear
polynomial, and then compute for us the constant term, giving the claim. First, assuming
n > 0

lim
ε→0+

t

(
exp(±2π inε)

1

)

log(1 − exp(2π iε)))
= −1

2
.

Then

lim
ε→0+ t

(
exp(2π inε)

1

)
+ 1

2
log(1 − exp(2π iε)) = log 2 − 1

2
log n

lim
ε→0+ t

(
exp(−2π inε)

1

)
+ 1

2
log(1 − exp(2π iε)) = log 2 − 1

2
log n − iπ

2
.

The two cases ±n combine to the expression involving the square root by taking
1
2 log(−1) = iπ

2 . ��
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Lemma 2.9 (Asymptotic expansion of ζ ) The asymptotic expansion of ζ
(
exp(2π inε)

1

)
, for

n 
= 0 ∈ Z, is given by

regasym ζ

(
exp(2π inε)

1

)
= − log n − log(1 − exp(2π iε)).

Proof One can evaluate the following series, for ε ∈ (0, 1
n ), as

ζ

(
exp(2π inε)

1

)
=

∞∑

k=1

exp(2π inεk)

k
= − log(1 − exp(2π inε)).

This is extended by periodicity toR\ 1
nZ. Similar computations to the above give the claimed

asymptotic series. ��

2.4 Truncated identity

We establish an identity here for the generating series of truncated multiple t-values with
signs exp(2π iφ1), . . . , exp(2π iφm),which through careful analysis of the limit via the above
asymptotic series will give the identity necessary for the proof of Theorem 1.1.

Let φ1, . . . , φm ∈ R, and define the following truncated series (cf. Goncharov [12, §2.6]
as M → ∞, wherein he obtains instead a distribution on the m-torus). We use variables
y1, . . . , ym to minimize the otherwise inevitable confusion between variables ti and the mul-
tiple t-values themselves. Let us also write e(x) := exp(2iπx), and pre-emptively introduce
the notation yi, j = yi − y j for later convenience.

Definition 2.10 (t-Bernoulli series) The t-Bernoulli series Bt
M of depthm, truncated to order

M is defined as:

Bt
M (φ1, . . . , φm | y1, . . . , ym) :=

∑

−M≤k1<···<km≤M

e(φ1k1 + · · · + φmkm)

(2k1 − 1 − y1) · · · (2km − 1 − ym)
.

In the limit, the t-Bernoulli series Bt
M of depth m is given as

Bt (φ1, . . . , φm | y1, . . . , ym) = lim
M→∞ Bt

M (φ1, . . . , φm | y1, . . . , ym).

The motivation for this name comes from the fact that in the limit M → ∞, the depth 1
case can be evaluated via depth 1 multiple t-values, i.e. partially via Bernoulli numbers, as
shown in Proposition 2.13 below. (See [12, §2.6] for the corresponding Bernoulli series in
the case of MZV’s.)

Definition 2.11 (Truncated MZV’s and MtV’s) The multiple zeta values, respectively mul-
tiple t-values, with signs ε1, . . . , εm ∈ {z ∈ C : |z| = 1}, truncated to order M are defined
by

ζM

(
ε1, . . . , εm

n1, . . . , nm

)
:=

∑

0<k1<···<km≤M

ε
k1
1 · · · εkmm

kn11 · · · knmm ,

tM

(
ε1, . . . , εm

n1, . . . , nm

)
:=

∑

0<k1<···<km≤M

ε
k1
1 · · · εkmm

(2k1 − 1)n1 · · · (2km − 1)nm
.
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   75 Page 12 of 49 S. Charlton, M. E. Hoffman

For (nm, εm) 
= (1, 1), both infinite series converge. Corollary 2.3.10 in [25] gives a proof
that, for |xi | ≤ 1, the multiple polylogarithm Lin1,...,nm (x1, . . . , xm) converges if (and only
if) (nm, xm) 
= (1, 1), which implies the claim for ζM . Using the representation

tM

(
ε1, . . . , εm

n1, . . . , nm

)
=

√
ε1 · · · √εm

2m
∑

s1,...,sm∈{±1}
s1s2 · · · smζ2M

(
s1

√
ε1, . . . , sm

√
εm

n1, . . . , nm

)
,

we get the result for MtV’s, as (εm, nm) 
= (1, 1) implies (±√
εm, nm) 
= (1, 1), and so each

of the 2m MZV sums also converges. The (non-truncated) multiple zeta values and multiple
t-values with signs ε1, . . . , εm are obtained via the limits as M → ∞, i.e.

ζ

(
ε1, . . . , εm

n1, . . . , nm

)
:= lim

M→∞ ζM

(
ε1, . . . , εm

n1, . . . , nm

)
, t

(
ε1, . . . , εm

n1, . . . , nm

)
:= lim

M→∞ tM

(
ε1, . . . , εm

n1, . . . , nm

)
.

We now assemble the truncated MZV’s and MtV’s of fixed depth m into a generating
series, as follows.

Definition 2.12 (Generating series for truncated MZV’s and MtV’s) The generating series
of depth m truncated MZV’s, respectively MtV’s, with phases φ1, . . . , φm (or equivalently,
with signs e(φ1) := exp(2π iφ1), . . . , e(φm) := exp(2π iφm)) are defined by

LiM (φ1, . . . , φm | y1, . . . , ym) :=
∑

n1,...,nm≥1

ζM

(
e(φ1), . . . , e(φm)

n1, . . . , nm

)
yn1−1
1 · · · ynm−1

m

LitM (φ1, . . . , φm | y1, . . . , ym) :=
∑

n1,...,nm≥1

tM

(
e(φ1), . . . , e(φm)

n1, . . . , nm

)
yn1−1
1 · · · ynm−1

m .

In the case m = 1, we can evaluate the series Bt
M as follows.

Proposition 2.13 The following identity holds

Bt
M (φ1 | y1) :=

∑

−M≤k1≤M

e(φ1k1)

2k1 − 1 − y1

= LitM (φ1 | y1) − e(φ1)LitM+1(−φ1 | −y1).

Proof Apply the geometric series

1

2k1 − 1 − y1
=

∞∑

n=0

yn1
(2k1 − 1)n+1 ,

to obtain

Bt
M (φ1 | y1) =

∑

−M≤k1≤M

∞∑

n=0

e(k1φ1)

(2k1 − 1)n+1 y
n
1

=
∞∑

n=0

( ∑

−M≤k1≤M

e(k1φ1)

(2k1 − 1)n+1

)
yn1 .
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Now observe

∑

−M≤k1≤M

e(k1φ1)

(2k1 − 1)n+1 =
M∑

k1=1

e(k1φ1)

(2k1 − 1)n+1 +
M∑

k1=0

e(−k1φ1)

(−2k1 − 1)n+1

=
M∑

k1=1

e(k1φ1)

(2k1 − 1)n+1 − (−1)ne(φ1)

M+1∑

k1=1

e(−k1φ1)

(2k1 − 1)n+1

= tM

(
e(φ1)

n + 1

)
− (−1)ne(φ1)tM+1

(
e(−φ1)

n + 1

)

which leads to the claimed generating series identity. ��
In particular, we obtain

Bt (φ1 | y1) = Lit (φ1 | y1) − e(φ1)Lit (−φ1 | −y1),

as M → ∞ (with φ1 ∈ R \Z), reducing Bt (φ1 | y1) to a generating series of depth 1MtV’s
with signs e(±φ1).

Now we seek to evaluate the t-Bernoulli series Bt
M (φ1, . . . , φm | y1, . . . , ym) of depth m

in two different ways, via the MZV and MtV generating series introduced above.

Evaluation 1: Firstly, decompose the indexing set

{−M ≤ k1 < · · · < km ≤ M}=
m⋃

j=0

{−M ≤ k1 < · · · < k j ≤ 0 < k j+1 < · · · < km ≤ M},

appearing in the series Bt
M (φ1, . . . , φm | y1, . . . , ym). We find

∑

−M≤···<k j≤0<k j+1<···≤M

e(φ1k1 + · · · + φmkm)

(2k1 − 1 − y1) · · · (2km − 1 − ym)

=
∑

0<k j+1<···<km≤M

e(φ j+1k j+1 + · · · + φmkm)

(2k1 − 1 − y1) · · · (2km − 1 − ym)

×
∑

0<k′
j<···<k′

1≤M+1

e(φ1 + · · · + φ j ) · e(−φ j k′
j − · · · − φ1k′

1)

(−2k′
j + 1 − y j ) · · · (−2k′

1 + 1 − y1)
,

where k′
� = 1− k�, for � = 1, . . . , j . Notice the truncation bound of the right-hand factor is

M + 1 instead of M . So directly, we have

Bt
M (φ1, . . . , φm | y1, . . . , ym)

=
m∑

j=0

(−1) j e(φ1 + · · · + φ j )LitM (φ j+1, . . . , φm | y j+1, . . . , ym) (4)
×LitM+1(−φ j , . . . ,−φ1 | −y j , . . . ,−y1).

Remark 2.14 Note that all terms in Eq. (4), except for j = 0,m are products. In particular
there is no term like

1

yi
LitM (φ2, . . . , φm | y2, . . . , ym)

which could introduce lower depth irreducibles to the result. This is unlike the corresponding
case for the usual polylogarithms and MZV’s as given in [12, §2.6]. The lack of such a term
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for MtV’s is ultimately the reason for the symmetry without lower depth irreducibles, as
given in Theorem 1.1.

Evaluation 2: On the other hand, consider the decomposition (proven in [12, Lemma 2.8])

1

(k1 − y1) · · · (km − ym)
=

m∑

j=1

1

(k j − y j )
∏

i 
= j (ki, j − yi, j )
,

where ki, j = ki − k j , and yi, j = yi − y j . Replacing ki by 2ki − 1, we obtain

Bt
M (φ1, . . . , φm | y1, . . . , ym) =

m∑

j=1

∑

−M≤k1<···<km≤M

e(φ1k1 + · · · + φmkm)

(2k j −1−y j ) · ∏i 
= j (2ki, j −yi, j )
.

In the inner sum, where j is fixed, set k′
i = ki, j for i > j and k′

i = −ki, j for i < j .
For i < j, we see k′

i = k j − ki > 0, and for i > j, k′
i = ki − k j > 0 also. Moreover

k′
j+1 < k′

j+2 < · · · < k′
m ≤ M−k j andM+k j ≥ k′

1 > k′
2 > · · · > k′

j−1, since km ≤ M and
k1 ≥ −M . Note also that

φ1k1 + · · · + φmkm =
∑

i< j

−φi k
′
i + (φ1 + · · · + φm) · k j +

∑

i> j

φi k
′
i .

This means

Bt
M (φ1, . . . , φm | y1, . . . , ym)

=
m∑

j=1

∑

−M≤k j≤M

(
∑

0<k′
j−1<···<k′

1≤M+k j

e(−φ1k′
1 − · · · − φ j−1k′

j−1)∏
i< j (−2k′

i − yi, j )

× e((φ1 + · · · + φm)k j )

(2k j −1−y j )

∑

0<k′
j+1<···<k′

m≤M−k j

e(φ j+1k′
j+1 + · · · + φmk′

m)
∏

i> j (2k
′
i −yi, j )

)
.

In terms of the LiM generating series, we obtain

Bt
M (φ1, . . . , φm | y1, . . . , ym)

= 1

2m−1

m∑

j=1

(−1) j−1
∑

−M≤k j≤M

(
LiM+k j (−φ j−1, . . . ,−φ1 | 1

2 y j, j−1, . . . ,
1
2 y j,1) (5)

×e((φ1 + · · · + φm)k j )

(2k j − 1 − y j )
LiM−k j (φ j+1, . . . , φm | 1

2 y j+1, j , . . . ,
1
2 ym, j )

)
.

Overall, by equating the representations Eqs. (4) and (5), we have obtained the following
result.

Proposition 2.15 With yi, j := yi − y j , and e(x) := exp(2π ix), the following generating
series identity holds for all φ1, . . . , φm, and all M,
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m∑

j=0

(−1) j e(φ1 + · · · + φ j )LitM (φ j+1, . . . , φm | y j+1, . . . , ym)

× LitM+1(−φ j , . . . ,−φ1 | −y j , . . . ,−y1)

= 1

2m−1

m∑

j=1

(−1) j−1
∑

−M≤k j≤M

(
LiM+k j (−φ j−1, . . . ,−φ1 | 1

2 y j, j−1, . . . ,
1
2 y j,1)

× e((φ1 + · · · + φm)k j )

(2k j − 1 − y j )
× LiM−k j (φ j+1, . . . , φm | 1

2 y j+1, j , . . . ,
1
2 ym, j )

)
.

We nowwish to take limM→∞, but this requires some careful analysis to justify the result.
In particular, we should take φ1, φm ∈ R\Z, so everyMZV andMtV appearing in the above
generating series does not end in the pair (ε, n) = (exp(2π i · integer), 1) = (1, 1). That is to
say, so that every involvedMZV andMtV is convergent, although perhaps only conditionally.
We return to the analytic issues momentarily.

We introduce the generating series of (non-truncated) MZV’s and MtV’s as follows.

Definition 2.16 (Generating series for MZV’s and MtV’s) The generating series of all
MZV’s, respectively MtV’s, of depth m with phases φ1, . . . , φm (or equivalently, with signs
e(φ1) := exp(2π iφ1), . . . , e(φm) := exp(2π iφm)) are defined by

Li(φ1, . . . , φm | y1, . . . , ym) =
∑

n1,...,nm≥1

ζ

(
e(φ1), . . . , e(φm)

n1, . . . , nm

)
yn1−1
1 · · · ynm−1

m ,

Lit (φ1, . . . , φm | y1, . . . , ym) =
∑

n1,...,nm≥1

t

(
e(φ1), . . . , e(φm)

n1, . . . , nm

)
yn1−1
1 · · · ynm−1

m .

If φm ∈ R \ Z, every MZV in LiM (φ1, . . . , φm | y1, . . . , ym) is convergent, and we have
for example:

lim
M→∞LiM (φ1, . . . , φm | y1, . . . , ym) = Li(φ1, . . . , φm, | y1, . . . , ym),

Likewise for the corresponding (truncated) MtV generating series.
Using Proposition A.4, we can rigorously justify passage to the limit limM→∞ . This

proposition states essentially that

lim
M→∞

M∑

k=1

fM+kgM−ksk = FGS,

for sufficiently nice sequences fk → F, gk → G and convergent series sk with
∑∞

k=1 sk = S.

The truncated MZV’s and MtV’s are sufficiently nice, as per Proposition A.2, so we can
apply Proposition A.4 term-by-term to the generating series in Proposition 2.15 (splitting
the bidirectional sum into k < 0, k = 0 and k > 0 as necessary). We have also from
Proposition 2.13 that

∑

−∞<k j<∞

e((φ1 + · · · + φm)k j )

(2k j − 1 − y j )
= Bt (φ1 + · · · + φm | y j )

as per the definition of Bt (φ | y), at least if φ1 + · · · + φm ∈ R\Z. Therefore we have
obtained the following result.
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Theorem 2.17 With yi, j := yi − y j , and e(x) := exp(2π ix), the following generating series
identity holds for all φ1, . . . , φm, whenever φ1, φm, φ1 + · · · + φm ∈ R\Z:

m∑

j=0

(−1) j e(φ1 + · · · + φ j )Lit (φ j+1, . . . , φm | y j+1, . . . , ym)

× Lit (−φ j , . . . ,−φ1 | −y j , . . . ,−y1)

= 1

2m−1

m∑

j=1

(−1) j−1Li(−φ j−1, . . . ,−φ1 | 1
2 y j, j−1, . . . ,

1
2 y j,1)

× Bt (φ1 + · · · + φm | y j )
× Li(φ j+1, . . ., φm | 1

2 y j+1, j , . . .,
1
2 ym, j ).

2.5 Regularization statement

We turn the above generating series identity, which holds for φ1, φm, φ1 + · · · + φm ∈ R\Z,

into the corresponding identity for asymptotic series to obtain a result in the case where some
φi → 0.

Firstly, we establish a relation when changing variables between two different regulariza-
tion parameters. Extend the stuffle regularization regT = reg∗

T by linearity to the coefficients
of the generating Li(φ1, . . . , φr | y1, . . . , yr ) of MZV’s (correspondingly MtV’s), and we
have the following.

Proposition 2.18 The following relation between regularized MZVs (respectively MtVs)
holds, where we assume φm 
= 0:

regT Li(φ1, . . . , φm, {0}α | y1, . . . , ym, ym+1, . . . , ym+α)

=
α∑

i=0

regS Li(φ1, . . . , φm, {0}i | y1, . . . , ym, ym+1, . . . , ym+i )
(T − S)α−i

(α − i)! .

Proof On the level of zeta values, this is equivalent to the claim

regT ζ

(
φ1, . . . , φm, {1}α
n1, . . . , nm, {1}α

)
=

α∑

i=0

regS ζ

(
φ1, . . . , φm, {1}i
n1, . . . , nm, {1}i

)
(T − S)α−i

(α − i)! .

This was shown in [6, Lemma 2.5]; the proof therein relies only on the properties of the
Hopf algebra, and so holds unchanged for MtV’s. A version holding for classical multiple
zeta values (with no signs) is essentially given in [18], whose proof is generalized in [6,
Lemma 2.5]. ��

It will be notationally convenient to write

LiT=t0(φ1, . . . , φm | y1, . . . , ym) := regT=t0 Li(φ1, . . . , φm | y1, . . . , ym),

and correspondingly LitT=t0
for regT=t0 Lit. At this point we have left behind any need for

truncatedMZV’s (where the truncation parameter was always M), moreover we shall always
be writingLiT=t0 to indicate how the regularization parameter is specialised. Therefore there
should be no confusion. Similarly we shall also write

Bt
T=t0(φ | y) := regT=t0 B

t (φ | y),
to denote the regularization with parameter T = t0 of the t-Bernoulli series (of depth 1) from
Definition 2.10 (expressed via Lit using Proposition 2.13).
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Letφ = (φi )
m
i=1 be given, andwithout loss of generality, assume eachφi ∈ [0, 1).We split

into three cases at this point: φ 
= 0 and φ1 + · · · + φm 
= 0; φ 
= 0 and φ1 + · · · + φm = 0;
and φ = 0, where 0 denotes the zero vector of appropriate length.

Case 1, φ 
= 0 and φ1 + · · · + φm 
= 0: Then necessarily we can find some φn 
= 0 with
1 ≤ n ≤ m. We consider the small perturbation φ′

i = φi + ci where

ci =

⎧
⎪⎨

⎪⎩

−ε 1 ≤ i < n

ε(2n − 1 − m) i = n

ε n < i ≤ m.

That is, with the condition φ′
1 + · · · + φ′

m = φ1 + · · · + φm 
= 0, and with φ′
1, φ

′
m 
= 0. By

choosing ε sufficiently small, we land in the case where φ′
1, φ

′
m, φ′

1 + · · · + φ′
m 
= 0, with

the additional assumption φn + cn 
= 0.
From Theorem 2.17 we obtain the following identity, using the φ′

i parameters,

m∑

j=0

(−1) j e(φ1 + · · · + φ j + (c1 + · · · + c j ))

×Lit (φ j+1 + c j+1, . . . , φm + cm | y j+1, . . . , ym)

×Lit (−φ j − c j , . . . ,−φ1 − c1 | −y j , . . . ,−y1)

= 1

2m−1

m∑

j=1

(−1) j−1Li(−φ j−1 − c j−1, . . . ,−φ1 − c1 | 1
2 y j, j−1, . . . ,

1
2 y j,1) (6)

× Bt (φ1 + · · · + φm | y j )
×Li(φ j+1 + c j+1, . . . , φm + cm | 1

2 y j+1, j , . . . ,
1
2 ym, j ).

Now we shall compute the constant term of the asymptotic expansion, using the results from
Sect. 2.3 and the general theory from Sect. 2.2. The key observation is that in each of these
generating series, any signs of the form e(φ j + c j ) = e(ε) (if j > n and φ j = 0), at the end
and e(φi + ci ) = e(−ε) (if i < n and φi = 0), at the start are separated by a term with sign
e(φn + cn) → e(φn) 
= 1, as ε → 0, since φn 
= 0 by assumption. The constant term in the
asymptotic expansion may then be computed by the corresponding stuffle regularization via
Lemma 2.4.

For example, when φ = (0, 0, 0, 1
10 , 0), we might encounter (in the perturbed series) the

term

Z = ζ
(e(−ε), e(−ε), e(−ε), e( 1

10 + 2ε), e(ε)
1, 2, 1, 1, 1

)
.

We then have that

[ log0(1 − e2π iε)] regasym Z = regT=0 ζ
(1, 1, 1, e( 1

10 ), 1
1, 2, 1, 1, 1

)
,

since [log0(1−e2π iε)] regasym ζ
(
e(ε)
1

)
= 0 by Lemma 2.9. The case of MtV’s is analogous;

we use Lemma 2.8, to get [log0(1 − e2π iε)] regasym t
(
e(ε)
1

)
= log 2 asthe regularization
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parameter. So applying this regularization prescription to the above generating series identity
in Eq. (6) gives, for φ 
= 0 and φ1 + · · · + φm 
= 0,

m∑

j=0

(−1) j e(φ1 + · · · + φ j )LitT=log 2(φ j+1, . . . , φm | y j+1, . . . , ym)

× LitT=log 2(−φ j , . . . ,−φ1 | −y j , . . . ,−y1)

= 1

2m−1

m∑

j=1

(−1) j−1LiT=0(−φ j−1, . . . ,−φ1 | 1
2 y j, j−1 , . . . , 1

2 y j,1)

× Bt
T=log 2(φ1 + · · · + φm | y j )

× LiT=0(φ j+1, . . . , φm | 1
2 y j+1, j , . . . ,

1
2 ym, j ) .

(7)

Case 2, φ 
= 0 and φ1 + · · · + φm = 0: Then necessarily we can find some φn 
= 0 with
1 ≤ n ≤ m. We consider the small perturbation φ′

i = φi + ci where

ci =

⎧
⎪⎨

⎪⎩

−ε 1 ≤ i < n

ε(2n − m) i = n

ε n < i ≤ m.

so that φ′
1 + · · · + φ′

m = φ1 + · · · + φm + ε = ε 
= 0, and φ′
1 
= 0, φ′

m 
= 0. We note that the
constant term of the asymptotic expansion of Bt (ε | y) is given as follows

regasym0 Bt (ε | y) = regasym0

(Lit (ε | y) − exp(2π iε)Lit (−ε | −y)
)

= LitT=log 2(0 | y) − Lit
T=log 2− iπ

2
(0 | −y)

= iπ

2
+ Bt

T=log 2(0 | y),

using regasym0 t
(
e(ε)
1

)
= log 2 and regasym0 t

(
e(−ε)
1

)
= log 2 − iπ

2 from Lemma 2.8, and

the fact that the only divergent MtV in LitT=t0
(0 | y) is regT=t0 t(1). (Alternatively, use

Proposition 2.18.) That is to say, we pick up an extra iπ
2 contribution in this case.

From Theorem 2.17, we obtain the following identity using the φ′
i parameters:

m∑

j=0

(−1) j e(φ1 + · · · + φ j + (c1 + · · · + c j )ε)

× Lit (φ j+1 + c j+1, . . . , φm + cm | y j+1, . . . , ym)

× Lit (−φ j − c j , . . . ,−φ1 − c1 | −y j , . . . ,−y1)

= 1

2m−1

m∑

j=1

(−1) j−1Li(−φ j−1 − c j−1, . . . ,−φ1 − c1 | 1
2 y j, j−1, . . . ,

1
2 y j,1)

× Bt (ε | y j )
× Li(φ j+1 + c j+1, . . . , φm + cm | 1

2 y j+1, j , . . . ,
1
2 ym, j ).
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Upon taking the constant term in the asymptotic expansion, we find the following identity:

m∑

j=0

(−1) j e(φ1 + · · · + φ j )LitT=log 2(φ j+1, . . . , φm | y j+1, . . . , ym)

× LitT=log 2(−φ j , . . . ,−φ1 | −y j , . . . ,−y1)

= 1

2m−1

m∑

j=1

(−1) j−1LiT=0(−φ j−1, . . . ,−φ1 | 1
2 y j, j−1, . . . ,

1
2 y j,1)

×
( iπ
2

+Bt
T=log 2(0 | y j )

)

× LiT=0(φ j+1, . . . , φm | 1
2 y j+1, j , . . . ,

1
2 ym, j ).

(8)

With the following lemma, we can eliminate the additional iπ
2 term above, and hence obtain

that the same identity as in Eq. (7) of Case 1 holds, also when φ1 + · · · + φm = 0.

Lemma 2.19 The following holds for all φ 
= 0 with φ1 + · · · + φm = 0.

m∑

j=1

(−1) j−1LiT=0(−φ j−1, . . . ,−φ1 | 1
2 y j, j−1 , . . . , 1

2 y j,1)

× LiT=0(φ j+1, . . . , φm | 1
2 y j+1, j , . . . ,

1
2 ym, j ) = 0.

(9)

Proof We consider a similar small perturbation φ′
i = φi + ci , where n is such that φn 
= 0

and

ci =

⎧
⎪⎨

⎪⎩

−ε 1 ≤ i < n

ε(2n − m) i = n

ε n < i ≤ m,

givingφ′ withφ′
1+· · ·+φ′

m = 0.Expanding the above claim forφ′,wherein no regularization
is necessary, via the shuffle product, one can show that the combination

m∑

j=1

(−1) j−1Li(−φ′
j−1, . . . ,−φ′

1 | 1
2 y j, j−1, . . . ,

1
2 y j,1)

× Li(φ′
j+1, . . . , φ

′
m | 1

2 y j+1, j , . . . ,
1
2 ym, j ) = 0

(10)

is identically 0.
To show this, we first translate into a generating series for iterated integrals. Namely from

[12, Equation (26)], we have

Li(φ1, . . . φm | y1, . . . , ym) =
(−1)mI(e(−φ1 − · · · − φm), e(−φ2 − · · · − φm), . . . , e(−φm) | y1, . . . , ym),

where

I(x1, . . . , xm | y1, . . . , ym) :=
∑

n1,...,nm≥1

In1,...,nm (x1, . . . , xm)yn1−1
1 · · · ynm−1

m ,

is the generating series of iterated integrals with fixed depth m, and arguments x1, . . . , xm .

Here In1,...,nm (x1, . . . , xm) := I (0; x1, {0}n1−1, . . . , xm, {0}nm−1, 1), with
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I (x0; x1, . . . , xN ; xN+1) =
∫

x0<t1<···<tN<xN+1

dt1
t1 − x1

∧ · · · ∧ dtN
tN − xN

,

the iterated integral over a family of differential forms.
By making the change of power-series variables

I !(x | y1, . . . , ym) := I(x | y1, y1 + y2, . . . , y1 + y2 + · · · + ym),

Theorem 2.9 in [12] shows that I ! satisfies the shuffle product formula, namely

I !(x1, . . . , xm | y1 . . . , ym)I !(xm+1, . . . , xm+� | ym+1, . . . , ym+�)

=
∑

σ∈�m,�

I !(xσ(1), . . . , xσ(m+�) | yσ(1), . . . , yσ(m+�)),

where �m,� is the set of (m, �)-shuffles of {1, . . . ,m + �}, i.e. the set of all permutations σ

of {1, . . . ,m + �}, such that σ(1) < σ(2) < · · · < σ(m) and σ(m + 1) < σ(m + 2) <

· · · < σ(m + �).

In particular, with yi, j = yi − y j , we find

Li(−φ′
j−1, . . . ,−φ′

1 | 1
2 y j, j−1, . . . ,

1
2 y j,1)

= I !(e(φ′
j−1 + · · · + φ′

1), e(φ
′
j−2 + · · · + φ′

1), . . . , e(φ
′
1)

| 1
2 y j, j−1,

1
2 y j−2, j−1, . . . ,

1
2 y3,2,

1
2 y2,1),

and

Li(φ′
j+1, . . . , φ

′
m | 1

2 y j+1, j , . . . ,
1
2 ym, j )

= I !(e(−φ′
j+1−· · ·−φ′

m), e(−φ′
j+2 − · · · − φ′

m), . . . , e(−φ′
m)

| 1
2 y j+1, j ,

1
2 y j+2, j−1, . . .,

1
2 ym,m−1).

Consider now the variables xi = e(−φ′
i+1 − · · ·−φ′

m) and ti = 1
2 yi+1,i . From the condition

φ′
1 + · · · + φ′

m = 0 it follows that e(φ′
j−1 + · · · + φ′

1) = xm+1−i . Upon translation of the
claimed identity in Eq. (10) into these coordinates we find it is equivalent to

m∑

j=1

(−1) j−1I !(x1, . . . , x j | t1, . . . , t j )I !(xm, . . . , x j+1 | tm . . . , t j+1) = 0.

But this identity holds in any shuffle algebra (compare, e.g., [13, Ex. (29)]). Then Eq. (9)
follows by taking the constant term in the asymptotic expansion, which (by the previous
discussion) is equivalent to taking the stuffle regularization with T = 0, and so completes
the proof. ��

Case 3, φ = 0 : In this case, it is no longer possible to guarantee the indices 1 with phase ε are
separated from the indices 1 with phase−ε, since there is no non-zero phase at which to split.

That is, we would encounter say ζ
(
e(−ε),e(ε),e(ε)

1,1,1

)
whose asymptotic series is not obtained

by the stuffle regularization directly, as we separately regularize regasym0 ζ
(
e(−ε)
1

)
= − iπ

2 ,

and regasym0 ζ
(
exp(ε)

1

)
= 0, giving a ‘hybrid’ form.
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Instead we take the small perturbation φ′
i = ε. FromTheorem 2.17 and taking the constant

term in the asymptotic series (using Lemmas 2.8 and 2.9), we obtain

m∑

j=0

(−1) jLitT=log 2({0}m− j | y j+1, . . . , ym)Lit
T=log 2− π i

2
({0} j | −y j , . . . ,−y1)

= 1

2m−1

m∑

j=1

(−1) j−1LiT=−iπ ({0} j−1 | 1
2 y j, j−1 , . . . , 1

2 y j,1)

×
( iπ
2

+ Bt
T=log 2(0 | y j )

)
LiT=0({0}m− j | 1

2 y j+1, j , . . . ,
1
2 ym, j ).

(11)

We will now apply induction to show that all of the regularizations above can be replaced by
the standard ones LiT=0 and LitT=log 2, up to an additional constant. In particular, we make
the following claim.

Lemma 2.20 The following identity holds

m∑

j=0

(−1) jLitT=log 2({0}m− j | y j+1, . . . , ym)LitT=log 2({0} j | −y j , . . . ,−y1)

− 1

2m−1

m∑

j=1

(−1) j−1LiT=0({0} j−1 | 1
2 y j, j−1, . . . ,

1
2 y j,1)

× Bt
T=log 2(0 | y j )LiT=0({0}m− j | 1

2 y j+1, j , . . . ,
1
2 ym, j )

=
{

1
m!
( iπ
2

)m
m even

0 m odd.

(12)

Proof We prove this by induction on m, first establishing the base cases.

Case m = 1: In the case m = 1, we obtain from Eq. (11) that

LiT=log 2(0 | y1) − LiT=log 2− iπ
2
(0 | −y1) −

(
iπ

2
+ Bt

T=log 2(0 | y1)
)

= 0.

Expanding using the regularization change of variables in Proposition 2.18, we obtain the
case m = 1 of this lemma, as the terms ± iπ

2 cancel.

Case m = 2: Likewise, when m = 2, we obtain from Eq. (11) that

LiT=log 2(0, 0 | y1, y2) − LiT=log 2(0 | y2)LiT=log 2− iπ
2
(0 | −y1)

+ LiT=log 2− iπ
2
(0, 0 | −y2,−y1) − 1

2

(
iπ

2
+ Bt

T=log 2(0 | y1)
)
LiT=0(0 | 1

2 y2,1)

+ 1

2
LiT=−iπ (0 | 1

2 y2,1)

(
iπ

2
+ Bt

T=log 2(0 | y2)
)

= 0.

Expanding this out with the regularization change of variables in Proposition 2.18, we find

LitT=log 2(0, 0 | y1, y2) − LitT=log 2(0 | −y1)LitT=log 2(0 | y2) + LitT=log 2(0, 0, | −y2,−y1)

− 1

2

(LiT=0(0 | 1
2 y2,1)B

t
T=log 2(0 | y1) − LiT=0(0 | 1

2 y2,1)B
t
T=log 2(0 | y2)

)

+ iπ

2

(
LitT=log 2(0 | y2) − LitT=log 2(0 | −y2) − Bt

T=log 2(0 | y2)
)

− 1

2!
(
iπ

2

)2

= 0.
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The first term on line 3 is just case m = 1 of Lemma 2.20, for power series variables (y2),
which we already showed is equal to 0. We therefore obtain the case m = 2 of this lemma,
including the claimed constant.

Induction hypotheses: Now we assume the following identities hold for depth < m, namely
Eq. (12), and the following shuffle product formula:

m∑

j=1

(−1) j−1LiT=0({0} j−1 | 1
2 y j, j−1 , . . . , 1

2 y j,1)

× LiT=0({0}m− j | 1
2 y j+1, j , . . . ,

1
2 ym, j ) =

{
(iπ)m−1

m! m odd,

0 otherwise.

(13)

The shuffle product identity is quickly verified for m = 1, as series on the left hand side are
‘depth 0’, and so the left hand side is trivially 1. Whereas for m = 2, the left hand side is

LiT=0(0 | 1
2 y2,1) + (−1)LiT=0(0 | 1

2 y2,1) = 0,

and so trivially vanishes. We may proceed to the case m ≥ 3.

Case m ≥ 3: By Proposition 2.18, we have the following change of regularization parameter
results,

Lit
T=log 2− iπ

2
({0} j | −y j , . . . ,−y1) =

j∑

�=0

LitT=log 2({0} j−� | −y j , . . . ,−y�+1) · (−iπ/2)�

�! ,

LiT=−iπ ({0} j−1 | 1
2 y j, j−1, . . . ,

1
2 y j,1) =

j−1∑

�=0

LiT=0({0} j−1−� | 1
2 y j, j−1, . . . ,

1
2 y j,�+1) · (−iπ)�

�! .

Now consider the depth m case of Eq. (11), and with the above change of regularizations;
we find the following combination is 0,
m∑

j=0

(−1) jLitT=log 2({0}m− j | y j+1, . . . , ym)

×
( j∑

�=0

LitT=log 2({0} j−� | −y j , . . . ,−y�+1) · (−iπ/2)�

�!
)

− 1

2m−1

m∑

j=1

(−1) j−1
( j−1∑

�=0

LiT=0({0} j−1−� | 12 y j, j−1,
1
2 y j, j−2, . . . ,

1
2 y j,�+1) · (−iπ)�

�!
)

×
( iπ
2

+ Bt
T=log 2(0 | y j )

)

× LiT=0({0}m− j | 1
2 y j+1, j , . . . ,

1
2 ym, j ) = 0.

Now switch the summation order of j and m in both (double) sums, and re-index both j
sums with j �→ j − � (keeping the same variable for notational ease with y-subscripts). We
find (simplifying some powers at the same time)

m∑

�=0

(iπ/2)�

�!
( m−�∑

j=0

(−1) jLitT=log 2({0}m− j−� | y j+�+1, . . . , ym)

× LitT=log 2({0} j | −y j+�, . . . ,−y�+1)

)

−
m−1∑

�=0

(iπ/2)�

�!
1

2m−�−1

m−�∑

j=1

(−1) j−1LiT=0({0} j−1 | y j+�, j+�−1
2 ,

y j+�, j+�−2
2 , . . . ,

y j+�,�+1
2 )

×
( iπ
2

+ Bt
T=log 2(0 | y j+�)

)

× LiT=0({0}m− j−� | y j+�+1, j+�

2 , . . . ,
ym, j+�

2 ) = 0.
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We notice that the � = m term of the first sum contributes only (iπ/2)m

m! , as theLitT=log 2 series
have ‘depth 0’ and are simply 1. Whereas, the � = 0 terms are the combination we wish
to evaluate to prove Eq. (12) in the case m. The remaining terms evaluate by the induction
hypothesis; in particular we find:

m∑

j=0

(−1) jLitT=log 2({0}m− j | y j+1, . . . , ym)LitT=log 2({0} j | −y j , . . . ,−y1)

− 1

2m−1

m∑

j=1

(−1) j−1LiT=0({0} j−1 | 1
2 y j, j−1,

1
2 y j, j−2, . . . ,

1
2 y j,1)

×
( iπ
2

+ Bt
T=log 2(0 | y j )

)

× LiT=0({0}m− j | 1
2 y j+1, j , . . . ,

1
2 ym, j )

= − (iπ/2)m

m! −
m−1∑

�=1

(iπ/2)�

�!
{ m−�∑

j=0

(−1) jLitT=log 2({0}m− j−� | y j+�+1, . . . , ym)

× LitT=log 2({0} j | −y j+�, . . . ,−y�+1)

− 1

2m−�−1

m−�∑

j=1

(−1) j−1LiT=0({0} j−1 | 1
2 y j+�, j+�−1,

1
2 y j+�, j+�−2, . . . ,

1
2 y j+�,�+1)

×
( iπ
2

+ Bt
T=log 2(0 | y j+�)

)

× LiT=0({0}m− j−� | 1
2 y j+�+1, j+�, . . . ,

1
2 ym, j+�)

}
.

Apply the induction hypotheses (shuffle product, and Eq. (12), for cases < m), we find the
right hand side is given as follows

= − (iπ/2)m

m! −
m−1∑

�=1

(iπ/2)�

�!
(

δm−� even · (iπ/2)m−�

(m − �)! − 1

2m−�−1

iπ

2
δm−� odd · (iπ)m−�−1

(m − �)!
)

= − (iπ/2)m

m! −
m−1∑

�=1

(iπ/2)�

�! · (−1)m−� (iπ/2)m−�

(m − �)!

= − (iπ/2)m

m! −
m−1∑

�=1

(iπ/2)m

m! · (−1)m−�

(
m

�

)
= (−1)m

(iπ/2)m

m! ,

via the binomial theorem. By comparing the real and imaginary parts, and considering the
cases where m is even, or m is odd, we establish Eq. (12) and the shuffle product identity
Eq. (13) for the case m ≥ 3. This proves the lemma. ��

We can therefore state the following identity, by combining the individual cases from
Eqs. (7), (8) (after removing the iπ

2 term with Lemma 2.19, and Eq. (12)).

Theorem 2.21 (Symmetry Theorem, generating series form) Let yi, j := yi − y j , and e(x) :=
exp(2π ix). Then for every choice of m and every choice of φ = (φ1, . . . , φm), following
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generating series identity holds:
m∑

j=0

(−1) j e(φ1 + · · · + φ j )LitT=log 2(φ j+1, . . . , φm | y j+1, . . . , ym)

× LitT=log 2(−φ j , . . . ,−φ1 | −y j , . . . ,−y1)

− 1

2m−1

m∑

j=1

(−1) j−1LiT=0(−φ j−1, . . . ,−φ1 | 1
2 y j, j−1, . . . ,

1
2 y j,1)

× Bt
T=log 2(φ1+· · ·+φm | y j )

× LiT=0(φ j+1, . . ., φm | 1
2 y j+1, j , . . . ,

1
2 ym, j )

=
{

1
m!
( iπ
2

)m
φ = 0 and m even,

0 otherwise.

This theorem provides a version of the Symmetry Theorem in which the product terms
consist of products of multiple t-values, and products of multiple zeta values. In order to
establish the claim as stated in Theorem 1.1, we must convert the multiple zeta products into
multiple t products.

To that end, we recall the following result from [20] relatingmultiple t-values andmultiple
zeta values.

Theorem 2.22 (Murakami, Theorem 8 in [20]) The motivic t-values tm(k1, . . . , kd),
ki ∈ {2, 3} are a basis for motivic multiple zeta values.

This is a result about so-called ‘motivic’ objects, the technical details of which are not so
important here. Upon applying the period map, the upshot of Murakami’s result is that every
multiple zeta value can be written as a linear combination of multiple t-values, in fact of the
special form t(k1, . . . , kd), ki ∈ {2, 3}.

Consider then the case φ = 0 of Theorem 2.21. We see that by extracting the coefficient

of yn1−1 · · · ynm−1, and writing every multiple zeta value as a linear combination of multiple
t-values via Murakami’s Theorem, the following holds. For n1 + · · · + nm ≥ 3,

regT=log 2

(
t(n1, . . . , nm) + (−1)n1+···+nm t(nm, . . . , n1)

)
= 0 (mod products of t’s).

This proves the version of the Symmetry Theorem given in Theorem 1.1.

Remark 2.23 We point out that the only non-trivial case of weight ≤ 2, namely (n1, n2) =
(1, 1), gives

reg∗
T=log 2

(
t(1, 1) + (−1)2t(1, 1)

) = reg∗
T=log 2

(
t(1)2 − t(2)

)
.

The Symmetry Theorem therefore does not hold in this case, since t(2) is irreducible, at

least when viewed as a multiple t-value. But t(2) = π2

8 could be viewed as decomposable
relative to alternating multiple t-values; it is a product π ×π, where π = −4t(1) is a strictly
alternating t-value. (Recall the notation k means the sign of argument k is ε = −1 in the
framework of alternating MZV’s and MtV’s.)

In the case φ ∈ {0, 1
2 }m\{(0, . . . , 0)}, we have the following relationship between alter-

nating t-values and alternating multiple zeta values.

Theorem 2.24 (Charlton, Corollary 8.26 in [6]) The stuffle regularized motivic multiple
t-values tm,∗(k1, . . . , kd), ki ∈ {1, 2} (with regularization parameter tm,∗(1) = logm(2))
are a basis for motivic alternating multiple zeta values.
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After application of the period map, we have that every alternating multiple zeta value can
be written as a linear combination of multiple t-values of the form reg∗

T=log 2 t(k1, . . . , kd),
ki ∈ {1, 2}, regularized with reg∗

T=log 2 t(1) = log 2.

Generally in the case φ ∈ {0, 1
2 }m\{(0, . . . , 0)}we have a corresponding symmetry result.

By extracting the coefficient of yn1−1 · · · ynm−1, and writing every alternating multiple zeta
value as a linear combination of alternating t-values, the following symmetry result holds.

Corollary 2.25 The following symmetry result holds, for any choice of εi = ±1:

reg∗
T=log 2

(
t

(
ε1, . . . , εm

n1, . . . , nm

)
+ (−1)n1+···+nm (−1)#{εi=−1}t

(
εm, . . . , ε1

nm, . . . , n1

))

= 0 (mod products of alternating t’s).

3 Applications

In this section we apply the Symmetry Theorem to obtain a number of evaluations of multiple
t-values, multiple t-star values, and multiple t 1/2-values.

3.1 Evaluations of t(3, {2}n, 3) and t�(3, {2}n, 3)

3.1.1 Evaluation of t(3, {2}n, 3)

Here we will establish the following evaluation for t(3, {2}n, 3). In the following section we
shall also obtain a similar expression for the corresponding t�-values.

Theorem 3.1 (Evaluation of t(3, {2}n, 3))We have the following evaluation for t(3, {2}n, 3)
as a polynomial in Riemann zeta values.

t(3, {2}n, 3) =
(

−1

4

)n+2{
−9 + 6n

2
ζ(2)ζ(2n + 4)

+
∑

q+r+s=n+2
q,r ,s≥1

2rs(2 − 2−2r − 2−2s)ζ(2r + 1)ζ(2s + 1) · (−1)q
π2q

(2q)!

+
∑

r+s=n+2
r ,s≥1

2rs(2 − 2−2r )(2 − 2−2s)ζ(2r + 1)ζ(2s + 1)

}
.

Proof We start by extracting the coefficient of y21 y2 · · · yn+1y2n+2 from the generating series
expression in Theorem 2.21, in the case φ = 0. In this case, the Symmetry Theorem reads
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m∑

j=0

(−1) jLitT=log 2(0 | y j+1, . . . , ym)LitT=log 2(0 | −y j , . . . ,−y1)

− 1

2m−1

m∑

j=1

(−1) j−1LiT=0(0 | 1
2 y j, j−1, . . . ,

1
2 y j,1)

× Bt
T=log 2(0 | y j )LiT=0(0 | 1

2 y j+1, j , . . . ,
1
2 ym, j )

=
{

1
m!
( iπ
2

)m
m even,

0 m odd.

(14)

Combining all of the contributions and rearranging slightly gives the following identity
as the coefficient of y21 y2 · · · yn+1y2n+2 in Eq. (14):

2t(3, {2}n, 3) =
n∑

i=0

t({2}i , 3)t({2}n−i , 3) − 1

22n+3 t(2)
n−1∑

i=0

ζ({2}i , 3)ζ({2}n−1−i , 3)

− 1

22n+2 t(2)
{
3ζ({2}n, 4) + 2

n−1∑

i=0

ζ({2}i , 3, {2}n−1−i , 3)
}
.

(15)

At this point we have a reduction of t(3, {2}n, 3) to more familiar objects, and can proceed
to reduce the right-hand side. It will be convenient to make use of the shuffle regularization
to understand the MZV combination appearing in Eq. (15).

Remark 3.2 (Shuffle regularization) We give a brief reminder of the shuffle regularization of
MZV’s. One can write any MZV as an iterated integral in the following way

ζ(n1, . . . , n�) = (−1)� I (0; 1, {0}n1−1, . . . , 1, {0}n�−1; 1), (16)

where

I (x0; x1, . . . , xN ; xN+1) =
∫

x0<t1<···<tN<xN+1

dt1
t1 − x1

∧ · · · ∧ dtN
tN − xN

.

Viewing x1, . . . , xN as a wordw = x1 · · · xN over the alphabet {0, 1} (in the case of MZV’s),
one obtains a product structure on these integrals via the shuffle product �. The shuffle
product is inductively defined by

aw1 � bw2 = a(w1 � bw2) + b(aw1 � w2),

and the integral (with fixed bounds) extended to formal linear combinations of words. Then
any integral I (0; x1, . . . , xN ; 1) with x1 = 0 or xN = 1 (therefore non-convergent) may
be written as a polynomial in I (0; 0; 1) and I (0; 1; 1) with MZV coefficients. Replacing
I (0; 0; 1) and I (0; 1; 1) by the same indeterminate T (in order to preserve duality under
ti �→ 1 − ti ), we obtain the shuffle-regularization polynomial reg�T I (0; x1, . . . , xN ; 1).
Finally reg�T ζ(n1, . . . , n�) is defined as reg�T of the corresponding integral from Eq. (16)

We note now that the zeta combination in the second line of Eq. (15) can be obtained from
the following shuffle regularization, with reg�T=0 I (0; 0; 1) = reg�T=0 I (0; 1; 1) = 0. i.e.,

3ζ({2}n, 4) + 2
n−1∑

i=0

ζ({2}i , 3, {2}n−1−i , 3) = −(−1)n+1 reg�T=0 I (0; 0, {1, 0}n, 1, 0, 0; 1)

= − reg�T=0 ζ(1, {2}n+1, 1).
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The second equality follows by applying duality. The first equality holds by direct calculation
since

− (−1)n+1 reg�T=0 I (0; 0, {1, 0}n, 1, 0, 0; 1)

= (−1)n
[
I (0; {1, 0}n, 1, 0, 0; 1)

=0︷ ︸︸ ︷
reg�T=0 I (0; 0; 1) −3I (0; {1, 0}n, 1, 0, 0, 0; 1)

− 2
n−1∑

i=0

I (0; {1, 0}i , 1, 0, 0, {1, 0}n−1−i , 1, 0, 0; 1)
]

= 3ζ({2}n, 4) + 2
n−1∑

i=0

ζ({2}i , 3, {2}n−1−i , 3).

With this in mind, the reduction for t(3, {2}n, 3) from Eq. (15) can be written as

t(3, {2}n, 3) = 1

2

n∑

i=0

t({2}i , 3)t({2}n−i , 3) − t(2)

22n+4

n−1∑

i=0

ζ({2}i , 3)ζ({2}n−1−i , 3)

+ t(2)

22n+3 reg�T=0 ζ(1, {2}n+1, 1).

(17)

We now apply the following shuffle-antipode identity (reversing the integral string, cf.
Equation (28) in [13])

m∑

i=0

(−1)i I (0;w1, w2, . . . , wi ; 1)I (0;wm , wm−1, . . . , wi+1; 1) = 0,

which implies that I (0;w1, w2, . . . , wm; 1) + (−1)m I (0;wm, wm−1, . . . , w1; 1) = 0
(mod products). This identity applied to reg�T=0 ζ(1, {2}n, 1) shows that

reg�T=0

( n∑

i=0

ζ(1, {2}i , 1)ζ({2}n−i )+ζ({2}n, 1, 1)−
n∑

i=0

ζ({2}i , 1)ζ(1, {2}n−i )

)
=0, (18)

the main term of which gives reg�T=0

(
ζ(1, {2}n, 1) + ζ({2}n, 1, 1)) = 0 (mod products).

At this point we will find it convenient to reformulate everything in terms of generating
series. To this end, we introduce the following general notation.

Definition 3.3 (General generating series for ζ and t) We define the following notation
representing the generating functions of MZV’s, respectively MtV’s, whose arguments have
the form (α, {β}n, γ ), for arbitrary α, β, γ, as follows.

Gα{β}γ (u) :=
∞∑

n=0

reg�T=0 ζ(α, {β}n, γ )u|α|+n|β|+γ ,

Gt,•
α{β}γ (u) :=

∞∑

n=0

reg∗
T=log 2 t

•(α, {β}n, γ )u|α|+n|β|+γ ,

where • ∈ {∅, �, 1/2, r}.That is,Gα{β}γ (u) is the generating function of the shuffle-regularized
MZV’s reg�T=0 ζ(α, {β}n, γ )weighted by theMZVweight, andGt,•

α{β}γ (u) is the correspond-
ing generating function of stuffle-regularized (interpolated) MtV’s reg∗

T=log 2 t
•(α, {β}n, γ ).
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It is also convenient to introduce the following similar generating series for MZV’s and
MtV’s of arguments with two repeating blocks of 2’s:

F(u, v) =
∞∑

a,b=0

(−1)a+bζ({2}a, 3, {2}b)u2av2b,

Ft (u, v) =
∞∑

a,b=0

(−1)a+bt({2}a, 3, {2}b)u2av2b.

We know from Zagier [24], that F(u, v) is given as follows (after slightly rewriting Zagier’s
expression)

F(u, v) =
∞∑

a,b≥0

(−1)a+bζ({2}a, 3, {2}b)u2av2b

= sin(πv)

πu2v

[
A(u + v)+A(u − v)−2A(v)

]
− sin(πu)

πu2v

[
B(u+v)−B(u−v)

]
,

where A(z) = ∑∞
r=1 ζ(2r + 1)z2r and B(z) = ∑∞

r=1(1 − 2−2r )ζ(2r + 1)z2r . Likewise,
from Murakami [20], we know—with the same series A(z) and B(z)—that

Ft (u, v) =
∞∑

a,b≥0

(−1)a+bt({2}a, 3, {2}b)u2av2b

= 1

2uv
cos

(
πv

2

)[
A

(
u + v

2

)
− A

(
u − v

2

)]

+ 1

2uv
cos

(
πu

2

)[
B

(
u + v

2

)
− B

(
u − v

2

)]
.

The seriesGt
3{2}3(u) encapsulates theMtV’s thatwewant to evaluate.Wenote that byEq. (17)

it can expressed as follows:

Gt
3{2}3(u) = 1

2
Gt{2}3(u)2 − t(2)u2G{2}3( u2 )2 + 2t(2)u2G1{2}1( u2 ). (19)

By Eq. (18), we have

G1{2}1(u)G{2}(u) + G{2}11(u) − G{2}1(u)G1{2}(u) = 0,

or equivalently

G1{2}1(u) =
(
G{2}1(u)G1{2}(u) − G{2}11(u)

)
G{2}(u)−1. (20)

(We abuse the notation for G{2}11 slightly, as 11 is treated as the string 1, 1 in the generating
series.) We now recall the following standard result.

G{2}(u) =
∞∑

n=0

ζ({2}n)u2n =
∞∑

n=0

π2n

(2n + 1)!u
2n = sinh(πu)

πu
.

Then by taking limv→0 F(u, v) we find

iG{2}3(iu) = u3F(u, 0) = −2uA(u) + 2

π
u sin(πu)B ′(u),
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so that (recall A and B are even, so B ′ is odd)

G{2}3(u) = 2uA(iu) + 2i

π
uB ′(iu) sinh(πu).

Since ζ({2}n, 3) = ζ(1, {2}n+1) by duality, and reg�T=0 ζ(1) = 0 gives no additional contri-
bution, we immediately also have that

G1{2}(u) = G{2}3(u) = 2uA(iu) + 2i

π
uB ′(iu) sinh(πu).

Likewise, we find, by taking limv→0 Ft (u, v), that

iGt{2}3(iu) = u3Ft (u, 0) = 1

2
u2A′

(
u

2

)
+ 1

2
u2B ′

(
u

2

)
cos

(
πu

2

)
,

so that

Gt{2}3(u) = − i

2
u2A′

(
iu

2

)
− i

2
u2B ′

(
iu

2

)
cosh

(
πu

2

)
.

Therefore we need only consider G{2}1(t) and G{2}11(t), both of which can be handled in
a similar way. Namely by duality and shuffle regularization we find

reg�T=0 ζ({2}n, 1) = reg�T=0(−1)n+1 I (0; 0, {1, 0}n; 1) = −2
n−1∑

i=0

ζ({2}i , 3, {2}n−1−i )

reg�T=0 ζ({2}n, 1, 1) = reg�T=0(−1)n+2 I (0; 0, 0, {1, 0}n; 1)

= −3
n−1∑

i=0

ζ({2}i , 4, {2}n−1−i ) − 4
∑

i+ j+k=n−2

ζ({2}i , 3, {2} j , 3, {2}k).

The first one can be expressed as −2 times the sum of all MZV’s of weight w = 2n + 1,
depth d = n and height h = n, and hence evaluated via the Ohno–Zagier Theorem. The
latter consists of all weight w = 2n + 2, depth d = n and height h = n MZV’s, although
the coefficients are not constant, so does not evaluate immediately with the Ohno–Zagier
Theorem, but can be tweaked to allow this. (In both cases, the sums obtained are symmetric
sums, and hence are rational polynomials in Riemann zeta values, though these may be
difficult to evaluate explicitly.) To this end, recall the Ohno–Zagier theorem.

Theorem 3.4 (Ohno–Zagier, [21]) The generating series obtained by summing all MZV’s of
fixed weight w, height h and depth d is given by

φ0(x, y, z) :=
∑

w≥d+h
h≤d

{ ∑

wt(k)=w
dp(k)=d
ht(k)=h

ζ(k)
}
xw−d−h yd−hzh−1

= 1

xy − z

{
1 − exp

( ∞∑

m=2

1

m
ζ(m)(xm + ym − αm − βm)

)}

where

α, β = x + y ± √
(x + y)2 − 4z

2
.
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For the sum corresponding to reg�T=0 ζ({2}n, 1), we find
∞∑

n=0

( n∑

i=0

ζ({2}i , 3, {2}n−i )

)
zn = ∂φ0

∂x
(0, 0, z)

= 1

z
exp

( ∞∑

n=1

(−1)n−1

n
znζ(2n)

)
·

∞∑

n=1

(−1)n−1znζ(2n + 1).

Whereas, for the following sum, related to that for reg�T=0 ζ({2}n, 1, 1), we have
∞∑

n=0

( ∑

i+ j+k=n−1

ζ({2}i , 3, {2} j , 3, {2}k) +
n∑

i=0

ζ({2}i , 4, {2}n−i )

)
zn

= 1

2

∂2φ0

∂x2
(0, 0, z)

= 1

2z
exp

( ∞∑

n=1

(−1)n−1

n
znζ(2n)

)
·
( ∞∑

n=1

(−1)n−1znζ(2n + 1)

)2

+ 1

2z
exp

( ∞∑

n=1

(−1)n−1

n
znζ(2n)

) ∞∑

n=1

(−1)n−1(n + 1)znζ(2n + 2).

In order to deal with the series appearing above, we make the following observations. Firstly

∞∑

n=1

(−1)n−1

n
znζ(2n) = − log

(
�(1 + i

√
z)�(1 − i

√
z)
) = log

(
sinh(π

√
z)

π
√
z

)
,

using the Taylor expansion

log�(1 − z) = γ z +
∞∑

k=2

1

k
ζ(k)zk , (21)

along with the reflection formula �(1 − z)�(1 + z) = π z csc(π z) for the gamma function.
Moreover

∞∑

n=1

(−1)n−1znζ(2n + 1) = −A(i
√
z),

so
∞∑

n=0

( n∑

i=0

ζ({2}i , 3, {2}n−i )

)
zn = − A(i

√
z) sinh(π

√
z)

π z
√
z

, (22)

∞∑

n=0

( ∑

i+ j+k=n−1

ζ({2}i , 3, {2} j , 3, {2}k) +
n∑

i=0

ζ({2}i , 4, {2}n−i )

)
zn

= sinh(π
√
z)

2π z
√
z

(
A(i

√
z)2 + ζ(2) − 2t(2)

coth(π
√
z)

π
√
z

+ 2t(2) csch(π
√
z)2

)
. (23)

The second through fourth terms in the second identity come from explicitly summing

∞∑

n=1

(−1)n−1(n + 1)ζ(2n + 2)zn .
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On the other hand, we first have the following identity (with �̃ denoting the shuffle of the
argument strings, rather than the shuffle product of the associated MZV’s):

ζ({2}a�̃{4}) =
a∑

i=0

ζ({2}i , 4, {2}a−i ) = 8π2a+4

(2a + 6)!
(
a + 3

a

)
.

This follows by simplifying the result

ζ({2}a�̃{4}) = ζ({2}a+1) ∗ ζ({2}) − (a + 2)ζ({2}a+2)

= π2a+2

(2a + 3)! · π2

6
− (a + 2)

π2a+4

(2a + 5)! ,

where ∗ denotes stuffle product, or alternatively by taking k = n − 1 = a + 1 in
[14, Theorem 1.4]. Then

∞∑

n=0

( n∑

i=0

ζ({2}i , 4, {2}n−i )

)
zn =

∞∑

n=0

8π2n+4

(2n + 6)!
(
n + 3

n

)
zn

= −cosh(π
√
z)

2z2
+ sinh(π

√
z)

2π z5/2
+ ζ(2)

sinh(π
√
z)

π z3/2
.

(24)

With appropriate changes of variables, and combining the above series, we find the following.
From −2 times Eq. (22) we have

G{2}1(u) = 2

π
A(iu) sinh(πu),

whereas from −3 times Eq. (23) minus Eq. (24) we have

G{2}11(u) = 1

2

πu

sinh(πu)
− 1

2

sinh(πu)

πu
+ ζ(2)u2

sinh(πu)

πu
+ 2u2A(iu)2

sinh(πu)

πu
.

Substituting these various results into Eq. (20) we find (after some straightforward simplifi-
cation) that

G1{2}1(u) =
(
G{2}11(u) − G{2}1(u)G1{2}(u)

)
· G{2}(u)−1

= 1

2
− ζ(2)u2 + 2u2A(iu)2 − 3ζ(2)

u2

sinh2(πu)
− 4iu3A(iu)B ′(iu)

sinh(πu)

πu
.

Now substitute this into Eq. (19), and after some further straightforward simplification, we
find

Gt
3{2}3(u) = t(2)u2 − t(4)u4 − u4

8
A′
(
iu

2

)2

− u4

8
B ′( iu

2

)2

− u4

4
A′
(
iu

2

)
B ′
(
iu

2

)
cosh

(
πu

2

)
− 2t(2)2u4 csch2

(
πu

2

)
.

It is now a straightforward exercise to extract the evaluation given in the statement of
Theorem 3.1 at the start of the section. And so Theorem 3.1 is proven. ��
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3.1.2 Evaluation of t�(3, {2}n, 3)

By applying t ◦�r to Eq. (2) from the proof of Theorem 1.3, setting r = 1, and recombining
the last k − 1 products via Eq. (2) in reverse, we find that

t�(3, {2}n, 3) = −(−1)nt(3, {2}n, 3) +
n∑

j=0

(−1) j t({2} j , 3)t�({2}n− j , 3).

Hence, in terms of generating series, we find

Gt,�
3{2}3(u) = Gt

3{2}3(iu) + iGt{2}3(iu)Gt,�
{2}3(u).

We have the results that

Gt{2}3(u) = − i

2
u2A′

(
iu

2

)
− i

2
u2B ′

(
iu

2

)
cosh

(
πu

2

)

Gt,�
{2}3(u) = iGt

3{2}(iu)Gt,�
{2}(u) = 1

2
u2A′

(
u

2

)
− 1

2
u2B ′

(
iu

2

)
sec

(
πu

2

)
,

the second of which follows from similar consideration, relating Gt,�
{2}3(u),Gt

3{2}(u) and

Gt,�
{2}(u) or Gt{2}(u) via Theorem 1.3; a formula for Gt

3{2}(u) follows from limu→0 Ft (u, v),

while one sees that Gt,�
{2}(u)Gt{2}(iu) = 1 and Gt{2}(u) = cosh( πu

2 ) according to Equation 3.5
in [15]. Using these results we obtain the following generating series expression, after some
simplification using the fact that A′ and B ′ are odd functions.

Gt,�
3{2}3(u) = −t(2)u2 − t(4)u4 + u4

8
A′
(
u

2

)2

+ u4

8
B ′
(
u

2

)2

+ u4

4
A′
(
u

2

)
B ′
(
u

2

)
sec

(
πu

2

)
+ 2t(2)2u4 csc2

(
πu

2

)
.

Recall En is the Euler number, defined via

1

cosh(z)
= 2

ez + e−z
=

∞∑

n=0

En

n! z
n . (25)

It is then, as before, a routine exercise to extract the following explicit evaluation from the
above generating series.

Theorem 3.5 (Evaluation of t�(3, {2}n, 3)) We have following evaluation of t�(3, {2}n, 3).
t�(3, {2}n, 3) =
(
1

4

)n+2{9 + 6n

2
ζ(2)ζ(2n + 4)

+
∑

r+s+q=n+2
r ,s,q≥1

2rs(2−2−2r −2−2s)ζ(2r+1)ζ(2s + 1) × (−1)q
E2qπ

2q

(2q)!

+
∑

r+s=n+2
r ,s≥1

2rs(2 − 2−2r )(2 − 2−2s)ζ(2r + 1)ζ(2s + 1)

}
,

where En is defined via Eq. (25).
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3.2 Evaluations of t(1, {2}n, 1), t(1, {1}n, 1), and their t� counterparts

3.2.1 Evaluation of t(1, {2}n, 1)

Extracting the coefficient of y2 · · · yn+1 in Eq. (14) (i.e., the Symmetry Theorem Theo-
rem 2.21, with φ = 0), we find the following

reg∗
T=log 2 2t(1, {2}n, 1) = δn=0

2!
(
iπ

2

)2

+
n∑

i=0

reg∗
T=log 2

(
t({2}i , 1)t({2}n−i , 1)

)

− 1

22n−1 t(2)
n−1∑

i=0

reg∗
T=0

(
ζ({2}i , 1)ζ({2}n−1−i , 1)

)
.

Recall fromDefinition 3.3 thatGt,•
α{β}γ (u) is our general notation for the generating function of

stuffle-regularizedMtV’s of the form reg∗
T=log 2 t

•(α, {β}n, γ )u|α|+n|β|+|γ |,whereas with the
zeta generating series Gα{β}γ (u) it was more convenient to utilize the shuffle regularization.
Since there is a single trailing 1, we know (see [18, Theorem 1]) that

reg∗
T=0 ζ({2}n, 1) = reg�T=0 ζ({2}n, 1),

so we can evaluate this using the generating series

G{2}1(u) = 2

π
A(iu) sinh(πu),

from above. Hence in terms of generating series, we have

Gt
1{2}1(u) = −π2

8
+ (

Gt{2}1(u)
)2 − 2u2t(2)

(
G{2}1( u2 )

)2
.

From [6, Theorem 3.3], we have that
∑

a,b≥0

(−1)a+b regT=log 2 t({2}a, 1, {2}b) · (2x)2a(2y)2b

= 1

2
cos(πx)(A(x − y) + A(x + y))

+ 1

2
cos(π y)(B(x − y) + B(x + y) + 2 log 2),

(26)

so that by taking y → 0 we find

Gt{2}1(u) = u cosh

(
πu

2

)
A

(
iu

2

)
+ uB

(
iu

2

)
+ u log 2.

Hence we have the following identity for the generating series of regT=log 2 t(1, {2}n, 1):

Gt
1{2}1(u)=−π2u2

16
+ 1

2

(
log 2+A

(
iu

2

)
+B

(
iu

2

)
cosh

(
πu

2

))2

− 1

2
A

(
iu

2

)2

sinh

(
πu

2

)
.

This establishes that regT=log 2 t(1, {2}n, 1) is a polynomial in single Riemann zeta values
and log 2, and an explicit formula for it can be extracted easily from this generating series.
The general regularization (for n > 0) can be recovered as

regT t(1, {2}n, 1) = regT=log 2 t(1, {2}n)(T − log 2) + regT=log 2 t(1, {2}n, 1),
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which is now a polynomial in Riemann zeta values, log 2, and the regularization parameter
T , on account of the evaluation

regT=log 2 G
t
1{2}(u) = uA

(
iu

2

)
+ u cosh

(
πu

2

)(
B

(
iu

2

)
+ log 2

)
,

which follows from Eq. (26) by taking x → 0.

3.2.2 Evaluation of t�(1, {2}n, 1)

Now using the same argument as in Sect. 3.1.2, we find

regT=log 2 t
�(1, {2}n, 1)=

regT=log 2
(−(−1)nt(1, {2}n, 1)+

n∑

j=0

(−1) j t({2} j , 1)t�({2}n− j , 1)
)
,

from the shuffle-antipode in Theorem 1.3. We therefore have the generating series identity

Gt,�
1{2}1(u) = (

Gt
1{2}1(iu) − iGt{2}1(iu)Gt,�

{2}1(u)
)
.

Likewise

Gt,�
{2}1(u) = −iGt

1{2}(iu)Gt,�
{2}(u)

= uB

(
u

2

)
+ u log 2 + uA

(
u

2

)
sec

(
uπ

2

)
.

So we find

Gt,�
1{2}1(u) = π2u2

16
+ u2

2
log2 2 + u2

2
B

(
u

2

)(
B

(
u

2

)
+ 2 log 2

)

+ u2

2
A

(
u

2

)(
A

(
u

2

)
+ 2B

(
u

2

)
sec

(
uπ

2

)
+ 2 log 2 sec

(
uπ

2

))
.

Hence regT=log 2 t
�(1, {2}n, 1) is a polynomial in single zeta values and log 2. The general

regularization can be recovered using the stuffle product of t�-values, giving (for n > 0)

regT t�(1, {2}n, 1) = t�(1, {2}n)(T − log 2) + regT=log 2 t
�(1, {2}n, 1),

which is then a polynomial in Riemann zeta values, log 2, and T . (That t�(1, {2}n), and
generally t�({2}a, 1, {2}b), is a polynomial in single zeta values and log 2 follows from the
stuffle antipode, as in Sect. 3.1.2.)

3.2.3 Evaluation of t(1, {1}n, 1)

Recall the notation k means the sign of argument k is ε = −1 in the framework of alternating
MZV’s and MtV’s. From the case φ = (0, { 12 }n, 0) of Theorem 2.21, we can extract the
following identity:

regT=log 2 2t(1, {1}n, 1) = −δn=0t(2) +
n∑

i=0

regT=log 2 t({1}i , 1)t({1}n−i , 1)

− regT=0
π

2n+1

(
(1 − (−1)n)ζ({1}n, 1) −

n−1∑

i=0

(−1)iζ({1}i , 1)ζ({1}n−1−i , 1)

)
.

(27)
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From [7], we know that t({1}n, 1) is a polynomial in Riemann zeta values, Dirichlet beta

values (recallβ(n) := ∑∞
k=0

(−1)k

(2k+1)n = −t(n)), and log 2.This follows from themore general

generating series identity for t({1}a, 1, {1}b)given inTheorem1.1 [7]. Setting y = 0, x = −u
therein leads to the following explicit result verifying this,

Gt
{1}1(u) = u

2

(
cos

(
πu

4

)
− sin

(
πu

4

))(
2A

(
u

2

)
+ log 2

)

+ u

2

(
−A

(
u

8

)
+ A

(
u

4

)
+ 2C

(
u

2

)
+ log 2

)
,

where

C(z) := 1
8

(
ψ( 14 + z

4 ) − ψ( 14 − z
4 ) − ψ( 34 + z

4 ) + ψ( 34 − z
4 )
) =

∞∑

r=1

β(2r)z2r−1.

One further ingredient we need is an evaluation for ζ({1}n, 1) as a polynomial in single
zeta values and log 2.

Proposition 3.6 (regT=0 ζ({1}m, 1) evaluation) The following regularized generating series
evaluation holds.

L(x) :=
∞∑

r=0

regT=0(−1)r ζ({1}r , 1)xr

= 1

x
− �( 12 )

�(1 − x
2 )�( 1+x

2 )

(
− log 2 − 2A(x) + π

(
cot

(
πx

2

)
− cot(πx)

))
,

(28)

where

A(z) = ψ(1) − 1

2
(ψ(1 + z) + ψ(1 − z)) =

∞∑

r=1

ζ(2r + 1)z2r ,

with ψ(x) = d
dx log�(x) the logarithmic derivative of the gamma function �(x).

Proof We begin by considering the multiple polylog generating series

K (x; z) =
∞∑

r=0

(−1)r Li{1}r+1({−1}r , z)xr =
∞∑

r=0

∏

k<r

(
1 − (−1)k x

k

)
zr

r
.

Splitting into the odd- and even-indexed terms, and rewriting each via Pochhammer symbols
gives

(r = 2m + 2)
∏

k<r

(
1 − (−1)k x

k

)
zr

r
= − 1

x
·
{− x

2

}
m+1

{ 1+x
2

}
m+1{ 1

2

}
m+1

z2m+2

(m + 1)! ,

(r = 2m + 1)
∏

k<r

(
1 − (−1)k x

k

)
zr

r
= z ·

{
1 − x

2

}
m

{ 1+x
2

}
m{ 3

2

}
m

z2m

m! .

Each summation runs from m = 0, and gives a 2F1 hypergeometric series (up to an additive
constant in the former case), so that

K (x; z) = 1

x
− 1

x
· 2F1

[− x
2

1+x
2

1
2

; z2
]

+ z · 2F1
[
1 − x

2
1+x
2

3
2

; z2
]
.
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Now notice that

Li{1}r+1({−1}r , z) = Li1(z)Li{1}r ({−1}r ) −
r−1∑

i=0

Li{1}r+1({−1}i , z, {−1}r−i )

−
r−1∑

i=0

Li{1}i ,2,{1}r−1−i ({−1}i ,−z, {−1}r−1−i ),

so that on rearranging and taking the generating series of both sides, we find

lim
z→1−

( ∞∑

r=0

(−1)r Li{1}r+1({−1}r , z)xr + log(1 − z)

(
�( 12 )

�(1 − x
2 )�( 1+x

2 )

))

=
∞∑

r=0

(−1)r regT=0 ζ({1}r , 1)xr

as z → 1−. Here we have used both that Li1(z) = − log(1 − z), and that

∞∑

r=0

(−1)r ζ({1}r )xr = �( 12 )

�(1 − x
2 )�( 1+x

2 )
.

(For the latter, see Equation 13 in [4] or Equation 12 in [5].) That is to say

L(x) = lim
z→1− K (x; z) + log(1 − z)

(
�( 12 )

�(1 − x
2 )�( 1+x

2 )

)

so once we evaluate the limit, we will find an expression for the desired generating series.
The Ramanujan asymptotic for 0-balanced 2F1’s says that

�(a)�(b)

�(a + b)
· 2F1

[
a b

a + b
; z
]
=− log(1 − z)−2γ −ψ(a)−ψ(b)+O

(
(1 − z) log(1 − z)

)
,

as z → 1− (see Corollary 20 [8]). We use this to evaluate the limit for L(x), and after some
simplification we find

L(x) = 1

x
− �( 12 )

�(1 − x
2 )�( 1+x

2 )

(
− log 2 − 2A(x) + π

(
cot

(
πx

2

)
− cot(πx)

))
,

as claimed. ��

Along with Eq. (27), this Proposition establishes that regT=log 2 t(1, {1}n, 1) is a polyno-
mial in Riemann zeta values, Dirichlet beta values and log 2. More precisely, from Eq. (27)
we have the following generating series identity

Gt
1{1}1(u) =

−1

2
t(2)u2 + 1

2
Gt

{1}1(u)2 + πu2

16

(
2

(
L

(
u

2

)
− L

(
−u

2

))
+ uL

(
u

2

)
L

(
−u

2

))
.
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The combination involving L simplifies in a significant way (to the first bracketed term
below), so that no gamma functions survive. In particular, we find

Gt
1{1}1(u) = −u2π2

16
+
{

πu

4
− π2u2

16
cot

(
uπ

4

)
− π2x2

16
tan

(
uπ

4

)

+ u2

8

(
2A

(
u

2

)
+ log 2

)2

sin

(
uπ

2

)}

+ u2

8

{(
cos

(
πu

4

)
+ sin

(
πu

4

))(
2A

(
u

2

)
+ log 2

)

− A

(
u

8

)
+ A

(
u

4

)
− 2C

(
u

2

)
+ log 2

}2

.

An explicit formula for regT=log 2 t(1, {1}n, 1) can then be extracted from this generating

series. As before, the general regularization regT t(1, {1}n, 1) can be recovered using the
stuffle product.

3.2.4 Evaluation of t�(1, {1}n, 1)

Likewise, a corresponding identity for regT t�(1, {1}m, 1) can be derived using the stuffle
antipode as in Sect. 3.1.2. Specifically

Gt,�
1{1}1(u) = −Gt

1{1}1(−u) − Gt
{1}1(−u)Gt,�

{1}1(u),

where Gt,�
{1}1(u) = −Gt

1{1}(−u)Gt,�
{1}(u), and Gt,�

{1}(u)Gt
{1}(−u) = 1 using similar considera-

tions. Since

Gt
{1}(u) = cos

(
uπ

4

)
− sin

(
uπ

4

)

from [15, Corollary 6.1, proof], we can unwind these generating series relations to obtain
explicitly

Gt,�
1{1}1(u) = uπ

4
+ u2π2

16

(
1 − 2 csc

(
uπ

2

))
+ u2

8

(
2A

(
u

2

)
+ log 2

)2

+ u2

8

(
A

(
u

8

)
− A

(
u

4

)
+ 2C

(
u

2

)
− log 2

)2

− u2

4

(
2A

(
u

2

)
+ log 2

)(
A

(
u

8

)
− A

(
u

4

)
+ 2C

(
u

2

)
− log 2

)

×
(
cos

(
uπ

4

)
− sin

(
uπ

4

))
sec

(
uπ

2

)
.
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3.3 Evaluations of t1/2({1}n, 2� + 2) and t1/2(2� + 2, {1}2n, 2� + 2)

From Theorem 1.3, in the case r = 1
2 we observe the following:

regT=log 2 t
1/2({1}n, 2� + 2)

stuffle= regT=log 2(−1)n t
1/2(2� + 2, {1}n) (mod products).

On the other hand, from Corollary 1.2, we have

regT=log 2 t
1/2({1}n, 2� + 2)

sym= regT=log 2(−1)n+1t
1/2(2� + 2, {1}n) (mod products).

Because of the opposite signs in each case, both of these t 1/2-values must be reducible indi-
vidually. In fact, an argument based on the hypothetical ‘derivation with respect to log 2’
[15, Conjecture 2.1 and thereafter] (formalized somewhat in [6, Remark 5.9]) suggests that
t 1/2({1}n, 2) should not contain any terms of the form logk 2 · u, k < n, with u indecompos-
able. This does not preclude terms of the form logk 2 · u · v, but does force t 1/2({1}n, 2� + 2)
to be especially simple.

In fact, from Theorems 2.21 and 1.3 we can extract suitable generating series identities
which give the following evaluation of t 1/2({1}n, 2�+2) as a polynomial in log 2 and Riemann
zeta values.

Theorem 3.7 The following generating series identity holds:

R(u, λ) :=
∑

n,�≥0

t
1/2({1}n, 2� + 2)unλ2�+2= λ2π2 sec

(
λπ
2

)
sec

(
πu
4

)

8�
(
1 − λ

2 − u
4

)
�
(
1+ λ

2 − u
4

)
�( 12 − u

4

)

�( 12 + u
4

) . (29)

In particular, t 1/2({1}n, 2� + 2) is always a polynomial in log 2, and Riemann zeta values.

We postpone the proof until the end of the section; we immediately have the following
corollaries.

Corollary 3.8 The following MtV

t
1/2(2� + 2, {1}2n, 2� + 2)

is always a polynomial in log 2 and Riemann zeta values.

Again recall from Definition 3.3 that Gt,•
α{β}γ (u) is the general notation for the generating

function of stuffle-regularized MtV’s of the form reg∗
T=log 2 t

•(α, {β}n, γ )u|α|+n|β|+|γ |.

Proof This follows immediately with the stuffle antipode Theorem 1.3, since t 1/2({1}i , 2�+2)
is always a polynomial in log 2 and Riemann zeta values. In particular

Gt,1/2
2�+2,{1},2�+2(u) + Gt,1/2

2�+2,{1},2�+2(−u) = Gt,1/2
{1},2�+2(u)Gt,1/2

{1},2�+2(−u). ��
A particularly interesting case occurs for � = 0, wherein t 1/2(2, {1}n, 2) appears to be

a rational multiple of t(4 + n) in each weight. From the previous Corollary we have the
following special case.

Corollary 3.9 The following evaluation holds:

t
1/2(2, {1}2n, 2) = 3 + 2n

22+2n t(4 + 2n).
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Proof We have (after some straightforward simplification) that

Gt,1/2
{1}2(u) :=

∞∑

i=0

t
1/2({1}i , 2)ui+2

= u2

2!
∂2

∂λ2

∣∣∣∣
λ=0

R(u, λ) = eu log 2
�
(
1 − u

2

)
�
(
1 + u

4

)2

�
(
1 + u

2

)
�
(
1 − u

4

)2 · πu

2
tan

(
πu

4

)
.

(30)

From the stuffle antipode in Theorem 1.3, we have the generating series identity

Gt,1/2
2{1}2(u) + Gt,1/2

2{1}2(−u) = Gt,1/2
{1}2(u)Gt,1/2

{1}2(−u).

Using Eq. (30), we find

Gt,1/2
2{1}2(u) + Gt,1/2

2{1}2(−u) = π2y2

4
tan2

(
π y

4

)

which is equivalent to the claimed evaluation. ��

This evaluation only holds for even weight; in odd weight t 1/2(2, {1}2n+1, 2) appears to
evaluate in a similar straightforward way. Since t(2n + 1) is (conjecturally) irreducible the
Symmetry Theorem likely cannot be applied to establish the evaluation, and some new tech-
nique will be necessary. We therefore leave the odd weight case as the following conjecture.

Conjecture 3.10 (Resolved in Theorem 3.1 [1]) The following evaluation holds:

t
1/2(2, {1}2n+1, 2) = 4 + 2n

23+2n t(5 + 2n).

Remark 3.11 We have checked this conjecture using the Data Mine [3] up to weight 11 (the
relevant limit of the Data Mine for alternating MZV’s). Thereafter, we have also verified
numerically to 1000 decimal places in weights 13 and 15.

The reader using the tables in [15, Appendix A] to check this conjecture in weight 7
should be aware of a misprint. The formula for t(2, 1, 2, 2) there in [15] (corresponding to
t(2, 2, 1, 2) in the convention of the present paper) should read

t(2, 1, 2, 2) = −15

32
t(7) − 1

14
t(3)t(4) + 111

248
t(2)t(5);

the formula as printed has an incorrect coefficient for t(2)t(5).

Remark 3.12 In the interim, a proof of Conjecture 3.10 has been obtained by the first named
author together with K. C. Au using the machinery of creative telescoping. The details
of this proof can be found in Section 5 of [1]. Although this settles the conjecture, the
current mechanistic proof does not explain why the evaluation should hold; we would still
be interested in seeing a conceptual proof of Conjecture 3.10.

Remark 3.13 A two-variable generating series expression for t 1/2(2� + 2, {1}2n, 2� + 2) is
not as straightforward to find. It requires taking the Hadamard (coefficient-wise) product of
R(u, λ) with R(−u, λ), viewed as power series in λ. (This Hadamard product can be given
implicitly through an integral representation.) However, by repeated differentiation, one can
extract any particularGt,1/2

{1},2�+2(u) and the corresponding series for t 1/2(2�+2, {1}2n, 2�+2).
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For example,

Gt,1/2
{1}4(u) :=

∞∑

i=0

t
1/2({1}i , 4)ui+4

= u4

4!
∂4

∂λ4

∣∣∣∣
λ=0

R(u, λ) = π2u4 sec
(

πu
4

)

64�
(
1 − u

4

)2
�
( 1
2 − u

4

)

�
( 1
2 + u

4

)
(
π2 − 2ψ(1)

(
1 − u

4

))
,

where ψ(n)(z) = dn+1

dzn+1 log�(z) is the order n polygamma function. Therefore

∞∑

i=0

t
1/2(4, {1}2i , 4)u8+2i = 1

2
Gt,1/2

{1}4(u)Gt,1/2
{1}4(−u)

= π2u6

512
tan2

(
πu

4

)(
π2−2ψ(1)

(
1− u

4

))(
π2 − 2ψ(1)

(
1+ u

4

))
.

Remark 3.14 In contrast to the case t
1/2(2, {1}n, 2) in Conjecture 3.10, where a similarly

simple evaluation seems to hold in odd weight, no such simple evaluation holds seems to
hold for the higher t 1/2(2� + 2, {1}odd, 2� + 2) analogues, viz:

t
1/2(4, 1, 1, 1, 4)

involves ζ(1, 1, 9) and 4 other irreducible alternating MZV’s of weight 11.
Similarly, t 1/2({1}i , 2� + 1), with an odd final argument > 1, does not appear to evaluate

nicely, as already

t
1/2(1, 3) = −1

2
ζ(1, 3)

involves an irreducible weight 4 alternating MZV. Likewise in weight 5 with t 1/2(1, 1, 3) we
already involve ζ(1, 1, 3).

Proof of Theorem 3.7 For simplicity, let us write

LitT=log 2(0 | y1, . . . , ym) =: LitT=log 2(y1, . . . , ym),

and likewise for LiT=0(y1, . . . , ym), as the first tuple will here always be the zero tuple. We
note then that

LitT=log 2({ur}d) −
k−2∑

n=0

(ru)n

n!
∂n

∂Wn

∣∣∣∣
W=0

LitT=log 2({ur}d−1,W )

=
∞∑

n=d

∑

I=(i1,...,id )
|I |=n
id≥k

t(i1, . . . , id−1, id︸︷︷︸
≥k

)(ru)n−d .

The sum of derivatives step-by-step eliminates those indices (i1, . . . , id−1, id) which end
with id = 1, 2, . . . , k − 1. (Since k ≥ 2, we do not need to explicitly regularize above.)

We therefore want to evaluate the following (for k even, and already specializing to
r = 1/2):

Gt,1/2
{1}k(u)=

∞∑

d=1

ud

21−k

(
LitT=log 2({ u2 }d)−

k−2∑

n=0

un

2n · n!
∂n

∂Wn

∣∣∣∣
W=0

LitT=log 2({ u2 }d−1,W )

)
. (31)
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Take the following generating series with respect to k, and we find after switching the order
of summation and (formally) summing the infinite series of differential operators, that

R(u, λ) =
∑

k=2
k even

Gt,1/2
{1}k(u)

(λ

u

)k

=
∞∑

d=1

2λ2ud

4λ2 − u2

(
−LitT=log 2({ u2 }d) + DLitT=log 2({ u2 }d−1,W )

)
,

(32)

where D denotes the (formal) differential operator

D := cosh
(
λ ∂

∂W

∣∣
W=0

) + 2λ
u sinh

(
λ ∂

∂W

∣∣
W=0

)
.

We interpret and understand the application of an infinite series of differentials ∂
∂W to a

function f via the Taylor series of f . Specifically exp(λ ∂
∂W

∣∣
W=0) f (W ) = f (λ), via its

Taylor series (assuming convergence at the relevant points), which we then extend (formally)
to the hyperbolic trigonometric combination above.

Likewise,

S(u, λ) :=
∑

k=2
k even

Gt,1/2
k{1}(u)

(
λ

u

)k

=
∞∑

d=1

2λ2ud

4λ2 − u2

(
−LitT=log 2({ u2 }d) + DLitT=log 2(W , { u2 }d−1)

)
.

(33)

From the stuffle antipode Theorem 1.3, we find

R(u, λ) · Gt,1/2
{1} (−u) − S(−u, λ) = 0. (34)

Now write down the case y = ({ u2 }d−1,W ) of the Symmetry Theorem (given in Theo-
rem 2.21) to obtain

d−1∑

i=0

(−1)d−1−iLitT=log 2({ u2 }i ,W )LitT=log 2({− u
2 }d−1−i )

− (−1)d−1LitT=log 2(−W , { u2 }d−1)

− 1

2d−1

d−2∑

i=0

(−1)i
(LitT=log 2(

u
2 ) − LitT=log 2(− u

2 )
)

× LiT=0({0}i )LiT=0({0}d−2−i ,
W−u/2

2 )

− (− 1
2

)d−1(LitT=log 2(W ) − LitT=log 2(−W )
)LiT=0

({W−u/2
2 }d−1)

= δd even
1

d!
(
iπ

2

)d

.
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After taking
∑∞

d=1 •ud , using the following results, we find that

∞∑

i=0

LitT=log 2({ u2 },W )ui+1 · eγ u/2 �
( 1
2 + u

4

)

�
( 1
2 + u

4

) +
∞∑

i=0

(−1)iLitT=log 2(−W , {− u
2 })ui+1

= πu

2
eγ u/2 �

(
1 + u

4 − W
2

)

�(1 − u
4 − W

2

)
(
tan

(
πu

4

)
− tan

(
πW

2

))
.

(35)

This requires the following results obtainable via standard arguments and evaluations, as we
indicate below.

LitT=log 2(y) − LitT=log 2(−y) = π

2
tan

(π y

2

)
, (36)

∞∑

i=0

LitT=log 2({ u2 }i )(−u)i = Gt,1/2
{1} (−u) = eγ u/2 �

( 1
2 + u

4

)

�
( 1
2 − u

4

) , (37)

∞∑

i=0

LiT=0({0}i )yi = e−γ y

�(1 + y)
, (38)

∞∑

i=1

LiT=0({0}i−1, x)yi = e−γ y

�(1 + y)
− �(1 − x)�(1 − y)

�(1 − x − y)
. (39)

Firstly, Eq. (36) comes from just explicitly evaluating the generating series, using known
formulas for t(2n) in terms of ζ(2n). Secondly, Eq. (37) requires recognizing the sum as an
expression for Gt,1/2

{1} (−u), which is then evaluated using the results of Section 6.2 [17], and

a variant of Equation (40) therein. Then Eq. (38) involves the generating series for ζ({n}k)
[4, Equation 11], or rather the extension to the Hopf algebra [17, Equation 32] in the case
n = 1, and well-known Taylor series log�(1 + z) already mentioned (a variant given in
Eq. (21)). Finally Eq. (39) involves the generating series for ζ({1} j , d + 1), d ≥ 1, given in
[4, Equation 10], and the result in Eq. (38).

Now write E(t) := ∑∞
j=0 regT=0 ζ({1} j )t j = e−γ t

�(1+t) . Using [14, Lemma 1] (after apply-
ing the homomorphism taking elementary symmetric functions to MZV’s), we find

∞∑

i=0

LiT=0({x}i )yi = 1 +
∑

n≥k≥1

∑

I=(i1,...,ik )|I |=n

regT=0 ζ(i1, . . . , in)x
n−k yk

= E
(( y

x
− 1

)
x
)
E(−x)−1 = eγ y�(1 − x)

�(1 − x + y)
.

These results suffice to obtain Eq. (35).
Now apply D to both sides of Eq. (35). The left-hand side can be rewritten using

Eqs. (32) and (33); the right-hand side is evaluated via the formal interpretation of
exp(λ ∂

∂W

∣∣
W=0) f (W ) = f (λ) as discussed above. We obtain after some simplification

R(u, λ) · Gt,1/2
{1} (−u) + S(−u, λ) = 4λ2π2

u2 − 4λ2
eγ u/2 sec

(
λπ
2

)
sec

(
πu
4

)

�
( − λ

2 − u
4

)
�
(

λ
2 − u

4

) . (40)
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Solving Eqs. (34) and (40) simultaneously leads to the claimed result for R(u, λ) and, as a
by-product, a formula for S(u, λ), namely

R(u, λ) :=
∑

n,�≥0

t
1/2({1}n, 2� + 2)unλ2�+2 = λ2π2 sec

(
λπ
2

)
sec

(
πu
4

)

8�
(
1 − λ

2 − u
4

)
�
(
1 + λ

2 − u
4

)
�( 12 − u

4

)

�( 12 + u
4

) ,

S(u, λ) =
∑

n,�≥0

regT=log 2 t
1/2(2� + 2, {1}n)unλ2�+2 = e−γ u/2 · λ2π2 sec

(
λπ
2

)
sec

(
πu
4

)

8�
(
1 − λ

2 + u
4

)
�
(
1 + λ

2 + u
4

) .

As before, S(u, λ) for the general regularization parameter T can also be recovered, via the
stuffle antipode Theorem 1.3, as e(T−log 2)u S(u, λ). This completes the proof. ��

Appendix A: Tails of multiple zeta values, and an analytic result

In this Appendix, we gather some results on the growth and convergence rate of the truncated
MZV’s, and a useful analytic result Proposition A.4 which we need when taking the limit as
M → ∞ in the truncated generating series identity Proposition 2.15. Although the following
is probably well known in the literature, we include it for the sake of completeness.

Definition A.1 (Tails of multiple zeta values) Let ε1, . . . , εm ∈ C, with |εi | = 1, and
n1, . . . , nm ∈ Z>0 be given. Let M ∈ Z>0, we then define the >-tail ζ>M and the
�-tail ζ�M of an MZV as follows,

ζ>M

(
ε1, . . . , εm

n1, . . . , nm

)
:=

∑

k1<···<km
km>M

ε
k1
1 · · · εkmm

kn11 · · · knmm ,

ζ�M

(
ε1, . . . , εm

n1, . . . , nm

)
:=

∑

M<k1<...<km

ε
k1
1 · · · εkmm

kn11 · · · knmm .

Note that (in the convergent case)

ζ

(
ε1, . . . , εm

n1, . . . , nm

)
− ζM

(
ε1, . . . , εm

n1, . . . , nm

)
= ζ>M

(
ε1, . . . , εm

n1, . . . , nm

)
,

so ζ>M represents the usual tail of the series. The behaviour of ζ>M as M → ∞ tells us the
rate of convergence of ζM to ζ.

Proposition A.2 Let ε1, . . . , εm ∈ C, with |εi | = 1, and let n1, . . . , nm ∈ Z>0 with
(εm, nm) 
= (1, 1) be given. Then there exist J , J ′ ≥ 0 ∈ R such that the following asymp-
totics hold as M → ∞,

ζ>M

(
ε1, . . . , εm

n1, . . . , nm

)
= O

(
logJ M

M

)
, ζ�M

(
ε1, . . . , εm

n1, . . . , nm

)
= O

(
logJ

′
M

M

)
.

Proof We treat first the depth 1 cases ζ>M

( ε

n

)
= ζ�M

( ε

n

)
, for any (ε, n) 
= (1, 1).

Case (ε, 1), with ε 
= 1: We have that

∞∑

k=M+1

εk

k
= ε−1

∫ 1

0

∞∑

k=M+1

(εt)k−1dt = ε−1
∫ 1

t=0

(εt)M

1 − εt
dt .
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Since ε 
= 1, the denominator 1 − (εt) never attains the value 0 on the interval [0, 1]. Let
C = (

min{|1 − εt | | t ∈ [0, 1]})−1
> 0, then we estimate

∣∣∣ζ>M

(ε

1

)∣∣∣ ≤
∫ 1

t=0

∣∣∣∣
(εt)M

1 − (εt)

∣∣∣∣ dt = C
∫ 1

0
t Mdt = C

M + 1
.

Remark A.3 We can estimate C−1 as

C−1 =
{

|sin(arg ε)| arg ε ∈ (0, π/2) ∪ (3π/2, 2π)

1 arg ε ∈ [π/2, 3π/2].
This follows by computing the turning point, where ε = exp(iθ), of

|1 − εt | =
√

(1 − cos(θ)t)2 + sin(θ)t,

which occurs at t = cos(θ). For θ = arg ε in the range [π/2, 3π/2], cosine is negative, so
this turning point does not occur in the interval t ∈ [0, 1]. One sees then that the minimal
value occurs at the left end point t = 0, which gives value C−1 = 1. Otherwise, C−1 is
given by |1 − ε cos(θ)| = |sin(θ)| .
Case (ε, n), with n ≥ 2: In this case, we know the series ζ

(
ε
n

)
converges absolutely, so we

find that n − 1 ≥ 1, and
∣∣∣∣∣
∑

k>M

εk

kn

∣∣∣∣∣ ≤
∞∑

k=M+1

1

kn
≤
∫ ∞

t=M

dt

tn
= −t−n+1

n − 1

∣∣∣∣
∞

t=M
= 1

n − 1

1

Mn−1 = O(M−1).

This establishes the depth 1 result for ζ>M
(

ε
n

) = ζ�M
(

ε
n

)
, whenever (ε, n) 
= (1, 1).

Now we inductively show that same result for higher depth.

Case higher depth, ζ�M : Firstly consider the ζ�M case, wherein

ζ�M

(
ε1, . . . , εm

n1, . . . , nm

)
=

∑

M<k1<···<km

ε
k1
1 · · · εkmm

kn11 · · · knmm =
∞∑

k1=M+1

ε
k1
1

kn11
ζ�k1

(
ε2, . . . εm

n2, . . . , nm

)
.

So we estimate
∣∣∣∣ζ�M

(
ε1, . . . , εm

n1, . . . , nm

)∣∣∣∣ ≤
∞∑

k1=M+1

1

kn11

∣∣∣∣ζ�k1

(
ε2, . . . εm

n2, . . . , nm

)∣∣∣∣ ,

and can apply the induction assumption to obtain that for some J , and C ′, this is

≤ C ′
∞∑

k1=M+1

1

kn11

logJ k1
k1

.

With the integral test, we further estimate that this is

≤ C ′
∫ ∞

M

logJ x

xk+1 dx .

By partial integration, one sees that
∫

log(x)J

xk+1 dx = PJ (log(x))

xk
,
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for some polynomial PJ of degree J . So the estimate on ζ�M is

≤ C ′ PJ (log(M))

Mk
= O

(
logJ M

M

)
,

proving the ζ�M case.

Case higher depth, ζ>M : Now consider the ζ>M case, wherein

ζ>M

(
ε1, . . . , εm

n1, . . . , nm

)
=

∑

k1<···<km
km>M

ε
k1
1 · · · εkmm

kn11 · · · knmm .

By inserting the condition ki ≤ M < ki+1 in all possible compatible ways throughout the
summation index, we see

ζ>M

(
ε1, . . . , εm

n1, . . . , nm

)
=

m∑

i=1

∑

0<k1<...ki−1≤M
<ki<...<km

ε
k1
1 · · · εkmm

kn11 · · · knmm

=
m∑

i=1

ζM

(
ε1, . . . , εi−1

n1, . . . , ni−1

)
ζ�M

(
εi , . . . , εm

ni , . . . , nm

)

=
m∑

i=1

(
Qi (log(M)) + O

(
logJi M

M

))
· O

(
logJi

′
M

M

)

for some polynomials Qi , using standard results about the growth of truncated MZVs, and
the induction assumption in the case ζ�M . One then sees this sum has order

= O

(
logJ

′′
M

M

)

for some J ′′, as claimed. This completes the proof of ζ>M case, and the proposition. ��
We need the following result about the convergence of infinite sums of a particular form,

in order to pass from the generating series identity involving truncated MZV’s and MtV’s
to a generating series identity which holds in the limit. It holds when ( fk)∞k=0 and (gk)∞k=0
are the series of truncated MZV’s and MtV’s, by the previous result Proposition A.2, and is
used to deduce Theorem 2.17 from Proposition 2.15.

Proposition A.4 Let ( fk)∞k=0 and (gk)∞k=0 be convergent sequences with limits F and G,

respectively. Assume that the tails of F andG satisfy the following convergence rate condition

F − fM = O

(
logJ M

M

)
, G − gM = O

(
logJ

′
M

M

)
,

for some J , J ′ ≥ 0.Furthermore, assume that
∑∞

k=1 sk = S is a convergent series, with sk =
O(k−ε), for some ε > 0. (That is, the sequence is perhaps only conditionally convergent.)
Then

lim
M→∞

M∑

k=1

fM+kgM−ksk = FGS.
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Proof Write

M∑

k=1

fM+kgM−ksk =
M∑

k=1

(F − (F − fM+k))(G − (G − GM−k))sk

=
M∑

k=1

FGsk −
M∑

k=1

(F − fM+k)Gsk

−
M∑

k=1

F(G − GM−k)sk +
M∑

k=1

(F − fM+k)(G − GM−k)sk .

(41)

The big-O condition implies that (except for M = 1), we can find the following absolute
bound on F − fM , and likewise G − gM : there exists C such that for all M > 1,

|F − fM | ≤ C
logJ M

M
.

This follows since there exists k, n0 such that for all M ≥ n0, |F − fM | ≤ k logJ M
M , as

per the definition of big-O. Then since logJ M
M > 0 for M > 1, one can choose larger k to

ensure the first terms M = 2, . . . , n0 terms also satisfy this inequality. We now analyse each
summand of Eq. (41) in turn.

First summand: The first summand gives

M∑

k=1

FGsk → FG
∞∑

k=1

sk = FGS,

which is the main contribution to our claimed result. Now we show all other summands of
Eq. (41) tend to 0 as M → ∞.

Second summand: The second summand is
∣∣∣∣∣

M∑

k=1

(F − fM+k)Gsk

∣∣∣∣∣ ≤ G
M∑

k=1

C
logJ (M + k)

M + k
· C

′

kε

≤ GCC ′
M∑

k=1

logJ (2M)

M

1

kε

≤ GCC ′ logJ (2M)

M

M∑

k=1

1

kε
.

By considering Riemann sums for the integral
∫ M
0 k−εdk (assuming, without loss of

generality, that 0 < ε < 1),

M∑

k=1

1

kε
≤ M1−ε

1 − ε
,

hence
∣∣∣∣∣

M∑

k=1

(F − fM+k)Gsk

∣∣∣∣∣ ≤ GCC ′ logJ (2M)

M
· M

1−ε

1 − ε
→ 0
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as M → ∞.

Third summand: Writing the third summand in Eq. (41) as

M∑

k=1

F(G − GM−k)sk = F
M−1∑

k=1

(G − GM−k)sk + sM F(G − G0)

we need only consider the behaviour of the sum
∑M−1

k=1 since sM → 0 as M → ∞.We have

∣∣∣∣∣

M−1∑

k=1

(G − GM−k)sk

∣∣∣∣∣ ≤
M−1∑

k=1

C ′′ logJ
′
(M − k)

M − k
· C

′

kε
.

Now (ignoring the constantC ′C ′′) decompose the sum on the right-hand side into terms with
k ≤ �M/2� and those with k > �M/2�, namely

M−1∑

k=1

logJ
′
(M − k)

(M − k)kε
=

�M/2�∑

k=1

logJ
′
(M − k)

(M − k)kε
+

M−1∑

k=�M/2�+1

logJ
′
(M − k)

(M − k)kε
. (42)

In the first sum, we can make the estimate

logJ
′
(M − k)

M − k
≤ logJ

′
M

�M/2�

to obtain the upper bound

�M/2�∑

k=1

logJ
′
(M − k)

(M − k)kε
≤ logJ

′
M

�M/2�
�M/2�∑

k=1

1

kε
≤ logJ

′
M

�M/2� · �M/2�1−ε

1 − ε

as before, which we see goes to 0 as M → ∞. In the second sum, we reverse the summation
via k′ = M − k, to obtain

M−1∑

k=�M/2�+1

logJ
′
(M − k)

(M − k)kε
=

�(M−1)/2�∑

k′=1

logJ
′
k′

k′ (M − k′)ε
.

With the bound k′ ≤ �(M − 1)/2� ≤ �M/2� ≤ M/2 < M, we can bound the sum above
by

logJ
′ �M/2�

�M/2�ε

�(M−1)/2�∑

k′=1

1

k′ ≤ logJ
′ �M/2�

�M/2�ε

(
1 + log

(
M

2

))
,

and see it also goes to 0 as M → ∞. So by Eq. (42) the third summand in Eq. (41) goes to
0 as M → ∞.
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Fourth summand: Finally, we bound the fourth summand in Eq. (41) as follows:
∣∣∣∣∣

M∑

k=1

(F − fM+k)(G − GM−k)sk

∣∣∣∣∣

≤ CC ′C ′′
M−1∑

k=1

logJ (M + k)

M + k

logJ
′
(M − k)

M − k

1

kε
+ (F − fM )(G − G0)sk

≤ CC ′C ′′ log(2M)J

M

M−1∑

k=1

logJ
′
(M − k)

M − k

1

kε
+ (F − fM )(G − G0)sk,

but the argument above for the third summand, together with the facts F − fM → 0 and
sk → 0 as M → ∞, shows that the fourth summand in Eq. (41) also goes to 0.

Conclusion: The first summand in Eq. (41) is the only one which survives, so we have proved
the proposition. ��
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