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Abstract Mera et al. (Phys Rev Lett 115:143001, 2015) discovered that the hypergeometric function 2F1(a1, a2; b1; ωg) can serve
as an accurate approximant for a divergent Gevrey-1 type of series with an asymptotic large-order behavior of the form n! nbσ n .
What is strange about this approximant is that it has a series expansion with the wrong large-order behavior (Gevrey-0 type). In this
work, we extend this discovery to Gevrey-k series where we show that the hypergeometric approximants and its extension to the
generalized hypergeometric approximants are not only able to approximate divergent (Gevrey-1) series but also able to approximate
strongly-divergent series of Gevrey-k type with k � 2, 3, . . .. Moreover, we show that these hypergeometric approximants are able
to predict accurate results for the non-perturbative strong-coupling and large-order parameters from weak-coupling data as input.
Examples studied here are the ground-state energy for the xn anharmonic oscillators. The hypergeometric approximants are also
used to approximate the recent eight-loop series ( g-expansion) of the renormalization group functions for the O(N)-symmetric φ4

scalar field model. Form these functions for N � 0, 1, 2, and 3, critical exponents are extracted which are very competitive to
results from more sophisticated approximation techniques.

1 Introduction

Exact solutions for different problems in physics can barely be found for realistic models. Physicists frequently resort to perturbative
calculations which are the prominent tool in treating a problem in physics. In many situations, the perturbative expansion is carried
out around an essential singularity that leads the series to be divergent. In such cases, the perturbative calculations are useless by their
own, and resummation procedures are recommended to follow the perturbative calculation if one needs to obtain reliable results. It
was Dyson who draw the attention of the physics community to this fact by analyzing the QED perturbation series and concluded
that the series must be divergent [1]. His argument was based on the realization that when one crosses the origin of the coupling
space from positive to negative coupling (say), the theory is turned out to be unstable. However, divergent series like those in QED
are asymptotic and because of the smallness of the fine-structure constant, one can realize the divergence in the series at a relatively
high order of loop calculations [2]. On the other hand, one can realize this fact very clearly for relatively low orders in models like
the O(n)-symmetric φ4 scalar field theory where it can be used to predict the critical behavior for different models that lie in the
same class of universality ranging from polymers, 4He superfluidity to QCD [2–5]. In quantum mechanics, one can also find such
type of divergent series in examples such as the ground-state energies for the x4 and the PT -symmetric i x3 anharmonic oscillators (
for instance). Accordingly, to be able to get reliable results from divergent series, resummation is a necessary tool to get the analytic
continuation of divergent series that are existing in many branches in physics.

One of the most successful approximation techniques that deal with divergent series is the Borel algorithm [2, 6–11]. In fact, this
powerful algorithm uses a kind of Laplace ( Borel) transformation. For the choice of the right transformation, one needs a priory
knowledge of the large-order asymptotic behavior of the given divergent series. Of course the transformation needed for a divergent
series with an asymptotic large-order behavior of the form n! σ nnb is different from that is needed for a strongly-divergent series
with an asymptotic behavior of the form (2n)! σ nnb. Another issue with Borel algorithm is the slow convergence when applied to
a strongly-divergent series. For instance, for the series of the ground-state energy of the octic oscillator, it can give reliable results
only for very small values of the coupling [12–14].

Another successful approximation technique was developed by us in Ref. [14]. In that technique, the selection of the suitable
approximant depends on the large-order asymptotic behavior of the given series too. Therefore, we used the divergent hypergeometric
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series pFp−2(a1, . . . ap; b1 . . . .bp−2; σg) to approximate the ground-state energy of the x4 anharmonic oscillator. The given series
and the suggested hypergeometric approximant have the same form of the large-order behavior which takes the form:

cn ∼ γ n! (−σ )nnb
(

1 + O

(
1

n

))
. (1)

For the sextic oscillator, we used another hypergeometric approximants pFp−3(a1, . . . ap; b1 . . . .bp−3; σg) which is a strongly-
divergent series like the given series with a large-order behavior given by:

cn ∼ γ (2n)! (−σ )nnb
(

1 + O

(
1

n

))
. (2)

In the same reference, we stressed also the case of the octic oscillator where we used the strongly-divergent (even stronger than the
sextic case) approximant pFp−4(a1, . . . ap; b1 . . . .bp−4; σg) which shares the same large order behavior as the given series

cn ∼ γ (3n)! (−σ )nnb
(

1 + O

(
1

n

))
. (3)

All the above (different) hypergeometric approximants are divergent and should be followed by an analytic continuation process
via using the Mellin–Barnes integral representation of the form:

pFq (a1, . . . ap; b1 . . . .bq ; z) �
∏q

k�1 �(bk)∏p
j�1 �

(
a j

) 1

2π i

∫
C

�(s )
∏p

j�1 �
(
a j − s

)
∏q

k� 1 �(bk − s )
(−z)−sds. (4)

In fact, to apply such approximants (as in the case of applying Borel algorithm), one needs in advance to know the large-order
asymptotic behavior of the given series to predict which approximant is suitable to treat the given series. This asymptotic behavior
is in fact known but for a limited number of series, and thus, one needs an algorithm that can be applied even in case, the large-order
behavior is not explicitly known.

Bearing all of these facts in mind, it will be more than important to seek an approximating algorithm that is not in a need for a
priory knowledge of the asymptotic behavior of the given series as most of the known series do not have such behavior obtained
yet. It is noteworthy to mention that the large-order and strong-coupling behaviors ( if known) might be used to accelerate the
convergence of approximation algorithms [2, 6–10]. So even in case, the large-order behavior for the given series is known, the
suggested algorithm should be capable to accommodate such parameters to accelerate the convergence like the traditional Padé
[15–17] and Borel algorithms. The aimed algorithm has been discovered by Mera et al. in Ref. [9] but for a Gevrey-1 type of series
only. In this work, we extend the idea to include any Gevrey-k type of series plus showing how one can extract the non-perturbative
strong-coupling and large-order behaviors of the given series from perturbative terms as input.

In Ref. [9], Mera et al. discovered that a divergent series with coefficients cn having asymptotic large-order behavior of the
form cn ∼ n! σ nnb can be approximated by a hypergeometric function of the form 2F1(a1, a2; b1 ωz). What is strange about such
approximant is that it has a series expansion of a wrong large-order behavior which can be explicitly shown as follows:

2F1(a1, a2; b1 ωz) �
∞∑
n�0

gnz
n , (5)

where

gn � �(b1)

�(a1)�(a2)

�(a1 + n) �(a2 + n)

n! �(b1 + n)
ωn .

It is easy to show that for large n, the coefficients behave as gn ∼ ωnnb, where b � a1 +a2 −b1−1 [3, 5, 18–21]. The hypergeometric
approximant above does not have explicitly the asymptotic large-order behavior that the given series has. Nevertheless, it can give a
good approximation for that series. The question that may arise is that, can such approximant works also for strongly-divergent series
with coefficients behaving (for large n) like (2n)! σ nnb or (3n)! σ nnb ( for instance)? If yes, then the hypergeometric approximant
is not in a need for a priory knowledge of the asymptotic large-order behavior as it can approximate divergent series with different
large-order behaviors. In other words, the approximant does not care about the large-order behavior of the given divergent series.
Instead, its parameters will take suitable values that make the approximant asymptotically approaches the needed features. In fact, for
most of divergent series, the large-order behavior is not known in advance, and thus, such features of the approximant are beneficial.
Apart from this, note that the hypergeometric approximant 2F1(a1, a2; b1 ωz) has an asymptotic large-order behavior of the form
ωnnb and thus by default is suitable to approximate a series with finite radius of convergence too.

In Ref. [22], we have shown that the set {−a1, −a2} is representing the asymptotic strong-coupling parameters for the hyper-
geometric series 2F1(a1, a2; b1 ωz). Needless to say that the fourth-order approximant 2F1(a1, a2; b1 ωz) can be extended to any
order by using the generalized hypergeometric function pFp−1(a1, a2, . . . ..ap; b1, b2, . . . .bp−1 ωz) where the set {−a1, −a2,
. . . ..} predicts the strong-coupling parameters. If the hypergeometric approximant can approximate a series regardless of its large-
order behavior, then one has to find the reason behind that. For that, consider the fourth-order hypergeometric approximant 2F1(a1,
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a2; b1 ωz). In the parametrization of this approximant for a divergent series with zero-radius of convergence and asymptotic large-
order behavior of the form n! σ nnb, we realized that the two parameters b1 and ω are taking relatively large values. When extending
to higher orders and using the generalized hypergeometric approximant pFp−1(a1, a2, . . . ..ap; b1, b2, . . . .bp−1 ωz), then ω and at
least one of the b j denominator parameters are taking larger values. For instance, let us consider the ground-state energy of the x4

anharmonic oscillator of the form [23]

E0(g) � 1

2
+

3

4
g − 21

8
g2 +

333

16
g3 − 30885

128
g4 + O(g5). (6)

This series is divergent and has a large-order asymptotic form of the coefficients cn ∼ n! σ nnb, where σ � −3 and b � − 1
2 [23].

Let us approximate the 4th order using the series 2F1(a1, a2; b1 ωz) which has a wrong (explicit) large-order behavior of the form
ωnnb. In fact, the hypergeometric function has the series expansion of the form

1

2
2F1(a1, a2; b1 ωg) �

∞∑
i�0

hi g
i ,

where

hn � 1

2

�(b1)

�(a1)�(a2)

�(a1 + n) �(a2 + n)

n! �(b1 + n)
ωn .

Solving the nonlinear relations ci � hi (i � 0, 1, . . . ., 4), where ci are the coefficients in Eq. (6), we obtain the parameter values as:
a1 � −0.30337, a2 � 0.75632, b1 � 7.0098, and ω � −45.8265. Note that a1 here is representing the strong-coupling parameter
such that E0 ∼ Ag−a1 which is close to its exact value of − 1

3 ≈ −0.33333. With no loss of generality, let ω � σb1 where then
σ � −45.8265

7.0098 � −6.5375. One can realize that the parameter values b1 and ω are taking relatively high values when compared with
the other parameters. To understand why such hypergeometric approximant with wrong asymptotic large-order behavior is capable
of approximating a divergent series with zero-radius of convergence, we consider the limit

lim
b1→∞(2F1(a1, a2; b1; −b1σ x)) � 2F0(a1, a2; −σ x). (7)

In fact, the hypergeometric series 2F0(a1, a2; −σ x) has the correct form of the asymptotic large-order behavior which takes the
form n! σ nnb [3, 5, 18–21]. However, the large-order parameter σ predicted from the fourth order approximant is almost twice its
exact value. We expect that accurate results for the non-perturbative parameters can be obtained at high-orders parametrization. For
instance, when considering the 10th order approximant 5F4(a1, a2, . . . ..a5; b1, b2, . . . .b4 ωg), we get the results a1 � −0.33172,
a2 � 0.38680, a3 � 0.8985 − 11.2519i , a4 � 0.8985 + 11.2519i , a5 � 3.7185 while b1 � 1.1680, b2 � 5.5611 − 12.4002i ,
b3 � 5.5611 + 12.4002i , b4 � 67.880, ω � −361.30. The strong-coupling asymptotic parameter a1 � −0.33172 is now more
accurate and also one can realize that both b4 and ω are taking larger values than in the fourth order. Those large values make the
limit that takes the approximant 5F4(a1, a2, . . . ..a5; b1, b2, . . . .b4 ωg) to 5F3(a1, a2, . . . ..a5; b1, b2, b3 σg) more accessible. The
predicted value of σ is σ � ω

b4
� −5.3226 which is still not accurate enough but it is better than the fourth-order prediction. This

analysis shows why the hypergeometric approximant pFp−1(a1, a2, . . . ..ap; b1, b2, . . . .bp−1 ωg) which has the wrong large-order
asymptotic behavior can be parametrized to approximate a divergent series with zero-radius of convergence. Not only this but also it
can predict accurate values ( with sufficient weak-coupling terms as input) for the non-perturbative strong-coupling and large-order
parameters. As we explained above this is because of the existence of the following limit:

lim
bs→∞(pFp−1(a1, a2, . . . ..ap; b1, b2, .., bs , ..bp−1 bsσg)) � pFp−2(a1, a2, . . . ..ap; b1, b2, . . . .bp−2 σg), (8)

where |bs | is the largest parameter among the parameters |b1|, |b2|, .., |bs |..
∣∣bp−1

∣∣.
Divergent series with zero-radius of convergence can have different types of asymptotic large-order behavior. For instance, the

ground-state energies of the sextic and octic anharmonic oscillators are strongly-divergent in such a way that the coefficients in the
weak-coupling series expansions behave as ( for large n) (2n)! σ nnb (Gevrey-2 type) and (3n)! σ nnb (Gevrey-3 type), respectively.
However, the hypergeometric approximant pFp−1(a1, a2, . . . ..ap; b1, b2, . . . .bp−1 ωg) can be parametrized to give accurate results
for such cases too. In such cases and for the sextic oscillator ( for instance), two of the b j parameters ( bs and bt say) will take large
values. In view of the iterated limit of the form:

lim
bs→∞

(
lim

bt→∞ (pFp−1(a1, a2, . . . ap; b1, b2, . . . , bs , bt ..bp−1 ; bsbtσg))

)

� pFp−3(a1, a2, . . . ap; b1, b2, . . . bp−3 ; σg), (9)

one finds that the approximant pFp−3(a1, a2, . . . , ap; b1, b2, . . . .bp−3 σg) has the right large-order asymptotic behavior as the
given series.

For the octic oscillator, we have

lim
bs→∞

(
lim

bt→∞

(
lim

bu→∞
(
pFp−1

(
a1, a2, . . . ..ap; b1, b2, .., bs , bt , bu ..bp−1 ; bsbtbuσg

))))
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� pFp−4(a1, a2, . . . ..ap; b1, b2, . . . .bp−4 ; σg). (10)

Again the hypergeometric series pFp−4 has the same large-order behavior as the given series. This analysis explains why the
hypergeometric approximant pFp−1 is capable to approximate Gevrey-k type of divergent series for k ≥ 1.

Although the hypergeometric approximant pFp−1(a1, a2, . . . ..ap; b1, b2, . . . .bp−1 ωg), which is a Gevrey-0 type, is expected to
approximate divergent series of a Gevrey-k type (k � 1, 2, 3, . . .), there exist technical issues when parametrizing such approximant
to approximate divergent series. For instance, it is well-known that the approximant pFp−1(a1, a2, . . . ..ap; b1, b2, . . . .bp−1 ωg)
has a branch cut starting from g � 1

ω
to ωg → ∞. Accordingly, if the parameter ω takes a positive value, the approximant fails to

give reliable results for the region of interest (for positive g values). If for some order, this is the case, we suggest to parametrize the
series expansion for the reciprocal of the quantity which may result in a negative ω value. If for some order, the parametrization for
both series fails to give a negative ω value, then the approximant can be taken to be the right-hand side of Eqs. (8, 9, and 10) while
the analytic continuation is then go through the representation [14, 24]:

pFq (a1, . . . ap; b1 . . . .bq ; σ z)

�
∏q

i�1 �(bi )∏p
i�1 �(ai )

p∑
k�1

(−σ z)−ak �(ak)∏q
j�1 �

(
b j − ak

)
p∏

j�1, j ��k

�
(
a j − ak

)

× q+1Fp−1

⎛
⎝ak , ak − b1 + 1, . . . .., ak − bq + 1; −a1 + ak + 1, . . . ..︸︷︷︸

∗
, − ap + ak + 1;

(−1)p−q+1

σ z

⎞
⎠. (11)

Here the asterisk means that we exclude terms of the form 1 − ai + a j for i � j .
Based on the above realizations, in this work, we use only one type of hypergeometric approximants for divergent series of

different large-order behaviors. In other words, we show that we can use the approximants pFp−1(a1, . . . ap; b1 . . . .bp−1; σg) as
all-in-one approximation technique. In fact either in our previous work in [14] or the traditional Borel resummation, one has to treat
the above-mentioned different types of series differently which means that it will take longer time and more efforts to approximate
the series under consideration. Plus for such techniques, we need to know the large-order behavior in advance.

The structure of this paper is as follows. In Sec. 2, we use the hypergeometric approximants pFp−1 to approximate the ground-
state energy of the quartic oscillator. In this section, accurate results are obtained for the ground-state energy and the non-perturbative
strong-coupling and large-order parameters. In Sec. 3, we study the strongly-divergent Gevrey-2 series of the ground-state energy of
the sextic oscillator where again we obtained accurate results for both the ground-state energy and the non-perturbative parameters.
The strongly-divergent Gevrey-3 series for the ground-state energy of the octic oscillator is also studied in Sec. 4. Critical exponents
for the O(N)-symmetric φ4 scalar field model are also stressed in Sec. 5. In this section, accurate results are obtained for the critical
coupling as well as critical exponents using the eight-loop of weak-coupling series that recently appeared in the literature. Summary
and conclusions follow in Sec. 7.

2 Hypergeometric parametrization for the ground-state energy of the quartic anharmonic oscillator

The Hamiltonian for the quartic oscillator is given by:

H � p2

2
+

1

2
x2 + gx4. (12)

The weak-coupling perturbation series for the ground-state energy is given in Eq. (6) above as

E0(g) � 1

2
+

3

4
g − 21

8
g2 +

333

16
g3 − 30885

128
g4 + O(g5).

As explained in the introduction, this is a divergent series with zero-radius of convergence as its asymptotic large-order behavior has
the form n! σ nnb. Nevertheless, the hypergeometric approximant pFp−1(a1, a2, . . . ..ap; b1, b2, . . . .bp−1 ωg), which has a wrong
asymptotic large-order behavior (ωnnb), can be parametrized to give accurate predictions. The point is that one of the b j parameters
and the ω ( ω � σbs) parameter shall take large values in such a way that the following limit

lim
bs→∞(pFp−1(a1, a2, . . . ..ap; b1, b2, .., bs ..bp−1 bsσg)) � pFp−2(a1, a2, . . . ..ap; b1, b2, . . . .bp−2 σg),

is made possible. The hypergeometric function pFp−2(a1, a2, . . . ..ap; b1, b2, . . . .bp−2 σg), on the other hand, has an expansion
which has the right large-order asymptotic behavior. This explanation rationalizes the discovery by Mera. et al. in Ref. [9] that the
fourth-order hypergeometric function 2F1(a1, a2; b1; ωg) can give accurate approximation for a series of zero-radius of convergence.
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Table 1 The hypergeometric
approximation for the ground-state
energy of the x4 anharmonic
oscillator for different orders of
weak-coupling data is listed

g 1F0 3F2 5F4 12F11 Exact

0.5 0.669972 0.696097 0.696175 0.696176 0.696176

1 0.743891 0.803389 0.803763 0.803771 0.803771

2 0.832700 0.950177 0.951533 0.951568 0.951568

50 1.45540 2.43906 2.49657 2.49970 2.49971

The exact (numerical) results from
Ref. [26] are shown for
comparison

In going to higher orders, one might face a problematic parametrization in which the parameter ω is positive. In this case, one might
consider the expansion of 1

E0(g) which is then:

1

E0(g)
� 2 − 3g + 15g2 − 243

2
g3 +

43233

32
g4 + O

(
g5

)
, (13)

where one can realize that the sign of odd orders in this equation is negative while they were positive in Eq. (6). This shows that in
view of the large-order behavior ωnnb, the parametrization of 1

E0(g) might lead to an ω value of opposite sign. However, since the
sign of a specific order in the expansion of the hypergeometric approximant depends also on numerator and denominator parameters,
one might have for some orders that both parametrizations lead to positive ω values, and thus, the branch cut lies in the region of
interest. In this case, one can resort to the formula in Eq. (8) as an approximation for the given order.

The hypergeometric approximant can also predict the non-perturbative parameters. For instance, the strong-coupling parameter
s∗ can be determined from [14]

E0(g) 

∏q

i�1 �(bi )

2
∏p

i�1 �(ai )

p∑
k�1

(−ω g)−ak �(ak)∏p−2
j�1 �

(
b j − ak

)
p∏

j�1, j ��k

�
(
a j − ak

)
.


 Ags
∗
, (14)

where s∗ � max{Re(−a1), Re(−a2), . . . ..Re(−ap)}. Also the limits in Eqs. (8, 9, and 10) suggest that the large-order parameter
b can be predicted from the relation:

b �
p∑

i�1

ai −
q∑

i�1

bi −
(
p − q + nl + 2

2

)
+ bs + bt + . . . .. (15)

here bs , bt , . . . . . . are representing the largest denominator parameters ( large absolute values) in the approximants, and nl is the
number of these largest denominator parameters (one parameter for Gevrey-1, two for Gevrey-2, and so on).

For relatively high orders, there might be some kind of saturation in which one (or more) of the numerator parameters ai equals
one (or more) of denominator parameters b j . In such case, the form in Eq. (11) shows that the approximant is singular. However,
one can exclude such singularity by using the fact that:

p+1Fq+1(a, a2, . . . ap; a, b2 . . . .bq ; ω g) � pFq (a2, . . . ap; b2 . . . .bq ; ω g).

We applied the above detailed approximation technique to approximate the ground-state energy of the x4 anharmonic oscillator with
the results as shown in Table 1. In this table, one can realize how accurate is that simple generalized hypergeometric approximant.
For instance, for a relatively strong-coupling value (g � 50), the hypergeometric approximant gives the result E0(50) ≈ 2.49970
which shares the first five digits with the exact result shown in Table 1. This result is very competitive to the predictions from more
sophisticated algorithms [10] with larger size of weak-coupling data as input.

It is a matter of fact that most of the well-known resummation algorithms fail to give reliable results for large coupling values [12,
13]. The generalized hypergeometric algorithm, on the other hand, predicts very accurate results for the strong-coupling parameter
s∗ as shown from Table 2. The strong-coupling asymptotic behavior takes the form E0(g) ∼ Ags

∗
. Our predictions for Aβ can be

compared to the exact ones from Ref. [25], where Aβ is gotten from A via a scale transformation (Aβ � 4s
∗
A).

The hypergeometric approximants we use in this paper have explicit wrong large-order behavior. However, in view of the iterated
limits in Eqs. (8, 9, and 10) and the formula for the large-order parameter b in Eq. (15), one can predict approximate values for the
large-order parameters b and σ . Our predictions are listed in Table 2 where one can see accurate results especially for relatively high
orders.

3 Hypergeometric parametrization for the ground-state energy of the sextic anharmonic oscillator

The Hamiltonian model for the sextic anharmonic oscillator is given by:

H � p2

2
+

1

2
x2 + gx6. (16)
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Table 2 For different orders of input weak-coupling data, we list the hypergeometric prediction for the strong-coupling parameters s∗ and Aβ for the

ground-state energy of the x4 anharmonic oscillator

Parameter 1F0 2F1 5F4 10F9 12F11 25F24 Exact

s∗ 0.176471 0.303372 0.331716 0.333256 0.333310 0.333333
1
3 ≈ 0.333333

Aβ 0.931603 1.08778 1.065470 1.060743 1.060492 1.06036 1.06036

σ −8.50000 −6.53745 −5.32275 −3.04634 −3.01323 −3.00000 −3.00000

b −2.17647 −1.54704 −8.71955 −1.53812 −1.05166 −0.500044 − 1
2 ≡ −0.500000

The exact result for Aβ is taken from Ref. [25] (Table 7, m=2,n � 0). Also, the predictions for both b and σ parameters are listed and compared to their
exact values

The weak-coupling perturbation series expansion of the ground-state energy is listed in Ref. [27] as:

E0(g) � 1

2
+

15

8
g − 3495

64
g2 +

1239675

256
g3 − 3342323355

4096
g4 + O(g5). (17)

Also, the expansion of 1/E0(g) goes like:

1

E0(g)
� 2 − 15

4
g +

3945

64
g2 − 1351275

512
g3 +

3525355905

16384
g4 + O(g5). (18)

The series is strongly-divergent (Gevrey-2) in the sense that its large-order asymptotic behavior goes like:

cn ∼ γ (2n)! (−σh)nnb
(

1 + O

(
1

n

))
. (19)

here σh � 32
π2 [28]. The hypergeometric approximant (with wrong large-order behavior) used to approximate this series is

1

2
pFp−1(a1, a2, . . . . . . ..ap; b1, b2, . . . , bp−1; ωg). (20)

However, the iterated limit in Eq. (9) shows that the parameters in this approximant can take the proper values that can lead to the
expected large-order behavior. This is why it is expected that the approximant shall predict accurate values for the ground-state
energy as well as the non-perturbative parameters associated with the given series.

In most of the orders we considered, the parametrization of the hypergeometric approximants results in a positive ω parameter.
Accordingly, the branch cut covers most of the positive g axis. In fact, we realized that the ω parameter and one ( for relatively low
order) or two ( for relatively high orders) of the bi parameters are taking relatively large values which means that one can resort to
the limit in Eqs. (8) or (9). We choose to work with the limit in Eq. (8) which gives the suitable branch cut and choose to work with
the largest bi parameter. This step, however, needs analytic continuation process to follow the limit step which can be carried out via
the representation in Eq. (11). Note that the limit in Eq. (8) will lead to an pFp−2 which can be represented via entire hypergeometric
functions in Eq. (11). For more clarifications, let us consider the 8th order approximant:

E0(g) 
 1

2
4F3(a1, a2, . . . a4; b1, b2, b3 ωg) (21)

Using the weak-coupling data, one can get the parameter values as a1 � −0.248382, a2 � 0.12755 − 5.34046i , a3 � 0.12755 +
5.34046i , a4 � 0.257737 and b1 � −34.3930, b2 � 0.34298 − 8.70971i , b3 � 0.34298 + 8.70971i while ω � 5363.89. The limit
in Eq. (8) gives

E0(g) 
 1

2
4F3(a1, a2, . . . a4; b1, b2, b3 ; ωg)


 1

2
4F2(a1, a2, . . . a4; b2, b3 ;

ω

b1
g). (22)

The prediction of this order is listed in Table 3 which shows accurate results. For different orders, we also listed the results in the
same table, and it is very clear that more accurate results are obtained with bigger size of weak-coupling input data. Note that,
traditional algorithms like Borel as well as Padé approximants fail to produce reliable results for such model especially for strong
couplings [12, 13]. Contrary to this, we find the important feature of the hypergeometric approximant which is its capability to
predict accurate results for the non-perturbative parameters. For instance, the 20th order approximant results in s∗ � 0.249922
compared to its exact result 0.25. Also Aβ � 1.145001 which is very close to its exact value 1.144802 [25]. This order prediction
for the large-order parameter σ is −13.0031 compared to its exact value of −12.96911 and b � −0.629353 compared to exact
value of −0.5. More accurate results especially for large-order parameters can be obtained by using higher orders. For instance, our
28th order prediction for b is −0.502320, while for σ , it is −12.9694 which are close to the exact ones. For more orders like the
50th order, one finds that b is −0.5, and for σ , it is −12.9691 which are almost exact [12, 13].

123



Eur. Phys. J. Plus         (2024) 139:592 Page 7 of 12   592 

Table 3 The hypergeometric approximation for the ground-state energy of the x6 anharmonic oscillator for different orders of weak-coupling data as input

g 1F0 2F1 4F3 10F9 Exact

0.1 1.12682 1.17636 1.17470 1.17390 1.173887

0.5 1.2332 1.44018 1.43750 1.43565 1.435625

2.0 1.3391 1.83322 1.83314 1.83047 1.830437

50 1.6262 3.66197 3.71548 3.71673 3.716974

1000 1.9492 7.39724 7.66973 7.69993 7.701738

Exact results taken from Ref. [29] are listed for comparison

Table 4 The hypergeometric approximation for the ground-state energy of the x8 anharmonic oscillator for different orders of weak-coupling data

g 1F0 3F2 4F3 8F7 Exact

0.1 1.08762 1.23391 1.24591 1.2405 1.241028

0.5 1.12294 1.45902 1.51305 1.49219 1.491020

2.0 1.15446 1.73548 1.88695 1.82994 1.822180

50 1.23122 2.72077 3.62765 3.27012 3.188654

Exact results taken from Ref. [29] are listed for comparison too

4 Hypergeometric parametrization for the ground-state energy of the octic anharmonic oscillator

The potential term for the octic anharmonic oscillator is x8 which results in the weak-coupling series expansion for the ground-state
energy to take the form [27]:

E0(g) � 1

2
+

105

16
g − 67515

32
g2 +

401548875

128
g3 − 25424096867715

2048
g4 + O(g5). (23)

This series is strongly-divergent ( stronger than x6 and is a Gevrey-3 type) as the large-order asymptotic behavior of the coefficients
takes the form:

cn ∼ γ (3n)! (−σh)nnb
(

1 + O

(
1

n

))
, (24)

where σh � 3375
16π6

(
�

( 2
3

))9
[28]. From Eq. (23), one can deduce the expansion of 1

E0(g) as:

1

E0(g)
� 2 − 105

8
g +

281085

128
g2 − 3270261225

2048
g3 +

102452975769585

32768
g4 + O(g5). (25)

The approximants for the series in Eq. (23) are

1

2
pFp−1(a1, a2, . . . . . . ..ap; b1, b2, . . . .bp−1; ωg), (26)

while for that in Eq. (25), it takes the form:

2 pFp−1(a1, a2, . . . . . . ..ap; b1, b2, . . . .bp−1; ωg). (27)

The prediction of the non-perturbative parameters goes as:

b �
p∑

i�1

ai −
p−1∑
i�1

bi − (p − q + 2) + bp−3 + bp−2 + bp−1,

where bp−3, bp−2 bp−1are the denominator parameters with largest absolute values. Also, the large-order parameter σ is determined
as σ � ω

bp−3 bp−2 bp−1
while the strong-coupling parameters A and s∗ are predicted from Eq. (14).The results for E0(g) are listed in

Table 4 and are compared to the exact results.
For the strong-coupling values for the 8th order, we have s∗ � 0.256960 compared to 0.200000 exact value while Aβ � 1.205983

with its exact prediction as 1.225820 [29]. Also for this order, we get σ � −111.3352 compared to the exact one as −90.68318
while b � −2.28660 which is not in good agreement with the exact result of b � − 1

2 [12, 13]. The predictions are more accurate
for higher orders. For instance, the 24th order gives Aβ � 1.21050, s∗ � 0.206921, σ � −90.6848 and b � −0.500762.
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5 Eight-loop renormalization group functions of the O(N)-symmetricφ4 model

In the previous sections, we showed that the hypergeometric approximant:

pFp−1(a1, a2, . . . ap; b1, b2 . . . .bp−1; ωg),

which is of explicit wrong large-order behavior, can approximate not only divergent Gevrey-1 type of series but also the strongly-
divergent Gevrey-2 and Gevrey-3 series. Specially for the last two series, resummation techniques cannot give reliable results for
relatively large couplings. Accordingly, these simple approximants should be taken seriously for the approximation of a divergent
series. In this section, we need to test its results for more realistic cases. Here, we show how one can extract the critical exponents
for the second-order phase transition of the O(N)-symmetric φ4 field theory. Very recently, the eight-loop ( g-expansion) for this
model has been obtained [30] for the anomalous field dimension γφ . In fact, the seven-loop β-function and the eight-loop γφ are up
g8 order but cannot both lead to the 8th order in ε � 4 − d , where d is the dimension of the space–time. It is a well-known fact that
working with ε-expansion leads to more accurate results than working with g-expansion [2], and thus, it would be more illustrative
to test the accuracy of the g-expansion within the new 8th order.

The Lagrangian density of the O(N )−symmetric model is given by:

L �1

2
(∂�)2 +

m2

2
�2 +

λ

4!
�4,

where � � (φ1, φ2, φ3, . . . . . . . . . ..φN ) is an N-component field with O(N) symmetry such that �4 �(
φ2

1 + φ2
2 + φ2

3 + . . . . . . . . . ..φ2
N

)2
. The renormalization group function γφ is related to the η critical exponent as η(gc) � 2γφ

(gc) where gc is the critical coupling. The series for both γφand β renormalization group functions are divergent and have an
asymptotic large-order behavior like the one discussed in the x4 example. This means that both series can be approximated by the
hypergeometric approximant:

pFp−1(a1, a2, . . . ap; b1, b2 . . . .bp−1; ωg).

The critical coupling is predicted from the condition β(gc) � 0 while the correction to scaling critical exponent is taken as ω � β
′

(gc). The series obtained in Refs. [30–32] is within the minimal subtraction technique MS. In the following, we list the results for
the hypergeometric approximation of the β− function from which we extract the critical coupling gc and the correction to scaling
critical exponent ω. Also, we list the results of the resummation of the field anomalous dimension γφ from which we deduce the
critical exponent η. The hypergeometric approximation will be carried out for N � 0, 1, 2, 3.

5.1 Hypergeometric approximation for β and γ φ functions for the N � 0 case

The N � 0 case lies in the same class of universality with some polymers [33]. In three dimensions (ε � 1), the seven-loop
β−function is given by:

β(g) ≈ −g + 2.6667g2 − 4.6667g3 + 25.457g4 − 200.93g5 + 2004.0g6 − 23315g7 + 303869g8.

The suitable hypergeometric approximant for this order is

β(g) � 4F3(a1, a2, a3, a4; b1, b2, b3; gσ) − 1.

This approximant predicts the critical coupling value of gc � 0.52775 compared to 0.5408(83) from Janke–Kleinert resummation
algorithm [2] and the recent Borel with conformal mapping (BCM) ( ε-expansion) prediction of 0.52988 ± 0.00225 [7]. This result
leads to the correction to scaling critical exponent ω � β

′
(gc) � 0.87328 where it can be compared to 0.841(13) in Ref. [7], 0.904(5)

[34] and our previous seven-loop ε− expansion of 0.8484(17) [5].
For the critical exponent η � 2γφ(gc), we have the eight-loop order for γφ given by

γφ(g) � 0.05556g2 − 0.03704g3 + 0.19290g4 − 1.0060g5 + 7.0946g6 − 57.739g7 + 515.12g8. (28)

The series γφ(g)
g2 can be approximated by

γφ(g)

g2 � 0.05556 3F2(a1, a2, a3; b1, b2; σg),

from which we get the critical exponent η � 2γφ(gc) � 0.0302696. Our seven-loop ε-expansion in Ref. [5] gives the result
0.03121(70) while Monte Carlo simulation (MC) in Ref. [34] gives 0.031043(3) and conformal bootstrap ( CB) predicts the result
0.0282(4) [35]. Our results are listed in Table 5 where we added predictions from other algorithms for comparison.
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Table 5 The hypergeometric
approximation for the critical
coupling gc and critical exponents
η and ω for the self-avoiding
walks model (N � 0) where
predictions from other
computational techniques are
added for comparison

gc ω η

0.52775[This work] 0.87328[This work] 0.0302696[This work]

0.5408(83)[2] 0.8484(17)[5] 0.03121(70)[5]

0.52988 ± 0.00225[7] 0.846(15) [36] 0.031043(3) [37]

– 0.899(12) [34] 0.0282(4) [35]

Table 6 The hypergeometric
approximation for the critical
coupling gc and critical exponents
η and ω for Ising-like model
(N � 1)

gc ω η

0.475262[This work] 0.841012[This work] 0.035597[This work]

0.4810(91) [2] 0.82311(50) [5] 0.03653(65) [5]

0.47033 ± 0.001 [7] 0.832(6) [38] 0.03627(10) [38]

– 0.8303(18) [39] 0.03631(3) [39]

5.2 The Ising-like model N � 1

The case N � 1 lies in the same class of universality with the Ising model. The seven-loop β-function is given by:

β ≈ −g + 3g2 − 5.66667g3 + 32.5497g4 − 271.606g5 + 2848.57g6 − 34776.1g7 + 474651g8. (29)

As in the N � 0 case, it can be approximated by the hypergeometric approximant:

β(g) � 4F3(a1, a2, a3, a4; b1, b2, b3; gσ) − 1,

which leads to gc � 0.475262. In Ref. [2], the Janke–Kleinert resummation algorithm gives the result gc � 0.4810(91) while a recent
Borel with conformal mapping calculations gives 0.47033 ± 0.001 [7]. Our prediction for gc also leads to the result ω � 0.841012
which can be compared to the Monte Carlo simulation prediction of 0.832(6) [38] while conformal bootstrap calculations give the
result 0.8303(18) [39].

The eight-loop series for the field anomalous dimension γφ is listed also in Ref. [30] as:

γφ ≈ 0.08333g2 − 0.06250g3 + 0.33854g4 − 1.9256g5 + 14.384g6 − 124.16g7 + 1171.88g8. (30)

This series can be approximated by:

γφ(g)

g2 � 0.08333 3F2(a1, a2, a3; b1, b2; gσ),

from which we get η as

η � 2g2
c (0.083333F2(a1, a2, a3; b1, b2; σgc))

� 0.035597.

For comparison, we list the result for MC as η � 0.03627(10) [38] while conformal bootstrap calculations give the result 0.03631(3)
[39]. In Table 6, our predictions for gc, ω, and η are listed for N � 1 and compared to the predictions from other computational
tools.

5.3 Hypergeometric approximation for the case N � 2 (XY universality class)

This model can also describe the super-fluid 4He phase transition. The seven-loop β-function is given by:

β(g) ≈ −g + 3.3333g2 − 6.6667g3 + 39.948g4 − 350.51g5 + 3844.5g6 − 48999g7 + 696998g8. (31)

These data result in gc � 0.427969 which can be compared to the result of Janke–Kleinert resummation algorithm which gives
gc � 0.5032(239) [2] and Borel with conformal mapping result of 0.4209 ± 0.001 [7]. Based on our result for gc, we obtained the
result ω � 0.84161 while MC gives the result 0.789(4) [40] and CB predicts the result ω � 0.811(10) [7, 41].

For the field anomalous dimension γφ , we have: [30]

γφ ≈ 0.11111g2 − 0.09259g3 + 0.50926g4 − 3.1481g5 + 24.706g6 − 224.57g7 + 2226.9g8. (32)

This gives the result η � 0.036963 while MC gives 0.03810(8) [40] and CB gives η � 0.03852(64) [42]. We list our results in Table
7 and compare them to predictions from other algorithms.
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Table 7 The hypergeometric
approximation for the critical
coupling gc and critical exponents
η and ω for the XY universality
class (N � 2)

gc ω η

0.427969[This work] 0.841606[This work] 0.0369631[This work]

0.5032(239)[2] 0.789(13) [5] 0.03810(56) [5]

0.4209 ± 0.001 [7] 0.789(4) [40] 0.03810(8) [40]

– 0.811(10) [7, 41] 0.03852(64) [7, 41]

Table 8 The hypergeometric
approximation for the critical
coupling gc and critical exponents
η and ω for the Heisenberg
universality class (N � 3)

gc ω η

0.39443[This work] 0.78231[This work] 0.03768[This work]

0.3895(71) [2] 0.764(18) [5] 0.03809(62) [5]

0.37936 ± 0.001 [7] 0.773 [43] 0.0378(3) [44]

– 0.791(22) [7, 41] 0.0386(12) [42]

6 Hypergeometric approximation for Heisenberg universality class N � 3

The seven-loop β-function for N � 3 is given by:

β(g) ≈ −g + 3.66667g2 − 7.66667g3 + 47.6514g4 − 437.646g5 + 4998.62g6 − 66242.7g7 + 978330g8. (33)

It results in gc � 0.39443 compared to gc � 0.3895(71) from Janke–Kleinert resummation algorithm [2] and Borel resummation
of gc � 0.37936 ± 0.001 [7]. The corresponding ω exponent is predicted to be 0.78231 while the MC result is 0.773 [43] and the
CB result of 0.791(22) [7, 41].

The eight-loop series for γφ is also given by:
γφ

g2 � 0.138889 − 0.127315g + 0.699267g2 − 4.68924g3 + 38.4364g4 − 365.900g5 + 3792.05g6, (34)

which results in η � 0.03768. This result is very competitive to the prediction from more sophisticated techniques such as the MC
result of η � 0.0378(3) [44] and the CB prediction of 0.0386(12) [42]. More comparisons can be found in Table 8.

To value the above results, one should take into account the fact that the ε-series gives better results than the g-series. The
above results have stressed the g-series, and thus, one can confidently say that the simple hypergeometric approximants are very
competitive to more sophisticated algorithms like the BCM.

7 Summary and conclusions

The hypergeometric approximant 2F1 has been used in Ref. [9] to approximate a divergent series with zero-radius of convergence
with a large-order behavior of the form n! σ nnb (Gevrey-1 type). What is strange about this approximant and its extension to
generalized hypergeometric functions pFp−1 is that they do have a series expansion of finite radius of convergence while it has been
used (successfully) to approximate a series with zero-radius of convergence. We explained why this is happening by realizing that
the parameters in the hypergeometric approximant are taking values such that its asymptotic large-order behavior approaches the
one for the given series. Accordingly, one can even predict the non-perturbative parameters from weak-coupling data as input to this
simple approximant. In fact, especially for the large-order parameters, the extracted values are more and more accurate when feeding
the approximants with larger size of input weak-coupling information. We applied this approximation to the divergent series of the
x4 anharmonic oscillator and were able to get accurate results for both the ground-state energy and the non-perturbative parameters,
namely, the strong-coupling and the large-order ones.

Divergent series can take different shapes in their asymptotic large-order behavior. For instance, the ground-state energy of the x6

anharmonic oscillator has a series expansion which reflects strong divergence in the sense that the coefficients at large orders behave
like cn ∼ (2n)! σ nnb (Gevrey-2 type). Also, the series for the ground-state energy of the x8 anharmonic oscillator is a Gevrey-3
type with a large-order behavior as cn ∼ (3n)! σ nnb. These kinds of series are strongly divergent, and traditional resummation
techniques cannot give reliable results especially for strong couplings. We showed that the hypergeometric approximants pFp−1

though of wrong large-order behavior can give accurate results for such kinds of series too.
Our experience in working with the approximants pFp−1 tells us that more accurate results are obtained for a relatively high

orders (eight or greater). Very recently, Oliver Schnetz obtained the eight-loop (g-expansion) for the field anomalous dimension γφ

of the O(n)-symmetric φ4 scalar field theory [30]. Both the seven-loop β-function and the eight-loop γφ are up to 8th order in g. So
we can resum them, and from the approximants, we can get approximate values for the critical coupling gc and critical exponents ω

and η. We have stressed the mentioned renormalization group functions and obtained these critical quantities for N � 0, 1, 2, and3.
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Our results using the simple hypergeometric approximants are very competitive to predictions from sophisticated resummation
algorithms as well as numerical and conformal field predictions. Note that, within the minimal subtraction technique, it is well-
known that resummation of the g-series is less accurate than the ε-series [2]. Up to the best of our knowledge, the new order of
the g-series stressed in this work has not been treated yet using any resummation method, and we expect that such resummation
techniques though are more sophisticated may at most be competitive to the simple hypergeometric approximants used in this work.
Moreover, the 8th order of the ε-series cannot be obtained from the available seven-loop β-function and the eight-loop anomalous
field dimension as one should have the eight-loop order for both.
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