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“In physics, you don’t have to go around making trouble
for yourself - nature does it for you.”

Frank A. Wilczek
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Abstract

In this work we study the properties – specifically mass spectra and internal structure
– of exotic mesons in the charmonium and bottomonium energy regions. Most of these
mesons are deemed candidates for four-quark states featuring two heavy and two light
quarks. For our calculations, we employ the functional framework of Dyson-Schwinger
and Bethe-Salpeter equations (DSEs and BSEs) using a four-quark formulation. We begin
by solving the quark DSEs for different quark flavours and calculating mass spectra from
several two-body meson and diquark BSEs. These results serve as input for the four-quark
BSE, the central object of this work. Using a physically motivated Ansatz, we describe the
heavy-light four-quark states in terms of all possible internal two-quark groupings and
the attractive and repulsive forces between them. We compare the mass spectra obtained
using only the attractive and the attractive plus repulsive components to experimental
measurements or theoretical predictions. In this way, we are able to assess the importance
of repulsive forces for our description. Furthermore, we are able to investigate the favoured
internal structure of the four-quark states by calculating the contribution of each internal
component to the total normalization.

We observe that the inclusion of the repulsive forces leads to a much better agreement of
our calculated mass spectra with the observed experimental spectra for the hidden-charm
and hidden-bottom four-quark states. For the open-flavour four-quark states with total
spin 𝐽 = 1, the effect of including the repulsive forces is found to be especially significant,
rendering our masses for the 𝑇−

𝑏𝑏, 𝑇−
𝑏𝑏 ̄𝑠, 𝑇𝑏𝑐 and 𝑇𝑐𝑐(3875)+ in quantitative agreement with

predictions from the literature. Regarding the internal structure, we see that most of
the investigated hidden-flavour four-quark states are purely dominated by the respective
lightest internal heavy-light meson-meson components. The 𝐽𝑃𝐶 = 1+−, including the
𝑇𝑐 ̄𝑐1(3900) and 𝑇𝑏𝑏̄1(10610), and the 0−+ channel show a very different picture, however,
with a strong tendency towards a dominant hadro-quarkonium component. In all cases,
the contribution coming from the diquark-antidiquark pairings is almost negligible. For
the open-flavour states, we observe an interesting trend when considering the binding
energy of the states with respect to the lowest heavy-light meson-meson threshold. For
very shallow bound states, e.g., 𝑇+

𝑐𝑐 and 𝑇𝑏𝑐, the corresponding heavy-light meson-meson
component is found to be dominating. However, the deeper the state is bound, e.g., 𝑇−

𝑏𝑏 ̄𝑠
and 𝑇−

𝑏𝑏, the stronger the contribution coming from the diquark-antidiquark pairings
becomes.
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Kurzzusammenfassung

In dieser Arbeit untersuchen wir die Eigenschaften – insbesondere Massenspektren und
innere Struktur – von exotischen Mesonen in den Charmonium- und Bottomonium-
Energiebereichen. Die meisten dieser Mesonen gelten als Kandidaten für Vier-Quark-
Zustände mit zwei schweren und zwei leichten Quarks. Für unsere Untersuchungen
verwenden wir eine Kombination aus Dyson-Schwinger- und Bethe-Salpeter-Gleichungen
(DSEs und BSEs) in einer Vier-Quark-Formulierung. Wir beginnen mit der Lösung
der Quark-DSEs für verschiedene Quark-Flavours und berechnen Massenspektren von
mehreren Zweikörper-Meson und Diquark BSEs. Diese Ergebnisse dienen als Input
für die Vier-Quark-BSE, die zentrale Gleichung dieser Arbeit. Unter Verwendung eines
physikalischmotiviertenAnsatzes beschreibenwir die schwer-leichtenVier-Quark-Zustände
mit allen möglichen internen Zwei-Quark-Gruppierungen und den anziehenden und
abstoßenden Kräfte zwischen ihnen. Wir vergleichen die Massenspektren, die wir en-
tweder nur unter Verwendung der anziehenden oder der anziehenden plus abstoßenden
Komponenten erhalten haben, mit experimentellen Messungen oder theoretischen Vorher-
sagen. Auf diese Weise können wir die Bedeutung der abstoßenden Kräfte für unsere
Beschreibung beurteilen. Darüber hinaus können wir die bevorzugte innere Struktur der
Vier-Quark-Zustände untersuchen, indem wir den Beitrag jeder inneren Komponente zur
Gesamtnormierung berechnen.

Wir stellen fest, dass die Einbeziehung der abstoßenden Kräfte zu einer viel besseren
Übereinstimmung unserer berechneten Massenspektren mit den beobachteten experi-
mentellen Spektren für die Vier-Quark-Zustände mit versteckter Charm und versteckter
Bottomness führt. Für die Vier-Quark-Zustände mit offener Flavour-Ladung und Gesamt-
spin J=1 ist der Effekt der Einbeziehung der Abstoßungskräfte besonders signifikant,
wodurch unsere Massen für 𝑇−

𝑏𝑏, 𝑇−
𝑏𝑏 ̄𝑠, 𝑇𝑏𝑐 und 𝑇𝑐𝑐(3875)+ quantitativ mit den Vorhersagen

aus der Literatur übereinstimmen. Was die interne Struktur betrifft, sehen wir, dass die
meisten der untersuchten Vier-Quark-Zustände mit versteckten Flavour-Ladungen rein
von der zugehörigen leichtesten internen schwer-leichten Meson-Meson-Komponenten
dominiert werden. Der 𝐽𝑃𝐶 = 1+−, einschließlich der 𝑇𝑐 ̄𝑐1(3900) und 𝑇𝑏𝑏̄1(10610), und der
0−+ Kanal zeigen ein ganz anderes Bild, mit einer starken Tendenz zu einer dominanten
Hadro-Quarkonium-Komponente. Alle diese Zustände weisen verschwindend kleine
Diquark-Antidiquark-Komponenten auf. Für die Zustände mit offener Flavour-Ladung
beobachten wir einen interessanten Trend, wenn wir die Bindungsenergie der Zustände
in Bezug auf die niedrigste schwer-leichte Meson-Meson-Schwelle betrachten. Für sehr
schwach gebundene Zustände, zum Beispiel 𝑇+

𝑐𝑐 und 𝑇𝑏𝑐, zeigt sich die entsprechende
schwer-leichte Meson-Meson-Komponente als dominant. Je tiefer jedoch der Zustand
gebunden ist, zum Beispiel 𝑇−

𝑏𝑏 ̄𝑠 und 𝑇−
𝑏𝑏, desto stärker wird der Beitrag, der von den

(schwer-schwer)(leicht-leicht) Diquark-Antidiquark-Paarungen kommt.
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Frequently-Used Abbreviations and Acronyms

To make the text more concise, we used many abbreviations throughout this work. All of
them are defined upon their first occurrence or when they are reintroduced after some
time. A comprehensive list is provided in the following for a quick overview.

BSA Bethe-Salpeter amplitude

BSE Bethe-Salpeter equation

BSM beyond standard model

BSWF Bethe-Salpeter wave function

DCSB dynamical chiral symmetry breaking

DSE Dyson-Schwinger equation

EFT effective field theory

EVC eigenvalue curve

FYE Faddeev-Yakubovsky equation

GMOR Gell-Mann-Oakes-Renner relation

IR infrared

MT Maris-Tandy

NCC norm contribution curve

NCQMEC norm contribution quark mass evolution curve

𝑛PI 𝑛-particle irreducible

PDG Particle Data Group

QCD quantum chromodynamics

QED quantum electrodynamics

QFT quantum field theory

QMEC (Current-)quark mass evolution curve

SPM Schlessinger-Point-Method

SU(𝑁) special unitary group of degree 𝑁

TBMPP two-body momentum partitioning parameters

U(𝑁) unitary group of degree 𝑁

UV ultraviolet
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Chapter 1

Introduction

To the best of our current knowledge, there are four fundamental forces which govern
the observed phenomena in our universe: electromagnetism, weak interaction, strong interac-
tion and gravitation. Electromagnetism describes the forces between electrically charged
particles such as protons and electrons. The acting range is in principle infinite, but the
strength decreases rapidly with increasing distance. The weak interaction governs the
processes of nuclear decays and can only be observed on subatomic length scales. The
strong interaction binds together the atomic nuclei and is responsible for generating about
99% of the directly observable mass in the universe. It acts only on subatomic length scales,
but does not decrease with increasing distance, instead approaching a non-zero value. In
its acting radius it is the strongest known force in the universe. Lastly, gravitation is the
force governing the dynamics of macroscopic objects like planets, galaxies or everyday
objects. This force is by far the weakest in its acting radius, which is infinitely large, and
cannot be shielded.

The first three forces are all well described in terms of fermionic particles, i.e., electrons,
protons, quarks, etc., with half-integer spin, talking to each other via the exchange of
bosonic particles, i.e., photons, 𝑊- and 𝑍-bosons and gluons, which have integer spin
and are the respective force carriers. Currently, the most successful way to describe the
behaviour of particles and their interactions mathematically is using the framework of
quantum field theories (QFTs), where the particles are seen as manifestations of underlying
fields. The QFT describing the effects of the electromagnetic interactions is called quantum
electrodynamics (QED), first formulated by Shin’ichirō Tomonaga, Julian Schwinger
and Richard P. Feynman [1–4]. The coupling ‘constant’ of QED, i.e., the measure of the
importance of the interactions between the particles, is very small for the energy scales
of interest, which allows QED to be treated using perturbation theory. This means that
the processes can be calculated directly to very high accuracy. The theory of QED is often
combined with the theory of weak interaction, proposed by Sheldon Glashow, Steven
Weinberg and Abdus Salam [5–7], into a QFT called electroweak theory (EWT). The
QFT describing the theory of strong interactions, i.e., quantum chromodynamics (QCD),
formulated by Harald Fritsch and Heinrich Leutwyler in collaboration with Murray
Gell-Mann [8], presents a totally different picture. Here, the coupling is only small enough
for high energies (or small distances), where it approaches zero, to allow the theory to be
treated using perturbation theory. This property is called asymptotic freedom [9, 10]. For
small energies (or large distances) the coupling is too strong for perturbation theory to
work, presenting enormous technical and conceptual challenges for theoretical physicists
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all over the world. The combination of these three QFTs forms the Standard Model of
particle physics, the most successful theory of nature to date.

The only force not part of the StandardModel is gravitation, as its formulation in terms of
a robust quantum theory is still subject to current research. Instead, this force is described
in terms of the (classical) geometric theory of general relativity (GR), which to this day has
withstood any experimental test. This theory works very well for phenomena involving
large distances. However, this force is irrelevant for particle physics. Coming up with a
robust quantum formulation of gravitation and unifying the description of all forces into
one theory is the field of current active research in the “beyond standard model” (BSM)
community.

1.1 QCD, Quarks and Hadrons

For the thesis at hand, we neglect QED, EWT and gravity and focus purely on the theory of
strong interaction. The fundamental fermionic particles of QCD – quarks (𝑞) and antiquarks
( ̄𝑞) – were first introduced by Murray Gell-Mann [11] and independently by George
Zweig 1 [12, 13]. As of today, we have found six different types of quarks – also referred to
as flavours: up (𝑢), down (𝑑), strange (𝑠), charm (𝑐), bottom (𝑏) (also often called beauty) and
top (𝑡). Over time, it was discovered that additional to having a fractional electric charge,
+2𝑒/3 for “up”-like quarks (𝑢, 𝑐, 𝑡) and −1𝑒/3 for “down”-like quarks (𝑑, 𝑠, 𝑏), with 𝑒 the
elementary charge, quarks need to carry another type of charge, which can be characterized
by three different values [14, 15]. In a loose analogy to the three fundamental colours
(red, green, blue), this additional charge is commonly referred to as colour charge. This is
also where the name quantum chromodynamics comes from (Greek: chrōma=“colour”).
Because we do not have one charge like in QED, but three, QCD is a non-Abelian gauge
theory with the underlying symmetry group of SU(3). In contrast to QED, also the
exchange bosons – which for QCD are called gluons (𝑔) – carry a colour charge. This leads
to them being able to interact with each other, as well as with the quarks.

Using the quarks and gluons as building blocks for hadrons, we find that only states for
which “adding up” the (anti)colours of the constituents to give a “colourless” or “white”
(red + green + blue, colour + anticolour) combination yield hadrons observable in nature.
When trying to separate a quark from such a colourless state, the potential energy increases
by virtue of the strong force increasing with larger distances, leading to quark-antiquark
production. This in turn ensures the two resulting states to be colourless. This implies that
coloured objects are not observable, which is a phenomenon known as (colour) confinement.
It leads to the formation of bound states using specific configurations of quarks and gluons.
The two simplest configurations are mesons as quark-antiquark (𝑞 ̄𝑞) states and baryons
consisting of three quarks (𝑞𝑞𝑞) (e.g., protons and neutrons). Based on this, quarks need
to have a baryon number (𝐵) of 𝐵𝑞 = 1/3. Consequently, antiquarks have 𝐵 ̄𝑞 = −1/3 and
gluons have 𝐵𝑔 = 0. Thus, a more general classification scheme is to identify bosonic
mesons as states with baryon number 𝐵 = 0 and fermionic baryons with baryon number
𝐵 = 1. Apart from the conventional 𝑞 ̄𝑞 mesons and 𝑞𝑞𝑞 baryons, one can construct states

1Who initially called them ”aces”.
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with other compositions, which are commonly referred to as exotic hadrons. The most
prominent are four-quark states (𝑞𝑞 ̄𝑞 ̄𝑞), hybrids having a quark-antiquark pair and a gluon
(𝑞 ̄𝑞𝑔) and glueballs, which consist of at least two gluons (𝑔𝑔[𝑔 …]). There are also states
with even higher number of (anti)quarks like pentaquarks, a system of four quarks and
an antiquark (𝑞𝑞𝑞𝑞 ̄𝑞) or hexaquarks, which consist of six quarks. States with even more
quark content, while theoretically possible, are not likely to occur as standalone states in
nature. The wave function for such a state can, however, potentially appear as part of the
superposition of wave functions for a given state, e.g., bosonic hadrons can have 𝑞 ̄𝑞 and
four-quark components as well as hybrid or glueball components as long as the different
components have the same quantum numbers as the full hadron.

The notion of these states being exotic comes from the fact, that the non-relativistic
quark model [11–13] cannot explain states with certain quantum numbers or with net-
electric charges using conventional 𝑞 ̄𝑞 mesons. A more natural description of these states
comes from considering an “exotic” composition – as given above – or the inclusion of
relativistic effects. For an extensive overview over multiquark states from a theoretical and
experimental perspective, see [16–18].

Instead of combining a quark and an antiquark to form a 𝑞 ̄𝑞 meson, one can also combine
two quarks to form a coloured 𝑞𝑞 state named a diquark. Because they are coloured objects,
and thus per definition non-observable, they can only occur in higher bound states or
resonances, e.g., in four-quark states, and can be understood more as an auxiliary tool.

This thesis will investigate the properties of four-quark states containing at least two
heavy quarks like charm and bottom.

1.2 Motivation

Light scalar nonet. Although hadrons with exotic quark content, e.g., 𝑞𝑞 ̄𝑞 ̄𝑞 and 𝑞𝑞𝑞𝑞 ̄𝑞,
were proposed in the original formulation of the quark model [11–13], there was no
necessity to use such quark configurations to explain the properties of the hadrons at the
time. However, this all changed with the observation of the scalar (𝐽𝑃𝐶 = 0++) 𝑓0(500)/𝜎
meson with a mass of ∼ 650 MeV [19] (now 400 − 550 MeV [20]). In the non-relativistic
quark model the relation 𝑃 = ( − 1)𝐿+1 holds, to determine the parity (𝑃) from the orbital
angular momentum (𝐿). Consequently, states with 𝑃 = −1 (pseudoscalar 0−+ and vector
1−−) are 𝑠-wave (𝐿 = 0) and states with 𝑃 = +1 (scalar 0++ and axialvector 1+±) are
considered 𝑝-wave (𝐿 = 1)2. The energy contributions coming from the orbital angular
momentum should force the 𝑝-wave states to be heavier than the 𝑠-wave states. Therefore,
the 𝜎 meson is expected to be heavier than the 𝜌 meson (1−−) in the 𝑞 ̄𝑞 picture. Instead, an
inverse mass ordering is observed, as 𝑚𝜎 < 𝑚𝜌. Considering the whole light scalar nonet,
we find that in the 𝑞 ̄𝑞 picture, the 𝑎0(980) states should be mass degenerate with the 𝑓0(500)
because of the same quark content and the 𝑓0(980) should have 𝑠 ̄𝑠 quark content and be
much heavier. Instead, the 𝑎0(980) is found almost mass degenerate with the 𝑓0(980) and
the 𝑓0(500) is found much lighter. All of the inconsistencies above can be remedied, by

2For the mesons with 𝐽 ≤ 1.
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considering the light scalar mesons as having a 𝑞𝑞 ̄𝑞 ̄𝑞 quark content. This was first suggested
1977 by Robert J. Jaffe [21].

Heavy-flavour spectra. The non-relativistic constituent quark models work very well for
mesons containing heavy quarks, as here the non-relativistic approach is reasonable. For a
long time, all the known states in the charm and bottom region could be well described by
considering them as 𝑐 ̄𝑐 and 𝑏𝑏̄ states respectively. That is, until the 𝜒𝑐1(3872) (originally
named 𝑋(3872)) was discovered by the Belle Collaboration [22] in 2003. This state has
quantum numbers 0(1++) [23, 24] and cannot be explained as a pure 𝑐 ̄𝑐 state. One reason
for this is, that the first observed final state already features a pure 𝑐 ̄𝑐 state, i.e., 𝐽/𝜓𝜋+𝜋−.
Furthermore, the low decay width of Γ = 1.19±0.21 MeV together with the closeness to the
𝐷𝐷̄∗ threshold suggests a four-quark nature with quark content 𝑐𝑞 ̄𝑞 ̄𝑐. This discovery was
the start to exotic hadron spectroscopy as we know it today. Over the following decades
many more exotic hadrons were measured and classified, see [20] for an overview of the
spectra in the charmonium and bottomonium region. Initially, the states with non-zero
electric charge were labelled with the letter 𝑍, vector states were termed with the letter 𝑌
and the rest with the letter 𝑋 and the mass given in parentheses. Especially the discovery
of states with electric charge (𝑍) eliminated any doubts regarding the existence of exotic
mesons consisting of at least four quarks. Note, that the PDG recently changed the naming
scheme and now denotes states with minimal quark content 𝑞𝑞 ̄𝑞 ̄𝑞 with the letter 𝑇 (for
tetraquark)3, see [20] for details. We will use the latter naming scheme throughout this
thesis.

So far, all observed four-quark candidates with zero flavour charge, i.e., states with quark
content 𝑄𝑞 ̄𝑞𝑄̄ with 𝑄 ∈ {𝑐, 𝑏} and 𝑞 ∈ {𝑢, 𝑑, 𝑠}, are resonances decaying predominantly
via strong interaction, with decay widths ranging from a few to a few hundred MeV [20].
The same cannot be said about four-quark candidates with non-zero flavour charge, i.e.,
states with 𝑄𝑄′ ̄𝑞 ̄𝑞′ 4 where 𝑄, 𝑄′ ∈ {𝑐, 𝑏} and ̄𝑞, ̄𝑞′ ∈ { ̄𝑢, ̄𝑑, ̄𝑠}. Here, the states are
expected to be bound if the heavy quark pair (𝑄𝑄′) is sufficiently heavy and the mass of
the antiquark pair sufficiently light [25–29]. In this case, the 𝑄𝑄′ pair effectively behaves
like a point-like 𝟑̄𝐜 (colour-antitriplet) antiquark, resulting in a binding mechanism similar
to that of a heavy-light baryon. The only experimentally identified state of this kind is the
𝑇𝑐𝑐(3875)+ discovered at LHCb in 2022 [30, 31], which has a suggested quark content of
𝑐𝑐 ̄𝑢 ̄𝑑. This state is extremely shallow, with a binding energy of −273(61) keV with respect
to the 𝐷0𝐷∗+ threshold, and with 410(165) keV it has an extremely narrow decay width.
Following the argument from above, the states with heavier 𝑄𝑄′ pair should be possibly
deeply bound. Indeed, theoretical predictions for the binding energy of the 𝑏𝑏 ̄𝑢 ̄𝑑 state,
called 𝑇−

𝑏𝑏, yield values around −(100 − 200) MeV with respect to the 𝐵̄𝐵̄∗ threshold. For
the 𝑏𝑏 ̄𝑢 ̄𝑠, termed 𝑇−

𝑏𝑏 ̄𝑠, the binding energy is predicted to be in the range −(30 − 100) MeV.
For both, see [32–37] and references therein.

3The quark content (other than 𝑢/𝑑), the spin and the electric charge are denoted as super- and subscripts. A
𝑄𝑢 ̄𝑑𝑄̄′ state (𝑄, 𝑄′ denoting heavy quarks) with spin 𝐽, electric charge 𝑐 and mass 𝑀 would be denoted
as 𝑇𝑄𝑄̄′𝐽(𝑀)𝑐.

4Note, that when only considering the strong interactions, as done in this work, 𝑄𝑄′ ̄𝑞 ̄𝑞′ and 𝑄̄𝑄̄′𝑞𝑞′ is
equivalent
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Internal structure. When investigating hadrons containing four quarks, it is natural to
think about what the preferred arrangement of the quarks inside might be. Considering
a four-quark state with generic quark content 𝑄1𝑄2𝑄̄3𝑄̄4 one can identify four different
possibilities:

1 . Compact four-quark state: Here the four quarks all interact strongly with each other
and are bunched tightly together with no apparent clusterings.

2 . Meson-meson: In this picture, two (heavy-light) mesons with quark content
(𝑄1𝑄̄𝑖)(𝑄2𝑄̄𝑗) (𝑖, 𝑗 = 3, 4) constitute a composite state, which can be either bound or
resonant. If the mass of this state is slightly below the threshold of the two mesons
making it up, this state is called a meson-molecule, see, e.g., [16, 38] and references
therein for a general overview of these states.

3 . Hadro-quarkonium: This type of clustering is a special case of themeson-meson picture,
only relevant for heavy-light states with quark content 𝑄1𝑄2𝑄̄3𝑄̄4 = 𝑄𝑞 ̄𝑞𝑄̄. The two
mesons have quark content (𝑄𝑄̄) and (𝑞 ̄𝑞). In analogy to the picture of the atom,
the heavy 𝑄𝑄̄ pair forms the core and sits at the centre, while the light 𝑞 ̄𝑞 pair orbits
around it. For a review regarding the importance of this picture for the charmonium
spectrum see [39].

4 . Diquark-antidiquark: Here we have a diquark (𝑄1𝑄2) and an antidiquark (𝑄̄3𝑄̄4)
being tightly bound by the colour force to form a spatially compact four-quark state.
This kind of clustering is generally referred to as tetraquark in the literature [21]. For
a pedagogic introduction of this picture and its application to multiquark states see,
e.g., [17].

The first configuration (1.) will not be considered in this work, for reasons explained later
on. For a comprehensive overview of the whole topic we refer to the recent review [40].
Different theoretical approaches mostly utilize one of the above possibilities to describe
four-quark states. Thus, for a lot of measured states there is no final agreement between
the different approaches regarding the internal structure. The PANDA experiment at FAIR
(once finished) will be able to measure line shapes of exotic hadrons, which would provide
important information to shed some light on the internal structure, see, e.g., [41] for
further information.

1.3 Theory and Experiment

In physics, there is generally an effective synergy between theory and experiment. Theorists
are coming up with theories and models to describe the processes of nature and look at the
experimental results for verification of their calculations, while experimentalists analyse the
measured data and look towards the theories for the underlying mechanism. It therefore
comes to no surprise, that this is also the case for elementary particle and hadron physics.
Groups of experimental physicists all around the world work on conceptualizing and
building experimental apparatus at the various particle accelerator facilities tomeasure and
analyse the properties ofmatter. On the other side, theoristswork on finding an appropriate
mathematical description of hadrons that can be used to reproduce the experimental
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results and make predictions for future experiments, e.g., suggest energy scales at which
the experimentalists should look for multiquark states. See, e.g., Ref. [40] for a recent
overview of this interplay.

Experiments

In this section, we want to shortly outline the biggest experiments investigating exotic
hadrons. Experiments especially suited to investigate heavy-flavour exotica are so called
𝐵-factories, which are designed to produce a large number of 𝐵-mesons via the decay of
the Υ(4𝑆), which is a 𝑏𝑏̄ state almost exclusively decaying to 𝐵𝐵̄ [20].

Belle (II). The Belle (II) is a 𝐵-factory experiment at the (Super)KEKB accelerator in
Japan. The new flagship accelerator does 𝑒−𝑒+-collision at extremely high luminosities.
With the 𝜒𝑐1(3872) (formerly known as the 𝑋(3872)) the collaboration famously reported
the first heavy-light four-quark candidate andfirst evermeasured exotic hadron in 2003 [22].
This discovery kicked off a new era of hadron physics and the Belle collaboration reported
the finding of many additional exotic hadrons, e.g., the 𝜒𝑐0(3915) [42], the majority of the
𝑇𝑐 ̄𝑐(…)𝐽 states and the only verified four-quark candidates in the bottom spectrum, i.e., the
𝑇𝑏𝑏̄1(10610) and 𝑇𝑏𝑏̄1(10650)+ [43]. At the time of writing, the collaboration consists of
122 institutes from 27 countries [44].

LHCb. The LHCb (large Hadron Collider beauty) is an experiment at CERN which is
dedicated to heavy-flavour physics, see [45] for details. It is not commonly referred to
as 𝐵-factory due to it being not solely concerned with the study of 𝑏-quark particles. It
is responsible for the discovery of many exotic hadrons in the last decade. Starting with
the 𝑃𝑐 ̄𝑐(4380)+, 𝑃𝑐 ̄𝑐(4450) [46, 47] in 2015, LHCb discovered all of the known pentaquark
candidates to date. It was also here, that the quantum numbers of the 𝜒𝑐1(3872) four-quark
statewere determined [23, 24]. Furthermore, the four-quark candidates containing a 𝑐 ̄𝑐 pair
and at least one antistrange ( ̄𝑠) quark, i.e., 𝜒𝑐1(4274), 𝜒𝑐0(4500), 𝜒𝑐0(4700) [48], 𝑋(4630),
𝜒𝑐1(4685), 𝑇𝑐 ̄𝑐 ̄𝑠1(4000) and 𝑇𝑐 ̄𝑐 ̄𝑠1(4220)+ [49] were found at LHCb. The collaboration re-
ported an all charm (𝑐𝑐 ̄𝑐 ̄𝑐) candidate termed 𝑇𝑐𝑐 ̄𝑐 ̄𝑐(6900)0 [50]. Themost recent observation
was the first ever doubly-charmed four-quark state candidate named 𝑇𝑐𝑐(3875)+ [30, 31].
Today, the LHCb collaboration consists of 73 institutes in 12 countries [51].

BES III. The Beijing Spectrometer III (BES III) is also an 𝑒−𝑒+-collider, but with the focus
to study states involving charm quarks. Most notably, they first discovered the state known
now as 𝑇𝑐 ̄𝑐1(3900) [52], as well as confirmed many other exotic candidates. At the time of
writing, the BSE III collaboration consists of 85 institutes from 17 countries [53].

PANDA. The PANDA (antiProton ANnihilation at DArmstadt) is an experiment planned
at the FAIR facility in Darmstadt. It will use proton-antiproton annihilation to study
multiple aspects of hadron physics, like hadron spectroscopy, hadrons in medium and the
structure of nuclei. Of special importance for this work is the focus of investigating the
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charmonium states and the possibility to measure the line shapes of four-quark candidates
in this energy range. This would allow to make statements about the internal structure.
An overview of the planned physics programme in Phase One can be found in [41].

Notable discontinued experiments. There have been many experiments in the past
searching for and reporting four-quark candidates, which have, however, been discon-
tinued. Examples include the CDF and DØ experiments at Fermilab, reporting the
𝜒𝑐1(4140) [54] (called 𝑌(4140) when discovered) and the 𝑇𝑏 ̄𝑠(5568)± [55] (originally
𝑋(5568)±) respectively, the latter of which is still not seen at any other experiment. Also
the BaBar experiment, which was a 𝐵-factory at the SLAC collider searching for four-quark
candidates.

Theoretical approaches and current status

In this section we want to provide an overview over the most important theoretical ap-
proaches used to study four-quark states. We will only discuss the basic ideas and refer
the interested reader to [56] for a more detailed overview. All of the methods below come
with their strengths and weaknesses and ideally are used complementary to each other.

(Constituent) Quark Models. As mentioned earlier, the quark model was initially in-
vented to classify conventionalmesons and baryons in the 1960s, but is still in use to this day.
The quarks in this model are quite heavy, having an effective mass, allowing the systems to
be treated with a non-relativistic Schrödinger equation for spin-spin interactions. Different
aspects of the internal dynamics are captured by using different potentials, see [57] for a
pedagogical introduction. The model works best for hadrons with heavy quarks, as there
the non-relativistic approach is reasonable. Themodel, by construction, breaks downwhen
one wants to consider four-quark states. This can be remedied by combining the quarks
to form diquarks and antidiquarks as effective degrees of freedom, see Refs. [58–60] for
recent reviews using diquark-antidiquark models to investigate heavy-flavour four-quark
states.

Lattice QCD. Treating QCD on a lattice is one of the most rigorous and widely trusted
methods for studying four-quark states because it provides results directly from first
principles of quantum chromodynamics. This numerical approach discretizes spacetime
on a lattice, allowingQCDcalculations to be performed non-perturbatively. It is particularly
useful for determining the binding energies, spatial structures, and decay properties of
tetraquarks. Lattice QCD has been essential in validating the existence of four-quark states
and estimating their masses. We refer the interested reader to [61] for a pedagogical
introduction to lattice QCD and [62, 63] for recent overviews of the status and technical
challenges regarding the study of heavy-flavour four-quark states.

Functional framework (DSE/BSE). The combination of Dyson-Schwinger equations
(DSEs), which are coupled systems of different one-particle irreducible Green’s functions
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and Bethe-Salpeter equations (BSEs) provides a non-perturbative and fully relativistic
framework to study the properties of hadrons. Since the DSEs of different Green’s functions
are coupled, inserting them into each other yields an infinite tower of integral equations,
which however encapsulates the full dynamics of QCD. In practice, one either iteratively
solves a suitably truncated closed system of self-consistent DSEs or applies effectivemodels.
The solutions are used as input for the BSEs, which are relativistic hadronic bound state
equations derived from full 2𝑛-quark Green’s functions. This framework has proven to be
a powerful toolbox to study properties of conventional mesons and baryons [64, 65] and
exotic hadrons [66–68]. See also [69] for a pedagogical introduction and [70] for a recent
review of four-quark states. An obvious weakness of this framework is the uncertainties
regarding the error estimation.

Effective Field Theories (EFTs). EFTs simplify the study of four-quark states by focusing
on the relevant degrees of freedom at particular energy scales, making them ideal for
low-energy or heavy-quark systems. EFTs, such as heavy-quark effective theory (HQET)
or non-relativistic QCD (NRQCD), incorporate symmetries like heavy-quark spin and
flavour symmetry. These symmetries allow systematic expansions in powers of momenta
or quark masses, enabling precise calculations of the dynamics and decays of four-quark
states. Using the famous Weinberg compositeness criterion [71, 72], one can also make
statements about the internal structure for hadronic molecule candidates, cf., e.g., [16].
See [56] and references therein for an extensive introduction to the field.

QCD sum rules. This method bridges QCD theory with experimental observables and
is particularly valuable for making model-independent predictions about the properties
of four-quark states. Using operator product expansion and QCD vacuum condensates,
QCD sum rules relate the masses, decay constants, and other properties of four-quark
states to integrals over spectral functions. This approach is versatile and has been applied
to both stable and unstable tetraquark states. We point the interested reader to [73] and
the comprehensive list of references therein for a thorough introduction to the subject.

Current theoretical status. Generally, using theoretical approaches provides the possi-
bility to systematically vary parameters such as the quark mass and the coupling. The
different theoretical approaches outlined above mostly utilize one of the possible internal
clusterings listed in Section 1.2 to describe four-quark states. Most quark model calcula-
tions resort to a description in terms of a diquark-antidiquark pair, while EFTs often use
the meson-molecule picture, especially for systems close to two-meson thresholds like
the 𝜒𝑐1(3872) or 𝑇𝑐𝑐(3875)+. However, this a priori choice of an internal configuration
introduces an obvious bias towards the state being dominated by the chosen internal
clustering.

Since hadrons are quantum states, the superposition of all three possible internal con-
figurations (interactions 2.-4. listed in Section 1.2) should provide a complete description
of four-quark candidates and allow to make more accurate statements about the inter-
nal structure. This has successfully been done in the functional framework of Dyson-
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Schwinger/Bethe-Salpeter equations for certain charmonium-like four-quark states [67,
74, 75]. Here, there is no a priori bias towards any preferred internal clustering and the
equation dynamically decides which internal quark configuration it likes best. For ex-
ample, the 𝜒𝑐1(3872) and 𝑇𝑐𝑐(3875)+ were found to predominantly be a 𝐷𝐷̄∗ and 𝐷𝐷∗

molecule respectively. A very prominent and strong tool to calculate observables from
first principles is lattice QCD. The operator basis for the lattice calculation also includes
operators describing all three possible internal configurations. A recent overview how
the internal structure can be determined from lattice calculations are given in [62, 76].
A comprehensive list and discussion of recent lattice results for open-flavour four-quark
states can be found in [63].

Overall, we see that the results coming from the different theoretical approaches are
very diverse when it comes to the favoured internal configurations. Each of these methods
is faced with their own technical and conceptual challenges. Thus, it might take a fewmore
years before the results from the different methods can be compared on a quantitative
level and common conclusions can be drawn.

1.4 Outline

The central goal of this thesis is to investigate the mass spectra and internal structure of
heavy-light four-quark states in the charm and bottom region. To this end, we employ a
functional framework, which is able to describe the four-quark states in its entirety, i.e.,
including all the possible internal quark configurations. To our knowledge, our framework
is the only covariant one, which is able to consider the superposition of all important
compositions (meson-meson, hadro-quarkonium, diquark-antidiquark and possible quark-
antiquark components) without a priori bias.

This framework has been successfully applied in the past to investigate the light scalar
nonet [77] and certain hidden- and open-flavour four-quark states in the charm region [78,
79]. While previous works only consider attractive forces between the internal clusters,
we extend this to also include repulsive forces. Using this extended basis, we reanalyse
the results for four-quark states with total spin 𝐽 = 0, 1 in the charm region and extend our
considerations to four-quark states in the bottom region. Furthermore, we explore a novel
method to investigate the internal structure of the four-quark states by considering the
norm contributions of the different internal clusters.

This thesis is structured as follows. In the beginning, we will shortly outline the un-
derlying theory of QCD to lay the foundation of this work. Building on that, we will
briefly review correlation functions in general, before deriving and discussing the quark
Dyson-Schwinger equation (DSE) in Chapter 3. In Chapter 4, we will first derive the ho-
mogeneous meson Bethe-Salpeter/Faddeev-Yakubovsky equation (BSE/FYE) in a general
way, before considering the special case of the two-quark BSE and its solution. Having
done that, we will discuss the main equation of this work, i.e., the four-quark FYE, and
its intricacies in Chapter 5. Then, we present our results for the mass spectra of hidden-
and open-flavour four-quark states and discuss the importance of attractive and repulsive
colour channels. We then introduce a novel method to investigate the internal structure
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and present our obtained results for the dominant internal structure of the aforementioned
exotic hadrons. In the end, final conclusions will be drawn.



Chapter 2

Quantum Chromodynamics
The best theory we currently have to describe the theory of strong interactions is Quantum
Chromodynamics (QCD). It is a non-Abelian quantum field theory which describes the
colour force binding its fundamental fields, i.e., (anti)quark- and gluon fields, into colourless
hadrons (mesons, baryons, tetraquarks, pentaquarks, glueballs, etc.). Furthermore, it
can also describe the binding of these hadrons into nuclei. As the focus of this work is
to investigate the properties of hadrons, it is useful to provide a short overview of the
properties of QCD.

We will shortly lay out the mathematical structure of QCD and then discuss of its
most important symmetries and phenomenological aspects. All of the topics are kept at
an overview level, as they are readily accessible in great detail in many standard QFT
textbooks, e.g., [80–85].

2.1 Mathematical formulation of QCD

The fundamental ideas of Quantum Chromodynamics have been laid out in Chapter 1.
It is a Yang-Mills theory based on the symmetry group SU(𝑁𝑐), with 𝑁𝑐 = 3 being the
number of colour charges realized in nature.

The most basic quantity of a quantum theory is the Lagrangian or Lagrangian density
ℒ. We can obtain the Lagrangian density of QCD, by requiring the fields of the theory,
i.e., the quark (𝜓) and antiquark ( ̄𝜓) fields, to transform invariantly under the symmetry
group SU(3). The symmetry transformations in this context are local, i.e., they depend on
the spacetime position 𝑥. If we recall, that every element 𝑈 of the group SU(𝑁) can be
written as an exponential map of the generators 𝑡 and a transformation or gauge parameter
𝛼, which can be chosen appropriately, then the SU(3) local symmetry transformation of
the quark and antiquark spinors reads

𝜓𝑖(𝑥) ⟶ 𝑈𝑖𝑗(𝑥)𝜓𝑗(𝑥) = exp (𝑖𝛼𝑎(𝑥)𝑡𝑎
𝑖𝑗)𝜓𝑗(𝑥) , (2.1)

̄𝜓𝑖(𝑥) ⟶ ̄𝜓𝑗(𝑥) (𝑈−1)𝑗𝑖 (𝑥) , (2.2)

where the 𝑖, 𝑗 = 1, … , 𝑁𝑐 represent the colour indices of the fundamental (𝟑) representation
while the 𝑎 = 1, … , 𝑁2

𝑐 − 1 denotes the colour index of the adjoint ( ̄𝟖) representation.
For better readability, we will drop the fundamental colour indices and the spacetime
arguments and assume them to be present implicitly.



2 2 2 Q u a n t u m C h r o m o d y n a m i c s

Being based on the symmetry group SU(3) renders QCD a non-AbelianYang-Mills theory,
i.e., the generators of the group do not commute. Instead, they fulfil the commutation
relations

[𝑡𝑎, 𝑡𝑏] = 𝑖𝑓 𝑎𝑏
𝑐𝑡𝑐 , (2.3)

which is the Lie bracket of the associated Lie algebra 𝔰𝔲(3). The 𝑓 𝑎𝑏𝑐 are the structure con-
stants of 𝔰𝔲(3) and 𝑎, 𝑏, 𝑐 are again adjoint colour indices. A detailed discussion of the
group SU(𝑁) and its algebra 𝔰𝔲(𝑁) is given in Appendix A.3.

As established in Chapter 1, quarks are fermions, i.e., spin-1/2 particles. The Lagrangian
density for free fermions in Euclidean spacetime reads ℒDirac = ̄𝜓(/𝜕 + 𝑚)𝜓. It is easy
to see, that the massterm of ℒDirac is invariant under the transformations in Eq. (2.1).
However, the kinetic term is not. To render this term invariant, one replaces the partial
derivative with the covariant derivative

𝐷𝜇 ∶= 𝜕𝜇 + 𝑖𝑔𝐴𝑎
𝜇𝑡𝑎 , (2.4)

which transforms accordingly. This change introduces the gluon field 𝐴𝑎
𝜇 and the strong

coupling constant 𝑔; 𝜇 denotes a Lorentz index. Consequently, the covariant derivative
introduces and governs the interactions between quarks and gluons. The colour index 𝑎
for the gluon field indicates that there are in total 8 gauge bosons in QCD.

As a direct consequence of the replacement /𝜕 → /𝐷 in ℒDirac we get the transformation
properties of the gluon field:

𝐴𝜇 ⟶ 𝐴′
𝜇 = 𝑈𝐴𝜇𝑈† +

𝑖
𝑔 ⋅ 𝑈 (𝜕𝜇𝑈†) , (2.5)

where we have used the abbreviation 𝐴𝜇 ∶= 𝐴𝑎
𝜇𝑡𝑎.

With the purely fermionic part settled, we turn our attention to the pure gauge part. In
gauge theories, e.g., QED, the gauge part is expressed in terms of the field strength tensor 𝐹.
Due to the non-Abelian nature of SU(3), the field strength tensor has to take the following
form to ensure the correct transformation behaviour of the Lagrangian

𝐹𝑎
𝜇𝜈 = 𝜕𝜇𝐴𝑎

𝜈 − 𝜕𝜈𝐴𝑎
𝜇 − 𝑔 𝑓 𝑎

𝑏𝑐𝐴𝑏
𝜇𝐴𝑐

𝜈 . (2.6)

The first two terms are identical to the QED case and the last term is due to the non-
commutative behaviour of the generators of SU(3). This last term implies the existence
of gluon self-interaction, i.e., three- and four-gluon vertices. This is a major difference to
photons in QED, which cannot interact with themselves.

In total, the Lagrangian density of QCD in Euclidean spacetime reads

ℒQCD = ∑
𝑓

̄𝜓𝑓( /𝐷 + 𝑚𝑓)𝜓𝑓 −
1
4 ⋅ 𝐹𝑎

𝜇𝜈𝐹𝜇𝜈
𝑎 . (2.7)

The sum index denotes the quark flavours of QCD 𝑓 ∈ {𝑢, 𝑑, 𝑠, 𝑐, 𝑏, 𝑡} and the 𝑚𝑓 are the
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corresponding current-quark masses.
It is straightforward to check, that the Lagrangian density in Eq. (2.7) is invariant under

the transformations Eqs. (2.1) and (2.5). The integral of the Lagrangian density over
spacetime yields the QCD action

𝑆QCD[𝜓, ̄𝜓, 𝐴𝜇] = ∫d4𝑥 ℒQCD[𝜓, ̄𝜓, 𝐴𝜇] , (2.8)

which is the essential quantity in the partition function 𝒵 in its path-integral formulation:

𝒵QCD[𝜓, ̄𝜓, 𝐴𝜇] = ∫𝒟[𝜓, ̄𝜓, 𝐴𝜇] exp ( − 𝑆QCD[𝜓, ̄𝜓, 𝐴𝜇]) , (2.9)

with the classical action 𝑆QCD in the exponent of the partition function. Integrating over all
field configurations leads to the inclusion of all possible quantum fluctuations around the
classical action. The partition function in Eq. (2.9) implicitly contains the Lagrangian and
thus one could obtain every interesting quantity from it. There is, however, a fundamental
problem. In Eq. (2.9) the 𝒟𝐴 integrates over all possible field configurations, which
includes also field configurations that are equivalent via the gauge transformations of
Eq. (2.5). This overcounting of equivalent gauge field configurations renders the gluon
propagator ill-defined.

To remedy this situation one needs to single out exactly one field configuration among
all the equivalent ones. This can be achieved by using gauge fixing. More precisely one uses
the well-known (DeWitt-)Faddeev-Popov procedure [86–88]. It needs to be remarked here,
that even this procedure is not without flaws as by means of Gribov copies the possibility of
overcounting the equivalent gauge field configurations is always present.1 A pedagogical
discussion of the gauge fixing procedure and its ambiguities can be found in Appendix
B.3 in [93]. An alternative approach to deal with the overcounting issue is to discretize
spacetime and formulate QCD in terms of a lattice field theory. Here gauge fixing is not
strictly necessary, but can be done to compare to results from other approaches. A broad
and very pedagogical introduction and overview of lattice QCD and its intricacies is given
in [61].

As the framework used in this thesis is a continuum field theory we apply the Faddeev-
Popov procedure and arrive at the gauge-fixed QCD Lagrangian, which serves as the basis
for all the derivations and investigations throughout this work:

ℒQCD = ∑
𝑓

̄𝜓𝑓( /𝐷 + 𝑚𝑓)𝜓𝑓 −
1
4 ⋅ 𝐹𝑎

𝜇𝜈𝐹𝜇𝜈
𝑎 −

(𝜕𝜇𝐴𝜇
𝑎 )2

2𝜉 + 𝑖 (𝜕𝜇 ̄𝑐𝑎) (𝐷𝜇
𝑎𝑏𝑐𝑏) . (2.10)

The gauge fixing procedure introduces the auxiliary fields ̄𝑐𝑎 and 𝑐𝑎, which are called the
Faddeev-Popov ghosts. They are complex scalar fields, i.e., have spin zero, but are Grassmann-

1We note, that for the energy regions we are interested in the effect is negligibly small [89–91]. Hence, the
source of error on observable quantities is negligible compared to other error sources, see, e.g., [92]. We
therefore neglect their importance for this work.
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valued and thus fulfil anticommutation relations. Note, that in contrast to the quark fields
𝜓 and ̄𝜓 the ghost fields 𝑐𝑎 and ̄𝑐𝑎 are not related to one another via charge conjugation. This
leads to a violation of the spin-statistics theorem [94, 95]. Consequently, physical particles
associated with the ghost fields cannot exist and they are merely a mathematical tool to
cancel unphysical degrees of the gluon [81, 85]. The variable 𝜉 in Eq. (2.10) is formally a
Lagrange multiplier and labels the gauge-fixing parameter in this case. It labels a class of
gauges known as 𝑅𝜉 gauges, which are generalizations of the Lorenz gauge. Depending on
the gauge one wants to choose, the gauge-fixing parameter 𝜉 takes different values. A very
popular and widely used gauge choice for QFT calculations is the Feynman-’t Hooft gauge ,
i.e., 𝜉 = 1, as it often simplifies the calculations. Another prominent gauge choice, and the
one used in this work, is the Landau gauge, which corresponds to 𝜉 = 0. This choice, as we
will later see, is very suitable for the functional framework as it cancels the longitudinal
part of the gluon propagator thereby reducing the complexity of the equations.

Now that we have solved the problem coming from the gluon quantization in Eq. (2.9)
through gauge-fixing and arrived at the basic quantity for our work in Eq. (2.10) we are
faced with yet another problem which has to be dealt with before we can start doing
calculations. This time, it is a general problem of (most) QFTs, i.e., a lot of occurring
integrals are of the form

∫
∞

0
d𝑘

𝑘3

𝑓(𝑘4)
, (2.11)

where 𝑓(𝑘4) is some function depending on the loop momentum 𝑘 to the fourth power,
e.g., two propagators in a loop diagram. This integral is divergent as for large momenta 𝑘,
which is also known as UV-divergence. Plainly, this is a disaster as these integrals and thus
the infinite quantities are present in the calculation of physical observables. Since these
emergent divergences cannot be circumvented, the QFT-way to deal with them is to use
the renormalization procedure. For this we first need to regularize the integral in Eq. (2.11).
The most straightforward way to accomplish this is to introduce a hard UV-cutoff Λ which
leads to the following replacement in Eq. (2.11):

∫
∞

0
d𝑘

𝑘3

𝑓(𝑘4)
→ ∫

Λ

0
d𝑘

𝑘3

𝑓(𝑘4)
. (2.12)

There are also a lot of other regularization schemes, e.g., dimensional regularization or
Pauli-Villars. Lattice regularization is also among the popular regularization schemes
and thus Lattice field theory again does not feature this problem, as the discretization of
spacetime serves as a natural cutoff.

By introducing the cutoff in Eq. (2.12) we can now calculate the integral, but have to
keep in mind, that the Λ formally needs to be taken to infinity at the end of the calculation.
Therefore, we have just shifted the occurrence of the infinities to a different step in the
calculation, namely to the end. The results are still dependent on the regularization
parameter Λ and therefore still contain the infinities. We can then remove the cutoff
dependence of the calculated quantities by renormalizing them appropriately. Gauge-
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fixed QCD belongs to a class of theories which are multiplicative renormalizable [96–100],
i.e., the fields and couplings appearing in the Lagrangian Eq. (2.7) are interpreted as ‘bare’
(unphysical) and they each get rescaled by an associated renormalization constant which
then carries the cutoff dependence. For QCD, the fields and quantities in the Lagrangian
get rescaled like follows

𝜓B𝑓
= (𝑍𝑓

2)1/2𝜓 , 𝐴𝜇
B = 𝑍1/2

3 𝐴𝜇 , 𝑔B = 𝑍𝑔𝑔 , 𝑐B = 𝑍̃1/2
3 𝑐 , 𝑚B;𝑓 = 𝑍𝑚𝑓

𝑚𝑓 , (2.13)

where 𝑍𝑓
2 denotes the (flavour 𝑓) quark field, 𝑍3 the gluon field, 𝑍̃3 the ghost field, 𝑍𝑔 the

coupling and 𝑍𝑚𝑓
the quark-mass (for quark-flavour 𝑓) renormalization constant, respec-

tively. The quantities with the subscript B denote the bare quantities from the Lagrangian
Eq. (2.7) and the quantities without an additional subscript are the renormalized, i.e.,
physical, quantities. As a short note, there are two popular renormalization schemes: The
momentum subtraction (MOM) scheme, where one imposes conditions on the physical
observables to take a certain (measured) value at a renormalization scale 𝜇. This is a
generalization of the onshell renormalization scheme. The other one is the minimal sub-
traction (MS) or modified minimal subtraction (MS) scheme and it is very prominent
in perturbative calculations, as one can remove the divergent terms order by order. In
this thesis we are investigating the non-perturbative regime of QCD and as such choose a
MOM scheme in the following as it is more suitable. A detailed overview of the different
schemes can be found in [101].

One can find relations among the renormalization constants via the Slavnov-Taylor
identities (STIs) [102, 103], which can be derived from gauge invariance. Being the non-
Abelian generalizations of the Ward-Takahashi identities (WTIs) [104, 105], they relate the
QCD correlation functions to one another, such that one can derive the following relations
[106]

𝑍𝑓
1𝐹 = 𝑍𝑔𝑍𝑓

2𝑍1/2
3 , 𝑍1 = 𝑍𝑔𝑍3/2

3 , 𝑍̃1 = 𝑍𝑔𝑍̃3𝑍1/2
3 , 𝑍4 = 𝑍2

𝑔𝑍2
3 . (2.14)

These are the renormalization constants for the interaction vertices of the theory, i.e., the
quark-gluon vertex (𝑍𝑓

1𝐹), the three-gluon vertex (𝑍1), the ghost-gluon vertex (𝑍̃1) and
the four-gluon vertex (𝑍4).

2.2 Symmetries of QCD

So far we have only explored the local SU(3) gauge symmetry that QCD needs to fulfil by
construction. However, local gauge symmetries are not ‘true’ symmetries of the system, in
the sense that they do not lead to conserved charges and quantum numbers. Rather, they
reflect a redundancy in the description. According to Noether’s (first) theorem [107] each
continuous, global, unbroken symmetry of a Lagrangian has a corresponding conserved
current density 𝑗𝜇, i.e., 𝜕𝜇𝑗𝜇 = 0. By virtue of the formula 𝑄 = ∫d3𝑥 𝑗0 this conserved
current also leads to conserved charges 𝑄, i.e., 𝜕𝑡𝑄 = 0.

Quantum Chromodynamics also features some global symmetries, not all of which are
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continuous and many of them are actually broken (or hidden) in some way or another.
We will shortly discuss these symmetries in the following, but before we do so a short
comment on the types of symmetry breaking is in order. There are three ways in which
symmetries are broken:

Explicit symmetry breaking. Here, the Lagrangian of the theory is actually not invari-
ant under a specific symmetry transformation, i.e., there exist terms in the Lagrangian
which explicitly violate this symmetry. The Noether current in this case is obviously not
conserved.

Spontaneous symmetry breaking. In this situation, the classical Lagrangian is invariant
under a symmetry transformation, i.e., the current is conserved. However, if the vacuum
state of the theory is not invariant under the action of the charge operator 𝑄̂ (corresponding
to the conserved current), i.e., it does not annihilate the vacuum 𝑄̂ |0⟩ ≠ 0, then the vacuum
expectation values of the theory do not vanish, thus implying the formation of condensates.
The symmetry is thus lost ‘spontaneously’ or dynamically due to the inherent dynamics
of the theory. Spontaneous symmetry breaking is therefore also often referred to as
dynamical symmetry breaking. Goldstone’s theorem [108, 109] states that each such charge
𝑄̂ not annihilating the vacuum implies the existence of a massless particle (mode), the
so-called (Nambu-)Goldstone bosons [110]. For a very broad and pedagogical overview of
the subject, see, e.g., [111].

Anomalous symmetry breaking. In this case, while the classical Lagrangian is invariant
under a certain symmetry, it fails to be a symmetry of the full quantum theory for any
regularization scheme. Here, the classical Noether current is still conserved while the
quantized one is not. Put in other words, this symmetry is a symmetry of the action but
not of the measure and thus not of the partition function 𝒵.

2.2.1 Discrete symmetries and the Strong 𝐶𝑃 Problem

Let us start with the few discrete symmetries of the QCD Lagrangian before we come to the
continuous symmetries. As it is in general not possible to build a Lorentz-invariant QFT
with a Hermitian Hamiltonian that violates 𝐶𝑃𝑇 invariance [112], the QCD Lagrangian
in Eq. (2.10) trivially conserves charge conjugation (𝐶), parity transformation (𝑃) and time
reversal (𝑇). However, we could in principle add another term to the QCD Lagrangian in
Equation (2.10), which is Lorentz invariant, renormalizable, has mass dimension 4 and
respects the SU(3) gauge transformations:

ℒ𝜃 = ̄𝜃 ⋅
𝑔2𝑁𝑓

16𝜋2 𝐹𝑎
𝜇𝜈 ̃𝐹𝜇𝜈

𝑎 , with ̃𝐹𝜇𝜈
𝑎 =

1
2 ⋅ 𝜀𝜇𝜈

𝜌𝜎𝐹𝜌𝜎
𝑎 , (2.15)

with ̃𝐹𝜇𝜈
𝑎 denoting the dual field strength tensor, 𝜀 is the 4-dimensional Levi-Civita symbol

and ̄𝜃 can be viewed as a strength parameter of the term. The Lagrangian in Eq. (2.15) is
known as the 𝜃-term which conserves charge conjugation, but violates time reversal and
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parity and thus, by consequence, also violates 𝐶𝑃 invariance. This is the infamous Strong
CP Problem. Since ℒ𝜃 can bewritten as a total divergence of theChern-Simons current [113] it
only contributes a surface term to the action and does not change the perturbative physics.
In the non-perturbative regime of QCD the 𝜃-term gives rise to an electric dipole moment
of the neutron 𝑑𝑁 = (5.2 ⋅ 10−16𝑒 ⋅ cm) ⋅ ̄𝜃 [84], where the experimental measurements
enforce an upper bound ̄𝜃 ≤ 10−10 [114]. Thus, due to the smallness of this upper bound
it seems reasonable to neglect this term and assume that QCD conserves parity.

2.2.2 Global continuous symmetries

For a continuous global symmetry transformation, in contrast to a local symmetry, the
transformation parameter of the symmetry does not depend on the spacetime point 𝑥.
Such transformations include, e.g., rotating the whole system by an angle 𝜙 (rotation
invariance) or shifting the whole system by a distance 𝑎 (translation invariance).

Considering QCD, one can make the local gauge transformation in Eq. (2.1) global by
setting 𝛼(𝑥) = 𝛼, i.e., removing the spacetime dependence. It is straightforward to check,
that the QCD Lagrangian is also trivially invariant under the global SU(3) symmetry. In
the following we will shortly introduce the continuous symmetries of QCD.

BRST invariance

In Section 2.1 we saw that the QCD Lagrangian
in Eq. (2.7) gets the addition of a gauge-breaking term and its associated Faddeev-Popov
ghosts 𝑐 and ̄𝑐 through the DeWitt-Faddeev-Popov procedure, ultimately yielding the
gauge-fixedLagrangian given in Eq. (2.10). Thementioned gauge-breaking term 1

2𝜉(𝜕𝜇𝐴𝜇)2

breaks the gauge symmetry down to a residual symmetry of the entire Lagrangian. This
symmetry was first described by Carlo Becchi, Alain Rouet and Raymond Stora [115,
116] and independently by Igor Tyutin [117], hence the common name BRST symmetry.
Note now, that since the equations of motion for the gauge parameter 𝛼𝑎(𝑥) and the ghost
and antighost fields are the same, i.e.,� 𝛼𝑎(𝑥) = � 𝑐𝑎(𝑥) = � ̄𝑐𝑎(𝑥) = 0, one can equally use
a scaled ghost field to gauge transform by replacing 𝛼𝑎(𝑥) → 𝜆𝑐𝑎(𝑥), where the parameter
𝜆 is Grassmann-valued. We can introduce a BRST operator ̂𝛿𝜆 which yields the following
infinitesimal transformations of the fields (omitting the spacetime argument here):

̂𝛿𝜆𝜓𝑖 = 𝜆 ⋅ 𝑖𝑐𝑎𝑡𝑎
𝑖𝑗𝜓

𝑗 , ̂𝛿𝜆𝑐𝑎 = −𝜆 ⋅
1
2 ⋅ 𝑓 𝑎𝑏𝑑𝑐𝑏𝑐𝑑 , (2.16)

̂𝛿𝜆𝐴𝑎
𝜇 = 𝜆 ⋅ 𝐷𝑎𝑏

𝜇 𝑐𝑏 , ̂𝛿𝜆 ̄𝑐𝑎 = −𝜆 ⋅ 𝜉−1𝜕𝜇𝐴𝑎
𝜇 . (2.17)

With these transformations one can show that the gauge-fixedLagrangian is invariant under
BRST transformation. It can therefore be viewed as a generalization of gauge invariance
as it holds despite the gauge-breaking term in the Lagrangian. Furthermore, because
the parameter 𝜆 and the ghost are determined globally, the transformations of different
spacetime points are not independent and thus BRST symmetry is a global symmetry.
A pedagogical overview of BRST invariance can be found in [84] and a very rigorous
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discussion in [81].
The global symmetries mentioned above have associated Noether currents and charges.

The BRST ‘charge’ can perturbatively be used to separate physical from unphysical states.
Non-perturbatively, the status of BRST symmetry is still unclear and still subject of current
research. A very prominent example of an attempted formulation beyond perturbation
theory is the Kugo-Ojima construction, which is also related to the Kugo-Ojima confinement
scenario [118].

Flavour symmetries

From the QCD Lagrangian in Eq. (2.7) one immediately notices that only the quark fields
carry a flavour index 𝑓 and are hence relevant for the discussion of flavour symmetries.
For the following discussion, we will assume the flavour index to take values 𝑓 = 1, … , 𝑁𝑓,
with 𝑁𝑓 denoting an arbitrary number of flavours (to the best of our knowledge 𝑁𝑓 = 6 in
nature). Furthermore, we will introduce the 𝑁𝑓-dimensional generalized spinor Ψ = (𝜓𝑓)
to encapsulate each individual flavour. Since the gluons and their interactions with quarks
cannot change the flavour of the quarks, all quarks are in principle treated equally within
QCD. Correspondingly, the classical Lagrangian would have an additional U(𝑁𝑓) flavour
symmetry, which is, however, only present if all quark flavours have equal masses. In
nature, this is not realized as can be seen by checking the current-quark masses in the PDG
[20]. Because these masses originate from the Higgs sector and are external parameters as
far as pure QCD is concerned, this symmetry is explicitly broken.

In the following, we will shortly outline how the mass term causes the explicit symmetry
breaking and investigate if there is more to the U(𝑁𝑓) symmetry than meets the eye. We
remember from our QFT lecture, that a Dirac spinor can be decomposed into the direct
sum of a left- and a right-handed spinor ΨL/R, the so-called Weyl-spinors. To project out
either the individual left- or right-handed part of the spinor, one can utilize the properties
of the 𝛾5 Dirac matrix defined in Eq. (A.21) and define two corresponding projection
operators

𝑃R/L =
(𝕀D ± 𝛾5)

2 , with 𝑃2
R/L = 𝑃R/L , 𝑃L𝑃R = 𝑃R𝑃L = 0 , 𝑃L + 𝑃R = 𝕀𝐷 , (2.18)

where 𝕀D denotes the unit matrix in Dirac space. The left- and right-handed spinors are
then obtained via ΨR/L = 𝑃R/LΨ. It is now easy to see, that if we split the QCD Lagrangian
in Eq. (2.7) into left- and right-handed spinors, which transform independently under

ΨL → 𝑈LΨL , ΨR → 𝑈RΨR , with 𝑈L ∈ UL(𝑁𝑓) , 𝑈R ∈ UR(𝑁𝑓) , (2.19)

then the only part that is not invariant is the (𝑁𝑓-dimensional) mass term 𝑀 = (𝑚𝑓),
which mixes the two spinors 𝑀ΨRΨL. Thus, in the limit of massless quarks (or chiral limit)
the QCD Lagrangian has an exact UL(𝑁𝑓) ⊗ UR(𝑁𝑓) symmetry. Since the group U(𝑁) is
isomorphic to U(1) ⊗ SU(𝑁)/ℤ𝑁

2 the transformations in Eq. (2.19) can be separated into
2ℤ𝑁 denotes the cyclic group of 𝑁 elements, which is also the centre of the group SU(𝑁). Since it is not of

relevance to the present work, wewill neglect the subtlety with the centre group and just take SU(𝑁𝑓) as the
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an SU(𝑁𝑓) part times a complex phase:

𝑈L/R = exp (𝑖𝛼L/R𝕀𝑓𝑃R/L) ⋅ exp (𝑖𝛽𝑎
L/R𝑡𝑎𝑃R/L) , (2.20)

where the 𝛼L/R and 𝛽𝑎
L/R are some transformation parameters, 𝕀𝑓 is the unit matrix in 𝑁𝑓

flavour space and 𝑡𝑎 are the SU(𝑁𝑓) generators. Furthermore, instead of using {𝑃L, 𝑃R}
as a basis for the transformation one can equally use the components of the projectors,
i.e., {𝕀D, 𝛾5}. Shifting the basis in this way has the advantage, that the U(1) and SU(𝑁𝑓)
transformations will induce corresponding vector (𝑉) and axialvector (𝐴) currents. With
this in mind, the flavour transformations can be written in the following way:

UL(𝑁𝑓) ⊗ UR(𝑁𝑓) = U𝑉(1) ⊗ SU𝑉(𝑁𝑓) ⊗ SU𝐴(𝑁𝑓) ⊗ U𝐴(1) . (2.21)

As is evident from Eq. (2.21), there are actually four distinct global transformations
which can be written explicitly as

exp (𝑖𝛼𝑉𝕀𝑓𝕀D) ∈ U𝑉(1) , exp (𝑖𝛽𝑎
𝑉𝑡𝑎𝕀D) ∈ SU𝑉(𝑁𝑓) ,

exp (𝑖𝛼𝐴𝕀𝑓𝛾5) ∈ U𝐴(1) , exp (𝑖𝛽𝑎
𝐴𝑡𝑎𝛾5) ∈ SU𝐴(𝑁𝑓) .

(2.22)

The corresponding current densities are then given by the following quark bilinears

𝑗𝜇 = Ψ̄𝛾𝜇𝕀D𝕀𝑓Ψ , 𝑗𝜇𝑎 = Ψ̄𝛾𝜇𝕀D𝑡𝑎Ψ , 𝑗𝜇5;𝑎 = Ψ̄𝛾𝜇𝛾5𝑡𝑎Ψ , 𝑗𝜇5 = Ψ̄𝛾𝜇𝛾5𝕀𝑓Ψ . (2.23)

We know that for a current to be conserved, the four-divergence of the current density has
to vanish. The four-divergence of the current densities in Eq. (2.23) can be obtained to be

𝜕𝜇𝑗𝜇 = 0 , 𝜕𝜇𝑗𝜇𝑎 = 𝑖Ψ̄𝕀D[𝑀, 𝑡𝑎]Ψ , 𝜕𝜇𝑗𝜇5;𝑎 = 𝑖Ψ̄𝛾5{𝑀, 𝑡𝑎}Ψ , 𝜕𝜇𝑗𝜇5 = 2𝑖Ψ̄𝛾5𝑀Ψ .
(2.24)

In the following we will shortly go over each of the four transformations and discuss the
phenomenological implications of the current conversations in Eq. (2.24).

U𝑉(1) symmetry. Since the Lagrangian is invariant under a global rotation of the quark
fields by a phase 𝛼𝑉, this current is actually conserved, as can be seen from the first term
in Eq. (2.24). The corresponding charge 𝑄𝑉 corresponds to fermion number conservation,
but can be redefined such that it yields baryon number conservation in QCD. The associated
quantum number is the baryon number 𝐵.

SU𝑉(𝑁𝑓) symmetry. This symmetry is explicitly broken by the mass matrix 𝑀. However,
if all quarks were to have the same mass (𝑚𝑓 = 𝑚) then the Lagrangian would still be
invariant and the second term in Eq. (2.24) would become 𝜕𝜇𝑗𝜇𝑎 = 0, i.e., all (𝑁2

𝑓 − 1)

relevant group. An overview about the differences between SU(𝑁) and SU(𝑁)/ℤ𝑁 and their implications
can be found in [119].



3 0 2 Q u a n t u m C h r o m o d y n a m i c s

currents would be conserved. Even though this is not the case in nature, for QCD one can
define two currents which are nevertheless conserved. These are the isospin and hypercharge
currents

𝑗𝜇3 = Ψ̄𝛾𝜇𝑡3Ψ , 𝑗𝜇8 = Ψ̄𝛾𝜇𝑡8Ψ , (2.25)

corresponding to the diagonal generators, which commute with each other and also with
the mass matrix 𝑀. The associated charges are the third component of the isospin 𝐼3 and
the hypercharge 𝑌, which then allows an arrangement of hadrons into {𝐼3, 𝑌}-multiplets.

Furthermore, the masses of the three lightest quarks, i.e., up, down and strange, with
𝑚𝑢 ≲ 𝑚𝑑 ≪ 𝑚𝑠, are very much lighter that the typical scale of the strong interaction
ΛQCD. This momentum scale is characterized by the location of the ‘Landau pole’ 3

of QCD and is around ΛQCD ≈ 200–300 MeV. Thus, QCD retains a very approximate
SU𝑉(3) = SU𝑓(3) flavour symmetry. Because the up and down quark masses are very
similar Δ𝑚𝑢𝑑 = 𝑚𝑑 − 𝑚𝑢 ≈ 2.5 MeV and the strange quark mass is much heavier by
comparison, this approximate SU𝑉(3) can be further reduced to an almost exact SU𝑉(2)
isospin symmetry.

SU𝐴(𝑁𝑓) symmetry. This symmetry is explicitly broken by the quark masses not being
equal to zero, i.e., 𝑚𝑓 ≠ 0 , ∀𝑓. Even if all quarks had the same mass (𝑚𝑓 = 𝑚), there
remains a non-zero contribution to the four-divergence which is proportional to the quark
mass

𝜕𝜇𝑗𝜇5;𝑎 = 2𝑖𝑚Ψ̄𝛾5𝑡𝑎Ψ , (2.26)

which is known as the partially conserved axialvector current (PCAC) relation.
In the limit of massless quarks, this current is of course conserved. As in this limit also

the SU𝑉(𝑁𝑓) current is trivially conserved, one has an enlarged flavour symmetry, namely
chiral symmetry: SU𝑉(𝑁𝑓)⊗SU𝐴(𝑁𝑓) ≃ SUL(𝑁𝑓)⊗SUR(𝑁𝑓). This symmetry of themassless
QCD Lagrangian implies the existence of chiral partner states, i.e., states with the same quark
content but different parity, e.g., 𝜋 and 𝜎 for the light mesons. However, if the massterm
for the quarks is added, the mass splitting of the parity partners in nature is found to be
very large, namely 𝑚𝜋 ≈ 140 MeV and 𝑚𝜎 ≈ 450 MeV [20]. Thus, one concludes that
additionally to being explicitly broken by the quark mass term, something else must be
at play here leading to this large mass splitting. This additional effect is the spontaneous
or dynamical breaking of the SU𝐴(𝑁𝑓) symmetry by the interaction between quarks and
gluons, which is the phenomenon usually implied when talking about dynamical chiral
symmetry breaking (DCSB). This breaking in the context of QCDyields the above-mentioned
residual approximate symmetry by the following breaking pattern SU𝑉(3) ⊗ SU𝐴(3) →
SU𝑉(3). As by Goldstone’s theorem the dynamical breaking of this symmetry would imply
𝑁2

𝑓 − 1 = 8 massless Nambu-Goldstone bosons, i.e., 𝜋± , 𝜋0 , 𝐾± , 𝐾0 , 𝐾̄0 , 𝜂8. In nature,
none of these particles (or any other hadron) is in fact massless due to the current-quark

3We use ‘Landau pole’ in quotation marks, as QCD does not feature a classical Landau pole as for example is
present in QED.
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masses. The fact that the pions are far lighter than any hadron and even much lighter than
the mass of their constituent-quarks (see below) is the reason why they are viewed as
the pseudo-Nambu-Goldstone bosons [120] of QCD. Another effect of the DCSB is the
emergence of the large constituent-quark masses, which is the mass of the effective valence
quarks appearing in the conventional classification picture of hadrons. This constituent-
quark mass for the up and down quarks is about 300 MeV and magnitudes larger than
the respective current-quark mass. Related to this fact, one can show that most of the
hadron mass 𝑀𝐻 is actually due to gluonic effects because it is connected to the trace of
the energy-momentum tensor: 𝑀𝐻 ∼ ⟨𝐻|𝑇𝜇

𝜇|𝐻⟩ [121]. While QCD as a classical theory is
scale invariant in the chiral limit, i.e., the trace of the energy-momentum tensor vanishes,
the quantized theory for sure is not. Quantum effects lead to this trace being proportional
to the QCD 𝛽-function and non-zero even in the chiral limit. This is known as the trace
anomaly of QCD [122, 123]. Another important quantity to mention in that regard is the
scalar quark condensate ⟨Ψ̄Ψ⟩, which, like the mass term in the Lagrangian, mixes left- and
right handed spinors and is therefore non-zero except for the chiral limit. It therefore serves
as an order parameter for chiral symmetry breaking.The physical value of the condensate
and therefore the effect of DCSB can be determined from the Gell-Mann-Oakes-Renner
(GOMR) relation [124]. We will see the effect of this relation later on in this work.

U𝐴(1) symmetry. The corresponding axialvector current in 2.24 is conserved classically
for massless quarks 𝑀 = 0. Quantizing the theory, however, does not preserve this
symmetry as the current density 𝑗𝜇5 picks up an anomalous contribution. The existence
of this anomaly was discovered in the decay of the neutral pion 𝜋0 → 𝛾𝛾, which had
a much higher decay rate than expected. A theoretical description of this anomaly is
given in form of the Adler-Bell-Jackiw anomaly, as it was first provided by Stephen Adler
[125], John Bell and Roman Jackiw [126]. They discovered, that this anomaly is related
to the fact that the corresponding Feynman diagrams cannot be regularized to preserve
the axial anomaly. An intuitive way to think about how this anomaly comes about in
the path-integral formulation of QED was introduced by Kazuo Fujikawa, who found
that the anomaly arises when the action is invariant under the symmetry transformation
but the functional measure is not [127]. For QCD, the anomalous term picked up by the
current corresponds to the topological charge density with which the four-divergence of
the current reads

𝜕𝜇𝑗𝜇5 = 2𝑖Ψ̄𝛾5𝑀Ψ + 𝑁𝑓 ⋅
𝑔2

(4𝜋)2 ⋅ 𝐹𝑎
𝜇𝜈 ̃𝐹𝜇𝜈

𝑎 . (2.27)

From this one can easily see, that this does not vanish in the chiral limit and thus always
violates the symmetry. A phenomenological consequence of this anomaly is the large mass
splitting of the 𝜂 (𝑚𝜂 = 547.8 MeV) and 𝜂′ (𝑚𝜂′ = 957.7 MeV) mesons.
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2.3 Phenomenological aspects of QCD

In the previous section about symmetries, we have already discussed some mechanisms
which influence the phenomenology of QCD. However, we are still missing arguably the
two most prominent phenomenological features of QCD: asymptotic freedom and (colour)
confinement. Both of these aspects show up most prominently when considering hadron
physics and as the topic of this thesis is situated in precisely this field, they need to be
introduced.

2.3.1 Asymptotic freedom

To start off, recall that the job of a coupling constant 𝛼 is to ‘measure’ or set the strength of
the force acting between the constituents of a theory depending on their respective distance.
Thus, the coupling constant will vary (unless the theory is conformal) with changing
distance between the constituents. Going to momentum rather than position space, this
also implies that the coupling depends on a momentum scale 𝑄, i.e., 𝛼(𝑄). This feature
is known as the running of a coupling. E.g., considering the case of QED, we know that
the coupling strength decreases with distance, i.e., the farther we pull an 𝑒−𝑒+-pair apart,
the weaker their attraction will become. Conversely, in momentum space the coupling
constant increases with momentum scale until it diverges at the Landau pole, which for
standalone QED is approximately at 𝑄 ≈ 10286 eV.4 In QCD, this behaviour is exactly
opposite. Furthermore, in contrast to the QED case, QCD only features a formal Landau
pole, meaning that the coupling never actually diverges. From the fact that hadrons in
general have a very small spatial extent, typically around 1 fm, and quarks are glued
together by the gluon as the force carrier to form them, one can infer that the strong force is
very strong at large distances or low momenta/energies. Interestingly, despite often being
called the strong force, at high energies, i.e., the ultraviolet (UV) momentum regime, the
force and hence the strong coupling constant 𝛼𝑠 ∶= 𝑔2

4𝜋 is actually quite small (𝑔 denotes
the coupling constant from the QCD Lagrangian). The most precise measurement to date
gave a value of [128]

𝛼𝑠(𝑀𝑍) = 0.1183(9) , (2.28)

with the mass of the 𝑍 boson, i.e., 𝑀𝑍 = 91.1876(21) GeV [20], being the typical energy
scale.

Theoretically, this running of the coupling with respect to the momentum scale is
encapsulated in the beta function (𝛽)

𝛽(𝑔) =
𝜕𝑔

𝜕 ln (𝑄2)
, (2.29)

which can be obtained from the framework of the renormalization group. From Eq. (2.29)
4Note, that QED and the theory of weak interactions unify to the electroweak theory long before this energy
scale. Furthermore, this is orders of magnitude above the Planck scale. Thus, this Landau pole of QED as
a standalone theory is only theoretical and not of practical value.
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it immediately follows, that the coupling increases when 𝛽 > 0, decreases when 𝛽 < 0
and does not change, i.e., is scale invariant, when 𝛽 = 0. For QCD to lowest order, the 𝛽
function can be determined as follows [84]

𝛽(𝑔) = −
𝑔3

(4𝜋)2 ⋅ (
11
3 ⋅ 𝐶𝐴 −

4
3 ⋅ 𝑁𝑓𝑇𝐹) , (2.30)

where 𝐶𝐴 is the quadratic Casimir in the adjoint representation, 𝑇𝐹 is the Dynkin index
in the fundamental representation and 𝑁𝑓 is the number of quark flavours. Using the
respective values in Eqs. (A.35) and (A.37) for QCD with 𝑁𝑐 = 3 yields

𝛽(𝑔) = −
𝑔3

(4𝜋)2 ⋅ (11 −
2
3 ⋅ 𝑁𝑓) . (2.31)

Thus, the 𝛽 function for QCD is negative as long as the number of quark flavours fulfils
the condition 𝑁𝑓 ≤ 16. As it seems, there are only 𝑁𝑓 = 6 quark flavours in nature. With
this, the condition is always true and the 𝛽 function is decreasing with increasing energy:
a property called asymptotic freedom. Solving for the strong coupling constant to lowest
order one obtains

𝛼𝑠(𝑄) =
2𝜋
𝛽0

1

ln ( 𝑄
ΛQCD

)
, (2.32)

with 𝛽0 = 11 − 2
3 ⋅ 𝑁𝑓 corresponding to the first coefficient in the beta function expansion

and ΛQCD comes into play as an integration constant andmarks the position of the ‘Landau
pole’ of QCD. The value for ΛQCD is determined by considering higher order expansion
parameters of the 𝛽 function in Eq. (2.31). Going to third order in the 𝛽 function, using
the experimentally obtained 𝛼𝑠 from Eq. (2.28) and taking the number of relevant quark
flavours 𝑁𝑓 = 5, as the mass of the 𝑍 boson sets the energy cutoff such that 𝑚𝑏 ≪ 𝑚𝑍 < 𝑚𝑡,
one obtains ΛQCD ≈ 210 − 250 MeV.

Note, that the formula in Eq. (2.32) is only valid for energies 𝑄 ≫ ΛQCD. At these
high energies, one can use the strong coupling constant 𝛼𝑠 as an expansion parameter
for perturbation theory. However, below the QCD Landau pole perturbation theory fails
completely as the coupling is too strong and non-perturbative effects dominate. Thus,
ΛQCD serves as a rough estimate for the boundary between the perturbative and non-
perturbative regime.

2.3.2 Confinement

A fundamental property of QCD is that free quarks and gluons, both of which carry a
colour charge, are not directly observable in experiments, but are rather bound in various
combinations to form colourless hadrons. In otherwords, it is the absence of colour charged
asymptotic particle states from the physical spectrum that, from a phenomenological point
of view, inspires the notion of colour confinement of quarks and gluons. A different way,
though related, is to introduce the notion of a linear rising potential between two static
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quarks. In this picture there exist a flux tube between the quark-antiquark pair representing
the potential energy stored in this system. When pulling a quark-antiquark pair apart,
the potential energy between them rises linearly (a bit like a rubber band) until it reaches
a point where it is energetically favourable to form new hadrons. This phenomenon is
called string breaking. Note, that in general it is not that trivial to find a precise definition
of “confinement” [129], however, for our purposes colour confinement is a sufficient
definition. That this linear rising potential between two static quarks exists can be shown
by calculating the Wilson loop [130] in Lattice QCD [61].

As seen in the last section, at high energies quarks and gluons are asymptotically free and
only below the ΛQCD scale they experience confinement. This change from a confined to
an asymptotic free state, resembles a phase transition, which often involve (spontaneous)
symmetry breaking processes. Local gauge symmetries, like in the present case for SU(3)
colour, cannot break spontaneously due to Elitzur’s theorem [131]. Certain gauge choices
break this gauge symmetry down to a global residual symmetry, which we have seen
in Section 2.2.2 to be the BRST invariance for QCD. Elitzur’s theorem does not apply to
such remnant gauge symmetries, which consequently can break spontaneously. Thus,
it may be possible to determine whether a theory is confining or not by investigating if
the remnant gauge symmetry is spontaneously broken or not. One such approach is the
Kugo-Ojima confinement scenario [118], where the authors argue that both the BRST
symmetry and additionally the global gauge symmetry must be conserved for the state
space of QCD to feature only colourless states [132]. For this to be true, they find a criterion
which implies that the non-perturbative ghost propagator must be more singular, and the
fully dressed gluon propagator must be less singular than a simple pole at momentum
𝑝2 = 0 [133]. For more information we refer the interested reader to [129, 134]. Another
approach to confinement is known as theGribov-Zwanziger scenario [135–137]. This scenario
confinement is linked to the Coulomb potential and its relation to the Gribov horizon. The
Landau gauge Zwanziger horizon conditions [136, 138] yield a similar infrared behaviour as
the Kugo-Ojima confinement criterion and can actually be related to each other [139].



Chapter 3

Dyson-Schwinger Equations

3.1 Green functions

Green functions or correlation function are the heart and soul of all quantum field theories, as
all physical properties can be extracted from them. To make it clear which objects we mean
by correlation functions, two-point functions for example are (inverse) particle propagators
while 𝑛-point functions1 represent interaction vertices of 𝑛 particles. In general, correlation
functions are defined as the time-ordered vacuum expectation values of products of fields.
A theory is considered solved once all Green functions are determined. In the path-integral
formulation introduced in the last chapter, a Green function 𝐺, depending on the product
of 𝑛 fields, can be written as

𝐺(𝑥1, … , 𝑥𝑛) ∶= ⟨0|T {Ψ̂(𝑥1) … Ψ̂(𝑥𝑛)} |0⟩ =
∫𝒟[Ψ] e−𝑆QCD Ψ(𝑥1) … Ψ(𝑥𝑛)

∫𝒟[Ψ] e−𝑆QCD
, (3.1)

wherewe have introduced a generalized quantum field Ψ = (Ψ𝐼), with Ψ𝐼 ∈ {𝜓𝑓, ̄𝜓𝑓, 𝐴𝑎
𝜇, 𝑐𝑎, ̄𝑐𝑎}.

The index convention is the same as in Chapter 2: 𝑓 denotes the quark flavour, 𝜇 is a Lorentz
index and 𝑎 denotes the adjoint colour index. Furthermore, we have introduced the index
𝐼 which here and in the following labels fields chosen from the generalized quantum field
Ψ. The Ψ̂(𝑥) denotes operators acting on state space, whereas the Ψ(𝑥) in the integral are
functions. Correlation functions can also be denoted as follows

𝐺[Ψ] = 𝐺(𝑥1, … , 𝑥𝑛) ∶= ⟨Ψ(𝑥1) … Ψ(𝑥𝑛)⟩ , (3.2)

as it reflects the statistical nature of the path-integral as a quantum expectation value and
avoids potential confusion whether the Ψ’s are functions or operators. We have introduced
a shorthand notation 𝐺[Ψ] to indicate the dependence on the considered functionals.

To obtain the desired Green functions in a systematic way, one can use the generating
functional of the theory. This is done by taking the action corresponding to the Lagrangian
in Eq. (2.10) and explicitly introduce the source terms of the fields in the Lagrangian. With
this the Euclidean generating functional, written in a shorthand notation, reads

𝒵[𝒥] = ∫𝒟[Ψ] exp(−𝑆QCD[Ψ] + ⟨Ψ, 𝒥⟩) , (3.3)

1Green functions, 𝑛-point functions and correlation functions are used interchangeably.
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where we have introduced a generalized (external) source field 𝒥 = (𝒥𝐼), with 𝒥𝐼 ∈
{ ̄𝜂𝑓, 𝜂𝑓, 𝑗

𝜇
𝑎 , 𝜎𝑎, 𝜎̄𝑎}, corresponding to the generalized quantum field from above. The scalar

product ⟨Ψ, 𝒥⟩ is understood as a four-dimensional integration over all continuous and
summation over all discrete indices. At 𝒥 = 0, the generating functional in Eq. (3.3)
reduces to the QCD partition function without the sources given in Eq. (2.9).

By taking functional derivatives of Eq. (3.3) with respect to the sources 𝒥, we can now
obtain 𝑛-point Green functions in the presence of these sources as:

𝐺[Ψ]𝒥 =
1

𝒵[𝒥]
𝛿𝑛𝒵[𝒥]

𝛿𝒥(𝑥1) … 𝛿𝒥(𝑥𝑛)
. (3.4)

Note, that we have kept the 𝒥-dependence for now, as it will prove useful in the following.
However, to obtain the physical quantities one needs to remember to set the sources to
their physical value, i.e., take the limit 𝒥 → 0 at the end of a calculation. We will indicate
quantities which are still depending on the sources with a subscript 𝒥.

Connected Green functions are one of the prime quantities of theoretical interest since they
enter in the S-matrix elements and are thus relevant for physical scattering processes. The
generating functional for the connected Green functions is obtained from the generating
functional 𝒵[𝒥] in Eq. (3.3) via 𝑊[𝒥] ∶= ln (𝒵[𝒥]). Taking functional derivatives of 𝑊[𝒥]
with respect to the sources yields the connected 𝑛-point functions.

𝐺[Ψ]conn.
𝒥 =

𝛿𝑛𝑊[𝒥]
𝛿𝒥(𝑥1) … 𝛿𝒥(𝑥𝑛)

. (3.5)

For later purposes, it is useful to define a (semi-)classical or mean field Ψ̃(𝑥) as

Ψ̃(𝑥) ∶= ⟨Ψ(𝑥)⟩𝒥 =
𝛿𝑊[𝒥]
𝛿𝒥(𝑥)

. (3.6)

An equally important class of often used correlation functions are those, where the
external propagators are amputated and which do not fall apart when cutting one internal
propagator line in the Feynman diagrams. These are called one-particle-irreducible (1PI)
correlation functions and describe the irreducible content of interaction vertices. They also
have an associated generating functional which is termed (quantum) effective action Γ. It is
obtained as a Legendre transform of 𝑊[𝒥] with respect to the sources:

Γ[Ψ̃] ∶= −𝑊[𝒥] + ⟨
𝛿𝑊[𝒥]

𝛿𝒥
, 𝒥⟩ = −𝑊[𝒥] + ⟨Ψ̃, 𝒥⟩ . (3.7)

This effective action can be viewed as a generalization of the classical action to the quantum
level, as one obtains the classical action in the limit limℏ→0 Γ[Ψ̃] = 𝑆[Ψ̃]. The 𝑛-point
correlation functions can be obtained from the effective action via functional differentiation
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with respect to the mean fields:

𝐺[Ψ]1PI
𝒥 ∶=

𝛿𝑛Γ[Ψ̃]
𝛿Ψ̃(𝑥1) … 𝛿Ψ̃(𝑥𝑛)

. (3.8)

For example, (source-dependent) three-point functions 𝐺(𝑥, 𝑦, 𝑧)𝒥 and propagators of
particles 𝐷(𝑥, 𝑦)𝒥, which are the inverse of two-point functions, can be obtained as

𝐺(𝑥, 𝑦, 𝑧)𝒥 ∶=
𝛿3Γ[Ψ̃]

𝛿Ψ̃(𝑥)𝛿Ψ̃(𝑦)𝛿Ψ̃(𝑧)
, (3.9)

𝐷(𝑥, 𝑦)𝒥 ∶=
𝛿2𝑊[𝒥]

𝛿𝒥(𝑥)𝛿𝒥(𝑦)
= ⎛⎜

⎝
𝛿2Γ[Ψ̃]

𝛿Ψ̃(𝑥)𝛿Ψ̃(𝑦)
⎞⎟
⎠

−1

, (3.10)

where in Eq. (3.10) we have used the relation

𝒥(𝑥) =
𝛿Γ[Ψ̃]
𝛿Ψ̃(𝑥)

, (3.11)

to express the connected correlation function in terms of Γ, which will be useful in the
context of Dyson-Schwinger equations (DSEs). As an interesting side note, because Γ
reduces to the classical action in the limit ℏ → 0, the 1PI two-point function being the
inverse of the connected two-point function explains why the classical action contains the
1PI correlation functions at tree level, i.e., the inverse tree level propagators and the tree
level vertices (see graphical Lagrangian in Section 3.2). The main point of the discussion
above is that all three generating functionals 𝒵[Ψ], 𝑊[Ψ] and Γ[Ψ̃] completely determine
a QFT, as all correlation functions can be derived from them. We refrain from going
into more detail here, as the topic of correlation functions is covered extensively in many
standard quantum field theory book, e.g., [84, 85, 140, 141].

With this brief introduction to generating functionals and correlation functions we are
now ready to tackle the topic of Dyson-Schwinger equations. The basic idea behind them
is that instead of extracting the Green functions directly from the path-integral, one derives
relations between them. These can be viewed as the quantum equations of motion as they
describe the propagation of particles from one point in spacetime to another, encapsulat-
ing all possible interactions happening along the way. Since the general workings and
properties of DSEs are readily available in standard textbooks [82, 140] and in the reviews
[106, 142] and are furthermore not the main topic of this thesis, we will in the following
only shortly introduce the basic concepts and consider the quark DSE in more detail, as it
is the most important one for this work.

Conceptionally, the derivation of Dyson-Schwinger equations is built upon the fact that
the integral over a total derivative vanishes if the integrand vanishes at the integration
bounds. With quantum fields, this condition is fulfilled as they are expected to vanish at
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infinity. Hence, one can apply this idea to Eq. (3.3), which yields

0 = ∫𝒟[Ψ]
𝛿

𝛿Ψ𝐼
e−𝑆[Ψ]+⟨Ψ,𝒥⟩ = ∫𝒟[Ψ] (−

𝛿𝑆[Ψ]
𝛿Ψ𝐼

+ 𝒥𝐼) ⋅ e−𝑆[Ψ]+⟨Ψ,𝒥⟩ (3.12)

Replacing all contributing fields Ψ𝐾 in the argument of the action by derivatives with
respect to the sources, i.e., 𝑆[𝛿/𝛿𝒥𝐾] = 𝑆[Ψ]∣Ψ𝐾→𝛿/𝛿𝒥𝐾

, we are able to pull this term and the
sources 𝒥𝐼 out of the integral and arrive at a more convenient and familiar form of the
term in Eq. (3.12), namely a master DSE. The following equation shows the master DSE for
the connected and disconnected (or full) correlation functions

(
𝛿𝑆
𝛿Ψ𝐼

⎡⎢
⎣

𝛿
𝛿𝒥𝐾

⎤⎥
⎦

− 𝒥𝐼)𝒵[𝒥] = 0 , (3.13)

as it is derived from the generating functional 𝒵. The name master DSE is very fitting,
as all 𝑛-point DSEs can be obtained from this equation. As a short interlude, it is useful
to shortly explain the procedure happening in Eq. (3.13). One first takes a functional
derivative of the action with respect to a chosen field Ψ𝐼 and after that, according to the
shorthand notation introduced in the text above, replaces the remaining fields with the
derivatives with respect to their sources, i.e., the term in the square brackets, and lets them
act on the generating functional 𝒵[𝒥]. To derive a desired DSEs from Eq. (3.13), one first
chooses a “base” field Ψ𝐼, e.g., quark, antiquark, gluon, ghost in the case of QCD, and then
carries out the procedure described above. After that, one then takes further functional
derivatives of this result with respect to the appropriate source terms. Once this is done,
one then needs to collect the higher than desired correlation functions into vertices and
finally sets the source terms to their physical value, i.e., 𝒥 → 0. For example, to obtain the
quark DSE for a chosen flavour 𝑓 containing all – connected and disconnected – correlation
functions, one first chooses the external source of the antiquark-field ̄𝜓𝑓, i.e., 𝜂𝑓 as a “base”
source and then carries out a further functional derivative with respect to the source of the
quark field 𝜓𝑓 of the same flavour, i.e., ̄𝜂𝑓. This procedure of deriving DSEs clearly follows
a given scheme and is therefore of algorithmic nature. Because of this, there also exist
programs which automate the derivation numerically and algebraically [143, 144].

Deriving DSEs for connected and disconnected diagrams is interesting, but since discon-
nected diagrams do not contribute to physical processes, these are not the type of DSEs
we are after. Changing from the generating functional 𝒵[𝒥] to the generating functional
for the connected correlation functions 𝑊[𝒥], we obtain the master DSE for the connected
Green functions as

𝛿𝑆
𝛿Ψ𝐼

⎡⎢
⎣

𝛿𝑊[𝒥]
𝛿𝒥𝐾

+
𝛿

𝛿𝒥𝐾
⎤⎥
⎦

− 𝒥𝐼 = 0 . (3.14)

Furthermore, for the one-particle irreducible (1PI) Green functions, there also exist a
master DSE which reads
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𝛿𝑆
𝛿Ψ𝐼

⎡⎢
⎣
Ψ̃𝐾 + ⟨⎛⎜

⎝

𝛿2Γ[Ψ̃]
𝛿Ψ̃𝐾𝛿Ψ̃𝐽

⎞⎟
⎠

−1

,
𝛿

𝛿Ψ̃𝐽
⟩⎤⎥

⎦
−

𝛿Γ[Ψ̃]
𝛿Ψ̃𝐼

= 0 . (3.15)

With the identity

𝛿
𝛿𝒥𝐼(𝑥)

= ∫
𝑦

(
𝛿2𝑊[𝒥]

𝛿𝒥𝐼(𝑥)𝛿𝒥𝐽(𝑦)
)

𝛿
𝛿Ψ𝐽(𝑦) ⇔

𝛿
𝛿Ψ̃𝐼(𝑥)

= ∫
𝑦

(
𝛿2Γ[Ψ̃]

𝛿Ψ̃𝐼(𝑥)𝛿Ψ̃𝐽(𝑦)
)

−1 𝛿
𝛿𝒥𝐽(𝑦)

(3.16)

which allows for a transformation between the derivative with respect to the sources and
the one with respect to the (average) fields and the relation in Eq. (3.6) one can rewrite
the argument in the brackets, i.e., the field replacement rule, in Eq. (3.15) as

𝛿𝑆
𝛿Ψ𝐼

⎡⎢
⎣

𝛿𝑊[𝒥]
𝛿𝒥𝐾(𝑥)

+
𝛿

𝛿𝒥𝐾(𝑥)
⎤⎥
⎦

−
𝛿Γ[Ψ̃]
𝛿Ψ̃𝐼

= 0 . (3.17)

We will later use the 1PI master equation to derive the DSE for the quark propagator.
Because the effective action Γ depends on the fields Ψ̃ rather than the sources, one has to
send the fields Ψ̃𝐼 to their physical value (which is zero in most cases) at the end of the
derivation as opposed to setting the sources 𝒥𝐼 to zero like it was the case for the master
DSEs in Eqs. (3.13) and (3.14).

In some cases it is useful to consider a generalization of the 1PI Green functions, namely
the n-particle irreducible (𝑛PI) correlation functions. The idea towards this generalization
was first introduced by JohnM. Cornwall, RomanW. Jackiw and E. Terry Tomboulis [145].
Like in the 1PI case, 𝑛PI correlation functions are Feynman diagrams where cutting up to 𝑛
internal lines still does not render them disconnected. The generating functional for these
type of correlation functions is the 𝑛PI effective action, which is obtained by introducing
additional sources for higher vertices and performing a Legendre transformation with
respect to these sources. Using the 𝑛PI correlation functions can be advantageous when
constructing truncation schemes or investigating some analytic relations since the derived
Dyson-Schwinger equations form a closed system in this case. This is due to the fact that
there are no higher 𝑛-point functions than the ones already present in the action. For a
review and more information on the 𝑛PI framework, see [69, 146–148] and references
therein.

Before we take a closer look at the derivation of the quark DSE, it is useful to shortly
introduce some common nomenclature. During the derivation of DSEs both perturbative
and non-perturbative quantities show up. The non-perturbative quantities contain all the
quantum fluctuations and are hence commonly referred to as full or dressed (or sometimes
even as fully dressed). The perturbative quantities on the other hand are termed as free or
bare.
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3.2 Quark Dyson-Schwinger equation

3.2.1 Derivation

In hadron physics, (anti)quarks are considered the central objects making up bound states
and resonances. As all information about quarks is stored in the quark propagator, the
quark DSE is therefore an essential and much needed building block for the work at hand.
Therefore, it is useful to shortly sketch its derivation and discuss the systematics and
truncations. For this we will use a combination of the mathematical formulation and a
graphical language to better illustrate the steps happening in the derivation. We therefore
introduce the QCD action schematically in the graphical language as

𝑆QCD[ ̄𝜓, 𝜓, 𝐴] =
−1

+ +
−1

+

++
−1

+

where the dark green dots denote the (anti)quark fields ̄𝜓(𝑥) , 𝜓(𝑥), the red dots are a
representation for the gluon field 𝐴𝑎

𝜇(𝑥) and the orange dots represent the ghost fields ̄𝑐, 𝑐.
The small black dot is the bare interaction vertex.

With this set, the starting point of the derivation is the 1PI master DSE in Eq. (3.15). For
the generalized quantum field Ψ𝐼 we choose the antiquark field ̄𝜓𝑖,𝑓(𝑥) of flavour 𝑓 and
with fundamental colour index 𝑖. We then carry out the functional derivative of the action
and the replacements as described in the section above and arrive at:

𝛿Γ[𝜓, ̄𝜓, 𝐴]
𝛿 ̄𝜓𝑖,𝑓(𝑥)

= (/𝜕 + 𝑚𝑓)𝜓𝑖,𝑓(𝑥) + 𝑖𝑔𝑡𝑎𝛾𝜇[𝐴𝑎
𝜇(𝑥)𝜓𝑖,𝑓(𝑥) + (

𝛿2𝑊[𝒥]
𝛿𝑗𝜇𝑎 (𝑥)𝛿 ̄𝜂𝑖,𝑓(𝑥)

)] . (3.18)

In the graphical language, the derivative with respect to the antiquark field corresponds
to removing the left green dot in the diagrams containing quark fields. Therefore, in the
graphical representation the term in Eq. (3.18) becomes:

𝛿Γ[ ̄𝜓,𝜓,𝐴]
𝛿 ̄𝜓𝑖,𝑓(𝑥) =

−1
+ +

The cyan blob in the last term represents the connected quark-gluon vertex. Taking a
further derivative of Eq. (3.18) with respect to the quark field 𝜓𝑗,𝑓(𝑦) of the same flavour,
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−1

=

−1

+

F i g u r e 3 . 1 : Graphical representation of the quark Dyson-Schwinger equation. The white and grey
blobs denote the fully dressed quark and gluon propagators respectively and the cyan filled
circle represents the fully dressed quark-gluon vertex.

one obtains

𝛿2Γ[𝜓, ̄𝜓, 𝐴]
𝛿 ̄𝜓𝑖,𝑓(𝑥)𝛿𝜓𝑗,𝑓(𝑦)

= (/𝜕 + 𝑚𝑓)𝛿(4)(𝑥 − 𝑦)𝛿𝑖𝑗 + 𝑖𝑔𝑡𝑎𝛾𝜇𝐴𝑎
𝜇(𝑥)𝛿(4)(𝑥 − 𝑦)𝛿𝑖𝑗

+ 𝑖𝑔𝑡𝑎𝛾𝜇(
𝛿2𝑊[𝒥]

𝛿𝑗𝜇𝑎 (𝑥)𝛿 ̄𝜂𝑖,𝑓(𝑥)
)

⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖𝛿
𝛿𝜓𝑗,𝑓(𝑦) ,

(3.19)

where we have used the relation 𝛿𝜓𝑖(𝑥)
𝛿𝜓𝑗(𝑦) = 𝛿(4)(𝑥 − 𝑦)𝛿𝑖𝑗 in the process. The arrow over the

derivative in the last term indicates its acting direction. Using the relations in Eq. (3.16)
and quite a bit of algebra, the detailed steps of which can be found, e.g., in Appendix B.4
in [93], one can then rewrite the last term such that Eq. (3.19) reads

𝛿2Γ[𝜓, ̄𝜓, 𝐴]
𝛿 ̄𝜓𝑖,𝑓(𝑥)𝛿𝜓𝑗,𝑓(𝑦)

∣
̄𝜓=𝜓=𝐴𝜇=0

=(/𝜕 + 𝑚𝑓)𝛿(4)(𝑥 − 𝑦)𝛿𝑖𝑗 + 𝑖𝑔𝑡𝑎𝛾𝜇𝐴𝑎
𝜇(𝑥)𝛿(4)(𝑥 − 𝑦)𝛿𝑖𝑗

− 𝑖𝑔𝑡𝑎𝛾𝜇 ∫
𝑢,𝑣

𝐷𝑎𝑏
𝜇𝜈(𝑥 − 𝑢) ⋅ Γ𝜈,𝑙

𝑏,𝑖(𝑢, 𝑦, 𝑣) ⋅ 𝑆𝑙𝑗;𝑓(𝑣 − 𝑥) .

(3.20)

During this rewriting certain fully dressed quantities emerge, i.e., the full gluon propagator
𝐷𝑎𝑏

𝜇𝜈, the full quark-gluon vertex Γ𝜈,𝑙
𝑏,𝑖 and the full quark propagator 𝑆𝑙𝑗,𝑓 of flavour 𝑓. Using

the definition in Eq. (3.10), the last thing to finalize the derivation is to set all explicit
fields in Eq. (3.20) to zero. This concludes our derivation and the final form of the quark
Dyson-Schwinger equation reads

𝑆−1
𝑖𝑗;𝑓(𝑥 − 𝑦) = 𝑆−1

0,𝑖𝑗;𝑓(𝑥 − 𝑦) + 𝑔2𝑡𝑎𝛾𝜇 ∫
𝑢,𝑣

𝐷𝑎𝑏
𝜇𝜈(𝑥 − 𝑢) ⋅ Γ𝜈,𝑙

𝑏,𝑖(𝑢, 𝑦, 𝑣) ⋅ 𝑆𝑙𝑗;𝑓(𝑣 − 𝑥) , (3.21)

with the quantity 𝑆0,𝑖𝑗(𝑥 − 𝑦) denoting the bare inverse quark propagator. The second
term is commonly known as the quark self-energy. Note, that we pulled out a factor of 𝑖𝑔
from the full quark-gluon vertex Γ𝜈,𝑙

𝑏,𝑖 such that the self-energy terms gets a positive sign.
Eq. (3.21) is the exact quantum equation of motion of the (inverse) quark propagator. The
graphical depiction of the quark DSE is shown in Fig. 3.1, where the blobs denote the fully
dressed quantities.

As mentioned above and can be seen from Eq. (3.21), to solve the quark DSE one needs
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−1

=
−1

+ + +

+ + +

F i g u r e 3 . 2 : Graphical representation of the Dyson-Schwinger equation for the full gluon propaga-
tor. The white, orange and grey blobs on the propagators denote the full quark, ghost and gluon
propagators, respectively. For the vertices, the cyan blob is the full quark-gluon, the orange is
the full ghost-gluon and the green blob corresponds to the fully dressed three-gluon vertex.

= + + + +

F i g u r e 3 . 3 : Depiction of the Dyson-Schwinger equation for the dressed quark-gluon vertex.
The white, orange and grey blobs on the propagators denote the full quark, ghost and gluon
propagators, respectively. The filled bars represent higher fully dressed 1PI Green functions.

to know the full gluon and the full quark-gluon vertex. These quantities fulfil their own
DSEs, which can be derived in a similar fashion from the 1PI master DSE in Eq. (3.15):

(𝐷𝑎𝑏
𝜇𝜈)

−1
(𝑥 − 𝑦) =

𝛿2Γ[ ̄𝜓, 𝜓, 𝐴𝜇]
𝛿𝐴𝜇

𝑎 (𝑥)𝐴𝜈
𝑏(𝑦)

, Γ𝜇,𝑗
𝑎,𝑖 (𝑥, 𝑦, 𝑧) =

𝛿3Γ[ ̄𝜓, 𝜓, 𝐴𝜇]
𝛿 ̄𝜓𝑖(𝑥)𝛿𝐴𝜇

𝑎 (𝑦)𝛿𝜓𝑗(𝑧)
. (3.22)

We will refrain from deriving them here for the sake of brevity and because their full form
will prove to not be of essential value for this thesis. The graphical representations of the
corresponding DSEs are shown in Figs. 3.2 and 3.3. These DSEs then include even higher
full 𝑛-point vertices, each fulfilling their own DSEs [149]. This yields a self-consistent,
infinite tower of coupled integral equations, which in this form is an exact description of
QCD.

3.2.2 General solution of the quark DSE

Since we are generally interested in physics at particular energy scales, it is more conve-
nient for us to consider the momentum space representation of the quark DSE. Fourier
transforming the position space representation in Eq. (3.21) and renormalizing the fields
(cf. Section 2.1) we get

𝑆−1
𝑓 (𝑝, 𝜇) = 𝑆−1

0;𝑓 (𝑝, 𝜇) + Σ𝑓(𝑝, 𝜇) , (3.23)



3 . 2 Q u a r k D y s o n - S c h w i n g e r e q u a t i o n 4 3

where 𝑝 is the external quark momentum and 𝜇 denotes a chosen renormalization point.
Unless explicitly needed, the Dirac indices will be suppressed for better readability. The
quantity 𝑆0;𝑓 is the renormalized, bare quark propagator of flavour 𝑓

𝑆−1
0;𝑓 (𝑝, 𝜇) = 𝑍𝑓

2(𝜇2, Λ2)(𝑖/𝑝 + 𝑍𝑚𝑓
(𝜇2, Λ2)𝑚𝑓(𝜇2)) , (3.24)

with 𝑚𝑓(𝜇2) denoting the renormalized quark mass. The quark self-energy Σ is given as

Σ𝑓(𝑝, 𝜇) = 𝑔2(𝜇) 𝑍𝑓
1𝐹(𝜇2, Λ2) ⋅ (𝛾𝜇𝑡𝑎)∫

Λ

𝑏
𝐷𝑎𝑏

𝜇𝜈(𝑘, 𝜇) ⋅ Γ𝜈
𝑏(𝑏, 𝑘, 𝜇) ⋅ 𝑆𝑓(𝑏, 𝜇) , (3.25)

with internal quark momentum 𝑏, the UV momentum-cutoff Λ, the strong coupling con-
stant 𝑔, the renormalization constant of the quark-gluon vertex 𝑍𝑓

1𝐹 (cf. STIs Eq. (2.14))
and 𝑘 = 𝑏 − 𝑝 denoting the gluon momentum. It is clear from the bare propagator in
Eq. (3.24), that the quark propagator can be expressed via two Dirac structures, i.e., /𝑝 and
the unit matrix in Dirac space 𝕀D. To capture the full momentum-dependent behaviour of
the quark propagator, one introduces two dressing functions 𝐴(𝑝2, 𝜇2) and 𝐵(𝑝2, 𝜇2) and
attaches them to the Dirac tensors to form the general solution for the full inverse quark
propagator as follows 2:

𝑆−1
𝑓 (𝑝, 𝜇) = 𝑖/𝑝 ⋅ 𝐴𝑓(𝑝2, 𝜇2) + 𝐵𝑓(𝑝2, 𝜇2) = 𝑍−1

𝑓 (𝑝2, 𝜇2) ⋅ (𝑖/𝑝 + 𝑀𝑓(𝑝2)) . (3.26)

Here we have introduced the quark wavefunction 𝑍𝑓 = 𝐴−1
𝑓 and the renormalization point

independent quark mass function

𝑀𝑓(𝑝2) =
𝐵𝑓(𝑝2, 𝜇2)
𝐴𝑓(𝑝2, 𝜇2)

. (3.27)

With this, the full quark propagator can be written as

𝑆𝑓(𝑝, 𝜇) =
−𝑖/𝑝 ⋅ 𝐴𝑓(𝑝2, 𝜇2) + 𝐵𝑓(𝑝2, 𝜇2)
𝑝2 ⋅ 𝐴2

𝑓 (𝑝2, 𝜇2) + 𝐵2
𝑓 (𝑝2, 𝜇2)

∶= −𝑖/𝑝 ⋅ 𝜎𝑉(𝑝2, 𝜇2) + 𝜎𝑆(𝑝2, 𝜇2) , (3.28)

where we have introduced two dressing functions corresponding to the vector (𝛾𝜇) and to
the scalar (𝕀D) Dirac structure, i.e., 𝜎𝑉 and 𝜎𝑆, respectively. Because the dressing functions
depend on the momentum of the quark, we can investigate the transition of the quark mass
function 𝑀(𝑝2) and the behaviour of the quark propagator from the UV to the infrared
energy region.

It is also useful to consider the charge conjugation of the quark propagator, as it will be
important later on in the context of diquarks. Charge conjugation of a quark replaces it

2This is only true in vacuum. In medium the spatial and temporal part need to be treated separately due to
𝑂(4) symmetry breaking. This yields an additional dressing function in the general solution of the quark
propagator [150].
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[Sf ;αβ(p)]
C
= [ ]C

p
=

p
= ST

f ;αβ(−p)

F i g u r e 3 . 4 : Feynman diagram representation of the charge conjugation of the quark propagator.
The arrow on the propagator line indicates the spin andmomentum flow of the quark propagator.
The momentum flow of the quark propagator is inverted and regarding the Dirac structure, the
charge conjugation corresponds to transposing the quark propagator.

with the associated antiquark. The charge conjugated quark propagator is obtained via

[𝑆𝑓 ; 𝛼𝛽(𝑝)]
𝐶

∼ 𝐶𝑇
𝛼𝜂( − 𝑖/𝑝)𝜂𝜁𝐶𝜁𝛽 + 𝐶𝑇

𝛼𝜂𝛿𝜂𝜁𝐶𝜁𝛽 = −𝑖( − /𝑝𝑇
𝛼𝛽) + 𝛿𝑇

𝛼𝛽 = 𝑆𝑇
𝑓 ; 𝛼𝛽(−𝑝) , (3.29)

where we have made use of the relations given in Eq. (A.24). The superscript 𝑇 denotes
transposed quantities. Note, that upon charge conjugation the momentum flow of the
quark propagator is flipped. The whole process effectively corresponds to transposing the
quark propagator. A visualization of the charge conjugation is shown in Fig. 3.4.

An important fact to note is, that the quark DSE in Eq. (3.23) only depends on the
renormalization scale 𝜇2, while the UV cutoff Λ2 dependence is fully absorbed in the
renormalization constants. As explained in Section 2.1, employing aMOM renormalization
scheme imposes conditions for the physical observables to take certain values at the
renormalization scale 𝜇2. The commonly used renormalization condition for the quark
DSE reads

𝑆−1
𝑓 (𝑝, 𝜇)∣𝑝2=𝜇2 = 𝑖/𝑝 + 𝑚𝑓(𝜇2)∣𝑝2=𝜇2 , (3.30)

imposing the conditions 𝐴(𝑝2, 𝜇2)∣𝑝2=𝜇2 = 1 and 𝐵(𝑝2, 𝜇2)∣𝑝2=𝜇2 = 𝑚𝑓(𝜇2) on the dressing
functions. The renormalization scale for the “physical” observables is consistently set to
𝜇 = 19 GeV in this work, which is sufficiently far in the UV for our purposes. One now
only needs to solve for the two dressing functions to obtain the full, momentum-dependent
information of the quark propagator.

Numerically, the quark DSE in Eq. (3.23) is solved via an iterative process, as the full
(inverse) quark propagator appears on both sides of the equation. Furthermore, one needs
the full gluon propagator and full quark-gluon vertex as an input, which we will discuss
in the next section. These are given as the general solution to their respective DSEs in
Figs. 3.2 and 3.3 as:

𝐷𝑎𝑏
𝜇𝜈(𝑘) = (𝛿𝜇𝜈 −

𝑘𝜇𝑘𝜈

𝑘2 ) ⋅
𝑍(𝑘2, 𝜇2)

𝑘2 ⋅ 𝛿𝑎𝑏 ∶= 𝑇𝜇𝜈(𝑘) ⋅
𝑍(𝑘2, 𝜇2)

𝑘2 ⋅ 𝛿𝑎𝑏 , (3.31)

Γ𝜇
𝑎 (𝑏, 𝑘, 𝜇) = 𝑡𝑎 ⋅

12
∑
𝑙=1

𝑓𝑙(𝑏2, 𝑘2, 𝑏 ⋅ 𝑘, 𝜇2) ⋅ 𝜏𝜇
𝑙 (𝑏, 𝑘) . (3.32)

The 𝑇𝜇𝜈(𝑘) denote the transversal projector. In Landau gauge (𝜉 → 0), the longitudinal
part of the gluon propagator vanishes. Thus, we only need one dressing function 𝑍(𝑘2).
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The 𝑓𝑙 denote the twelve dressing functions of the full quark-gluon vertex.

3.2.3 Truncations

Because the tower of DSEs is infinite, it does not constitute a closed system and a solu-
tion without truncations and/or modelling is not feasible in finite time and with limited
computing power. Some early models employed to study the quark DSE include the
Munczek-Nemirovsky [151, 152] and the Nambu-Jona-Lasinio model [153, 154]. These
models, although able to capture qualitative phenomenological features, have obvious
shortcomings due to lack of dynamics, localization of the gluon propagator or neglection
of the dynamics contained in the (dressed) quark-gluon vertex.

To tackle the quark DSE numerically, we use one of the most prominent and successful
truncations of the DSE tower that is available in the literature, i.e., the Rainbow-Ladder
truncation (RL). The idea behind this truncation is to reduce the complicated object that
is the full quark-gluon vertex given in Eq. (3.32) – initially consisting of twelve tensor
structures and accompanying dressing functions – to its leading Dirac tensor structure
and make a model ansatz for the corresponding vertex dressing, i.e.,

Γ𝜇
𝑎 (𝑏, 𝑘, 𝜇) = 𝛾𝜇𝑡𝑎 ⋅ Γ(𝑘2, 𝜇2) . (3.33)

Neglecting the dependence on the (internal) quark momentum 𝑏2, the (model) dressing
function only depends on the gluon momentum 𝑘2. This reduces the complexity of the
equation drastically, as the quark-gluon vertex DSE decouples from the system. The caveat
of course is, that the model needs to be chosen carefully not to omit possible important
dynamics stored in the full quark-gluon vertex.

We can now reinsert the ansatz in Eq. (3.33) into Eq. (3.25) and combine the model
dressing function Γ(𝑘2) together with the gluon dressing 𝑍(𝑘2) and the coupling strength
𝑔(𝑘2) into an effective running coupling (or effective interacting strength)

𝛼(𝑘2) =
𝑔2(𝜇2)

4𝜋 ⋅
1

𝑍̃3𝑍2
⋅ 𝑍(𝑘2, 𝜇2)Γ(𝑘2, 𝜇2) . (3.34)

In this work we choose not to solve the corresponding gluon DSE to obtain the gluon
dressing function 𝑍(𝑘2), but we will use an appropriate parameterization for the effective
running coupling instead. As this corresponds to absorbing the structure of the quark-
gluon vertex into the gluon and modelling the dynamics of both quantities plus the
coupling, the quark DSE completely decouples from the tower of DSEs and forms a closed
system. Employing the effective running coupling in the quark DSE in Fig. 3.1 corresponds
to the replacement shown in Fig. 3.5 in the self-energy term.

With this, the self-energy term expands into a sum of diagrams which contain ever
more gluon exchanges. This structure graphically resembles a rainbow, hence the name
Rainbow-Ladder truncation. We will see in the next section where the Ladder part of
the name comes from. To model the most important dynamics as good as possible, the
explicit form of the effective coupling 𝛼(𝑘2) is motivated by physics. In the UV momentum
region, the momentum dependence of 𝛼(𝑘2) should resemble the behaviour known from



4 6 3 D y s o n - S c h w i n g e r E q u a t i o n s

𝛼(𝑘2)

F i g u r e 3 . 5 : Graphical depiction in terms of Feynman diagrams of combining the dynamics of
the full gluon propagator (grey blob) and the full quark-gluon vertex (cyan blob) into an effective
gluon (hatched, purple) with a bare quark-gluon vertex.

(resummed) perturbative QCD, which preserves the important property of asymptotic
freedom. When going to the IR momentum region, the interaction needs to be sufficiently
strong to enable dynamical chiral symmetry breaking – which would come automatically
when solving the coupled DSE system.

In the past, several models have been employed for 𝛼(𝑘2), using the UV limit together
with an ansatz for the IR behaviour [155–158]. In this work, we will use a very frequently
chosen and very successful parameterization first introduced by Pieter Maris and Peter
C. Tandy in [159, 160]. We will therefore in the following simply refer to it as the “Maris-
Tandy (MT) model” or “Maris-Tandy interaction”. The parameterization of the effective
running coupling in the MT model reads 3

𝛼(𝑘2) = 𝜋 ⋅ 𝜂7
MT

⎛⎜
⎝

𝑘2

Λ2
MT

⎞⎟
⎠

2

exp ( − 𝜂2
MT ⋅

𝑘2

Λ2
MT

) + 𝜋 ⋅
2𝛾𝑚 (1 − exp ( − 𝑘2

Λ2
𝑡
))

ln (e2 − 1 + (1 + 𝑘2

Λ2
QCD

)
2
)

,

(3.35)

where the first term characterizes the IR properties and the second term accounts for
the UV behaviour of the interaction. The latter is constrained by perturbative QCD, as it
approaches the asymptotic behaviour of the QCD running coupling in the limit 𝑘2 → ∞,
cf. Eq. (2.32). The QCD scale here is given as Λ𝑁𝑓=4

QCD = 0.234 GeV, while the anomalous
dimension of the quark mass function is obtained as 𝛾𝑚 = 12/(11⋅𝑁𝑐−2⋅𝑁𝑓). 𝑁𝑐 is the number
of colours, which is 𝑁𝑐 = 3 for conventional QCD. The number of flavours chosen for the
interaction in this work is 𝑁𝑓 = 4, which does not necessarily coincide with the number
of flavours used, but rather serves as a model parameter to determine ΛQCD for the MT
interaction [69, 159, 160]. The interaction in Eq. (3.35) also features threemodel parameters
– a UV parameter Λ𝑡 = 1 GeV, a dimensionless parameter 𝜂MT and an IR scale ΛMT. Since
this work is focussed on hadron physics, we are more interested in the infrared properties
and thus the latter two parameters are the important ones as they govern the IR behaviour
of our model interaction. The values for these parameters are fixed to 𝜂MT = 1.8 and
ΛMT = 0.72 GeV in this work, such that certain properties of the pion, i.e., its mass and

3In the literature, Eq. (3.35) is sometimes expressed with a different set of parameters, i.e., {𝐷, 𝜔}. These are
related to the {𝜂, Λ} parameters used here via: 𝜔 = Λ/𝜂 and 𝐷 = 𝜂Λ2.
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its leptonic decay constant, are reproduced. As a last step, we note that the ghost-gluon
vertex in Landau gauge is actually not UV divergent [161, 162], thus we can choose
𝑍̃1 = 𝑍𝑔𝑍̃3𝑍1/2

3 = 1. With this, the renormalization constant for the quark-gluon vertex
simplifies to: 𝑍𝑓

1𝐹 = 𝑍𝑓
2/𝑍̃3. Finally, we can make the following replacement in the quark

DSE Eq. (3.23) (omitting all the arguments of the renormalization constants and dressing
functions for simplicity):

𝑍𝑓
1𝐹 ⋅ 𝑔2𝑍Γ ∼ 𝑍𝑓

1𝐹 ⋅ 𝑍−2
𝑔 ⋅ 𝑍−1

3 ⋅ 𝑍𝑓
1𝐹 = (𝑍𝑓

2)
2

⋅ ( 𝑍2
𝑔 ⋅ 𝑍̃2

3 ⋅ 𝑍3⏟⏟⏟⏟⏟
=𝑍̃2

1=1

)
−1

= (𝑍𝑓
2)

2
. (3.36)

Putting everything together, the quark Dyson-Schwinger equation in its closed and final
form reads

𝑆−1
𝑓 (𝑝, 𝜇) = 𝑆−1

0;𝑓 (𝑝, 𝜇) + (𝑍𝑓
2(𝑝2, 𝜇2))

2
⋅ 𝐶𝐹 ∫

Λ

𝑏

𝛼(𝑘2)
𝑘2 𝑇𝜇𝜈(𝑘) 𝛾𝜇 ⋅ 𝑆𝑓(𝑏, 𝜇) ⋅ 𝛾𝜈 , (3.37)

where we have used Eq. (A.30) to get the quadratic Casimir operator 𝐶𝐹 defined in
Eq. (A.35). Since the full quark propagator will serve as an input for the main con-
siderations of this work, we will discuss the solution of Eq. (3.37) in the next section.

Before we do so, just note that there is an alternative way to systematically approach
and truncate the tower of equations. For this, one chooses a certain 𝑛PI effective action and
derives the coupled system of DSEs from the respective master equation. Furthermore,
one truncates above a certain order in the loop expansion. This yields a closed system of
equations as in this case, the DSEs do not contain higher 𝑛-point functions than present in
the (effective) action, see [69, 163] and references therein for a more detailed description
and its application to the meson sector and [68] for a successful application of this method
to study the glueball spectrum. For reasons of saving computing power and that this
systematic approach is not yet readily available for the systems studied in this work, we
resort to the Maris-Tandy interaction described above.

3.2.4 Numerical solutions

To obtain the solution for the full quark propagator of a chosen flavour 𝑓 numerically, we
need to solve Eq. (3.37) for the two dressing functions 𝐴𝑓(𝑝2) and 𝐵𝑓(𝑝2). To do so, we
project out the dressing functions individually and then solve the two resulting coupled
equations simultaneously. Since the parameters of the MT model are fixed in our case
(cf. last section), the only external input needed is the renormalized quark mass at the
renormalization point for the chosen quark flavour, i.e., 𝑚𝑓(𝜇2). In this work, we go to the
isospin symmetric limit, i.e., 𝑚𝑢 = 𝑚𝑑, and from here on denote the up and down quark
with a common letter: 𝑢/𝑑 = 𝑛. This is a good approximation, as SU(2) isospin symmetry
is an almost exact symmetry (cf. Section 2.2.2) and the MT interaction is anyhow flavour
blind. A sketched description of the solution process is given in Appendix B.1 in [164].

The solution for the up/down-quark propagator is displayed in the left panel of Fig. 3.6.
Here, we show the obtained dressing functions 𝐴𝑓 and 𝐵𝑓 and the resulting quark mass
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1
F i g u r e 3 . 6 : Left panel: Quark dressing functions 𝐴(𝑝2) (blue, dashed), 𝐵(𝑝2) (orange, dash-dotted)

and 𝑀(𝑝2) (green, solid) for current-quark mass 𝑚𝑛(𝜇2) = 3.7 MeV. Right panel: Quark mass
functions for the chiral limit (blue, solid), up/down (orange, dashed), strange (green, dash-dotted),
charm (red, dotted) and bottom (violet, dash-doubledotted) quarks. The respective current-quark
masses used as an input will be discussed in Chapter 4.

function 𝑀𝑓, defined in Eq. (3.27), as functions of 𝑝2 ∈ ℝ+ in a log-log plot. We choose
𝑚𝑛(𝜇2) = 3.7 MeV as a realistic 𝑢/𝑑 current-quark mass. We see, that all dressing functions
approach asymptotic values in the IR and the UV and the greatest change happens around
𝑝2 = 1 GeV2. The important physics in this plot is given in the quarkmass function 𝑀𝑛(𝑝2).
It shows the evolution of the quark mass from the current-quark mass in the ultraviolet
(𝑚𝑛 = 3.7 MeV), enforced by to our renormalization condition in Eq. (3.30), to the much
heavier constituent-quark mass in the infrared momentum region 𝑀(𝑝2 ≲ 1 GeV2) ≈
492 MeV. This behaviour is commonly referred to as dynamical mass generation and is a
direct effect of the dynamical chiral symmetry breaking of QCD, which we discussed in the
SU𝐴(𝑁𝑓) symmetry subsection in Section 2.2.2. Solving the quark DSE for the other quark
flavours of interest for this work, that is the strange (𝑠), charm (𝑐) and bottom (𝑏) quarks, we
obtain the respective quark mass functions, which are shown in the right panel of Fig. 3.6.
From this graph we see, that compared to the current-quark mass of the respective quark
flavour, the effect of the dynamical mass generation gets less and less pronounced for the
heavier quark flavours.

Now we are prepared to take a closer look at the structure of the full quark propagator
in Eq. (3.28), in particular at the denominator

den(𝑆𝑓(𝑝2)) =
1

𝑝2 ⋅ 𝐴2
𝑓 (𝑝2) + 𝐵2

𝑓 (𝑝2)
. (3.38)

We see that the propagator will have poles for certain values of 𝑝2 ∈ ℂ, which is not
surprising, as this is a generic property of propagators. As we will discuss in more detail in
the following chapter, whenever a particle propagator has a pole for timelike 𝑝2, i.e., with
negative real part, one obtains the mass plus the decay width of that particle, depending on
whether the pole is located on the negative real axis or in the complex plane. However, the
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1F i g u r e 3 . 7 : The structure of the vector dressing function 𝜎𝑉 of the up/down-quark propagator in
the complex plane, shown as a contour plot. The 𝑥- and 𝑦-axes represent the real and imaginary
part of 𝑝2. The same current-quark mass was used as in the left panel in Fig. 3.6. The singularities
occur roughly at 𝑝2 ≈ ( − 0.2 ± 0.3𝑖) GeV2.

quark is not an observable particle and therefore the poles in Eq. (3.38) will have a different
interpretation. We will nevertheless investigate the structure of the quark propagator in
the complex 𝑝2 plane, as it will be necessary for the later considerations in this work. The
first observation we make is, that the dressing functions satisfy certain (anti)symmetries
under complex conjugation (denoted by the asterisk):

𝐴𝑓((𝑝2)∗) = 𝐴∗
𝑓 (𝑝2) , 𝐵𝑓((𝑝2)∗) = 𝐵∗

𝑓 (𝑝2) , (3.39)

We conclude, that while the real part of 𝐴𝑓 and 𝐵𝑓 is symmetric under complex conjugation,
the imaginary part is antisymmetric. Therefore, any pole structures of the full quark prop-
agator show up with a complex conjugate partner. This behaviour of complex conjugate
poles is known to occur in rainbow-ladder truncations [165]. To visualize the structure of
the full quark propagator, we solve the up/down-quark DSE in Eq. (3.37) for complex 𝑝2

and show the resulting 𝜎𝑉 dressing function as a two-dimensional contour plot in Fig. 3.7.
Showing only the upper half-plane of Im(𝑝2) is sufficient, as the poles occur as complex
conjugate pairs. One can clearly see, that the up/down-quark propagator has a singularity
at 𝑝2 ≈ ( − 0.2 ± 0.3𝑖) GeV2. For a detailed analysis of the pole structures of the quark
propagator using DSEs with the Maris-Tandy model see [166].

A short note is in order here. Solving the quark DSE by simply choosing 𝑝2 to be complex
leads to the gluon momentum 𝑘2 = 𝑏2 + 𝑝2 ± 2√𝑝2√𝑏2 in the integration of Eq. (3.37) to
be complex, constituting the interior of a parabola. Making the argument for the effective
coupling in Eq. (3.34) complex, the logarithmic tail of 𝛼(𝑘2) develops branch cuts during
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the integration. For small current-quark masses the effect of blindly integrating over the
branch cut is negligible and the position of the poles is not affected. We will call this naive
integration. However, going to heavier quark flavours requires going further and further
into the complex 𝑝2-plane. Here the effect of the branch cut is too severe, which leads to
numerical artefacts obstructing the calculation. To avoid this one can follow two strategies:

▪ One can resort to path deformation techniques and choose an integration path for
the internal quark momentum 𝑏2 such that the branch cut is not hit, see, e.g., [167].
As a caveat, one needs to trust that there are no further emerging branch cuts or
poles – which are very hard to catch – disturbing the path deformation.

▪ Alternatively, one can shift the integration variable from the internal quark momen-
tum 𝑏 to the gluon momentum 𝑘 4. This in turn renders the gluon momentum real
and the internal quark momentum becomes complex. For the internal quark momen-
tum 𝑏2 one then sets up parabolas in the complex plane with increasing apex and
opening and solves the quark DSE on these parabolas. Because these parabolas fill
the complex plane one after the other like shells, this method is termed shell-method
[168]. A very pedagogical introduction can be found in Appendix B.2 of [164]. Note
as a caveat, that choosing a parabola too close to the complex conjugate poles will
lead to longer computation times or even non-convergence of the quark DSE.

The up/down-quark propagator in Fig. 3.7 was obtained via the naive integration as
it allows to visualize also 𝑝2 beyond the complex conjugate poles. Choosing the naive
integration here is possible, because as explained above, the up/down current-quark mass
is light enough such that the branch cut effect is negligible. In the following calculations of
this work, we employ the shell-method to calculate the quark propagator in the complex
plane, as we are then not restricted to only the light quark flavours.

With this, we have now introduced and discussed the most important quantities needed
as an input for the subsequent investigations of this work, i.e., the rainbow-ladder trunca-
tion together with the Maris-Tandy model and the full quark propagator as a solution to
the quark DSE in said truncation. This then concludes our considerations about Dyson-
Schwinger equations and we are now ready to move on and tackle the main topic of this
work, namely hadrons and hadronic bound state equations.

4This is straightforward, since the integral is formally translation invariant.



Chapter 4

Bethe-Salpeter Equations
Up to now, we have learnedwhat types of fields and possible interactions between them are
present in the context of QCD and how the particles associated to the fields propagate from
one spacetime point to another via the concept of correlation functions and their equations
of motion, i.e., the Dyson-Schwinger equations. While these subjects are fascinating in
their own right, the main topic of this thesis is the extraction and investigation of hadron
properties. To obtain the properties of hadrons in ordinary, non-relativistic quantum
mechanics, we would compute a potential and solve the Schrödinger equation. However,
since we are dealing with the relativistic framework of QFTs in this work, we need to
address how to calculate hadron properties like masses etc. in this context. Put into one
question: Is there an analogue of the Schrödinger equation in the context of QFTs?

The answer to this question is of course ‘yes’. These analogues are called Bethe-Salpeter
equations (BSEs), introduced by Hans Bethe and Edwin E. Salpeter in 1951 [169], and are
the central object of this thesis. The following chapter aims at providing a short overview
over the derivation and solution of these equations in general. In this context, we will
discuss the properties of mesons and diquarks, i.e., solutions to the two-body BSE, with
total spin 𝐽 = 0, 1, as they will be important for the internal structure of four-quark states.

4.1 Derivation

As alreadymentioned in Section 3.1, correlation functions are the central objects containing
all information of quantum field theories. It should therefore come as no surprise, that
also the properties of hadrons are contained in Green functions. In particular, scattering
amplitudes and cross-sections are the important quantities in this context. The question
now is: How do we extract hadron properties from correlation functions?

The answer to this question is related to an important quantity when dealing with
correlation functions, which is also related to experiment: the spectral representation. As
its definition and derivation are given in any standard QFT book, e.g., [81, 83–85], we
refrain from discussing it in detail here and only highlight some aspects. Usually the
spectral representation is derived in the context of two-point functions and as a start one
considers the eigenstates |𝜉 ⟩ of the Hamiltonian of the theory. Each state is characterized
by a momentum 𝑃⃗ and an associated energy 𝐸𝑃⃗ = (𝑃⃗2 + 𝑀2

𝜉)1/2, where 𝑀𝜉 labels the
mass of the state. Possible mutiparticle states in this formulation are characterized by the
centre-of-mass momentum 𝑃⃗ plus relative momenta between the particles and their energy
spectrum forms a continuum. The complete set of eigenstates of course constitutes the
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whole state space of the theory and as a consequence one can formulate a completeness
relation

𝕀 = ∑
𝜉

1
(2𝜋)3 ∫ d3𝑃

2𝐸𝑃⃗
|𝜉 ⟩ ⟨𝜉 | , (4.1)

where the sum over 𝜉 is formal, including also integrals over relative momenta for possible
multiparticle states, and the denominator in the integral measure is the Lorentz-invariant
energy of the states, forcing them to be on-shell. Inserting Eq. (4.1) into the two-point
correlation function then yields the spectral representation, which tells us, that on-shell
particles in Eq. (4.1) produce poles in the respective propagators whenever the momentum
𝑃⃗2 equals the physical mass of the particle 𝑀2

𝜉 . For more information and useful proofs,
see [170].

For the QCD Hamiltonian, the whole state space is enormous, including not only the
colour-singlet hadrons like mesons, baryons, glueballs and multiquark states, but also
(unphysical) coloured states like diquarks. One can therefore also formulate a complete-
ness relation of the form in Eq. (4.1) for QCD. Since the two-point correlation functions
in QCD, i.e., quark and gluon propagators, cannot produce physical hadron poles upon
insertion of the completeness relation, a generalization of the spectral representation to
𝑛-point functions is needed.

Fortunately, this is possible and we will do so in the following considering a generic
𝑛-quark meson bound state, consisting of 𝑛/2 quarks and 𝑛/2 antiquarks of arbitrary flavour.
This choice was made as all investigated hadrons in this thesis will be mesons. The Green
function for our 𝑛-quark meson state will contain 2𝑛 fields (𝑛 quark and 𝑛 antiquark fields)
and read

𝐺(2𝑛)
𝒜1…𝒜𝑛;ℬ1…ℬ𝑛

(𝑥1, … , 𝑥𝑛; 𝑦1, … 𝑦𝑛) = ⟨0∣T{𝜓𝒜1
(𝑥1) ̄𝜓𝒜2

(𝑦1) … 𝜓ℬ(𝑛−1)
(𝑥𝑛) ̄𝜓ℬ𝑛

(𝑦𝑛)}∣0⟩ ,
(4.2)

with the 𝒜𝑖, ℬ𝑖 denoting the combination of Dirac, flavour and colour indices for the quark
and antiquark fields, respectively, to avoid clutter. Inserting the completeness relation
Eq. (4.1) for QCD into Eq. (4.2) and using a subsequent Fourier transformation to go to
momentum space, one can see that each on-shell hadron with momentum 𝑃2 = −𝑀2

𝜉
produces a pole in the correlation function and the spectral representation of the correlation
function 𝐺(2𝑛) thus reads

𝐺(2𝑛)
𝒜1…𝒜𝑛;ℬ1…ℬ𝑛

({𝑝𝑖}, {𝑞𝑖}, 𝑃) = ∑
𝜉

Ψ(𝑛)
𝜉; 𝒜1…𝒜𝑛

({𝑝𝑖}, 𝑃)Ψ̄(𝑛)
𝜉; ℬ1…ℬ𝑛

({𝑞𝑖}, 𝑃)

𝑃2 + 𝑀2
𝜉

+ regular terms ,

(4.3)

where the sum contains all the possible hadrons with the given quark content and quantum
numbers 𝐼 (𝐽𝑃(𝐶)), the sets {𝑝𝑖} and {𝑞𝑖} denote the 𝑛 − 1 relative momenta (because of
momentum conservation at the ‘vertex’ Ψ) between the (anti)quarks and 𝑃 labels the total
momentum of the hadron. In Eq. (4.3) we have introduced the Bethe-Salpeter wave function
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F i g u r e 4 . 1 : Graphical illustration of the approximate form for the 2𝑛-(anti)quark 𝑇 matrix at the
pole of a hadron |𝜉 ⟩ given in Eq. (4.9). The 𝑛-quark𝑇-matrix is represented by the green box, while
the 𝑛-quark Bethe-Salpeter amplitudes are depicted as the green half-circles. The (anti)quark
propagators are represented by lines with an arrow indicating the spin and momentum flow.
Arrows pointing from right-to-left denote quarks and from left-to-right denote antiquarks. The
associated quark momenta are shown as given in the main text.

(BSWF) [171]

Ψ(𝑛)
𝜉; 𝒜1…𝒜𝑛

= ⟨0|𝜓𝒜1
̄𝜓𝒜2

… 𝜓𝒜(𝑛−1)
̄𝜓𝒜𝑛

|𝜉⟩ (4.4)

as the transition element between vacuum and the on-shell hadron state. Caution: even
though the name BS wave function would suggest otherwise, we cannot directly obtain
probability information from these objects aswould be the case for the usualwave functions
in quantum mechanics [170]. At the pole location of a hadron |𝜉 ⟩, the sum in Eq. (4.3) gets
dominated by this term and the correlation function approximately reads

𝐺(2𝑛)({𝑝𝑖}, {𝑞𝑖}, 𝑃)
𝑃2=−𝑀2

𝜉≈
Ψ(𝑛)

𝜉 ({𝑝𝑖}, 𝑃) Ψ̄(𝑛)
𝜉 ({𝑞𝑖}, 𝑃)

𝑃2 + 𝑀2
𝜉

. (4.5)

The Ψ̄ here denotes the charge conjugated BSWF. To make the equations more readable,
we choose to suppress most of the momentum dependencies and all indices except for the
state label 𝜉 for now.

The correlation function in Eq. (4.2) also satisfies an equation of motion, which in this
context is called Dyson equation (suppressing all indices and arguments here):

𝐺(2𝑛) = 𝐺(𝑛)
0 + 𝐺(𝑛)

0 𝐾(𝑛) ⋅ 𝐺(2𝑛) . (4.6)

The 𝐺(𝑛)
0 denotes the product of 𝑛 non-interacting (free) full quark propagators and 𝐾(𝑛) is

an 𝑛PI scattering kernel (as we have 𝑛 (anti)quarks) with respect to the quark propagators.
Each multiplication implies an integration over all loop momenta. The full correlation
function 𝐺(2𝑛) can be related to the (2𝑛)-quark 𝑇-matrix, i.e., the non-trivial part of the
scattering matrix 𝑆, via 𝐺(2𝑛) = 𝐺(𝑛)

0 + 𝐺(𝑛)
0 𝑇(2𝑛) 𝐺(𝑛)

0 , which in turn also fulfils its own
Dyson equation

𝑇(2𝑛) = 𝐾(𝑛) + 𝐾(𝑛)𝐺(𝑛)
0 ⋅ 𝑇(2𝑛) . (4.7)
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This relation between 𝐺 and 𝑇 also implies the following relation between the BSWF Ψ
and the Bethe-Salpeter amplitude (BSA) Γ, which is the amputated wave function:

Ψ(𝑛)
𝜉 = 𝐺(𝑛)

0 ⋅ Γ(𝑛)
𝜉 . (4.8)

Thus, by inserting this into Eq. (4.3) and amputating the quark legs, one obtains a similar
spectral representation for 𝑇(2𝑛), which at the pole of a given hadron reduces to

𝑇(2𝑛)({𝑝𝑖}, {𝑞𝑖}, 𝑃)
𝑃2=−𝑀2

𝜉≈
Γ(𝑛)

𝜉 ({𝑝𝑖}, 𝑃) Γ̄(𝑛)
𝜉 ({𝑞𝑖}, 𝑃)

𝑃2 + 𝑀2
𝜉

. (4.9)

This expression in terms of Feynman diagrams is given in Fig. 4.1. We stress, that the object
in the numerator of Eq. (4.9), also often termed the residue 𝑅𝜉 at the hadron pole

𝑅𝜉({𝑝𝑖}, {𝑞𝑖}, 𝑃) = Γ(𝑛)
𝜉 ({𝑝𝑖}, 𝑃) Γ̄(𝑛)

𝜉 ({𝑞𝑖}, 𝑃) , (4.10)

contains all the non-trivial information about 𝑇 in the vicinity of the particle pole and
therefore all the information about the state itself. While this also holds for the BSWF Ψ,
we will use the BSA Γ throughout this work.

To extract the information about a hadron, we first need to calculate the corresponding
BSA Γ at the physical pole. To do this, let’s say we are at the pole of the hadron we want to
investigate. We can then insert Eq. (4.9) for the 𝑇-matrix in its Dyson equation Eq. (4.7):

Γ(𝑛)
𝜉 Γ̄(𝑛)

𝜉

𝑃2 + 𝑀2
𝜉

= 𝐾(𝑛) + 𝐾(𝑛)𝐺(𝑛)
0 ⋅

Γ(𝑛)
𝜉 Γ̄(𝑛)

𝜉

𝑃2 + 𝑀2
𝜉

. (4.11)

By comparing the residues on both sides, this equation reduces to

Γ(𝑛)
𝜉 Γ̄(𝑛)

𝜉

𝑃2 + 𝑀2
𝜉

= 𝐾(𝑛) 𝐺(𝑛)
0 ⋅

Γ(𝑛)
𝜉 Γ̄(𝑛)

𝜉

𝑃2 + 𝑀2
𝜉

, (4.12)

from which we can now cancel the denominator and the charge conjugated BSA Γ̄ to find
the homogeneous Bethe-Salpeter equation:

Γ(𝑛)
𝜉 = 𝐾(𝑛) 𝐺(𝑛)

0 ⋅ Γ(𝑛)
𝜉 , (4.13)

which will be the main equation of interest in this thesis. A pictographic sketch of this
derivation in shown in Fig. 4.2. From this it is easy to see, that, by applying the usual
Feynman rules, the homogeneous BSE is an integral equation featuring 𝑛 − 1 integrals
over the respective relative momenta.

A short note regarding the naming is in order here. Since the original formulation of
the BSE was in the context of two-body systems, the name ‘Bethe-Salpeter equation’ is
often reserved for such systems, e.g., mesons and diquarks. However, this formulation
was first extended to three-body systems like baryons by Ludvig D. Faddeev [172, 173]
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𝑇 = 𝐾 + 𝐾 𝑇
𝑃2 = −𝑀2

𝜉
Γ𝜉 = 𝐾 Γ𝜉

F i g u r e 4 . 2 : Graphical representation showing the derivation of the homogeneous 𝑛-quark Bethe-
Salpeter equation from the Dyson equation of the 𝑛-quark 𝑇-matrix. The 𝑇-matrix is again
shown as the green box, the blue box depicts the interaction kernel 𝐾(𝑛), the blobs on the line
represent fully dressed quark propagators and the green half-circles are the 𝑛-quark Bethe-
Salpeter amplitudes.

and then finally generalized to 𝑛-particle systems by O. Yakubovsky [174]. Hence, the
generalizations of the BSEs are generally known as Faddeev-Yakubovsky equations (FYEs).
Throughout this thesis, we will use these two terms interchangeably.

The homogeneous BSE in Eq. (4.13) can be viewed as an eigenvalue equation for the
matrix 𝐾(𝑛)𝐺(𝑛)

0 with the eigenvalue being equal to one. The BSAs Γ𝜉 take the role of an
eigenvector in this picture. A more general formulation of Eq. (4.13) would be to introduce
an eigenvalue 𝜆𝜉(𝑃2) depending on the squared total hadron momentum 𝑃2 and write

𝜆𝜉(𝑃2) Γ(𝑛)
𝜉 = 𝐾(𝑛) 𝐺(𝑛)

0 ⋅ Γ(𝑛)
𝜉 . (4.14)

There is of course a similar equation for the BSWF. With this more general formulation, we
normally do not solve the BSE directly at the pole of the hadron, but instead vary 𝑃2 and
calculate the associated eigenvalues 𝜆𝜉(𝑃2). The resulting eigenvalue curve (EVC) satisfies
the condition 𝜆𝜉(𝑃2 = −𝑀2

𝜉) = 1 at the pole of the considered hadron, which reduces
Eq. (4.14) to Eq. (4.13) rendering the BSE solved. The state label 𝜉 now differentiates
whether we have obtained the ground state of a hadron with the considered (anti)quark
content and quantum numbers 𝐼 (𝐽𝑃(𝐶)), i.e., the largest eigenvalue with 𝜉 = 0, or a radially
excited state, which are labelled with the next lower eigenvalues with 𝜉 = 1, 2, … .

This more general procedure is useful for various reasons. Firstly, when we consider
states which are experimentally measured, we know the position of the pole and can try
to solve the BSE at or in the region of the experimentally given mass. However, if we want
to investigate particles which have not yet been measured and predict their masses, we do
not have this information. By considering a range of 𝑃2 and investigating the behaviour of
the EVC, we can see where the condition 𝜆 = 1 is met and thus make predictions about
the masses. Secondly, in a perfect world with enough time and computing power, we
would be able to know and include all the important interactions in the kernel 𝐾(𝑛) and
calculate the masses to arbitrary precision. However, in practice, most of the time, we need
to truncate the system or model some part of the interactions to make the computations
feasible. Depending on the employed model, the mass spectrum of hadrons can vary
greatly. Investigating the EVC can give important insights on the reliability of the used
model.
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−1 = Γ̄𝜉
d

d𝑃2 Γ𝜉 + Γ̄𝜉
d

d𝑃2 𝐾 Γ𝜉

𝑃2 = −𝑀2
𝜉

⎛⎜
⎝

d ln(𝜆(𝑃2))
d𝑃2

⎞⎟
⎠

−1
= Γ̄𝜉 Γ𝜉

𝑃2 = −𝑀2
𝜉

F i g u r e 4 . 3 : Graphical representation of the Cutkosky-Leon (top) and the Nakanishi (bottom) nor-
malization condition for the Bethe-Salpeter amplitude Γ𝜉 in the language of Feynman diagrams.

4.1.1 Normalization and general structure of the BSAs

Reintroducing the omittedmomentumdependencies, the obtainedBSA Γ𝜉({𝑝𝑖}, 𝑃) contains
the non-trivial, momentum-dependent information about the on-shell hadron |𝜉 ⟩. They
can thus be used to calculate further properties of the associated hadron, e.g., leptonic
decay constants, form factors for hadronic decays just to name a few. Similarly to the wave
function in quantum mechanics, Γ𝜉 (or Ψ𝜉) needs to be properly normalized in order to
be used in further calculations. This normalization constant can be determined by using
either of the two following criteria.

The Cutkosky-Leon criterion was first formulated by Richard E. Cutkosky and M. Leon
in [175] and starts by considering the derivative of the correlation function 𝐺 with respect
to 𝑃2. Since for this work we are more interested in the BSA than the BSWF, we will
reformulate the derivation in terms of 𝑇 rather than the originally considered 𝐺. The
obtained results can be converted into each other with a bit of algebra. Considering the
derivative of 𝑇 with respect to 𝑃2 now yields the following relation1:

d𝑇(2𝑛)

d𝑃2 = −𝑇(2𝑛) d (𝑇(2𝑛))−1

d𝑃2 𝑇(2𝑛) . (4.15)

Inserting Eq. (4.9) straightforwardly yields the normalization condition

1 = ⎡
⎢
⎣
Γ̄(𝑛)

𝜉
d (𝑇(2𝑛))−1

d𝑃2 Γ(𝑛)
𝜉

⎤
⎥
⎦𝑃2=−𝑀2

𝜉

. (4.16)

Reformulating Eq. (4.7) as 𝑇 = (𝕀 − 𝐾𝐺0)−1𝐾 and inverting this yield the inverse of the

1Since 𝑇 and its inverse 𝑇−1 fulfil 𝑇 𝑇−1 = 𝕀, differentiating this product yields (𝑇 𝑇−1)′ = 0, where ′ denotes
a generic derivative. By applying the chain rule, we get: 𝑇′ 𝑇−1 + 𝑇 (𝑇−1)′ = 0 and consequently obtain
𝑇′ = −𝑇 (𝑇−1)′ 𝑇.
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𝑇-matrix as

(𝑇(2𝑛))−1 = (𝐾(𝑛))−1 − 𝐺(𝑛)
0 . (4.17)

Inserting this into Eq. (4.16) and fixing 𝑃2 = −𝑀2
𝜉 from here on gives

1 = ⎡⎢
⎣
Γ̄(𝑛)

𝜉
d (𝐾(𝑛))−1

d𝑃2 Γ(𝑛)
𝜉 − Γ̄(𝑛)

𝜉
d𝐺(𝑛)

0
d𝑃2 Γ(𝑛)

𝜉
⎤⎥
⎦𝑃2=−𝑀2

𝜉

(4.18)

= ⎡⎢
⎣
Γ̄(𝑛)

𝜉 (𝐾(𝑛))−1 d𝐾(𝑛)

d𝑃2 (𝐾(𝑛))−1 Γ(𝑛)
𝜉 − Γ̄(𝑛)

𝜉
d𝐺(𝑛)

0
d𝑃2 Γ(𝑛)

𝜉
⎤⎥
⎦𝑃2=−𝑀2

𝜉

. (4.19)

As a last step, we can now use (𝐾)−1 ⋅ Γ𝜉 = 𝐺0 ⋅ Γ𝜉 from Eq. (4.13) and write

−1 = ⎡⎢
⎣
Γ̄(𝑛)

𝜉
⎛⎜
⎝

d𝐺(𝑛)
0

d𝑃2 + 𝐺(𝑛)
0

d𝐾(𝑛)

d𝑃2 𝐺(𝑛)
0

⎞⎟
⎠

Γ(𝑛)
𝜉

⎤⎥
⎦𝑃2=−𝑀2

𝜉

. (4.20)

A graphical representation of this final form of the Cutkosky-Leon normalization condition
in terms of Feynman diagrams can be found in the top panel of Fig. 4.3.

Alternatively, there is the Nakanishi criterion which was formulated by Noboru Nakan-
ishi [176] and reads

⎛⎜
⎝

d ln (𝜆(𝑃2))
d𝑃2

⎞⎟
⎠

−1

∣
𝑃2=−𝑀2

𝜉

= Γ̄(𝑛)
𝜉 𝐺(𝑛)

0 Γ(𝑛)
𝜉 . (4.21)

Here one takes the derivative of the (logarithm of the) eigenvalue 𝜆(𝑃2) with respect to
𝑃2 and connects it to a closed loop involving the BSAs and the product of dressed quark
propagators 𝐺(𝑛)

0 . The Nakanishi criterion in Eq. (4.21) is depicted in the bottom panel of
Fig. 4.3 in terms of Feynman diagrams.

For this work, we choose to work with the Nakanishi normalization criterion, for the
few cases that we need to apply it explicitly, as it is the less complex one not involving a
two-loop diagram. In the context of the four-body equation later on in this work, only the
right-hand side of Eq. (4.21) will be of importance, but we will elaborate on this further
once we get there.

It is now time to take a closer look at the mathematical formulation of the Bethe-Salpeter
amplitude Γ𝜉({𝑝𝑖}, 𝑃). As is the case for the wave function in quantum mechanics, the
BSWF Ψ and therefore its amplitude Γ can be split into different parts, each describing
an individual aspect of the hadron. These aspects are of course the total spin 𝐽 (given in
terms of Dirac matrices), the colour and the flavour structure of the hadron with given
quantum numbers 𝐼(𝐽𝑃𝐶). Therefore, we can consider our BSA to live in a product space
consisting of the 4 × 4 dimensional Dirac-, the 𝑁𝑐 × 𝑁𝑐 dimensional colour- and the 𝑁𝑓 × 𝑁𝑓
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dimensional flavour-space. Explicitly written, the BSA then reads

Γ(𝜇𝜈…); 𝐴1…𝐴𝑛; 𝑎1…𝑎𝑛
𝜉; 𝛼1…𝛼𝑛

({𝑝𝑖}, 𝑃) = Γ(𝜇𝜈…)
D(irac); 𝛼1…𝛼𝑛

({𝑝𝑖}, 𝑃) ⊗ Γ𝐴1…𝐴𝑛
C(olour) ⊗ Γ𝑎1…𝑎𝑛

F(lavour) , (4.22)

with Lorentz indices 𝜇𝜈 … denoting states of higher spin, i.e., 𝐽 = 1, 2, … . Each (anti)quark
carries a Dirac, colour and flavour index, which for the general case considered here will
amount to 𝑛 Dirac, colour and flavour indices, represented by lower case greek letters
𝛼1, … , 𝛼𝑛, capital latin letters 𝐴1, … , 𝐴𝑛 and lower case latin letters 𝑎1, … , 𝑎𝑛, respectively.

We start by first considering the explicit form of the Dirac part of the amplitude ΓD. In
general, it can be expanded in a suitable tensor basis as

Γ(𝜇𝜈…)
D;𝛼1…𝛼𝑛

({𝑝𝑖}, 𝑃) =
𝑁D

∑
𝑗=1

𝑓𝑗; 𝜉(Ω; 𝑃2)𝜏(𝜇𝜈…)
𝑗; 𝛼1…𝛼𝑛

({𝑝𝑖}, 𝑃) , (4.23)

with the basis elements 𝜏𝑗 inheriting the Dirac and Lorentz- structure of Γ𝜉. Each basis
element comes with a Lorentz-invariant dressing function 𝑓𝑗; 𝜉 containing the information
about the (on-shell) hadron in question. Thus, they are the quantities we ultimatelywant to
obtain from a BSE calculation, as will become apparent in the next sections. The argument
of the dressing functions Ω denote all Lorentz-invariant combinations that can be formed
by combining the 𝑛 − 1 relative momenta between the (anti)quarks {𝑝𝑖} with each other
and with 𝑃. The number of elements in Ω can be calculated via 𝑁𝐸 = ∑𝑛−1

𝑘=0 (𝑛+1−𝑘
1 ). 𝑁D

labels the number of Dirac basis elements needed, which is not only dependent on the
spin of the state but also on the relative momenta between the quarks and therefore on the
number of quarks of the hadron.

The colour structure of the amplitude is usually pretty straightforward to construct.
One needs to consider the constituents of the hadron and combine the respective colour
representations, i.e., fundamental (𝐍𝑐) or antifundamental (𝐍𝐜) for a quark or antiquark,
respectively, in a direct product to form the desired overall colour structure. In the case
of observable hadrons, we need to obtain an overall colour singlet 𝟏𝑐, but for the case
of diquarks or unphysical mesons in a coloured representation, the resulting object still
carries a colour charge. We will delve deeper into this topic at a later stage of this work.
Lastly, the flavour part of the amplitude can be directly constructed by considering the
isospin of the hadron of interest and the Pauli antisymmetry of the quarks.

4.2 Two-quark BSE

With the introduction of the structure of a generic 𝑛-body FYE in the last section, we will
now concretize this and consider the case 𝑛 = 2, which is the first of two interesting cases
for the work at hand. The two-body BSE allows to investigate conventional mesons, i.e., a
colour singlet quark-antiquark (𝑞 ̄𝑞) state and diquarks, which would be a coloured quark-
quark (𝑞𝑞) object. The reasons for considering this system are twofold. First, using this
‘simple’ system, we will be able to explore the construction of the different parts of the BSA
for given quantum numbers, consider the explicit form of the two-body interaction kernel
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Γ𝜉 = 𝐾 Γ𝜉
𝑃 𝑃

𝑝−

𝑝+

𝑝−

𝑝+

𝑏−

𝑏+

𝑝 𝑏

𝒜1

𝒜2

𝒜1

𝒜2

𝒜 ′
1

𝒜 ′
2

Γ𝜉 = 𝐾 Γ𝜉
𝑃 𝑃

−𝑝−

𝑝+

−𝑝−

𝑝+

−𝑏−

𝑏+

𝑝 𝑏

𝒜1

𝒜2

𝒜1

𝒜2

𝒜 ′
1

𝒜 ′
2

F i g u r e 4 . 4 : Feynman diagram representation of the 𝑞 ̄𝑞 meson BSE (top) and for the 𝑞𝑞 diquark BSE
(bottom). The green and copper half-circles represent the meson and diquark BSA, respectively.
The 𝒜(′)

1 , 𝒜(′)
2 represent a combination of Dirac, colour and flavour indices and the 𝑝/𝑏 denote

the relative momenta between the external/internal quarks which carry the individual momenta
𝑝±/𝑏± as defined in the text. The 𝑃 denotes the total hadron momentum and 𝐾 here is the two
quark interaction kernel.

and how the homogeneous BSE is then solved in practice. Second, and more importantly,
the masses obtained as a result of solving the two-body equation will be an important
ingredient for the four-quark state calculations later on in this work.

We introduced the general 𝑛-quark homogeneous BSE in terms of Feynman diagrams
on the right in Fig. 4.2. Setting 𝑛 = 2, we get the diagrams shown in Fig. 4.4. The BSE in
the top panel is the BSE for a meson and the one shown in the bottom is the BSE for a
diquark, with the green and copper coloured half-circles denoting the respective BSAs.
Furthermore, as discussed in Section 4.1, we will have 𝑛 − 1 relative momenta between
the 𝑛 (anti)quarks, that is one relative momentum for the present case, which we will
call 𝑝 or 𝑏, depending on whether the external quarks or the quarks within the loops are
considered. Also the number of Dirac, colour and flavour indices needed are now only
two and the 𝑛-body BSA in Eq. (4.22) for the two-body case reads

Γ(𝜇); 𝐴1𝐴2; 𝑎1𝑎2
𝜉; 𝛼1𝛼2

(𝑝, 𝑃) = Γ(𝜇)
D; 𝛼1𝛼2

(𝑝, 𝑃) ⊗ Γ𝐴1𝐴2
C ⊗ Γ𝑎1𝑎2

F . (4.24)

We kept only one ‘optional’ Lorentz index 𝜇, as the highest total spin we will consider is
𝐽 = 1. As a BSA acts like a vertex between the quarks and the hadron, it has to fulfil the
usual Feynman rules of momentum conservation at every vertex. Therefore, the individual
momenta 𝑝± for the quark and the antiquark given in Fig. 4.4 can be defined as follows

𝑝+ = 𝑝 + 𝜂 𝑃 , 𝑝− = 𝑝 − (1 − 𝜂) 𝑃 , (4.25)
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and similarly for the internal relative momentum 𝑏. The 𝜂 ∈ [0, 1] here is a partitioning
parameter, which determines how the hadron momentum 𝑃 is distributed among the two
quarks. Because the results has to be independent of this parameter, we can in principle
choose an arbitrary value for this parameter. From a technical standpoint, however, it will
be beneficial to determine an optimal value based on the masses of the two constituents.
For this, we need to determine the maximal apex 𝑀𝐴 on the negative real momentum
axis such that the parabolic momentum domain of the quark propagator shown in Fig. 3.7
excludes the poles. This maximal apex is different for each current-quark mass and is
compiled in Table 4.1. Using the maximal apices, one can determine the optimal value for
the partitioning parameter as

𝜂 =
𝑀𝐴1

𝑀𝐴1
+ 𝑀𝐴2

, (4.26)

where 𝑀𝐴1
and 𝑀𝐴2

are the maximal apices of the quark with momentum 𝑝+ and the
(anti)quark with momentum 𝑝− respectively. For example, if the quarks have the same
mass, it is reasonable to choose 𝜂 = 0.5. However, if the masses are different, which is the
case for heavy-light mesons and diquarks, attributing more of the hadron momentum 𝑃 to
the heavier of the two quarks will prove favourable.

The quark-(anti)quark interaction kernel in the two-body case depends on three mo-
menta, the external/internal quark momenta 𝑝/𝑏 and the total hadron momentum 𝑃, i.e.,
𝐾(𝑝, 𝑏, 𝑃). As the homogeneous BSE is an integral equation by nature, the meson BSE (top
in Fig. 4.4) explicitly reads

Γ(𝜇)
𝜉; 𝒜1𝒜2

(𝑝, 𝑃) = ∫
𝑏
(𝐾(2))

𝒜′
1𝒜′

2

𝒜1𝒜2
(𝑝, 𝑏, 𝑃) {𝑆1(𝑏+)Γ(𝜇)

𝜉 (𝑏, 𝑃)𝑆2(𝑏−)}
𝒜′

1𝒜′
2

, (4.27)

where the combination of dressed quark propagators and the BSA given in the curly
brackets in the integral is formed by contracting the Dirac, colour and flavour indices of
the respective objects starting from the quark line in the bottom and going against the
spin line. We labelled the two quark propagators with a subscript to indicate that they
do not necessarily need to be the same. The explicit form of the diquark BSE (bottom in
Fig. 4.4) is obtained by charge conjugating the antiquark propagator 𝑆2 to make it a quark
propagator:

Γ(𝜇)
𝜉; 𝒜1𝒜2

(𝑝, 𝑃) = ∫
𝑏
(𝐾(2))

𝒜′
1𝒜′

2

𝒜1𝒜2
(𝑝, 𝑏, 𝑃) {𝑆1(𝑏+)Γ(𝜇)

𝜉 (𝑏, 𝑃)𝑆𝑇
2 ( − 𝑏−)}

𝒜′
1𝒜′

2
. (4.28)

As shown in Eq. (3.29), charge conjugation corresponds to transposing the quark propa-
gator and flipping the momentum argument of it, which then allows for it to be traced
against its spin line. Because the sign of the quark with the momentum 𝑝−/𝑏− is flipped
by the charge conjugation, the momentum conservation at the BSA still holds with the
definitions in Eq. (4.25).

Before we come to the construction of the BSA itself, we need to discuss the form of the
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𝐾 = 𝛼(𝑘2)

F i g u r e 4 . 5 : Graphical depiction of the two-body kernel given in Eq. (4.30). As explained in the
main text, one uses the same effective gluon exchange of the MT model as in the quark DSE here,
cf. Eq. (3.35).

BSE kernel 𝐾(2), which has so far been kept quite general. In Section 3.2 we discussed the
explicit form of the self-energy diagram in the quark DSE and the need for truncation.
This self-energy kernel Σ of the quark DSE can be related to the scattering kernel 𝐾 in the
two-body BSE via the axial-vector Ward-Takahashi identity (axWTI) [64]

(𝛾5Σ𝑓2(𝑝−) + Σ𝑓1(𝑝+)𝛾5)
𝛼1𝛼2

= −∫
𝑏
(𝐾(2))

𝛼′
1𝛼′

2

𝛼1𝛼2
(𝛾5𝑆𝑓2(𝑏−) + 𝑆𝑓1(𝑏+)𝛾5)

𝛼′
1𝛼′

2
, (4.29)

which ensures the correct implementation of chiral symmetry and the dynamical breaking
of it. This relation also forces our two-body scattering kernel to have the same form as the
self-energy kernel in Eq. (3.25), consisting of a bare vertex, a full gluon propagator and a
full quark-gluon vertex. We are now faced with the same problem we had in the quark
DSE: We need the fully dressed quantities as an input. However, not only the form of the
self-energy kernel, but also the truncation scheme and the applied model translates to
the two-body kernel 𝐾 via Eq. (4.29). We therefore apply the Rainbow-Ladder truncation
also to the BSE in Eq. (4.27). In doing so, the kernel becomes a sum of ever more gluon
exchanges, a structure which graphically looks like a ladder, hence the second part of the
name of the truncation. Furthermore, we also apply the MTmodel for the gluon exchanges
between the quarks, with which the two-body scattering kernel written explicitly reads

(𝐾(2))
𝐴1𝐴2; 𝐴′

1𝐴′
2

𝛼1𝛼2; 𝛼′
1𝛼′

2
(𝑝, 𝑏, 𝑃) = −𝑍𝑓1

2 𝑍𝑓2
2

4𝜋 𝛼(𝑘2)
𝑘2 𝑇𝜌𝜎(𝑘)(𝛾𝜌)𝛼1𝛼′

1
(𝛾𝜎)𝛼′

2𝛼2
(𝑡𝑎)𝐴1𝐴′

1(𝑡𝑎)𝐴′
2𝐴2 ,

(4.30)

with 𝑘 = 𝑏 − 𝑝 the gluon momentum. As the quarks in the BSE do not necessarily need to
be the same, we get two quark field renormalization constants 𝑍2, one for each flavour.
Because this flavour dependence is fairly weak, the value does not change much for the
different flavours and the two explicit 𝑍𝑓

2’s are usually combined to a 𝑍2
2.

Putting this kernel into the meson BSE Eq. (4.27) we get

Γ(𝜇); 𝐴1𝐴2, 𝑎1𝑎2
𝜉; 𝛼1𝛼2

(𝑝, 𝑃) = − 𝑍𝑓1
2 𝑍𝑓2

2 ⋅ {𝑡𝑎ΓC𝑡𝑎}
𝐴1𝐴2 ⋅ Γ𝑎1𝑎2

F

⋅∫
𝑏

4𝜋 𝛼(𝑘2)
𝑘2 𝑇𝜌𝜎(𝑘) {𝛾𝜌𝑆1(𝑏+)Γ(𝜇)

D (𝑏, 𝑃)𝑆2(𝑏−)𝛾𝜎}
𝛼1𝛼2

,
(4.31)
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wherewe have split up the BSA in the integral to show the different contractions happening,
which are again indicated by the curly brackets. Since the colour and flavour parts of the
amplitude do not have momentum arguments, we have pulled them out of the integral.
Furthermore, as the employedMT interaction is flavour blind, the flavour part of the BSE is
not contracted with anything and therefore not changed. One arrives at a similar equation
for the diquarks when inserting the MT interaction into Eq. (4.28). The two-body BSE in
Eq. (4.31) is then the final form of the 𝑞 ̄𝑞 meson BSE which we will solve in the following.

4.2.1 Construction of the BSA

Having obtained the general form of the equation we want to solve, we now need to
consider the form of the BSA for the quantum numbers 𝐼(𝐽𝑃(𝐶)) we want to investigate. Of
particular interest for the present work are (pseudo)scalar and (axial)vector mesons and
diquarks, i.e., hadrons with total spin 𝐽 = 0, 1.

In the following, we will first cover the Dirac part of the BSA, where we will distinguish
between the cases of 𝐽 = 0 and 𝐽 = 1. After that, we will move on and discuss the colour
and flavour parts for the mesons and diquarks.

Dirac basis for 𝐽 = 0

For the case of hadrons with 𝐽 = 0, i.e., (pseudo)scalar mesons and diquarks, the BSA and
therefore ΓD is a Lorentz scalar. As established in Eq. (4.23), we can write the Dirac part of
the BSA as sum of Dirac tensors and their dressing functions, which for the this case reads

ΓD; 𝛼1𝛼2
(𝑝, 𝑃) =

𝑁D

∑
𝑗=1

𝑓𝑗(𝑝2, 𝑧; 𝑃2) 𝜏𝑗; 𝛼1𝛼2
(𝑝, 𝑃) , (4.32)

with the angular variable 𝑧 ∶= ̂𝑝⋅𝑃̂ and the hatted quantities denoting normalizedmomenta
in this context. We have written out the Lorentz-invariant quantities of the dressing
functions explicitly here. The number of Dirac basis elements needed for 𝐽 = 0 is 𝑁D = 4,
with the most popular choice in the BSE framework being [177]:

𝜏1(𝑝, 𝑃) = 𝕀D , 𝜏3(𝑝, 𝑃) = −𝑖/𝑝 ,

𝜏2(𝑝, 𝑃) = −𝑖/𝑃 , 𝜏4(𝑝, 𝑃) = [/𝑃, /𝑝] .
(4.33)

To make the accompanying dressing functions in Eq. (4.32) real and positive in all com-
ponents, one can introduce the factors of 𝑖 and negative signs as done in Eq. (4.33) and
also some scalar factors which are mentioned a little further down. Not doing so will not
alter the BSA, as the scalar prefactors can get absorbed into the dressing functions. Using
a partial-wave decomposition as described in detail in [69] for the meson case, one can
identify the first two basis elements 𝜏1 and 𝜏2 as the 𝑠-wave basis elements, because they
involve only the unit matrix in Dirac space and the total momentum of the hadron 𝑃 and
therefore no angular momentum. The other two have an angular momentum of unit one
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as they include the relative momentum between the quark 𝑝 and are therefore 𝑝-waves.
Both of these components are needed to describe a meson as a relativistic bound state.

The choice of Dirac basis elements in Eq. (4.33) now specifies a generic state with 𝐽 = 0,
but it does not distinguish between a scalar or pseudoscalar state. To do that, we note
that these two states transform differently under parity and thus acting with the parity
transformation operator 𝒫 on a scalar or pseudoscalar BSA Γ yields a different eigenvalue
𝑃 = ±1. The parity transformation of a BSA is given in Eq. (C.3), which for the present
case of 𝐽 = 0 reads

𝒫(Γ(𝑝, 𝑃)) = 𝛾4 Γ(Π𝑝, Π𝑃) 𝛾4 , (4.34)

where Π = diag( − 1, −1, −1, 1). For mesons, we need to multiply the elements by 𝕀D for
scalar mesons, which have positive parity (𝑃 = +), and by 𝛾5 for pseudoscalar mesons,
which have negative parity (𝑃 = −).

To get the Dirac basis elements for the diquarks with spin 𝐽 = 0, we need to multiply the
basis elements given in Eq. (4.33) with a charge conjugation matrix 𝐶 from the right

𝜏1(𝑝, 𝑃) = 𝕀D 𝐶 , 𝜏3(𝑝, 𝑃) = −𝑖/𝑝 𝐶 ,

𝜏2(𝑝, 𝑃) = −𝑖/𝑃 𝐶 , 𝜏4(𝑝, 𝑃) = [/𝑃, /𝑝] 𝐶 .
(4.35)

In doing so, we also change the transformation properties under the parity transformation
Eq. (4.34) with 𝕀D corresponds to pseudoscalar (𝑃 = −) diquarks and multiplying the
basis elements by 𝛾5 yields scalar (𝑃 = +) diquarks2.

We already discussed the addition of factors to render the dressing functions real and
positive below Eq. (4.33). In this context, it is also customary to pull out a scalar factor of
(𝑝⋅𝑃) from certain dressing functions and include it in the Dirac basis elements. Depending
on whether the basis elements have been multiplied by 𝛾5 or by 𝕀D this factor is included
in either 𝜏3 or 𝜏2, respectively.

Dirac basis for 𝐽 = 1

For the (axial)vector mesons and diquarks, the BSA is a Lorentz vector and thus carries a
Lorentz index. As the Dirac part of the BSA inherits the Lorentz structure, we can write it
explicitly as

Γ𝜇
D; 𝛼1𝛼2

(𝑝, 𝑃) =
𝑁D

∑
𝑗=1

𝑓𝑗(𝑝2, 𝑧; 𝑃2) 𝜏𝜇
𝑗; 𝛼1𝛼2

(𝑝, 𝑃) , (4.36)

again with 𝑧 ∶= ̂𝑝 ⋅ 𝑃̂. The basis elements needed in the case of 𝐽 = 1 are in principle the
same as given in Eq. (4.33), but they need to be contracted with the vectors from the set
{𝛾𝜇

⟂ , 𝑝𝜇
⟂} to from a Lorentz vector. This then yields 𝑁D = 8 Dirac basis elements for which

2The charge conjugation matrix can be pulled out, so we can write Γ𝐶 for the diquark BSA. The parity
transformation in Eq. (4.34) then yields 𝒫(Γ𝐶) = 𝛾4 (Γ𝛾4𝛾2) 𝛾4 = −𝛾4 Γ 𝛾4 𝐶 = −𝒫(Γ)𝐶
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a popular choice in the BSA framework is [177]:

𝜏𝜇
1 (𝑝, 𝑃) = 𝑖𝛾𝜇

⟂ , 𝜏𝜇
5 (𝑝, 𝑃) = 𝑝𝜇

⟂ 𝕀D

𝜏𝜇
2 (𝑝, 𝑃) = 𝛾𝜇

⟂ /𝑃 , 𝜏𝜇
6 (𝑝, 𝑃) = 𝑖𝑝𝜇

⟂ /𝑃

𝜏𝜇
3 (𝑝, 𝑃) = −𝛾𝜇

⟂ /𝑝 + 𝑝𝜇
⟂ 𝕀D , 𝜏𝜇

7 (𝑝, 𝑃) = −𝑖𝑝𝜇
⟂ /𝑝

𝜏𝜇
4 (𝑝, 𝑃) = 𝑖𝛾𝜇

⟂ [/𝑃, /𝑝] + 2𝑖𝑝𝜇
𝑇 /𝑃 , 𝜏𝜇

8 (𝑝, 𝑃) = 𝑝𝜇
⟂ [/𝑃, /𝑝]

(4.37)

where the subscript ⟂ indicates transversality with respect to the total hadron momentum
𝑃. Factors of 𝑖 and negative signs are chosen in this way to again render most of the
dressing functions real and positive. Additionally, one can again pull out scalar factors
(𝑝 ⋅ 𝑃) to render all dressing functions real and positive. However, the basis element to
which this factor is then added will here not only depend on the parity but also on the
charge conjugation parity quantum number.

Aswas the case for the 𝐽 = 0 states, we can distinguish between the vector and axialvector
states by looking how the corresponding BSA transforms under parity transformation. In
the (axial)vector case, the generic parity transformation in Eq. (C.3) reads

𝒫(Γ𝜇(𝑝, 𝑃)) = −Π𝜇𝜎 𝛾4Γ𝜎(Π𝑝, Π𝑃) 𝛾4 . (4.38)

Multiplying the basis elements in Eq. (4.37) by 𝕀D gives 𝑃 = −1, so a vector meson, and a
multiplication by 𝛾5 yields a parity eigenvalue 𝑃 = +1, which is an axialvector meson.

For the diquarks, the procedure is analogous to the 𝐽 = 0 case. To get the basis elements,
we multiply the Dirac basis elements by the charge conjugation matrix from the right, i.e.,
𝜏𝜇

𝑗 → 𝜏𝜇
𝑗 𝐶, which again negates the parity transformations for the different basis elements.

Therefore, the 𝛾5𝜏𝜇
𝑗 𝐶 basis elements correspond to a vector (𝑃 = −) diquark and the 𝜏𝜇

𝑗 𝐶
Dirac elements to an axialvector (𝑃 = +1) diquark.

In the discussion below Eq. (4.37), we mentioned that the additional scalar (𝑝 ⋅ 𝑃) factors
can get assigned to different basis elements depending on the parity of the state. For the
different quantum numbers 1𝑃𝐶 a collection which basis element gets this factor can be
found in Table 2 of [177]. One interesting thing to note from this table is, that the scalar
factor for the two axialvector states 1+± is assigned completely opposite for the different
𝐶-parity states. This is expected, as the two BSAs should transform with opposite sign
under a 𝐶-parity transformation given in Eq. (C.1).

As a final note on the Dirac part of the BSA, one can of course only consider a subset of
the basis elements above and truncate the sums in Eq. (4.32) and Eq. (4.36) accordingly. A
nice graphical overview showing the effect this has on the masses of the 𝜋 and 𝜌 meson
can be found in Figure 3.8 in [164]. For the computed two-body hadron masses in this
thesis, we always work with the full set of basis elements.

4.2.2 Colour part of the BSA

The following section on the colour part of the BSA will be discussed in terms of a gen-
eral SU(𝑁𝑐) group and its representations. We have already established in Section 2.1
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that quarks are spinor fields carrying a colour charge, which live in the fundamental
𝑛-dimensional multiplet representation of the colour group SU(𝑁𝑐), which is commonly
denoted as 𝐍𝐜. Consequently, the antiquarks carry an anticolour and live in the associated
𝑛-dimensional anti-multiplet representation 𝐍𝐜. For the case of mesons, we combine
the quark and antiquark, or rather their respective representations together via a tensor
product

𝐍𝐜 ⊗ 𝐍𝐜 = (𝐍𝟐
𝐜 − 𝟏) ⊕ 𝟏𝑐 , (4.39)

and obtain the direct sum of a colour singlet 𝟏𝑐 and a part which has the dimension of
the adjoint representation. The observable mesons are colour singlets, so for the colour
amplitude we only keep this part, which is represented by a Kronecker delta

Γms; 𝐴1𝐴2
C = 𝛿𝐴1𝐴2 , (4.40)

with the colour indices 𝐴1, 𝐴2 = 1, 2, … , 𝑁𝑐. In terms of colour forces, the colour singlet
corresponds to an attractive force between the quark and the antiquark, binding them
together. The (𝐍𝟐

𝐜 −𝟏) part would correspond to a repulsive force and the resultingmesons
will not be bound.3

To form a diquark, we need to combine the representations of two quarks via a tensor
product

𝐍𝐜 ⊗ 𝐍𝐜 =
𝐍𝐜(𝐍𝐜 + 𝟏)

𝟐 ⊕
𝐍𝐜(𝐍𝐜 − 𝟏)

𝟐 . (4.41)

to get a direct sum of a 𝑁𝑐(𝑁𝑐 + 1)/2-dimensional multiplet representation and a 𝑁𝑐(𝑁𝑐 −
1)/2-dimensional anti-multiplet representation. In the case of 𝑁𝑐 = 3, this would be 𝟔𝐜
and 𝟑̄𝐜 respectively. As none of the representations in the direct sum is a colour singlet,
this further underlines the fact that diquarks carry a colour charge and are therefore non-
observable objects. They are nevertheless interesting, as they can be used as building blocks
to form multiquark states, see, e.g., [17] for an extensive review. The attractive colour force
in this case, which binds the quarks together, is the one in the 𝐍𝐜(𝐍𝐜−𝟏)/𝟐 representation,
with the other denoting the repulsive colour force. Similar to the meson case, we will
only consider the attractive colour force here. Mathematically, combining the two colour
indices from the quarks and getting one out for the diquarks is achieved by a Levi-Civita
symbol

Γdq; 𝐴1𝐴2
C = 𝜀𝐴1𝐴2𝐵 , (4.42)

again with the colour indices 𝐴1, 𝐴2, 𝐵 = 1, 2, … , 𝑁𝑐, where 𝐵 is the colour index for the
diquark.

3The eigenvalue curve in this case will be negative, i.e., the condition 𝜆 = 1 cannot be met.
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4.2.3 Flavour part of the BSA

The flavour part of the Bethe-Salpeter amplitude is constructed by considering the isospin
of the state as well as the flavour charges strangeness, charm and bottomness. The only
two quarks carrying isospin, are the up and down quarks with 𝐼 = 1/2, because they can
be considered to obey the almost exact SU𝑉(2) symmetry. Like is the case for the spin,
one can choose to consider the isospin projection along a particular axis, in most cases one
considers the third component 𝐼3 (𝑧-axis). The up quark gets assigned a value of 𝐼3 = +1/2

and the down quark correspondingly gets 𝐼3 = −1/2. For the respective antiquarks the
sign of the 𝐼3 is flipped, i.e., 𝐼𝑢̄

3 = −1/2 and 𝐼 ̄𝑑
3 = +1/2. All the other quark flavours have

isospin 𝐼 = 0 by default, but carry a respective flavour charge.

First, we consider the case of the flavour BSA for mesons. A meson made up of two light
quarks, i.e., up and down quark, can have either isospin 𝐼 = 0 (isospin singlet) or 𝐼 = 1
(isospin triplet). The corresponding flavour BSAs look like the following:

𝐼 = 0 ∶ ΓF =
1

√2
(𝑢 ̄𝑢 + 𝑑 ̄𝑑) , 𝐼 = 1 ∶ ΓF =

⎧{{
⎨{{⎩

𝑢 ̄𝑑 , 𝐼3 = +1
1

√2
(𝑢 ̄𝑢 − 𝑑 ̄𝑑) , 𝐼3 = 0

𝑑 ̄𝑢 , 𝐼3 = −1

, (4.43)

Whenwe only consider states with up and down quarks, we can represent the quarks using
vectors transforming under SU(2), i.e., 𝑢 = (1, 0)𝑇 and 𝑑 = (0, 1)𝑇 and the corresponding
transposed vectors for the antiquarks. Using this vector notation for the quarks, one can
represent the isospin-triplet flavour wave functions using the Pauli matrices 𝜎𝑖:

Γ+
F =

1
2(𝜎1 + 𝑖𝜎2) , Γ−

F =
1
2(𝜎1 − 𝑖𝜎2) , Γ0

F =
1

√2
𝜎3 , (4.44)

which would correspond for example to the triplet states 𝜋±, 𝜋0 or 𝜌±, 𝜌0.

In the case of states including more flavours, one can consider a general SU(𝑁𝑓), where
𝑁𝑓 is the number of flavours needed and then represent the quarks as unit vectors with 𝑁𝑓
entries. For example, for heavy-light mesons like 𝐷-mesons, we can choose 𝑁𝑓 = 4 and
consequently represent the quarks as 𝑢 = (1, 0, 0, 0)𝑇, 𝑑 = (0, 1, 0, 0)𝑇, 𝑠 = (0, 0, 1, 0)𝑇 and
𝑐 = (0, 0, 0, 1)𝑇 where the vectors representing the antiquarks are again transposed. To
then form the flavour BSA for the 𝐷-mesons in a matrix representation we combine the
quarks and antiquarks accordingly:

𝐷+ = 𝑐 ̄𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝐷0 = 𝑐 ̄𝑢 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.45)
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𝐷− = 𝑑 ̄𝑐 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝐷̄0 = 𝑢 ̄𝑐 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.46)

This procedure works for any flavour combination.
When considering the flavour BSA for the case of diquarks, we need to keep in mind,

that states with equal quark content underlie Pauli antisymmetry. Therefore, the flavour
wavefunction for diquarks depends on the isospin, but additionally also on the spin of
the state. Let us first look at the case for diquarks with up and down quarks again. For
diquarks with 𝐽 = 0, we have, that the spins need to be antiparallel in order to form an
antisymmetric flavour wavefunction. For the case 𝐽 = 1, the spins can be aligned parallel
and the flavour wavefunction is symmetric in this case. The flavour BSAs here read

𝐼 = 0 ∶ ΓF =
1

√2
[𝑢𝑑] , 𝐼 = 1 ∶ ΓF =

⎧{{
⎨{{⎩

𝑢𝑢
1

√2
{𝑢𝑑}

𝑑𝑑

, (4.47)

with [𝑢𝑑] = 𝑢𝑑 − 𝑑𝑢 and {𝑢𝑑} = 𝑢𝑑 + 𝑑𝑢 denoting antisymmetrization and symmetrization
respectively. Analogously to the meson case, using the vector representation for the quarks,
one can again represent the flavour BSA in form of a matrix.
In the case of heavy-light diquarks 𝑄𝑞, with 𝑞 and 𝑄 representing the light and heavy quark
respectively, the isospin is fixed to 𝐼 = 0 and the flavour BSA can be chosen symmetric or
antisymmetric, i.e.,

Γsym.
F = {𝑄𝑞} , Γasym.

F = [𝑄𝑞] , (4.48)

such that the overall wavefunction is antisymmetric.

4.3 Solution of the two-body BSE

Sincewe have now constructed anddiscussed the different parts of the BSA for the quantum
numbers of interest for this work, we need to insert it into the two-body BSE in Eq. (4.31)
and solve the eigenvalue equation. The solution we want to obtain in the end is the mass of
the hadron, i.e., where the eigenvalue satisfies 𝜆(𝑃2) = 1, and the dressing functions at that
point, as they contain the information about the hadron on its mass shell. However, upon
inserting our BSA in Eq. (4.31) we note, that the Dirac, colour and flavour contractions are
not yet closed and cannot be traced. That is, because in order to solve for an individual
dressing function, we first need to project it out from the BSA on the left-hand side of
Eq. (4.31). To do this, one constructs a suitable projector containing a Dirac, colour and
flavour part, which then in turn closes the contractions on the right-hand side of the BSE.

As the full Bethe-Salpeter amplitude consists of a Dirac, a colour and a flavour part, also



6 8 4 B e t h e - S a l p e t e r E q u a t i o n s

the full projector ℙ needs components living in all three of these spaces. Additionally, we
need as many projectors as we have elements in the respective parts of the BSA, i.e., 𝑁D
for the Dirac, usually one for the colour and three for the all light flavour case (usually
only one for the heavy-light case). We will denote the individual projectors in the different
spaces by ℙD

𝑖 , ℙC
𝑖 and ℙF

𝑖 . In principle, the choice of the projectors in the different spaces
is arbitrary as long as they fulfil the requirement

tr{ℙX
𝑖 𝔹X

𝑗 } = 𝛿X
𝑖𝑗 , (4.49)

with X ∈ {D, C, F} and 𝔹X
𝑗 denoting basis elements in a respective space X. Starting with

the Dirac space, since the basis elements in Eq. (4.33) and Eq. (4.37) each form a closed set
and are therefore orthogonal, we can transpose and normalize them via Eq. (4.49) and
use them as projectors for the Dirac part, i.e., ℙD; 𝑖

(𝜇) = (𝜏𝑖
(𝜇))

𝑇
. The same holds true for

the colour and flavour parts. By virtue of Eq. (4.49) the colour BSA gets a normalization
factor:

Γms; 𝐴1𝐴2
C =

𝛿𝐴1𝐴2

√𝑁𝑐
, Γdq; 𝐴1𝐴2

C =
𝜀𝐴1𝐴2𝐵

√2
, (4.50)

for the meson (ms) and diquark (dq) colour BSA, respectively, and the colour projector is
identified as ℙC = Γ𝑇

C. For the flavour BSA, the all light flavour BSAs (𝑁𝑓 = 2) in Eq. (4.44)
for example get a normalization constant and read

Γ+
F =

1
2(𝜎1 + 𝑖𝜎2) , Γ−

F =
1
2(𝜎1 − 𝑖𝜎2) , Γ0

F =
1

√2
𝜎3 , (4.51)

with the projector chosen as ℙF = Γ𝑇
F .

Once we have obtained a suitable full projector ℙ, we can let it act on the meson BSE in
Eq. (4.31) to project out an individual dressing function 𝑓𝑗 as

𝑓𝑗(𝑝2, 𝑧; 𝑃2) = − 𝑍𝑓1
2 𝑍𝑓2

2 ⋅ tr{Γ𝑇
C𝑡𝑎ΓC𝑡𝑎} ⋅ tr{Γ𝑇

FΓF}

⋅∫
𝑏

4𝜋 𝛼(𝑘2)
𝑘2 𝑇𝜌𝜎(𝑘) tr{ℙD;𝑗

(𝜇) 𝛾𝜌𝑆1(𝑏+)Γ(𝜇)
D (𝑏, 𝑃)𝑆2(𝑏−)𝛾𝜎} ,

(4.52)

As discussed around Eq. (4.31), the flavour part of the BSA does not get changed by the
MT interaction and the trace of the flavour elements just evaluates to one. The trace of the
colour part evaluates to 𝐶𝐹 in the meson BSE and to −𝐶𝐹/2 in the diquark BSE4.

Doing this projection for every dressing function, one can write the resulting system of
equations as

𝜆(𝑃2)𝐹(𝑝2, 𝑧; 𝑃2) = ∫
𝑏

𝒦(𝑝, 𝑏, 𝑃) ⋅ 𝐹(𝑏2, 𝑧′; 𝑃2) , (4.53)

4tr{(Γdq
C )

𝑇
𝑡𝑎Γdq

C (𝑡𝑎)𝑇 } = − 1
2 tr{𝑡𝑎𝑡𝑎} = − 1

2 ⋅ 𝐶𝐹.
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1F i g u r e 4 . 6 : Left: Eigenvalue curve for the 𝜋 meson. We show the obtained eigenvalues for different
values of the hadron mass 𝑀. 𝑀 > 0 corresponds to 𝑃2 ∈ ℝ−. As a reference we plotted the
𝜆 = 1 as a horizontal line. The grey dashed line indicates the position of the bound state. Right:
Quark mass evolution curve (QMEC) of a pseudoscalar (blue) and vector (orange) 𝑞 ̄𝑞 mesons.
The hadron masses for the different current-quark masses were obtained from their respective
EVCs. The dashed and dash-dotted lines are fits to the data with a fit function given in the text.
The grey dashed vertical lines indicate the current-quark masses of the 𝑢/𝑑, 𝑠, 𝑐 and 𝑏 quarks.

with 𝑧′ ∶= ̂𝑏 ⋅ 𝑃̂, 𝐹 = (𝑓1, 𝑓2, … , 𝑓𝑁D
)𝑇 the vector collecting the dressing functions and 𝒦 a

matrix combining the Dirac part of theMT interaction together with the quark propagators,
The elements of 𝒦 in the case of the meson BSE are given as

𝒦𝑗𝑖 =
4𝜋 𝛼(𝑘2)

𝑘2 𝑇𝜌𝜎(𝑘) tr{ℙD; 𝑗
(𝜇) 𝛾𝜌𝑆1(𝑏+)𝜏(𝜇)

𝑖 (𝑏, 𝑃)𝑆2(𝑏−)𝛾𝜎} . (4.54)

In the case of the diquark BSE, 𝒦 gets an overall negative sign. Comparing now the BSE
for the meson and for the diquark, we note that they differ only by a factor of 1

2 coming
from the colour trace in the case of the diquark.

4.3.1 Mass spectrum

The equation in Eq. (4.53) together with the matrix kernel 𝒦 in Eq. (4.54) is now the
eigenvalue equation we put onto the computer to obtain the masses of the mesons and
diquarks. To obtain the location of the mass of the hadrons, we apply the procedure
outlined below Eq. (4.14) and scan a range of 𝑃2 until we find the position where 𝜆(𝑃2 =
−𝑀2) = 1. As an example of how the obtained eigenvalue curve looks like, we show the
EVC for the 𝑞 ̄𝑞 meson BSE with a current-quark mass of 𝑚𝑞 = 3.7 MeV, i.e., the 𝜋 meson, in
the left panel of Fig. 4.6. As can be clearly seen, we get a crossing of 𝜆 = 1 around 𝑀 = 137
MeV and have therefore obtained a bound state in the correct mass region of the pion.

It is also interesting to investigate how the mass of hadrons behaves upon variation of
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𝑞 𝑛 𝑛ℎ 𝑠𝑙 𝑠 𝑠ℎ 𝑠𝑒ℎ 𝑐𝑒𝑙

𝑚𝑞 3.7 20 50 85 210 350 500
𝑀2

𝐴 230 300 380 420 850 1320 1900

𝑞 𝑐𝑙 𝑐 𝑐ℎ 𝑐𝑒ℎ 𝑏𝑒𝑙 𝑏𝑙 𝑏

𝑚𝑞 650 795 1000 1500 2000 2750 3750
𝑀2

𝐴 2450 3100 3800 6200 9200 15000 25000

T a b l e 4 . 1 : Current quark masses 𝑚𝑞 (in MeV) and their maximal apices 𝑀2
𝐴 (in MeV2) for

the parabolic squared quark momentum domain (see discussion in Section 3.2.4 and around
Eq. (4.26)) for the quark propagators used in the meson and diquark BSE. The subscripts 𝑙 and
ℎ indicate a ‘lighter’ and ‘heavier’ version of that quark flavour with the additional 𝑒 meaning
‘extra’. The reason for the additional quark masses is explained in the main text.

the mass of the quarks. In this work, we want to consider mesons and diquarks containing
light, strange, charm all the way up to bottom quarks. We therefore fix the values for the
current-quark masses for the light, strange, charm and bottom quarks and then choose two
or four quark masses in between the respective values to better investigate the behaviour.
The quark masses chosen throughout this work are given in Table 4.1. As a short interlude,
we have to quickly mention how we fix the current-quark masses for the different quark
flavours. The pion is sort of the general benchmark particle of the DSE/BSE framework.
One first chooses the twomodel parameters of theMT interaction in Eq. (3.35) to reproduce
the value for the pion leptonic decay constant 𝐟𝜋 = 92 MeV, which is mostly quark mass
independent. After that, one fixes the input quark mass for the light up/down quark
specifically fixed to reproduce the pion mass, i.e., we choose a value of 𝑚𝑛 = 3.7 MeV.
There have been investigations in the past if and how the MT parameters need to be
modified for heavier quarks [178], but we choose to fix the parameters as discussed below
Eq. (3.35) for all current-quark masses. The input quark masses for the charm quark is
fixed such that the sum of the pesudoscalar and vector 𝑐 ̄𝑛 meson, i.e., 𝐷 and 𝐷∗, matches
the sum of the experimental values [20]. The current quark mass of the strange is fixed to
reproduce the 𝐾 meson masses and such that the sum of the strange partners of 𝐷 and 𝐷∗,
that is 𝐷𝑠 and 𝐷∗

𝑠 , matches the sum of the experimentally measured values. The same is
applied to the current-quark mass of the bottom quark with the addition, that also the 𝑏 ̄𝑏
mesons should match the experimental values [20].

With this out of the way, we can now investigate the behaviour of the meson and diquark
masses when varying the current-quark mass. To do so, we calculate the masses for a 𝑞 ̄𝑞
meson or 𝑞𝑞 diquark for all the input quark masses in Table 4.1. The masses for the hadrons
are again obtained from the respective eigenvalue curves. The resulting masses can be
plotted against the current-quark masses to obtain what we call a quark mass evolution
curve (QMEC). We show the QMEC for the pseudoscalar and as a comparison also for the
vector 𝑞 ̄𝑞 mesons with equal quarks in the right panel of Fig. 4.6. One can clearly see, that
the curve is almost linear for quark masses above 𝑚𝑐 and starts to bend downwards when
going to 𝑚𝑞 → 𝑚𝑛. While the mass for the pseudoscalar mesons approaches 𝑀ps → 0 for
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𝜂 = 0.5 𝜂 ∈ (0.5, 1]

F i g u r e 4 . 7 : Visualization of the parabolic momentum region the quark propagator needs to
be sampled for in the BSE for a heavy-light hadron, the green curve and poles correspond to
the lighter and the blue region and poles to the heavier quark. Left: Choosing the momentum
partitioning parameter 𝜂 = 0.5 is not ideal, as the poles of the lighter quark lie within its
integration domain. Right: Sending more momentum through the heavier quark, i.e., choosing
an asymmetric momentum routing, remedies this situation.

𝑚𝑞 → 0, the mass for the vector mesons goes to some value 𝑀vc ≠ 0. This of course is a
direct observation of chiral symmetry breaking discussed in Section 2.2, with the pions
as the associated Nambu-Goldstone bosons becoming massless in the chiral limit. As
introduced in Section 2.2, in this context the Gell-Mann-Oakes-Renner relation (GMOR)
[124]

𝐟2
ps𝑀2

ps = −2𝑚𝑞
⟨ ̄𝑞𝑞⟩
𝑁𝑓

, (4.55)

is of importance. It not only relates the pseudoscalar meson mass to the current-quark
mass, but also the leptonic decay constant 𝐟ps to the quark condensate. From this relation,
we can determine the value for the quark condensate (typically ⟨ ̄𝑞𝑞⟩ ≈ −(280 MeV)3 for
𝑢/𝑑 quarks), which is one of the order parameters for DCSB, and furthermore establish
how the meson mass should behave when varying the quark mass. The GMOR relation
in Eq. (4.55) tells us that the pseudoscalar mass goes with 𝑀ps ∝ √𝑚𝑞. Based on this,
we employ a fit function to the QMEC in Fig. 4.6, shown as the dashed and dash-dotted
curves, of the form

𝑀(𝑚𝑞) = √
𝑛

∑
𝑖=0

𝑎𝑖𝑚𝑖
𝑞 , (4.56)

where the number of elements in the polynomial needed for the QMEC curves shown in
Fig. 4.6 is usually 𝑛 = 1.

For this work, we will however not only need mesons and diquarks with equal quark
content, but also heavy-light mesons (𝑄 ̄𝑞) and diquarks (𝑄𝑞), with 𝑄 ∈ {𝑐, 𝑏} and 𝑞 ∈
{𝑛, 𝑠, 𝑐, 𝑏}, will play a crucial role later on. The masses for these hadrons are in principle
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1F i g u r e 4 . 8 : Quark mass evolution curves for pseudoscalar (0−+) mesons and scalar (0+) diquarks
(blue circles) as well as vector (1−−) mesons and axialvector (1+) diquarks (orange diamonds) with
hidden- and open-flavour. The solid, dashed and dash-dotted lines represent the fits applied to
the QMECs of the 𝑞 ̄𝑞/𝑞𝑞, 𝑐 ̄𝑞/𝑐𝑞 and 𝑏 ̄𝑞/𝑏𝑞 mesons/diquarks.

also obtained from their eigenvalue curves. However, due to the unequal quark masses,
the quark pole can be hit in the integration in Eq. (4.53). To somewhat remedy this, one
can use the partitioning parameter 𝜂 we introduced in Eq. (4.25) and find an optimal value
for it such that no quark poles are hit. Graphically, one can visualize this problem as shown
in Fig. 4.7. As we can see in the left panel, the optimal choice for equal quarks, i.e., 𝜂 = 0.5,
fails for the heavy-light quarks, as the poles for the light quarks (shown in green) are then
inside its integration domain (also shown in green). The optimal value is calculated via
Eq. (4.26) and in the heavy-light case for 𝑄 ̄𝑞/𝑄𝑞 is usually 𝜂 ∈ (0.5, 1]. This remedies the
situation, as can be seen in the right panel of Fig. 4.7. Now the integration domains for the
respective quarks exclude the respective poles and one can ideally determine the hadron
mass directly from the eigenvalue curve as discussed above.

In some cases, mostly for the diquarks and if the mass difference between the quarks
is too big, even the asymmetric routing cannot remove the poles from the integration
domain. In these cases, to obtain an estimate result for the mass, we use a combination
of extrapolations of the EVCs and extrapolation/fitting of the resulting QMECs, which
will be explained in the following. As we have mentioned above, to get the QMECs, one
needs to obtain the hadron masses from the respective EVCs. In the mentioned cases,
where the quark poles in the integration domain obstruct the direct computation of the
mass, we calculate the EVC to a certain threshold given by 𝑀thresh = 𝑀𝐴1/𝜂 and then
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use a method involving the Schlessinger point method (SPM) [179] to extrapolate the
EVC to the point where 𝜆 = 1. The method is described in detail in Appendix C.5. It
yields a mass value plus an estimate for the extrapolation error, the latter of which will be
neglected for the two-body states as it is not relevant for the work at hand. We note, that
for consistency reasons, we also apply the extrapolation method in Appendix C.5 to states
where the value could be determined directly from the EVC. After having done this, we
look at the behaviour of the resulting QMECs and apply the fit function in Eq. (4.56) to an
appropriate degree in the polynomial to obtain the final estimate of the hadron masses
which cannot be calculated directly, i.e., for heavy-light mesons 𝑄 ̄𝑞 when 𝑚𝑞 → 𝑚𝑛. The
obtained QMECs for the pseudoscalar and vector mesons with equal and non-equal quark
pairs are shown left in Fig. 4.8, as blue circles and orange diamonds, respectively, together
with the applied fits. As is evident from Fig. 4.8, the masses for the heavy-light 0−+ and
1−− mesons are very close together across the whole range of quark masses 𝑚𝑞. For the 𝑄 ̄𝑛
states the mass difference Δ𝑀𝑄 ̄𝑞 = 𝑀vc; 𝑄 ̄𝑞 − 𝑀ps; 𝑄 ̄𝑞 decreases when increasing the mass
of the heavy quark 𝑚𝑄. This is an expected behaviour, as according to heavy-quark spin
symmetry (HQSS) [180] for 𝑚𝑄 → ∞ these two states should be (approximately) mass
degenerate, i.e., Δ𝑀𝑄 ̄𝑞 → 0. For the equal quark QMECs, the masses approach each other
ever closer above the charm quark mass.

We have applied the same procedure to calculate the QMECs for the scalar and axi-
alvector diquarks which are shown right in Fig. 4.8. Again, we calculated the diquark
masses directly if possible and used extrapolation otherwise. The applied fits then yield
the diquark masses especially for the heavy-light diquarks 𝑄𝑞 with 𝑚𝑞 → 𝑚𝑛. One can see,
that the QMECs for the heavy-light diquarks are very close together, as was the case for
the heavy-light mesons. The axialvector 𝑏𝑞 QMEC diverts a little from the scalar 𝑏𝑞 one
towards 𝑚𝑄 → 𝑚𝑏. This is because here the extrapolation of the mass was more inaccurate
due to the steep slope of the EVC.

The masses for the pseudoscalar and vector mesons and the scalar and axialvector
diquarks obtained from the QMECS in Fig. 4.8 are compiled in Table 4.2. We have arranged
them according to their quark model classification with the quarks getting heavier in each
row from top to bottom. Whenever possible, we also calculated the relative error of our
obtained masses in the rainbow-ladder MT model to the experimental values from the
PDG [20] as

Δ𝑚rel. =
∣𝑚PDG − 𝑚RL∣

𝑚PDG
, (4.57)

which provides a nice overview of the qualitative reliability of the used MT interaction.
Collecting values in a table is very useful, but it always helps to visualize relations to get a
better feel for them. For the meson spectra, we show our calculated masses in comparison
to the respective experimental values from the PDG in Fig. 4.9. We see, that the mass
spectra qualitatively agree very nicely, apart from the 𝑐 ̄𝑐 states, which are a little too low in
mass. Because the bases to calculate the EVCs for scalar and axialvector diquarks are just
the bases for the pseudoscalar and vector mesons respectively times the charge conjugation
matrix 𝐶, we conclude that also the masses for these diquarks should be qualitatively good.
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0−+ 1−− 0+ 1+

PDG 𝑚RL Δ𝑚rel. PDG 𝑚RL Δ𝑚rel. 𝑚0+ 𝑚1+

𝑛 ̄𝑛 𝜋/𝜂 † 137 0.0% 𝜌/𝜔 736 5.2% 809 1006
𝑠 ̄𝑛 𝐾 501 1.1% 𝐾∗ 913 0.1% 1072 1259
𝑠 ̄𝑠 − 698 − 𝜙 1070 5.0% 1266 1412
𝑐 ̄𝑛 𝐷 1860 0.4% 𝐷∗ 2011 0.1% 2421 2439
𝑐 ̄𝑠 𝐷𝑠 1937 1.6% 𝐷∗

𝑠 2124 0.5% 2523 2543
𝑐 ̄𝑐 𝜂𝑐 2803 6.1% 𝐽/𝜓 2992 3.4% 3415 3433
𝑏 ̄𝑛 𝐵 5310 0.6% 𝐵∗ 5375 0.9% 6396 6403
𝑏 ̄𝑠 𝐵𝑠 5425 1.1% 𝐵∗

𝑠 5487 1.3% 6473 6492
𝑏 ̄𝑐 𝐵𝑐 6232 0.7% − 6302 − 7139 7269
𝑏𝑏̄ 𝜂𝑏 9421 0.2% Υ 9500 0.4% 9915 10394

T a b l e 4 . 2 : Mesons composed of a quark-antiquark pair (𝑄 ̄𝑞) with quantum numbers 𝐽𝑃𝐶 =
0−+, 1−− are categorized according to their classification in the quark model. We present the
experimental candidates as reported in [20], along with the masses (𝑚RL) calculated using our
rainbow-ladder approach. The relative error between these calculated masses and those listed
in the PDG is also provided where applicable. The last two columns display the calculated
rainbow-ladder masses for the corresponding 𝑄𝑞 diquarks with quantum numbers 𝐽𝑃 = 0+, 1+.
All values are reported in MeV. † ∶ In this work, the masses of the 𝜋 and 𝜂 mesons are considered
degenerate, as we neglect the strange quark component in the 𝜂 and the indirect effects of the
topological mass through octet-singlet mixing.

Themasses for scalar (0++) and axialvector (1++) mesons in the light, charm and bottom
region were also obtained analogously. However, the mass spectrum is known to be less
reliable if not outright inaccurate in the rainbow-ladder truncation with the MT interaction.
We show the obtained masses in Table C.1.

4.3.2 Dressing functions

The last thing we shortly need to discuss are the obtained dressing functions. First up,
a big disclaimer is in order here. While the obtained masses are measurable quantities
and therefore have to be gauge invariant, the dressing functions for the associated hadrons
are in principle gauge dependent objects! As is so often the case in QFT, this only means
that one needs to be careful when extracting information directly from these quantities.
Regardless of this, by looking at the magnitudes of the dressing functions, one can infer the
importance of the accompanying Dirac basis elements for the investigated state. In Fig. 4.10
we show the individual dressing functions 𝑓𝑗 for the pseudoscalar (𝑗 = 1, 2, 3, 4) and the
vector (𝑗 = 1, … , 8) mesons. We do not show the values for the magnitudes on the 𝑦-axis, as
it is not important for the present case and the universal normalization constant just scales
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F i g u r e 4 . 9 : Meson mass spectra in the light (left), charm (middle) and bottom (right) region.

We show the experimental PDG values as the boxes with the height of the box indicating the
respective error. The two-body BSE results in the rainbow-ladder truncation are plotted as the
data points in the same colour as the boxes.

the value but cannot change the ordering 5. Furthermore, the shown dressing functions
are intended to serve as illustration of the above argument and to show their behaviour for
different relative momenta 𝑝2. Because the dependence of the dressing functions on the
angular variable 𝑧 is not overly strong for these two states, we choose to show 𝑓𝑗’s for 𝑧 = 0.
Note however, that this negligible dependence on the angular variable is not a universal
behaviour. For the 𝜋 meson, i.e., left in Fig. 4.10, the contribution hierarchy for the different
Dirac tensors is the following: 𝜏1 > 𝜏3 > 𝜏2 > 𝜏4. Meaning, that including only 𝜏1 and
solving the BSE in Eq. (4.53) already gives a reasonable result for the mass of 𝑀𝜏1

≈ 120
MeV. Including more Dirac elements then only leads to better and better results for the
mass until we reach the experimental value. For the 𝜌 meson (right in Fig. 4.10) we find,
that having obtained a “base mass” using only 𝜏1 (𝑀𝜏1

≈ 888 MeV), the contribution
coming from 𝜏5 and 𝜏3 has the biggest influence in pushing the observable quantities, e.g.,
the mass of the state, towards the correct region. How much the inclusion of different
Dirac basis elements in the Dirac part of the BSA affects the values for the mass and the

5For the interested reader, properly normalized dressing functions can be found in Figure 3.6 in Ref. [164].
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1F i g u r e 4 . 1 0 : On-shell dressing functions 𝑓𝑗 for the 𝜋 (left) and 𝜌 (right) mesons plotted against
the relative momentum 𝑝2 (log scale). Since the dependence of the 𝑓𝑗 on the angular variable 𝑧 is
not overly strong for these states, it is sufficient to choose the point 𝑧 = 0. The thinner black line
indicates the zero.

leptonic decay constant of the 𝜋 and the 𝜌 meson is depicted very nicely in Figure 3.8 of
[164].

Summary

With this, we close the discussion about the two-body BSE with a short recap. After
an overview on the construction of the individual parts of the BSA, we discussed how
the BSE is actually solved in practice and what are potential intricacies, i.e., the quark
propagator poles. We then introduced the EVC as the result of the BSE and the QMECs as
a way to investigate the behaviour of a hadron mass with changing current-quark mass.
Furthermore, we compared our obtained mass spectrum for pseudoscalar and vector
mesons with the current experimental values from the PDG and discussed the dressing
functions and what one can learn from them. With this, we are now ready to move on to
the main topic of this thesis, that is investigating the properties of four-quark states.



Chapter 5

Four-quark Faddeev-Yakubovsky
equation

We now have all the ingredients we need to finally address the main topic of this work,
namely the solution of the four-body Faddeev-Yakubovsky equation. Considering the case
𝑛 = 4 of the generic 𝑛-body FYE introduced in Section 4.1, we get the four-body FYE as

Γ(4) = 𝐾(4) 𝐺(4)
0 ⋅ Γ(4) . (5.1)

This is the second and more important of the two interesting special cases considered in
this work. The four-body FYE allows to investigate the properties of four-quark states,
which are exotic mesons consisting of two quarks and two antiquarks. In particular, we
want to consider four-quark states containing at least two (anti)quarks of heavy flavour,
i.e., charm and bottom.

This chapter is structured as follows. First, we will introduce the four-quark FYE and
discuss the interactions between the four quarks. After that, we will introduce the general
Dirac, colour and flavour Bethe-Salpeter amplitudes (BSA) and discuss their symmetries
under charge conjugation and Pauli symmetry. We will then move on to discuss the phase
space and the emergence of internal two-body pole structures. Based on this observation,
we will introduce the concept of the physically motivated BSA and how to utilize it. Finally,
we will close the chapter with considerations on the thresholds and limitations regarding
the numerical solution of the four-body FYE.

5.1 The Four-Body Equation

We start by considering a generic four-quark state containing two quarks 𝑄1, 𝑄2 and two
antiquarks 𝑄̄3, 𝑄̄4. The explicit flavour of the four quarks is not of immediate importance
here and will be discussed later when we distinguish between hidden- and open-flavour
four-quark states. Before we discuss the structure of the four-quark BSA, we need to
take a closer look at the interactions between the four (anti)quarks. As one can imagine,
the four constituents of the hadron can interact mutually in three different ways: there
can be correlations involving only two, three and also all four of the constituents. The
corresponding interaction kernel 𝐾(4) in Eq. (5.1) therefore features irreducible two-, three-
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and four-body interactions and can be written as

𝐾(4) = 𝐾̃(2) + 𝐾̃(3) + 𝐾̃(4) , (5.2)

with the 𝐾̃ denoting the irreducible kernels. The corresponding four-body Faddeev-
Yakubovsky equation with the full kernel given in Eq. (5.2) is shown in terms of Feynman
diagrams in Fig. 5.1, which is just the special case 𝑛 = 4 of the generic 𝑛-body FYE shown in
Fig. 4.2. The two- and three-body interactions shown here only showcase one of the possi-
ble interactions for brevity, with the others indicated by the cyclic perm. text. The third term
in the two-body interactions is necessary to avoid the overcounting of diagrams coming
from the iteration of the first two terms, see [171, 181–183] for more details. Looking closer
at the two-body interactions in Fig. 5.1, one can identify three different interactions pairs:
(𝑄1𝑄2)(𝑄̄3𝑄̄4) which resembles an internal diquark-antidiquark pair and (𝑄1𝑄̄3)(𝑄2𝑄̄4)
and (𝑄1𝑄̄4)(𝑄2𝑄̄3) which both resemble meson-meson pairings within the four-quark
states. Wewill from here on also refer to these internal clusterings as meson-meson (ℳ1 for
(13)(24) and ℳ2 for (14)(23)) or diquark-antidiquark (𝒟 for (12)(34)) interaction topologies.

For the thesis at hand, we choose to neglect the three- and four-body forces, as has been
done in all previous works on this topic using the DSE/BSE framework, see [70] for a
recent review and references therein. This reduces the equation shown in Fig. 5.1 to just
the highlighted part. There are a few reasons for justifying doing so. Firstly, we have
already established earlier in this work that most hadrons are resonances and therefore
unstable with respect to strong decays, i.e., hadron to hadrons. The decay of a four-quark
state with given quark content into two mesons with the quarks and antiquarks distributed
accordingly is therefore a pretty straightforward picture, see, e.g., the 𝜎 meson as a 𝜋 − 𝜋
resonance [184]. This togetherwith the closeness of some four-quark states to the respective
two-meson threshold, as is the case for the 𝜒𝑐1(3872) and the 𝑇+

𝑐𝑐(3875), provides the first
hints that the two-body forces might be dominating. By neglecting the three- and four-
body forces as an approximation and calculating the masses of the four-quark states using
only the two-body correlations, one can a-posteriori argue whether this approximation
is justified based on the accuracy of the obtained results. A further reason is, that the
calculation of three- and four-body forces is computationally very expensive and if the
notion of the two-body forces being dominant proves to be a proper description of the
states in question, the effort is not really worth it. It is worth mentioning, that looking at
the large 𝑁𝑐 limit of QCD considering only gluon exchanges, the leading order three- and
four-body interactions actually become subleading in this limit, see Appendix B.1.1.

Retaining only the two-body forces, the four-quark interaction kernel 𝐾(4) then reads

𝐾(4) = ∑
𝑎𝑎′

𝐾̃(2)
𝑎 ⋅ (𝐺(2)

0 )
−1

𝑎′ + 𝐾̃(2)
𝑎′ ⋅ (𝐺(2)

0 )
−1

𝑎
− 𝐾̃(2)

𝑎 ⋅ 𝐾̃(2)
𝑎′ . (5.3)

If we combine this kernel with the propagator matrix 𝐺(4)
0 , certain full propagators cancel

out and the matrix we want to calculate the eigenvalues for in the four-body BSE then
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𝑄̄3

𝑄2

𝑄1

Γ = Γ + Γ − Γ + cyclic
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+ Γ + cyclic
perm. + Γ

F i g u r e 5 . 1 : Four-body FYE for a 𝑄1𝑄2𝑄̄3𝑄̄4-state given in terms of Feynman diagrams. The
first three diagrams show the two-body interactions between (𝑄1𝑄2) and (𝑄̄3𝑄̄4) with the
permutations (𝑄1𝑄̄3)(𝑄2𝑄̄4) and (𝑄1𝑄̄4)(𝑄2𝑄̄3) not shown for brevity. The first term in the
second row shows the (𝑄1𝑄2𝑄̄3) interaction of the irreducible three-body interactions with
additional three permutations also suppressed for brevity. The last term then shows the four-body
interaction. The free quark propagators are again denoted by lines with an arrow indicating the
spin flow and the corresponding fully dressed quantities are shown with a blob. The highlighted
section is the equation actually used in this work, as the three- and four-body interactions will
be neglected, see main text.

reads

𝐾(4)𝐺(4)
0 = ∑

𝑎𝑎′
𝐾(2)

𝑎 + 𝐾(2)
𝑎′ − 𝐾(2)

𝑎 ⋅ 𝐾(2)
𝑎′ , (5.4)

which is the form of the kernel shown in the first line of Fig. 5.1, with 𝐾(2)
𝑎,𝑎′ = 𝐾̃(2)

𝑎,𝑎′ ⋅
(𝐺(2)

0 )𝑎,𝑎′. The 𝑎 and 𝑎′ denote interaction between the (anti)quark pairs and 𝑎𝑎′ represents
one of three combinations (12)(34), (13)(24) and (14)(23). The numbers given in the
interaction combinations here correspond to the indices of the quarks of the 𝑄1𝑄2𝑄̄3𝑄̄4
four-quark state. For the irreducible two-body kernels 𝐾̃(2) we again use the Rainbow-
Ladder truncation together with the Maris-Tandy (MT) interaction as given in Eq. (4.30)
and shown in Fig. 4.5.

5.1.1 Dirac part of the four-quark BSA

Having established the interactions we will use, it is now time to construct the four-quark
BSA. We will again start with the Dirac part of the BSA. Being the special case 𝑛 = 4 of
the 𝑛-quark BSA given in Eq. (4.22), we will have three relative momenta 𝑘, 𝑞 and 𝑝 for our
four-quark state. The Dirac part of the BSA again reads

Γ(𝜇)
𝛼1𝛼2𝛼3𝛼4(𝑘, 𝑞, 𝑝, 𝑃) =

𝑁D

∑
𝑗=1

𝑓𝑗(Ω; 𝑃2) 𝜏(𝜇)
𝑗; 𝛼1𝛼2𝛼3𝛼4

(𝑘, 𝑞, 𝑝, 𝑃) , (5.5)

with Ω = {𝑘2, 𝑞2, 𝑝2, 𝑘 ⋅𝑞, 𝑘 ⋅𝑝, 𝑞 ⋅𝑝, 𝑘 ⋅𝑃, 𝑞 ⋅𝑃, 𝑝⋅𝑃} containing 9 Lorentz invariant momentum
variables. As we have seen in Section 4.2, the number of Dirac basis elements 𝑁D will
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be different depending on the total spin of the particle 𝐽. For this work, we will consider
four-quark states with total spin 𝐽 = 0 and 𝐽 = 1 (hence only one Lorentz index 𝜇 in
Eq. (5.5)), which need a total of 𝑁D = 256 and 𝑁D = 768 Dirac basis elements respectively.
How these elements are determined is written in detail in the supplemental material of
[67]. Since we later only want to construct a small subset of these, it is not necessary to go
into further detail here.

Once the full basis of hundreds of Dirac basis elements is constructed, we use that the
total spin 𝐽 is described by the Pauli-Lubanski pseudovector [185, 186]

𝑊𝜇 ∶=
1
2 ⋅ 𝜀𝜇𝜈𝜌𝜎𝑃̂𝜈𝐽𝜌𝜎 = 𝑆𝜇 + 𝐿𝜇 , (5.6)

first constructed by Józef Lubański [187, 188]. The operator 𝑊2 applied to the individual
basis elements yields eigenvalues 𝑗(𝑗 + 1), which in turn allows us to make a partial wave
decomposition and classify the tensors according to 𝑠-, 𝑝-, 𝑑- and 𝑓-waves. In this thesis,
we will make the assumption that the 𝑠-wave Dirac tensors are dominant and restrict
ourselves to consider only those. This assumption is reasonable, as the majority of the
observed hadronic decays for the states we want to investigate in the present work are
𝑠-wave according to the PDG [20]. The 𝑁𝑠

D = 16 for 𝐽 = 0 and 𝑁𝑠
D = 48 for 𝐽 = 1 𝑠-wave

Dirac basis elements both constitute Fierz complete sets [67, 184]. Depending on the
accuracy of the obtained masses for the investigated four-quark states, we can a posteriori
make arguments in favour or against the assumption of considering only 𝑠-wave elements.
It will prove useful in the following to orthogonalize the three relative momenta 𝑘, 𝑞 and 𝑝
together with the total momentum 𝑃 to obtain four orthonormal momenta 𝑛𝜇

𝑖 (𝑖 = 1, … 4).
Now using Ω𝜔, Ω𝜔′ ∈ {𝕀D, 𝜀𝛾5}, with 𝜖 ∈ {−1, 1}, and the positive/negative-energy
projector Λ± = (𝕀 ± /𝑛4)/2, where 𝑛𝜇

4 = 𝑃̂𝜇, we can cast the Dirac basis elements in Eq. (5.5)
for 𝐽 = 0 in a very compact form:

𝜏(𝜇)
𝑗 (𝑘, 𝑞, 𝑝, 𝑃) = Γ(𝜇)

𝑘 Λ𝜆Ω𝜔𝛾5(𝐶) ⊗ (𝐶𝑇) 𝛾5Ω𝜔′Λ𝜆′Γ(𝜇)
𝑙 , (5.7)

where the charge conjugation matrix in the brackets is only relevant when considering
the basis in the diquark-antidiquark topology. With Γ𝑘, Γ𝑙 ∈ {𝕀D, /𝑛1, /𝑛2, /𝑛3} this compact
form contains in principle all 256 basis elements of the 𝐽 = 0 four-quark state. To get
the respective basis for the 𝐽 = 1 four-quark state, one attaches an additional 𝜖𝑛𝜇

𝑖 with
𝑖 = 1, 2, 3 to the basis elements in Eq. (5.7). Taking the 256 basis elements times three then
yields the 768 linearly independent basis elements for the 𝐽 = 1 state. Focussing on the
𝑠-wave tensors, we identify the following combinations for Γ𝑘 ⊗ Γ𝑙:

𝐽 = 0 ∶ Γ(𝜇)
𝑘 ⊗ Γ(𝜇)

𝑙 = {𝕀D ⊗ 𝕀D, √1/3 𝛾𝜇
⟂ ⊗ 𝛾⟂

𝜇 } (5.8)

𝐽 = 1 ∶ Γ(𝜇)
𝑘 ⊗ Γ(𝜇)

𝑙 = {𝛾𝜇
⟂ ⊗ 𝕀D, 𝕀D ⊗ 𝛾𝜇

⟂, 𝜖𝜀𝜇𝜈𝜌𝜎𝑛4
𝜈𝛾𝜌 ⊗ 𝛾𝜎} , (5.9)

with 𝛾𝜇
⟂ = 𝑇𝜇𝜈(𝑃)𝛾𝜈 the transversalized gamma matrices with respect to the total momen-

tum.
The 𝑠-wave basis elements obtained for 𝐽 = 0, 1 when combining Eq. (5.8) and Eq. (5.7)
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both correspond to four-quark states with positive parity, i.e., 𝐽𝑃 = 0+, 1+. The negative
parity basis elements are obtained by contracting either side of the direct product by 𝛾5.
As we mentioned before, we have three different interaction topologies for which the basis
elements 𝜏(𝜇)

𝑗 in Eq. (5.7) explicitly written read:

𝒟 ∶ (Γ(𝜇)
𝑘 Λ𝜆Ω𝜔𝛾5𝐶)

𝛼1𝛼2
⊗ (𝐶𝑇𝛾5Ω𝜔′Λ𝜆′Γ(𝜇)

𝑙 )
𝛼3𝛼4

, (5.10)

ℳ1 ∶ (Γ(𝜇)
𝑘 Λ𝜆Ω𝜔𝛾5)

𝛼1𝛼3
⊗ (𝛾5Ω𝜔′Λ𝜆′Γ(𝜇)

𝑙 )
𝛼2𝛼4

, (5.11)

ℳ2 ∶ (Γ(𝜇)
𝑘 Λ𝜆Ω𝜔𝛾5)

𝛼1𝛼4
⊗ (𝛾5Ω𝜔′Λ𝜆′Γ(𝜇)

𝑙 )
𝛼2𝛼3

. (5.12)

In total we get 𝑁𝑠
D = 16, for 𝐽 = 0, and 𝑁𝑠

D = 48, for 𝐽 = 1, 𝑠-wave basis elements. When
using the complete set of 𝑠-wave basis elements, it does not matter in which topology the
basis elements are chosen as they each form a Fierz complete set, i.e., can be transformed
into each other via Fierz transformations.

5.1.2 Colour part of the four-quark BSA

To construct the colour part of the four-quark BSA, we need to combine the colour group
representations of the two quarks and two antiquarks via tensor products as discussed in
Section 4.2.2. Taking the corresponding multiplet representations 𝐍𝑐 and 𝐍𝐜 of the general
colour group SU(𝑁𝑐) this direct product reads

𝐍𝑐 ⊗ 𝐍𝑐 ⊗ 𝐍𝐜 ⊗ 𝐍𝐜 . (5.13)

How to evaluate this tensor product is described in great detail in Appendix B.1 and the
resulting irreducible representations are collected in Table B.1. We can see, that we get
two colour singlets 𝟏𝑐 and many other representations, which are however all coloured
and thus of no real interest for the investigations of this thesis. We will explore the two
colour singlets in more detail below.

Since we have established the notion of the dominant two-body interactions in the last
section, we can also group the tensor products in Eq. (5.13) according to the different
meson-meson and diquark-antidiquark interaction topologies:

𝒟 ∶ (𝐍𝐜 ⊗ 𝐍𝐜) ⊗ (𝐍𝐜 ⊗ 𝐍𝐜) , (5.14)

ℳ1/2 ∶ (𝐍𝐜 ⊗ 𝐍𝐜) ⊗ (𝐍𝐜 ⊗ 𝐍𝐜) . (5.15)

We can evaluate the sub-tensor products in the brackets using the relations we found in
the case of the two-body BSA, i.e., Eq. (4.39) and Eq. (4.41). For the following explicit
calculation we set 𝑁𝑐 = 3, as it provides a clearer overview and because it is the natural
value. The case for arbitrary 𝑁𝑐 can be found at the end of Appendix B.1. The resulting
colour representations in the direct sum look very much like the ones corresponding to a
(anti)diquark or a meson, depending on the interaction topologies. Hence, we will refer
to the respective colour representations as diquarks and mesons here. Evaluating the
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remaining tensor product we get the following direct sums:

𝒟 ∶ (𝟔 ⊕ 𝟑̄) ⊗ ( ̄𝟔 ⊕ 𝟑) = 𝟏𝟔⊗ ̄𝟔 ⊕ 𝟏𝟑̄⊗𝟑 ⊕ … , (5.16)

ℳ1/2 ∶ (𝟖 ⊕ 𝟏) ⊗ (𝟖 ⊕ 𝟏) = 𝟏𝟖⊗𝟖 ⊕ 𝟏𝟏⊗𝟏 ⊕ … . (5.17)

Thus, depending on the interaction topology, we can obtain an overall colour singlet
four-quark state by combining either a diquark and an antidiquark in a antitriplet-triplet
(𝟑̄𝐜 ⊗ 𝟑𝐜) or sextet-antisextet (𝟔𝐜 ⊗ ̄𝟔𝐜) representation or by combining two mesons either in
a singlet-singlet (𝟏𝐜 ⊗ 𝟏𝐜) or octet-octet (𝟖𝐜 ⊗ 𝟖𝐜) representation. As mentioned above, all
other obtained representations correspond to overall coloured objects and are suppressed
here. These four combinations to form a colour singlet for the four-quark state can be
further grouped according to the exerted colour force between the two internal two-body
particles.1

In the following, we will construct the mathematical formulation for the colour part of
our four-quark BSA. For this, wewill again keep 𝑁𝑐 general and only concretize if necessary.
We start by considering the attractive combination of two colour singlets forming the overall
four-quark colour singlet structure. As shown in Eq. (4.40), the colour singlet structure for
a 𝑞 ̄𝑞 meson is realized by a Kronecker delta combining the respective colour indices. Since
we have effectively two meson colour singlets in our four-quark state for the present case,
we use two Kronecker deltas with the respective colour indices to form the four-quark
colour BSA:

𝐶𝟏𝟏 =
𝛿𝐴1𝐴3 𝛿𝐴2𝐴4

𝑁𝑐
, 𝐶′

𝟏𝟏 =
𝛿𝐴1𝐴4 𝛿𝐴2𝐴3

𝑁𝑐
, (5.18)

where 𝐶𝟏𝟏 and 𝐶′
𝟏𝟏 correspond to the ℳ1 and ℳ2 meson-meson interaction topology

respectively. The 𝑁𝑐 in the denominator is a conventional normalization for the terms.
Similar to the meson-meson case above, for the attractive diquark-antidiquark topology in
the antitriplet-triplet representation one can combine two times the colour structure of
the two-body diquarks in Eq. (4.42) as 𝜀𝐴1𝐴2𝐵𝜀𝐴3𝐴4𝐵. By virtue of the contraction of equal
indices of Levi-Civita symbols, this combination can be written in terms of Kronecker
deltas and thus as a linear combination of themeson-meson colour BSAs given in Eq. (5.18).
Also the repulsive combinations can be expressed in terms of linear combinations of the
attractive meson-meson colour BSAs. Explicitly, these colour BSAs then read:

𝐶𝟑̄𝟑 = −
(𝐶𝟏𝟏 − 𝐶′

𝟏𝟏)

√2 − 2
𝑁𝑐

, 𝐶𝟔 ̄𝟔 =
(𝐶𝟏𝟏 + 𝐶′

𝟏𝟏)

√2 + 2
𝑁𝑐

, (5.19)

1Recall from Section 4.2.2, that the colour singlet and the colour (antitriplet) correspond to attractive forces
between the (anti)quarks, while the octet and sextet representations correspond to repulsive colour forces.
Combining two internal clusters living in an attractive representation also yields a force acting attractively
between them. On the contrary, the combination formed by combining two internal clusters living in the
repulsive representations results in a net repulsive force between them.
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𝐶𝟖𝟖 =
(𝐶𝟏𝟏 − 𝑁𝑐 𝐶′

𝟏𝟏)

√𝑁2
𝑐 − 1

, 𝐶′
𝟖𝟖 =

(𝐶′
𝟏𝟏 − 𝑁𝑐 𝐶𝟏𝟏)

√𝑁2
𝑐 − 1

. (5.20)

As it will be important later on, we note that the tensors

{𝐶𝟏𝟏, 𝐶𝟖𝟖} , {𝐶′
𝟏𝟏, 𝐶′

𝟖𝟖} and {𝐶𝟑̄𝟑, 𝐶𝟔 ̄𝟔} , (5.21)

are mutually orthogonal.

5.1.3 Flavour four-quark BSA and symmetries

For the construction of the Dirac and colour basis elements of the four-quark BSA above,
we had to know which of the constituents are quarks and which are antiquarks, but we
did not need to consider the individual flavours of the quarks. To construct the flavour
part of the four-quark BSA, we need to take a closer look at the overall flavour combination
of our 𝑄1𝑄2𝑄̄3𝑄̄4 state. In general, four-quark states can be classified into two different
categories based on the flavour BSA: hidden- and open-flavour. To make the classification,
one needs to determine the overall flavour charges, i.e., strangeness 𝒮, charm 𝒞 and bottom
ℬ, of the four-quark state by summing up the individual flavour charges of each quark.
For a four-quark state to be classified as hidden-flavour, all overall flavour charges must be
zero. Furthermore, hidden-flavour four-quark states have a definite charge conjugation
quantum number. Correspondingly, if one or more of the flavour charges are non-zero,
the four-quark state falls into the open-flavour category. The main focus of this work
is to investigate the properties of heavy-flavour four-quark states, i.e., states featuring
hidden- or open-charm or bottom flavour charges. To this end, the flavour BSA for the
hidden-flavour four-quark states will from here on be written as 𝑄1𝑄2𝑄̄3𝑄̄4 = 𝑄𝑞 ̄𝑞𝑄̄,
while the open-flavour four-quark states will be written as 𝑄1𝑄2𝑄̄3𝑄̄4 = 𝑄𝑄′ ̄𝑞 ̄𝑞′, with
𝑄, 𝑄′ ∈ {𝑏, 𝑐} and 𝑞, 𝑞′ ∈ {𝑏, 𝑐, 𝑠, 𝑑, 𝑢} denoting the heavy and ‘light’ quarks respectively.
For the open-flavour BSA, the two heavy quarks as well as the two light quarks are allowed
to take different flavours, which is forbidden for the hidden-flavour states.

Since we are using the same RL truncation and flavour-blind MT interaction as in the
two-body BSE case, the flavour trace will evaluate to one when contracting the flavour
part with its projector (see discussion around Eq. (4.52)) and thus is of no importance
there. However, it plays a vital part in the construction of the full four-quark BSA. For a
four-quark state with given quantum numbers 𝐼(𝐽𝑃(𝐶)), the flavour BSA actually imposes
conditions on the explicit form of the combined Dirac-colour BSAs such that the overall
symmetries of the hidden- or open-flavour four-quark states are fulfilled respectively. This
will become clearer down below.

Let us start by considering the flavour BSA for the hidden-flavour four-quark states. As
stated above, the flavour structure there reads 𝑄𝑞 ̄𝑞𝑄̄. This state effectively only contains
two different quark flavours, one for 𝑄 and one for 𝑞, and the respective antiflavours. As
established earlier, the quark and antiquark are related via charge conjugation. Thus, the
hidden-flavour four-quark state with quark content 𝑄𝑞 ̄𝑞𝑄̄ is subject to charge conjugation
symmetry under the exchange and charge conjugation of the quarks (14)(23). Regardless
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of the isospin, the flavour BSA has positive 𝐶-parity in (14)(23). This charge conjugation
symmetry in the indices (14)(23) also has to be fulfilled by the colour and the Dirac part
accordingly, such that the overall BSA has the charge conjugation quantum number 𝐶 of
the investigated state. Since the colour BSAs in Eqs. (5.18) and (5.19) consist of linear
combinations of Kronecker deltas, they all have positive 𝐶-parity. Thus, it comes down to
the Dirac elements to fulfil the correct transformation properties under charge conjugation.
The corresponding transformation here reads (see also [74])

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

Γ(𝜇)
𝛼′

4𝛼′
3𝛼′

2𝛼′
1
( − 𝑝4, −𝑝3, −𝑝2, −𝑝1) = ± Γ(𝜇)

𝛼1𝛼2𝛼3𝛼4(𝑝1, 𝑝2, 𝑝3, 𝑝4) ,
(5.22)

with 𝐶𝛼𝑖𝛼′
𝑖
denoting the charge conjugation matrices defined in Eq. (A.23) with explicit

Dirac indices. Note, that we could have equally chosen 𝑄1𝑄2𝑄̄3𝑄̄4 = 𝑄𝑞𝑄̄ ̄𝑞 as the hidden-
flavour flavour BSA, which would imply that this state needs to have 𝐶-parity under the
exchange and charge conjugation of the quarks (13)(24).

The situation is a little more involved, when considering the open-flavour four-quark
states. As a reminder, the flavour structure here reads 𝑄𝑄′ ̄𝑞 ̄𝑞′. The two heavy quarks and
the two ‘light’ antiquarks are not related by charge conjugation in this case and need not
necessarily be of the same flavour either. However, as (anti)quarks are fermions, the total
four-quark BSA has to obey Pauli antisymmetry under the quark exchanges (12) or (34).
The corresponding transformations are given as

(12) ∶ Γ(𝜇)
𝒜2𝒜1𝒜3𝒜4

(𝑝2, 𝑝1, 𝑝3, 𝑝4) = −Γ(𝜇)
𝒜1𝒜2𝒜3𝒜4

(𝑝1, 𝑝2, 𝑝3, 𝑝4) ,

(34) ∶ Γ(𝜇)
𝒜1𝒜2𝒜4𝒜3

(𝑝1, 𝑝2, 𝑝4, 𝑝3) = −Γ(𝜇)
𝒜1𝒜2𝒜3𝒜4

(𝑝1, 𝑝2, 𝑝3, 𝑝4) ,
(5.23)

with the 𝒜𝑖 collecting the Dirac, colour and flavour indices. In order to construct the
BSA for an open-flavour four-quark state with quantum numbers 𝐼(𝐽𝑃) which fulfils the
corresponding transformation(s) given in Eq. (5.23), we need to look how the Dirac, colour
and flavour part individually transform under the transformation(s). First, we consider
the flavour BSA. Here, the flavour sub-clusters 𝑄𝑄′ and ̄𝑞 ̄𝑞′ relevant for Eq. (5.23) are of
(anti)diquark nature. As we will see in the following, whether the flavour combination in
a sub-cluster transforms symmetric or antisymmetric under (12) or (34) is determined by
the isospin and the flavours of the quarks. Note that, since isospin is an additive quantum
number, the total given isospin of the four-quark state is determined from the individual
isospins of the sub-clusters. Take the 𝐼 = 0 and 𝐼 = 1 flavour BSAs for light-light diquarks
in Eq. (4.47). The 𝐼 = 0 flavour combination is antisymmetric under exchange of the quarks,
i.e., [𝑢𝑑] → [𝑑𝑢] = −[𝑢𝑑], while the corresponding 𝐼 = 1 flavour BSAs are symmetric.
For the combinations 𝑄𝑄′ and ̄𝑞 ̄𝑞′ with 𝑄 ≠ 𝑄′ and ̄𝑞 ≠ ̄𝑞′ (with ̄𝑞′ ≠ ̄𝑢/ ̄𝑑) the isospin is
either 𝐼 = 0 or 𝐼 = 1

2 and the flavour BSA can be symmetric or antisymmetric as shown in
Eq. (4.48). Lastly, the flavour combinations 𝑄𝑄′ and ̄𝑞 ̄𝑞′ with 𝑄 = 𝑄′ and ̄𝑞 = ̄𝑞′ ≠ ̄𝑢/ ̄𝑑 are
automatically symmetric under quark exchange. The symmetry of the flavour part dictates
the symmetry the combined Dirac-colour tensors need to fulfil, see Appendix B.2.2.
The transformation of the colour BSAs in Eqs. (5.18) and (5.19) under Eq. (5.23) is fairly
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Flavour (𝑄𝑄′ ̄𝑞 ̄𝑞′) Colour Dirac

𝑄 ≠ 𝑄′ 𝑄 = 𝑄′ ̄𝑞 ≠ ̄𝑞′ ̄𝑞 = ̄𝑞′ 𝐶𝟑̄𝟑 𝐶𝟔 ̄𝟔 𝑆 𝐴

± + ± + − + − +

T a b l e 5 . 1 : Overview of how the individual flavour, colour and Dirac parts of the open-flavour
four-quark BSA transform under quark exchanges (12) or (34). One can combine the three parts
of the BSA according to the individual transformation properties to form an overall BSA which
satisfies Eq. (5.23).

straightforward. The two colour singlets 𝐶𝟏𝟏 and 𝐶′
𝟏𝟏 transform into each other under (12)

and (34), i.e., 𝐶𝟏𝟏 ↔ 𝐶′
𝟏𝟏. And since the other colour BSAs are linear combinations of these

two, we get the following transformation properties:

𝐶𝟑̄𝟑 ↔ −𝐶𝟑̄𝟑 , 𝐶𝟔 ̄𝟔 ↔ 𝐶𝟔 ̄𝟔 , 𝐶𝟖𝟖 ↔ 𝐶′
𝟖𝟖 . (5.24)

The two colour singlet structures coming from the diquark-antidiquark combinations
transform with a different sign, which will have important consequences later on.
To consider the transformation of the Dirac BSA, we take the 𝑠-wave tensors in the diquark
basis given in Eq. (5.10). The basis elements in the sub-spaces contain either 𝑆 = 𝛾5𝐶
or 𝐴 = 𝛾𝜇𝐶, denoting scalar (𝑆) and axialvector (𝐴) diquark basis elements respectively.
Since the quark exchange in (12) or (34) correspond to transposing the basis elements
when using the diquark basis, we can use the relations of Dirac matrices in Eq. (A.24) to
determine the transformation properties as

𝑆 → (𝛾5𝐶)
𝑇

= (𝐶𝑇𝛾𝑇
5 ) = ( 𝐶𝑇𝐶𝑇⏟

=−𝕀D

𝛾5𝐶) = −𝛾5𝐶 = −𝑆 , (5.25)

𝐴 → (𝛾𝜇𝐶)
𝑇

= (𝐶𝑇 (𝛾𝜇)𝑇 ) = ( 𝐶𝑇𝐶𝑇⏟
=−𝕀D

(−𝛾𝜇) 𝐶) = 𝛾𝜇𝐶 = +𝐴 . (5.26)

We have summarized the symmetry transformations discussed above in a condensed form
in Table 5.1, while a more detailed depiction of the tensors with definite Pauli symmetry
can be found in Tables B.5 and B.6.

5.2 Phase space and physical BSA

After having discussed the colour, flavour and Dirac BSAs and their symmetries for hidden-
and open-flavour four-quark states, it is now time to investigate the momentum structure
of the BSA a little closer. The momentum dependence of the four-quark BSA can be
expressed in terms of the four quark momenta 𝑝1, 𝑝2, 𝑝3, 𝑝4, as shown for the general case
in Eq. (4.22). As already shown in Eq. (5.5), it is more convenient for us to work with the
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three relative momenta 𝑘, 𝑞, 𝑝 and the total hadron momentum 𝑃, which are defined as

𝑘𝜇 =
(𝑝+

12)𝜇 − (𝑝+
34)𝜇

2 + (
1 − 2𝜎+

12
2 ) 𝑃𝜇 , 𝑝𝜇 =

(𝑝+
23)𝜇 − (𝑝+

14)𝜇

2 + (
1 − 2𝜎+

23
2 ) 𝑃𝜇 ,

𝑞𝜇 =
(𝑝+

13)𝜇 − (𝑝+
24)𝜇

2 + (
1 − 2𝜎+

13
2 ) 𝑃𝜇 , 𝑃𝜇 =

4
∑
𝑖=1

𝑝𝜇
𝑖 .

(5.27)
To avoid lengthy terms also in the future, we introduce the shorthand notation 𝑥±

𝑖𝑗 = 𝑥𝑖 ± 𝑥𝑗,
with 𝑥 denoting an arbitrary quantity. As can be seen from the quark momenta involved in
the definition, each of the relative momenta can be associated with a specific sub-cluster,
i.e., the momentum 𝑘𝜇 is the relative momentum for the diquark-antidiquark cluster (𝒟),
the 𝑞𝜇 for the meson-meson ℳ1 cluster and the 𝑝𝜇 for the ℳ2 topology. If we ever need to
switch from the relative momenta to the quark momenta, we can use

𝑝𝜇
1 =

𝑘𝜇 + 𝑞𝜇 − 𝑝𝜇

2 + 𝜎1𝑃𝜇 , 𝑝𝜇
2 =

𝑘𝜇 − 𝑞𝜇 + 𝑝𝜇

2 + 𝜎2𝑃𝜇 ,

𝑝𝜇
3 =

−𝑘𝜇 + 𝑞𝜇 + 𝑝𝜇

2 + 𝜎3𝑃𝜇 , 𝑝𝜇
4 = −

𝑘𝜇 + 𝑞𝜇 + 𝑝𝜇

2 + 𝜎4𝑃𝜇 .

We introduced quark momentum partitioning parameters 𝜎1, 𝜎2, 𝜎3, 𝜎4, for the same reason
as in the case for the two-body BSE in Section 4.2, to optimally distribute the total hadron
momentum amongst the four quarks according to their respective masses. The sum of the
𝜎𝑖’s evaluates to one, i.e., ∑4

𝑖=1 𝜎𝑖 = 1.
We choose the following four-vectors for the three relative momenta and the total hadron

momentum

𝑘𝜇 = √𝑘2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
̄𝑧𝑘

𝑧𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑞𝜇 = √𝑞2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

sin(𝛼) ̄𝑦𝑞 ̄𝑧𝑞

cos(𝛼) ̄𝑦𝑞 ̄𝑧𝑞

𝑦𝑞 ̄𝑧𝑞

𝑧𝑞

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑝𝜇 = √𝑝2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
̄𝑦𝑝 ̄𝑧𝑝

𝑦𝑝 ̄𝑧𝑝

𝑧𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑃𝜇 = √𝑃2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(5.28)

with 𝑧𝑥, 𝑦𝑥 ∈ [−1, 1] (𝑥 = 𝑘, 𝑞, 𝑝 here)2 and 𝛼 ∈ [0, 2𝜋] denoting various angular variables
between the relative momenta and the total momentum. As all angular variables are called
either 𝑧 or 𝑦, the subscript denotes the associated relative momentum. It is a convenient
choice to consider the hadron in its rest frame and hence the total hadron momentum 𝑃𝜇

does not feature spatial components.
With the above definitions out of the way and 𝑃2 setting the mass scale of the hadron,

we can take a closer look at the nine Lorentz invariants of the dressing functions, contained
in the set Ω in Eq. (5.5). They can generally be grouped into three different sub-categories:
relative momenta squared 𝑘2, 𝑞2, 𝑝2, which can also be identified as Mandelstam variables,

2With the angular variables: 𝑧𝑥, 𝑦𝑥 = cos(…), ̄𝑧𝑥, ̄𝑦𝑥 = sin(…), where the dots represent some angle specific
to the chosen relative momentum 𝑥.
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angular variables purely amongst the relative momenta 𝜔1 = 𝑘 ⋅𝑞, 𝜔2 = 𝑘 ⋅𝑝, 𝜔3 = 𝑞⋅𝑝 and
angular variables between the relative momenta and the total momentum 𝜂1 = 𝑝 ⋅ 𝑃, 𝜂2 =
𝑞⋅𝑃, 𝜂3 = 𝑘 ⋅𝑃3. One canmake use of the permutation group 𝑆4 via a machinery developed
and described in detail in [184] and [77], to cast these variables into a singlet 𝑆0, a doublet
𝐷 and two triplets 𝑇0, 𝑇1:

𝑆0 ∶=
𝑘2 + 𝑞2 + 𝑝2

4 , (5.29)

𝐷 ∶= 𝑆0
⎛⎜⎜
⎝

𝑎
𝑠
⎞⎟⎟
⎠

, (5.30)

𝑇0 ∶= 𝑆0

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢
𝑣
𝑤

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑇1 ∶= √𝑆0𝑃2
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢′

𝑣′

𝑤′

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.31)

The singlet 𝑆0 determines the momentum scale of the dressing functions and will be the
only dimensionful quantity in the following. We have pulled factors of 𝑆0 and √𝑆0𝑃2 out
of the doublet and triplets to render the quantities 𝑎, 𝑠, 𝑢, 𝑣, 𝑤, 𝑢′, 𝑣′, 𝑤′ dimensionless.
The variables 𝑎 and 𝑠 in the doublet 𝐷 are therefore defined as

𝑎 ∶= √3 ⋅
𝑞2 − 𝑝2

4𝑆0
, 𝑠 ∶=

𝑝2 + 𝑞2 − 2 ⋅ 𝑘2

4𝑆0
. (5.32)

The 𝑎 and 𝑠 can serve as axis to span a plane which is effectively a Mandelstam plane. The
variables in the triplets are related to the quantities from Ω via

𝑢 = −
𝜔1 + 𝜔2 + 𝜔3

4𝑆0
, 𝑣 = −√2 ⋅

𝜔1 + 𝜔2 − 2 ⋅ 𝜔3
4𝑆0

, 𝑤 = √6 ⋅
𝜔1 − 𝜔2

4𝑆0
, (5.33)

for the triplet 𝑇0 and

𝑢′ = −
𝜂1 + 𝜂2 + 𝜂3

√12 𝑆0𝑃2
, 𝑣′ = −

𝜂1 + 𝜂2 − 2 ⋅ 𝜂3

√24 𝑆0𝑃2
, 𝑤′ =

𝜂1 − 𝜂2

√8 𝑆0𝑃2
, (5.34)

for the triplet 𝑇1. Note, that the triplets contain only angular variables and none of the
Mandelstam variables.

With the definitions in Eqs. (5.29) to (5.31), we can express themomentumdependencies
of the dressing functions in Eq. (5.5) in terms of the 𝑆4 multiplet variables

𝑓𝑗(Ω; 𝑃2) → 𝑓𝑗(𝑆0, 𝐷, 𝑇0, 𝑇1; 𝑃2) . (5.35)

This grouping into elements of the 𝑆4 permutation group firstly renders the momentum
dependence of the dressing functions more overseeable and secondly provides us with

3The variable names for the angular quantities are chosen to match the definitions in [77].
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𝑎

𝑠

𝑝2
=

0𝑞 2
=

0

𝑘2 = 0

𝑘2 = 𝑞2 = 𝑝2

𝑞 2= 𝑘 2 𝑝2 = 𝑘2

𝑝2
=

𝑞2

Γ

𝑄1

𝑄2

𝑄̄3

𝑄̄4

Γ

𝑄1

𝑄2

𝑄̄3

𝑄̄4

Γ

𝑄1

𝑄2

𝑄̄3

𝑄̄4

F i g u r e 5 . 2 : Graphical depiction of the doublet phase space with the two-body pole structures
depicted as two lines parallel to the border of the triangle. The interior of the triangle is the
spacelike domain of the Mandelstam variables while the exterior denotes the timelike domain.
The point in the middle of the triangle is called the central limit. The dotted, dash-dotted and
dashed lines represent the singularity structures coming from the ℳ1, ℳ2 and 𝒟 interaction
topology respectively. We also depict the respective Feynman diagrams alongside the corre-
sponding pole structure.

a systematic way to determine how much the inclusion of certain groups of variables –
now given in terms of the doublet and the triplets – affects the result of the four-quark
FYE, i.e., the mass. The dressing functions always need to depend on the singlet 𝑆0,
as it carries the momentum scale dependence. The doublet and triplets on the other
hand, can be individually ‘switched off’ during the solution of the BSE. Comparing the
solutions for the mass of the all-light four-quark state (𝑓0(500)), it was found that while the
inclusion of the doublet significantly alters the resulting mass, the effect of including the
two triplets is comparably tiny [66, 77]. Neglecting the triplet variables in the momentum
dependencies of the dressing functions is therefore a good approximation for the 𝑓0(500),
and we therefore assume that this holds also everywhere else. Why this assumption is
reasonable will be discussed in the following.

Since the mass of the four-quark state is significantly altered by including the doublet
variable, it seems that the doublet phase space carries the relevant momentum depen-
dence. To reuse the case of the all-light four-quark state investigated in [66]: solving the
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four-quark BSE with only the 𝑆0 dependence of the dressing functions yields a mass of
around 𝑀 ≈ 1.5 GeV, effectively four times the constituent quark mass for 𝑢/𝑑 quarks.
Including also the doublet variable, this mass reduces to about 𝑀 ≈ 400 MeV, which is
in the correct ballpark for the 𝜎 meson. Evidently, something important happens in the
doublet phase space during the solution process, i.e., the iteration, of the four-quark BSE.
What happens is the following: without knowing anything about mesons and diquarks
beforehand, the four-quark BSE in Fig. 5.1 (neglecting the three- and four-body diagrams
in the second line) upon iteration dynamically generates two-body 𝑄𝑖𝑄̄𝑗 (𝑖 = 1, 2, 𝑗 = 3, 4)
and 𝑄1𝑄2/𝑄̄3𝑄̄4 scattering matrices, which each feature a respective meson or (anti)di-
quark singularity structure. These two-body poles appear in the timelike region of the
Mandelstam variables 𝑘2, 𝑞2 and 𝑝2. To illustrate this, we can visualize the doublet phase
space, i.e., the Mandelstam plane spanned by 𝑎 and 𝑠, as the interior of an upside-down
triangle which is bounded by lines where 𝑘2 = 0, 𝑞2 = 0 and 𝑝2 = 0, see Fig. 5.2. At the
corners of the triangle as well as along the grey dashed lines the Mandelstam variables
have to fulfil the conditions 𝑘2 = 𝑞2, 𝑘2 = 𝑝2 or 𝑞2 = 𝑝2. In the centre of the triangle,
all three relative momenta are equal. This point is called the central limit (CL) and will
become important later on. The interior of the triangle is the spacelike domain of the
Mandelstam variables and the exterior represents the timelike domain. The emergent
two-body pole structures in the timelike domain of the Mandelstam variables are depicted
as the dotted, dash-dotted and dashed lines parallel to the edges of the triangle. Alongside
them we show the respective interaction topology responsible for the emergence of this
particular two-body singularity. The dotted lines parallel to the 𝑞2 = 0 border represent the
meson-meson pole coming from the ℳ1 interaction topology, the dash-dotted lines parallel
to the 𝑝2 = 0 border are the meson-meson pole emerging from the ℳ2 topology and the
dashed lines parallel to the 𝑘2 = 0 border are the diquark-antidiquark singularity in the 𝒟
interaction topology. In [66] it was further argued, that the closer these pole structures are
to the boundary of the Mandelstam triangle, the more they affect the result of the equation.
E.g., in the case of the 𝜎 meson, the 𝜋 − 𝜋 poles in the two meson-meson topologies are
very close to the boundary compared to the light-light scalar diquark-antidiquark poles.
Hence, the 𝜎 can be described solely as a 𝜋 − 𝜋 resonance with subleading effects coming
from the diquark-antidiquark components [66, 77]. The pole structures can also enter the
interior of the triangle, i.e., the integration domain. In this case, the four-quark becomes a
resonance as the two-body poles introduce a physical (decay) threshold into the system.

This dynamic generation of the internal two-body singularities is numerically a very
expensive endeavour. To reduce the computational effort, one can pull out the dependence
on the doublet 𝐷 from the dressing functions and put in the emerging pole structures by
hand, since they will anyway be generated during the solution process, see [66, 67, 189].
Thus, the dressing function only depends on the singlet 𝑆0

𝑓𝑗(𝑆0, 𝐷) → 𝑓𝑗(𝑆0) ⋅ 𝑃𝑗
𝑎 ⋅ 𝑃𝑗

𝑎′ . (5.36)
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The two two-body pole structures put in by hand are given as

𝑃𝑗
𝑎 ⋅ 𝑃𝑗

𝑎′ =
1

(𝑝+
𝑎 )2 + 𝑚2

𝑎
⋅

1

(𝑝+
𝑎′)

2 + 𝑚2
𝑎′

, (5.37)

with 𝑎 = (13), (14), (12) and the corresponding 𝑎′ = (24), (23), (34) denoting the pairs
of indices associated with the respective topology. The mass terms 𝑚𝑎 and 𝑚𝑎′ denote
the respective on-shell two-body masses. As an approximation, we assume that the pole
structure in Eq. (5.37) captures the relevant momentum dependence of the dressing
functions on the doublet phase space and furthermore considers the four-body FYE in the
central limit. The central limit is defined in [184] as the point where all three Mandelstam
variables have the same absolute value and are orthogonal to each other. Hence, the
momenta in Eq. (5.28) can be written as

{𝑞𝜇, 𝑝𝜇, 𝑘𝜇} =
2 ⋅ 𝑆0

√3
{𝑒𝜇

1 , 𝑒𝜇
2 , 𝑒𝜇

3 } , 𝑃𝜇 = 𝑖𝑀 ⋅ 𝑒𝜇
4 , (5.38)

where 𝑒𝜇
𝑖 denote the standard ℝ4 unit vectors. Because they are all orthogonal to each

other and also orthogonal to 𝑃𝜇 from Eq. (5.28), all scalar products vanish except for the
Mandelstam variables which take the values 𝑘2 = 𝑞2 = 𝑝2 = 4𝑆0

3 . This will significantly
reduce computation time.

Physical BSA

In principle, we are now ready to solve the four-quark FYE for given quantum numbers
𝐼(𝐽𝑃(𝐶)) and quark content 𝑄1𝑄2𝑄̄3𝑄̄4. One takes the 16 or 48 𝑠-wave tensors, depending
on whether 𝐽 = 0 or 𝐽 = 1, in one of the interaction topologies given in Eqs. (5.10) to (5.12)
– preferably the one best suited for the given quantum numbers – makes the pole ansatz
for the dressing functions in Eq. (5.36) to form the Dirac part and combines that with
the respective colour and flavour tensors such that the resulting BSA either fulfils charge
conjugation of Pauli symmetry. When solving the four-quark BSE in this way, one obtains
16 or 48 dressing functions for the chosen interaction topology and since the tensors form
a Fierz complete set, the dressing functions in the other topologies can be obtained by
Fierz transformations. For more details, see appendix of [78].

However, for this work we choose to use an ansatz for the BSA which is inspired by
the actual decay channels measured in experiment or the supposed decay channels for
states which have not been measured yet. We call this ansatz the ‘physical’ BSA, which
was first introduced in [67, 78]. The idea behind it is the following: First, we choose the
state we want to investigate and look at the quantum numbers and the supposed quark
content of the state. Based on this, we determine all possible internal meson-meson or
diquark-antidiqurk pairs, for which the combination of the respective quantum numbers
results in the quantum numbers of the four-quark state. As an example, take the 𝜒𝑐1(3872)
(𝑐𝑛 ̄𝑛 ̄𝑐) with quantum numbers 0(1++). The quantum numbers of this four-quark state can
be build by combining
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𝑑 𝐽𝑃 = 0+ 𝐽𝑃 = 1+

ℳ1 𝜙1 = 𝛾5
𝛼1𝛼3

𝛾5
𝛼2𝛼4

𝜓±
1 = (𝛾5

𝛼1𝛼3
(𝛾𝜇

⟂)𝛼2𝛼4
± (𝛾𝜇

⟂)𝛼1𝛼3
𝛾5

𝛼2𝛼4
)

ℳ2 𝜙2 = 𝛾5
𝛼1𝛼4

𝛾5
𝛼2𝛼3

𝜓±
2 = (𝛾5

𝛼1𝛼4
(𝛾𝜇

⟂)𝛼2𝛼3
± (𝛾𝜇

⟂)𝛼1𝛼4
𝛾5

𝛼2𝛼3
)

ℳ1 𝜙3 = (𝛾𝜇
⟂)𝛼1𝛼3

(𝛾⟂
𝜇 )𝛼2𝛼4

𝜓3 = 𝜀𝜇𝜈𝜌𝜎 𝑃̂𝜈(𝛾𝜌)𝛼1𝛼3
(𝛾𝜎)𝛼2𝛼4

ℳ2 𝜙4 = (𝛾𝜇
⟂)𝛼1𝛼4

(𝛾⟂
𝜇 )𝛼2𝛼3

𝜓4 = 𝜀𝜇𝜈𝜌𝜎 𝑃̂𝜈(𝛾𝜌)𝛼1𝛼4
(𝛾𝜎)𝛼2𝛼3

𝒟 𝜙5 = (𝛾5𝐶)𝛼1𝛼2
(𝐶𝑇𝛾5)𝛼3𝛼4

𝜓5 = (𝛾5𝐶)𝛼1𝛼2
(𝐶𝑇𝛾𝜇

⟂)𝛼3𝛼4

𝒟 𝜙6 = (𝛾𝜇
⟂𝐶)𝛼1𝛼2

(𝐶𝑇𝛾⟂
𝜇 )𝛼3𝛼4

𝜓6 = (𝛾𝜇
⟂𝐶)𝛼1𝛼2

(𝐶𝑇𝛾5)𝛼3𝛼4

𝒟 − 𝜓7 = 𝜀𝜇𝜈𝜌𝜎 𝑃̂𝜈(𝛾⟂
𝜌 𝐶)𝛼1𝛼2

(𝐶𝑇𝛾⟂
𝜎 )𝛼3𝛼4

T a b l e 5 . 2 : Collection of the relevant Dirac basis elements for quantum numbers 𝐽𝑃 = 0+, 1+. The
associated interaction topology of indicated in the column 𝑑. With the transversalized gamma
matrices 𝛾𝜇

⟂ = 𝑇𝜇𝜈(𝑃)𝛾𝜈 and 𝑃̂ denoting the normalized total hadron momentum.

▪ a 𝐷 meson (𝑐 ̄𝑛) with 1
2(0−) and a 𝐷̄∗ meson (𝑛 ̄𝑐) with 1

2(1−),
▪ a 𝐽/𝜓 meson (𝑐 ̄𝑐) and an 𝜔 meson4 (𝑛 ̄𝑛), both of which have 0(1−−),
▪ a scalar diquark 𝑆𝑐𝑛 with 0+ and an axialvector antidiquark 𝐴𝑛̄ ̄𝑐 with 1+, which also

results in the overall quantum numbers of the four-quark state.

The first combination (𝐷𝐷̄∗) is the pole structure in the ℳ1 topology, the 𝐽/𝜓𝜔 combination
corresponds to the pole structure in the ℳ2 topology and the 𝑆𝑐𝑛𝐴𝑛̄ ̄𝑐 combination is the
pole structure in the 𝒟 topology. After constructing all possible internal meson-meson or
diquark-antidiquark combinations. The PDG [20] states dominant 𝑠-wave decay channels,
based on which we decide which of the internal structures we take into account. For
states which have not been measured, we have to assume that the 𝑠-wave combination
of two-body particles which are lowest in mass is the dominant ‘decay’ channel – unless
certain combinations can be ruled out due to physical reasons. Note, that with our choice
to consider only the 𝑠-wave Dirac basis elements we restrict ourselves to the 𝑠-wave decays.
Considering the present case of the 𝜒𝑐1(3872), the two meson-meson decays given above
are the dominant ones in the PDG and we can therefore take them into account for the
physical BSA. A list of the possible internal two-body pairings for a lot of the heavy-light
four-quark states also considered in this thesis is given in the Appendix of [74] and in
Section 5.2.

To construct the physical BSA, we form a linear combination of all the dominant and
allowed pole structures in the different topologies, i.e., we write the BSA as

Γ(𝜇)
physical = Γ(𝜇)

ℳ1
+ Γ(𝜇)

ℳ2
+ Γ(𝜇)

𝒟 , (5.39)

where we have omitted the momenta for brevity. For the Dirac part of the sub-BSAs
Γ(𝜇)

𝑑 , with 𝑑 ∈ {ℳ1, ℳ2, 𝒟}, we then only consider a sub-set of the original 𝑠-wave Dirac

4In lack of a measured light 0−− meson
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elements for four-quark states with 𝐽𝑃 = 0+ and 𝐽𝑃 = 1+, which are collected in Table 5.2.
We have chosen to display the basis elements with their explicit Dirac indices rather than as
a direct product to better illustrate which quark combinations are involved for the different
interaction topologies.5 The individual tensors making up 𝜙𝑗 and 𝜓𝑗 correspond to the
leading tensor structure for pseudoscalar and vector mesons, see Eqs. (4.33) and (4.37). To
keep the main text sort of concise, we have relegated the explicit considerations regarding
the transformation properties of the tensors in Table 5.2 under charge conjugation and Pauli
(anti)symmetry to Appendices C.1.2 and C.1.3. The respective transformation properties
are summarized in Tables B.2 and B.6 and the appendix of [74].6 Here, we also want to
investigate hidden-flavour four-quark states with quantum numbers 𝐽𝑃𝐶 = 0−+ and 1−−.
For this, we need to construct the leading order tensor structures for 𝐽𝑃 = 0− and 𝐽𝑃 = 1−,
which has been done in Appendix B.2 with the resulting tensors compiled in Table B.3.
The transformations under charge conjugation and Pauli (anti)symmetry of these tensors
are also given in Appendices C.1.2 and C.1.3 and a compiled overview can be found in
Tables B.4 and B.6.

We can write the physical BSA as

Γ(𝜇)
phys.(𝑘, 𝑞, 𝑝, 𝑃) ≈ ∑

𝑑∈{ℳ1,ℳ2,𝒟}
𝑓𝑑(𝑆0) ⋅ 𝑃𝑑

𝑎 ⋅ 𝑃𝑑
𝑎′ ⋅ 𝜏(𝜇)

D; 𝑑(𝑘, 𝑞, 𝑝, 𝑃) ⊗ 𝜏C
𝑑 ⊗ 𝜏F

𝑑 , (5.40)

with 𝑎 = (13), (14), (12) and 𝑎′ = (24), (23), (34) as before. The 𝜏(𝜇)
D; 𝑑 denotes the Dirac part

of the BSA for a given topology 𝑑. As is evident from Tables B.2, B.4 and B.6, not all Dirac
tensors in Tables 5.2 and B.3 have a definite charge conjugation or Pauli (anti)symmetry.
This means, they do not necessarily transform into themselves upon the symmetry trans-
formations in question. Therefore, the 𝜏(𝜇)

D; 𝑑 represent either tensors or linear combinations
of the tensors in Tables 5.2 and B.3 which have a definite symmetry under either 𝐶-parity
or Pauli (anti)symmetry, depending on whether the state is hidden- or open-flavour. The
𝜏(𝜇)

D; 𝑑 are explicitly given in Section 5.2. Because our physical BSA is a linear combination
of the three interaction topologies, we can pair each Dirac tensor with the attractive and
repulsive colour tensor 𝜏C

𝑑 in the respective topology , i.e., the colour singlet structures
given in Eqs. (5.18) and (5.19). The flavour part 𝜏F

𝑑 is effectively only there to impose
a condition on how the combined Dirac-colour tensor needs to transform under charge
conjugation or Pauli symmetry such that the full BSA has the correct transformation prop-
erties. Once the full physical BSA is constructed the 𝜏F

𝑑 can be pulled out of the sum, as it
traces out in the calculation.

For the physical BSAs used in this work, we chose one internal two-body cluster per in-
teraction topology ℳ1, ℳ2 and 𝒟 and separately pair it with the corresponding attractive
and repulsive colour singlet structures to investigate the effect coming from the individual
contributions. As an aside, for hidden-flavour four-quark states the different topologies
will be referred to as (heavy-light) meson-meson for the ℳ1, hadro-quarkonium for the
ℳ2 and (heavy-light) diquark-antidiquark for the 𝒟 topology. The quarkonium part in the

5In the direct product notation, the tensors are of the form: 𝜙1 = 𝛾5 ⊗ 𝛾5, 𝜓±
1 = (𝛾5 ⊗ 𝛾𝜇

⟂ ± 𝛾𝜇
⟂ ⊗ 𝛾5) etc.

6Note, that in [74] they use a combination of Dirac-colour tensors while in Tables B.2 and B.6 we consider
only the Dirac tensors.
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Γ = ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗

F i g u r e 5 . 3 : Graphical depiction of the physical BSA in terms of Feynman diagrams. The green
half-circle represents the physical BSA and the internal half-circles are the different physical
components. The dark blue/yellow, violet/green and orange/light blue sub-clusters represent
the ℳ1 ((13)(24)), ℳ2 ((14)(23)) and 𝒟 ((12)(34)) configurations. The diagramswith the green
background represent the configurations with attractive colour singlets and the ones with the
red background the corresponding repulsive colour forces.

hadro-quarkonium will change to charmonium or bottomonium, depending on whether
𝑄𝑄̄ = 𝑐 ̄𝑐 or 𝑄𝑄̄ = 𝑏 ̄𝑏. For the open-flavour four-quark states, we have two (heavy-light)
meson-meson topologies ℳ1 and ℳ2 and a (heavy-heavy)(light-light) diquark-antidiquark
topology 𝒟.

In total, the physical BSA we use contains six elements, i.e.,

Γ(𝜇)
phys.(𝑘, 𝑞, 𝑝, 𝑃) =

5
∑
𝑗=0

𝑓𝑗(𝑆0) ⋅ 𝑃𝑗
𝑎 ⋅ 𝑃𝑗

𝑎′ ⋅ 𝜏(𝜇)
D; 𝑗(𝑘, 𝑞, 𝑝, 𝑃) ⊗ 𝜏C

𝑗 ⊗ 𝜏F
𝑗 , (5.41)

with 𝑎, 𝑎′ same as above. The dressing functions 𝑓𝑗 are associatedwith the different physical
components taken into account for the four-quark state in question. We have compiled the
list of the chosen physical components used for the hidden- and open-flavour four-quark
states investigated in this work in Tables 5.3 and 5.4. How these components are chosen
and how the explicit Dirac basis elements are constructed is relegated to Appendix B.2;
see also the supplemental material of [74] and Appendix A of [189] and [190]. The
consideration of the attractive as well as the repulsive colour forces for heavy-flavour four-
quark states is an extension of previous work where only the attractive colour singlets were
taken into account, see [67, 74, 79]. Graphically, the physical BSA used in this work can
generically be represented as shown in Fig. 5.3. On the left-hand side, we have the physical
BSA, represented as the green half-circle. On the right-hand side we show the different
internal clustering of the quarks. The half-circles connecting quarks (13)(24) (dark blue
and yellow) represent the physical components in the ℳ1 topology, the ones connecting
(14)(23) (violet and green) represent the ℳ2 sub-clusters and the ones connecting (12)(34)
(orange and light blue) are the 𝒟 components. As stated above, each of the combinations
appears twice in Fig. 5.3: the diagrams highlighted in green comewith the attractive colour
singlets 𝜏C

0 = 𝐶𝟏𝟏 (dark blue), 𝜏C
1 = 𝐶′

𝟏𝟏 (violet), 𝜏C
2 = 𝐶𝟑̄𝟑 (orange) and the diagrams
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highlighted in red feature the corresponding repulsive colour singlets 𝜏C
3 = 𝐶𝟖𝟖 (yellow),

𝜏C
4 = 𝐶′

𝟖𝟖 (green), 𝜏C
5 = 𝐶𝟔 ̄𝟔 (light blue). The graphical representation in Fig. 5.3 is not to

be confused with the two-body interactions in the two-body approach to four-quark states
described in [75, 79, 164]. In our case, the internal half-circles represent quark pairings
and not full two-body BSAs, as is the case in the aforementioned works.

Numerical Solution

The physical BSA given in Eq. (5.41) is the final form we use in the work. We therefore
insert Γ(𝜇)

phys. into the four-body FYE in Eq. (5.1) to get

Γ(𝜇)
phys. = 𝐾(4)𝐺(4)

0 Γ(𝜇)
phys. , (5.42)

with the kernel 𝐾(4)𝐺(4)
0 given in Eq. (5.3). As was the case for the two-body BSE, the

quantities wewant to obtain are the dressing functions at the physical point, as they contain
all the non-trivial information about the hadron in question. Therefore, they need to be
projected out of the sum in Eq. (5.41) by constructing appropriate projectors in the Dirac,
colour and flavour space such that the condition given in Eq. (4.49) holds.

The most straightforward to construct is the flavour projector, which is just the flavour
BSA transposed, i.e., ℙF = Γ𝑇

F . Similarly to the two-body case, the flavour part traces to one
on the right-hand side of Eq. (5.42), as the MT is flavour blind. The colour projectors are
also straightforward to obtain. For a colour tensor 𝜏C

𝑗 associated with a dressing function

𝑓𝑗, the projector is just that colour tensor transposed ℙC
𝑗 = (𝜏C

𝑗 )
𝑇
. On the right-hand

side of Eq. (5.42) we will have traces of the form tr {ℙC
𝑗 𝑡𝑎𝑡𝑎ΓC}, with 𝑡𝑎 denoting the

generator of SU(𝑁𝑐). The explicit form of the traces in the different topologies is discussed
in Appendix B.1.1. Last but not least, we need to consider the Dirac part. Because our
chosen Dirac tensors do not constitute a full Fierz complete basis, our projectors ℙD;𝑖

(𝜇),
corresponding to a dressing function 𝑓𝑖, will be of the form

ℙD;𝑖
(𝜇) =

𝑁Ξ−1
∑
𝑗=0

𝜅𝑖𝑗 ⋅ (𝜒D; 𝑗
(𝜇) )

𝑇
, (5.43)

where 𝜒D; 𝑗
(𝜇) are the 𝑁Ξ individual Dirac tensors appearing in the sets ΞD; 𝐼(𝐽𝑃(𝐶)) in Ap-

pendix B.2 for a given four-quark state. The scalar coefficients 𝜅𝑖𝑗 are determined via

𝜅−1
𝑖𝑗 = tr {(𝜒D; 𝑖

(𝜇) )
𝑇

⋅ 𝜒(𝜇)
D; 𝑗} . (5.44)

This then yields a set Ρ𝑁Ξ
= {ℙD;𝑖

(𝜇)}
𝑁Ξ−1

𝑖=0
of 𝑁Ξ projectors fulfilling

{ℙD;𝑖
(𝜇) ⋅ 𝜒(𝜇)

D; 𝑗} = 𝛿𝑖𝑗 . (5.45)

We then only need to choose the projectors projecting out the desired Dirac basis elements
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for a given four-quark state. Consider, for example, the ΞD; 0(1++) basis. The Dirac basis
tensors appearing here are 𝜓−

1 , 𝜓4, 𝜓5−𝜓6. Note, that tensors featuring a linear combination
of tensors, i.e., 𝜓−

1 = 𝜓11
− 𝜓12

and 𝜓5 − 𝜓6, have a certain symmetry to them which means
that it is sufficient to project out only one of the individual elements from the linear
combination. Therefore, we have 𝑁Ξ = 5 Dirac elements 𝜒D; 𝑗

(𝜇) from the set Χ5 = {𝜓11
, 𝜓12

,
𝜓4, 𝜓5, 𝜓6}. As a result, we get the set of Ρ5 projectors, projecting onto each element in
the set Χ5. From the set Ρ5, we then choose the projectors ℙD;0

(𝜇) , ℙD;2
(𝜇) and ℙD;3

(𝜇) , projecting
on 𝜓11

, 𝜓4 and 𝜓5 respectively, as our Dirac projectors for the 𝐼(𝐽𝑃𝐶) = 0(1++) channel.
Finally, since we only want the dressing function without the associated poles, one can
attach the inverse poles to the Dirac projector. To then get the full projector for a dressing
function 𝑓𝑗, we combine the chosen Dirac projectors with the inverse poles and the colour
projectors associated with the desired dressing function. For the present case, we get the
projectors:

ℙ0
(𝜇) = ℙD;0

(𝜇) ⋅ (𝑃0
(13) ⋅ 𝑃0

(24))
−1

⋅ 𝐶𝟏𝟏 , ℙ3
(𝜇) = ℙD;0

(𝜇) ⋅ (𝑃0
(13) ⋅ 𝑃0

(24))
−1

⋅ 𝐶𝟖𝟖 , (5.46)

ℙ1
(𝜇) = ℙD;1

(𝜇) ⋅ (𝑃1
(14) ⋅ 𝑃1

(23))
−1

⋅ 𝐶′
𝟏𝟏 , ℙ4

(𝜇) = ℙD;1
(𝜇) ⋅ (𝑃1

(14) ⋅ 𝑃1
(23))

−1
⋅ 𝐶′

𝟖𝟖 , (5.47)

ℙ2
(𝜇) = ℙD;2

(𝜇) ⋅ (𝑃2
(12) ⋅ 𝑃2

(34))
−1

⋅ 𝐶𝟑̄𝟑 , ℙ5
(𝜇) = ℙD;2

(𝜇) ⋅ (𝑃2
(12) ⋅ 𝑃2

(34))
−1

⋅ 𝐶𝟔 ̄𝟔 . (5.48)

From the tables Tables 5.3 and 5.4 it is clear, that the Dirac basis elements for the attractive
and repulsive internal physical components are mostly the same, especially for the meson-
meson components. While the Dirac projectors are constructed such that they project
out only a specific sub-cluster, they would project out both the attractive and repulsive
component. This is where the mutual orthogonality in Eq. (5.21) comes in, which cancels
either the attractive or the repulsive component, depending on which dressing function is
projected out.

Thresholds

At the end of the discussion about the phase space of the four-body equation, wementioned
that the two-body poles in the different topologies introduce physical thresholds into
the system. In the context of the two-body equations in Section 4.3, we have already
encountered singularity structures which introduce thresholds into the system in the form
of the quark poles. To remedy this, we used a quark momentum partitioning parameter to
optimally distribute the total hadron momentum 𝑃𝜇 amongst the two quarks, such that
the quark poles are just outside the respective integration domain, cf. Fig. 4.7. For the
same reason, we also use four quark partitioning parameters 𝜎1,2,3,4 in the momenta of
the four-body FYE in Eq. (5.27). Recall from Section 4.2 that the result cannot depend on
the choice of the partitioning parameter. This argument is also valid here, i.e., our results
are independent of the choices for the 𝜎𝑖’s. Without considering the two-body poles, the
𝜎𝑖’s can be calculated in a similar fashion as done in the two-body case, i.e., Eq. (4.26) for
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the four-body equation becomes

𝜎𝑖 =
𝑀𝐴𝑖

∑4
𝑗=1 𝑀𝐴𝑗

. (5.49)

The 𝑀𝐴𝑖
are the maximal apices of the parabola of the quark momenta in the complex

plane, which are compiled in Table 4.1. With this, the maximal mass 𝑃max = 𝑖𝑀max that
can be calculated without the quark poles affecting the equation is 𝑀max = ∑4

𝑗=1 𝑀𝐴𝑗
.

For the four-body FYE, we additionally have the singularity structures coming from the
internal two-body poles in Eq. (5.37) to worry about, which we will do in the following. As
stated above, these poles obstruct the direct calculation (without using path deformation),
when they enter the integration domain. To see when this is the case, we write out the
denominators explicitly as

den (𝑃𝑗
𝑎) = 𝑥2 ± 𝜎+

𝑎 𝑥 ⋅ 𝑃 + (𝜎+
𝑎 )2𝑃2 + 𝑚2

𝑎 ,

den (𝑃𝑗
𝑎′) = 𝑥2 ∓ 𝜎+

𝑎′ 𝑥 ⋅ 𝑃 + (𝜎+
𝑎′)2𝑃2 + 𝑚2

𝑎′ ,
(5.50)

with 𝑥 denoting one of the relative momenta. As long as the conditions

(𝜎+
𝑎 )2𝑃2 + 𝑚2

𝑎 > 0 , (𝜎+
𝑎′)2𝑃2 + 𝑚2

𝑎′ > 0 , (5.51)

are fulfilled, the poles are outside the triangle and thus outside the integration domain.
From this, one can formulate conditions for 𝜎+

𝑎 and 𝜎+
𝑎′ to maximize the range of 𝑃𝜇 for

which the equation can be solved without hitting pole structures. Because of ∑4
𝑖=1 𝜎𝑖 =

1, it is sufficient to formulate a condition for either 𝜎+
𝑎 or 𝜎+

𝑎′ as the other one follows
straightforwardly. The maximal mass 𝑃max = 𝑖𝑀max which can be reached for a specific
interaction topology, is the sum of the two-body masses 𝑀max = 𝑚𝑎 + 𝑚𝑎′. Thus, the
conditions for 𝜎+

𝑎 or 𝜎+
𝑎′ , which maximize the range of 𝑃𝜇 for a given topology, read

𝜎+
𝑎 =

𝑚𝑎
𝑚𝑎 + 𝑚𝑎′

, 𝜎+
𝑎′ =

𝑚𝑎′

𝑚𝑎 + 𝑚𝑎′
. (5.52)

These are the two-body momentum partitioning parameters (TBMPP), which distribute the
total momentum 𝑃𝜇 amongst the two constituents in the internal two-body clusters ac-
cording to the masses of the two-body particles. Each of the interaction topologies has
one TBMPP associated with it, which we call 𝜂 for the ℳ1, 𝜁 for the ℳ2 and 𝜒 for the 𝒟
topology. Using the definition in Eq. (5.52), these parameters are defined as

𝜂 =
𝑚13

𝑚13 + 𝑚24
, 𝜁 =

𝑚14
𝑚14 + 𝑚23

, 𝜒 =
𝑚12

𝑚12 + 𝑚34
. (5.53)

For the case of the 𝜒𝑐1(3872) we considered earlier, the two-body masses for the sub-
clusters are 𝑚13 = 𝑚𝐷, 𝑚24 = 𝑚𝐷̄∗ for ℳ1; 𝑚14 = 𝑚𝐽/𝜓, 𝑚23 = 𝑚𝜔 for ℳ2; 𝑚12 = 𝑚𝑆𝑐𝑛

,
𝑚34 = 𝑚𝐴𝑛̄ ̄𝑐

for 𝒟.
One can now compare the maximal masses 𝑀max, the ones coming from the quark sin-
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gularities and the ones from the two two-body poles, and check which of these singularity
structures affects the equation first. In almost all cases, one of the two-body pole structures
will enter the integration domain way before any of the quark singularities do. Considering
the case of the 𝜒𝑐1(3872) again, the 𝑀max coming from the quark and two-body poles are:

𝑀quark
max =

4
∑
𝑖=1

𝑀𝐴𝑖
= 4.48 GeV , 𝑀ℳ1max = 𝑚𝐷 + 𝑚𝐷̄∗ = 3.87 GeV ,

𝑀ℳ2max = 𝑚𝐽/𝜓 + 𝑚𝜔 = 3.73 GeV , 𝑀𝒟
max = 𝑚𝑆𝑐𝑛

+ 𝑚𝐴𝑛̄ ̄𝑐
= 4.86 GeV ,

(5.54)

where we have used our calculated two-body masses in Table 4.2. Clearly, the 𝐽/𝜓𝜔
pole structure is the first to enter the integration domain, followed by the 𝐷𝐷̄∗ pole and
only then the quark poles start to affect the equation. For this reason, it makes sense to
first determine the two-body momentum partitioning parameters 𝜂, 𝜁 and 𝜒 as shown in
Eq. (5.53), to optimally split the hadron momentum 𝑃𝜇 amongst the constituents of the
two-body clusters. After that, one uses the following relations

𝜎1 =
𝜂 + 𝜁 + 𝜒 − 1

2 , 𝜎2 =
−𝜂 − 𝜁 + 𝜒 + 1

2 ,

𝜎3 =
𝜂 − 𝜁 − 𝜒 + 1

2 , 𝜎4 =
−𝜂 + 𝜁 − 𝜒 + 1

2 ,
(5.55)

relating the 𝜎𝑖’s to the two-bodymomentumpartitioning parameters to optimally distribute
the fractions of the hadron momentum 𝑃𝜇 amongst the quarks of the two-body particles.
Determining the parameters in this ordermaximizes the range of 𝑃𝜇, forwhichwe can solve
the four-body FYE, without any singularity structures interfering with the calculation.
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𝐼(𝐽𝑃𝐶) 𝑄1𝑄2𝑄̄3𝑄̄4 Physical components

𝟏 ⊗ 𝟏 𝟏 ⊗ 𝟏 𝟖 ⊗ 𝟖 𝟖 ⊗ 𝟖

𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

0(0−+)
𝑏𝑛 ̄𝑛𝑏̄ 𝐵̄∗𝐵1 𝜒𝑏0𝜂 𝜂𝑏 ̃𝑓0 𝐵̄∗𝐵1 𝜒𝑏0𝜂 𝜂𝑏 ̃𝑓0

𝑐𝑛 ̄𝑛 ̄𝑐 𝐷∗𝐷̄1 𝜒𝑐0𝜂 𝜂𝑐 ̃𝑓0 𝐷∗𝐷̄1 𝜒𝑐0𝜂 𝜂𝑐 ̃𝑓0

0(1−−)
𝑏𝑛 ̄𝑛𝑏̄ 𝐵̄𝐵1 𝜒𝑏0𝜔 Υ ̃𝑓0 𝐵̄𝐵1 𝜒𝑏0𝜔 Υ ̃𝑓0

𝑐𝑛 ̄𝑛 ̄𝑐 𝐷𝐷̄1 𝜒𝑐0𝜔 𝐽/𝜓 ̃𝑓0 𝐷𝐷̄1 𝜒𝑐0𝜔 𝐽/𝜓 ̃𝑓0

𝟏 ⊗ 𝟏 𝟑̄ ⊗ 𝟑 𝟖 ⊗ 𝟖 𝟔 ⊗ ̄𝟔

0(0++)
𝑏𝑛 ̄𝑛𝑏̄ 𝐵̄𝐵 Υ𝜔 𝑆𝑏𝑛𝑆𝑛̄𝑏̄ 𝐵̄𝐵 Υ𝜔 𝑆𝑏𝑛𝑆𝑛̄𝑏̄

𝑐𝑛 ̄𝑛 ̄𝑐 𝐷𝐷̄ 𝐽/𝜓𝜔 𝑆𝑐𝑛𝑆𝑛̄ ̄𝑐 𝐷𝐷̄ 𝐽/𝜓𝜔 𝑆𝑐𝑛𝑆𝑛̄ ̄𝑐

0(1++)
𝑏𝑛 ̄𝑛𝑏̄ 𝐵̄𝐵∗ Υ𝜔 𝑆𝑏𝑛𝐴𝑛̄𝑏̄ 𝐵̄𝐵∗ Υ𝜔 𝑆𝑏𝑛𝐴𝑛̄𝑏̄

𝑐𝑛 ̄𝑛 ̄𝑐 𝐷𝐷̄∗ 𝐽/𝜓𝜔 𝑆𝑐𝑛𝐴𝑛̄ ̄𝑐 𝐷𝐷̄∗ 𝐽/𝜓𝜔 𝑆𝑐𝑛𝐴𝑛̄ ̄𝑐

1(1+−)
𝑏𝑛 ̄𝑛𝑏̄ 𝐵̄𝐵∗ Υ𝜋 𝑆𝑏𝑛𝐴𝑛̄𝑏̄ 𝐵̄𝐵∗ Υ𝜋 𝑆𝑏𝑛𝐴𝑛̄𝑏̄

𝑐𝑛 ̄𝑛 ̄𝑐 𝐷𝐷̄∗ 𝐽/𝜓𝜋 𝑆𝑐𝑛𝐴𝑛̄ ̄𝑐 𝐷𝐷̄∗ 𝐽/𝜓𝜋 𝑆𝑐𝑛𝐴𝑛̄ ̄𝑐

T a b l e 5 . 3 : Physical content of the hidden-flavour BS amplitude for quark and colour configurations
investigated in this work, with 𝑛 ∈ {𝑢, 𝑑}. We only explicitly show the quark configurations
involving the light 𝑛 ̄𝑛 quark pair. The ̃𝑓0 here denotes the 𝑓0(1370). Scalar and axialvector diquarks
are denoted by 𝑆 and 𝐴 respectively, with the subscript denoting the (anti)quark content of the
diquark. We grouped the physical components according to their attractive and repulsive colour
structure; 𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5 correspond to the dressing functions for that particular component
and colour channel. For reasons explained in Appendix B.2.2, we chose to neglect the diquark
component for 0−+ and 1−− channels and instead considered a second ℳ2 channel as 𝑓2 and 𝑓5.
How these physical content is chosen is given in great detail in Appendix B.2 and [189].
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𝐼(𝐽𝑃) 𝑄1𝑄2𝑄̄3𝑄̄4 Physical components

𝟏 ⊗ 𝟏 𝟑̄ ⊗ 𝟑 𝟖 ⊗ 𝟖 𝟔 ⊗ ̄𝟔

𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

0(1+)

𝑏𝑏 ̄𝑛 ̄𝑛 𝐵̄𝐵̄∗ 𝐵̄∗𝐵̄∗ 𝐴𝑏𝑏𝑆𝑛̄𝑛̄ 𝐵̄𝐵̄∗ 𝐵̄∗𝐵̄∗ 𝑆𝑏𝑏𝐴𝑛̄𝑛̄

𝑏𝑐 ̄𝑛 ̄𝑛 𝐵̄𝐷∗ 𝐵̄∗𝐷 𝐴𝑏𝑐𝑆𝑛̄𝑛̄ 𝐵̄𝐷∗ 𝐵̄∗𝐷 𝑆𝑏𝑐𝐴𝑛̄𝑛̄

𝑐𝑐 ̄𝑛 ̄𝑛 𝐷𝐷∗ 𝐷∗𝐷∗ 𝐴𝑐𝑐𝑆𝑛̄𝑛̄ 𝐷𝐷∗ 𝐷∗𝐷∗ 𝑆𝑐𝑐𝐴𝑛̄𝑛̄

𝑏𝑏 ̄𝑠 ̄𝑠 𝐵̄𝑠𝐵̄∗
𝑠 − 𝐴𝑏𝑏𝐴𝑠𝑠 𝐵̄𝑠𝐵̄∗

𝑠 − −

𝑏𝑐 ̄𝑠 ̄𝑠 𝐵̄𝑠𝐷∗
𝑠 𝐵̄∗

𝑠𝐷𝑠 𝑆𝑏𝑐𝐴𝑠𝑠 𝐵̄𝑠𝐷∗
𝑠 𝐵̄∗

𝑠𝐷∗
𝑠 𝐴𝑏𝑐𝑆𝑠𝑠

𝑐𝑐 ̄𝑠 ̄𝑠 𝐷𝑠𝐷∗
𝑠 − 𝐴𝑐𝑐𝐴𝑠𝑠 𝐷𝑠𝐷∗

𝑠 − −

1
2(1+) 𝑏𝑏 ̄𝑛 ̄𝑠 𝐵̄𝐵̄∗

𝑠 𝐵̄𝑠𝐵̄∗ 𝐴𝑏𝑏𝑆𝑛̄ ̄𝑠 𝐵̄𝐵̄∗
𝑠 𝐵̄∗

𝑠 𝐵̄∗ 𝑆𝑏𝑏𝐴𝑛̄ ̄𝑠

1(1+)
𝑏𝑏 ̄𝑞 ̄𝑞 𝐵̄𝐵̄∗ − 𝐴𝑏𝑏𝐴𝑛̄𝑛̄ 𝐵̄𝐵̄∗ − −

𝑏𝑐 ̄𝑞 ̄𝑞 𝐵̄𝐷∗ 𝐵̄∗𝐷 𝑆𝑏𝑐𝐴𝑛̄𝑛̄ 𝐵̄𝐷∗ 𝐵̄∗𝐷∗ 𝐴𝑏𝑐𝑆𝑛̄𝑛̄

𝑐𝑐 ̄𝑞 ̄𝑞 𝐷𝐷∗ − 𝐴𝑐𝑐𝐴𝑛̄𝑛̄ 𝐷𝐷∗ − −

0(0+)

𝑏𝑏 ̄𝑠 ̄𝑠 𝐵̄𝑠𝐵̄𝑠 𝐵̄∗
𝑠 𝐵̄∗

𝑠 𝐴𝑏𝑏𝐴 ̄𝑠 ̄𝑠 𝐵̄𝑠𝐵̄𝑠 𝐵̄∗
𝑠 𝐵̄∗

𝑠 𝑆𝑏𝑏𝑆 ̄𝑠 ̄𝑠

𝑏𝑐 ̄𝑠 ̄𝑠 𝐵̄𝑠𝐷𝑠 𝐵̄∗
𝑠𝐷∗

𝑠 𝐴𝑏𝑐𝐴𝑠𝑠 𝐵̄𝑠𝐷𝑠 𝐵̄∗
𝑠𝐷∗

𝑠 𝑆𝑏𝑐𝑆𝑠𝑠

𝑐𝑐 ̄𝑠 ̄𝑠 𝐷𝑠𝐷𝑠 𝐷∗
𝑠𝐷∗

𝑠 𝐴𝑐𝑐𝐴 ̄𝑠 ̄𝑠 𝐷𝑠𝐷𝑠 𝐷∗
𝑠𝐷∗

𝑠 𝑆𝑐𝑐𝑆 ̄𝑠 ̄𝑠

1(0+)
𝑏𝑏 ̄𝑛 ̄𝑛 𝐵̄𝐵̄ 𝐵̄∗𝐵̄∗ 𝐴𝑏𝑏𝐴𝑛̄𝑛̄ 𝐵̄𝐵̄ 𝐵̄∗𝐵̄∗ 𝑆𝑏𝑏𝑆𝑛̄𝑛̄

𝑏𝑐 ̄𝑛 ̄𝑛 𝐵̄𝐷 𝐵̄∗𝐷∗ 𝐴𝑏𝑐𝐴𝑛̄𝑛̄ 𝐵̄𝐷 𝐵̄∗𝐷∗ 𝑆𝑏𝑐𝑆𝑛̄𝑛̄

𝑐𝑐 ̄𝑛 ̄𝑛 𝐷𝐷 𝐷∗𝐷∗ 𝐴𝑐𝑐𝐴𝑛̄𝑛̄ 𝐷𝐷 𝐷∗𝐷∗ 𝑆𝑐𝑐𝑆𝑛̄𝑛̄

T a b l e 5 . 4 : The physical content of the open-flavour Bethe-Salpeter amplitude for the quark
and colour configurations examined in this work, with 𝑛 ∈ {𝑢, 𝑑}. States containing ̄𝑐 ̄𝑐 are
analogous to those with ̄𝑠 ̄𝑠 and are thus not shown explicitly. Scalar and axial-vector diquarks
are represented by 𝑆 and 𝐴, respectively, with the subscript indicating the quark content of
the diquark. The physical components are grouped based on their attractive and repulsive
colour structure. The dressing functions 𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5 correspond to specific components and
colour channels. Empty slots in the meson-meson channels remain unoccupied due to physical
constraints, while those in diquark channels are forbidden by symmetry considerations. For
more detail, see Appendix B.2.1 .
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Chapter 6

Results

6.1 Mass spectra

In this section, we display and discuss our obtained mass spectra for the hidden- and
open-flavour four-quark states with total spin 𝐽 = 0 and 𝐽 = 1. In this context, we
investigate the importance of the repulsive colour forces for the different four-quark states
considered in this thesis. We do this, by comparing the mass spectrum of a four-quark
state with quantum numbers 𝐼(𝐽𝑃(𝐶)) obtained by using solely the attractive colour forces
with the mass spectrum we get when we additionally include also the repulsive colour
forces. This provides a good overview of how much the repulsive colour forces affect the
different channels. Furthermore, using the obtained masses for the different investigated
channels, we also calculate the binding energy with respect to the lowest lying meson-
meson threshold for a given channel. We also compare our mass spectra and binding
energies to the experimental values in [20] (if available for the investigated channel) and
to predictions from other theoretical approaches.

The masses of the four-quark states shown in the following are obtained in a similar
fashion as described in Section 4.3.1. We determine the quark mass evolution curve
(QMEC) from the masses obtained by the corresponding eigenvalue curves (EVC). The
QMECs are then fitted by polynomials of the form Eq. (4.56) to obtain the final predictions
for the four-quark masses plus an error estimate, which is the extrapolation error from the
EVC (cf. Appendix C.5) plus an error coming from the fit (cf. Appendix C.6).

Comparing the “attractive colour forces only” spectra to the spectra with attractive and
repulsive colour forces, e.g., left and right panel in Figs. 6.1 and 6.2, we see that in some
cases, the error bars for the spectra including the attractive and repulsive colour forces are
larger compared to the spectra with only attractive colour components. This is explained
in more detail in Appendix C.6, but can be shortly summarized as follows. Solving the
four-quark FYE in Eq. (5.42) with only the repulsive colour components in Tables 5.3
and 5.4 yields negative eigenvalues, i.e., the state is never bound. Thus, the inclusion of the
repulsive colour forces in general lowers the calculated eigenvalues, leading to an increase
in mass. This increase in mass, however, leads to the two-body thresholds coming into
effect earlier in the QMECs in Appendix C.6. Thus, the range of quark masses which need
to be extrapolated with the polynomial increases, leading to potential larger error bars for
the final masses. This larger fit range is also the reason, why the excited states may have
larger error bars than the ground states. The two-body thresholds are the same for ground
and excited states, but the excited states are heavier, thus the threshold effects occur earlier
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𝑀 [GeV]

𝜒𝑐1(1𝑃)

𝜒𝑐1(3872)

𝜒𝑐1(4140)

𝜒𝑐1(4274)

𝜒𝑐1(4685)

ℎ𝑐(1𝑃)

𝑇𝑐 ̄𝑐1(3900)+

𝑇𝑐 ̄𝑐(4020)

𝑇𝑐 ̄𝑐1(4200)

𝑇𝑐 ̄𝑐1(4430)

𝜒𝑐0(1𝑃)

𝜒𝑐0(3860)
𝜒𝑐0(3915)
𝑋(3960)

𝐽/𝜓(1𝑆)

𝜓(2𝑆)
𝜓(3770)

𝜓(4040)
𝜓(4160)
𝜓(4230)
𝜓(4360)
𝜓(4415)

𝜓(4660)

𝜂𝑐(1𝑆)

𝜂𝑐(2𝑆)

attractive only

0(0−+) 0(1−−) 0(0++) 1(1+−) 0(1++)

𝜒𝑐1(1𝑃)

𝜒𝑐1(3872)

𝜒𝑐1(4140)

𝜒𝑐1(4274)
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F i g u r e 6 . 1 : Hidden-charm four-quark mass spectrum for the ground and first radial excited states
compared to experiment [20]. Left: Spectrum obtained by using only the attractive colour forces.
Right: The mass spectrum with attractive and repulsive colour channels included. The height of
the box is the error estimate for the extracted masses. The grey and black boxes represent the real
parts of the pole positions from the PDG for the conventional and exotic hadrons respectively.
Pale grey states are not yet well established. Spectrum in the left panel is taken from [189].

in the QMEC.

6.1.1 Hidden-flavour mass spectrum

We commence with the spectra of the hidden-flavour four-quark states investigated in
this work. The attractive and repulsive physical components taken into account for the
hidden-charm and hidden-bottom states are given in Table 5.3. As a reminder, the physical
components correspond to (heavy-light) meson-meson, hadro-quarkonium and (heavy-
light) diquark-antidiquark components for the ℳ1, the ℳ2 and 𝒟 topologies respectively.
The quarkmass evolution curves used to extract the spectrum are shown in Appendix C.6.1.

The obtainedmass spectra for the ground and first radial excited states of the investigated
hidden-flavour quantum numbers in the charm and bottom sector compared to the masses,
i.e., the real part of the pole, from the PDG [20] are shown in Fig. 6.1 and Fig. 6.2 respectively.
In the left panelwe show the spectrumobtained by using only the attractive colour channels,
i.e., the first three columns in Table 5.3, while in the right panel we display the spectrum
obtained by using the attractive and repulsive colour forces. The associated numerical
values for the masses are compiled in Tables C.2 and C.3. The white rows show the values
for the attractive only basis and the green highlighted rows show the ones for the attractive
plus repulsive basis. Additionally, we show the binding energies 𝐸𝐵 = 𝑀 − 𝑀th with
respect to the lightest heavy-light meson-meson thresholds 𝑀th in a given channel. The
threshold 𝑀th is obtained by using our calculated masses from the two-body BSE in
Tables 4.2 and C.1.
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Hidden-charm mass spectrum

As stated above, in Fig. 6.1 we show the obtained masses plus (extrapolation) error for the
ground and first radial excited states for hidden-charm four-quark states. We will now
go through the different channels one by one from right to left and compare the obtained
spectra for the attractive only and the attractive plus repulsive colour forces. The following
section follows the arguments given in [189].

0(1++). Starting with the 0(1++) channel, we see that the 𝑐𝑛 ̄𝑛 ̄𝑐 ground state agrees very
well with the experimental 𝜒𝑐1(3872) in both cases. Moving on to the 𝑐𝑠 ̄𝑠 ̄𝑐 ground state,
we see that for the attractive only basis (left panel in Fig. 6.1), we get a state very close
to the corresponding 𝑐𝑛 ̄𝑛 ̄𝑐 ground state. The reason for this is the slight plateau like
behaviour of the corresponding QMEC in the left panel of Fig. C.5. Comparing this to
the 𝑐𝑠 ̄𝑠 ̄𝑐 ground state with attractive and repulsive colour forces, we see that its mass gets
shifted up to match the experimental 𝜒𝑐1(4140). This identification fits quite well, as the
observed hadronic decay for this state is 𝜒𝑐1(4140) → 𝐽/𝜓𝜙, i.e., ((𝑐 ̄𝑐)(𝑠 ̄𝑠)), which is our
physical hadro-charmonium component for this state. The excited 𝑐𝑛 ̄𝑛 ̄𝑐 state for attractive
only is found in the region of the 𝑐𝑠 ̄𝑠 ̄𝑐 ground state using attractive and repulsive forces.
Adding the repulsive colour channel, this state moves up a bit to the 𝜒𝑐1(4274). However,
checking the PDG [20], the observed decay for the 𝜒𝑐1(4274) is also 𝐽/𝜓𝜙, which does not
match with the internal clusters we take into account here. Therefore, we conclude that
this state either has undiscovered decay modes or the radial excitation of the 𝜒𝑐1(3872)
is still missing from the spectrum. Regarding the excited 𝑐𝑠 ̄𝑠 ̄𝑐 state, we find that its mass
moves up considerably when we include the repulsive channels in the right panel. This
state is now closer to the 𝜒𝑐1(4685) than to the 𝜒𝑐1(4274), albeit being too low in mass. To
shortly summarize, we see that while considering only the attractive colour components
produces the 𝑐𝑛 ̄𝑛 ̄𝑐 ground state correctly, the rest of the spectrum is a little off. Including
the repulsive colour forces in this channel remedies this, which can especially be seen in
the spectrum for the 𝑐𝑠 ̄𝑠 ̄𝑐 states. For the excited 𝑐𝑛 ̄𝑛 ̄𝑐 state, it is presently not clear whether
the spectrum is missing a state or if the 𝜒𝑐1(4274) has additional hadronic decay modes
making it a suitable candidate.

1(1+−). Considering now the second axialvector channel, i.e., 1(1+−), the mass of the
𝑐𝑛 ̄𝑛 ̄𝑐 ground state stays the same when comparing the left and right panel in Fig. 6.1. The
attractive plus repulsive mass matches the 𝑇𝑐 ̄𝑐1(3900)+ within the error. For the corre-
sponding excited 𝑐𝑛 ̄𝑛 ̄𝑐 state the “attractive only” and the attractive plus repulsive results
agree within the error bars. The latter can be identified with the 𝑇𝑐 ̄𝑐1(4200)+, which ac-
cording to the observed decay (𝑇𝑐 ̄𝑐1(4200)+ → 𝐽/𝜓𝜋+) could be the radial excitation of
the 𝑇𝑐 ̄𝑐1(3900)+. Looking at the seen hadronic decays of the remaining exotic candidates,
i.e., 𝑇𝑐 ̄𝑐(4020) → ℎ𝑐(1𝑃)𝜋; 𝐷∗𝐷̄∗ and 𝑇𝑐 ̄𝑐1(4430)+ → 𝐽/𝜓𝜋+; 𝜓(2𝑆)𝜋+, we see that none
of those is expected to have quark content 𝑐𝑠 ̄𝑠 ̄𝑐. More likely, the 𝑇𝑐 ̄𝑐1(4430)+ is a further
radial excitation of the 𝑇𝑐 ̄𝑐1(3900)+, while the 𝑇𝑐 ̄𝑐(4020) does not have established quantum
numbers as of the time of writing. Therefore, our 𝑐𝑠 ̄𝑠 ̄𝑐 ground and excited states serve
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as estimates where states with this quark content could be located in this channel. Sum-
marizing, we find that our 𝑐𝑛 ̄𝑛 ̄𝑐 ground and excited states match with the corresponding
experimental candidates if we include the repulsive as well as the attractive colour forces.
Meanwhile, the 𝑐𝑠 ̄𝑠 ̄𝑐 states do not have any appropriate experimental candidates and serve
as predictions. Overall, the effect of the repulsive forces is observed to be rather small in
this channel.

0(0++). In the scalar 0(0++) channel, we find a 𝑐𝑛 ̄𝑛 ̄𝑐 ground state which using only the
attractive colour forces is consistent with the experimental 𝜒𝑐0(1𝑃). This, however, is
considered a conventional 𝑐 ̄𝑐 state according to the PDG [20]. Also the 𝑐𝑠 ̄𝑠 ̄𝑐 ground state
is found very close to the 𝑐𝑛 ̄𝑛 ̄𝑐 ground state, which again is due to the behaviour of the
corresponding QMEC in Fig. C.7. These states are definitely too low to be identified with
the exotic candidates in this channel. Including the repulsive colour forces, the situation
improves slightly as the masses of both 𝑐𝑛 ̄𝑛 ̄𝑐 and 𝑐𝑠 ̄𝑠 ̄𝑐 ground states increases by about
200 MeV, see Table C.2. They are still too low to match the exotic candidates. However,
regardless if we only include the attractive or attractive plus repulsive colour forces, we
find the excited 𝑐𝑛 ̄𝑛 ̄𝑐 state to be consistent with the 𝜒𝑐0(3915). The hadronic decay modes
𝜒𝑐0(3915) → 𝐽/𝜓𝜔 and 𝜒𝑐0(3915) → 𝐷+𝐷− match upwith our chosen physical components
in Table 5.3. The excited 𝑐𝑠 ̄𝑠 ̄𝑐 state is in the correct mass range to be identified with the
𝑋(3960) [191], which because of its hadronic decay to 𝐷+

𝑠 𝐷−
𝑠 is believed to have 𝑐𝑠 ̄𝑠 ̄𝑐. To

the best of our knowledge, there is no evidence in the literature that would point to either
𝜒𝑐0(3915) or 𝑋(3960) being radial excitations. We therefore tentatively conclude, that
the matching of our excited state with the experimental candidates is accidental and we
cannot access the real ground state with our current theoretical setup. It might be, that
the inclusion of further components in our physical BSA will lead to an increase in mass.
Or maybe the mixing of four-quark states with conventional 𝑐 ̄𝑐 mesons has a significant
effect in this channel. Exploring these important possibilities is relegated to future work.
Overall, we observe that including the repulsive forces has a rather small effect on the
masses in this channel.

0(1−−). In the vector 0(1−−) channel, the lowest exotic candidate is the 𝜓(4230). Regard-
less whether we use the attractive only or the attractive plus repulsive physical basis, we
find our 𝑐𝑛 ̄𝑛 ̄𝑐 ground state in close vicinity of the 𝜓(4230). Based on our chosen physical
components in Table 5.3, this is also the first state that should be picked up by our analysis,
as the conventional states below all feature different decay patterns, cf. [20]. Note, that
from Table C.2 we see that this state is far above the 𝐷𝐷̄1 threshold, while in nature it is
measured very close to said threshold. This is because our calculated 𝐷1 meson is much
lower than the PDG one, cf. Table C.1, decreasing the threshold significantly.1 The 𝑐𝑠 ̄𝑠 ̄𝑐
ground state moves up in mass to match the experimental 𝜓(4360) very well when we
include the repulsive colour components. However, an identification of our 𝑐𝑠 ̄𝑠 ̄𝑐 ground
state with the 𝜓(4360) is questionable, as the observed decays do not point towards a 𝑠 ̄𝑠

1Note: using the PDG mass for the 𝐷1(2420) meson increases the mass of our 1−− 𝑐𝑛𝑛̄ ̄𝑐 ground state by
about 50 − 100 MeV.
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component. Theoretical studies using effective field theory (EFT)more point towards a 𝐷∗𝐷1
molecular interpretation [192, 193], which would render the 𝜓(4360) the spin partner
of the 𝜓(4230). Because of this and as the other state in the vicinity, i.e., the 𝜓(4415) is
considered a conventional meson, we conclude that the 𝑐𝑠 ̄𝑠 ̄𝑐 ground state is still missing
from the experimental spectrum. Our obtained mass may serve as an estimate of the
mass range where it could be found. Including the repulsive colour components, the
masses for both 𝑐𝑛 ̄𝑛 ̄𝑐 and 𝑐𝑠 ̄𝑠 ̄𝑐 excited states move downward. Our 𝑐𝑠 ̄𝑠 ̄𝑐 excited state can
now clearly identified with the 𝜓(4660), as it is now within our error bars. According to
the seen hadronic decays, i.e., 𝜓(4660) → 𝐷+

𝑠 𝐷𝑠1(2536)−, 𝜓(4660) → 𝐷+
𝑠 𝐷𝑠2(2573)− and

𝜓(4660) → 𝜓(2𝑆)𝜋+𝜋− (probably from 𝜓(4660) → 𝜓(2𝑆)𝑓0(980)), the 𝜓(4660) is in line
with a 𝑐𝑠 ̄𝑠 ̄𝑐 quark content. The excited 𝑐𝑛 ̄𝑛 ̄𝑐 state does not match with any experimental
candidate and therefore may serve as prediction for such a radial excitation of the 𝜓(4230).
To sum up, we find that our 𝑐𝑛 ̄𝑛 ̄𝑐 ground state is in good agreement with the 𝜓(4230),
while the corresponding 𝑐𝑛 ̄𝑛 ̄𝑐 excited state and 𝑐𝑠 ̄𝑠 ̄𝑐 ground state serve as predictions for
possible experimental candidates. The excited 𝑐𝑠 ̄𝑠 ̄𝑐 state is then again in line with the
experimental 𝜓(4660). Including also the repulsive colour components in this channel
seems to affect the results the least out of all the investigated channels.

0(0−+). Finally, we consider the pseudoscalar 0(0−+) channel. This channel does not
feature any experimental exotic candidates at the time of writing. Therefore, our obtained
results may serve as a prediction for the ground and first excited four-quark states in this
channel. Starting with the 𝑐𝑛 ̄𝑛 ̄𝑐 ground state using only the attractive colour channels, we
find it in the same mass region as its scalar partner and close to our 𝜒𝑐0𝜂 threshold (keep
in mind that the 𝜂 only features an 𝑛 ̄𝑛 component and is thus are mass degenerate with
the 𝜋). Including also the repulsive colour channels increases the mass by about 600 MeV
moving it closer to our 𝐷∗𝐷̄1 threshold. From an EFT standpoint, the lowest pseudoscalar
four-quark state in the charmonium region should be heavier than the 𝜓(4230) and around
the 𝐷∗𝐷̄1 threshold [194]. The 𝑐𝑠 ̄𝑠 ̄𝑐 ground and 𝑐𝑛 ̄𝑛 ̄𝑐 excited state are almost degenerate
when we use only the attractive colour channels and in the vicinity of the conventional
𝜂𝑐(2𝑆). Including the repulsive colour channels, both of these masses increase by around
400 and 600 MeV respectively. Also the mass for the excited 𝑐𝑠 ̄𝑠 ̄𝑐 state increases by over
500 MeV when we use the full physical basis. The error bars get significantly larger when
going from the attractive only to the attractive plus repulsive basis. This is to be expected,
as the corresponding QMEC for the latter case gets affected earlier by the internal two-
body thresholds. The masses in this channel are affected the most by the inclusion of the
repulsive forces.

Hidden-bottom mass spectrum

In Fig. 6.2 we show the calculated masses and error for the ground and first radial excited
four-quark states in the bottom region together with the experimentally measured states.
We again show the masses obtained by using only the attractive colour forces in the left
panel and the one with attractive plus repulsive colour channels in the right panel. The
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F i g u r e 6 . 2 : Same as Fig. 6.1 but for the hidden-bottom four-quark ground and first excited states.
The 𝑇𝑏𝑏̄1 and 𝑇∗

𝑏𝑏̄1 denote the 𝑇𝑏𝑏̄1(10610) and 𝑇𝑏𝑏̄1(10650)+ respectively.

associated numerical values are given in Tables C.2 and C.3. Similar as for the hidden-
charm case, we will go through the channels from right to left, discuss the different
spectra obtained with attractive only versus attractive plus repulsive colour channels and
compare the spectra to the experimental situation. It is quite clear when we compare the
experimental situation in the charmonium region in Fig. 6.1 to the bottomonium region, the
latter presently features much less experimentally measured states. There are theoretical
predictions for the 𝑏𝑛 ̄𝑛𝑏̄ ground states in the 0++, 1++ and 2++ channels coming from
EFT [195], which are referred to as 𝑊𝑏𝐽 states.

0(1++). Starting again in the 0(1++) channel, we see that there are currently no exotic
candidates in this channel to which we could compare our findings. Therefore, all the
following masses can be understood as predictions. We find the 𝑏𝑛 ̄𝑛𝑏̄ ground state for the
attractive only colour channels (left panel in Fig. 6.2) mass degenerate with the 𝜒𝑏1(3𝑃).
This is however the second radial excitation of the 𝜒𝑏1(1𝑃) and therefore considered a
conventional state. Including the repulsive colour component, the mass moves down by
170 MeV but is still consistent with the attractive only result within our error. The 𝑊𝑏1 is
predicted to be a resonance several MeV above threshold [195], which does not match
our result. The mass of the 𝑏𝑠 ̄𝑠 ̄𝑏 ground state does not get modified by the inclusion of
the repulsive channels. The 𝑏𝑐 ̄𝑐 ̄𝑏 ground state however moves up significantly by about
680 MeV. For the excited states, we find that the 𝑏𝑛 ̄𝑛 ̄𝑏 and 𝑏𝑠 ̄𝑠𝑏̄ states move down in mass
upon inclusion of the repulsive colour channels. This might be attributed to the threshold
effects in the corresponding QMEC in Appendix C.6. The 𝑏𝑐 ̄𝑐𝑏̄ excited state increases by
about 500 MeV to match its lowest meson-meson two-body threshold, i.e., 𝜂𝑏Υ.
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1(1+−). Moving to the 1(1+−) channel, we have the 𝑇𝑏𝑏̄1(10610) and 𝑇𝑏𝑏̄1(10650)+ as
experimental candidates (denoted as 𝑇𝑏𝑏̄1 and 𝑇∗

𝑏𝑏̄1 in Fig. 6.2). Based on the observed
hadronic decays of these two states, see [20], they are expected to have quark content
𝑏𝑛 ̄𝑛𝑏̄. The physical components chosen for this channel suggest, that our 𝑏𝑛 ̄𝑛𝑏̄ ground
state should correspond to the 𝑇𝑏𝑏̄1(10610) rather than the 𝑇𝑏𝑏̄1(10650)+, for which the
dominant hadronic decay channel is 𝑇𝑏𝑏̄1(10650)+ → 𝐵∗+𝐵̄∗0. The 𝑏𝑠 ̄𝑠𝑏̄ and 𝑏𝑐 ̄𝑐 ̄𝑏 ground
states currently do not have associated experimental candidates. When including the
attractive and repulsive colour forces, the masses of the ground states move up by 250 MeV,
which yields a 𝑏𝑛 ̄𝑛𝑏̄ ground state in accordance with the experimental 𝑇𝑏𝑏̄1(10610) state.
The 𝑏𝑠 ̄𝑠 ̄𝑏 ground state is found almost mass degenerate again. The masses for the 𝑏𝑛 ̄𝑛 ̄𝑏 and
𝑏𝑠 ̄𝑠𝑏̄ excited states increase slightly and the error gets larger as the two-body threshold
effects occur earlier in this QMEC than for the case where we only use the attractive colour
channels. The excited 𝑏𝑐 ̄𝑐 ̄𝑏 state does not have this problem, as it is still significantly below
the threshold. Its mass increases by about 250 MeV.

0(0++). The scalar 0(0++) channel also does not feature any exotic experimental candi-
dates at the time of writing. The situation we find is similar to the case in the charm region.
The 𝑏𝑛 ̄𝑛𝑏̄ and 𝑏𝑠 ̄𝑠𝑏̄ ground states are found very low when using only the attractive only
colour channels. Including also the repulsive ones, the masses move up by about 200 MeV.
The 𝑊𝑏0 state is found by EFT [195] to be slightly above the 𝐵̄𝐵 threshold, which is again
in the range where we find our 𝑏𝑛 ̄𝑛 ̄𝑏 excited state using the attractive and repulsive forces.

0(1−−). The vector 0(1−−) channel again features many experimental states and also
a few which can be considered exotic candidates. The nature of the Υ(10860) and the
Υ(11020) is not quite clear, as they are also candidates for the Υ(5𝑆) and Υ(6𝑆), which
would indicate that they are radial excitations of the Υ(1𝑆). This would render the Υ(10753)
the only exotic candidate in this channel. As was the case in the charm region for the
vector channel, we do not observe a drastic change of the masses when including the
repulsive forces. The ground state 𝑏𝑛 ̄𝑛 ̄𝑏 mass decreases slightly, with our ground state
close to the Υ(10753), justifying a possible identification. For our 𝑏𝑠 ̄𝑠 ̄𝑏 ground state, the
mass also decreases slightly when we include the repulsive colour channels. However,
we cannot make a clear identification with an experimental exotic candidate, as they are
probably either conventional excited states or complicated superpositions of 𝑏𝑛 ̄𝑛𝑏̄, 𝑏𝑠 ̄𝑠 ̄𝑏
and conventional 𝑏𝑏̄ states, as suggested in [196]. The excited 𝑏𝑛 ̄𝑛𝑏̄ and 𝑏𝑠 ̄𝑠𝑏̄ states also
move downward in mass, when we include the repulsive colour channels, which can be
explained by the difference in shape of the corresponding QMECs in Appendix C.6. The
𝑏𝑐 ̄𝑐 ̄𝑏 ground and first excited states do not change upon inclusion of the repulsive channels,
but rather can be determined more accurately.

0(0−+). Lastly, we look at the pseudoscalar 0(0−+) channel. This channel is also com-
pletely devoid of experimental exotic candidates. Therefore, our results can be understood
as predictions for the mass range of a possible experimental candidate. The situation is
very similar as it was in the charm region. Using the attractive only basis, i.e., the first three
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components in Table 5.3, we find a 𝑏𝑛 ̄𝑛𝑏̄ ground state which is in the same mass region as
the scalar ground state with the same quark content. Also, the corresponding excited state
and the 𝑏𝑠 ̄𝑠𝑏̄ ground and excited states are found very close together. Including also the
repulsive colour channels leads to an increase in mass of about 1 GeV for the 𝑏𝑛 ̄𝑛 ̄𝑏 and 𝑏𝑠 ̄𝑠 ̄𝑏
ground and excited states, which are again found in the vicinity of the ground states. The
𝑏𝑐 ̄𝑐𝑏̄ ground state stays roughly in the same mass region and its error is slightly smaller.
Its excited state increases in mass by about 400 MeV.

In all channels we observe that for increasing 𝑞 ̄𝑞 mass, the states get more deeply bound.
This behaviour was also observed in earlier work [67, 74, 75]. Predictions for the mass
of the 𝑏𝑐 ̄𝑐𝑏̄ state coming from QCD sum rules [197], diquark-antidiquark models [198]
and lattice-QCD inspired quark models [199] mostly yield a state close to the respective
threshold or unbound, which would be at odds with our observation. Whether this trend
of increasing binding is correct or not remains to be seen.

6.1.2 Open-flavour mass spectra

We now move on to discuss the mass spectra for the open-flavour four-quark states. The
attractive and repulsive physical components we took into account for the different quan-
tum numbers 𝐽𝑃 are compiled in Table 5.4. As a brief reminder, the physical components
given in the aforementioned table correspond to two heavy-light meson-meson compo-
nents for the ℳ1 and ℳ2 topologies and a (heavy-heavy)(light-light) diquark-antidiquark
component for the 𝒟 interaction topology. The quark mass evolution curves to obtain the
spectra are shown and discussed in Appendix C.6.2. We compare the spectra obtained
by using only the attractive colour channels, i.e., the first three rows in Table 5.4, with the
one obtained by additionally including the repulsive colour channels. We will first discuss
our results in the 𝐽𝑃 = 1+ channel and then for the 𝐽𝑃 = 0+ channel. This section partially
follows [190].

𝐽𝑃 = 1+

In Fig. 6.3 we show our obtained mass spectra for the open-bottom, open-bottom-charm
and open-charm four-quark states with 𝐽𝑃 = 1+ using only the attractive (left) and the
attractive plus repulsive colour channels (right). In Fig. 6.4 we show the masses for the
open-bottom-strange (𝑏𝑏 ̄𝑛 ̄𝑠) ground and excited states. The corresponding numerical
values are compiled in Tables C.4 to C.6. At the time of writing, this channel features only
one experimentally measured open-flavour four-quark state containing a pair of heavy
quarks (bottom or charm), i.e., the 𝑇+

𝑐𝑐(3875) in the 0(1+) channel with suggested quark
content 𝑐𝑐 ̄𝑛 ̄𝑛 [30, 31]. This is shown as the black box in the 𝑐𝑐 ̄𝑞 ̄𝑞 spectra. There are, however,
numerous studies using lattice QCD (e.g., [32, 34, 36, 37, 200–205] or see [63] for an
extensive overview) and phenomenological models (e.g., [33, 35, 206–219]) investigating
the binding energies of the 𝑇+

𝑐𝑐 and its heavier partners, which are termed 𝑇−
𝑏𝑏 (𝑏𝑏 ̄𝑛 ̄𝑛), 𝑇−

𝑏𝑏 ̄𝑠
(𝑏𝑏 ̄𝑛 ̄𝑠) and𝑇𝑏𝑐 (𝑏𝑐 ̄𝑛 ̄𝑛). We compiled the obtained binding energies from the aforementioned
literature in Fig. 6.5. As a reference to compare our results to, we averaged the binding
energies in Fig. 6.5 for the 𝑇𝑏𝑐, 𝑇−

𝑏𝑏 and 𝑇−
𝑏𝑏 ̄𝑠 and subtracted it from our calculated lowest
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F i g u r e 6 . 3 : Spectra for open-flavour 𝐽𝑃 = 1+ states. Left: Spectra obtained by using only attractive
colour channels. Right: Spectra obtained including also the repulsive colour channels. In both
cases we display the spectra for open-bottom (𝑏𝑏 ̄𝑞 ̄𝑞), open-bottom-charm (𝑏𝑐 ̄𝑞 ̄𝑞), and open-charm
(𝑐𝑐 ̄𝑞 ̄𝑞) systems from left to right. The heights of the boxes represent the uncertainties in the
extracted masses. For reference, the lowest relevant thresholds for the respective four-quark
systems are included (colour-coded to match the box colours, see Table 5.4). The black box
corresponds to the experimentally observed 𝑇+

𝑐𝑐 state, while the boxes for 𝑇−
𝑏𝑏 and 𝑇𝑏𝑐 represent

averaged theoretical predictions. Figure adapted from [190] .

meson-meson threshold. The results are shown as black boxes in Figs. 6.3 and 6.4. To
provide a further reference, especially for the stateswith ̄𝑞 ̄𝑞 ≠ ̄𝑛 ̄𝑛, we plot the corresponding
lowest meson-meson thresholds.

From Fig. 6.3 we observe, that using only the attractive colour forces, we find our 𝑏𝑏 ̄𝑛 ̄𝑛,
𝑐𝑐 ̄𝑛 ̄𝑛 ground states for isospin 𝐼 = 0 and in fact the whole 𝑏𝑐 ̄𝑞 ̄𝑞 spectrum very strongly
bound. Only by including also the repulsive colour channels, we find our states in the
correct mass regions. Thus, the interplay of attractive and repulsive forces seems to be
of crucial importance for the open-flavour states with spin 𝐽 = 1. In the open-bottom
spectrum, our 𝐼 = 0 𝑏𝑏 ̄𝑛 ̄𝑛 ground state moves up by about 400 MeV tomatch the theoretical
prediction of the𝑇−

𝑏𝑏. Our calculated binding energy is right in themiddle of the predictions
from the literature (top left in Fig. 6.5). The corresponding excited state also moves up
a little in mass. The masses of the ground and excited states of the isospin 𝐼 = 1 partner
states move down somewhat and can be determined much more accurately when we use
the attractive plus repulsive colour channels. Same goes for the 𝑏𝑏 ̄𝑞 ̄𝑞 states with ̄𝑞 ≠ ̄𝑛.
The binding energy of the isospin 𝐼 = 1 𝑏𝑏 ̄𝑛 ̄𝑛 state is in the region expected from other
theoretical approaches (bottom left panel in Fig. 6.5), with the threshold still within our
error bar. The 𝑏𝑏 ̄𝑠 ̄𝑠 is found shallowly bound but the 𝐵̄𝑠𝐵̄∗

𝑠 threshold is still within the error
bar.

For the isospin 𝐼 = 1/2 channel, we see from Fig. 6.4 that using only the attractive colour
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1
F i g u r e 6 . 4 : Ground and first radial excited state for the 𝑏𝑏 ̄𝑛 ̄𝑠 state using only the attractive colour

channels (shown as transparent) and using the attractive plus repulsive colour channels (shown
as full boxes). The black box represents the averaged theoretical predictions for the 𝑇−

𝑏𝑏 ̄𝑠 .

channels, the 𝑏𝑏 ̄𝑛 ̄𝑠 ground and excited states are very deeply bound (opaque states). Only
by including the repulsive colour channels, the mass of the ground state moves up into
the region of the theoretical predictions. We see from Fig. 6.5, that our obtained binding
energy is in accordance with the theoretical predictions within the error, albeit still a little
too low. In [63] it is stated, that the binding energy for the 𝑇−

𝑏𝑏 ̄𝑠 is expected from the lattice
to be between 𝐸lat.

𝐵 = −(30 − 100) MeV. Using the attractive plus repulsive colour channels,
the first excited state is found to be a resonance above the threshold. While we do not show
the 𝑏𝑏 ̄𝑞 ̄𝑠 states for ̄𝑞 ≠ ̄𝑛 in Fig. 6.4, we give their masses and binding energies in Table C.5.

In the open-bottom-charm spectrum, our 𝐼 = 0 𝑏𝑐 ̄𝑛 ̄𝑛 ground state increases by about 600
MeV right up to the 𝐵̄∗𝐷 threshold. At the time of writing, there is no common consensus
whether this state is bound or not, as can be seen from the corresponding plot in Fig. 6.5.
Our obtained binding energy is slightly above threshold and in line with recent lattice
results [37, 204], which claim a very shallow bound state. The excited 𝑏𝑐 ̄𝑛 ̄𝑛 state is found
far above threshold, as are the ground and excited isospin 𝐼 = 1 partner states. The 𝑏𝑐 ̄𝑠 ̄𝑠
ground and excited states are also both above the 𝐵̄∗

𝑠𝐷𝑠 threshold. Coming to the open-
charm spectrum, our 𝐼 = 0 𝑐𝑐 ̄𝑛 ̄𝑛 ground state increases by about 100 MeV upon inclusion
of the repulsive colour channels, yielding a binding energy of 𝐸𝐵 = 20 ± 50 MeV, which is
in good agreement with the experimental value, i.e., 𝛿𝑚BW = −273(61) keV [30, 31], and
the theoretical predictions (top right in Fig. 6.5). All other states are found far above the
respective thresholds. The binding energy of the isospin 𝐼 = 1 ground state is, albeit a
little low, consistent with the expected values from phenomenology within our error bar
(bottom right in Fig. 6.5).

Comparing the binding energies of our (heavy-heavy)(light-light) ground states in
the case of attractive plus repulsive colour channels, we observe a clear hierarchy with
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1F i g u r e 6 . 5 : Comparison of the binding energy 𝐸𝐵 of the 𝐽𝑃 = 1+ ground states obtained from
theoretical models and (if available) experimental results (black cross). The results in green are
from this work. The blue points are results from the lattice [32, 34, 36, 37, 200–205] and the
orange squares are from phenomenological models [33, 35, 206–219]. The grey dashed lines are
the lowest meson-meson thresholds for the respective channel.

the 𝑏𝑏 ̄𝑛 ̄𝑛 being deeply bound, the 𝑏𝑐 ̄𝑛 ̄𝑛 at best shallowly bound and the 𝑐𝑐 ̄𝑛 ̄𝑛 right at the
𝐷𝐷∗ threshold. This matches the predicted behaviour of decreasing binding energy with
decreasing heavy quark mass [34, 37, 200, 202, 220–224]. The binding energy of the 𝑏𝑏 ̄𝑛 ̄𝑠
ground state shows a little less binding energy than its 𝑏𝑏 ̄𝑛 ̄𝑛 partner, which is also observed
on the lattice [63, 205]. The ground states of the isospin partners 1(1+) are all found to
be unbound (bottom row in Fig. 6.5). This is a known behaviour, e.g., from lattice QCD
[225, 226], as the repulsive forces are stronger for 𝐼 = 1. For the excited 𝑄𝑄′ ̄𝑛 ̄𝑛 states
we find that the 𝑏𝑐 ̄𝑛 ̄𝑛 excited state has the lowest excitation energy, followed by the 𝑏𝑏 ̄𝑛 ̄𝑛
and then the 𝑐𝑐 ̄𝑛 ̄𝑛. The best explanation we currently have for this behaviour is related
to the different symmetry structure of the 𝑄𝑄′ = 𝑏𝑐 state compared to the 𝑄𝑄′ = 𝑏𝑏, 𝑐𝑐
states. We note, that our heaviest ground states with ̄𝑞 ̄𝑞 = ̄𝑐 ̄𝑐 and 𝑏̄ ̄𝑏 are all found to
be deeply bound, cf. Table C.4. This matches the observed behaviour also seen for the
hidden-flavour four quark states in Table C.2. It remains to be seen, whether this binding
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F i g u r e 6 . 6 : Same as in Fig. 6.3, but for the spectra for open-flavour states with 𝐽𝑃 = 0+. For spectra
with attractive plus repulsive colour channels, we show the masses obtained with the full basis
as transparent and the ones obtained by using the ‘reduced’ basis as usual .

is too strong. Considerations for the 𝑏𝑏 ̄𝑐 ̄𝑐 from lattice QCD using the Born-Oppenheimer
(BO) approximation suggest that these states should be unbound [225]. However, one
can argue that the BO approximation is not entirely free of doubt in this case, because of
the heavy charm quarks involved.

𝐽𝑃 = 0+

Our results for the open-bottom, open-bottom-charm and open-charm spectra for the
𝐽𝑃 = 0+ channel are displayed in Fig. 6.6. The corresponding numerical values are given
in Tables C.7 and C.8.

We will first discuss the effect of the repulsive colour channels on the mass spectra.
For this, we note that the very transparent states in the spectra using the attractive plus
repulsive channels (right panel in Fig. 6.6) correspond to taking all physical components
given in Table 5.4 into account, while the non-opaque states use a subset of these. This will
be explained a little later. Comparing the spectra in the left panel of Fig. 6.6 to the spectra
obtained using the full basis in the right panel, we see that the repulsive channels affect
the ground states by a few 100 MeV (cf. Table C.7) while the excited states are largely
unaffected. Using the full attractive plus repulsive basis, the states can be determined
more accurately, as can be seen by the smaller error bars. However, regardless whether
we use the attractive only or the full attractive plus repulsive basis, we find all ground
states very deeply bound. The corresponding excited states are comparably closer to the
respective thresholds and in the same mass region as their 𝐽𝑃 = 1+ counterparts. Thus, we
find a similar situation as in the hidden-flavour 0++ channel. However, in the open-flavour
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case, there can be no contributions coming from possible four- and two-quark state mixing.

Interestingly, recent lattice studies on open-flavour scalar four-quark states only consider
the 𝐷𝐷/𝐵̄𝐵̄ meson-meson and 𝑆𝑐𝑐/𝑏𝑏𝑆𝑛̄𝑛̄ diquark-antidiquark operators for the 𝑏𝑏 ̄𝑛 ̄𝑛/𝑐𝑐 ̄𝑛 ̄𝑛
states [34] and 𝐵̄𝐷 (and 𝐵̄∗𝐷∗) meson-meson and 𝑆𝑏𝑐𝑆𝑛̄𝑛̄ diquark-antidiquark operators
for the 𝑏𝑐 ̄𝑛 ̄𝑛 state [37, 221]. We know, that including additional operators in the operator
basis on the lattice leads to an improved accuracy for the results and is not comparable
with us reducing our physical components taken into account. However, we can take the
lattice study as inspiration and consider a ‘reduced’ physical component basis by excluding
the vector-vector meson-meson and the 𝐴𝑄𝑄′𝐴 ̄𝑞 ̄𝑞 diquark-antidiquark component. Using
the reduced basis, we find that our ground states move up considerably. They are now
in the mass region where the first radial excited states for the full basis are found, see
right panel in Fig. 6.6. We thus conclude, that the attractive 𝐴𝑄𝑄′𝐴 ̄𝑞 ̄𝑞 and vector-vector
meson-meson components lead to an overly strong binding in the 𝐽𝑃 = 0+ channel.

Comparison to earlier works using the four-body FYE

In the charm region, the spectra of hidden- and open-flavour four-quark states with only
attractive colour channels were already investigated in previous works using the four-body
FYE [67, 74]. Our obtained results for the “attractive only” differ slightly from those
obtained in the aforementioned works mainly due to two reasons.

The first reason is a slight inconsistency in [67, 74], as the two-body momentum parti-
tioning parameters were all set to 𝜂 = 𝜁 = 𝜒 = 0.5 in the two-body pole terms Eq. (5.37)
for all investigated states. Although the result is independent of the choice of these param-
eters, a non-optimal choice of these parameters leads to the two-body poles affecting the
calculation earlier than they would for an optimal choice. As a consequence, the maximum
value of 𝑃2 cannot exhaust its full range and the eigenvalue curve needs to be extrapolated
over a larger momentum range. This in turn causes larger extrapolation errors. With the
method described at the end of Section 5.2 we manage to remedy this.

The second reason is the used extrapolation. In [67, 74] they consistently used quadratic
polynomials to extrapolate the EVC, which was standard procedure at that time. However,
as mentioned in Appendix C.5, we found that the quadratic extrapolation often overshoots
the mass for the investigated states, while a cubic polynomial provides much better extrap-
olation results. For this reason, some of the results in [67, 74] already agree very well with
the findings in the literature, e.g., the agreement of the 𝑇𝑐𝑐(3875)+ mass in [74] with the
experimental value from the PDG. Reanalysing the states investigated in the mentioned
works using the improved extrapolation method given in Appendix C.5, we find that our
“attractive only” results are consistently lower in mass. In Section 6.1.2 we see that when
we only use the attractive forces for the 𝑇𝑐𝑐(3875)+, our obtained mass is 90 MeV below
the threshold, while only the inclusion of the repulsive channels renders it in accordance
with the 𝐷𝐷∗ threshold.
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Summary

In general, we observe that the inclusion of the repulsive colour forces in the physical
Bethe-Salpeter amplitude leads to a significant improvement for the calculated spectra,
see the comparison plots in Figs. 6.1 and 6.2 for the hidden- and Figs. 6.3 and 6.6 for the
open-flavour four-quark states.

When taking a closer look at the effect of the repulsive forces for the spectra in the
different investigated channels, we make the following observations: The biggest effect
of the repulsive forces is observed in the 0(0−+) channel, where the masses of the states
increase by several hundred MeV. Also for four-quark states with 𝐽𝑃(𝐶) = 1+(+), the
inclusion of the repulsive forces significantly affects the calculated spectra. Concerning
the hidden-flavour 0(1++) channel in the charm region, we nicely reproduce the observed
experimental spectrum in this channel when the repulsive forces are included. For the
open-flavour 𝐽𝑃 = 1+ states, the ground state masses increase significantly to match the
theoretical predictions from other approaches. The effect of the repulsive forces on the
1(1+−) and the hidden- and open-flavour scalar spectra is found to be rather small and
the 0(1−−) channel seemingly is affected the least, with the spectra almost unchanged.

When comparing our obtained mass spectra to the literature, we find that while the
hidden-flavour spectra agree nicely with experiment, the best agreement is observed for
the axialvector open-flavour ground states, i.e., 𝑐𝑐 ̄𝑛 ̄𝑛, 𝑏𝑐 ̄𝑛 ̄𝑛, 𝑏𝑏 ̄𝑛 ̄𝑛 and 𝑏𝑏 ̄𝑛 ̄𝑠. These agree
exceptionally well with recent lattice results and other predictions from the literature,
which is a good benchmark for the approximations used in this work.

The scalar channel, however, is a somewhat special case for both the hidden- and
the open-flavour four-quark states, as the ground states are found very deeply bound
regardless whether we only include the attractive colour forces, see also [74, 75], or use
the full attractive plus repulsive physical components. Interestingly, the first radial excited
states agree with the measured or predicted exotic candidates in this channel. At the
present moment, we do not have an obvious explanation for this behaviour and further
research regarding this is needed.

Regardless of the channel, we see from the QMECs in Appendix C.6 that increasing
the mass of the 𝑞 ̄𝑞 and ̄𝑞 ̄𝑞 (anti)quark-antiquark pair, our states get deeper and deeper
bound. This behaviour was also observed by earlier works in the functional framework [67,
74, 75]. Results from lattice QCD using the Born-Oppenheimer approximation for the
𝑏𝑏 ̄𝑐 ̄𝑐 state argue agains this behaviour [225]. Although, the use of the Born-Oppenheimer
approximation for these systems is not entirely free of doubt, this deep binding behaviour
is definitely worth investigating in future works.

6.2 Norm contributions

A very interesting and highly debated property of four-quark states is their internal struc-
ture. Regarding this, one can identify four different possibilities. The first andmost obvious
is that all four quarks interact strongly with each other, e.g., via three- and four-gluon
vertices, such that they are all bunched together tightly in space, forming a compact state.
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Since we neglect the three- and four-body interaction kernels in this work, we will not
discuss this possibility further. For the other three possibilities, one needs to assume dom-
inant two-body forces, as is done in this work. The resulting groupings of (anti)quarks
are two meson-meson type clusters and one cluster of diquark-antidiquark nature. Many
approaches in the literature then use one of these possibilities to describe the properties
of four-quark states. There is the meson-molecule picture [16], which considers spatially
separated mesons interacting via contact or one 𝜋 exchange making up the four-quark
state. This state then simply falls apart into the two heavy-light mesons at the correspond-
ing threshold. Thus, this picture is especially relevant for four-quark states very close to
heavy-light meson-meson thresholds, e.g., the 𝜒𝑐1(3872) and the 𝑇𝑐𝑐(3875)+. Only rele-
vant for the hidden-flavour four-quark states is the hadro-quarkonium picture [39], which
suggests that the four-quark state has a heavy 𝑄𝑄̄ core with the light 𝑞 ̄𝑞 pair revolving
around it. This is motivated by the experimental observation of final states involving a
charmonium/bottomonium state and a light hadron. Last, there is the diquark-antidiquark
picture, which considers a diquark and antidiquark pair tightly packed together in space
because of the colour force. This is arguably the most widely used picture first developed
for the considerations of four-quark states by Robert J. Jaffe [21]. Four-quark states made
from a diquark-antidiquark pair are generally referred to as tetraquarks.

As is typical for a quantum theory, the above two-body clusters should not be mutually
exclusive and a four-quark state is most likely a superposition of all possible internal
clusterings. This is indeed captured by our physical BSA in Eq. (5.41). The question
is then, how do we determine which of the internal physical components in Tables 5.3
and 5.4 is the most important for the considered four-quark states? In past works [67, 74,
75], the authors calculated the QMEC using the full (attractive) physical basis and then
systematically switched off certain physical components to see the effects on the QMEC
and therefore on the mass of the four-quark state. Based on how well the QMEC of a
certain combination of physical components matches the QMEC of the full physical basis,
one can draw conclusions about the dominance of the internal clusters. For example, in the
case of the 𝜒𝑐1(3872), the QMEC for the 𝐷𝐷̄∗ alone agrees reasonably well with the QMEC
of the full result across a wide range of current-quark masses. The contribution from the
𝐽/𝜓𝜔 cluster is only marginal and the 𝑆𝑐𝑛𝐴𝑛̄ ̄𝑐 cluster is almost negligible (cf. Fig. 2 in [67]).

In this work, we explore a different strategy to extract the information about the internal
structure of the investigated four-quark states. In Section 4.3.2 we already discussed that
one can use the dressing function to gauge the importance of the accompanying Dirac
structure for a given hadron. Based on this, we investigate the dressing functions 𝑓𝑗(𝑆0) in
Eq. (5.41) and in particular their norm contributions similar to [227–229], where the authors
investigated and quantified the orbital angular momentum composition and strength of
different internal diquark clusters for baryons. To obtain the norm contributions, we use
the canonical Nakanishi normalization condition described in Section 4.1.1, in particular we
use the right-hand side of Eq. (4.21). That is, we use our physical BSA given in Eq. (5.41),
containing six physical components in our case, and contract it with its charge conjugate Γ̄
with full quark propagators in between, i.e., Γ̄ 𝐺0 Γ. From this we get 6 × 6 diagrams which
are displayed in Fig. 6.7. The sum of all 36 matrix elements yields the total norm, shown
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F i g u r e 6 . 7 : Graphical illustration of the norm contribution matrix. The entries in the matrix
represent overlap integrals contributing to the total normalization of the four-quark state, which
is shown in the denominator. Diagonal entries correspond to norm contributions coming from
the physical components in Tables 5.3 and 5.4 and off-diagonal terms correspond to the mixing
between them. The colours are chosen to match the calculated norm contributions in Fig. 6.8.

in the denominator. The diagonal entries are the contributions to the norm coming purely
from each physical component in Tables 5.3 and 5.4. The off-diagonal elements represent
the mixing between the different physical components.

Statements about the internal structure of physical four-quark states are only possible
when using the on-shell BSAs for a particular quark configuration. Similar to the masses,
this is potentially a problem for heavy-light four-quark states. However, since every
eigenvalue in the EVC comes with a set of eigenvectors, i.e., the dressing functions, one
can calculate the norm contributions for every mass in the eigenvalue curve. This then
yields a norm contribution curve (NCC). From this NCC one can obtain the individual
norm contributions in a similar way as the masses are obtained from the EVCs. For four-
quark states containing only heavy quarks, the mass can be read off directly from the
EVC and also the norm contributions can be read off directly from the NCC. However,
for a heavy-light four-quark state, the lighter the ‘light’ quark gets, the harder it gets to
obtain the norm contributions directly. Similar to the EVC case, we resort to extrapolation
in these cases, but instead of the SPM, we simply use a polynomial to fit to the data
and extrapolate to our physical mass, i.e., the masses compiled in Appendix C.7. In the
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style of the QMEC, one obtains the norm contributions for a given four-quark state with
quark content 𝑄𝑞 ̄𝑞𝑄̄, 𝑄𝑄′ ̄𝑞 ̄𝑞′ across a range of current-quark masses for 𝑞. The resulting
norm contribution quark mass evolution curve (NCQMEC) is then fitted by a suitable
polynomial for the quark masses where the norm contributions are directly obtainable
and extrapolated to the physical 𝑚𝑞 = 𝑚𝑛 quark mass. Thus, we obtain an estimate of
the on-shell norm contributions for heavy-light four-quark states. The NCQMECs for the
investigated four-quark states in this work are shown in Appendix C.8.

Before we discuss our results, we need to mention a slight caveat. Because the four-
quark FYE is formulated in momentum space, we cannot access the spatial structure of the
internal clusters directly and therefore cannot make statements about the spatial extent of,
e.g., a meson-molecule. We made some efforts in this direction using a three-dimensional
Fourier transform to go into position space, see Appendix C.4, but the results are still
inconclusive.

In the following, we will discuss first the obtained norm contributions corresponding to
the hidden-flavour four-quark states discussed in Section 6.1.1 and then for the investigated
open-flavour four-quark states from Section 6.1.2. Note, that the norm contributions are
shownwithout an error estimate, as they anyhow serve as a qualitative study of the internal
structure of the investigated four-quark states.

6.2.1 Hidden-flavour norm contributions

Our norm contributions for the hidden-flavour four-quark states with 𝐼(𝐽𝑃𝐶) = 0(0−+),
0(1−−), 0(0++), 1(1+−) and 0(1++) are shown in Fig. 6.8. The colour coding of the results
is according to the correlations shown in the norm contribution matrix in Fig. 6.7. We only
display the results for the 𝑐𝑛 ̄𝑛 ̄𝑐, 𝑏𝑛 ̄𝑛𝑏̄ and 𝑏𝑐 ̄𝑐 ̄𝑏 ground states for each channel, since they
hardly change for the excited states or states with hidden strangeness (𝑐𝑠 ̄𝑠 ̄𝑐 and 𝑏𝑠 ̄𝑠𝑏̄). For
each matrix entry, we show the results obtained with only the attractive colour forces as
transparent on the left and the results using the attractive plus repulsive colour channels
on the right. Like we did for the spectra, we will go through the channels from right to left
and discuss the obtained results.

Starting out with the 0(1++) channel, we see that using only the attractive colour forces,
this channel is solely dominated by the ⟨𝑓0∣𝑓0⟩ correlation with about 80%, regardless of the
quark configuration. For 𝑐𝑛 ̄𝑛 ̄𝑐 and 𝑏𝑛 ̄𝑛 ̄𝑏, this corresponds to the contribution coming purely
from the attractive 𝐷𝐷̄∗ and 𝐵̄𝐵∗ physical components respectively. The contributions
coming from the other physical clusters and the mixings are all below 10%. If we also
include the repulsive colour channels, we find that the contribution from the attractive 𝐷𝐷̄∗

and 𝐵̄𝐵∗ physical components is still dominating with about 60%, but there is a very strong
contribution of about 35% coming from the ⟨𝑓0∣𝑓4⟩ correlation. For the 𝑐𝑛 ̄𝑛 ̄𝑐(𝑏𝑛 ̄𝑛𝑏̄) ground
states this corresponds to the mixing between the attractive 𝐷𝐷̄∗(𝐵̄𝐵∗) and the repulsive
𝐽/𝜓𝜔(Υ𝜔) component. For the 𝑏𝑛 ̄𝑛𝑏̄ state, there is also a sizeable contribution of about
20% coming from the pure repulsive Υ𝜔 component. This correlation vanishes when we
go to 𝑏𝑐 ̄𝑐 ̄𝑏. This importance of the repulsive forces is also reflected in the QMECs shown in
Fig. C.5, where a significant increase of the masses can be seen. Overall, the observed norm
contributions nicely confirm the hierarchy found by investigating only the QMECs [67,
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1F i g u r e 6 . 8 : Norm contributions for the ground states of the investigated hidden-flavour four-quark
states using only the attractive (opaque, left) and the attractive plus repulsive colour channels
(full, right). The results for the exited states look very similar and are therefore not shown. The
distance between the horizontal lines in the bar plots is 20%. The colour coding of the bars is
according to the matrix entries in Fig. 6.7. The correlations given on top are plotted in this order
(reading left to right) from left to right in the bar plots.

75]. For the hidden-charm state 𝜒𝑐1(3872) it mirrors the observed dominant hadronic
decay, which is 𝐷𝐷̄∗ (𝐷0𝐷̄0𝜋0 and 𝐷0𝐷̄∗0 channels combined) with about 86% and 𝐽/𝜓𝜔
with about 8% [20]. The strong 𝐷𝐷̄∗ component is expected in the wavefunction of the
𝜒𝑐1(3872) as this state is very close to the corresponding two-body threshold, compare
Table C.2.

Moving to the 1(1+−) channel, we find a very interesting picture. Using only the
attractive colour forces, we find that the 𝑐𝑛 ̄𝑛 ̄𝑐 state is dominated by the contribution
coming from the ⟨𝑓1∣𝑓1⟩ correlation (∼ 55%), which would be the purely attractive 𝐽/𝜓𝜋
physical component, followed by the contribution coming purely from the attractive
𝐷𝐷̄∗ component (∼ 30%) and the mixing between them. For the 𝑏𝑛 ̄𝑛 ̄𝑏 ground state, this
dominance of the attractive Υ𝜋 component gets even stronger (> 80%) and the pure
attractive 𝐵̄𝐵∗ component vanishes. Including the repulsive colour forces, the situation
for the hidden-charm state does not really change, both pure attractive contributions get
a little stronger, while the mixing between the two components gets a little weaker. For
the hidden-bottom region, however, we see a drastic increase from the pure attractive 𝐵̄𝐵∗
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component and a significant reduction of the attractive Υ𝜋 component. The repulsive
colour forces seem not to be of great importance for this channel, which is also reflected
in the corresponding QMECs Fig. C.6. The internal structure of the 𝑐𝑛 ̄𝑛 ̄𝑐 state in this
channel, i.e., the 𝑇𝑐 ̄𝑐1(3900), is still debated in the literature, as the mass is very close to,
but slightly above, the 𝐷𝐷̄∗ threshold. According to the observed hadronic decays, the
𝐷𝐷̄∗ channel is preferred over the 𝐽/𝜓𝜋 channel by a factor of 6 [230]. The conclusion
drawn from this is, that the 𝐽/𝜓𝜋 component might be suppressed, which in turn implies
that the 𝑇𝑐 ̄𝑐1(3900) might be explained as a 𝐷𝐷̄∗ molecule. A coupled-channel analysis by
the HAL-QCD lattice collaboration [231, 232] studied this state and found a very strong
𝐷𝐷̄∗ − 𝐽/𝜓𝜋 mixing potential, which points towards this state not solely having a meson-
meson or hadro-charmonium structure. The conclusion drawn by the authors was that
this strong potential leads to the 𝑇𝑐 ̄𝑐1(3900) forming as a threshold cusp. Additionally,
a study using EFT [233, 234] to investigate the experimental data suggests that the 𝐷𝐷̄∗

component is at least equally important as non-molecular structures. For the hidden-
bottom state, i.e., the 𝑇𝑏𝑏̄1(10610), the common picture in the literature is that of a 𝐵̄𝐵∗

molecule, because of the closeness to the 𝐵̄𝐵∗ threshold [56] and the dominant hadronic
decay 𝑇𝑏𝑏̄1(10610) → 𝐵+𝐵̄∗0 + 𝐵∗+𝐵̄0 of about 86% [20]. The contributions we observe for
the 𝑏𝑛 ̄𝑛 ̄𝑏 state are a little at odds with this picture. However, they are consistent with the
observed contributions for our 𝑐𝑛 ̄𝑛 ̄𝑐 state.

In the 0(0++) channel, we observe that regardless whether we take only the attractive or
the attractive plus repulsive colour forces into account, the contribution coming from the
purely attractive heavy-light meson-meson physical components dominate the states in
this channel, over 80% for the hidden-charm and about 70% for the hidden-bottom states.
All other contributions are below 10%. This confirms results from previous studies [74,
75], where also a dominant 𝐷𝐷̄ component was found. For the 𝑐𝑠 ̄𝑠 ̄𝑐 state, the dominant
𝐷𝑠𝐷̄𝑠 component fits the observed decay channel of the 𝑋(3860) [235].

Similarly, in the 0(1−−) the states are almost exclusively dominated by the attractive
heavy-light meson-meson component. For the 𝑐𝑛 ̄𝑛 ̄𝑐 state, the attractive 𝐷𝐷̄1 component
is about 93% using either the attractive or the full physical components. This is in good
agreement with Refs. [236, 237], where the authors conclude that the description of
the 𝜓(4230) as a 𝐷𝐷̄1 molecule agrees with experimental data. Moreover, the closeness
of the 𝜓(4230) to the 𝐷𝐷̄1 threshold, which is the lowest relevant 𝑠-wave heavy-light
meson-meson threshold in this channel [16, 56, 238], also points towards a strong meson-
molecule component in the wavefunction. For the 𝑐𝑠 ̄𝑠 ̄𝑐 state, i.e., the 𝜓(4660), the internal
structure is still heavily debated. The observed decays allow for an interpretation as a
hadro-charmonium 𝜓(2𝑆)𝑓0(980) [239], a 𝐷(∗)

𝑠 𝐷̄𝑠1(2536) meson-molecule [240] or a 𝑝-
wave tetraquark (dq − dq) [241]. We find it heavily dominated by the attractive 𝐷𝑠𝐷̄𝑠1
component with about 80%, with all other contributions being subleading. We find a
similar picture for the hidden-bottom states, where the attractive heavy-light meson-meson
components make up about 80% of the state. However, when we include the repulsive
colour forces, we see that for the 𝑏𝑛 ̄𝑛𝑏̄ state there is a contribution of about 12% coming
from the ⟨𝑓0∣𝑓5⟩ correlation, which would be the mixing between the attractive 𝐵̄𝐵∗ and the
repulsive Υ𝑓0(1370) component.
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Last but not least, there is the 0(0−+) channel. Here we find that the 𝑐𝑛 ̄𝑛 ̄𝑐 is exclusively
hadro-charmonium dominated with the ⟨𝑓1∣𝑓1⟩ correlation, i.e., the purely attractive 𝜒𝑐0𝜂
physical component, making up almost 100%. With the 𝜂 being mass degenerate with
the 𝜋 in this work, this incidentally is also the lowest threshold of the considered internal
clusters. The situation might change, when taking the 𝑠 ̄𝑠 component and the singlet-octet
mixing of the 𝜂 into account. This needs to be explored in future work. Interestingly, for the
𝑏𝑛 ̄𝑛𝑏̄ state, using only the attractive colour forces we find the state exclusively dominated
by the attractive 𝜂𝑏𝑓0(1370) component. When we include also the repulsive colour forces,
this contribution almost vanishes and, similar to the 𝑐𝑛 ̄𝑛 ̄𝑐 case, the pure attractive 𝜒𝑏0𝜂 is
the most prominent with about 60%. There is also a significant contribution coming from
the pure attractive 𝐵̄∗𝐵1 component and the 𝐵̄∗𝐵1 − 𝜒𝑏0𝜂 mixing.

6.2.2 Open-flavour norm contributions

In Fig. 6.9 we show our obtained norm contributions for the ground states of the open-
flavour four-quark states with 𝐽𝑃 = 0+ and 1+. For the scalar open-flavour four-quark
states, we labelled the column with a general isospin 𝐼, as the states with a ̄𝑛 ̄𝑛 antiquark
pair have 𝐼 = 1 in this channel and the rest has 𝐼 = 0. The colour coding is again according
to the correlations shown in the matrix in Fig. 6.7. We display the heavy quark combination
𝑐𝑐, 𝑏𝑐, and 𝑏𝑏 together with the light ( ̄𝑛 ̄𝑛) and a heavy antiquark pair ( ̄𝑐 ̄𝑐). As the results
for the other heavy quark pairs look very similar, we have omitted these for the sake of
clarity. Same goes for the norm contributions of the excited states. For each quantum
number, we show the results using only the attractive colour channels (shown in opaque)
and the results with the attractive plus repulsive colour forces.

Starting with the 𝐼(𝐽𝑃) = 0(1+) channel, we find that the 𝑐𝑛 ̄𝑛 ̄𝑐 (𝑇+
𝑐𝑐) state has a very

strong contribution coming from the pure attractive 𝐷𝐷∗ component. For the attractive
only basis, the contribution is about 70%, with the rest coming from the 𝐷𝐷∗ − 𝐴𝑐𝑐𝑆𝑛̄𝑛̄
mixing and the contribution coming purely from 𝐴𝑐𝑐𝑆𝑛̄𝑛̄. Switching on the repulsive
channels, we find that the state is exclusively dominated by the 𝐷𝐷∗ component. This
behaviour is expected as the mass of the 𝑇+

𝑐𝑐 is almost at the 𝐷𝐷∗ threshold, which renders
this state a prime candidate for a meson-molecule. As mentioned in the introduction
to this section, we cannot access the internal spatial structure at the present moment.
When we consider the bottom partner, i.e., the 𝑏𝑏 ̄𝑛 ̄𝑛 (𝑇−

𝑏𝑏), we see that using only the
attractive colour channels, the dominance is very similar to the charm case. The pure
attractive 𝐵̄𝐵̄∗ component is the strongest, followed by the pure 𝐴𝑏𝑏𝑆𝑛̄𝑛̄ component and
the mixing between these two. Including also the repulsive colour forces, the situation
changes quite drastically. Now, we find that the strongest contribution is actually coming
from the attractive 𝐴𝑏𝑏𝑆𝑛̄𝑛̄, closely followed by the 𝐵̄𝐵̄∗ − 𝐴𝑏𝑏𝑆𝑛̄𝑛̄ mixing and the attractive
𝐵̄𝐵̄∗ component. There are also contributions of about 10% coming from the mixing of the
attractive 𝐵̄𝐵̄∗ and the attractive 𝐴𝑏𝑏𝑆𝑛̄𝑛̄ with the repulsive 𝐵̄∗𝐵̄∗ component.

The situation changes again when we look at the 𝑏𝑐 ̄𝑛 ̄𝑛 state. This state is heavily domi-
nated by the purely attractive 𝐵̄∗𝐷 component (> 70%), regardless whether we include
only the attractive or also the repulsive colour channels. For the attractive only colour
forceswe have small contributions coming from the attractive 𝐵̄𝐷∗, the attractive 𝐵̄𝐷∗−𝐵̄∗𝐷
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0(1+) 1(1+) 1/2(1+) 𝐼(0+)

𝑐𝑐 ̄𝑛 ̄𝑛

𝑐𝑐 ̄𝑠 ̄𝑠

𝑏𝑐 ̄𝑛 ̄𝑛

𝑏𝑐 ̄𝑐 ̄𝑐

𝑏𝑏 ̄𝑛 ̄𝑛

𝑏𝑏 ̄𝑛 ̄𝑠

𝑏𝑏 ̄𝑐 ̄𝑐

⟨𝑓0|𝑓1⟩⟨𝑓0|𝑓0⟩ ⟨𝑓0|𝑓2⟩ ⟨𝑓0|𝑓3⟩ ⟨𝑓0|𝑓4⟩
⟨𝑓0|𝑓5⟩ ⟨𝑓1|𝑓1⟩ ⟨𝑓1|𝑓2⟩ ⟨𝑓1|𝑓3⟩ ⟨𝑓1|𝑓4⟩
⟨𝑓1|𝑓5⟩ ⟨𝑓2|𝑓2⟩ ⟨𝑓2|𝑓3⟩ ⟨𝑓2|𝑓4⟩ ⟨𝑓3|𝑓3⟩
⟨𝑓3|𝑓4⟩ ⟨𝑓3|𝑓5⟩ ⟨𝑓4|𝑓4⟩ ⟨𝑓4|𝑓5⟩ ⟨𝑓5|𝑓5⟩

1F i g u r e 6 . 9 : Same as in Fig. 6.8 but for the investigated open-flavour four-quark states. The 𝐽𝑃 = 0+

is labelled with a general isospin 𝐼, see main text for details. We only show the 𝑏𝑐 ̄𝑐 ̄𝑐 and 𝑏𝑏 ̄𝑐 ̄𝑐 as
examples for a heavy antiquark pair, as the states with ̄𝑠 ̄𝑠 and 𝑏̄ ̄𝑏 (the latter antiquark pair is only
valid for 𝑏𝑐 ̄𝑞 ̄𝑞) look very similar. Also the norm contributions for the excited states do not differ
much and are therefore omitted. Note, that for 𝐼 = 1 the states with ̄𝑠 ̄𝑠, ̄𝑐 ̄𝑐 or 𝑏̄𝑏̄ do not exist.

and 𝐵̄∗𝐷 − 𝐴𝑏𝑐𝑆𝑛̄𝑛̄ mixing. Including also the repulsive colour forces, the contribution
coming from the attractive 𝐵̄∗𝐷 − 𝐴𝑏𝑐𝑆𝑛̄𝑛̄ mixing component becomes stronger as does
the pure attractive 𝐴𝑏𝑐𝑆𝑛̄𝑛̄ component. The contributions coming from the 𝐵̄𝐷∗ cluster
decrease in turn. This is very different from the 𝑏𝑏 and 𝑐𝑐 case and is probably related to
the different symmetries for the 𝑏𝑐 case [242, 243].

Going to the 𝐼(𝐽𝑃) = 1(1+) channel, we observe a strikingly different pattern. Here,
the 𝑐𝑐 ̄𝑛 ̄𝑛 and 𝑏𝑏 ̄𝑛 ̄𝑛 show a very similar internal dominance, with the mixing component
of the attractive heavy-light meson-meson and the attractive diquark-antidiquark cluster
contributing the most, closely followed by the attractive meson-meson component. As the
𝑐𝑐 ̄𝑠 ̄𝑠 and 𝑏𝑏 ̄𝑐 ̄𝑐 (for 0(1+)) have the same flavour symmetry, they show the same dominance
pattern. For the 𝑏𝑐 ̄𝑛 ̄𝑛 state, we find that the pure attractive 𝐵̄∗𝐷 component gives the biggest
contributing with a significant contribution coming from its mixing with the repulsive
𝐵̄∗𝐷∗ component.

Lastly, we have the 𝐼(𝐽𝑃) = 1
2(1+) channel. Here, we observe a similar pattern of

dominant channels for both the attractive only and attractive plus repulsive basis. The
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dominant contribution is coming from the purely attractive ⟨𝑓1∣𝑓1⟩ component (∼ 34%),
which is the 𝐵̄𝑠𝐵̄∗ component (cf. Table 5.4). The attractive 𝐴𝑏𝑏𝑆𝑛̄ ̄𝑠 component (⟨𝑓2∣𝑓2⟩) and
its mixing with the attractive 𝐵̄𝑠𝐵̄∗ component also contribute about 20%. Interestingly,
even though the 𝐵̄𝑠𝐵̄∗ and 𝐵̄𝐵̄∗

𝑠 threshold are very close together (∼ 3 MeV using our
two-body masses), the contribution coming from the former is much stronger. Using only
the attractive colour forces, we see that the attractive 𝐵̄𝐵̄∗

𝑠 contributes about 20%, which
decreases to sub 10% when including the repulsive colour channels.

In general, we observe that for the 𝐽𝑃 = 1+ states the mixing of the attractive components
with the repulsive vector-vector meson-meson component seems to be of vital importance
to render our results quantitative. Furthermore, the attractive diquark-antidiquark compo-
nent and its mixings seems to become more important with increasing binding energy of
the state.

Going to the 𝐽𝑃 = 0+ case, we see that the picture does not change regardless which
quark configuration is considered or whether we include only attractive or attractive plus
repulsive colour channels. The states in this channel are all mostly dominated by the
attractive heavy-light meson-meson component. Going from 𝑄𝑄′ = 𝑐𝑐 over 𝑄𝑄′ = 𝑏𝑐 to
𝑄𝑄′ = 𝑏𝑏, we see that the contribution coming from the pure attractive meson-meson
component gets a little smaller, while its mixing with the attractive diquark-antidiquark
component increases steadily. For the 𝑏𝑏 and 𝑐𝑐 case, there is also some contribution coming
from the mixing between the two attractive heavy-light meson-meson components and
the attractive meson-meson in the ℳ1 topology with the repulsive diquark-antidiquark
component.

Summary

Inspired by [227–229], we developed and explored a novel method of using the norm
contributions to make statements about the internal structure of the four-quark states
investigated in this work. This allows to visualize the portion of the different attractive and
repulsive physical components and the mixings between them for a given four-quark state.
For the hidden-flavour four-quark states (see Fig. 6.8), we find that our results of a dominant
heavy-light meson-meson component for the 𝐽𝑃𝐶 = 1++, 0++ and 1−− agrees with the
observed dominant hadronic decay channels. Interestingly, for the 1++ we find a significant
contribution coming from themixing of attractive and repulsive colour forces. The situation
in the 1+− channels is a little more diverse, as this state seems to be an admixture of the
attractive heavy-light meson-meson and the hadro-quarkonium component, with the latter
being the dominant part of the wavefunction. Albeit being at oddswith the preferred decay
channel for this system, there are studies claiming a similar situation [231–234] at least
in the charm region. Such studies are at the present missing in the bottom region, where
the common picture is that of a 𝐵̄𝐵∗ meson-molecule for the 𝑇𝑏𝑏̄1(10610). Interestingly,
the very strong dominance of the Υ𝜋 component found when only using attractive colour
forces reduces drastically when including also the repulsive colour channels, rendering
the contribution on par with the one coming from the attractive 𝐵̄𝐵∗. The 0−+ channel is
fully dominated by the attractive 𝜒𝑐0𝜂 hadro-charmonium component in the charm region.
Similarly, the attractive 𝜒𝑏0𝜂 component is also the dominant one in the bottom region,
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when we consider the attractive plus repulsive forces, with a significant contribution
from the attractive 𝐵̄∗𝐵1. Comparing this to the attractive only case, there the state was
dominated by 𝜂𝑏𝑓0(1370).

For the open-flavour four-quark states (see Fig. 6.9) we find that overall the dominant
contributions qualitatively agree when comparing the attractive only with the attrac-
tive plus repulsive results. We observe a pure dominance of the attractive heavy-light
pseudoscalar-vector meson-meson component in the 𝐽𝑃 = 0+ channel, regardless of the
internal quark configuration. For the 𝐽𝑃 = 1+ states with isospin 𝐼 = 0 (and 𝐼 = 1/2),
we see an interesting evolvement of the norm contributions when going from 𝑐𝑐 ̄𝑛 ̄𝑛 over
𝑏𝑐 ̄𝑛 ̄𝑛 to 𝑏𝑏 ̄𝑛 ̄𝑛. For the 𝑐𝑐 ̄𝑛 ̄𝑛 we have a 100% dominance of the attractive 𝐷𝐷∗ component,
probably due to this state being found at the corresponding threshold. The 𝑄𝑄′ = 𝑏𝑐
state, which is very close to the 𝐵̄∗𝐷 threshold, is dominated by the 𝐵̄∗𝐷 component, with
some contributions coming from other components. For the 𝑄𝑄′ = 𝑏𝑏 states then, which
are both deeply bound, we find a very diverse picture of contributions, the strongest
coming from the attractive diquark-antidiquark and pseudoscalar-vector meson-meson
components and the mixing between them. There are, however, also non-negligible con-
tributions coming from the mixing of these components with repulsive channels. This
mixings are probably responsible for rendering our result in quantitative agreement with
predictions from the literature, cf. Fig. 6.5. Overall, we observe an increasing importance
of the attractive diquark-antidiquark component with increasing binding energy. For the
isospin 𝐼 = 1 partner states, we find that for 𝑄𝑄′ = 𝑏𝑏 and 𝑐𝑐 the states are dominated by
the mixing between the attractive meson-meson and diquark-antidiquark components,
while the 𝑄𝑄′ = 𝑏𝑐 state is also dominated by the 𝐵̄∗𝐷 component with a considerable
contribution coming from its mixing with the repulsive 𝐵̄∗𝐷∗ component.
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Chapter 7

Conclusions and Outlook

Summary. In thisworkweused the functional framework of combiningDyson-Schwinger
and Bethe-Salpeter/Faddeev-Yakubovsky equations (DSEs and BSEs/FYEs) to investigate
the properties of heavy-light four-quark state candidates. Assuming the two-body forces
in the four-body FYE to be dominant, one can employ a physically motivated Ansatz
for the Bethe-Salpeter amplitude (BSA), which includes all the three possible internal
clusterings: two meson-meson and one diquark-antidiquark. Building on [77, 78], which
only considered attractive (colour) forces between the internal clusters, we extended this
to also include repulsive forces.

With this setup, we focussed on calculating the mass spectra of the ground and first
radial excited states for hidden- and open-flavour heavy-light four-quark candidates with
total spin 𝐽 = 0, 1 in the charm (∼ 4 GeV) and bottom (∼ 10 GeV) energy region. To
investigate the importance of including also the repulsive forces between the internal
clusters, we calculated the mass spectra once with and once without the repulsive forces
and compared the two results. Additionally, we compared our results to the obtained
experimental values (if available for the considered channel) or predictions coming from
other theoretical approaches. Overall, we observe that the inclusion of the repulsive forces
leads to an increase in mass and the resulting spectra agree much better with the results
from the literature, compared to the spectra using only the attractive forces. Especially, the
spectra for states with total spin 𝐽 = 1 are found in very good agreement with literature
results. In the hidden-charm and hidden-bottom sector, we quantitatively reproduced
the whole experimental spectrum for the 𝐽 = 1 states, while the 0++ ground states were
consequently found too low. We also predicted a mass region, where the pseudoscalar
(0−+) ground and excited states should be looked for. For the open-flavour four-quark
candidates, we also find our results for the mass of the 𝑇−

𝑏𝑏 (𝑏𝑏 ̄𝑛 ̄𝑛), 𝑇−
𝑏𝑏 ̄𝑠 (𝑏𝑏 ̄𝑛 ̄𝑠), 𝑇𝑏𝑐 (𝑏𝑐 ̄𝑛 ̄𝑛)

and 𝑇𝑐𝑐(3875)+ (𝑐𝑐 ̄𝑛 ̄𝑛) (with 𝑛 = 𝑢/𝑑) states with 𝐽 = 1 in quantitative agreement with
results from other theoretical approaches. The corresponding 𝐽 = 0 spectra are again found
to be very deeply bound. An approach of neglecting certain internal structures remedies
this situation somewhat in this case. This intriguing strong binding of the scalar hidden-
and open-flavour four-quark ground states is something that needs to be investigated in
future work.

An interesting and highly debated property of four-quark states is their internal composi-
tion. Because our physical BSA is a superposition of all three different internal clusterings,
our approach does not have an a priori prejudice towards a particular internal configura-
tion. Rather, the underlying dynamics of the equation determine which of the possible
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internal clusters is preferred. In this work, we explored a novel method of extracting this
information, by considering the norm contributions of the individual internal compo-
nents of the physical BSA and the mixing between them. This allows us to make more
precise statements about the internal composition than was possible in previous works,
e.g., [67, 74, 75]. We find that the hidden-flavour four-quark states are largely dominated
by the contribution coming from the attractive heavy-light meson-meson component.
Only the 0−+ and 1+− states have significant contributions coming from the respective
hadro-quarkonium components and the mixings with the heavy-light meson-meson com-
ponent. For the open-flavour four-quark state with 𝐽 = 1, we observe a very diverse picture.
While the states very close to heavy-light meson-meson thresholds, i.e., 𝑇+

𝑐𝑐 and 𝑇𝑏𝑐, are
largely dominated by the respective component, deeply bound states, e.g., 𝑇−

𝑏𝑏 and 𝑇−
𝑏𝑏 ̄𝑠,

get significant contributions also from the diquark-antidiquark components. The 𝐽 = 0
states on the other hand are completely dominated by the lowest heavy-light meson-meson
components.

Caveats. While the above results sound overall very exciting, some caveats are in order
here. Most of the results for the masses and the norm contributions rely heavily on extrap-
olation as certain internal singularity structures restrict the range where we can directly
solve the four-quark FYE. The corresponding error estimate can nicely be determined via
the method described in Appendix C.5.

We cannot, however, currently assess the systematic uncertainties coming from the
following sources. First is the systematic uncertainty coming from the Rainbow-Ladder
truncation and the employed effective model for the interaction. Furthermore, although
the assumption of dominant two-body forces is well-supported by many arguments and
a posteriori results, the effect of three- and four-body forces cannot be estimated. We
also restricted the Dirac basis elements taken into account to the leading 𝑠-wave elements,
completely neglecting any 𝑝- 𝑑- or 𝑓-wave elements. Although it can be argued, that they
might be subleading for states in the vicinity of hadronic 𝑠-wave decay thresholds, the
contributions from these elements may not be negligibly small. Lastly, for this work we
restricted the phase space and only considered the central limit, which is quite a rough
approximation.

Since we cannot currently provide an error estimation for the above approximations,
we wanted to state them here to be kept in mind when looking at the results. Overall, we
find that despite all these approximations, our obtained results are very accurate when
compared to the literature.

Outlook. The results and developments in this thesis can be taken as basis for further
research, as there are quite a few areas where the calculations can be improved. First, at
some point it is desirable to replace the effective model for the interaction with a more
systematic approach, e.g., system derived from the 𝑛PI effective action (see, e.g., [244] for
an application to the glueball spectrum). In a more complete approach one should include
also the three- and four-body forces, at least to estimate how much they contribute in an
actual calculation. Moreover, one could systematically relax the approximationsmentioned
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above and determine a more profound system which is still numerically feasible.
In this work, we only calculated the masses of the four-quark states. Since most of the

states in nature are resonances, it would be very interesting to calculate also the decay
width of the states. This is possible, by solving the BSE on the first Riemann sheet, using
path deformation to go beyond the decay threshold, and searching for the pole structure
on the unphysical Riemann sheets via analytic continuation. First results for the light scalar
mesons were obtained in the two-body approach in [79]. In the early stages of the thesis
project, we also investigated this using the four-body approach. We quickly realized, that
the complexity of the phase space and the necessity to find a path deformation dynamic in
four variables made this endeavour very complicated. A brief overview of this is provided
in Appendix C.3.

Furthermore, since the BSE/FYE is formulated in momentum space, we cannot directly
access the spatial structure of the internal components. Applying a three-dimensional
Fourier transform, one might be able to calculate quantities like the mean distance ⟨𝑟⟩
between the components of the different internal clusters and compare them to predictions
from other theoretical approaches. We also started to investigate this, but the obtained
results were inconclusive. An introduction can be found in Appendix C.4.

For the 𝜒𝑐1(3872) and other hidden-flavour four-quark candidates, there is of course the
possibility that these states might be a superposition of a conventional 𝑞 ̄𝑞 meson and a
four-quark meson. To investigate the ratio of conventional to exotic meson for a given state,
one can build a coupled system involving the two-body BSE together with the four-body
FYE. Using the two-body approach, this has been done in [79]. Although this is also
possible with the approach presented in this work, we unfortunately did not manage to
do it due to the limited time of the project and relegated it to future work.

For certain quantum numbers, there is also the possibility that the four-quark states
can also mix with other exotic mesons, like hybrids or glueballs. In the future, it would
also be interesting to couple the different systems and investigate how much each of them
contributes for a given hadron.

Lastly, there are many more possible exotic states featuring charm and strange quarks,
e.g., the 𝑇𝑐𝑠 and 𝑇𝑐 ̄𝑠 states and all charm states, e.g., 𝑇𝑐𝑐 ̄𝑐 ̄𝑐(6900)0 and 𝑇𝑐𝑐 ̄𝑐 ̄𝑐(6200), which
can be investigated using the framework presented in this work. Also the possibility of the
scalar 𝐷∗

𝑐0(2317)± and axialvector 𝐷𝑠1(2460)± as possible 𝐷+
𝑠 𝜋0 and 𝐷∗+

𝑠 𝜋0 four-quark
states would be very interesting to investigate in the future.



Rest of this page intentionally left blank.



Appendix A

Definitions and Conventions

A.1 Units

As is often customary to reduce the notation in Quantum Field Theory, we also use natural
units throughout this work, i.e.,

ℏ = 𝑐 = 1 . (A.1)

With this we can express every unit, i.e., energy (𝐸), momentum ( ⃗𝑝), mass (𝑀), tempera-
ture (𝑇), length (𝐿) and time (𝑡) in terms of the typical energy unit of electronvolts (eV)
or multiples thereof (keV, MeV, GeV,…). The following relations hold

[𝐸] = [ ⃗𝑝] = [𝑀] = [𝑇] = [𝐿]−1 = [𝑡]−1 . (A.2)

Lengths are also frequently given in the unit of femtometres (fm). We can convert between
eV and fm via the relation

ℏ𝑐 = 1 = 0.197 316 496 GeV fm . (A.3)

A.2 Euclidean space

Nature can be described verywell using a four-dimensionalMinkowski spacetime. In general,
a 𝑑-dimensional Minkowski spacetime features a metric tensor 𝜂𝜇𝜈 = 𝜂𝜈𝜇 ∈ ℝ𝑑×𝑑 with one
temporal and 𝑑 − 1 spatial dimensions given by

𝜂𝜇𝜈 = 𝜂𝜇𝜈 = diag{1, −1, … , −1} , (A.4)

with the 𝜇, 𝜈 = 0, … , 𝑑 −1 occurring as Lorentz indices and 𝜂𝜇𝜈 denoting the inverse metric
tensor. A vector 𝑥𝜇 in Minkowski spacetime is denoted with a superscript notation and
takes the form 𝑥𝜇 ∶= (𝑥0, ⃗𝑥) with ⃗𝑥 ∈ ℝ𝑑−1. A corresponding covector 𝑥𝜇 is denoted by a
subscript and is related to the vector 𝑥𝜇 via

𝑥𝜇 = 𝜂𝜇𝜌𝑥𝜌 . (A.5)
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A derivative with respect to a vector 𝑥𝜇 produces a covector

𝜕𝜇 ∶=
𝜕

𝜕𝑥𝜇 . (A.6)

Throughout this work we use the Einstein summation convention, meaning that if an index
𝜇 occurring once as superscript and once as subscript in one single term it is summed over
(or contracted):

𝑥𝜇𝑦𝜇 = ∑
𝜇

𝑥𝜇𝑦𝜇 . (A.7)

Such a contraction can also be written as a dot product

𝑥 ⋅ 𝑦 ∶= 𝑥𝜇𝑦𝜇 , (A.8)

for brevity of if there is risk of confusion.
Furthermore, we make use of the Feynman slash notation to indicate a contraction of a vector
with a Dirac matrix 𝛾𝜇 in Eq. (A.20):

/𝐴 ∶= 𝛾𝜇𝐴𝜇 . (A.9)

Written explicitly, the scalar product from Eq. (A.8) in Minkowski spacetime reads

𝑥 ⋅ 𝑦 = 𝑥𝜇𝑦𝜇 = 𝑥𝜇𝜂𝜇𝜈𝑦𝜈 = 𝑥0𝑦0 −
𝑑−1
∑
𝑖=1

𝑥𝑖𝑦𝑖 = 𝑥0𝑦0 − ⟨ ⃗𝑥, ⃗𝑦⟩ . (A.10)

However, due to computational advantages, in this thesis we exclusively consider Euclidean
spacetime as the convention for the non-perturbative treatment of QCD. The metric tensor
in Euclidean spacetime reads

𝛿𝜇𝜈 = 𝛿𝜇𝜈 = diag{1, 1, … , 1} = 𝕀𝑑 , (A.11)

where 𝕀𝑑 denotes the 𝑑-dimensional unit matrix. To get from Minkowski to Euclidean
spacetime it is necessary to perform a Wick rotation, i.e, a “rotation” of the temporal
component 𝑥0 from the real into the negative imaginary axis while leaving the spatial
components unaffected. This corresponds to the following replacement:

𝑥0 → 𝑥𝑑
𝐸 ∶= −𝑖𝑥0

𝑀 , ⃗𝑥𝐸 = ⃗𝑥𝑀 . (A.12)

Leaving the general case and considering the case realized in nature, i.e., a four-dimensional
spacetime (𝑑 = 4) with three spatial and one temporal component, the Euclidean temporal
component will furthermore be denoted as 𝑥4. Note, that with the Euclidean spacetime
the placement of the index, i.e., super- or subscript formally does not matter because of the
metric being the unit matrix. We will, nevertheless, keep using the super- and subscript
notation for convenience.
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The Minkowski scalar product from Eq. (A.10) turns into

𝑥𝑀 ⋅ 𝑦𝑀 = (−𝑖)2𝑥4𝑦4 − ⟨ ⃗𝑥, ⃗𝑦⟩ = −𝑥𝐸 ⋅ 𝑦𝐸 . (A.13)

As the Euclidean scalar product differs from the Minkowski one by a minus sign, we get
that a four-vector is spacelike, iff

𝑥 ⋅ 𝑦 > 0 . (A.14)

It furthermore follows directly that

𝜕4 = 𝑖𝜕0 and 𝑝4 = 𝑖𝑝0 . (A.15)

Using the replacement from the Wick rotation in Eq. (A.12) we find that also the integrals
get Wick rotated [245]

∫
∞(1+𝑖𝜖)

−∞(1+𝑖𝜖)
d𝑥0 → −𝑖∫

∞

−∞
d𝑥0 = ∫

∞

−∞
d𝑥4 . (A.16)

With that, it is possible to perform the four-dimensional integration

∫ d4𝑏
(2𝜋)4 (A.17)

using four-dimensional spherical coordinates (hyperspherical coordinates). The integral then
reads

∫
𝑏

∶= ∫ d4𝑏
(2𝜋)4 =

1
(2𝜋)4 ∫

∞

0
d𝑏2 𝑏2

2 ∫
1

−1
d𝑧 √1 − 𝑧2 ∫

1

−1
d𝑦 ∫

2𝜋

0
d𝛼 , (A.18)

where we have introduced ∫𝑏 as a frequently used shorthand.

Fermionic fields in Minkowski or Euclidean spacetime inevitably require the use of the
Dirac matrices. Considering a general metric tensor 𝑔𝜇𝜈, i.e., 𝜂𝜇𝜈 and 𝛿𝜇𝜈 in Minkowski
and Euclidean respectively, the Dirac matrices 𝛾𝜇 have to satisfy the Clifford algebra

{𝛾𝜇, 𝛾𝜈} = 𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2𝑔𝜇𝜈 . (A.19)

In principle, we do not need to specify an explicit representation for the Dirac matrices,
we only have to demand the following relations to hold

𝛾4 = 𝛾0 , 𝛾⃗𝐸 = 𝑖𝛾⃗𝑀 . (A.20)

Assuming the Euclidean Dirac matrices to be Hermitian, we can also define the fifth Dirac
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matrix 𝛾5 as

𝛾5 = −𝛾1𝛾2𝛾3𝛾4 = −
1
24 ⋅ 𝜀𝜇𝜈𝜌𝜎𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎 , (A.21)

which has the following properties:

(𝛾5)† = 𝛾5 , (𝛾5)2 = 𝕀4 , {𝛾5, 𝛾𝜇} = 0 . (A.22)

A frequently used matrix in this work is the charge conjugation matrix 𝐶, which is defined
as:

𝐶 = 𝛾4𝛾2 , 𝐶𝑇 = 𝐶−1 = 𝐶† = −𝐶 , (A.23)

with 𝐶𝑇 denoting the transpose of the matrix. The Dirac matrices transform under charge
conjugation in the following way

𝐶𝛾𝑇
5 𝐶𝑇 = 𝛾5 ⇔ 𝛾𝑇

5 = 𝐶𝑇𝛾5𝐶 ,
𝐶𝛾𝑇

𝜇𝐶𝑇 = −𝛾𝜇 ⇔ 𝛾𝑇
𝜇 = 𝐶𝑇(−𝛾𝜇)𝐶 .

(A.24)

A.3 SU(𝑁)

The symmetry group of QCD is the Lie group SU(𝑁𝑐), where 𝑁𝑐 = 3 is the number
of colours realized in nature. It is therefore useful to shortly discuss the structure and
properties of the group SU(𝑁) and more importantly its Lie algebra.

The group SU(𝑁), which stands for special (S) unitary (U) group, is defined by

SU(𝑁) ∶= {𝑈 ∈ GL(𝑁, ℂ) | 𝑈†𝑈 = 𝕀 , det(𝑈) = 1} , (A.25)

whereGL(𝑁, ℂ)denotes the general linear group over the complex numbers and𝑈† = 𝑈−1

is the adjoint matrix (𝑈𝑇)∗ = (𝑈∗)𝑇. The dimension of the group as a real manifold is
𝑁2 − 1. Each SU(𝑁) group has an associated Lie algebra denoted by 𝔰𝔲(𝑁) which also
has (real) dimension 𝑁2 − 1. A Lie algebra is a vector space 𝔤 which is equipped with the
Lie bracket [⋅, ⋅] ∶ 𝔤 × 𝔤 → 𝔤 as an operation of how elements of the algebra interact with
one another. In quantum mechanical context this is also called the commutator. As stated
before, this vector space 𝔤 (i.e., the Lie algebra 𝔰𝔲(𝑁)) has dimension 𝑁2 −1, i.e., it consists
of 𝑁2 − 1 basis elements 𝑡𝑎, also often called the generators of a Lie group. They have to
obey the Lie brackets

[𝑡𝑎, 𝑡𝑏] = 𝑖𝑓 𝑎𝑏
𝑐𝑡𝑐 , (A.26)

where 𝑓 𝑎𝑏
𝑐 labels the totally antisymmetric structure constants of the algebra 𝔰𝔲(𝑁) and

𝑎, 𝑏, 𝑐 = 1, … , 𝑁2 − 1 are the SU(𝑁) indices of the generators. In the context of SU(2) the
structure constants 𝑓 𝑎𝑏𝑐 are the Levi-Civita symbols 𝜀𝑎𝑏𝑐. Given a representation 𝑅, a group
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element of SU(𝑁) can be written as an exponential map

𝑈 ( ⃗𝛼) = exp (𝑖
𝑁2−1
∑
𝑎=1

𝛼𝑎𝑡𝑎) , (A.27)

with 𝛼𝑎 ∈ ℝ.

The generators 𝑡𝑎 also fulfil an orthogonality relation

tr[𝑡𝑎𝑡𝑏] = 𝑇(𝑅) ⋅ 𝛿𝑎𝑏 , (A.28)

where the Dynkin index 𝑇(𝑅) depends on the chosen representation. Furthermore, each
Lie group has 𝑁 − 1 (equal to the rank of the group) Casimir operators ̂𝐶 that commute
with all generators, i.e.,

[ ̂𝐶, 𝑡𝑎] = 0 . (A.29)

The most-important form of the Casimir operator for our purposes is the quadratic form:

(𝑡𝑎𝑡𝑎)𝑖𝑗 =∶ 𝐶2(𝑅) ⋅ 𝛿𝑖𝑗 , (A.30)

with 𝑖, 𝑗 = 1, … , 𝑁 denoting the colour indices of the fundamental representation and
𝐶2(𝑅) is the quadratic Casimir operator which is also representation dependent.
One can generally distinguish between 𝑁 − 1 irreducible representations (𝑅) which are
labelled by the Casimir operators. For QCD with 𝑁 = 𝑁𝑐 = 3 we therefore have 2
irreducible representations:

Fundamental representation 𝑅𝐹: In the fundamental representation, the generators 𝑡𝑎 of
a matrix group like SU(𝑁) can be chosen as traceless Hermitian complex 𝑁 × 𝑁 matrices,

(𝑡𝑎)† = 𝑡𝑎 , tr[𝑡𝑎] = 0 , 𝑡𝑎 ∈ ℂ𝑁×𝑁 . (A.31)

For the group SU(2), the generators are proportional to the Pauli matrices. Analogously,
for SU(3) they can be given by the Gell-Mann matrices 𝑡𝑎 = 𝜆𝑎/2, with

𝜆1 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0
1 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝜆2 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

0 −𝑖 0
𝑖 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝜆3 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0
0 −1 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, (A.32)

𝜆4 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1
0 0 0
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝜆5 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 −𝑖
0 0 0
𝑖 0 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, (A.33)
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𝜆6 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝜆7 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0
0 0 −𝑖
0 𝑖 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝜆8 =
1

√3

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 −2

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

. (A.34)

The Dynkin index and the quadratic Casimir operator in the fundamental representation
are given by

𝑇𝐹 ∶= 𝑇(𝑅𝐹) =
1
2 , 𝐶𝐹 ∶= 𝐶2(𝑅𝐹) =

(𝑁2 − 1)
2𝑁 . (A.35)

Adjoint representation 𝑅𝐴: In the adjoint representation the generators are represented
by (𝑁2 − 1) × (𝑁2 − 1) matrices, where the elements are defined by the structure constants

(𝑡𝑎)𝑏𝑐 = −𝑖𝑓 𝑎𝑏𝑐 . (A.36)

The Dynkin index and the quadratic Casimir then read:

𝑇𝐴 ∶= 𝑇(𝑅𝐴) = 𝑁 , 𝐶𝐴 ∶= 𝐶2(𝑅𝐴) = 𝑁 . (A.37)



Appendix B

Basis construction

B.1 Colour structure of a four-quark state

As stated in Chapter 2, quark and antiquark fields are Dirac spinors which transform under
the fundamental representation of SU(𝑁𝑐). Thus, in colour space the quark and antiquark
fields can be represented by the multiplet (𝐍𝐜) and antimultiplet (𝐍𝐜) representations
respectively. In a four-quark state with two quarks and two antiquarks we combine the
respective representations via direct products as

𝐍𝐜 ⊗ 𝐍𝐜 ⊗ 𝐍𝐜 ⊗ 𝐍𝐜 , (B.1)

to get the overall colour structure of the BSA.
To explicitly calculate the tensor product of the representations, we first introduce Young

diagrams (and Young tableaux) [246] as a very convenient way to describe representations.
Young diagrams are basically a finite collection of boxes, with each allowed arrangement
for a given group uniquely corresponds to an irreducible representation. In the case of
SU(𝑁), the fundamental (𝐍𝐜) and the conjugate (𝐍𝐜) representation are defined as

𝐍𝐜 ∶ , 𝐍𝐜 ∶ ⋮

⎫}}}}
⎬}}}}⎭

𝑁𝑐 − 1 ,

respectively. With this, the tensor product in Eq. (B.1) given in terms of Young diagrams
reads

𝐍𝐜 ⊗ 𝐍𝐜 ⊗ 𝐍𝐜 ⊗ 𝐍𝐜 = ⊗ ⊗ ⋮ ⊗ ⋮ . (B.2)

This representation is all very nice, but the question is still, how do we actually carry
out the tensor products. To illustrate this, we consider the direct product 𝟖 ⊗ 𝟖 of SU(3)
and label the successive rows of the second diagrams with labels 𝑎1, 𝑎2, 𝑎3 …, with the
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subscript labelling the row number from top to bottom:

⊗ 𝑎1 𝑎1
𝑎2

. (B.3)

We then attach the labelled boxes from the right Young diagram one at a time to the end
of the rows of the left diagram in all possible ways. After that, one needs to check if the
obtained diagrams are actually valid Young diagrams. The rules to determine whether an
obtained diagram is valid or not are:

1 . Diagrams with more than one of each label 𝑎𝑗 in the same column are discarded.
2 . Generated Young diagrams with the same shape but different arrangement of the

labels are kept, while the ones with identical arrangement of labels are discarded.
3 . The labels are counted from right to left starting from the top row. The obtained

diagram is only valid, if the number of label 𝑎1 (𝑁𝑎1
) is bigger or equal to the number

of 𝑎2 (𝑁𝑎2
) etc., i.e., 𝑁𝑎1

≥ 𝑁𝑎2
≥ 𝑁𝑎3

≥ … .
4 . The number of rows cannot exceed the number of colours 𝑁𝑐.
5 . The number of boxes of a row has to be less or equal to the number of boxes of the

row above.

For the case given in Eq. (B.3) we start with the first box with 𝑎1 in the top left of the right
diagram and obtain:

⊗ 𝑎1 𝑎1
𝑎2

= ⎛⎜⎜
⎝

𝑎1 ⊕ 𝑎1
⊕

𝑎1

⎞⎟⎟
⎠

⊗ 𝑎1
𝑎2

. (B.4)

According to the rules above, all of the diagrams are valid for now. We continue by
attaching the second box with label 𝑎1 to the obtained result and get

⎛⎜⎜
⎝

𝑎1 𝑎1 ⊕ 𝑎1
𝑎1

⊕
𝑎1

𝑎1

⎞⎟⎟
⎠

⊕ (B.5)

⎛⎜⎜
⎝

𝑎1
𝑎1

⊕ 𝑎1 𝑎1
⊕ 𝑎1

𝑎1

⎞⎟⎟
⎠

⊕ (B.6)

⎛⎜⎜⎜⎜
⎝

𝑎1

𝑎1
⊕ 𝑎1

𝑎1
⊕

𝑎1 𝑎1
⊕ 𝑎1

𝑎1

⎞⎟⎟⎟⎟
⎠

. (B.7)

The results are grouped to correspond to the individual results from each of the three
diagrams in Eq. (B.4). Before we attach the last box with label 𝑎2 we need to check the
validity of the diagrams. The diagrams in Eq. (B.5) are all valid according to the rules
above. In Eq. (B.6), we discard the first diagram, as it violates rule 2, and the second
diagram, which violates rule 5. In Eq. (B.7), we discard all diagrams: the first and second
violate rule 2, the third violates rule 5 and the last one disobeys rules 1 and 4. So in total we
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retain only

⎛⎜⎜
⎝

𝑎1 𝑎1 ⊕ 𝑎1
𝑎1

⊕
𝑎1

𝑎1
⊕ 𝑎1

𝑎1

⎞⎟⎟
⎠

⊗ 𝑎2
. (B.8)

Finally, attaching the box with label 𝑎2 we get

⎛⎜⎜
⎝

𝑎1 𝑎1 𝑎2 ⊕ 𝑎1 𝑎1
𝑎2

⊕
𝑎1 𝑎1

𝑎2

⎞⎟⎟
⎠

⊕ (B.9)

⎛⎜⎜
⎝

𝑎1 𝑎2
𝑎1

⊕ 𝑎1
𝑎1 𝑎2

⊕
𝑎1

𝑎1
𝑎2

⎞⎟⎟
⎠

⊕ (B.10)

⎛⎜⎜⎜⎜
⎝

𝑎1 𝑎2

𝑎1
⊕

𝑎1
𝑎2

𝑎1
⊕

𝑎1

𝑎1 𝑎2
⊕

𝑎1

𝑎1
𝑎2

⎞⎟⎟⎟⎟
⎠

⊕ (B.11)

⎛⎜⎜⎜⎜
⎝

𝑎2
𝑎1

𝑎1
⊗ 𝑎1 𝑎2

𝑎1
⊗ 𝑎1

𝑎1 𝑎2
⊗ 𝑎1

𝑎1
𝑎2

⎞⎟⎟⎟⎟
⎠

(B.12)

The grouping of results is done in a similar fashion to above. We now only need to check
the validity of the individual diagrams to obtain the final result. The diagrams in Eq. (B.9)
and Eq. (B.10) are all valid except for the first in each line as they violate rule 3. In Eq. (B.11),
we discard diagram 1, 3 and 4: the first violates rule 3, the third rule 5 and the last rule 4.
And for Eq. (B.12) we discard diagrams 1, 2 and 4: the first disobeys rule 3, the second
violates rule 5 and the last again violates rule 4. The final result of the tensor product in
Eq. (B.3) in terms of Young diagrams is then:

⊗ = ⊕ ⊕ ⊕ 2 ⋅ ⊕ . (B.13)

Now we know how to decompose the tensor product of irreducible representations into
a direct sum of irreducible representation with the help of Young diagrams. However, we
still do not know, how to obtain the dimension of the obtained representations. For this, we
need to consider how one gets the dimension of the representation from the corresponding
Young diagram. The dimension 𝑑 of a Young diagram is obtained by the ratio 𝑑 = 𝐴/𝐵,
with 𝐴 and 𝐵 specified in the following. For any SU(𝑁) Young diagram 𝜆, to calculate the
factor 𝐴, we start filling the boxes by inserting the number 𝑁 into the top left box. The
rest of the diagram is filled by obeying two rules: when going to the right, the number of
the previous box is increased by one and when moving to the bottom, the number of the
previous box is decreased by one. The factor 𝐴 is then calculated by the product of the box
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entries, i.e.,

𝐴 =
𝑁𝜆

∏
𝑠=1

𝐴𝑠 , (B.14)

with 𝑠 the box index, 𝑁𝜆 the number of boxes in the diagram and 𝐴𝑠 labelling the number
in the respective box. The factor 𝐵 is also calculated by filling the corresponding Young
diagram with numbers. But in contrast to 𝐴, we now put the number of boxes below,
also called leg length 𝑙𝜆(𝑠), plus the number of boxes to the right, also called arm length
𝑎𝜆(𝑠), of the current box 𝑠 plus one into each box. This sum is also called the hook length
ℎ𝜆(𝑠) = 𝑙𝜆(𝑠) + 𝑎𝜆(𝑠) + 1. The factor 𝐵 is then calculated as the product of the hook lengths:

𝐵 =
𝑁𝜆

∏
𝑠=1

ℎ𝜆(𝑠) , (B.15)

with 𝑠 again labelling the boxes. The dimension 𝑑 of a Young diagram is therefore obtained
by

𝑑 =
𝑁𝜆

∏
𝑠=1

𝐴𝑠
ℎ𝜆(𝑠) . (B.16)

As an example, we consider an arbitrary irreducible representation of SU(𝑁). To calculate
the numerator 𝐴 we first fill the diagram as

𝑁 𝑁+1 𝑁+2

𝑁−1 𝑁

𝑁−2

, (B.17)

and obtain 𝐴 in this case as

𝐴 = 𝑁 ⋅ (𝑁 + 1) ⋅ (𝑁 + 2) ⋅ (𝑁 − 1) ⋅ 𝑁 ⋅ (𝑁 − 2) . (B.18)

To obtain the denominator 𝐵, we fill the diagram with the hook lengths of the individual
boxes, which for our case reads

5 3 1
3 1
1

, (B.19)

and determine 𝐵 as

𝐵 = 5 ⋅ 3 ⋅ 3 ⋅ 1 ⋅ 1 ⋅ 1 = 45 . (B.20)



B . 1 C o l o u r s t r u c t u r e o f a f o u r - q u a r k s t a t e 1 3 9

The dimension of our chosen Young diagram is therefore

𝑑 =
𝑁 ⋅ (𝑁 + 1) ⋅ (𝑁 + 2) ⋅ (𝑁 − 1) ⋅ 𝑁 ⋅ (𝑁 − 2)

45
𝑁=3−−−→ 8 . (B.21)

Applying this to the obtained result in Eq. (B.13) of our SU(3) example of 𝟖 ⊗ 𝟖 in
Eq. (B.3) we get

𝟖 ⊗ 𝟖 = 𝟐𝟕 ⊕ 𝟏𝟎 ⊕ 𝟏𝟎 ⊕ 2 ⋅ 𝟖 ⊕ 𝟏 , (B.22)

where the second to last diagram is obtained twice during the tensor product decomposi-
tion.

Applying all of the above to the original direct product we wanted to consider for the
four-quark states in Eq. (B.2), we get

⊗ ⊗ ⋮ ⊗ ⋮ = ⋮ ⋮ ⊕ ⋮ ⋮ ⊕ 4 ⋅ ⋮ ⋮ ⊕ 2 ⋅ ⋮ ⋮ ⊕ ⋮ ⋮ ⊕ ⋮ ⋮ .

(B.23)

The individual obtained diagrams and the dimension of the associated irreducible rep-
resentation are collected in Table B.1 for a general SU(𝑁𝑐) as well as the special cases
𝑁𝑐 = 3, 𝑁𝑐 = 4 and 𝑁𝑐 = 5. Numerical factors in front of the representations denote
the multiplicity of that representation obtained during the decomposition of the direct
products. Interestingly, the diagram in the last row of Table B.1 vanishes for the case of
𝑁𝑐 = 3.

One can also first group Eq. (B.1) according to the internal diquark-antidiquark (𝒟)
and meson-meson (ℳ) clusterings to get

𝒟 ∶ (𝐍𝐜 ⊗ 𝐍𝐜) ⊗ (𝐍𝐜 ⊗ 𝐍𝐜) , (B.24)

ℳ ∶ (𝐍𝐜 ⊗ 𝐍𝐜) ⊗ (𝐍𝐜 ⊗ 𝐍𝐜) . (B.25)

Then one can first solve the direct products in the brackets and afterwards take the direct
product of the terms in the brackets. Doing this, one can identify which direct product of
representations produces the two singlet structures. We start with the diquark-antidiquark
clustering. Using the Young diagram notation again, the direct products in the brackets
evaluate to

( ⊗ ) ⊗
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

⋮ ⊗ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

= ( ⊕ ) ⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮ ⋮ ⊕ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (B.26)



1 4 0 B B a s i s c o n s t r u c t i o n

General 𝑁𝑐 𝑁𝑐 = 3 𝑁𝑐 = 4 𝑁𝑐 = 5

𝑑 𝑑 𝑑 𝑑

𝑁𝑐 − 1

⎧{{
⎨{{⎩

⋮ ⋮
𝐍𝟐

𝐜(𝐍𝐜+𝟑)(𝐍𝐜−𝟏)
𝟒 𝟐𝟕 𝟖𝟒 𝟐𝟎𝟎

𝑁𝑐

⎧{{{
⎨{{{⎩

⋮ ⋮ (𝐍𝟐
𝐜−𝟏)(𝐍𝟐

𝐜−𝟒)
𝟒 𝟏𝟎 𝟒𝟓 𝟏𝟐𝟔

𝑁𝑐

⎧{{{
⎨{{{⎩

⋮ ⋮ (𝐍𝟐
𝐜 − 𝟏) 𝟖 𝟏𝟓 𝟐𝟒

𝑁𝑐

⎧{{{
⎨{{{⎩

⋮ ⋮ 𝟏 𝟏 𝟏 𝟏

𝑁𝑐 − 1

⎧{{
⎨{{⎩

⋮ ⋮
(𝐍𝟐

𝐜−𝟏)(𝐍𝟐
𝐜−𝟒)

𝟒 𝟏𝟎 𝟒𝟓 𝟏𝟐𝟔

𝑁𝑐

⎧{{{
⎨{{{⎩

⋮ ⋮ 𝐍𝟐
𝐜(𝐍𝐜−𝟑)(𝐍𝐜+𝟏)

𝟒 − − 𝟐𝟎′ a 𝟕𝟓

T a b l e B . 1 : SU(𝑁𝑐) Young diagrams and associated irreducible representations obtained from the
tensor product in Eq. (B.1). We also show the specific Young diagrams and representations for
the special cases 𝑁𝑐 = 3, 𝑁𝑐 = 4 and 𝑁𝑐 = 5..

aThis is a symmetric, traceless representation known as 20-prime representation.
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This corresponds to the representations

(
𝐍𝐜(𝐍𝐜 + 𝟏)

𝟐 ⊕
𝐍𝐜(𝐍𝐜 − 𝟏)

𝟐 ) ⊗ (
𝐍𝐜(𝐍𝐜 + 𝟏)

𝟐 ⊕
𝐍𝐜(𝐍𝐜 − 𝟏)

𝟐 ) . (B.27)

We refrain from showing which of the representations is conjugate, as this is different for
each 𝑁𝑐. Expanding the result from Eq. (B.26) we get

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

⊗ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

⊕
⎡
⎢
⎢
⎢
⎣

⊗ ⋮ ⋮

⎤
⎥
⎥
⎥
⎦

⊕

⎧{{{
⎨{{{⎩

⊗ ⋮ ⋮

⎫}}}
⎬}}}⎭

⊕ ⟨ ⊗ ⋮ ⋮ ⟩ (B.28)

Evaluating the direct products in the brackets again, we get

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮ ⋮ ⊕ ⋮ ⋮ ⊕ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊕

⎡
⎢
⎢
⎢
⎢
⎣

⋮ ⋮ ⊕ ⋮ ⋮

⎤
⎥
⎥
⎥
⎥
⎦

⊕

⎧{{{
⎨{{{⎩

⋮ ⋮ ⊕ ⋮ ⋮

⎫}}}
⎬}}}⎭

⊕ ⟨ ⋮ ⋮ ⊕ ⋮ ⋮ ⊕ ⋮ ⋮ ⟩ .

We see, that the two singlets are obtained from the direct products in the (…) and the last
⟨…⟩ brackets. These direct products correspond to combining

𝐍𝐜(𝐍𝐜 + 𝟏)
𝟐 ⊗

𝐍𝐜(𝐍𝐜 + 𝟏)
𝟐 = 𝟏𝑐 ⊕ … and

𝐍𝐜(𝐍𝐜 − 𝟏)
𝟐 ⊗

𝐍𝐜(𝐍𝐜 − 𝟏)
𝟐 = 𝟏𝑐 ⊕ … ,

(B.29)

respectively. For the case 𝑁𝑐 = 3 realized in nature, we therefore get

𝟔 ⊗ ̄𝟔 = 𝟏𝑐 ⊕ … and 𝟑̄ ⊗ 𝟑 = 𝟏𝑐 ⊕ … . (B.30)

This corresponds to the expression in Eq. (5.16).

Considering now the case of internal meson-meson clustering. Writing Eq. (B.25) in
Young diagram notation and evaluating the direct products yields

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

⊗ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

⊗
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

⊗ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮ ⊕ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮ ⊕ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (B.31)

The result corresponds to the following combination of representations

((𝐍𝟐
𝐜 − 𝟏) ⊕ 𝟏𝑐) ⊗ ((𝐍𝟐

𝐜 − 𝟏) ⊕ 𝟏𝑐) . (B.32)
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Expanding the result from Eq. (B.31) we get

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

⋮ ⊗ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

⊕

⎡
⎢
⎢
⎢
⎢
⎣

⋮ ⊗ ⋮

⎤
⎥
⎥
⎥
⎥
⎦

⊕

⎧{{{
⎨{{{⎩

⋮ ⊗ ⋮

⎫}}}
⎬}}}⎭

⊕ ⟨ ⋮ ⊗ ⋮ ⟩ . (B.33)

We can now evaluate the direct products in the different brackets to obtain

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮ ⋮ ⊕ ⋮ ⋮ ⊕ ⋮ ⋮ ⊕ ⋮ ⋮ ⊕ 2 ⋅ ⋮ ⋮ ⊕ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊕

⎡
⎢
⎢
⎢
⎢
⎣

⋮ ⋮

⎤
⎥
⎥
⎥
⎥
⎦

⊕

⎧{{{
⎨{{{⎩

⋮ ⋮

⎫}}}
⎬}}}⎭

⊕ ⟨ ⋮ ⋮ ⟩ .

We see, that the singlets are obtained from the direct product in the (…) and ⟨…⟩ brackets,
which correspond to the direct products of the representations

(𝐍𝟐
𝐜 − 𝟏) ⊗ (𝐍𝟐

𝐜 − 𝟏) = 𝟏𝑐 ⊕ … and 𝟏𝑐 ⊗ 𝟏𝑐 = 𝟏𝑐 , (B.34)

respectively. For the case 𝑁𝑐 = 3, the representation (𝐍𝟐
𝐜 − 𝟏) = 𝟖𝐜. The expressions in

Eq. (B.34) are the ones shown in Eq. (5.17).

B.1.1 Colour traces in the four-quark FYE

The basis elements for the colour part of the BSA are the colour singlet structures ΓC ∈ {𝐶𝟏𝟏,
𝐶′

𝟏𝟏, 𝐶𝟑̄𝟑, 𝐶𝟖𝟖, 𝐶′
𝟖𝟖, 𝐶𝟔 ̄𝟔}, which are given in Eqs. (5.18) and (5.19). In Section 5.2we identified

the colour projectors to be just the same singlets transposed ℙC ∈ { (𝐶𝟏𝟏)𝑇, (𝐶′
𝟏𝟏)𝑇, (𝐶𝟑̄𝟑)𝑇,

(𝐶𝟖𝟖)𝑇, (𝐶′
𝟖𝟖)𝑇, (𝐶𝟔 ̄𝟔)𝑇 }. Because 2/3 of the colour singlets are just linear combinations

of the two singlets 𝐶𝟏𝟏 and 𝐶′
𝟏𝟏, it is sufficient to consider only these two elements in the

following. All other results can be constructed by combining the results obtained using
these two singlets. Acting with the projectors on the left-hand side of the four-quark FYE
in Eq. (5.41), we get the following results of the trace

tr {ℙC
𝑖 ⋅ Γ𝑗

C}
𝑖,𝑗∈{0,1}

= ⎛⎜⎜
⎝

1 𝐶𝐴 − 2 ⋅ 𝐶𝐹

𝐶𝐴 − 2 ⋅ 𝐶𝐹 1
⎞⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

1 1
𝑁𝑐

1
𝑁𝑐

1
⎞⎟⎟⎟
⎠

, (B.35)

with 𝐶𝐴 and 𝐶𝐹 the quadratic Casimir operators in the adjoint and fundamental represen-
tation, see Eqs. (A.35) and (A.37).

Moving on to the right-hand side of the four-quark FYE in Eq. (5.41), we find that for
our two-body forces in the four-quark kernel, the traces we need to evaluate are of the
form

𝑀2 = tr {ℙC
𝑖 ⋅ 𝑡𝑎 ⋅ 𝑡𝑎 ⋅ Γ𝑗

C}
𝑖,𝑗∈{0,1}

, (B.36)
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where 𝑡𝑎 are the SU(𝑁𝑐) generators. We will again only display the results obtained using
the singlets 𝐶𝟏𝟏 and 𝐶′

𝟏𝟏, as the other results can be obtained by combining the matrix
elements accordingly. The result of the traces in Eq. (B.36) differs, depending on the
interaction topology of the diagram:

𝑀(13)(24)
2 = ⎛⎜⎜⎜

⎝

𝐶𝐹
𝐶𝐹
𝐶𝐴

𝐶𝐹
𝐶𝐴

0
⎞⎟⎟⎟
⎠

, 𝑀(14)(23)
2 = ⎛⎜⎜⎜

⎝

0 𝐶𝐹
𝐶𝐴

𝐶𝐹
𝐶𝐴

𝐶𝐹

⎞⎟⎟⎟
⎠

, 𝑀(12)(34)
2 = ⎛⎜⎜⎜

⎝

0 𝐶𝐹
𝐶𝐴

𝐶𝐹
𝐶𝐴

0
⎞⎟⎟⎟
⎠

. (B.37)

The number in the brackets given as superscript denotes the quarks connected via the
gluon exchanges. Using the explicit forms of 𝐶𝐴 and 𝐶𝐹 given in Eqs. (A.35) and (A.37)
we can write the above matrices as

𝑀(13)(24)
2 =

⎛⎜⎜⎜⎜
⎝

(𝑁2
𝑐 −1)

2𝑁𝑐

(𝑁2
𝑐 −1)

2𝑁2
𝑐

(𝑁2
𝑐 −1)

2𝑁2
𝑐

0

⎞⎟⎟⎟⎟
⎠

, 𝑀(14)(23)
2 =

⎛⎜⎜⎜⎜
⎝

0 (𝑁2
𝑐 −1)

2𝑁2
𝑐

(𝑁2
𝑐 −1)

2𝑁2
𝑐

(𝑁2
𝑐 −1)

2𝑁𝑐

⎞⎟⎟⎟⎟
⎠

,

𝑀(12)(34)
2 =

⎛⎜⎜⎜⎜
⎝

0 (𝑁2
𝑐 −1)

2𝑁2
𝑐

(𝑁2
𝑐 −1)

2𝑁2
𝑐

0

⎞⎟⎟⎟⎟
⎠

.

(B.38)

For completeness, one can also look at the traces on the right-hand side that one would
need to evaluate if the three- and four-body forces in Fig. 5.1 were included. The following
considerations are made using our physical BSA based on dominant internal two-body
states. For the three- and four-body forces we get the following traces on the right-hand
side

𝑀3 = 𝑓 𝑎𝑏𝑐tr {ℙC
𝑖 ⋅ 𝑡𝑎 ⋅ 𝑡𝑏 ⋅ 𝑡𝑐 ⋅ Γ𝑗

C}
𝑖,𝑗∈{0,1}

,

𝑀4 = (𝑓 𝑥𝑎𝑏𝑓𝑥𝑐𝑑 + 𝑓 𝑥𝑎𝑐𝑓𝑥𝑏𝑑 + 𝑓 𝑥𝑎𝑑𝑓𝑥𝑏𝑐) tr {ℙC
𝑖 ⋅ 𝑡𝑎 ⋅ 𝑡𝑏 ⋅ 𝑡𝑐 ⋅ 𝑡𝑑 ⋅ Γ𝑗

C}
𝑖,𝑗∈{0,1}

,
(B.39)

with 𝑓 𝑎𝑏𝑐 denoting the SU(𝑁𝑐) structure constants with the indices 𝑎, 𝑏, 𝑐, 𝑑, 𝑥 the adjoint
colour index. Evaluating the traces in Eq. (B.39), we get

𝑀(123)4
3 = 𝑀(234)1

3 = ⎛⎜⎜
⎝

0 − 𝑖𝐶𝐹
2

𝑖𝐶𝐹
2 0

⎞⎟⎟
⎠

, (B.40)

𝑀(134)2
3 = 𝑀(124)3

3 = ⎛⎜⎜
⎝

0 𝑖𝐶𝐹
2

− 𝑖𝐶𝐹
2 0

⎞⎟⎟
⎠

(B.41)

and

𝑀(1234)
4 = ⎛⎜⎜

⎝

0 −𝐶𝐴𝐶𝐹
2

−𝐶𝐴𝐶𝐹
2 −𝐶𝐹

⎞⎟⎟
⎠

, (B.42)
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with the superscript again denoting the quarks connected via the three- and four-gluon
vertices. Using the explicit forms of the Casimir operators again, we can write

𝑀(123)4
3 = 𝑀(234)1

3 =
⎛⎜⎜⎜⎜
⎝

0 − 𝑖(𝑁2
𝑐 −1)

4𝑁𝑐
𝑖(𝑁2

𝑐 −1)
4𝑁𝑐

0

⎞⎟⎟⎟⎟
⎠

, (B.43)

𝑀(134)2
3 = 𝑀(124)3

3 =
⎛⎜⎜⎜⎜
⎝

0 𝑖(𝑁2
𝑐 −1)

4𝑁𝑐

− 𝑖(𝑁2
𝑐 −1)

4𝑁𝑐
0

⎞⎟⎟⎟⎟
⎠

(B.44)

and

𝑀(1234)
4 =

⎛⎜⎜⎜⎜
⎝

0 −(𝑁2
𝑐 −1)
4

−(𝑁2
𝑐 −1)
4 −(𝑁2

𝑐 −1)
2𝑁𝑐

⎞⎟⎟⎟⎟
⎠

. (B.45)

In the above context, it is interesting to consider the large 𝑁𝑐 limit of QCD [247], where
one sends 𝑁𝑐 → ∞ but keeps the combination 𝑔2𝑁𝑐 fixed. From this it immediately follows
that the coupling has to go like 𝑔 ∼ 1/√𝑁𝑐. The colour traces in Eq. (B.35) for the left-hand
side of the FYE becomes diagonal in this limit. For the two-body interactions on the
right-hand side, we add a factor of 𝑔2 from the two quark-gluon vertices to 𝑀2 in Eq. (B.38)
and then consider the limit 𝑁𝑐 → ∞. Doing so, we find

lim
𝑁𝑐→∞

𝑔2𝑀(13)(24)
2 = lim

𝑁𝑐→∞

⎛⎜⎜⎜⎜
⎝

(𝑁2
𝑐 −1)

2𝑁2
𝑐

(𝑁2
𝑐 −1)

2𝑁3
𝑐

(𝑁2
𝑐 −1)

2𝑁3
𝑐

0

⎞⎟⎟⎟⎟
⎠

= lim
𝑁𝑐→∞

⎛⎜⎜⎜
⎝

1
2

1
2𝑁𝑐

1
2𝑁𝑐

0
⎞⎟⎟⎟
⎠

, (B.46)

lim
𝑁𝑐→∞

𝑔2𝑀(14)(23)
2 = lim

𝑁𝑐→∞
⎛⎜⎜⎜
⎝

0 1
2𝑁𝑐

1
2𝑁𝑐

1
2

⎞⎟⎟⎟
⎠

, (B.47)

lim
𝑁𝑐→∞

𝑔2𝑀(12)(34)
2 = lim

𝑁𝑐→∞
⎛⎜⎜⎜
⎝

0 1
2𝑁𝑐

1
2𝑁𝑐

0
⎞⎟⎟⎟
⎠

. (B.48)

For themeson-meson diagrams, the traces evaluated using the corresponding native colour
singlet in this interaction topology give a constant value of 1

2 while every other combination
is suppressed by 1/𝑁𝑐. Interestingly, the colour traces for the diquark-antidiquark type
diagrams are completely suppressed in the large 𝑁𝑐 limit.

Moving on to the three-body forces, which get a factor of 𝑔4 due to the three quark-gluon
(𝑔3) vertices and the three-gluon (𝑔) vertex, we have

lim
𝑁𝑐→∞

𝑔4𝑀(123)4
3 = lim

𝑁𝑐→∞

⎛⎜⎜⎜⎜
⎝

0 − 𝑖(𝑁2
𝑐 −1)

4𝑁3
𝑐

𝑖(𝑁2
𝑐 −1)

4𝑁3
𝑐

0

⎞⎟⎟⎟⎟
⎠

= lim
𝑁𝑐→∞

⎛⎜⎜⎜
⎝

0 − 𝑖
4𝑁𝑐

𝑖
4𝑁𝑐

0
⎞⎟⎟⎟
⎠

, (B.49)
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lim
𝑁𝑐→∞

𝑔4𝑀(134)2
3 = lim

𝑁𝑐→∞
⎛⎜⎜⎜
⎝

0 𝑖
4𝑁𝑐

− 𝑖
4𝑁𝑐

0
⎞⎟⎟⎟
⎠

. (B.50)

Therefore, the three-body forces are suppressed by 1
𝑁𝑐

in the large 𝑁𝑐 limit.
Lastly, considering the four-body force, they get a factor 𝑔6 from the four quark-gluon

(𝑔4) vertices and the four-gluon (𝑔2) vertex. Therefore, Eq. (B.45) becomes

lim
𝑁𝑐→∞

𝑔6𝑀4(1234) = lim
𝑁𝑐→∞

⎛⎜⎜⎜⎜
⎝

0 −(𝑁2
𝑐 −1)

4𝑁3
𝑐

−(𝑁2
𝑐 −1)

4𝑁3
𝑐

−(𝑁2
𝑐 −1)

2𝑁4
𝑐

⎞⎟⎟⎟⎟
⎠

= lim
𝑁𝑐→∞

⎛⎜⎜⎜
⎝

0 − 1
4𝑁𝑐

− 1
4𝑁𝑐

− 1
𝑁2

𝑐

⎞⎟⎟⎟
⎠

. (B.51)

Similar to the three-body forces, also the four-body forces are suppressed by factors of 1
𝑁𝑐

or 1
𝑁2

𝑐
in the limit 𝑁𝑐 → ∞.

From the considerations above one might cautiously draw the following conclusion.
Considering only gluon exchanges as a means of interaction between the quarks, the
suppression of the three- and four-body forces in the large 𝑁𝑐 limit supports the assumption
that the two-body interactions might be dominant. Furthermore, the contributions coming
from the diquark-antidiquark type interactions seem to vanish for large 𝑁𝑐.
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𝜙𝑗 𝜓+
1,2 𝜓−

1 𝜓−
2 𝜓3 𝜓4 𝜓5 𝜓6 𝜓7

(14)(23) 𝜙𝑗 −𝜓+
1,2 𝜓−

1 −𝜓−
2 −𝜓3 𝜓4 −𝜓6 −𝜓5 −𝜓7

T a b l e B . 2 : Charge conjugation transformation in (14)(23) of the Dirac tensors in Table 5.2.

B.2 Physical BSA for four-quark states

In Section 5.1 we introduced and discussed the Dirac, colour and flavour parts of the
Bethe-Salpeter amplitude in the case of a four-quark state. Furthermore, in Section 5.2
we introduced the physically motivated BSA and the approximations coming with it.
We mentioned several times, that the Dirac part of the physical BSA consists of linear
combinations of the tensors given in Table 5.2. The transformation properties of these
tensors under charge conjugation symmetry in (14)(23) and Pauli antisymmetry under
(12) or (34) are compiled in Tables B.2 and B.6. As in the main text, the numbers in
the brackets label the quarks which are exchanged. In this section, we want to explicitly
construct the physical four-quark BSAs for the states investigated in this work.

B.2.1 Hidden-flavour physical BSA

We will first consider the physical basis for the hidden-flavour heavy-light four-quark
states (𝑄𝑞 ̄𝑞𝑄̄), with 𝑄 ≠ 𝑞 and with quantum numbers 𝐼 (𝐽𝑃𝐶) = 0 (1++), 1 (1+−), 0 (0++),
0 (1−−), 0 (0−+). We know from the discussion above Eq. (5.22) that the colour singlets in
Eqs. (5.18) and (5.19) as well as the flavour BSA in this case all have positive 𝐶-parity under
(14)(23). Thus, the only BSA part which determines the correct 𝐶-parity transformation
of the BSA is the Dirac part.

0 (1++)

Starting out with the 0 (1++) channel, we know from the main text, that the chosen sub-
clusters in the respective topologies are: (𝑄 ̄𝑞)0− ⊗ (𝑞𝑄̄)1− for the ℳ1, (𝑄𝑄̄)1−− ⊗ (𝑞 ̄𝑞)1−−

for ℳ2 and (𝑄𝑞)0+ ⊗ ( ̄𝑞𝑄̄)1+ for 𝒟. We thus only need to look at Table 5.2 to see which
tensors 𝜓𝑖 match the chosen combinations in the sub-clusters and then look at Table B.2
which combination gives the correct sign under charge conjugation symmetry. For the
present case, we need the final Dirac tensors to have positive 𝐶-parity. The tensors which
match all the criteria from above for the present state are

ΞD; 0(1++) = {𝜓−
1 , 𝜓4, 𝜓5 − 𝜓6} , (B.52)

for the ℳ1, ℳ2 and 𝒟 interaction topology respectively. The linear combination 𝜓5 − 𝜓6 is
chosen here, as the individual tensors 𝜓5 and 𝜓6 transform into each other under charge
conjugation symmetry in (14)(23). Only the linear combination has a definite 𝐶-parity
with a positive sign.
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1 (1+−)

The procedure is the same for the rest of the hidden-flavour four-quark states. For the
1 (1+−) channel, the sub-clusters which result in the overall quantum number of the
four-quark state are:

▪ {(𝑄 ̄𝑞)0− ⊗ (𝑞𝑄̄)1− , (𝑄 ̄𝑞)1− ⊗ (𝑞𝑄̄)1−} for ℳ1,
▪ {(𝑄𝑄̄)1−− ⊗ (𝑞 ̄𝑞)0−+ , (𝑄𝑄̄)0−+ ⊗ (𝑞 ̄𝑞)1−−} for ℳ2 and
▪ {(𝑄𝑞)0+ ⊗ ( ̄𝑞𝑄̄)1+ , (𝑄𝑞)1+ ⊗ ( ̄𝑞𝑄̄)1+} for 𝒟.

As mentioned in the main text in Section 5.2, we only take one internal two-body cluster for
each topology into account. To decide, which of the ones given above will be chosen, we
look at the combined masses of the two-body states involved in the sub-clusters. For each
interaction topology, we then choose the one with the lower of the two combined masses,
as it will affect the equation earlier and thus can be assumed as dominant. For the 1 (1+−)
with quark content 𝑐𝑛 ̄𝑛 ̄𝑐, i.e., the 𝑇𝑐 ̄𝑐1(3900), the above sets become {𝐷𝐷̄∗, 𝐷∗𝐷̄∗} for ℳ1,
{𝐽/𝜓𝜋, 𝜂𝑐𝜌} for ℳ2 and {𝑆𝑐𝑛𝐴𝑛̄ ̄𝑐, 𝐴𝑐𝑛𝐴𝑛̄ ̄𝑐} for 𝒟. Taking the masses from Table 4.2, we see
that the lowest thresholds are 𝐷𝐷̄∗, 𝐽/𝜓𝜋 and 𝑆𝑐𝑛𝐴𝑛̄ ̄𝑐 for the three topologies respectively.
Checking the tensors in Table 5.2 and the corresponding transformation property under
charge conjugation, i.e., negative 𝐶-parity under (14)(23), we find that the set

ΞD; 1(1+−) = {𝜓+
1 , 𝜓+

2 − 𝜓−
2 , 𝜓5 + 𝜓6} , (B.53)

correspond to the chosen internal structures from above. Forming the linear combinations
𝜓+

2 ± 𝜓−
2 , disentangles the two combinations within the 𝜓±

2 tensor, i.e., 𝐽/𝜓𝜋 and 𝜂𝑐𝜌. The
combination 𝜓+

2 − 𝜓−
2 yields 2 ⋅ 𝛾𝜇

⟂ ⊗ 𝛾5, which is the Dirac basis element describing the
𝐽/𝜓𝜋 combination.

0 (0++)

Moving on to the scalar 0 (0++) channel, we have the following possible sub-clusters:

▪ {(𝑄 ̄𝑞)0− ⊗ (𝑞𝑄̄)0− , (𝑄 ̄𝑞)1− ⊗ (𝑞𝑄̄)1−} for ℳ1,
▪ {(𝑄𝑄̄)0−+ ⊗ (𝑞 ̄𝑞)0−+ , (𝑄𝑄̄)1−− ⊗ (𝑞 ̄𝑞)1−−} for ℳ2 and
▪ {(𝑄𝑞)0+ ⊗ ( ̄𝑞𝑄̄)0+ , (𝑄𝑞)1+ ⊗ ( ̄𝑞𝑄̄)1+} for 𝒟.

Considering the 𝑐𝑛 ̄𝑛 ̄𝑐 state again, we chose the two heavy-light pseudoscalar states (𝐷𝐷̄)
for the ℳ1 topology, the heavy-heavy vector and light-light vector (𝐽/𝜓𝜔) for the ℳ2
topology and the heavy-light scalar diquark-antidiquark pair (𝑆𝑐𝑛𝑆𝑛̄ ̄𝑐). Even though the
𝜂𝑐𝜂 combination is the lightest one in the ℳ2 topology, we did not choose it, as the 𝜂 is mass
degenerate with the 𝜋 in this work (cf. caption of Table 4.2). Thus, the threshold where the
singularity enters the integration domain is not representative of the physical one. Once
the 𝜂 mass can be determined more accurately in our framework, this combination should
definitely be included. Again, checking Table B.2 for the 𝐶-parity of the basis tensors in
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𝑑 𝐽𝑃 = 0− 𝐽𝑃 = 1−

ℳ1 ̃𝜙1 = 𝛿𝛼1𝛼3
𝛾5

𝛼2𝛼4
̃𝜓±
1 = (𝛾5

𝛼1𝛼3
(𝛾5𝛾𝜇

⟂)𝛼2𝛼4
± (𝛾5𝛾𝜇

⟂)𝛼1𝛼3
𝛾5

𝛼2𝛼4
)

ℳ1 ̃𝜙2 = 𝛾5
𝛼1𝛼3

𝛿𝛼2𝛼4
̃𝜓±
2 = (𝛿𝛼1𝛼3

(𝛾𝜇
⟂)𝛼2𝛼4

± (𝛾𝜇
⟂)𝛼1𝛼3

𝛿𝛼2𝛼4
)

ℳ2 ̃𝜙3 = 𝛿𝛼1𝛼4
𝛾5

𝛼2𝛼3
̃𝜓±
3 = (𝛾5

𝛼1𝛼4
(𝛾5𝛾𝜇

⟂)𝛼2𝛼3
± (𝛾5𝛾𝜇

⟂)𝛼1𝛼4
𝛾5

𝛼2𝛼3
)

ℳ2 ̃𝜙4 = 𝛾5
𝛼1𝛼4

𝛿𝛼2𝛼3
̃𝜓±
4 = (𝛿𝛼1𝛼4

(𝛾𝜇
⟂)𝛼2𝛼3

± (𝛾𝜇
⟂)𝛼1𝛼4

𝛿𝛼2𝛼3
)

ℳ1 ̃𝜙5 = (𝛾𝜇
⟂)𝛼1𝛼3

(𝛾5𝛾⟂
𝜇 )𝛼2𝛼4

̃𝜓5 = 𝜀𝜇𝜈𝜌𝜎 𝑃̂𝜈(𝛾𝜌)𝛼1𝛼3
(𝛾5𝛾𝜎)𝛼2𝛼4

ℳ1 ̃𝜙6 = (𝛾5𝛾𝜇
⟂)𝛼1𝛼3

(𝛾⟂
𝜇 )𝛼2𝛼4

̃𝜓6 = 𝜀𝜇𝜈𝜌𝜎 𝑃̂𝜈(𝛾5𝛾𝜌)𝛼1𝛼3
(𝛾𝜎)𝛼2𝛼4

ℳ2 ̃𝜙7 = (𝛾𝜇
⟂)𝛼1𝛼4

(𝛾5𝛾⟂
𝜇 )𝛼2𝛼3

̃𝜓7 = 𝜀𝜇𝜈𝜌𝜎 𝑃̂𝜈(𝛾𝜌)𝛼1𝛼4
(𝛾5𝛾𝜎)𝛼2𝛼3

ℳ2 ̃𝜙8 = (𝛾5𝛾𝜇
⟂)𝛼1𝛼4

(𝛾⟂
𝜇 )𝛼2𝛼3

̃𝜓8 = 𝜀𝜇𝜈𝜌𝜎 𝑃̂𝜈(𝛾5𝛾𝜌)𝛼1𝛼4
(𝛾𝜎)𝛼2𝛼3

𝒟 ̃𝜙9 = (𝕀𝐶)𝛼1𝛼2
(𝐶𝑇𝛾5)𝛼3𝛼4

̃𝜓9 = (𝕀𝐶)𝛼1𝛼2
(𝐶𝑇𝛾𝜇

⟂)𝛼3𝛼4

𝒟 ̃𝜙10 = (𝛾5𝐶)𝛼1𝛼2
(𝐶𝑇𝕀)𝛼3𝛼4

̃𝜓10 = (𝛾𝜇
⟂𝐶)𝛼1𝛼2

(𝐶𝑇𝕀)𝛼3𝛼4

𝒟 ̃𝜙11 = (𝛾5𝛾𝜇
⟂𝐶)𝛼1𝛼2

(𝐶𝑇𝛾⟂
𝜇 )𝛼3𝛼4

̃𝜓11 = (𝛾5𝐶)𝛼1𝛼2
(𝐶𝑇𝛾5𝛾𝜇

⟂)𝛼3𝛼4

𝒟 ̃𝜙12 = (𝛾𝜇
⟂𝐶)𝛼1𝛼2

(𝐶𝑇𝛾5𝛾⟂
𝜇 )𝛼3𝛼4

̃𝜓12 = (𝛾5𝛾𝜇
⟂𝐶)𝛼1𝛼2

(𝐶𝑇𝛾5)𝛼3𝛼4

T a b l e B . 3 : The relevant Dirac basis elements corresponding to the quantum numbers 𝐽𝑃 = 0− and
1− are collected. The interaction topology is indicated in the column labelled 𝑑. The transversal
gamma matrices are defined as 𝛾𝜇

⟂ = 𝑇𝜇𝜈(𝑃)𝛾𝜈, with 𝑃̂ representing the normalized total hadron
momentum .

Table 5.2 corresponding to the chosen internal components, we find that

ΞD; 0(0++) = {𝜙1, 𝜙4, 𝜙5} , (B.54)

are the Dirac basis elements chosen for the 0(0++) state.

0(1−−)

To investigate the Dirac basis elements for four-quark states with quantum numbers 0−+

and 1−−, we first need to construct a set of suitable Dirac basis tensors. To do this, we
take the leading tensors for 0+ and 1+ in Table 5.2 and flip the parity by individually
multiplying the internal elements by 𝛾5. The resulting tensors are compiled in Table B.3.
Regarding the 𝑠-wave diquark-antidiquark pairings for these quantum numbers, they
always contain either a pseudoscalar or a vector (anti)diquark. These are notoriously
unreliable when using the MT interaction and thus we will refrain from using these
components. Furthermore, they are also heavier than the scalar/axialvector diquarks
respectively and therefore constitute a higher threshold. It would be possible to achieve
the desired four-quark quantum numbers by a 𝑝-wave pairing of scalar or axialvector
(anti)diquarks, but that would involve angular momentum and is beyond the scope of
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̃𝜙1,2 ̃𝜙3,4 ̃𝜙5,6 ̃𝜙7,8 ̃𝜙9,10 ̃𝜙11,12

(14)(23) ̃𝜙2,1 ̃𝜙3,4 − ̃𝜙6,5 − ̃𝜙7,8 ̃𝜙10,9 − ̃𝜙12,11

̃𝜓+
1,3 ̃𝜓+

2,4 ̃𝜓−
1 ̃𝜓2 ̃𝜓−

3 ̃𝜓−
4 ̃𝜓5,6 ̃𝜓7,8 ̃𝜓9,10 ̃𝜓11,12

(14)(23) ̃𝜓+
1,3 − ̃𝜓+

2,4 − ̃𝜓−
1 ̃𝜓−

2 ̃𝜓−
3 − ̃𝜓−

4 − ̃𝜓6,5 − ̃𝜓7,8 − ̃𝜓10,9 − ̃𝜓12,11

T a b l e B . 4 : Charge conjugation transformation in (14)(23) of the Dirac tensors in Table B.3. The
notation 𝜓𝑖,𝑗 → ±𝜓𝑖,𝑗 denotes that the tensors 𝜓𝑖 and 𝜓𝑗 transform into themselves up to a possible
sign, i.e., 𝜓𝑖 → ±𝜓𝑖 and 𝜓𝑗 → ±𝜓𝑗. The 𝜓𝑖,𝑗 → ±𝜓𝑗,𝑖 means the tensors transform into each other
(𝜓𝑖 → 𝜓𝑗, 𝜓𝑗 → 𝜓𝑖) with a possible sign.

this work.
Having introduced the leading Dirac tensors for the pseudoscalar and vector four-quark

states in Table B.4, we can proceed with the possible sub-clusters for the 0(1−−). These are:

▪ {(𝑄 ̄𝑞)0− ⊗ (𝑞𝑄̄)1+ , (𝑄 ̄𝑞)0+ ⊗ (𝑞𝑄̄)1−} for ℳ1,
▪ { (𝑄𝑄̄)1−− ⊗ (𝑞 ̄𝑞)0++, (𝑄𝑄̄)1+− ⊗ (𝑞 ̄𝑞)0−+ } and
▪ { (𝑄𝑄̄)0++ ⊗ (𝑞 ̄𝑞)1−−, (𝑄𝑄̄)0−+ ⊗ (𝑞 ̄𝑞)1+− } for ℳ2.

Considering the 𝑐𝑛 ̄𝑛 ̄𝑐 state, i.e., the 𝜓(4230) in this channel, the above combinations are
𝐷𝐷̄1 and 𝐷0𝐷̄∗ for ℳ1 and 𝐽/𝜓𝑓0(1370), ℎ𝑐𝜂, 𝜒𝑐0𝜔 and 𝜂𝑐ℎ1 for ℳ2. In the combination
𝐽/𝜓𝑓0(1370), we refrain from using the 𝜎 meson as the companion state, because of its
four-quark state nature [69, 248]. In addition, the 𝜎 has a huge decay width, making it
too broad to form a bound state. For the reason mentioned above, we neglect the diquark-
antidiquark combinations. In the ℳ1 interaction topology, we choose the 𝐷𝐷̄1 combination
over the 𝐷0𝐷̄∗, as the decay width of the 𝐷0 is much to broad to form a molecular bound
state, which was already argued in [56, 194]. In the ℳ2 topology, we choose the 𝜒𝑐0𝜔 and
the 𝐽/𝜓𝑓0(1370). Checking the tables in Table B.4 for combination of tensors that transform
negatively under 𝐶-parity, we find that the Dirac basis tensors corresponding to the chosen
internal components are:

ΞD; 0(1−−) = { ̃𝜓−
1 , ̃𝜓+

4 + ̃𝜓−
4 , ̃𝜓+

4 − ̃𝜓−
4 } . (B.55)

0(0−+)

Last but not least for the hidden-flavour four-quark states, we need to construct the physical
basis for the 0(0−+) channel. The possible internal sub-clusters in this channel are:

▪ {(𝑄 ̄𝑞)0− ⊗ (𝑞𝑄̄)0+ , (𝑄 ̄𝑞)1− ⊗ (𝑞𝑄̄)1+} for ℳ1,
▪ { (𝑄𝑄̄)0++ ⊗ (𝑞 ̄𝑞)0−+, (𝑄𝑄̄)0−+ ⊗ (𝑞 ̄𝑞)0++ } and
▪ { (𝑄𝑄̄)1+− ⊗ (𝑞 ̄𝑞)1−−, (𝑄𝑄̄)1−− ⊗ (𝑞 ̄𝑞)1+− } for ℳ2.

Again considering the 0−+ four-quark state with quark content 𝑐𝑛 ̄𝑛 ̄𝑐, the above combina-
tions amount to 𝐷𝐷̄0 and 𝐷∗𝐷̄1 for the ℳ1 topology and 𝜒𝑐0𝜋, 𝜂𝑐𝑓0(1370), ℎ𝑐𝜔 and 𝐽/𝜓ℎ1
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for the ℳ2 topology. For the physical basis, we choose the 𝐷∗𝐷̄1 in the ℳ1 topology and
the combinations 𝜒𝑐0𝜋 and 𝜂𝑐𝑓0(1370) in the ℳ2 topology. Also here, we neglect the com-
bination containing the 𝐷0 because of its broad decay width [56, 194]. The combinations
containing axialvector and vector components in the ℳ2 topology constitute higher thresh-
old than the scalar-pesudoscalar combinations and are therefore neglected. Checking the
Table B.4 again, we find the Dirac basis for the 0−+ four-quark state to be:

ΞD; 0(0−+) = { ̃𝜙5 − ̃𝜙6, ̃𝜙3, ̃𝜙4} . (B.56)

Since we want to investigate the effects from the attractive and repulsive combination
of each internal clustering, we multiply each element in the sets ΞD with the attractive
and repulsive colour singlets in the corresponding topology. This yields the combined
Dirac-colour BSA, which is then multiplied with the flavour part of the BSA to get the full
physical four-quark BSA.
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𝑠𝑠 𝑎𝑎 𝑠𝑎 𝑎𝑠

𝑄𝑄 ̄𝑛 ̄𝑛 (𝐼 = 1) 𝑄𝑄 ̄𝑛 ̄𝑛 (𝐼 = 0)

𝑄𝑄 ̄𝑞 ̄𝑞 (𝐼 = 0)

𝑄𝑄′ ̄𝑛 ̄𝑛 (𝐼 = 1) 𝑄𝑄′ ̄𝑛 ̄𝑛 (𝐼 = 0) 𝑄𝑄′ ̄𝑛 ̄𝑛 (𝐼 = 0) 𝑄𝑄′ ̄𝑛 ̄𝑛 (𝐼 = 1)

𝑄𝑄′ ̄𝑞 ̄𝑞 (𝐼 = 0) 𝑄𝑄 ̄𝑞 ̄𝑞 (𝐼 = 0)

𝑄𝑄 ̄𝑞 ̄𝑞′ 𝑄𝑄 ̄𝑞 ̄𝑞′

T a b l e B . 5 : Flavour BSAs ΓF with definite Pauli symmetry .

B.2.2 Open-flavour physical BSA

In this section we will consider the physical BSA for the open-flavour four-quark states
(𝑄𝑄′ ̄𝑞 ̄𝑞′) with quantum numbers 𝐼(𝐽𝑃) = 𝐼(0+), 𝐼(1+) with 𝐼 = 0, 1/2, 1. We know from
Eq. (5.23), that the physical BSA needs to have a definite Pauli antisymmetry in either
(12) or (34), if 𝑄 = 𝑄′ or ̄𝑞 = ̄𝑞′ respectively. We will start out with these cases and later
on move to cases with 𝑄 ≠ 𝑄′ or ̄𝑞 ≠ ̄𝑞′, where there is no strict symmetry under the
respective quark exchanges. For the open-flavour states, the symmetry of the flavour BSA
under (12) and (34) dictates the transformation properties of the Dirac and colour tensors.
We will therefore first determine the transformation of the flavour part of the BSA and
then of the combined Dirac-colour tensors.

Before we come to the construction of the physical BSAs, we will investigate the symme-
tries of the flavour BSA outlined in Section 5.1.3 more closely. Considering a four-quark
state with quark content

ΓF = Γ1
F Γ2

F = 𝑄𝑄 ̄𝑞 ̄𝑞 , (B.57)

the isospin can either be 𝐼 = 0, 1. The first part of ΓF features only heavy quarks 𝑄 ∈ {𝑏, 𝑐},
which automatically has isospin 𝐼 = 0. Furthermore, because the two heavy quarks are
equal, the flavour BSA reads Γ1

F = {𝑄𝑄} and is symmetric (𝑠) under quark exchange (12).
We therefore write Γ𝑠…

F , with the … denoting the, as of yet, undetermined transformation
property of the second part of the flavour BSA. For the second part, i.e., Γ2

F, the situation
depends on whether ̄𝑞 = ̄𝑛 or ̄𝑞 ≠ ̄𝑛, with 𝑛 = 𝑢/𝑑. In the first case, the flavour BSA can
either be Γ2

F = [ ̄𝑢 ̄𝑑] for the case 𝐼 = 0, which transforms antisymmetric (𝑎), or Γ2
F = { ̄𝑢 ̄𝑑}

for the case 𝐼 = 1, which transforms symmetric (𝑠) under (34). In the second case ( ̄𝑞 ≠ ̄𝑛),
the flavour BSA can only have isospin 𝐼 = 0 and read Γ2

F = { ̄𝑞 ̄𝑞}, which is again symmetric
under (34). We therefore have the following combinations:

̄𝑞 ≠ ̄𝑛 ∶ 𝐼 = 0 ∶ Γ𝑠𝑠
F , ̄𝑞 = ̄𝑛 ∶

⎧{
⎨{⎩

𝐼 = 0 ∶ Γ𝑠𝑎
F ,

𝐼 = 1 ∶ Γ𝑠𝑠
F ,

. (B.58)
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Continuing this with a four-quark state with quark content

ΓF = Γ1
F Γ2

F = 𝑄𝑄′ ̄𝑞 ̄𝑞 , (B.59)

with 𝑄 ≠ 𝑄′, we find that the symmetry under (12) is not fixed, as we can have both
Γ1

F = {𝑄𝑄′} and Γ1
F = [𝑄𝑄′]. The considerations regarding Γ2

F are the same as above.
Therefore, we have the following combinations:

̄𝑞 ≠ ̄𝑛 ∶ 𝐼 = 0 ∶ Γ(𝑠/𝑎)𝑠
F , ̄𝑞 = ̄𝑛 ∶

⎧{
⎨{⎩

𝐼 = 0 ∶ Γ(𝑠/𝑎)𝑎
F ,

𝐼 = 1 ∶ Γ(𝑠/𝑎)𝑠
F ,

. (B.60)

The last case important for the present thesis, is the case where

ΓF = Γ1
F Γ2

F = 𝑄𝑄 ̄𝑞 ̄𝑞′ , (B.61)

with ̄𝑞 ≠ ̄𝑞′. This is also the only case where we can have isospin 𝐼 = 1/2. Here the Γ1
F

is symmetric again, while the definite symmetry in (34) is lost. This means, regardless
whether one of the antiquarks ̄𝑞, ̄𝑞′ = ̄𝑛, we can have both Γ2

F = { ̄𝑞 ̄𝑞′} and Γ2
F = [ ̄𝑞 ̄𝑞′]. Thus,

we find the following combinations:

̄𝑞 ≠ ̄𝑛 ∶ 𝐼 = 0 ∶ Γ𝑠(𝑠/𝑎)
F , ̄𝑞 = ̄𝑛 ∶

⎧{
⎨{⎩

𝐼 = 0 ∶ Γ𝑠(𝑠/𝑎)
F ,

𝐼 = 1/2 ∶ Γ𝑠(𝑠/𝑎)
F ,

. (B.62)

We have collected the transformation properties of the different flavour BSAs in Table B.5.
To get an overall antisymmetric BSA, one nowneeds to combine the flavour BSA Γ(𝑠/𝑎)(𝑠/𝑎)

F
with a corresponding Dirac-colour tensor which features the opposite transformation prop-
erties in (12) or (34), i.e., Γ(𝑎/𝑠)(𝑎/𝑠)

DC , such that the overall BSA has the desired antisymmetry
under Pauli transformation. E.g., for a 𝑄𝑄 ̄𝑞 ̄𝑞 state, one needs to combine the tensors, such
that the physical BSA has Γ𝑎𝑎

phys..
For the construction of the physical basis below, we need to specify what we mean

by saying we multiply the Dirac tensors for the meson-meson components in Table B.6
with the corresponding colour singlet. It means, each tensor in the linear combination
is individually combined with the respective colour singlet. E.g., the 𝑠𝑠 tensor 𝜙1 + 𝜙2
multiplied with the colour singlets yields 𝜙1 ⋅ 𝐶𝟏𝟏 + 𝜙2 ⋅ 𝐶′

𝟏𝟏. Since these singlets transform
into each other under Pauli symmetry (cf. Eq. (5.24) and above), the transformation
properties of the combined Dirac-colour tensor are the same as for the Dirac tensor for
the meson-meson components. For the diquark-antidiquark tensors, the situation differs
depending on the colour structure.

𝐼(0+)

Let us apply this to the quantum numbers of open-flavour four-quark states investigated
in this thesis. The first channel is the 𝐼(𝐽𝑃) = 𝐼(0+). Considering first the state with isospin
𝐼 = 0 and quark content 𝑄𝑄 ̄𝑞 ̄𝑞, with ̄𝑞 = ̄𝑛. We know from Eq. (B.58), that the flavour part
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𝑠𝑠 𝑎𝑎 𝑠𝑎 𝑎𝑠

𝜙1 + 𝜙2 𝜙1 − 𝜙2

𝜙3 + 𝜙4 𝜙3 − 𝜙4

𝜙6 𝜙5

𝜓+
1 + 𝜓+

2 𝜓+
1 − 𝜓+

2 𝜓−
1 − 𝜓−

2 𝜓−
1 + 𝜓−

2

𝜓7 𝜓3 − 𝜓4 𝜓3 + 𝜓4

𝜓6 𝜓5

̃𝜙(1+2) + ̃𝜙(3+4) ̃𝜙(1+2) − ̃𝜙(3+4) ̃𝜙(1−2) − ̃𝜙(3−4) ̃𝜙(1−2) + ̃𝜙(3−4)

̃𝜙(5+6) + ̃𝜙(7+8) ̃𝜙(5+6) − ̃𝜙(7+8) ̃𝜙(5−6) − ̃𝜙(7−8) ̃𝜙(5−6) + ̃𝜙(7−8)

̃𝜙9 ̃𝜙12 ̃𝜙11
̃𝜙10

̃𝜓+
1 + ̃𝜓+

3 ̃𝜓+
1 − ̃𝜓+

3 ̃𝜓−
1 − ̃𝜓−

3 ̃𝜓−
1 + ̃𝜓−

3

̃𝜓(5−6) + ̃𝜓(7−8) ̃𝜓(5−6) − ̃𝜓(7−8) ̃𝜓(5+6) − ̃𝜓(7+8) ̃𝜓(5+6) + ̃𝜓(7+8)

̃𝜓11 ̃𝜓10 ̃𝜓9

̃𝜓12

T a b l e B . 6 : Dirac tensors with definite Pauli symmetry. We have introduced the shorthand
𝑥(𝑖±𝑗) = 𝑥𝑖 ± 𝑥𝑗 with 𝑥 ∈ { ̃𝜙, ̃𝜓}. Multiplying the tensors with their respective colour singlets
from Eqs. (5.18) and (5.19) does not change the table significantly. The only change affects
the tensors in the 𝒟 topology, which upon multiplication with the 𝐶𝟑̄𝟑 singlet exactly flips the
transformation properties.

of the BSA transforms as Γ𝑠𝑎
F in this case. This means, that we need to pair it with a Dirac-

colour tensor which transforms according to Γ𝑎𝑠
DC. Looking at the first row in Table B.6, we

find that such a Dirac tensor does not exist. We therefore have to conclude, that such a
state is not realized. However, when we consider the case 𝐼 = 1 with ̄𝑞 = ̄𝑛 or 𝐼 = 0 with

̄𝑞 ≠ ̄𝑛, we have a flavour BSA which transforms symmetric under both (12) and (34), i.e.,
Γ𝑠𝑠

F . This needs to be paired with the Dirac-colour tensors transforming antisymmetric
under both quark exchanges Γ𝑎𝑎

DC. For the meson-meson interaction topologies, the Dirac
tensors in the 𝑎𝑎 column in Table B.6 can be read of directly as the multiplication with
the respective colour singlets does not change anything. For the tensors in the diquark
topology, one needs to combine the transformation property of the Dirac tensors, given
in Table B.6, with the ones of the colour BSA, given in Table 5.1, to form the desired Γ𝑎𝑎

DC.
For the ΓC = 𝐶𝟑̄𝟑, which transforms antisymmetric (Γ𝑎𝑎

C ), one needs to combine it with
ΓD = 𝜙6, transforming symmetric under both quark exchanges, i.e., Γ𝑠𝑠

D. On the contrary,
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one needs to combine the totally symmetric Γ𝑠𝑠
C = 𝐶𝟔 ̄𝟔 with the totally antisymmetric

Γ𝑎𝑎
D = 𝜙5 to get an overall antisymmetric BSA. In total, we find:

Γ𝑠𝑠
F → Γ𝑎𝑎

DC =
⎧{
⎨{⎩

Γ𝑠𝑠
D ⊗ Γ𝑎𝑎

C , for ΓC = 𝐶𝟑̄𝟑 → attractive𝐴𝑄𝑄𝐴 ̄𝑞 ̄𝑞

Γ𝑎𝑎
D ⊗ Γ𝑠𝑠

C , for ΓC = 𝐶𝟔 ̄𝟔 → repulsive𝑆𝑄𝑄𝑆 ̄𝑞 ̄𝑞
. (B.63)

With this, we conclude that for the 𝐼(0+) channel a 𝑄𝑄 ̄𝑞 ̄𝑞 four-quark state has the physical
Dirac basis

ΞD; 𝐼(0+) = {𝜙1 − 𝜙2, 𝜙3 − 𝜙4, 𝜙6⏟
att.

, 𝜙5⏟
rep.

} , (B.64)

with the addition that the isospin 𝐼 = 0 state is not realized for ̄𝑞 = ̄𝑛. The meson-meson
tensors are the same for the attractive and repulsive colour channels, whereas the first
diquark-antidiquark tensor (𝜙6) is for the attractive and the second one (𝜙5) is for the
repulsive colour channel.

This then corresponds to the combinations

▪ (𝑄 ̄𝑞)0− ⊗ (𝑄 ̄𝑞)0− attractive and repulsive ℳ1 component,
▪ (𝑄 ̄𝑞)1− ⊗ (𝑄 ̄𝑞)1− for the attractive and repulsive ℳ2 component and
▪ (𝑄𝑄)1+ ⊗ ( ̄𝑞 ̄𝑞)1+ for the attractive and
▪ (𝑄𝑄)0+ ⊗ ( ̄𝑞 ̄𝑞)0+ for the repulsive 𝒟 components.

Taking the special case of 𝑐𝑐 ̄𝑛 ̄𝑛 with quantum numbers 𝐼(𝐽𝑃) = 1(0+), this amounts to 𝐷𝐷
and 𝐷∗𝐷∗ for the attractive and repulsive ℳ1 and ℳ2 topologies respectively and 𝐴𝑐𝑐𝐴𝑛̄𝑛̄
as the attractive and 𝑆𝑐𝑐𝑆𝑛̄𝑛̄ as the repulsive component in the 𝒟 topology. Looking closely
at the flavour combinations in Table B.5, we realize that the Dirac basis for the 0+ channel
given in Eq. (B.64) is also valid for the four-quark states with quark content 𝑄𝑄′ ̄𝑞 ̄𝑞 and
𝑄𝑄 ̄𝑞 ̄𝑞′. The only exception is the 𝑄𝑄′ ̄𝑛 ̄𝑛 state with isospin 𝐼 = 0. Here the flavour part
transforms antisymmetric under both (12) and (34). Therefore the Dirac-colour part needs
to transform symmetric under both quark exchanges. For the meson-meson topologies,
one needs to take the Dirac tensors in the 𝑠𝑠 column in Table B.6 and combine them with
the appropriate colour singlets. For the diquark-antidiquark cluster, the corresponding
combinations are then:

Γ𝑎𝑎
F → Γ𝑠𝑠

DC =
⎧{
⎨{⎩

Γ𝑎𝑎
D ⊗ Γ𝑎𝑎

C , for ΓC = 𝐶𝟑̄𝟑 → attractive𝑆𝑄𝑄𝑆 ̄𝑞 ̄𝑞

Γ𝑠𝑠
D ⊗ Γ𝑠𝑠

C , for ΓC = 𝐶𝟔 ̄𝟔 → repulsive𝐴𝑄𝑄𝐴 ̄𝑞 ̄𝑞
. (B.65)

Thus, the physical Dirac basis in this case reads

Ξ𝑄𝑄′𝑛̄𝑛̄
D; 0(0+) = {𝜙1 + 𝜙2, 𝜙3 + 𝜙4, 𝜙5⏟

att.
, 𝜙6⏟

rep.
} , (B.66)

Compared to Eq. (B.64), the linear combinations have a different sign and the two diquark-
antidiquark tensors for the attractive and repulsive components are switched. This means,
in this case we get a scalar-scalar diquark-antidiquark attractive and axialvector-axialvector
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diquark-antidiquark repulsive component.

𝐼(1+)

The second open-flavour channel investigated in this work is the 𝐼(𝐽𝑃) = 𝐼(1+). We again
start with the isospin 𝐼 = 0 state with quark content 𝑄𝑄 ̄𝑞 ̄𝑞. For the case where ̄𝑞 = ̄𝑛, we
know from Table B.5 that the flavour BSA transforms as Γ𝑠𝑎

F . Therefore, we would need
a Dirac-colour tensor transforming as Γ𝑎𝑠

DC. Consulting the 𝐽𝑃 = 1+ Dirac tensors (𝜓𝑖) in
Table B.6, we find the Dirac tensors with the correct transformation properties under Pauli
symmetry in the last column. The Dirac tensors for the meson-meson topologies can again
be read off directly. When we consider the diquark-antidiquark tensors, we need to check
which combination yields the correct (𝑎𝑠) transformation properties. Here, we can either
have

Γ𝑠𝑎
F → Γ𝑎𝑠

DC =
⎧{
⎨{⎩

Γ𝑠𝑎
D ⊗ Γ𝑎𝑎

C , for ΓC = 𝐶𝟑̄𝟑 → attractive𝐴𝑄𝑄𝑆𝑛̄𝑛̄

Γ𝑎𝑠
D ⊗ Γ𝑠𝑠

C , for ΓC = 𝐶𝟔 ̄𝟔 → repulsive𝑆𝑄𝑄𝐴𝑛̄𝑛̄
. (B.67)

From this, we find that the physical Dirac basis reads

ΞD; 0(1+) = {𝜓−
1 + 𝜓−

2 , 𝜓3 + 𝜓4, 𝜓6⏟
att.

, 𝜓5⏟
rep.

} . (B.68)

We therefore have the following internal clusters for 0(1+) with 𝑄𝑄 ̄𝑛 ̄𝑛:

▪ (𝑄 ̄𝑛)0− ⊗ (𝑄 ̄𝑛)1− for ℳ1 attractive and repulsive,
▪ (𝑄 ̄𝑛)1− ⊗ (𝑄 ̄𝑛)1− for ℳ2 attractive and repulsive,
▪ (𝑄𝑄)1+ ⊗ ( ̄𝑛 ̄𝑛)0+ for the attractive and
▪ (𝑄𝑄)0+ ⊗ ( ̄𝑛 ̄𝑛)1+ for the repulsive 𝒟 topology.

As an example, consider the case 𝑐𝑐 ̄𝑛 ̄𝑛, i.e., the 𝑇+
𝑐𝑐. The physical components stated above

are here attractive and repulsive 𝐷𝐷∗ and 𝐷∗𝐷∗ for the ℳ1 and ℳ2 respectively and 𝐴𝑐𝑐𝑆𝑛̄𝑛̄
in the attractive and 𝑆𝑐𝑐𝐴𝑛̄𝑛̄ in the repulsive 𝒟 topology.

As is evident from Table B.5, the flavour BSA in the isospin 𝐼 = 1 case of 𝑄𝑄 ̄𝑛 ̄𝑛 and
the case for 𝑄𝑄 ̄𝑞 ̄𝑞 with ̄𝑞 ≠ ̄𝑛 have the same symmetries under Pauli symmetry, i.e., Γ𝑠𝑠

F .
Therefore, the corresponding Dirac-colour tensors need to be the same and transform as
Γ𝑎𝑎

DC under Pauli symmetry. Checking Table B.6 for the corresponding Dirac tensors, we
find only a meson-meson tensor in the 𝑎𝑎 column, which can of course again be taken
directly. For the diquark-antidiquark tensors, we need to combine the possible tensors of
the 𝑠𝑠 and the 𝑎𝑎 column with the attractive and repulsive colour singlets to get

Γ𝑠𝑠
F → Γ𝑎𝑎

DC =
⎧{
⎨{⎩

Γ𝑠𝑠
D ⊗ Γ𝑎𝑎

C , for ΓC = 𝐶𝟑̄𝟑 → attractive𝐴𝑄𝑄𝐴 ̄𝑞 ̄𝑞

Γ𝑎𝑎
D ⊗ Γ𝑠𝑠

C , for ΓC = 𝐶𝟔 ̄𝟔 → not possible with 𝐽𝑃 = 1+
. (B.69)

Since the 𝑎𝑎 column of Table B.6 does not feature any Dirac tensors, the only valid combi-
nation is combining the totally symmetric 𝜓7 tensor with the total antisymmetric attractive
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colour singlet 𝐶𝟑̄𝟑. The physical Dirac basis thus reads

ΞD; 1(1+) = {𝜓+
1 − 𝜓+

2 , 𝜓7} (= Ξ𝑄𝑄 ̄𝑞 ̄𝑞
D; 0(1+)) . (B.70)

The corresponding internal clusters are

▪ (𝑄 ̄𝑞)0− ⊗ (𝑄 ̄𝑞)1− for the attractive and repulsive ℳ1 and
▪ (𝑄𝑄)1+ ⊗ ( ̄𝑞 ̄𝑞)1+ for the attractive 𝒟 topology.

We do not have a ℳ2 component and also the repulsive 𝒟 component is missing. Consid-
ering again the example case of 𝑐𝑐 ̄𝑛 ̄𝑛, we have an attractive and repulsive 𝐷𝐷∗ component
in ℳ1 and an attractive 𝐴𝑐𝑐𝑆 ̄𝑞 ̄𝑞 component in 𝒟 .

We now have to consider the case of 𝐽𝑃 = 1+ with quark content 𝑄𝑄′ ̄𝑞 ̄𝑞 and 𝑄𝑄 ̄𝑞 ̄𝑞′ with
𝑄 ≠ 𝑄′ and ̄𝑞 ≠ ̄𝑞′ respectively. In both of these cases, the flavour BSA does not have a
fixed definite Pauli symmetry under (12) for the 𝑄𝑄′ ̄𝑞 ̄𝑞 or (34) for the 𝑄𝑄 ̄𝑞 ̄𝑞′, but rather
can transform both symmetric or antisymmetric under the respective quark exchange. This
is also reflected in Table B.5. For the case of 𝑄𝑄′ ̄𝑞 ̄𝑞, the flavour BSAs can transform as

Γ(𝑠/𝑎)𝑎
F for 𝐼 = 0 with ̄𝑞 = ̄𝑛 or Γ(𝑠/𝑎)𝑠

F

⎧{
⎨{⎩

for 𝐼 = 1 with ̄𝑞 = ̄𝑛

for 𝐼 = 0 with ̄𝑞 ≠ ̄𝑛
(B.71)

The corresponding Dirac-colour tensors are

Γ(𝑠/𝑎)𝑎
F → Γ(𝑎/𝑠)𝑠

DC and Γ(𝑠/𝑎)𝑠
F → Γ(𝑎/𝑠)𝑎

DC (B.72)

In the case of 𝑄𝑄 ̄𝑞 ̄𝑞′, the flavour BSAs transform as Γ𝑠(𝑠/𝑎)
F . The corresponding Dirac-

colour BSA therefore has to transform as Γ𝑎(𝑎/𝑠)
DC . The different combinations will impact

the existence of certain diquark-antidiquark components, which will be discussed in the
following. Before we do that, we need to consider the possible meson-meson combinations
based on the tensors in Table B.6. Here we have the combinations 𝜓±

1 ± 𝜓±
2 and 𝜓3 ± 𝜓4.

Taking now the special case for 𝑄𝑄′ ̄𝑞 ̄𝑞 = 𝑏𝑐 ̄𝑛 ̄𝑛, we see that the physical components these
linear combinations correspond to are

𝜓±
1 ± 𝜓±

2 ∼ (𝐵̄ ⊗ 𝐷∗ ± 𝐵̄∗ ⊗ 𝐷) ± (𝐵̄ ⊗ 𝐷∗ ± 𝐵̄∗ ⊗ 𝐷) ,

𝜓3 ± 𝜓4 ∼ 𝐵̄∗ ⊗ 𝐷∗ ± 𝐵̄∗ ⊗ 𝐷∗ .
(B.73)

We see, that the tensors 𝜓±
1 and 𝜓±

2 mix the 𝐵̄𝐷∗ and 𝐵̄∗𝐷 components. This is obviously
not the case for equal heavy quarks. Similarly, for the case 𝑄𝑄 ̄𝑞 ̄𝑞′ = 𝑏𝑏 ̄𝑛 ̄𝑠, we have

𝜓±
1 ± 𝜓±

2 ∼ (𝐵̄ ⊗ 𝐵̄∗
𝑠 ± 𝐵̄∗ ⊗ 𝐵̄𝑠) ± (𝐵̄𝑠 ⊗ 𝐵̄∗ ± 𝐵̄∗

𝑠 ⊗ 𝐵̄) ,

𝜓3 ± 𝜓4 ∼ 𝐵̄∗ ⊗ 𝐵̄∗
𝑠 ± 𝐵̄∗

𝑠 ⊗ 𝐵̄∗ .
(B.74)

where the 𝐵̄𝐵̄∗
𝑠 and 𝐵̄∗𝐵̄𝑠 components are mixed in the tensors 𝜓±

1,2. In these cases, the two
components need to be disentangled. For this, we look at where the flavour BSA has a
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fixed definite Pauli symmetry, i.e., 𝑠 or 𝑎 in (34) for 𝑄𝑄′ ̄𝑞 ̄𝑞 and 𝑠 in (12) for 𝑄𝑄 ̄𝑞 ̄𝑞′, and
form a linear combination of the corresponding tensors with 𝑠 and 𝑎 under the other quark
exchange. That is

Γ(𝑠/𝑎)𝑎
F → Ψ(𝑠±𝑎)𝑠 = (𝜓+

1 − 𝜓+
2 ) ± (𝜓−

1 − 𝜓−
2 ) ,

Γ(𝑠/𝑎)𝑠
F → Ψ(𝑠±𝑎)𝑎 = (𝜓+

1 + 𝜓+
2 ) ± (𝜓−

1 + 𝜓−
2 ) ,

Γ𝑠(𝑠/𝑎)
F → Ψ𝑎(𝑠±𝑎) = (𝜓+

1 − 𝜓+
2 ) ± (𝜓−

1 + 𝜓−
2 ) ,

(B.75)

with Ψ… denoting the linear combinations of Dirac tensors. This effectively disentangles
the two physical components from the 𝜓±

1,2 tensors in Eq. (B.73), as the linear combinations
in Eq. (B.75) correspond to

Ψ(𝑠+𝑎)𝑎 ∼ 𝐵̄ ⊗ 𝐷∗ , Ψ(𝑠−𝑎)𝑎 ∼ 𝐵̄∗ ⊗ 𝐷 , (B.76)

Ψ(𝑠+𝑎)𝑠 ∼ 𝐵̄ ⊗ 𝐷∗ , Ψ(𝑠−𝑎)𝑠 ∼ 𝐵̄∗ ⊗ 𝐷 , (B.77)

Ψ𝑎(𝑠+𝑎) ∼ 𝐵̄ ⊗ 𝐵̄∗
𝑠 Ψ𝑎(𝑠−𝑎) ∼ 𝐵̄∗ ⊗ 𝐵̄𝑠 . (B.78)

The combinations 𝜓3 ± 𝜓4 in Eqs. (B.73) and (B.74) need not be changed, as they are still
valid for these cases.

Starting out with the case of 𝑄𝑄′ ̄𝑛 ̄𝑛 and isospin 𝐼 = 0, the flavour BSA transforms under
Pauli as Γ(𝑠/𝑎)𝑎

F . It has a definite antisymmetry in (34), but can transform symmetric or
antisymmetric under (12) as 𝑄 ≠ 𝑄′. The corresponding Dirac-colour tensor needs to
transform as Γ(𝑎/𝑠)𝑠

DC . It is interesting to take a closer look at the diquark-antidiquark tensors.
Here we find

Γ𝑠𝑎
F → Γ𝑎𝑠

DC =
⎧{
⎨{⎩

Γ𝑠𝑎
D ⊗ Γ𝑎𝑎

C , for ΓC = 𝐶𝟑̄𝟑 → attractive𝐴𝑄𝑄′𝑆𝑛̄𝑛̄

Γ𝑎𝑠
D ⊗ Γ𝑠𝑠

C , for ΓC = 𝐶𝟔 ̄𝟔 → repulsive𝑆𝑄𝑄′𝐴𝑛̄𝑛̄
,

Γ𝑎𝑎
F → Γ𝑠𝑠

DC =
⎧{
⎨{⎩

Γ𝑎𝑎
D ⊗ Γ𝑎𝑎

C , for ΓC = 𝐶𝟑̄𝟑 → not possible with 𝐽𝑃 = 1+

Γ𝑠𝑠
D ⊗ Γ𝑠𝑠

C , for ΓC = 𝐶𝟔 ̄𝟔 → repulsive𝐴𝑄𝑄′𝐴𝑛̄𝑛̄
.

(B.79)

Since the 𝑎𝑎 column in Table B.6 does not feature any 𝒟 Dirac tensors, this attractive
component is not realized for 𝐽𝑃 = 1+. The chosen physical Dirac basis elements in this
case are

Ξ𝑄𝑄′𝑛̄𝑛̄
D; 0(1+) = {Ψ(𝑠+𝑎)𝑠, Ψ(𝑠−𝑎)𝑠, 𝜓6, 𝜓5} . (B.80)

We have neglected the repulsive 𝐴𝑄𝑄′𝐴𝑛̄𝑛̄ as it constitutes the highest threshold of the
diquark-antidiquark components. The internal clusters we choose are therefore

▪ (𝑄 ̄𝑛)0− ⊗ (𝑄′ ̄𝑛)1− for ℳ1 attractive and repulsive,
▪ (𝑄 ̄𝑛)1− ⊗ (𝑄′ ̄𝑛)0− for the attractive and repulsive ℳ2,
▪ (𝑄𝑄′)1+ ⊗ ( ̄𝑛 ̄𝑛)0+ for the attractive 𝒟 and
▪ (𝑄𝑄′)0+ ⊗ ( ̄𝑛 ̄𝑛)1+ for the repulsive 𝒟 topology.
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For the special case 𝑄𝑄′ ̄𝑛 ̄𝑛 = 𝑏𝑐 ̄𝑛 ̄𝑛 we have an attractive and repulsive 𝐵̄𝐷∗ component in
ℳ1, an attractive and repulsive 𝐵̄∗𝐷 in ℳ2 and an attractive 𝐴𝑏𝑐𝑆𝑛̄𝑛̄ and repulsive 𝑆𝑏𝑐𝐴𝑛̄𝑛̄
component in 𝒟.

As was the case before, for the 𝑄𝑄′ ̄𝑛 ̄𝑛 with isospin 𝐼 = 1 and the 𝑄𝑄′ ̄𝑞 ̄𝑞 with ̄𝑞 ≠ ̄𝑛 the
flavour BSAs have a definite Pauli symmetry under (34) and both possible symmetries in
(12), i.e., Γ(𝑠/𝑎)𝑠

F . Similar as before, we want to construct a Dirac-colour tensor with Γ(𝑎/𝑠)𝑎
DC .

For the diquark-antidiquark tensors, we have

Γ𝑠𝑠
F → Γ𝑎𝑎

DC =
⎧{
⎨{⎩

Γ𝑠𝑠
D ⊗ Γ𝑎𝑎

C , for ΓC = 𝐶𝟑̄𝟑 → attractive𝐴𝑄𝑄′𝐴 ̄𝑞 ̄𝑞

Γ𝑎𝑎
D ⊗ Γ𝑠𝑠

C , for ΓC = 𝐶𝟔 ̄𝟔 → not possible with 𝐽𝑃 = 1+
,

Γ𝑎𝑠
F → Γ𝑠𝑎

DC =
⎧{
⎨{⎩

Γ𝑎𝑠
D ⊗ Γ𝑎𝑎

C , for ΓC = 𝐶𝟑̄𝟑 → attractive𝑆𝑄𝑄′𝐴 ̄𝑞 ̄𝑞

Γ𝑠𝑎
D ⊗ Γ𝑠𝑠

C , for ΓC = 𝐶𝟔 ̄𝟔 → repulsive𝐴𝑄𝑄′𝑆 ̄𝑞 ̄𝑞
.

(B.81)

The chosen physical Dirac basis reads

ΞD; 1(1+) = {Ψ(𝑠+𝑎)𝑎, Ψ(𝑠−𝑎)𝑎, 𝜓5, 𝜓3 − 𝜓4, 𝜓6} (= Ξ𝑄𝑄′ ̄𝑞 ̄𝑞
0(1+) ) (B.82)

We again neglect the 𝐴𝑄𝑄′𝐴 ̄𝑞 ̄𝑞 component as it is again the highest diquark-antidiquark
threshold and can therefore be assumed to be subleading compared to the other combina-
tions. Thus, the chosen internal clusters are

▪ (𝑄 ̄𝑛)0− ⊗ (𝑄′ ̄𝑛)1− for ℳ1 attractive and repulsive,
▪ (𝑄 ̄𝑛)1− ⊗ (𝑄′ ̄𝑛)0− for the attractive ℳ2,
▪ (𝑄𝑄′)0+ ⊗ ( ̄𝑛 ̄𝑛)1+ for the attractive 𝒟,
▪ (𝑄 ̄𝑛)1− ⊗ (𝑄′ ̄𝑛)1− for the repulsive ℳ2 and
▪ (𝑄𝑄′)1+ ⊗ ( ̄𝑛 ̄𝑛)0+ for the repulsive 𝒟 topology.

For the ℳ2 topology, we choose the repulsive vector-vector meson pairing, because we
found that the inclusion of this repulsive component significantly affects the four-quark
mass in the 1(1+) channel. Considering the special case of 𝑄𝑄′ ̄𝑞 ̄𝑞 = 𝑏𝑐 ̄𝑛 ̄𝑛, we have a
𝐵̄𝐷∗ for the attractive and repulsive ℳ1 topology, an attractive 𝐵̄∗𝐷 and repulsive 𝐵̄∗𝐷∗

component in ℳ2 and an attractive 𝑆𝑏𝑐𝐴𝑛̄𝑛̄ and repulsive 𝐴𝑏𝑐𝑆𝑛̄𝑛̄ component in the 𝒟
topology.

The last case investigated in this work, is for the flavour combination 𝑄𝑄 ̄𝑞 ̄𝑞′. Here,
we do not need to make a distinction between the different isospins 𝐼 = 0 and 𝐼 = 1/2,
because the flavour BSAs have the same symmetries under Pauli, i.e., Γ𝑠(𝑠/𝑎)

F . The needed
Dirac-colour tensor in this case therefore needs to transform as Γ𝑎(𝑎/𝑠)

DC . Investigating the
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possible diquark-antidiquark clusters, we find

Γ𝑠𝑠
F → Γ𝑎𝑎

DC =
⎧{
⎨{⎩

Γ𝑠𝑠
D ⊗ Γ𝑎𝑎

C , for ΓC = 𝐶𝟑̄𝟑 → attractive𝐴𝑄𝑄𝐴 ̄𝑞 ̄𝑞′

Γ𝑎𝑎
D ⊗ Γ𝑠𝑠

C , for ΓC = 𝐶𝟔 ̄𝟔 → not possible with 𝐽𝑃 = 1+
,

Γ𝑠𝑎
F → Γ𝑎𝑠

DC =
⎧{
⎨{⎩

Γ𝑠𝑎
D ⊗ Γ𝑎𝑎

C , for ΓC = 𝐶𝟑̄𝟑 → attractive𝐴𝑄𝑄𝑆 ̄𝑞 ̄𝑞′

Γ𝑎𝑠
D ⊗ Γ𝑠𝑠

C , for ΓC = 𝐶𝟔 ̄𝟔 → repulsive𝑆𝑄𝑄𝐴 ̄𝑞 ̄𝑞′

.

(B.83)

Similar to Eq. (B.81), we only get one possible repulsive component for 𝐽𝑃 = 1+. The
chosen physical Dirac basis is

Ξ𝑄𝑄 ̄𝑞 ̄𝑞′

D; 𝐼(1+) = {Ψ𝑎(𝑠+𝑎), Ψ𝑎(𝑠−𝑎), 𝜓6, 𝜓3 + 𝜓4, 𝜓5} . (B.84)

Similar to the cases before, we again neglect the 𝐴𝑄𝑄𝐴 ̄𝑞 ̄𝑞′ diquark-antidiquark component,
as it is the highest threshold in this topology. The chosen internal clusters are

▪ (𝑄 ̄𝑞)0− ⊗ (𝑄 ̄𝑞′)1− for ℳ1 attractive and repulsive,
▪ (𝑄 ̄𝑞′)0− ⊗ (𝑄 ̄𝑞)1− for the attractive ℳ2,
▪ (𝑄𝑄)0+ ⊗ ( ̄𝑞 ̄𝑞′)1+ for the attractive 𝒟,
▪ (𝑄 ̄𝑞′)1− ⊗ (𝑄 ̄𝑞)1− for the repulsive ℳ2 and
▪ (𝑄𝑄)1+ ⊗ ( ̄𝑞 ̄𝑞′)0+ for the repulsive 𝒟 topology.

Concretely for the case 𝑄𝑄 ̄𝑞 ̄𝑞′ = 𝑏𝑏 ̄𝑛 ̄𝑠 we get the following physical internal components.
An attractive and repulsive 𝐵̄𝐵̄∗

𝑠 in the ℳ1 topology, an attractive 𝐵̄𝑠𝐵̄∗ and a repulsive 𝐵̄∗𝐵̄∗
𝑠

in the ℳ2 topology and finally an attractive 𝐴𝑏𝑏𝑆𝑛̄ ̄𝑠 and repulsive 𝑆𝑏𝑏𝐴𝑛̄ ̄𝑠 component in the
𝒟 topology.
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Appendix C

More on BSEs

C.1 Properties of BSEs

C.1.1 Transformations

Here we collect the transformation properties of a generic 𝑛-body BSE under parity and
charge conjugation. With the charge conjugation matrices defined in Eq. (A.23) we obtain
the charge conjugated BSA for the cases of spin 𝐽 = 0 and 𝐽 = 1 as

Γ̄𝜇({𝑝𝑖}, 𝑃) = ( − 1)𝐽𝐶 Γ𝜇( − {𝑝𝑖}, −𝑃)𝑇 𝐶𝑇 , (C.1)

which reduces to

Γ̄𝜇({𝑝𝑖}, 𝑃) = ( − 1)𝐽𝑐 Γ𝜇({𝑝𝑖}, −𝑃) , (C.2)

if the state is an eigenstate of 𝐶-parity with eigenvalues 𝑐 = ±1. Upon acting with the
parity transformation operator 𝒫 upon the generic BSA, we get

𝒫(Γ𝜇({𝑝𝑖}, 𝑃)) = ( − 1)𝐽 Π𝜇𝜎 𝛾4 Γ𝜎({Π𝑝𝑖}, Π𝑃) 𝛾4 , (C.3)

with Π = diag( − 1, −1, −1, 1).

C.1.2 Charge conjugation symmetry of four-quark basis elements

As we have seen in Section 5.1.3, the definite 𝐶-parity of a hidden-flavour four-quark state
(𝑄𝑞 ̄𝑞𝑄̄) is the main construction principle for a correct physical BSA for this state. In this
section, we will explicitly calculate the charge conjugation transformation under quark
exchange (14)(23), as given in Eq. (5.22), of some example tensors of Tables 5.2 and B.3.
The flavour and colour BSAs both transform positively under this 𝐶-parity.

We start with the 𝐽𝑃 = 0+ tensors. Consider the 𝜙1 tensor in Table 5.2. Following the
rule given in Eq. (5.22), we have

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

(𝜙1)𝛼′
4𝛼′

3𝛼′
2𝛼′

1
=

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

(𝛾5)𝛼′
4𝛼′

2
(𝛾5)𝛼′

3𝛼′
1

= (𝐶𝛾5𝐶𝑇)𝛼4𝛼2
(𝐶𝛾5𝐶𝑇)𝛼3𝛼1

.
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We then use the charge conjugation of the 𝛾5 matrix in Eq. (A.24) and get

(𝛾5)𝑇
𝛼4𝛼2

(𝛾5)𝑇
𝛼3𝛼1

= 𝛾5
𝛼2𝛼4

𝛾5
𝛼1𝛼3

= 𝜙1 .

To also demonstrate the transformation of a tensor belonging to the ℳ2 topology, we
choose the 𝜙4 tensor. Applying Eq. (5.22), we have

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

(𝜙1)𝛼′
4𝛼′

3𝛼′
2𝛼′

1
=

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

(𝛾𝜇
⟂)𝛼′

4𝛼′
1

(𝛾⟂
𝜇 )

𝛼′
3𝛼′

2
= (𝐶𝛾𝜇

⟂𝐶𝑇)𝛼4𝛼1
(𝐶𝛾⟂

𝜇 𝐶𝑇)
𝛼3𝛼2

.

Using the 𝐶-parity of the 𝛾𝜇 matrix in Eq. (A.24), the above reads

(−𝛾𝜇
⟂)𝑇

𝛼4𝛼1
(−𝛾⟂

𝜇 )
𝑇

𝛼3𝛼2
= (𝛾𝜇

⟂)𝛼1𝛼4
(𝛾⟂

𝜇 )
𝛼2𝛼3

= 𝜙4 .

For tensors in the 𝒟 topology, we choose the 𝜙5 tensor. The charge conjugation for this
tensor reads

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

(𝜙5)𝛼′
4𝛼′

3𝛼′
2𝛼′

1
=

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

(𝛾5𝐶)𝛼′
4𝛼′

3
(𝐶𝑇𝛾5)𝛼′

2𝛼′
1

= (𝐶 [𝛾5𝐶] 𝐶𝑇)𝛼4𝛼3
(𝐶 [𝐶𝑇𝛾5] 𝐶𝑇)𝛼2𝛼1

.

We insert a 𝕀 = 𝐶𝑇𝐶 between the tensors in the square brackets and get

(𝐶 [𝛾5𝐶𝑇𝐶𝐶] 𝐶𝑇)𝛼4𝛼3
(𝐶 [𝐶𝑇𝐶𝑇𝐶𝛾5] 𝐶𝑇)𝛼2𝛼1

= ( (𝛾5)𝑇 𝐶 𝐶𝐶𝑇⏟
=𝕀

)
𝛼4𝛼3

( 𝐶𝐶𝑇⏟
=𝕀

𝐶𝑇 (𝛾5)𝑇 )
𝛼2𝛼1

=

(𝐶𝑇𝛾5)𝑇
𝛼4𝛼3

(𝛾5𝐶)𝑇
𝛼2𝛼1

= (𝐶𝑇𝛾5)𝛼3𝛼4
(𝛾5𝐶)𝛼1𝛼2

= 𝜙5 .

Carrying out this procedure for all the 𝐽𝑃 = 0+ tensors in Table 5.2, one can show, that
they each transform according to 𝜙𝑖 → +𝜙𝑖, with 𝑖 = 1, 2, … , 6. This confirms the first
column of Table B.2.

We apply the same technique also to some example tensors in the 𝐽𝑃 = 1+ channel. First,
we consider the 𝜓±

1 tensor.

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

(𝜓±
1 )𝛼′

4𝛼′
3𝛼′

2𝛼′
1

=

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

((𝛾5)𝛼′
4𝛼′

2
(𝛾𝜇

⟂)𝛼′
3𝛼′

1
± (𝛾𝜇

⟂)𝛼′
4𝛼′

2
(𝛾5)𝛼′

3𝛼′
1
) =

((𝐶𝛾5𝐶𝑇)𝛼4𝛼2
(𝐶𝛾𝜇

⟂𝐶𝑇)𝛼3𝛼1
± (𝐶𝛾𝜇

⟂𝐶𝑇)𝛼4𝛼2
(𝐶𝛾5𝐶𝑇)𝛼3𝛼1

)

Using the 𝐶-parity of the gamma matrices in Eq. (A.24) again, we get

((𝛾5)𝑇
𝛼4𝛼2

( − 𝛾𝜇
⟂)𝑇

𝛼3𝛼1
± ( − 𝛾𝜇

⟂)𝑇
𝛼4𝛼2

(𝛾5)𝑇
𝛼3𝛼1

) =

( − (𝛾5)𝛼2𝛼4
(𝛾𝜇

⟂)𝛼1𝛼3
∓ (𝛾𝜇

⟂)𝛼2𝛼4
(𝛾5)𝛼1𝛼3

) =
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( ∓ (𝛾5)𝛼1𝛼3
(𝛾𝜇

⟂)𝛼2𝛼4
− (𝛾𝜇

⟂)𝛼1𝛼3
(𝛾5)𝛼2𝛼4

) = ∓𝜓±
1 .

Therefore, the tensor 𝜓+
1 has negative and 𝜓−

1 positive 𝐶-parity under (14)(23). As a last
example for the 1+ tensors, we will look at the 𝜓5 tensor in the 𝒟 topology. Applying
Eq. (5.22) to 𝜓5 we get

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

(𝜓5)𝛼′
4𝛼′

3𝛼′
2𝛼′

1
=

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

(𝛾5𝐶)𝛼′
4𝛼′

3
(𝐶𝑇𝛾𝜇

⟂)𝛼′
2𝛼′

1
= (𝐶 [𝛾5𝐶] 𝐶𝑇)𝛼4𝛼3

(𝐶 [𝐶𝑇𝛾𝜇
⟂] 𝐶𝑇)𝛼2𝛼1

.

As done before, we insert 𝐶𝑇𝐶 = 𝕀 between the tensors in the square brackets. Doing so,
we get

(𝐶 [𝛾5𝐶𝑇𝐶𝐶] 𝐶𝑇)𝛼4𝛼3
(𝐶 [𝐶𝑇𝐶𝑇𝐶𝛾𝜇

⟂] 𝐶𝑇)𝛼2𝛼1
= ((𝛾5)𝑇𝐶 𝐶𝐶𝑇⏟

𝕀
)

𝛼4𝛼3
( 𝐶𝐶𝑇⏟

𝕀
𝐶𝑇( − 𝛾𝜇

⟂)𝑇)
𝛼2𝛼1

=

= (𝐶𝑇𝛾5)
𝑇

𝛼4𝛼3
( − 𝛾𝜇

⟂𝐶)
𝑇

𝛼2𝛼1
= −(𝛾𝜇

⟂𝐶)
𝛼1𝛼2

(𝐶𝑇𝛾5)
𝛼3𝛼4

= −𝜓6 .

So, under charge conjugation under quark exchange (14)(23) the tensor 𝜓5 transforms
into −𝜓6.

As a last example, we look at the 𝐶-parity of the ̃𝜓±
1 tensor in the 𝐽𝑃 = 1− basis elements

in Table B.3. Using Eq. (5.22) on ̃𝜓±
1 we get

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

( ̃𝜓±
1 )𝛼′

4𝛼′
3𝛼′

2𝛼′
1

=

𝐶𝛼1𝛼′
1

𝐶𝛼2𝛼′
2

𝐶𝛼3𝛼′
3

𝐶𝛼4𝛼′
4

((𝛾5)𝛼′
4𝛼′

2
(𝛾5𝛾𝜇

⟂)𝛼′
3𝛼′

1
± (𝛾5𝛾𝜇

⟂)𝛼′
4𝛼′

2
(𝛾5)𝛼′

3𝛼′
1
) =

((𝐶𝛾5𝐶𝑇)𝛼4𝛼2
(𝐶[𝛾5𝛾𝜇

⟂]𝐶𝑇)𝛼3𝛼1
± (𝐶[𝛾5𝛾𝜇

⟂]𝐶𝑇)𝛼4𝛼2
(𝐶𝛾5𝐶𝑇)𝛼3𝛼1

)

We again insert unity as 𝐶𝑇𝐶 = 𝕀 between the tensors in the square brackets and get

((𝐶𝛾5𝐶𝑇)
𝛼4𝛼2

(𝐶[𝛾5𝐶𝑇𝐶𝛾𝜇
⟂]𝐶𝑇)

𝛼3𝛼1
± (𝐶[𝛾5𝐶𝑇𝐶𝛾𝜇

⟂]𝐶𝑇)
𝛼4𝛼2

(𝐶𝛾5𝐶𝑇)
𝛼3𝛼1

) =

((𝛾5)
𝑇

𝛼4𝛼2
((𝛾5)𝑇(−𝛾𝜇

⟂)𝑇)
𝛼3𝛼1

± ((𝛾5)𝑇( − 𝛾𝜇
⟂)𝑇)

𝛼4𝛼2
(𝛾5)

𝑇

𝛼3𝛼1
) =

((𝛾5)
𝑇

𝛼4𝛼2
( − 𝛾𝜇

⟂𝛾5)
𝑇

𝛼3𝛼1
± ( − 𝛾𝜇

⟂𝛾5)
𝑇

𝛼4𝛼2
(𝛾5)

𝑇

𝛼3𝛼1
) =

( ∓ (𝛾5)
𝛼1𝛼3

(𝛾𝜇
⟂𝛾5)

𝛼2𝛼4
− (𝛾𝜇

⟂𝛾5)
𝛼1𝛼3

(𝛾5)
𝛼2𝛼4

)

Using the anticommutation relation of the 𝛾5 matrix given in Eq. (A.22), we get

( ± (𝛾5)
𝛼1𝛼3

(𝛾5𝛾𝜇
⟂)

𝛼2𝛼4
+ (𝛾5𝛾𝜇

⟂)
𝛼1𝛼3

(𝛾5)
𝛼2𝛼4

) = ± ̃𝜓±
1 .

Here, the tensor ̃𝜓+
1 has positive and ̃𝜓−

1 negative 𝐶-parity under (14)(23).
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C.1.3 Pauli antisymmetry of four-quark basis elements

While the main construction principle for the physical BSA of hidden-flavour four-quark
states with quark content 𝑄𝑞 ̄𝑞𝑄̄ is the charge conjugation symmetry given in Eq. (5.22),
for the open-flavour four-quark states with quark content 𝑄𝑄′ ̄𝑞 ̄𝑞′ the main symmetry the
physical BSA has to fulfil is either or both of the Pauli antisymmetries in Eq. (5.23). As an
example, we will show how to calculate the Pauli (anti)symmetry of some Dirac tensors
of Tables 5.2 and B.3 under quark exchange (12) and (34).

First, we want to consider the 𝐽𝑃 = 0+ tensors. As an example, we look at the 𝜙1 tensor
under quark exchange (12) and (34). Applying the transformations in Eq. (5.23) we get

(12) ∶ (𝜙1)
𝛼2𝛼1𝛼3𝛼4

= (𝛾5)𝛼2𝛼3
(𝛾5)𝛼1𝛼4

= 𝜙2 ,

(34) ∶ (𝜙1)
𝛼1𝛼2𝛼4𝛼3

= (𝛾5)𝛼1𝛼4
(𝛾5)𝛼2𝛼3

= 𝜙2 .

We see, that the tensor 𝜙1 transforms into the tensor 𝜙2 under quark exchanges (12) and
(34) with a positive sign. The transformation 𝜙2 → 𝜙1 under Pauli (anti)symmetry follows
straightforwardly. Forming the linear combination Φ+ = 𝜙1 + 𝜙2, the resulting tensor
transforms symmetric (𝑠) under both (12) and (34). We will denote this behaviour as
subscripts on the name of the combined tensor, i.e., Φ+

𝑠𝑠. The first and second subscript
correspond to the transformation under (12) and (34) correspondingly. Forming the
other possible linear combination, i.e., Φ− = 𝜙1 − 𝜙2, we find that this tensor transforms
antisymmetric (𝑎) under both (12) and (34). We denote the transformation properties of
this tensor as Φ−

𝑎𝑎. These two linear combinations then denote Dirac tensors with a definite
Pauli (anti)symmetry and are given in the first line of the first two columns of Table B.6.

Next, it is useful to consider a 𝐽𝑃 = 0+ tensor in the 𝒟 topology. We choose 𝜙5 as an
example. Again applying Eq. (5.23), we find

(12) ∶ (𝜙5)
𝛼2𝛼1𝛼3𝛼4

= (𝛾5𝐶)𝛼2𝛼1
(𝐶𝑇𝛾5)𝛼3𝛼4

= (𝛾5𝐶)𝑇
𝛼1𝛼2

(𝐶𝑇𝛾5)𝛼3𝛼4

= (𝐶𝑇(𝛾5)𝑇)𝛼1𝛼2
(𝐶𝑇𝛾5)𝛼3𝛼4

(𝐴.24)= −(𝛾5𝐶)𝛼1𝛼2
(𝐶𝑇𝛾5)𝛼3𝛼4

= −𝜙5

(34) ∶ (𝜙5)
𝛼1𝛼2𝛼4𝛼3

= (𝛾5𝐶)𝛼1𝛼2
(𝐶𝑇𝛾5)𝛼4𝛼3

= (𝛾5𝐶)𝛼1𝛼2
(𝐶𝑇𝛾5)𝑇

𝛼3𝛼4

= (𝛾5𝐶)𝛼1𝛼2
((𝛾5)𝑇𝐶)𝛼3𝛼4

(𝐴.24)= −(𝛾5𝐶)𝛼1𝛼2
(𝐶𝑇𝛾5)𝛼3𝛼4

= −𝜙5 .

Hence the tensor Φ = 𝜙5 has a definite Pauli antisymmetry under the quark exchanges
(12) and (34), i.e., Φ𝑎𝑎. Thus, it is classified in the second column, first row in Table B.6.

One can carry out the same procedure as written above for all the Dirac basis tensors
given in Table 5.2, i.e., check whether the tensors have definite Pauli (anti)symmetry and if
not, form linear combinations of the tensors that do. Having done so, they can be classified
according to the respective transformation properties as shown in Table B.6.
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𝐽𝑃𝐶
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0.8

1.0

1.2
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𝑀 [GeV]

𝜎

𝐾∗
0

𝑓0

𝑎1

𝐾1

0++ 1++

𝐽𝑃𝐶

2.0

2.5
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3.5
𝑀 [GeV]

𝐷∗
0

𝐷∗
𝑠0

𝜒𝑐0

𝐷1

𝐷±
𝑠1

𝜒𝑐1

0++ 1++

𝐽𝑃𝐶

5

6

7

8

9

10
𝑀 [GeV]

𝜒𝑏0

𝐵1

𝐵0
𝑠1

𝜒𝑏1

1
F i g u r e C . 1 : Similar meson mass spectrum as in Fig. 4.9 but for the scalar and axialvector states

using the rainbow-ladder truncation together with the MT interaction.

C.2 Scalar and axialvector two-body spectrum

Herewe show themasses of the scalar and axialvector mesons. As can be seen from Fig. C.1
and Table C.1 the states obtained using the rainbow-latter truncation plus Maris-Tandy
interaction deviate greatly from their corresponding experimental counterparts [20]. This
is known to be the case for the MT interaction, see, e.g., [69]. The only exception are the
states involving a bottom quark. There the obtained numerical results match with the
experimental values.

In Fig. C.1 we show the obtained results for the scalar 𝑞 ̄𝑞′ = 𝑛 ̄𝑛, 𝑠 ̄𝑛 and 𝑠 ̄𝑠 mesons.
However, as the scalar states below 1 GeV are known to be of four-quark state nature [66,
248], we fix the meson masses for the states with the quark configurations mentioned
above to the masses of the scalar nonet above 1 GeV.



1 6 6 C M o r e o n B S E s

0++ 1++

PDG 𝑚RL Δ𝑚rel. PDG 𝑚RL Δ𝑚rel.

𝑛 ̄𝑛 𝑓0(1370) 1370 ‡ 𝑎1 898 27.0%
𝑠 ̄𝑛 𝐾∗

0(1430) 1425 ‡ 𝐾1 1110 11.4%
𝑠 ̄𝑠 𝑓0(1500) 1522 ‡ − 1248 −
𝑐 ̄𝑛 𝐷∗

0 2012 14.1% 𝐷1 2174 10.1%
𝑐 ̄𝑠 𝐷∗

𝑠0 2181 5.9% 𝐷𝑠1 2273 7.6%
𝑐 ̄𝑐 𝜒𝑐0 3142 8.0% 𝜒𝑐1 3154 8.3%
𝑏 ̄𝑛 − 5550 − 𝐵1 5802 1.3%
𝑏 ̄𝑠 − 5680 − 𝐵𝑠1 5909 1.4%
𝑏 ̄𝑐 − 6538 − − 6655 −
𝑏 ̄𝑏 𝜒𝑏0 9759 1.0% 𝜒𝑏1 9768 1.1%

T a b l e C . 1 : Quark-antiquark (𝑄 ̄𝑞) mesons with quantum numbers 𝐽𝑃𝐶 = {0++, 1++} are organized
according to their quark model classification. We present the experimental candidates identified
by [20], the masses 𝑚RL calculated using our rainbow-ladder approach, and the relative errors
of these values compared to those listed by the PDG (when the experimental state has been
identified). All masses are provided in MeV. ‡: The lightest scalar meson nonet, known to be
of four-quark nature [66, 248], is not considered as potential internal components. Instead, we
refer to the scalar nonet with masses above 1 GeV .
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𝑀

ΓR/2

F i g u r e C . 2 : Visualization of the complex energy plane spanned by themass 𝑀 and the decaywidth
ΓR on the 𝑥- and 𝑦-axis respectively. The green zone represents the physical or first Riemann
sheet and the red zone corresponds to an unphysical Riemann sheet where a resonance pole is
located. The cyan point represents the branch point and the cyan line is the branch cut which
connects the Riemann sheets.

C.3 Contour deformation and solution in the complex plane

Recall from Chapter 4, that the homogeneous Bethe-Salpeter equation is an eigenvalue
equation of the form

𝜆(𝑃2)Γ = 𝐾𝐺0 Γ , (C.4)

with Γ the Bethe-Salpeter amplitude, 𝐾 the interaction kernel, 𝐺0 denoting the product of
full quark propagators and 𝑃 the total hadron momentum. The solution of this equation is
obtained when the condition 𝜆 = 1 is fulfilled. Throughout this thesis, we obtained the
masses of hadrons by considering the hadron in its rest frame and choosing 𝑃𝜇 = 𝑖𝑀 ⋅ ̂𝑒𝜇

4 ,
with ̂𝑒𝜇

4 denoting the unit vector in Euclidean 4-direction. Using this, the condition 𝜆 = 1
is fulfilled, when 𝑃2 = −𝑀2 is at the mass 𝑀 of the hadron.

However, since most of the known hadrons are resonances and decay via the strong
interactions, they only have a (often very short) finite lifetime 𝜏. This can be expressed
in terms of the decay width ΓR = ℏ

𝜏 , which has units of energy. In scattering theory,
one usually identifies bound states, resonances and virtual states via the location of the
corresponding pole structure in the complex energy plane of the 𝑠-channel or 𝑠-plane. This
is spanned by the mass and the decay width as √𝑠 = 𝑀 − 𝑖ΓR/2. Bound states are stable
and hence are found as poles on the real √𝑠 axis on the first Riemann sheet below the
energies of any hadronic decay channels. The hadronic decay channels introduce branch
points, above which the energy plane splits into different Riemann sheets. Note, that
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only the first Riemann sheet is directly accessible from the physical region. The poles of
resonances are found above these branching points on the unphysical Riemann sheets. A
visualization of this is presented in Fig. C.2. For a more detailed discussion about this
topic, we refer the reader to [16] and the section “Resonances” in [20].

In principle, it is also possible to solve the homogeneous BSE in Eq. (C.4) for complex
values of 𝑃2 by choosing 𝑃𝜇 = (𝑖𝑀 − ΓR/2) ⋅ ̂𝑒𝜇

4 in analogy to the √𝑠 plane introduced
above. The solution of Eq. (C.4) is then obtained at the point where Re(𝜆(𝑃2)) = 1
and Im(𝜆(𝑃2)) = 0. The naive determination of eigenvalues is only possible in the first
Riemann sheet, after which one needs to use analytic continuation to go into the higher
Riemann sheets where the poles of the resonances are located. To utilize this, one needs
to calculate the eigenvalues above the thresholds of hadronic decay channels, which
introduce pole structures into the integration domain, see discussion around Fig. 5.2 for
a visualization of this. To directly calculate the eigenvalues, one needs to employ path
deformation techniques to ensure that these singularity structures are not hit.

A technique implementing the above to investigate the light scalar mesons using the
DSE/BSE framework has been developed and applied in the two-body approach to four-
quark states [79, 164]. In contrast to the approach presented in this work, which consists
of quarks interacting via gluon exchange, the two-body approach deals with meson and
diquark degrees of freedom interacting via quark exchange. Here, the two-body pole
structures appearing in the integration are of the form

𝑃𝑎 ⋅ 𝑃𝑎′ =
1

𝑏2 + 𝜂𝑧 + (𝜂𝑃)2 + 𝑚2
𝑎

⋅
1

𝑏2 − (1 − 𝜂)𝑧 + ((1 − 𝜂)𝑃)2 + 𝑚2
𝑎′

, (C.5)

with 𝑚𝑎 and 𝑚𝑎′ denoting the masses of the two particles 𝑎 and 𝑎′, 𝑏 is the relative (in-
tegration) momentum, 𝜂 is the corresponding momentum partitioning parameter and
𝑧 = ̂𝑏 ⋅ 𝑃̂. With 𝑃 and 𝜂 fixed, one needs to find a suitable path for the radial variable 𝑏2

which depends on 𝑧 such that the conditions

𝑏2 + 𝜂𝑧 + (𝜂𝑃)2 ≠ −𝑚2
𝑎 , (C.6)

𝑏2 − (1 − 𝜂)𝑧 + ((1 − 𝜂)𝑃)2 ≠ −𝑚2
𝑎′ (C.7)

are fulfilled. This can be done relatively straightforward and the first results presented
in [79] look very promising.

Using the four-body approach presented in this work, we also have the internal two-body
poles as given in Eq. (5.37). In contrast to the two-body approach, the phase space of the
four-body approach is more elaborate and therefore the expressions for the poles in the
denominator are more complex. They are mostly of the form

𝑃𝑎 ⋅ 𝑃𝑎′ =
1

𝑏2 + 𝑓𝑎(𝑆0, 𝑧, 𝑦, 𝛼) + 𝑚2
𝑎

⋅
1

𝑏2 + 𝑓𝑎′(𝑆0, 𝑧, 𝑦, 𝛼) + 𝑚2
𝑎′

, (C.8)

with functions 𝑓𝑎 and 𝑓𝑎′ depending on the singlet variable 𝑆0 and the three angles appearing
in Eq. (5.28). The 𝑦 and 𝛼 are printed in grey, as they do not appear in all pole structures.
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The appearance of the singlet 𝑆0 variable comes from considering the relative momenta in
the central limit, which is the modus operandi of this thesis.

Upon inserting the physical BSA in Eq. (5.41) into the diagrams in Fig. 5.1, one needs to
find a path deformation for each pole in Eq. (5.41) such that the conditions

𝑏2 + 𝑓𝑎(𝑆0, 𝑧, 𝑦, 𝛼) ≠ −𝑚2
𝑎 , (C.9)

𝑏2 + 𝑓𝑎′(𝑆0, 𝑧, 𝑦, 𝛼) ≠ −𝑚2
𝑎′ , (C.10)

are satisfied. In the best cases, the path deformation depends only on two variables (𝑆0, 𝑧),
in the worst cases on four variables (𝑆0, 𝑧, 𝑦, 𝛼). Inserting BSA elements of a specific
interaction topology into diagrams of that topology on the right-hand side of Fig. 5.1, the
poles get cancelled by the projectors, e.g., Eq. (5.46). Only when the interaction topology
of the BSA element and the diagram are different, the poles remain in the integration and
a path deformation is needed. Take the case of the 𝜎 meson: considering the BSA element
corresponding to 𝜋 − 𝜋 in one of the diquark-antidiquark topologies shown in Fig. 5.1 the
𝜋 − 𝜋 poles are not cancelled by the corresponding projectors.

What makes the path deformation particularly complicated is the dependence on the
external radial momentum variable 𝑆0. This introduces an additional dynamic, as the
path needs to change with the external energy scale 𝑆0. After trying for some time, we
managed to perform the path deformation only by setting 𝑆0 = 0 in the functions 𝑓𝑎 and 𝑓𝑎′.
This effectively removes the additional dynamic of the external variable. For the 𝜎 meson,
we observed the emergence of a branch cut in the eigenvalues above the 2𝑚𝜋 threshold,
which is expected. However, since we are in the central limit (see Fig. 5.2), setting 𝑆0 = 0
corresponds to setting the relative momenta between the internal clusters to zero, which is
a questionable approximation.

Due to the sheer complexity of the phase space and the enormous effort of finding a
dynamic path deformation in four variables, we decided not to pursue this endeavour fur-
ther in this thesis and relegate it to future work. There are interesting recent developments
considering path deformations in the DSE/BSE framework of up to three variables [244,
249, 250], which gives us hope that the above problemmight be feasible in the near future.

C.4 Attempt to access the internal spatial structure

Towards the end of the introduction in Section 6.2 we discussed that it is difficult to directly
access the spatial structure of the internal components of hadrons using the BSE formulated
in momentum space, as is the case for this work. From our mathematics lectures, we know
that we can use a Fourier transform to switch between momentum to position space.
Generally, for a QFT in four spacetime dimensions, the Fourier transform of a function
𝑔(𝐸, ⃗𝑝) reads

𝑔(𝑡, ⃗𝑥) = ∫ d4𝑝
(2𝜋)4 e𝑖(𝑝⃗⋅ ⃗𝑥−𝐸𝑡) 𝑔(𝐸, ⃗𝑝) , (C.11)
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with 𝐸 the energy, 𝑡 the time, ⃗𝑝 and ⃗𝑥 the momentum and position three-vectors. The
Fourier transform including the e−𝑖𝐸𝑡 factor transforms from energy to time, which is not
what we are after there. Therefore, we will neglect this integral and consider only the
three-dimensional Fourier transform

𝑔( ⃗𝑟) = ∫ d3𝑝
(2𝜋)3 e𝑖𝑝⃗⋅ ⃗𝑟 𝑔( ⃗𝑝) , (C.12)

where we have relabelled ⃗𝑥 to ⃗𝑟.
Upon solving a BSE, one obtains themass and the associated dressing functions 𝑓𝑗(𝑝2, … )

depending on a generic (squared) relative momentum 𝑝2 and some angles. The angular
dependence of the dressing functions is usually not overly strong and will therefore
be neglected. The idea is now, to use a Fourier transform with respect to the relative
momentum between two constituents, to obtain the spatial distance between them. Setting
𝑔( ⃗𝑝) = 𝑓𝑗(𝑝2) in Eq. (C.12) we have

𝑓𝑗(𝑟) =
1

(2𝜋)3 ∫
∞

0
d𝑝 𝑝2 ∫

1

−1
d𝑧 ̄𝑧∫

2𝜋

0
d𝜙 e𝑖𝑝𝑟𝑧 𝑓𝑗(𝑝2) , (C.13)

with 𝑧 the angle between ⃗𝑝 and ⃗𝑟 and ̄𝑧 = √1 − 𝑧2. Since we want the distance between
the constituents, we consider only the radius 𝑟 as an argument of the Fourier transformed
function 𝑓𝑗(𝑟). The last integral is trivial and evaluates to 2𝜋. With this Eq. (C.13) becomes

𝑓𝑗(𝑟) =
1

(2𝜋)2 ∫
∞

0
d𝑝 𝑝2 ∫

1

−1
d𝑧 ̄𝑧 e𝑖𝑝𝑟𝑧 𝑓𝑗(𝑝2) . (C.14)

The dressing functions do not depend on the angle 𝑧 and can be pulled out of the 𝑧-integral.
Evaluating this integral, the expression reads

𝑓𝑗(𝑟) =
1

(2𝜋)2 ∫
∞

0
d𝑝 𝑝2 2 sin (𝑝𝑟)

𝑝𝑟 𝑓𝑗(𝑝2) . (C.15)

Rearranging and cancelling some terms we have the final integral, which reads

𝑓𝑗(𝑟) =
1

(2𝜋)2 ∫
∞

0
d𝑝

sin (√𝑝𝑟)
𝑟 𝑓𝑗(𝑝) , (C.16)

where we have used the variable transformation 𝑝2 → 𝑝 such that the dressing function
depends linearly on the integration variable.1

Once the Fourier transformed function 𝑓𝑗(𝑟) is obtained, one can build the absolute
square |𝑓𝑗(𝑟)|2 = 𝑓 ∗

𝑗 (𝑟) ⋅ 𝑓𝑗(𝑟) where the star denotes complex conjugation. In analogy to
the radial distribution of an electron in an atom, one can think of |𝑓𝑗(𝑟)|2 as the radial

1To make the argument of the sinus dimensionless, one needs to transform the 𝑟, which has dimension
femtometre (fm) to GeV−1 by using the relation in Eq. (A.3), i.e., doing 𝑟′ = 5.068 ⋅ 𝑟.
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‘probability’ density for a certain component corresponding to the dressing function 𝑓𝑗.
Thus, one can extract the mean radial distance ⟨𝑟𝑚⟩ between the two components in a
subcluster 𝑗 via the formula

⟨𝑟𝑚⟩𝑗 =
∫d3𝑟 ⋅ |𝑓𝑗(𝑟)|2 ⋅ 𝑟𝑚

∫d3𝑟 |𝑓𝑗(𝑟)|2
, (C.17)

where the term in the denominator serves as a normalization such that we do not need to
normalize the dressing functions in the BSA. The 𝑚 is usually chosen 𝑚 = 1 or 𝑚 = 2. The
angular integrals are trivial and the remaining integral reads

⟨𝑟𝑚⟩𝑗 =
∫∞

0
d𝑟 𝑟2 ⋅ |𝑓𝑗(𝑟)|2 ⋅ 𝑟𝑚

∫∞

0
d𝑟 𝑟2|𝑓𝑗(𝑟)|2

. (C.18)

In our test calculations, we found that it is numerically advantageous to introduce a radial
cutoff function in the integral

ℎ(𝑟) =
⎧{
⎨{⎩

1 , for 𝑟 < 3 fm

e−100⋅𝑟 , for 𝑟 > 3 fm
(C.19)

This effectively cancels out numerical noise coming from the dressing functions at large
distances 𝑟.

To see whether the method described above yields plausible results, we consider the 𝑛 ̄𝑛,
𝑐 ̄𝑐 and 𝑏𝑏̄ pseudoscalar mesons as a test system. Applying the Fourier transform to the
(on-shell) dressing function 𝑓0(𝑝2), which corresponds to the leading tensor basis element,
i.e., 𝛾5, for pseudoscalar mesons and neglecting the angular dependence yields the radial
distributions shown in Fig. C.3. We see that going from 𝑛 ̄𝑛 to 𝑏𝑏̄, the peak wanders towards
smaller distances 𝑟 and the curve gets narrower and has a larger magnitude. We used
Eq. (C.17) to calculate the average distances ⟨𝑟⟩ (𝑚 = 1), the location of which are shown
by the vertical dotted lines in the respective colours. Also here, it is observed that for
increasing quark pair mass, the average distance decreases:

⟨𝑟⟩𝑛𝑛̄ = 0.356 fm , ⟨𝑟⟩𝑐 ̄𝑐 = 0.243 fm , ⟨𝑟⟩𝑏𝑏̄ = 0.147 fm , (C.20)

⟨𝑟2⟩
1/2
𝑛𝑛̄ = 0.394 fm , ⟨𝑟2⟩

1/2
𝑐 ̄𝑐 = 0.270 fm , ⟨𝑟2⟩

1/2
𝑏𝑏̄ = 0.171 fm . (C.21)

In the second line, we show the results for ⟨𝑟2⟩
1/2 (𝑚 = 2), which we do not show in Fig. C.3.

With the charge radius of the 𝜋 known to be ≈ 0.659(4) fm [20], the mean distance between
the 𝑛 ̄𝑛 is indeed a plausible result. It would be interesting to explore this idea further in
the future.

When we want to investigate the radial distance between the internal clusters of a
four-quark state, we need to identify the relative momenta needed to apply the Fourier
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1F i g u r e C . 3 : Radial distribution of the quark-antiquark pair in a 𝑛 ̄𝑛 (blue, solid), 𝑐 ̄𝑐 (orange, dashed)
and 𝑏 ̄𝑏 (green, dash-dotted) pseudoscalar meson. The vertical line represents the location of ⟨𝑟⟩
for the different mesons.

transform. Remember that, becausewe consider everything in the central limit, the dressing
functions depend only on the singlet 𝑆0. Since 𝑆0 = (𝑘2 + 𝑞2 + 𝑝2)/4 (see Eq. (5.29)),
the relative momenta can be expressed in terms of the singlet in the central limit as
𝑘2 = 𝑞2 = 𝑝2 = 4𝑆0/3. Thus, one would need to make the Fourier transform in Eq. (C.16)
with respect to 𝑝2 = 4𝑆0/3. We need to mention a caveat here. To make statements about
the distance between the internal components, one has to consider the dressing functions at
the physical point for a given hadron. This fact makes it difficult to investigate the distances
between the internal clusters for four-quark states where the mass is not directly obtainable
but relies on extrapolation and the extraction from the QMECs (cf. Appendix C.6). Of
course, one could also calculate the radial distance for every eigenvalue in the eigenvalue
curve and use extrapolation to get the values at the physical point. It is very difficult to
gauge the accuracy of the obtained results for the mean distance at the present moment,
which is why we relegated the further investigation of this matter to future studies.

C.5 Extrapolation and error analysis

In this section we want to systematically introduce the extrapolation procedure and error
analysis for the eigenvalue curves of the four-quark states investigated in this thesis. The
eigenvalues 𝜆(𝑃2) of a given four-quark state can be calculated directly, up to a certain
value of 𝑃2

max = −𝑀2
max. In Section 5.2 we saw that above this threshold value, certain

singularity structures from the internal two-body poles or the quark poles enter into the
integration domain and obstruct the direct calculation. In those cases, the condition for
the eigenvalue 𝜆(𝑃2 = −𝑀2) = 1 cannot be reached directly. The first option is to resort to
contour deformation techniques as done in [79, 251], to circumvent the poles and directly
calculate the eigenvalues. However, as shown in Appendix C.3, the contour deformation
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needed in the case of the four-body FYE investigated in this thesis is a little more involved
because of the complicated phase space. We therefore resorted to the second option, which
is calculating the eigenvalue curve (EVC) up to the maximal mass 𝑀2

max and extrapolate
to the point where 𝜆(𝑃2 = −𝑀2) = 1 is fulfilled.

In the past, it has been customary in the functional DSE/BSE framework to use quadratic
or cubic polynomials or the Schlessinger-Point-Method (SPM) [179] for extrapolating the
eigenvalue curves. The error for the resulting masses was usually given by the estimate for
the systematic error of our model MT interaction. This in turn is achieved, by calculating
and extrapolating the eigenvalue curve for a varying 𝜂MT parameter in a range of {1.6, 2.0}.
The four-quark states turn out to be remarkably stable under this variation [74, 78], which
is why we neglect this estimate of the systematic error. We will, however, take into account
the error coming from the extrapolation. This is important, as the extrapolation range can
at times be quite large.

To achieve this, we employ an extrapolation procedure based on the SPM, which works
as follows. Having calculated a set of 𝑁 eigenvalues ℰ𝑁 = {𝜆𝑟(𝑃2)}

𝑁

𝑟=1
, up to the threshold

𝑃2
max, we use a polynomial 𝑝𝑛(𝑃2) of degree 𝑛 to extrapolate the full EVC, involving all 𝑁

eigenvalues, to the value where 𝜆(𝑃2 = −𝑀2) = 1 is fulfilled. For the actual extrapolation,
we use the tuple (𝑀𝑟, 𝜆𝑟), with 𝑟 = 1, 2, … , 𝑁 and 𝜆𝑟 = 𝜆( − 𝑀2

𝑟 ). Thereby, we obtain
a first mass estimate 𝑀base in the region where the mass of the investigated four-quark
state is located. In principle one can test out different orders of polynomials and find
which fits the EVC best. We found, that in most cases a cubic polynomial is sufficient,
with higher orders not changing much. The quadratic polynomial, however, often does
not agree well with the EVC and overshoots the relevant mass region significantly. The
reason we use a polynomial to obtain the first mass estimate, instead of directly using
the SPM, is because the SPM is known to at times produce spurious singularities, which
would result in an unreasonably low first mass estimate. A pedagogical description of
this behaviour and other features of the SPM is given in Appendix D of [164]. Using
a polynomial is simply more stable and provides a more reliable first estimate. After
determining the 𝑀base, we choose a 5% (error) region around this mass and use the SPM
to extrapolate the eigenvalues in ℰ𝑁 again. When using the SPM to extrapolate, it is actually
advantageous to transform our input tuple (𝑀𝑟, 𝜆𝑟) into (𝑀𝑟,

1
1−𝜆𝑟

) and search for the
solution by looking for poles in the error region. We then repeat this extrapolation/pole
search about 300 times and add each of the obtained values, which is located within the
error region, to a set ℬ𝑁. After that, we choose a random subset of eigenvalues ℰ𝑚 ⊂ ℰ𝑁,
where 𝑚 ∈ {𝑁 − 1, 𝑁 − 2, 𝑁 − 3, 𝑁 − 4, 𝑁 − 5, 𝑁 − 6} and repeat the same pole search as
before. We repeat this about 300 times for each 𝑚 and put every accepted mass, i.e., the
values within the chosen error region, into a set ℬ𝑚 respectively. At the end of this, we
have seven sets, ℬ𝑁, ℬ𝑁−1, … , ℬ𝑁−6 containing about 300 mass values (depending on
how many got accepted).

In Fig. C.4, we show example EVCs with their respective cubic fits in green. The his-
tograms are the masses from the sets ℬ𝑁, ℬ𝑁−1, … , ℬ𝑁−6 obtained by the SPM. One
can distinguish two cases here: one where the mass values obtained by the SPM agree
very nicely with the base estimate from the polynomial extrapolation (shown on the left),
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F i g u r e C . 4 : Example eigenvalue curves with cubic fits and the obtained base mass estimate 𝑀base.

The histogram show the values in the sets ℬ𝑚 obtained by the SPM. On the left, we show the
case where the masses from the SPM are in good agreement with the base estimate. On the right,
we display the case, where the masses obtained from the SPM differ from the cubic fit.

and one where the polynomial fit does not fit the EVC perfectly and therefore yields an
inaccurate base estimate (see right panel in Fig. C.4). In cases, where the extrapolation
range in 𝑀 is very large, one can up the error range to 10% around the 𝑀base. One just
needs to be careful not to make the error range too big, because of the spurious singularities
of the SPM, which would then also get accepted as valid mass values.

In order to obtain the masses and corresponding error coming from the extrapolation,
we first determine the arithmetic mean (𝑀) and standard deviation (𝜎) of the masses in
each of the obtained sets ℬ𝑚 and add them to the sets 𝒜 and 𝒮, i.e.,

𝒜 ∶= {𝑀ℬ𝑚
∣ 𝑚 = 𝑁, 𝑁 − 1, … , 𝑁 − 6} , (C.22)

𝒮 ∶= {𝜎ℬ𝑚
∣ 𝑚 = 𝑁, 𝑁 − 1, … , 𝑁 − 6} . (C.23)

After that, we take the average of the values in the sets 𝒜 and 𝒮 to get the final mass plus
error respectively: 𝑀 ± Δ 𝑀. These masses then serve as an input for the quark mass
evolution curves of the four-quark states compiled in Appendix C.6.

C.6 Four-quark state QMECs

Wehave alreadymentioned in Section 4.3.1, that the investigation of the current-quarkmass
evolution curve (QMEC) is crucial especially for the extraction of the heavy-light meson
systems at physical 𝑢/𝑑-quark masses. In the following, we will show the QMECs for the
ground and first radial excited four-quark states investigated in this thesis using only the
attractive colour channels (black crosses) and the attractive plus repulsive colour channels
(green dots). The masses and error (𝑀 + Δ𝑀) going into the QMEC are obtained via the
extrapolation scheme described in Appendix C.5. Additionally, we plot the behaviour of
the two-body thresholds with varying current-quark mass. The closer the mass of the
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four-quark state gets to the threshold, the more the state is affected by the poles of this
threshold. In most cases this results in a strong upwards bending of the QMEC when
approaching or crossing the threshold. Having identified the data points in the QMEC not
affected by thresholds, we then apply a fit of the form Eq. (4.56), or more fits with varying
degree in the polynomial if the fit range is large. The data points not taken into account by
the fits are shown in opaque in the following plots. The final masses plotted in the spectra
in Section 6.1 and stated in Appendix C.7 are then obtained from the fit function at the
corresponding current-quark mass. The error is a combination of the error coming from
the extrapolation and an error coming from the fits, i.e., Δ𝑀 = Δ𝑀fits + Δ𝑀extrap..

C.6.1 Hidden-flavour QMECs

In this section, we show the calculated QMECs used to extract the masses for the ground
and excited states shown in Figs. 6.1 and 6.2. We always show the QMECs for the ground
state in the top row and for the first radial excited state in the bottom row.

In Fig. C.5, we see that the inclusion of the repulsive colour channels has a huge effect on
the QMECs for the 0(1++) channel, increasing the masses especially for 𝑚𝑞 > 350 MeV for
both the 𝑐𝑞 ̄𝑞 ̄𝑐 and 𝑏𝑞 ̄𝑞 ̄𝑏 systems. This results in the QMECs for the attractive plus repulsive
colour channels (green dots) to be closer to the lowest two-body threshold and steeper. It
also leads to the threshold coming into effect earlier than for the attractive only QMECs.

For the QMECs in the 1(1+−) and 0(1−−) channels, the effect of the repulsive colour
channels is not that big, as can be seen from the corresponding QMECs in Figs. C.6 and C.8.

For the 0(0++) channel, we observe a significant increase in mass of the QMECs in
Fig. C.7 when including the repulsive colour forces in the physical BSA.

The 0(0−+) channel, the QMECs for the attractive only and the full physical BSA show
no deviation for 𝑚𝑞 → 𝑚𝑏 and start to deviate around 𝑚𝑞 ≈ 𝑚𝑐, going to a much higher
mass for the 𝑐𝑛 ̄𝑛 ̄𝑐 and 𝑏𝑛 ̄𝑛 ̄𝑏 states in the case of attractive + repulsive colour forces.

Generally, we observe a similar behaviour of the QMECs for the ground and first excited
states for the different channels upon the inclusion of the repulsive colour forces.
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F i g u r e C . 5 : Quark mass evolution curve for the 0(1++) ground and excited states for the hidden-

charm (left panel) and hidden-bottom (right panel) quark configuration. The black crosses denote
the results with only attractive colour forces, the green dots are the results with attractive plus
repulsive colour channels. The grey and green bands are the respective fits to the data, with the
opaque data not taken into account into the fit. Additionally, we show the quark mass evolution
of the relevant two-body thresholds.
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F i g u r e C . 6 : Same as in Fig. C.5 but for the hidden-charm and hidden-bottom ground states in the

1(1+−) channel.



1 7 8 C M o r e o n B S E s

0 1 2 3
𝑚𝑞 [GeV]

2.5

5.0

7.5

10.0

12.5

𝑀 [GeV]
𝑛𝑠 𝑐 𝑏

𝑐𝑞 ̄𝑞 ̄𝑐 att
fit att

𝐷 + 𝐷̄
𝐽/𝜓 + 𝜔

𝑐𝑞 ̄𝑞 ̄𝑐 att+rep
fit att+rep

𝑆𝑐𝑞 + 𝑆 ̄𝑞 ̄𝑐

0(0++) ground state

1

0 1 2 3
𝑚𝑞 [GeV]

10

15

20

𝑀 [GeV]
𝑛𝑠 𝑐 𝑏

𝑏𝑞 ̄𝑞𝑏̄ att
fit att

𝐵̄ + 𝐵
Υ + 𝜔

𝑏𝑞 ̄𝑞𝑏̄ att+rep
fit att+rep

𝑆𝑏𝑞 + 𝑆 ̄𝑞 ̄𝑏

0(0++) ground state

1

0 1 2 3
𝑚𝑞 [GeV]

2.5

5.0

7.5

10.0

12.5

𝑀 [GeV]
𝑛𝑠 𝑐 𝑏

𝑐𝑞 ̄𝑞 ̄𝑐 att
fit att

𝐷 + 𝐷̄
𝐽/𝜓 + 𝜔

𝑐𝑞 ̄𝑞 ̄𝑐 att+rep
fit att+rep

𝑆𝑐𝑞 + 𝑆 ̄𝑞 ̄𝑐

0(0++) excited state

1

0 1 2 3
𝑚𝑞 [GeV]

10

15

20

𝑀 [GeV]
𝑛𝑠 𝑐 𝑏

𝑏𝑞 ̄𝑞𝑏̄ att
fit att

𝐵̄ + 𝐵
Υ + 𝜔

𝑏𝑞 ̄𝑞𝑏̄ att+rep
fit att+rep

𝑆𝑏𝑞 + 𝑆 ̄𝑞 ̄𝑏

0(0++) excited state

1
F i g u r e C . 7 : Same as in Fig. C.5 but for the ground states in the 0(0++) channel.
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F i g u r e C . 8 : Same as in Fig. C.5 but for the ground states in the 0(1−−) channel.
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F i g u r e C . 9 : Same as in Fig. C.5 but for the ground states in the 0(0−+) channel.
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C.6.2 Open-flavour QMECs

In this section, we display the QMECs for the open-flavour four-quark states investigated
in this work. These were used to extract the masses (and binding energies) shown in
Figs. 6.3 and 6.6 with the associated numerical values given in Tables C.4 and C.6 to C.8.

As discussed in the main text, we see that for the open-charm (𝑐𝑐 ̄𝑞 ̄𝑞)and open-bottom
(𝑏𝑏 ̄𝑞 ̄𝑞) ground states in the 0(1+) channel, the inclusion of the repulsive channels yields a
significant increase in the four-quark state masses, cf. Fig. C.10. The masses are closer to
the threshold and the QMECs are more linear in nature, which also changes the behaviour
when going to 𝑚𝑞 → 𝑚𝑢/𝑑. The same is also observed for the open-bottom-charm (𝑏𝑐 ̄𝑞 ̄𝑞)
ground state.

For the isospin partner channel, the 1(1+), we do not observe this behaviour at least for
the ground states with 𝑏𝑏 ̄𝑞 ̄𝑞 and 𝑐𝑐 ̄𝑞 ̄𝑞 quark configurations. The 𝑏𝑐 ̄𝑞 ̄𝑞 ground states exhibit
also a very strong increase in mass upon inclusion of the repulsive colour forces.

For the corresponding excited states, we find a very similar picture. For the 𝑏𝑏 ̄𝑞 ̄𝑞 excited
statewith quantumnumbers 1(1+) (bottom right in Fig. C.11), we observe that for𝑚𝑞 → 𝑚𝑏
the QMEC shows some strange behaviour for the attractive only case. This is due to the
appearance of complex conjugate eigenvalues, which thwart a precise determination of the
mass via the extrapolation method (cf. Appendix C.5) and results in a large extrapolation
error. This situation improves drastically when we include the repulsive channels, yielding
a QMEC with linear behaviour over the whole current-quark mass span.
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1
F i g u r e C . 1 0 : Quark mass evolution curve for the 0(1+) ground and excited states for the open-

charm (left panel) and open-bottom (right panel) quark configuration. The black crosses denote
the results with only attractive colour forces, the green dots are the results with attractive plus
repulsive colour channels. The grey and green bands are the respective fits to the data, with the
opaque data not taken into account into the fit. Additionally, we show the quark mass evolution
of the relevant two-body thresholds.
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F i g u r e C . 1 1 : Same as in Fig. C.10 but for the 1(1+) channel .
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F i g u r e C . 1 2 : Same as in Fig. C.10 but for the open-bottom-charm 𝑏𝑐 ̄𝑞 ̄𝑞 states in the 0(1+) (left) and

1(1+) (right) channel .
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F i g u r e C . 1 3 : Same as in Fig. C.10 but for the open-bottom-strange 𝑏𝑏 ̄𝑞 ̄𝑠 ground (left) and excited

states (right) .
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F i g u r e C . 1 4 : Same as in Fig. C.10 but for the 𝐽𝑃 = 0+ channel.
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F i g u r e C . 1 5 : Same as in Fig. C.14 but for the open-bottom-charm 𝑏𝑐 ̄𝑞 ̄𝑞 ground (left) and excited

states (right) .
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C.7 Four-quark masses and binding energies

In this section, we compile the numerical values for the mass spectra of the hidden- and
open-flavour four-quark states shown and discussed in Section 6.1. These values are
obtained from the QMECs shown in Appendix C.6. Additionally, we give the values for
the binding energies (𝐸𝐵) with respect to the lowest heavy-light meson-meson threshold
for the corresponding channels.

C.7.1 Hidden-flavour masses and binding energies

In Table C.2 we state the numerical values for the masses and binding energies (plus the
obtained error) for the hidden-flavour ground states shown in Figs. 6.1 and 6.2. Corre-
spondingly, in Table C.3 we state the values for the associated first radial excited states

0(0−+) 0(1−−) 0(0++) 1(1+−) 0(1++)

𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵

𝑐𝑛 ̄𝑛 ̄𝑐 3.37(0) −0.81(0) 4.27(2) 0.23(2) 3.41(1) −0.31(1) 3.94(2) 0.07(2) 3.89(4) 0.02(4)

𝑐𝑛 ̄𝑛 ̄𝑐 3.96(22) −0.23(22) 4.28(1) 0.25(1) 3.60(7) −0.12(7) 3.94(6) 0.07(6) 3.91(3) 0.04(3)

𝑐𝑠 ̄𝑠 ̄𝑐 3.68(0) −0.71(0) 4.33(2) 0.12(2) 3.47(1) −0.40(1) 3.99(2) −0.07(2) 3.98(4) −0.08(4)

𝑐𝑠 ̄𝑠 ̄𝑐 4.14(15) −0.25(15) 4.39(1) 0.18(1) 3.68(3) −0.19(3) 4.07(4) 0.01(4) 4.18(7) 0.12(7)

𝑏𝑛 ̄𝑛𝑏̄ 9.93(19) −1.24(19) 11.00(5) −0.11(5) 9.77(2) −0.85(2) 10.40(1) −0.28(1) 10.52(6) −0.17(6)

𝑏𝑛 ̄𝑛𝑏̄ 11.01(35) −0.17(35) 10.91(12) −0.20(12) 9.95(6) −0.67(6) 10.66(6) −0.03(6) 10.34(15) −0.34(15)

𝑏𝑠 ̄𝑠 ̄𝑏 10.13(16) −1.27(16) 11.03(5) −0.30(5) 9.80(2) −1.05(2) 10.42(1) −0.49(1) 10.55(6) −0.36(6)

𝑏𝑠 ̄𝑠 ̄𝑏 11.07(25) −0.33(25) 10.98(9) −0.35(9) 10.00(3) −0.85(3) 10.67(5) −0.24(5) 10.54(13) −0.37(13)

𝑏𝑐 ̄𝑐 ̄𝑏 11.61(3) −1.35(3) 11.89(3) −1.00(3) 10.72(2) −1.74(2) 11.13(0) −1.41(0) 11.45(2) −1.08(2)

𝑏𝑐 ̄𝑐 ̄𝑏 11.78(1) −1.17(1) 11.97(0) −0.92(0) 11.01(0) −1.45(0) 11.37(1) −1.16(1) 12.13(6) −0.41(6)

T a b l e C . 2 : Masses for the hidden-charm (𝑐𝑞 ̄𝑞 ̄𝑐) and hidden-bottom (𝑏𝑞 ̄𝑞𝑏̄) ground states in GeV.
Additionally, we display the obtained binding energies 𝐸𝐵 with respect to the lightest heavy-light
meson-meson thresholds (masses obtained by the two-body BSE). The error in the brackets is a
combination of extrapolation error of the EVCs and the error coming from the fit of the QMECs.
The colourless rows denote the values obtained by using only the attractive colour channels
while the rows highlighted in green display the values obtained for the attractive plus repulsive
colour channels. Resonant particles found above threshold haver their “binding energy” shown
in grey.
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0(0−+) 0(1−−) 0(0++) 1(1+−) 0(1++)

𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵

𝑐𝑛 ̄𝑛 ̄𝑐 3.69(0) −0.50(0) 4.64(4) 0.60(4) 3.89(2) 0.17(2) 4.36(4) 0.49(4) 4.19(3) 0.32(3)

𝑐𝑛 ̄𝑛 ̄𝑐 4.35(6) 0.17(6) 4.52(7) 0.48(7) 3.85(10) 0.13(10) 4.30(12) 0.43(12) 4.26(3) 0.39(3)

𝑐𝑠 ̄𝑠 ̄𝑐 4.00(1) −0.40(1) 4.71(3) 0.50(3) 3.95(2) 0.08(2) 4.42(4) 0.36(4) 4.26(3) 0.20(3)

𝑐𝑠 ̄𝑠 ̄𝑐 4.52(6) 0.12(6) 4.69(6) 0.48(6) 4.00(9) 0.12(9) 4.46(10) 0.40(10) 4.51(4) 0.45(4)

𝑏𝑛 ̄𝑛 ̄𝑏 10.09(3) −1.09(3) 11.71(8) 0.60(8) 10.38(2) −0.24(2) 10.97(5) 0.29(5) 11.27(9) 0.58(9)

𝑏𝑛 ̄𝑛𝑏̄ 11.22(13) 0.05(13) 11.55(17) 0.44(17) 10.56(9) −0.06(9) 10.99(18) 0.31(18) 10.84(9) 0.16(9)

𝑏𝑠 ̄𝑠𝑏̄ 10.30(4) −1.09(4) 11.73(7) 0.40(7) 10.41(2) −0.44(2) 11.02(5) 0.11(5) 11.30(9) 0.39(9)

𝑏𝑠 ̄𝑠 ̄𝑏 11.35(12) −0.05(12) 11.60(14) 0.27(14) 10.61(6) −0.24(6) 11.10(14) 0.18(14) 11.00(7) 0.09(7)

𝑏𝑐 ̄𝑐 ̄𝑏 12.00(11) −0.96(11) 12.46(6) −0.43(6) 11.26(2) −1.21(2) 11.78(1) −0.75(1) 12.06(5) −0.48(5)

𝑏𝑐 ̄𝑐 ̄𝑏 12.44(4) −0.51(4) 12.51(3) −0.38(3) 11.56(0) −0.91(0) 12.05(1) −0.48(1) 12.53(7) −0.00(7)

T a b l e C . 3 : Same as in Table C.2 but for the first radial excited states.

C.7.2 Open-flavour masses and binding energies

Similar to above, we compiled the masses and binding energies corresponding to the
𝐽𝑃 = 1+ open-flavour ground and excited states shown in Fig. 6.3 in Tables C.4 and C.6.
Correspondingly, the masses and binding energies of the investigated 𝐽𝑃 = 0+ ground and
excited states (shown in Fig. 6.6) are compiled in Tables C.7 and C.8. We show the masses
and binding energy for the 1/2(1+) 𝑏𝑏 ̄𝑞 ̄𝑠 state in Table C.5.
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𝑄𝑄 ̄𝑞 ̄𝑞 𝑄𝑄′ ̄𝑞 ̄𝑞

0(1+) 1(1+) 0(1+) 1(1+)

𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵

𝑐𝑐 ̄𝑛 ̄𝑛 3.78(5) −0.09(5) 4.25(3) 0.38(3) 𝑏𝑐 ̄𝑛 ̄𝑛 6.61(4) −0.63(4) 6.65(2) −0.58(2)

𝑐𝑐 ̄𝑛 ̄𝑛 3.89(5) 0.02(5) 4.03(12) 0.16(12) 𝑏𝑐 ̄𝑛 ̄𝑛 7.24(3) 0.00(3) 7.45(5) 0.22(5)

𝑐𝑐 ̄𝑠 ̄𝑠 4.45(2) 0.39(2) − − 𝑏𝑐 ̄𝑠 ̄𝑠 6.77(2) −0.65(2) − −

𝑐𝑐 ̄𝑠 ̄𝑠 4.23(10) 0.17(10) − − 𝑏𝑐 ̄𝑠 ̄𝑠 7.61(5) 0.19(5) − −

𝑏𝑏 ̄𝑛 ̄𝑛 10.14(4) −0.54(4) 10.90(25) 0.21(25) 𝑏𝑐 ̄𝑐 ̄𝑐 8.04(0) −1.07(0) − −

𝑏𝑏 ̄𝑛 ̄𝑛 10.57(4) −0.11(4) 10.71(11) 0.03(11) 𝑏𝑐 ̄𝑐 ̄𝑐 9.02(1) −0.09(1) − −

𝑏𝑏 ̄𝑠 ̄𝑠 10.96(20) 0.05(20) − − 𝑏𝑐𝑏̄ ̄𝑏 14.01(1) −1.72(1) − −

𝑏𝑏 ̄𝑠 ̄𝑠 10.83(10) −0.08(10) − − 𝑏𝑐𝑏̄ ̄𝑏 14.86(1) −0.88(1) − −

𝑏𝑏 ̄𝑐 ̄𝑐 12.35(13) −0.19(13) − −

𝑏𝑏 ̄𝑐 ̄𝑐 12.20(9) −0.33(9) − −

T a b l e C . 4 : Ground state masses for the 𝐽𝑃 = 1+ open-charm (𝑐𝑐 ̄𝑞 ̄𝑞) and open-bottom (𝑏𝑏 ̄𝑞 ̄𝑞) states
(left) and the open-bottom-charm (𝑏𝑐 ̄𝑞 ̄𝑞) states (right) in GeV. For completeness we also display
the binding energies 𝐸𝐵 with respect to the lightest (calculated) heavy-light meson-meson
threshold in each channel ((𝑄 ̄𝑞)1− ⊗ (𝑄′ ̄𝑞)0− for 𝑄𝑄′ ̄𝑞 ̄𝑞); the “binding energies” for resonant
particles above the threshold are shown in grey. The colourless rows denote the values obtained
by using only the attractive colour channels while the rows highlighted in green display the
values obtained for the attractive plus repulsive colour channels. The error given in the brackets
is the combination of the extrapolation error and the error of the fit to the quark mass evolution
curve. Table adapted from [190].

1
2(1+) ground 1

2(1+) excited

𝑀 𝐸𝐵 𝑀 𝐸𝐵

𝑏𝑏 ̄𝑛 ̄𝑠 9.89(2) −0.91(2) 10.51(3) −0.29(3)

𝑏𝑏 ̄𝑛 ̄𝑠 10.68(5) −0.12(5) 11.01(9) 0.22(9)

𝑏𝑏 ̄𝑐 ̄𝑠 10.30(1) −1.42(1) 10.81(1) −0.91(1)

𝑏𝑏 ̄𝑐 ̄𝑠 11.05(5) −0.67(5) 11.31(2) −0.41(2)

𝑏𝑏𝑏̄ ̄𝑠 13.07(7) −1.84(7) 13.56(11) −1.35(11)

𝑏𝑏𝑏̄ ̄𝑠 13.78(4) −1.13(4) 14.30(15) −0.61(15)

T a b l e C . 5 : Masses and binding energies of the 𝑏𝑏 ̄𝑞 ̄𝑠 ground (left) and first excited state (right).
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𝑄𝑄 ̄𝑞 ̄𝑞 𝑄𝑄′ ̄𝑞 ̄𝑞

0(1+) 1(1+) 0(1+) 1(1+)

𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵

𝑐𝑐 ̄𝑛 ̄𝑛 4.25(9) 0.37(9) 4.87(4) 0.99(4) 𝑏𝑐 ̄𝑛 ̄𝑛 7.02(2) −0.22(2) 7.18(2) −0.06(2)

𝑐𝑐 ̄𝑛 ̄𝑛 4.43(3) 0.56(3) 4.41(9) 0.54(9) 𝑏𝑐 ̄𝑛 ̄𝑛 7.38(3) 0.15(3) 7.52(8) 0.29(8)

𝑐𝑐 ̄𝑠 ̄𝑠 5.04(3) 0.97(3) − − 𝑏𝑐 ̄𝑠 ̄𝑠 7.32(2) −0.10(2) − −

𝑐𝑐 ̄𝑠 ̄𝑠 4.61(8) 0.55(8) − − 𝑏𝑐 ̄𝑠 ̄𝑠 7.68(8) 0.26(8) − −

𝑏𝑏 ̄𝑛 ̄𝑛 10.84(3) 0.15(3) 11.84(27) 1.16(27) 𝑏𝑐 ̄𝑐 ̄𝑐 8.64(1) −0.46(1) − −

𝑏𝑏 ̄𝑛 ̄𝑛 10.92(15) 0.24(15) 11.27(10) 0.58(10) 𝑏𝑐 ̄𝑐 ̄𝑐 9.09(6) −0.01(6) − −

𝑏𝑏 ̄𝑠 ̄𝑠 11.85(25) 0.94(25) − − 𝑏𝑐𝑏̄𝑏̄ 14.53(1) −1.20(1) − −

𝑏𝑏 ̄𝑠 ̄𝑠 11.40(8) 0.49(8) − − 𝑏𝑐𝑏̄𝑏̄ 14.94(0) −0.79(0) − −

𝑏𝑏 ̄𝑐 ̄𝑐 12.93(15) 0.40(15) − −

𝑏𝑏 ̄𝑐 ̄𝑐 12.77(7) 0.23(7) − −

T a b l e C . 6 : Same as in Table C.4 but for the first radial excited states.



C . 7 F o u r - q u a r k m a s s e s a n d b i n d i n g e n e r g i e s 1 9 1

𝑄𝑄 ̄𝑞 ̄𝑞 𝑄𝑄′ ̄𝑞 ̄𝑞

0(0+) 1(0+) 0(0+) 1(0+)

𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵

𝑐𝑐 ̄𝑛 ̄𝑛 − − 3.39(4) −0.33(4) 𝑏𝑐 ̄𝑛 ̄𝑛 − − 6.52(5) −0.65(5)

𝑐𝑐 ̄𝑛 ̄𝑛 − − 3.47(0) −0.26(0) 𝑏𝑐 ̄𝑛 ̄𝑛 − − 6.53(2) −0.64(8)

𝑐𝑐 ̄𝑛 ̄𝑛 − − 3.73(4) 0.00(4) 𝑏𝑐 ̄𝑛 ̄𝑛 − − 7.07(2) −0.10(2)

𝑐𝑐 ̄𝑠 ̄𝑠 3.45(2) −0.42(2) − − 𝑏𝑐 ̄𝑠 ̄𝑠 6.57(2) −0.79(2) − −

𝑐𝑐 ̄𝑠 ̄𝑠 3.53(0) −0.34(0) − − 𝑏𝑐 ̄𝑠 ̄𝑠 6.58(2) −0.78(658) − −

𝑐𝑐 ̄𝑠 ̄𝑠 3.81(3) −0.06(3) − − 𝑏𝑐 ̄𝑠 ̄𝑠 7.13(2) −0.23(2) − −

𝑏𝑏 ̄𝑛 ̄𝑛 − − 9.60(7) −1.02(7) 𝑏𝑐 ̄𝑐 ̄𝑐 7.71(2) −1.33(2) − −

𝑏𝑏 ̄𝑛 ̄𝑛 − − 9.86(3) −0.76(3) 𝑏𝑐 ̄𝑐 ̄𝑐 7.72(3) −1.31(2) − −

𝑏𝑏 ̄𝑛 ̄𝑛 − − 10.56(13) −0.06(13) 𝑏𝑐 ̄𝑐 ̄𝑐 8.26(0) −0.77(0) − −

𝑏𝑏 ̄𝑠 ̄𝑠 9.65(4) −1.20(4) − − 𝑏𝑐 ̄𝑏𝑏̄ 13.61(1) −2.04(1) − −

𝑏𝑏 ̄𝑠 ̄𝑠 9.89(3) −0.96(3) − − 𝑏𝑐 ̄𝑏𝑏̄ 13.63(7) −2.02(733) − −

𝑏𝑏 ̄𝑠 ̄𝑠 10.61(13) −0.24(13) − − 𝑏𝑐 ̄𝑏𝑏̄ 14.51(5) −1.15(5) − −

𝑏𝑏 ̄𝑐 ̄𝑐 10.69(0) −1.77(0) − −

𝑏𝑏 ̄𝑐 ̄𝑐 10.84(7) −1.63(7) − −

𝑏𝑏 ̄𝑐 ̄𝑐 11.66(13) −0.80(13) − −

T a b l e C . 7 : Same as in Table C.4 but for the 𝐽𝑃 = 0+ states. The white rows are the masses obtained
with using only the attractive colour forces, the red highlighted rows are obtained by using
the full attractive plus repulsive component basis in Table 5.4. The green rows are the masses
obtained by using the ‘reduced’ physical component basis, see Section 6.1.2 for details.
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𝑄𝑄 ̄𝑞 ̄𝑞 𝑄𝑄′ ̄𝑞 ̄𝑞

0(0+) 1(0+) 0(0+) 1(0+)

𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵 𝑀 𝐸𝐵

𝑐𝑐 ̄𝑛 ̄𝑛 − − 3.92(7) 0.20(7) 𝑏𝑐 ̄𝑛 ̄𝑛 − − 7.09(8) −0.08(8)

𝑐𝑐 ̄𝑛 ̄𝑛 − − 3.95(2) 0.23(2) 𝑏𝑐 ̄𝑛 ̄𝑛 − − 7.18(0) 0.01(8)

𝑐𝑐 ̄𝑛 ̄𝑛 − − 4.19(3) 0.47(3) 𝑏𝑐 ̄𝑛 ̄𝑛 − − 7.47(1) 0.30(1)

𝑐𝑐 ̄𝑠 ̄𝑠 3.99(3) 0.11(3) − − 𝑏𝑐 ̄𝑠 ̄𝑠 7.15(5) −0.21(5) − −

𝑐𝑐 ̄𝑠 ̄𝑠 4.01(2) 0.14(2) − − 𝑏𝑐 ̄𝑠 ̄𝑠 7.22(0) −0.14(722) − −

𝑐𝑐 ̄𝑠 ̄𝑠 4.28(3) 0.40(3) − − 𝑏𝑐 ̄𝑠 ̄𝑠 7.54(1) 0.18(1) − −

𝑏𝑏 ̄𝑛 ̄𝑛 − − 10.26(6) −0.36(6) 𝑏𝑐 ̄𝑐 ̄𝑐 8.27(2) −0.77(2) − −

𝑏𝑏 ̄𝑛 ̄𝑛 − − 10.50(1) −0.11(1) 𝑏𝑐 ̄𝑐 ̄𝑐 8.28(1) −0.76(0) − −

𝑏𝑏 ̄𝑛 ̄𝑛 − − 11.06(1) 0.45(1) 𝑏𝑐 ̄𝑐 ̄𝑐 8.75(1) −0.28(1) − −

𝑏𝑏 ̄𝑠 ̄𝑠 10.30(3) −0.55(3) − − 𝑏𝑐 ̄𝑏𝑏̄ 14.16(1) −1.49(1) − −

𝑏𝑏 ̄𝑠 ̄𝑠 10.51(1) −0.34(1) − − 𝑏𝑐 ̄𝑏𝑏̄ 14.17(4) −1.48(746) − −

𝑏𝑏 ̄𝑠 ̄𝑠 11.13(1) 0.28(1) − − 𝑏𝑐 ̄𝑏𝑏̄ 14.90(2) −0.75(2) − −

𝑏𝑏 ̄𝑐 ̄𝑐 11.26(0) −1.21(0) − −

𝑏𝑏 ̄𝑐 ̄𝑐 11.36(4) −1.10(4) − −

𝑏𝑏 ̄𝑐 ̄𝑐 12.21(11) −0.25(11) − −

T a b l e C . 8 : Same as in Table C.7 but for the first radial excited states with 𝐽𝑃 = 0+ .
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C.8 Four-quark state NCQMECs

In this section we show the norm contribution (current-)quark mass evolution curves
(NCQMECs) and the corresponding fits used to extract the norm contributions shown
in Figs. 6.8 and 6.9. We always show the obtained NCQMEC using only the attractive
colour components on the left and using the attractive plus repulsive colour channels on
the right. The colour coding of the data corresponds to the matrix entries in Fig. 6.7 and
to the results displayed in Figs. 6.8 and 6.9. Data points plotted in opaque are not taken
into account by the fits as they correspond to the omitted data points in the fits for the
corresponding quark mass evolution curves in Appendix C.6.

C.8.1 Hidden-flavour NCQMECs

In Fig. C.16 and Fig. C.17 we show the obtained norm contribution quark mass evolution
curves for the investigated hidden-flavour four-quark states with total spin 𝐽 = 1 and 𝐽 = 0,
respectively. For each quantum number we show the 𝑐𝑞 ̄𝑞 ̄𝑐 in the top panel and the 𝑏𝑞 ̄𝑞 ̄𝑏 in
the bottom panel.

We see, that most of the NCQMECs are well behaved across the whole range of current-
quark masses. For the 1(1+−) states, the data towards the quark mass 𝑚𝑞 → 𝑚𝑛 is not
really trustworthy as the internal two-body poles restrict the calculations in this channel.
Therefore, the range that needs to be fitted is quite large here. The only channel, where
the norm contributions vary largely with changing quark mass is for the 𝑐𝑞 ̄𝑞 ̄𝑐 state in the
0−+ channel.
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F i g u r e C . 1 6 : Norm contribution quark mass evolution curve of the hidden-bottom and hidden-
charm four-quark candidates with total spin 𝐽 = 1. The colour coding is according to the results
displayed in Fig. 6.8.
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F i g u r e C . 1 7 : Same as in Fig. C.16 but for the investigated hidden-flavour four-quark states with
total spin 𝐽 = 0.
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1

F i g u r e C . 1 8 : Norm contribution quark mass evolution curve of the open-flavour four-quark candi-
dates with quantum numbers 𝐼(𝐽𝑃) = 0, 1/2(1+). The colour coding is according to the results
displayed in Fig. 6.9.

C.8.2 Open-flavour NCQMECs

In Figs. C.18 to C.20 we display the obtained norm contribution quark mass evolution
curves for the open-flavour four-quark states investigated in this work.

Also here, most of the NCQMECs do not show too drastic changes across the whole
range of current-quark masses. Exceptions to this would be the 𝑐𝑐 ̄𝑞 ̄𝑞 and the 𝑏𝑏 ̄𝑞 ̄𝑠 states
with 𝐽 = 1 using the attractive and repulsive channels. The strong change in the 𝑐𝑐 ̄𝑞 ̄𝑞
NCQMEC for 𝐽 = 0 (the top left in Fig. C.20) is a numerical error.
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F i g u r e C . 1 9 : Same as in Fig. C.18 but for states with 𝐼(𝐽𝑃) = 1(1+).
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F i g u r e C . 2 0 : Same as in Fig. C.18 but for states with total spin 𝐽 = 0.
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Appendix D

Numerical methods

Numerical integration

To evaluate the integrals appearing in thiswork numerically, weused twodifferentmethods:
Gaussian Quadrature and Monte Carlo integration.

Gaussian Quadrature

The Gaussian Quadrature was used to evaluate the integrals appearing the the quark DSE
and the two- and four-body BSE. Originally formulated such that a function 𝑓 (𝑥) integrated
in the interval [−1, 1] can be well approximated by

∫
1

−1
d𝑥 𝑓 (𝑥) ≈

𝑛
∑
𝑖=1

𝑤𝑖 ⋅ 𝑓 (𝑥𝑖) , (D.1)

with 𝑤𝑖 the quadrature weights and 𝑥𝑖 the nodes. One can reformulate this to arbitrary
boundaries [𝑎, 𝑏] by introducing a positive weight function 𝑤(𝑥) into the integral and write

∫
𝑏

𝑎
d𝑥 𝑤(𝑥)𝑓 (𝑥) . (D.2)

The specific form of the weight function depends on the chosen quadrature and its poly-
nomials, see, e.g., [252]. We choose Legendre polynomials for almost all integrals except
the ones where the measure comes with a factor of 𝑑𝑧√1 − 𝑧2. In these cases the use of
Chebyshev polynomials is more suitable, as the wight function 𝑤cheby = (1 − 𝑧2)−1/2

cancels this factor. The nodes for the integration of the polynomial 𝑝(𝑥) are given by its
zeros

{𝑥𝑖 | 𝑝(𝑥𝑖) = 0} , (D.3)

with the weights calculated as [253]

𝑤𝑖 =
𝑎𝑛

𝑎𝑛−1
⋅
∫𝑏

𝑎
d𝑥 𝑤(𝑥)𝑝𝑛−1(𝑥)2

𝑝′
𝑛(𝑥)𝑝𝑛−1(𝑥𝑖)

. (D.4)
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𝑝𝑛 denotes a polynomial of degree 𝑛, 𝑝′ denotes a derivative with respect to 𝑥. The 𝑎𝑚
denotes the coefficient belonging to the highest order term of a polynomial 𝑝𝑚. For the
numerical implementation of the Gauß-Legendre and Gauß-Chebyshev integrations, we
used the C++ routines provided by the GNU Scientific Library [254].

Monte Carlo integration

To compute the norm contributions, one needs to solve three integrals of the form given in
Eq. (A.18), which makes for twelve integrals in total. In this case, the appropriate choice is
the Monte Carlo integration rather than the Gaussian quadrature, as the former is simply
more efficient when dealing with large number of integrals. The idea behind it is the
following. Consider a multidimensional integral

𝐼 = ∫d𝑛𝑥 𝑓 (𝑥1, … , 𝑥𝑛) , (D.5)

with 𝑥1, … , 𝑥𝑛 denoting the integration variables. One then uniformly samples sets of 𝑁
points for each integration variable 𝑥𝑖 in the respective integral boundaries Ω𝑖 = [𝑎𝑖, 𝑏𝑖].
The integral in Eq. (D.5) can then be approximated by

𝐼 ≈ 𝐼𝑁 ≡
𝑉
𝑁

𝑁
∑
𝑗=1

𝑓 (𝑥1𝑗
, … , 𝑥𝑛𝑗

) , (D.6)

where 𝑥𝑖𝑗 denote the sampled data points and 𝑉 is the volume

𝑉 =
𝑛

∏
𝑖=1

(𝑏𝑖 − 𝑎𝑖) . (D.7)

The error coming from the integration is then given by

𝛿𝐼𝑁 = 𝜎𝑁 = 𝑉√⟨𝑓 2⟩ − ⟨𝑓 ⟩2

𝑁 − 1 . (D.8)

For the actual calculation, we use a variant of theMonte Carlo integration known as VEGAS
Monte Carlo [255], which essentially first determines the areas of the integrand which
make the greatest contribution to the final integral and in a second step uses importance
sampling to focus the sampling of points in these areas. We again use the routines provided
by the GNU Scientific Library.

Solution of Eigenvalues

The homogeneous Bethe-Salpeter equations can be viewed as an eigenvalue equation of
the form

𝐾 ⋅ ⃗𝑣 = 𝜆 ⃗𝑣 , (D.9)



2 0 1

with 𝐾 the (kernel) matrix, ⃗𝑣 denoting the eigenvector and 𝜆 is the eigenvalue. In the
following, we will shortly outline the two algorithms used to numerically solve eigenvalue
equations.

Power method

The power method (or Von Mises iteration [256]) is a method to compute the eigenvalue 𝜆
with the largest absolute value and its associated eigenvector 𝑣 of a diagonalizable matrix
𝐾. The idea is the following. Let ⃗𝑏0 be an approximation to the dominant eigenvector.
Assuming the matrix 𝐾 to have one dominant eigenvalue whose absolute value |𝜆max| is
strictly greater than all other eigenvalues and that the vector ⃗𝑏0 has a non-zero component
in the direction of the eigenvector associated to 𝜆0, the recurrence relation

⃗𝑏𝑘+1 =
𝐾𝑘+1 ⋅ ⃗𝑏0

||𝐾𝑘+1 ⋅ ⃗𝑏0||
, (D.10)

converges to an eigenvector ⃗𝑏max, associated to the dominant eigenvalue. The eigenvalue
can then be obtained, e.g., via the Rayleigh quotient [257, 258] 𝑅(𝐾, ⃗𝑏max) = 𝜆max.

One caveat of this method is, that it is limited to extracting only the largest eigenvalue
and its eigenvector. For our case, this is useful whenwe only want to investigate the ground
state of a hadron, which is associated to the largest eigenvalue of 𝐾. But the radial excited
states are associated to the next lower eigenvalues of the matrix 𝐾.

Arnoldi iteration

The Arnoldi iteration [259], can be used to extract more than just the largest eigenvalue. It
makes use of the Krylov subspace, which is a linear subspace generated by applying powers
of a matrix 𝐾 onto a vector ⃗𝑏, starting from 𝐾0 = 𝕀. The resulting space of some order 𝑟
reads

𝒦𝑟(𝐾, ⃗𝑏) = span{ ⃗𝑏, 𝐾 ⋅ ⃗𝑏, … , 𝐾𝑟−1 ⋅ ⃗𝑏} . (D.11)

Let 𝑛 be the number of iterations needed to converge to the eigenvector associated to the
eigenvalue with the largest absolute value. One can then use the elements of the 𝒦𝑛 Krylov
subspace to form the so-called Krylov matrix:

𝐾𝑛 = [ ⃗𝑏, 𝐾 ⋅ ⃗𝑏, … , 𝐾𝑛−1 ⋅ ⃗𝑏] . (D.12)

By, e.g., using the Gram-Schmidt orthogonalization, one can extract an orthogonal basis
from the columns of the matrix and the resulting set of vectors forms an orthogonal basis
of the Krylov subspace 𝒦𝑛. These basis vectors then span good approximations to the
eigenvectors corresponding to the 𝑛 largest eigenvalues.

Note, that for Hermitian matrices, the Arnoldi iteration reduces to the Lanczos algo-
rithm [260]. For the numerical implementation of this algorithm, we use the open source
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package ARPACK [261], originally written in FORTRAN77, made compatible with C and
C++ via the packages [262, 263].

Interpolation

Regarding the necessary interpolations, we mostly used one- and two-dimensional linear
interpolation, as it was sufficient for most cases. In those few cases, where the linear
interpolation did not suffice, we used the cubic Hermite spline interpolation provided by
the GNU Scientific Library.



Appendix E

Technical Toolkit

Programming

The numerical solution of the four-quark FYE requires efficient and fast computer programs,
which for this work were written in the C++ programming language using the GNU
Compiler Collection (GCC) [264]. Various scripts to analyse the obtained data were written
in Python 3 [265]. Various routines for integration and interpolation were taken from the
GNU Scientific Library [254].

Algebra Calculus

Before the numerical solution of the BSE, there is much algebra to be done. Most of the
algebraic calculus was done using FORM [266] as a basis in combination with Wolfram
Mathematica [267], in particular the FeynCalc package [268, 269].

Typesetting

This work was written in LATEX [270] and rendered in LuaTeX [271] using the TEXLive
setup [272]. The template for this thesis is based on the excellent LaTeX Cookbook
template written (mainly) by Alex Povel [273].

Plotting and Graphics

All the data plots in this thesis were done in Python 3. The schematic plots serving as
illustrations were exclusively done using the PGF/TikZ packages for LATEX [274].
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