

α -decay chain of ^{297}Og

A. Jain^{1,2}, P. K. Sharma³, S. K. Jain¹, and G. Saxena^{2*}

¹*Department of Physics, School of Basic Sciences,
Manipal University Jaipur, Jaipur - 303007, INDIA*

²*Department of Physics (H&S), Govt. Women Engineering College, Ajmer - 305002, INDIA and*

³*Govt. Polytechnic College, Rajsamand - 313324, INDIA*

Since the discovery of α -decay [1], it has contributed immensely to the understanding of nuclear physics. Being a dominant mode of decay in superheavy nuclei, α -decay is of pronounced importance for the experimental studies. The heaviest element with proton number $Z=118$ (^{297}Og) was experimentally synthesized [2] through the α -decay process, and many more efforts are going on along this direction. In this regard, the already known experimental observation of decay chain of ^{293}Lv [4] and theoretical speculation of α -decay from ^{297}Og by Deng *et al.* [3] manifest the possibility of detection of nucleus ^{297}Og .

In this work, we have probed the α -decay from ^{297}Og by using new modified Horoi formula (NMHF), new modified Sobiczewski formula (NMSF), and new modified Manjunatha formula (NMMF) from the recent work [5]. We have calculated the half-lives of α -decay for the decay chain of ^{297}Og for which disintegration energy (Q-value) are picked up from WS4 mass model [6]: the model resulting more precise Q-value while compared with few other theories [7]. The available experimental Q-values are taken from Ref. [4].

The used formulas are given by:

$$\log_{10}T_{1/2}^{\text{NMHF}} = (a\sqrt{\mu} + b)[(Z_\alpha Z_d)^{0.6} Q_\alpha^{-1/2} - 7] + (c\sqrt{\mu} + d) + eI + fI^2 + gl(l+1) \quad (1)$$

$$\log_{10}T_{1/2}^{\text{NMSF}} = aZ\sqrt{\mu}(Q_\alpha - \bar{E}_i)^{-1/2} + bZ\sqrt{\mu} + c + dI + eI^2 + fl(l+1) \quad (2)$$

$$\begin{aligned} \log_{10}T_{1/2}^{\text{NMMF}} = & a\sqrt{\mu}(Z_d^{0.4}/\sqrt{Q_\alpha})^2 \\ & + b\sqrt{\mu}(Z_d^{0.4}/\sqrt{Q_\alpha}) + c \\ & + dI + eI^2 + fl(l+1) \end{aligned} \quad (3)$$

In the above equations, all the half-lives are in the unit of second. μ is the reduced mass which is given by $A_d A_\alpha / (A_d + A_\alpha)$, where A_d and A_α are the mass numbers of daughter nucleus and α -particle, respectively. Likewise, Z , Z_d and Z_α represent atomic numbers of parent nucleus, daughter nucleus and α -particle, respectively. Q_α (in MeV) is the energy released in ground-state to ground-state α -decay. I ($= (N-Z)/A$) is the nuclear isospin asymmetry. The coefficients (a, b, c, d, e, f, g , and \bar{E}_i) are given in Ref. [5].

The spontaneous fission half-lives are calculated using the modified version of Bao formula (MBF) [8], which is given by:

$$\begin{aligned} \log_{10}T_{1/2}^{\text{SF}}(s) = & c_1 + c_2 \left(\frac{Z^2}{(1 - kI^2)A} \right) + c_3 \\ & \left(\frac{Z^2}{(1 - kI^2)A} \right)^2 \\ & + c_4 E_{s+p} \end{aligned} \quad (4)$$

Here $k=2.6$ and other coefficients are $c_2=-37.0509$, $c_3=0.3740$, $c_4=3.1105$. The values of c_1 (e-o) is 895.4154.

Using the NMHF, NMSF and NMMF formulas [5], we have predicted the α -decay half-lives for the decay chain of ^{297}Og , which are tabulated in Table I and also shown in Fig. 1. For the possible decay modes, we have also calculated half-lives for SF using modified Bao formula [8] and shown in the tenth column in Table I. The comparison between predicted decay modes with the experimental decay modes are shown in the Table I. The (\star)

*Electronic address: gauravphy@gmail.com

TABLE I: Prediction of decay chain from NMHF, NMSF and NMMF formulas for ^{297}Og (See the text for details).

Nucleus	Expt.					$\log_{10}T_{1/2}(\text{s})$				Decay Modes	
	Q (MeV)	j_p^π	j_d^π	l_{min}	$\log_{10}T_{1/2}(\text{s})$	NMFH (α)	NMSF (α)	NMMF (α)	MBF (SF)	Predicted	Expt.
^{297}Og	12.10*	$1/2^+$	$1/2^+$	0	-	-3.39	-4.54	-5.08	15.81	α	-
^{293}Lv	10.71	$1/2^+$	$3/2^+$	2	-1.24	-0.85	-1.89	-2.22	15.59	α	α
^{289}Fl	9.98	$3/2^+$	$5/2^+$	2	0.28	0.23	-0.67	-1.15	13.50	α	α
^{285}Cn	9.32	$5/2^+$	$15/2^-$	5	1.45	1.55	0.71	0.46	9.05	α	α
^{281}Ds	8.85	$15/2^-$	$3/2^+$	7	1.10	2.17	1.45	1.09	5.67	α	SF
^{277}Hs	9.05	$3/2^+$	$3/2^+$	0	-2.52	1.08	0.41	0.23	4.81	α	SF

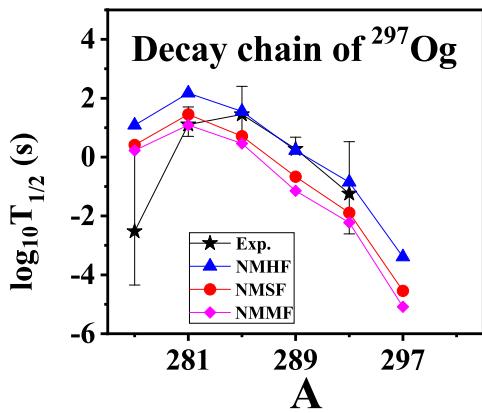


FIG. 1: α -decay half-lives for decay chain of ^{297}Og . The experimentally data are taken from [4].

value of Q is taken from WS4 mass model [6]. For l_{min} (minimum angular momentum), spin and parities are taken from NUBASE2020 [9] or P. Möller [10]. The all three considered formulas reproduce experimental data quite precisely and within the experimental uncertainty [4] as can be ascertained from Fig. 1. Conclusively, as an important outcome, the half-life of unknown nucleus ^{297}Og is found within the experimental reach in addition to the α -particle emission as a probable mode while compared to SF which can be seen from the

Table I. It is noticeable that there are indeed certain chances of production of ^{297}Og in near future as speculated by JINR-Dubna laboratory [11].

The support provided by SERB (DST), Govt. of India under CRG/2019/001851 grant is acknowledged.

References

- [1] E. Rutherford and H. Geiger, Proc. R. Soc. London A **81**, 162 (1908).
- [2] Yu.Ts. Oganessian, *et al.*: Phys. Rev. C **74**, 044602 (2006).
- [3] Jun-Gang Deng, *et al.*: Chin. Phys. C **41**, 124109 (2017).
- [4] Yu.Ts. Oganessian, *et al.*: Nucl. Phys. A **944**, 62-98 (2015).
- [5] P. K. Sharma *et al.*, Nucl. Phys. A, <https://doi.org/10.1016/j.nuclphysa.2021.122318>.
- [6] Ning Wang *et al.*, Phys. Lett. B. **734**, 215 (2014).
- [7] G. Saxena *et al.*, Phys. Scr. **96**, 125304 (2021).
- [8] G. Saxena *et al.*, J. Phys. G: Nucl. Part. Phys. **48**, 055103 (2021).
- [9] F. G. Kondev *et al.*, Chin. Phys. C **45**, 030001 (2021).
- [10] <https://t2.lanl.gov/nis/data/astro/molnix96/spidat.html>.
- [11] A. A. Voinov *et al.*, Bulletin of the Russian Academy of Sciences: Physics **84**, 351 (2020).