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Abstract: We develop an action principle for producing a single-fluid two-constituent system with

dissipation in general relativity. The two constituents in the model are particles and entropy. The

particle flux creation rate is taken to be zero, while the entropy creation rate is non-zero. Building on

previous work, it is demonstrated that a new term (the proper time derivative of the matter space

“metric”) is required in the Lagrangian in order to produce terms typically associated with bulk and

shear viscosity. Equations of motion, entropy creation rate, and energy–momentum–stress tensor are

derived. Using an Onsager approach of identifying thermodynamic “forces” and “fluxes”, a model is

produced which delivers the same entropy creation rate as the standard, relativistic Navier–Stokes

equations. This result is then contrasted with a model generated in the spirit of the action principle,

which takes as its starting point a specific Lagrangian and then produces the equations of motion,

entropy creation rate, and energy–momentum–stress tensor. Unlike the equations derived from

Onsager reasoning, where the analogs of the bulk and shear viscosity coefficients are prescribed

“externally”, we find that the forms of the coefficients in the second example are a direct result of the

specified Lagrangian. Furthermore, the coefficients are shown to satisfy evolution equations along

the fluid worldline, also a product of the specific Lagrangian.

Keywords: relativistic fluids; dissipation; field theory

1. Introduction

Breakthrough progress in gravitational-wave astronomy prompts us to revisit “old
questions” in relativistic fluid dynamics. In order to provide robust models of binary
neutron star mergers (like the celebrated GW170817 event [1,2]) and mixed binary systems
involving a neutron star and a black hole (like the recently announced GW230529 event [3]),
we need to carry out large-scale numerical simulations incorporating as much of the
extreme physics as we can manage [4,5]. In addition to the “live” spacetime of Einstein’s
gravity, our simulations need to include the complex matter physics that comes into play at
densities beyond nuclear saturation. These aspects must be represented faithfully in order
to allow reliable parameter extraction from observed signals. Somewhat colloquially, the
stated aim is to “constrain the equation of state” of supranuclear density matter. However,
this aim includes a number of issues associated with the systematics of simulations and
the extracted model waveforms. This, in turn, raises problems which become pressing for
the development of the next generation of gravitational-wave instruments (the Einstein
Telescope in Europe and Cosmic Explorer in the USA). These instruments will be sensitive
at higher frequencies than the current LIGO–Virgo–Kagra interferometers and are expected
to observe the post-merger phase, in addition to the late inspiral phase currently seen.
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State-of-the-art simulations tell us that binary mergers involve high-density matter at
temperatures close to those reached in terrestrial collider experiments (up to 100 MeV) [6].
At these extreme temperatures, the fluid will be far from thermodynamical equilibrium
and the role of neutrinos is expected to be paramount [6]. Recent numerical relativity
experiments [7–9] indicate that out-of-equilibrium physics (in the form of bulk vicosity
and/or neutrino transport) will affect the gravitational-wave signal at a “detectable” level.
In order to explore the relevant physics, we evidently need to incorporate non-equilibrium
aspects in our numerical simulations. In effect, we need to consider dissipative general
relativistic fluid dynamics [10].

The implementation of dissipation in relativistic fluid dynamics is known to be tricky,
both conceptually and practically. While there has been important recent progress on issues
relating to stability and causality [11,12], we still do not have a universally agreed-upon
“framework” that would allow us to consider the complete range of physics that comes into
play in neutron star mergers. Mergers combine a highly energetic, turbulent flow of beyond-
nuclear-density matter; strong magnetic fields; and a dynamical spacetime generating
copious amounts of gravitational waves. These events are unique because they operate
over an impressive range of spatial scales. At the smallest scales, they provide data for the
matter equation of state [13–16], while at large scales they may form long-lived merger
remnants (possibly eventually forming black holes [4,5,17]). Rapid nuclear reactions during
low-density matter outflows may lead to observable kilonova signatures [18]. Observed
short gamma-ray bursts may be explained as the twisting of the stars’ magnetic field, which
would help collimate an emerging jet [19]. Multi-messenger observations of these events
will—at some level—encode dissipative aspects (ranging from the bulk viscosity in the
merger remnant [6,8] to resistivity affecting the evolution of the magnetic field [20–22]).

Arguably, the most “complete” framework for modelling the physics we need to
consider is the fully covariant variational approach reviewed in [10]. Notably, recent
developments of the variational strategy include dissipative effects [23]. This effort is
motivated by the requirements from gravitational-wave astronomy, and provides an action
principle for general relativistic multi-fluid systems for which no explicit reference to an
equilibrium state is required and as a result the field equations are fully non-linear. This is
in sharp contrast to other models for dissipative relativistic fluid dynamics which build
on a phenomenological derivative expansion (away from a supposed equilibrium state).
The main idea of the variational model is that the dynamical degrees of freedom of fluids
are captured by fluxes, and if the flux for a fluid has non-zero covariant divergence, or,
equivalently, its associated dual three-form is not closed, then there will be dissipation.
Conceptually, the idea is clear but we are still quite far from turning this understanding
into a complete “workable” model.

The aim of the present discussion is to take steps to improve the situation by building
an explicit action principle which connects with the familiar Navier–Stokes equations. The
spirit of the approach is very similar to that of, for example, refs. [24–26], where the matter
space coordinates are treated as fields in the variation. The close connection between the
two approaches has already been discussed in detail in [10]. While we will not make further
comparison here, it is clear that progress in either direction can be translated into the other
framework and it would certainly be worth paying attention to this in the future. Our focus
here is on the geometrical aspects of the problem—including relevant symmetries—some
of which are directly connected with the spacetime metric and hence unique to the context
of general relativity. We focus on the mathematical formalism, leaving a discussion of the
deeper connection to statistical mechanics and the precise role of microscopic fluctuations
(see, e.g., ref. [27] for a useful survey) for follow-up work. This strategy makes sense
because issues related to the underlying physics are somewhat distinct from the geometric
aspects which are the focus here. The deeper connections need to be explored once a self-
consistent mathematical framework is in place so work in this direction should certainly
be encouraged.
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We could perhaps claim to be motivated by the old (often paraphased) proverb that
necessity is the mother of invention. Google suggests that one of the earliest statements
of this proverb is to be found in the Aesop’s Fable “The Crow and the Pitcher” (see, e.g.,
https://read.gov/aesop/001.html (accessed on 30 May 2024).) Alternatively, we can draw
inspiration from Plato’s Republic and the comment “our need will be the real creator”
(Benjamin Jowett, Plato’s Republic: The Greek Text, 1894, 3:82 “Notes” Jowett, Book II, 369c).
Staying closer to science, Alfred North Whitehead argued in an address to the Mathematical
Association of England that “the basis of invention is science, and science is almost wholly
the outgrowth of pleasurable intellectual curiosity”. Perhaps curiosity—pleasurable or
not—is the main driver for the current effort? Maybe we are just stumbling around in
the dark, with “necessity is the mother of futile dodges” (Julius A. Sigler, Education: Ends
and Means. University Press of America. p. 140.) in mind. . . There are different possible
attitudes, but theoretical, experimental, and observational investigations of viscous fluids
have, at some time or other, embodied the sentiments of each of the above quotes. This
may simply be a reflection of how challenging the problem is. The work presented here
provides, we believe, a unique perspective (but we cannot yet say if this is more than a
futile dodge).

Our discussion will introduce a number of “simplifications”. Most notably, we will
restrict ourselves to a single-fluid model. In some sense, this is against “better judgement”
because we know that issues like heat/entropy flow require a multi-fluid treatment [10].
Moreover, the variational framework readily allows for multi-fluid aspects to be incor-
porated. However, if we want to make contact with numerical simulations (and we do!)
then it must be noted that such efforts reduce the analysis to a single fluid whenever this
is possible. Hence, it makes sense to see how far we can go if we restrict the variational
discussion in this sense from the outset. The obvious caveat to this statement of intent is that
we should perhaps not expect the effort to be completely successful. We are cutting corners
and this ought to impact on the model we arrive at. Having said that, we expect to learn
useful lessons from the exercise. The calculation we present is perhaps mainly interesting
from a conceptual perspective, but the derivation also highlights aspects that need to be
included in more realistic models. For example, we will show that a new fluid variable
(the proper time derivative of the matter space “metric”) must be included in the original
Lagrangian of [23] in order to recover the expected terms associated with bulk and shear
viscosity. This new inclusion, in turn, affects the field equations, the entropy creation rate,
and the energy–momentum–stress tensor. Additionally, we provide an explicit formulation
of the matter space entropy three-form, going beyond the phenomenology explored in
previous work. The results show that evolution equations along worldlines naturally arise
in the model, as one might expect from a relativistic formulation.

In Section 2, the generic action is written down and a variation with respect to the field
variables (particle and entropy flux and the spacetime metric) is given. In Section 3, abstract,
three-dimensional “matter” spaces are introduced so that the fluxes can be reformulated
in such a way that the action principle becomes viable. Section 4 uses the same approach
as [23] to build the required variations of the field variables, in particular, the Lagrangian
displacement in Section 4.2. While the approach is the same, derivatives of the matter space
metrics are assumed in the generic functional form of the action. This is because models like
thetraditional Navier–Stokes are not possible without such derivatives in the Lagrangian.
In Section 5, all the ingredients are stirred together and poured back into the initial variation
of Section 2. The fluid field equation, entropy creation rate, and energy–momentum–stress
tensor are derived. In Section 6, a specific form for the Lagrangian is written down. In
Appendix A, we provide details of the derivations of key elements of the formalism. While
the results of the derivations are essential to delivering the final product, the calculations
themselves are not necessary during a first reading of this paper.

https:// read.gov/aesop/001.html
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2. The Fluid Action

In the variational approach, the equations of motion are derived from an action
principle which has as its Lagrangian the so-called “master” function Λ (see [10] for an
extensive review). For a finite-temperature single-component system (as considered here),
the master function is a function of all the independent scalars which can be built using the
spacetime metric gab, the particle flux na, and the entropy flux sa. However, here we restrict
ourselves by only considering n2 = −gabnanb and s2 = −gabsasb (excluding the quantity
gabnasb, known to be associated with entropy entrainment [10]). The action is then given by

SF =
∫

M
d4x

√

−gΛ
(

n2, s2
)

. (1)

The variation of SF with respect to na, sa, and gab is

δSF =
∫

M
d4xδ

(√

−gΛ
)

=
∫

M
d4x
√

−g

[

µaδna + Θaδsa +
1

2

(

Λgab + µanb + Θasb
)

δgab

]

, (2)

where we have used the fact that

δ
√

−g =
1

2

√

−ggabδgab (3)

and defined

µa = −2
∂Λ

∂n2
na , (4)

Θa = −2
∂Λ

∂s2
sa . (5)

As we restrict our analysis to systems with a single-fluid degree of freedom, the two
constituents, particles and entropy, must be co-moving. We denote the corresponding unit
four-velocity as ua, with normalization uaua = −1 (in geometric units). The particle flux
is now na = nua, and the entropy flux is sa = sua, where the particle density is given by
n = −uana and the entropy density is s = −uasa. We also note that the chemical potential
is given by µ = −uaµa and the temperature follows from T = −uaΘa.

The derivation of the equations of motion is complicated by the fact that our variation
of the fluxes δna and δsa must involve, indirectly, the variation of the worldlines given
by ua. Because uaua = −1 everywhere, it has only three degrees of freedom. The impact
of this can be seen already in δSF above. The equations of motion result when arbitrary
variations of the field degrees of freedom do not change SF to linear order; i.e., δSF = 0.
If we consider arbitrary variations δna and δsa, then the equations of motion are simply
µa = Θa = 0, which do not recover the simplest perfect fluid equations.

As shown in [28], building a viable action for two different “particle” constituents,
such as matter and entropy, and one four-velocity, is straight-forward in the non-dissipative
(perfect fluid) regime; even the generalization to a non-dissipative system of, say, M-
constituents and N-fluids follows naturally (see [10] for details). Building on this, An-
dersson and Comer [23] demonstrated how to take the basic principles built into these
actions and developed a fully non-linear set of field equations for dissipative fluids. But,
as we will demonstrate in the next section, it is not straight-forward, a priori, to extend
single-fluid actions to dissipative systems (as represented by, for example, the traditional
Navier–Stokes equations).

3. Matter Space and Flux Setup

Let us introduce the necessary ingredients of a viable action principle for a single fluid
of matter and entropy which has dissipation. The first step is to introduce two abstract three-
dimensional Riemannian (“matter space”) manifolds, whose individual points correspond
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to individual fluid worldlines in spacetime. The second step is to assume that the two
manifolds are diffeomorphic to each other. A fair bit of infrastructure will have to be built
before reaching the action principle and the resulting field equations; in particular, a lot of
detail on the so-called matter space metrics must be included as these were shown in [23]
to be essential elements required for dissipation. Some of the more tedious details of the
infrastructure construction are presented in Appendix A.

3.1. The Matter Space Setups

First of all, we introduce the two three-dimensional Riemannian manifolds that are
diffeomorphic to each other. The first of these, the abstract particle space, is labeled by the
coordinates XA (A = 1, 2, 3), and the second, for the abstract entropy space, is labeled by
the coordinates X̄A. Because the two spaces are diffeomorphic to each other, there are two
mappings f A and f̄ A whereby

X̄A = f̄ A
(

XB
)

, XA = f A
(

X̄B
)

, (6)

and

MA
B =

∂ f A

∂X̄B
, M̄A

B =
∂ f̄ A

∂XB
∋ MA

C M̄C
B = M̄A

C MC
B = δA

B . (7)

Both sets, XA and X̄A, are scalar functions on spacetime, with the property that each unique
wordline of the field ua is mapped to a unique point XA in the matter space and a unique
point X̄A in the entropy space.

Next, spacetime-index-carrying objects, like na, sa, and the metric gab, can be identified
with objects carrying matter space indices (such as the particle and entropy, respectively,
densities nABC and sABC introduced below) through use of the maps

ΨA
a = ∇aXA (8)

and
Ψ̄A

a = ∇aX̄A . (9)

The maps are connected to each other via the chain rule, i.e.,

ΨA
a =

∂ f A

∂X̄B
∇aX̄B = MA

B Ψ̄B
a , Ψ̄A

a =
∂ f̄ A

∂XB
∇aXB = M̄A

B ΨB
a . (10)

The four maps
{

ΨA
a , Ψ̄A

a , M̄A
B , MA

B

}

will be shown later to be preserved along the worldlines
of ua (i.e., they are Lie-dragged by the fluid flow).

3.2. The Particle and Entropy Flux, Chemical Potential, Temperature, and Metric Constructs

The ΨA
a and Ψ̄A

a maps allow us to “pull-back/push-forward” index-carrying objects
in spacetime and the matter spaces. To begin, we replace the fluxes na and sa with their
respective dual three-forms nabc and sabc, namely,

nabc = ϵdabcnd , na =
1

3!
ϵbcdanbcd ,

sabc = ϵdabcsd , sa =
1

3!
ϵbcdasbcd . (11)

The particle space three-form nABC and the entropy space three-form sABC are then related
to the above as

nabc = ΨA
a ΨB

b ΨC
c nABC , sabc = Ψ̄A

a Ψ̄B
b Ψ̄C

c sABC . (12)
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Similarly, we introduce the dual three-forms for µa and Θa, i.e.

µabc = ϵdabcµd , µa =
1

3!
ϵbcdaµbcd ,

Θabc = ϵdabcΘd , Θa =
1

3!
ϵbcdaΘbcd , (13)

to obtain the matter space chemical potential and temperature three-forms, respectively:

µABC = ΨA
a ΨB

b ΨC
c µabc , ΘABC = Ψ̄A

a Ψ̄B
b Ψ̄C

c Θabc . (14)

The remaining dynamical field is the spacetime metric gab. Using the maps ΨA
a and

Ψ̄A
a we may construct three matter space “metrics” gAB, ḡAB, and ĝAB (we will see later

that these fields are essential components of an action-based dissipative system):

gAB = ΨA
a ΨB

b gab = gBA , (15)

ḡAB = Ψ̄A
a Ψ̄B

b gab = ḡBA , (16)

ĝAB = ΨA
a Ψ̄B

b gab = Ψ̄B
b ΨA

a gba = ĝBA . (17)

Because of the chain rule, we have

gAB = MA
C MB

DΨ̄C
a Ψ̄D

b gab = MA
C MB

D ḡCD ,

ḡAB = M̄A
C M̄B

DΨC
a ΨD

b gab = M̄A
C M̄B

DgCD ,

ĝAB = ΨA
a M̄B

CΨC
b gab = M̄B

CgAC = M̄B
CgCA . (18)

Locally (on matter space), these objects transform as tensors. However, for our purposes
it is better to view the index-carrying objects as matrices and the transformations as
matrix products. Note that the use of multiple matter space metrics (although on different,
but linked, manifolds) was the way that [23] introduced dissipation into a relativistic
action principle.

3.3. Mapping gAB, ḡAB, and ĝAB to Spacetime Three-Metrics Perpendicular to ua

Our goal here is to introduce dissipation into the relativistic fluid theory. It is well
established in the literature that the form ∇aub is the principal object that shows up in the
different channels of dissipation (bulk, shear, etc.). The various channels of dissipation are
extracted through the use of a well-known decomposition of ∇aub, namely,

∇aub = σab +
1

3
Θhab + ϖab − uaab ,

σab =
1

2

(

hac∇cub + hbc∇cua
)

−
1

3
Θhab = σba ,

ϖab =
1

2

(

hac∇cub − hbc∇cua
)

= −ϖba ,

hab = gab + uaub = hba ,

aa = ub∇bua ,

Θ = ∇aua . (19)

The hab here is directly connected with gAB since

ΨA
a ΨB

b gAB = hab . (20)

Obviously, habub = hbaub = 0, which means σabub = σbaub = 0 and ϖabub = −ϖbaub = 0,
as well. It is also the case that habσab = 0 and habϖab = 0. Finally, because uaua = −1, we
have uaaa = 0.
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The pull-back of gAB, ḡAB, and ĝAB leads to five distinct “metric” tensors on spacetime
which are spacelike with respect to the ua worldlines:

hab = ΨA
a ΨB

b gAB = Ψ̄A
a Ψ̄B

b ḡAB = ΨA
a Ψ̄B

b ĝAB = Ψ̄A
a ΨB

b ĝBA ,

h̄
(1)
ab = Ψ̄A

a Ψ̄B
b gAB , h̄

(2)
ab = ΨA

a ΨB
b ḡAB ,

ĥ
(1)
ab = ΨA

a Ψ̄B
b gAB = Ψ̄B

a Ψ̄A
b ĝAB , ĥ

(2)
ab = ΨA

a ΨB
b ĝAB = Ψ̄A

a ΨB
b ḡAB . (21)

However, because habub = h̄
(1)
ab ub = ĥ

(1)
ab ub = . . . = 0, we will simplify the analysis by

restricting all of these objects to be conformal to hab, i.e.

h̄
(1)
ab = H̄(1)hab , H̄(1) ≡

1

3
hab h̄

(1)
ab =

1

3
ḡABgAB ,

h̄
(2)
ab = H̄(2)hab , H̄(2) ≡

1

3
hab h̄

(2)
ab =

1

3
gAB ḡAB ,

ĥ
(1)
ab = Ĥ(1)hab , Ĥ(1) ≡

1

3
hab ĥ

(1)
ab =

1

3
ĝABgAB =

1

3
M̄A

A ,

ĥ
(2)
ab = Ĥ(2)hab , Ĥ(2) ≡

1

3
hab ĥ

(2)
ab =

1

3
gAB ĝAB =

1

3
MA

A . (22)

4. The Nuts and Bolts of the Action Variation

We will now show that the proper-time derivatives ġAB, ˙̄gAB, and ˙̂gAB are directly
connected to σab, Θ, and hab. The implication of this is that any recovery of, say, the Navier–
Stokes equations via the action principle means that ġAB, ˙̄gAB, and ˙̂gAB must be included
as independent variables in the field variations.

The result follows because the master function Λ is commonly left unspecified in the
action-based approach: usually, only its existence and the fields/fluxes it depends on are
postulated. If an explicit master function can be provided, then the dependence of this
on the fields’ derivatives will automatically be taken care of by the variational principle.
We also note that [29] works around this issue by considering the dissipative fluxes as
functionals of, say, the “metric” gAB. In the present context, however, we try to avoid that
as this would inevitably make the discussion somewhat phenomenological.

4.1. Matter Space Maps and Metric Derivatives

In Appendix A.3, it is shown (in Equation (A28)) that

ua =
1

3!
ϵbcdaΨB

b ΨC
c ΨD

d ϵBCD =
1

3!
ϵbcdaΨ̄B

b Ψ̄C
c Ψ̄D

d ϵ̄BCD . (23)

This leads to the important consistency check that

uaΨA
a = ua∇aXA = LuXA = 0 =⇒ uaΨ̄A

a = LuX̄A = M̄A
B

(

uaΨB
a

)

= 0 , (24)

which must hold because the map ΨA
a is contracted four times on ϵbcda but XA has only

three components. This means the XA and X̄A are Lie-dragged along the fluid worldlines,
which is expected because the basic role of the maps ΨA

a and Ψ̄A
a is to identify specific

wordlines on spacetime with specific points in the matter spaces.
Because f̄ A is a function of XA, then M̄A

B is also a function of XA, and because f A is a
function of X̄A, then MA

B is a function of X̄A. Given that LuXA = 0 = LuX̄A, we see

Lu M̄A
B = 0 = Lu MA

B . (25)

Once the maps are specified at a given point on a worldline, they will not change on future
points of the same worldline, which is ultimately due to our assumption that the particle
and entropy spaces are diffeomorphic to each other.
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To establish rules for taking derivatives of the matter space metrics, we need to develop
further properties of the maps ΨA

a and Ψ̄A
a : First, because the XA are scalars, then

∇bΨA
a = ∇aΨA

b . (26)

This and the Lie dragging of the XA along ua allows us to write

ub∇bΨA
a = ub∇aΨA

b = −ΨA
b ∇aub . (27)

Hence, the Lie derivative of ΨA
a with respect to ua is

LuΨA
a = ub∇bΨA

a + ΨA
b ∇aub = −ΨA

b ∇aub + ΨA
b ∇aub = 0 , (28)

and similarly
LuΨ̄A

a = 0 ; (29)

therefore, the maps are also Lie dragged along the worldlines. These can be combined
to show

uc∇c

(

ΨA
a ΨB

b

)

= −
(

ΨA
c ΨB

b ∇auc + ΨA
a ΨB

c ∇buc
)

. (30)

Using Equation (28), we see that

ġAB ≡ Lu

(

ΨA
a ΨB

b gab
)

= ΨA
a ΨB

b Lugab

= −2ΨA
a ΨB

b ⊥a
c⊥

b
d ∇(cud)

= −2ΨA
a ΨB

b

(

σab +
1

3
Θhab

)

, (31)

where ⊥a
b= ha

b. We also have

˙̄gAB ≡ Lu

(

Ψ̄A
a Ψ̄B

b gab
)

= M̄A
C M̄B

D ġCD , (32)

and

˙̂gAB ≡ Lu

(

ΨA
a Ψ̄B

b gab
)

= M̄B
C ġAC . (33)

If we contract both sides of Equation (31) with gAB, we have

gAB ġAB = −2Θ = ḡAB ˙̄gAB = ĝAB
˙̂gAB . (34)

Later, when we take partial derivatives of Equation (79) as one of the necessary steps of the
action principle, the three quantities gAB, ḡAB, and ĝAB are treated as being independent.
This prompts us to introduce

Θ(1) = −
1

2
ḡAB ˙̄gAB ,

Θ(2) = −
1

2
gAB ġAB ,

Θ(3) = −
1

2
ĝAB

˙̂gAB , (35)

to recognize the independence of gAB, ḡAB, and ĝAB. In the variations that occur in the
action, we need to recognize also that the three Θ(i) are independent of each other. Once
the variations are completed, then the three Θ(i) can be set equal to each other (as in (34)).
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The conformal factors Ĥ(1) and Ĥ(2) satisfy ˙̂H(i) = 0 (i = 1, 2) since the first is a

function only of XA and the second depends on only X̄A. The proper-time derivative ˙̄H(i)

is more complicated, namely,

˙̄H(i) =
1

3

(

˙̄gABgAB + ḡAB ġAB

)

= −
2

3

[(

Ψ̄A
a Ψ̄B

b gAB

)

− hcd
(

Ψ̄A
c ΨC

a gAC

)(

Ψ̄B
d ΨD

b gBD

)]

(

σab +
1

3
Θhab

)

= −
2

3

[

H̄(i) −
(

Ĥ(i)
)2
]

hab

(

σab +
1

3
Θhab

)

=
2

3

[

H̄(i) −
(

Ĥ(i)
)2
]

d(ln n)

dτ
, (36)

where we have used the fact that because ∇ana = 0 we can replace Θ with

Θ = −
d(ln n)

dτ
. (37)

This implies that if H̄(i)(τ) = 0 for every value τ, and n2/3(τ) does not remain constant,
then Ĥ(i) = 0.

Finally, we will work out the proper-time derivative of ϵABC. Begin by noting that

ua∇a det
[

gDE
]

= ua∇a

(

1

3!
[ABC]D [DEF]DgADgBEgCF

)

=
1

2
[CAB]D [FDE]DgADgBE ġCF

= det
[

gDE
]

gCF ġCF

= −2 det
[

gDE
]

Θ , (38)

and therefore
ϵ̇ABC = −ϵABCΘ , ˙̄ϵABC = −ϵ̄ABCΘ . (39)

4.2. The Lagrangian Displacement

The key step to finding the correct equations of motion is to make sure that the
variations δna and δsa incorporate the Lie dragging of XA and X̄A. We achieve this by using
the Lagrangian displacement ∆ = δ + Lξ , where Lξ is the Lie derivative along a spacetime
displacement ξa. It is a measure of how a quantity changes with respect to fluid observers,
who ride along with the worldlines. When we consider the action principle, we are then
looking for variations δXA that lead to δSF = 0.

When a worldline is varied it must still be the case that its own XA and X̄A remain
fixed. The implication, then, is that δXA and ξa must be such that they lead to ∆XA = 0;
hence, we find

δXA = −Lξ XA = −ξa∂aXA = −ΨA
a ξa ,

δX̄A = M̄A
B δXB = −M̄A

B ΨB
a ξa = −Ψ̄A

a ξa . (40)

Obviously,
∆M̄A

B = ∆MA
B = 0 . (41)

The next thing is to use these to “fix” the variations δna and δsa so that the action principle
delivers viable equations of motion and an energy–momentum–stress tensor that can be
inserted into the Einstein equations to determine the gravitational field.
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We will start by deriving ∆gAB, ∆ḡAB, and ∆ĝAB. To facilitate this, we can show

∆Ψ̄A
a = 0 . (42)

Now, we find for ∆gAB, ∆ḡAB, and ∆ĝAB that

∆gAB = ∆
(

ΨA
a ΨB

b gab
)

= ΨA
a ΨB

b ∆gab

= ΨA
a ΨB

b

[

δgab − 2∇(aξb)
]

,

∆ḡAB = M̄A
C M̄B

D∆gCD ,

∆ĝAB = M̄B
C∆gAC , (43)

where we have used the essential relation

∆gab = δgab − 2∇(aξb) . (44)

It will be the case that we need to incorporate ġAB = ua∇agAB into our scheme,
meaning we will have to also work out ∆ġAB. The starting point is

∆ġAB =
(

∂agAB
)

∆ua + ua∆
(

∂agAB
)

. (45)

From Equation (A28) in Appendix A.3, we can infer that

∆ua = −
1

2

(

ubuc∆gbc
)

ua , (46)

where we have used

∆ϵabcd =
1

2
ϵabcdge f ∆ge f , ∆ϵABC = −

1

2
ϵABCgDE∆gDE . (47)

Next (see (A29) in Appendix A.4 for details),

∆
(

∂agAB
)

= ∂a

(

ΨA
b ΨB

c ∆gbc
)

, (48)

and therefore (see Equation (A30) in Appendix A.4),

∆ġAB = ΨA
a ΨB

b

{

⊥
(a
c ⊥

b)
d ue∇e

(

∆gcd
)

+
[

⊥
(a
e ⊥

b)
f

(

∇(eu f )
)

ucud − 2 ⊥
(a
c ⊥

b)
e ∇due

]

∆gcd
}

, (49)

∆ ˙̄gAB = M̄A
C M̄B

D∆ġCD , (50)

∆ ˙̂gAB = M̄B
C∆ġAC . (51)

5. The Field Equations

The “trick” that incorporates dissipation in the variational formulation is to specify
that the functional dependencies of nABC and sABC are

nABC = nABC

(

XD
)

, sABC = sABC

(

X̄D, ḡDE, gDE, ĝDE, ˙̄gDE, ġDE, ˙̂gDE
)

. (52)
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It is clear that ∆nABC = 0, since it only depends on XA. Consequently, the particle flux
creation rate Γn is shown to vanish; i.e., using the fact that ∇[aΨB

b] = 0, etc., we have

∇ana =
1

3!
ϵbcda∇[anbcd]

=
1

3!
ϵbcda∇[a

(

ΨB
b ΨC

c ΨD
d]nBCD

)

= −
1

3!
ϵbcdaΨB

[bΨC
c ΨD

d ΨA
a]

∂nBCD

∂XA
≡ 0 . (53)

However, the extra dependencies for sABC, as we will see below, lead to a non-zero entropy
creation Γs = ∇asa.

5.1. Construction of δna

To work out δna, we first determine ∆nABC, using the form given in Equation (52):

∆nABC =
∂nABC

∂XD
∆XD = 0 . (54)

Since ∆nABC = 0 and ∆ΨA
a = 0, we see ∆nabc = 0 and therefore

δnabc = −Lξnabc . (55)

Noting that

1

3!
ϵbcdaLξ nbcd = ξb∇bna −

(

nd∇dξa − na∇dξd
)

, (56)

we see

δna = −
[

ξb∇bna −
(

nd∇dξa − na∇dξd
)]

+
1

2
nagbcδgbc , (57)

where we have used

δϵbcda =
1

2
ϵbcdage f δge f . (58)

Finally, we have

µaδna =
(

−2nb∇[bµa]

)

ξa +
1

2
µanagbcδgbc +∇b

(

µanbξa − µanaξb
)

. (59)

5.2. Construction of δsa

To perform the setup for δsa, we note that ∆sABC is

∆sABC =
∂sABC

∂ḡDE
∆ḡDE +

∂sABC

∂gDE
∆gDE +

∂sABC

∂ĝDE
∆ĝDE

+
∂sABC

∂ ˙̄gDE
∆ ˙̄gDE +

∂sABC

∂ġDE
∆ġDE +

∂sABC

∂ ˙̂gDE
∆ ˙̂gDE , (60)

where the form given in Equation (52) has been used. Recalling that ∆Ψ̄A
a = 0, we see

∆sabc = Ψ̄
[A
a Ψ̄B

b Ψ̄
C]
c ∆sABC , (61)

which implies

δsabc = −Lξ sabc + Ψ̄
[A
a Ψ̄B

b Ψ̄
C]
c ∆sABC . (62)

Now we can rewrite δsa as
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δsa = −
1

3!
ϵbcdaLξ sbcd +

1

3!
ϵbcdaΨ̄A

[bΨ̄B
c Ψ̄C

d]∆sABC +
1

2
sagbcδgbc

= −
[

ξb∇bsa −
(

sd∇dξa − sa∇dξd
)]

+

(

1

3!
ϵbcdaΨ̄A

[bΨ̄B
c Ψ̄C

d] ϵ̄ABC

)(

1

3!
ϵ̄DEF∆sDEF

)

+
1

2
sagbcδgbc

= −
[

ξb∇bsa −
(

sd∇dξa − sa∇dξd
)]

+

(

1

3!
ϵ̄ABC∆sABC

)

ua +
1

2
sagbcδgbc , (63)

so that

Θaδsa = −
(

2sb∇[bΘa] + ΓsΘa

)

ξa −
1

3!
ΘBCD∆sBCD −

1

2
Tsgabδgab

+∇b

[(

Θasaδb
c − Θcsb

)

ξc
]

. (64)

When we define, following the notation in [23],

D̄ab =
1

3
ΘABC ∂sABC

∂ḡDE
Ψ̄D

a Ψ̄E
b , Dab =

1

3
ΘABC ∂sABC

∂gDE
ΨD

a ΨE
b , D̂ab =

1

3
ΘABC ∂sABC

∂ĝDE
ΨD

a Ψ̄E
b ,

D̄ab =
1

3
ΘABC ∂sABC

∂ ˙̄gDE
Ψ̄D

a Ψ̄E
b , Dab =

1

3
ΘABC ∂sABC

∂ġDE
ΨD

a ΨE
b , D̂ab =

1

3
ΘABC ∂sABC

∂ ˙̂gDE
ΨD

a Ψ̄E
b , (65)

(where D̄ab = D̄ba, ubD̄ab = ubD̄ba = 0, and likewise for the others), and

DT
ab = D̄ab + Dab + D̂ab ,

DT
ab = D̄ab +Dab + D̂ab , (66)

we find (see (A31) in Appendix A.5)

1

3!
ΘBCD∆sBCD = ∇b

[

DT
ba +DT

cd

(

∇(cud)
)

ubua − 2DT
c(a∇b)u

c −∇c

(

DT
bauc

)]

ξa

+
1

2

[

DT
ab +DT

cd

(

∇(cud)
)

uaub − 2DT
c(a∇b)u

c −∇c

(

DT
abuc

)]

δgab

−∇a
{[

DT
ab +DT

cd

(

∇(cud)
)

uaub − 2DT
c(a∇b)u

c −∇c

(

DT
abuc

)]

ξb
}

+∇c

[

1

2
DT

abuc
(

δgab − 2∇(aξb)
)

]

. (67)

Therefore,

Θaδsa = −
{

2sb∇[bΘa] + ΓsΘa +∇b
[

DT
ba +DT

cd

(

∇(cud)
)

ubua − 2DT
c(a∇b)u

c −∇c

(

DT
bauc

)]}

ξa

−
1

2

[

Tsgab + DT
ab +DT

cd

(

∇(cud)
)

uaub − 2DT
c(a∇b)u

c −∇c

(

DT
abuc

)]

δgab

+∇a
{[

DT
ab +DT

cd

(

∇(cud)
)

uaub − 2DT
c(a∇b)u

c −∇c

(

DT
abuc

)]

ξb
}

−∇c

[

1

2
DT

abuc
(

δgab − 2∇(aξb)
)

]

+∇b

[(

Θasaδb
c − Θcsb

)

ξc
]

. (68)

5.3. The General Variation of the Action

Now that both δna and δsa are in place, we find that the variation of the action is
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δSF =
∫

M
d4x

√

−g
{

−
(

2nb∇[bµa] + 2sb∇[bΘa] + ΓsΘa +∇b
[

DT
ba +DT

cd

(

∇(cud)
)

ubua

−2DT
c(a∇b)u

c −∇c

(

DT
bauc

)])

ξa +
1

2

[

(Λ + µn + Ts)gab + µanb

+Θasb + Dab
T +DT

cd

(

∇(cud)
)

uaub − 2D
(a
T |c|∇

b)uc −∇c

(

Dab
T uc

)]

δgab

}

+ B.T . , (69)

where B.T . represents all the “boundary terms” that come from the total derivatives. The
equation of motion is

0 = 2nb∇[bµa] + 2sb∇[bΘa] + ΓsΘa +∇b
[

DT
ba +DT

cd

(

∇(cud)
)

ubua

−2DT
c(a∇b)u

c −∇c

(

DT
bauc

)]

, (70)

the entropy creation rate is (see Equation (A32) in Appendix A.5)

TΓs = −DT
bauc∇c

[

∇(bua)
]

−
[

DT
ba − 2DT

c(a∇b)u
c
]

∇(bua) , (71)

and the energy–momentum–stress tensor is

Tab = Ψgab + (Ψ − Λ)uaub + Dab
T

+DT
cd

(

∇(cud)
)

uaub − 2D
(a
T |c|∇

b)uc −∇c

(

Dab
T uc

)

, (72)

with the generalized pressure Ψ defined as

Ψ = Λ − µana − Θasa = Λ + µn + Ts . (73)

6. A Navier–Stokes(-ish) Model

As a direct application of the formal developments, we consider a specific model for
the functional dependence of sABC. As a precursor, we look more closely at the generic
form of the entropy creation rate derived above, by inserting the decomposition of ∇aub

given in Equation (19) into Equation (71). We then find

TΓs = −DT
ab

(

σab +
1

3
Θhab

)

−
1

3
DT

ab

(

Θ̇ +
2

3
Θ2

)

hab

−DT
ab

[

σ̇ab − 2

(

σc
a + ϖc

a +
2

3
Θδa

c

)

σbc

]

. (74)

This is useful because we can use the Onsager technique (in this context, see [30]) of
identifying appropriate thermodynamic “forces” and “fluxes” in order to ensure that the
second law of thermodynamics is respected: Γs ≥ 0. In this example, one finds that the
following gives the usual Navier–Stokes entropy creation rate, but a different equation of
motion and energy–momentum–stress tensor, namely, the choice

DT
ab = −T

{

(η − 2λ)σab +

[(

ζ +
1

3
η

)

+ λ

(

2

3
+

1

Θ

d(ln Θ)

dτ

)]

Θhab

}

,

DT
ab = Tλhab , (75)

leads to

Γs = ησabσab +

(

ζ +
1

3
η

)

Θ2 . (76)
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The corresponding equation of motion is

0 = 2nb∇[bµa] + 2sb∇[bΘa] + ΓsΘa −∇b

{

T

[

ησab +

(

ζ +
1

3
η

)

Θhab

]

+Tλ

[

7

3
+

1

Θ
uc∇c ln(TλΘ)

]

Θhab

}

, (77)

and the energy–momentum–stress tensor is

Tab = Ψgab + (Ψ − Λ)uaub − T

[

ησab +

(

ζ +
1

3
η

)

Θhab

]

− Tλ

[

7

3
+

1

Θ
uc∇c ln(TλΘ)

]

Θhab . (78)

The Onsager construction is well grounded in both experimental and theoretical
chemistry (for example, when considering systems with many reaction rates [31]) and
the same is the case for physics applications. But this is not all that we are seeking
here; for example, in the Onsager strategy the coefficients η, ζ, and λ are determined
“externally” assuming that the system has experienced some (linear) deviation away from
some prescribed equilibrium. In contrast, the variational derivation involved no notion of
equilibrium with everything determined by the action principle.

As a proof of principle and demonstration of how the calculation should proceed, we
will consider a specific form for the entropy density and then push through the formulae
given above for the equation of motion, entropy creation rate, and energy–momentum–
stress tensor. We will find that the natural matter and entropy space elements of such a
construct (ḡAB, ˙̄gAB, etc.) have built-in properties for the otherwise arbitrary coefficients
that are used to tie them together in sABC.

We now consider a specific form for sABC, which has only linear terms in ˙̄gAB and ġAB.
Specifically, we start from

sABC = s
(0)
ABC +

2

∑
j=1

2

∑
i=1

s̄
(i,j)
ABC H̄(i)Θ(j) + s̄

(1)
ABC ġDE ḡDE + s

(1)
ABC

˙̄gDEgDE . (79)

All of the “s̄”, “s”, and “ŝ” coefficients are functions of only X̄A. From this, we can construct
the entropy density:

s =
1

3!
ϵ̄ABCsABC

= s(0) +
2

∑
j=1

2

∑
i=1

s̄(i,j)H̄(i)Θ(j) + s̄(1) ġDE ḡDE + s(1) ˙̄gDEgDE . (80)

where

s(0) =
1

3!
ϵ̄ABCs

(0)
ABC , s̄(i,j) =

1

3!
ϵ̄ABC s̄

(i,j)
ABC , s̄(1) =

1

3!
ϵ̄ABC s̄

(1)
ABC , s(1) =

1

3!
ϵ̄ABCs

(1)
ABC . (81)

Since ˙̄XD = 0, and using Equation (39), we see

ṡ(0) = −s(0)Θ , ˙̄s(i,j) = −s̄(i,j)Θ , ˙̄s(1) = −s̄(1)Θ , ṡ(1) = −s(1)Θ , (82)

or

∇a

(

s(0)ua
)

= 0 , ∇a

(

s̄(i,j)ua
)

= 0 , ∇a

(

s̄(1)ua
)

= 0 , ∇a

(

s(1)ua
)

= 0 . (83)
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Using the various derivatives given in Equation (A33) in Appendix A.6, we can
show that

∂sABC

∂ḡDE
=

1

3

2

∑
j=1

[

s̄
(1,j)
ABCgDE −

1

2
s̄
(2,j)
ABCgFG(ḡFD ḡGE + ḡGD ḡFE)

]

Θ

+
1

2

2

∑
i=1

s̄
(i,1)
ABC H̄(i) ḡFD ḡGE ˙̄gFG −

1

2
s̄
(1)
ABC ġFG(ḡFD ḡGE + ḡGD ḡFE) ,

∂sABC

∂gDE
=

1

3

2

∑
j=1

[

s̄
(2,j)
ABC ḡDE −

1

2
s̄
(1,j)
ABC ḡFG(gFDgGE + gGDgFE)

]

Θ

+
1

2

2

∑
i=1

s̄
(i,2)
ABC H̄(i)gFDgGE ġFG −

1

2
s
(1)
ABC

˙̄gFG(gFDgGE + gGDgFE) ,

∂sABC

∂ ˙̄gDE
=

(

−
1

2

2

∑
i=1

s̄
(i,1)
ABC H̄(i) ḡDE + s

(1)
ABCgDE

)

,

∂sABC

∂ġDE
=

(

−
1

2

2

∑
i=1

s̄
(i,2)
ABC H̄(i)gDE + s̄

(1)
ABC ḡDE

)

. (84)

The four tensors D̄ab, Dab, D̄ab, and Dab are, respectively,

D̄ab =
1

3
ΘABC ∂sABC

∂ḡDE
Ψ̄D

a Ψ̄E
b

= −2T

{[

s̄(1,1)H̄(1) + s̄(2,1)H̄(2) − 2s̄(1)
(

Ĥ(2)
)2
]

σab

+
1

3

[

s̄(2,1)H̄(2) − s̄(1,2)H̄(1) +
(

s̄(2,1) + s̄(2,2) − 2s̄(1)
)(

Ĥ(2)
)2
]

Θhab

}

, (85)

Dab =
1

3
ΘABC ∂sABC

∂gDE
ΨD

a ΨE
b

= −2T

{[

s̄(1,2)H̄(1) + s̄(2,2)H̄(2) − 2s(1)
(

Ĥ(1)
)2
]

σab

+
1

3

[

s̄(1,2)H̄(1) − s̄(2,1)H̄(2) +
(

s̄(1,1) + s̄(1,2) − 2s(1)
)(

Ĥ(1)
)2
]

Θhab

}

, (86)

D̄ab =
1

3
ΘABC ∂sABC

∂ ˙̄gDE
Ψ̄D

a Ψ̄E
b

= −2T

(

1

2

2

∑
i=1

s̄(i,1)H̄(i) − s(1)H̄(1)

)

hab , (87)

Dab =
1

3
ΘABC ∂sABC

∂ġDE
ΨD

a ΨE
b

= −2T

(

1

2

2

∑
i=1

s̄(i,2)H̄(i) − s̄(1)H̄(2)

)

hab . (88)

Finally, the two “dissipation” tensors DT
ab and DT

ab are, respectively,
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DT
ab = −2T

{[

2

∑
i=1

(

s̄(i,1) + s̄(i,2)
)

H̄(i) − 2s̄(1)
(

Ĥ(2)
)2

− 2s(1)
(

Ĥ(1)
)2
]

σab

+
1

3

[

2

∑
i=1

(

s̄(i,1) + s̄(i,2)
)(

Ĥ(i)
)2

− 2s(1)
(

Ĥ(1)
)2

− 2s̄(1)
(

Ĥ(2)
)2
]

Θhab

}

= Tc1σab + Tc2Θhab ,

DT
ab = −2T

[

1

2

2

∑
i=1

(

s̄(i,1) + s̄(i,2)
)

H̄(i) −
(

s̄(1)H̄(2) + s(1)H̄(1)
)

]

hab

= Tc3hab , (89)

where

c1 = −2
2

∑
i=1

(

s̄(i,1) + s̄(i,2)
)

H̄(i) + 4s̄(1)
(

Ĥ(2)
)2

+ 4s(1)
(

Ĥ(1)
)2

,

c2 = −
2

3

[

2

∑
i=1

(

s̄(i,1) + s̄(i,2)
)(

Ĥ(i)
)2

− 2s(1)
(

Ĥ(1)
)2

− 2s̄(1)
(

Ĥ(2)
)2
]

,

c3 = −
2

∑
i=1

(

s̄(i,1) + s̄(i,2)
)

H̄(i) + 2
(

s̄(1)H̄(2) + s(1)H̄(1)
)

. (90)

Note that the coefficients ci satisfy the following system of linear, first-order differen-
tial equations:

ċ1 =

(

2c2 −
5

3
c1

)

Θ , (91)

ċ2 = −c2Θ , (92)

ċ3 =

(

c2 −
5

3
c3

)

Θ ; (93)

therefore, keeping them static along fluid worldlines is not possible. This is a significant
difference with the Onsager model given earlier at the start of this section where, in
priniciple, its η, ζ, and λ coefficients satisfy (up to the choice of sign) no constraints or
evolution equations.

The equation of motion is

0 = 2nb∇[bµa] + 2sb∇[bΘa] + ΓsΘa +∇b

{

T

[

(c1 − 2c3)σab +

(

c2 −
2

3
c3

)

Θhab

−c3Θgab −
1

T
uc∇c(c3T)hab

]}

, (94)

while the entropy creation rate is determined to be

Γs = (2c3 − c1)σabσab +

(

2

3
c3 − c2

)

Θ2 − c3Θ̇ , (95)

and the energy–momentum–stress tensor is

Tab = (Ψ − c3Θ)gab + (Ψ − Λ)uaub + T

[

(c1 − 2c3)σ
ab +

(

c2 −
2

3
c3

)

Θhab

−
1

T
uc∇c(c3T)hab

]

. (96)
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The set of Equations (94)–(96) completes the dissipative fluid model that follows
from the variational principle once we make the chosen simplifications and adopt the
prescription in Equation (79). At this point, all that remains is to examine the results and
decide if these equations are “acceptable” or not. A first hint of the latter follows from a
comparison with (76) and (78). The equations we have arrived at clearly do not replicate
the model built using Onsager-style reasoning. Of course, this was not our intention. We
set out to develop an explicit model to illustrate the steps and assumptions required to
go from sABC to the final equation of motion, the entropy creation rate, and the energy–
momentum–stress tensor. A notable feature of this model is that—unlike the Onsager
approach or, indeed, every other state-of-the-art model for dissipative relativistic fluids—
all functions and parameters (e.g., bulk and shear viscosity) are determined at the level of
the action. In fact, even their evolutions along individual world lines are obtained within
the formalism. This is conceptually important and there are valuable lessons to learn from
the derivation. For example, it is evident that the bulk and shear viscosity should not be
taken to be “constant” in a general nonlinear model. With a governing set of equations like
(91)–(93), it is clear that the model must evolve with the flow. However, despite having
some appealing features it is clear that the specific model we have arrived at is problematic.
Most importantly, it is clear from (95) that the only way to ensure that the second law is
enforced (locally) is to insist that c3 vanishes at all times. This then leads to c2 vanishing
as well and we are left with a model having only c1 ̸= 0, representing a system where
the only dissipation channel is shear viscosity. This restricted model may have interesting
applications, but it is clearly not the general model we were looking for. There is more
work to do here.

7. Concluding Remarks

Building on the variational approach for dissipative relativistic fluids from [23], we
have taken steps towards formulating an explicit action principle that connects with the
familiar Navier–Stokes equations. In general, the variational approach is built around
matter and entropy fluxes (taken to be the primary degrees of freedom) and dissipation
arises if the dual three-form associated with a given flux is not closed. As discussed in [23],
this allows us to represent a number of dissipative channels, but the general model is
too “rich” to permit an intuitive interpretation. Given this, we introduced a number of
simplifications aimed at reducing the complexity of the model and highlighting the key
features. Most notably, we restricted ourselves to a single-fluid model. The motivation for
this (somewhat drastic, given that we know that issues like heat/entropy flows require a
multi-fluid approach [10]) assumption was to make contact with numerical simulations
which tend to reduce the analysis to a single fluid for practical reasons.

Given the various simplifications introduced in our derivation of the fluid equations,
the fact that the final result appears somewhat unfinished is perhaps not surprising. How-
ever, we would argue that the analysis provides several useful lessons. For example, we
have seen that the proper time derivative of the matter space “metric” must be included
in the matter Lagrangian in order to recover the expected terms associated with bulk and
shear viscosity. The discussion also shows that evolution equations along fluid worldlines
arise naturally in the model, a feature one might expect from a relativistic description. At
the same time, the construction added a less desirable term to the entropy creation rate.
The upshot is that the final model presented here is satisfactory—in the sense that it is
compatible with the second law (implemented locally)—as long as we only allow for the
presence of shear viscosity. The addition of bulk viscosity requires further thought.

To make progress, we may go back to the beginning and relax the simplifying assump-
tions one by one. This will make the discussion more involved, but at this point this seems
unavoidable. Noting that, from an implementation point of view, single-fluid models are
much easier to work with than multi-fluid ones, it would certainly be interesting to see
how much closer to a “workable” dissipative fluid model we can get without relaxing the
single-fluid assumption. If we have to account for the explicit multi-fluid aspects, then the
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framework for this already exists (see [10]), but we need to be mindful of the fact that we
are still quite far from having developed such models to the level where they are ready for
numerical implementation.
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Appendix A. Details Behind the Derivation of Important Relations

Appendix A.1. Metric and Map Inverses

Note that ϵabcd is an essential component of this process of pull-back and push-forward.
It and its inverse ϵabcd satisfy some useful identities:

ϵabcdϵe f gh = −4!δ
[a
e δb

f δc
gδ

d]
h ,

ϵabcdϵa f gh = −3!δ
[b
f δc

gδ
d]
h ,

ϵabcdϵabgh = −2!2δ
[c
g δ

d]
h ,

ϵabcdϵabch = −3!δd
h ,

ϵabcdϵabcd = −4! . (A1)

In a similar way, we can introduce the three-forms {ϵABC, ϵ̄ABC} and inverses {ϵABC, ϵ̄ABC},
which have a similar set of identities:

ϵABCϵDEF = ϵ̄ABC ϵ̄DEF = 3!δ
[A
D δB

E δ
C]
F , (A2)

ϵABCϵAEF = ϵ̄ABC ϵ̄AEF = 2δ
[B
E δ

C]
F , (A3)

ϵABCϵABF = ϵ̄ABC ϵ̄ABF = 2δC
F , (A4)

ϵABCϵABC = ϵ̄ABC ϵ̄ABC = 3! . (A5)

Using basic linear algebra techniques (Cramer’s rule), it can be shown that the matter
space metric inverses gAB, ḡAB, ĝAB are given by

gACgCB = δA
B =⇒ gAB =

1

2
ϵACEϵBDFgCDgEF ,

ḡAC ḡCB = δA
B =⇒ ḡAB =

1

2
ϵ̄ACE ϵ̄BDF ḡCD ḡEF ,

ĝAC ĝCB = δA
B =⇒ ĝAB =

1

2
ϵ̂ACE ϵ̂BDF ĝCD ĝEF , (A6)
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where

ϵABC =
√

det[gDE][ABC]U , ϵABC =
1

√

det[gDE]
[ABC]D ,

ϵ̄ABC =
√

det[ḡDE][ABC]U , ϵ̄ABC =
1

√

det[ḡDE]
[ABC]D ,

ϵ̂ABC =
√

det[ĝDE][ABC]U , ϵ̂ABC =
1

√

det[ĝDE]
[ABC]D , (A7)

[ABC]U = 3!δ
[A
1 δB

2 δ
C]
3 , [ABC]D = 3!δ1

[Aδ2
Bδ3

C] , (A8)

and

det
[

gDE
]

=
1

3!
[ABC]D [DEF]DgADgBEgCF ,

det
[

ḡDE
]

=
1

3!
[ABC]D [DEF]D ḡAD ḡBE ḡCF ,

det
[

ĝDE
]

=
1

3!
[ABC]D [DEF]D ĝAD ĝBE ĝCF . (A9)

Because of Equation (A2),

[ABC]U [DEF]D = 3!δ
[A
D δB

E δ
C]
F . (A10)

It is also the case that

M̄A
B =

1

2
ϵACE

M ϵM
BDF MD

C MF
E , (A11)

where

ϵABC
M =

√

det
[

MD
E

]

[ABC]U , ϵM
ABC =

1
√

det
[

MD
E

]

[ABC]D , (A12)

and

det
[

MD
E

]

=
1

3!
[ABC]D [DEF]U MA

D MB
E MC

F . (A13)

Appendix A.2. Mappings Between gAB, ḡAB, and ĝAB

In order to establish the rule for mapping gAB to ḡAB, and vice versa, we can show
that the standard rules involving Jacobians apply. For this, we work out det

[

gDE
]

, and the
rest follow similarly:

det
[

gDE
]

=
1

3!
[ABC]D [DEF]DgADgBEgCF

=
1

3!
[ABC]D [DEF]DMA

G MD
J ḡGJ MB

H ME
K ḡHK MC

I MF
L ḡIL

=
1

3!
[ABC]DMA

G MB
H MC

I [DEF]DMD
J ME

K MF
L ḡGJ ḡHK ḡIL

=
1

3!
[ABC]DMA

G MB
H MC

I [DEF]DMD
J ME

K MF
Lδ

[G
M δH

N δ
I]
Oδ

[J
P δK

Qδ
L]
R ḡMP ḡNQ ḡOR

=

(

1

3!
[GHI]U [ABC]DMA

G MB
H MC

I

)(

1

3!
[JKL]U [DEF]DMD

J ME
K MF

L

)

(

1

3!
[MNO]D [PQR]D ḡMP ḡNQ ḡOR

)

=
(

det
[

MA
B

])2
det
[

ḡDE
]

. (A14)
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This means that the inverse gAB is mapped to ḡAB via

MC
A MD

B gCD =
1

2
MC

A MD
B ϵCEGϵDFH ME

I MF
K ḡIK MG

J MH
L ḡJL = ḡAB ; (A15)

that is,
ḡAB = MC

A MD
B gCD , gAB = M̄C

A M̄D
B ḡCD . (A16)

Starting with the fact that det
[

δA
B

]

= 1, and using Equation (6), it can be shown that

det
[

M̄A
B

]

= 1
/

det
[

MA
B

]

. (A17)

Finally, we also determine the connections with det
[

ĝDE
]

:

det
[

ĝDE
]

= det
[

M̄A
B

]

det
[

gAB
]

. (A18)

With this, it can be shown that

gAB = M̄C
B ĝAC , ĝAB = MC

B gAC . (A19)

Consequently,

gAB ĝAB = gAB MC
B gAC =

(

gBAgAC

)

MC
B = MA

A ,

ĝABgAB = gAC M̄B
CgAB =

(

gACgAB

)

M̄B
C = M̄A

A . (A20)

Appendix A.3. Matter Space Volume Forms

The next step is to establish the rules for identifying the spacetime objects with their
matter space counterparts, and to determine how to connect the particle space objects with
the entropy space ones. Two essential ingredients for this are the completely antisymmetric
objects ϵABC and ϵ̄ABC, whose defining properties are given in Equation (A5).

It must be the case that nABC and sABC are proportional to ϵABC and ϵ̄ABC, respectively,
i.e. nABC = N ϵABC and sABC = S ϵ̄ABC, and that µABC and ΘABC are proportional to
ϵABC and ϵ̄ABC, respectively, i.e. µABC = MϵABC and ΘABC = T ϵ̄ABC. Equation (A5)
then implies

N =
1

3!
ϵABCnABC , S =

1

3!
ϵ̄ABCsABC ,

M =
1

3!
ϵABCµABC , T =

1

3!
ϵ̄ABCΘABC . (A21)

It is easy to see that

ϵabc ≡ udϵdabc = ΨA
a ΨB

b ΨC
c nABC/n = Ψ̄A

a Ψ̄B
b Ψ̄C

c sABC/s , (A22)

and

ΨA
a ΨB

b ΨC
c ϵabc ≡ ΨA

a ΨB
b ΨC

c udϵabc
d = µABC/µ ,

Ψ̄A
a Ψ̄B

b Ψ̄C
c ϵabc ≡ Ψ̄A

a Ψ̄B
b Ψ̄C

c udϵabc
d = ΘABC/T . (A23)

From the definitions of µabc and Θabc we have

M =
1

3!
ϵABCµABC = µ

(

1

3!
ϵabcϵABCΨA

a ΨB
b ΨC

c

)

= µ

(

1

3!
ϵabcϵabc

)

= µ ,

T =
1

3!
ϵ̄ABCΘABC = T

(

1

3!
ϵabc ϵ̄ABCΨ̄A

a Ψ̄B
b Ψ̄C

c

)

= T

(

1

3!
ϵabcϵabc

)

= T . (A24)
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This implies

ϵABC = µABC/µ = ΨA
a ΨB

b ΨC
c µabc/µ = ΨA

a ΨB
b ΨC

c ϵabc ,

ϵ̄ABC = ΘABC/T = Ψ̄A
a Ψ̄B

b Ψ̄C
c Θabc/T = Ψ̄A

a Ψ̄B
b Ψ̄C

c ϵabc , (A25)

and therefore N = n and S = s. It is now straightforward to show that

ϵ̄ABC = M̄A
D M̄B

E M̄C
F ϵDEF , ϵABC = MA

D MB
E MC

F ϵ̄DEF , (A26)

and similarly for ϵ̄ABC and ϵABC. Finally, we find

ϵabc = ΨD
a ΨE

b ΨF
c ϵDEF = Ψ̄A

a Ψ̄B
b Ψ̄C

c ϵ̄ABC , (A27)

and therefore

ua =
1

3!
ϵbcdaΨB

b ΨC
c ΨD

d ϵBCD =
1

3!
ϵbcdaΨ̄B

b Ψ̄C
c Ψ̄D

d ϵ̄BCD . (A28)

Appendix A.4. Matter Space Metric Variations

Steps leading to Equation (48) in the main text:

∆
(

∂agAB
)

= δ
(

∂agAB
)

+ Lξ

(

∂agAB
)

= ∂a

(

δgAB
)

+ ξb∇b

(

∂agAB
)

+
(

∂bgAB
)

∇aξb

= ∂a

(

δgAB
)

+ ξb∇a

(

∂bgAB
)

+
(

∂bgAB
)

∇aξb

= ∂a

(

δgAB
)

+ ∂a

(

ξb∂bgAB
)

= ∂a

(

δgAB + Lξ gAB
)

= ∂a

(

∆gAB
)

= ∂a

(

ΨA
b ΨB

c ∆gbc
)

, (A29)

The major steps used to develop the cross-listed Equation (49) in the main text:

∆ġAB = −ġAB

(

1

2
ubuc∆gbc

)

+ ua∂a

(

ΨA
b ΨB

c ⊥
(b
d ⊥

c)
e ∆gde

)

= ΨA
a ΨB

b ∇
(aub)

(

ucud∆gcd
)

−
(

ΨA
a ΨB

b + ΨA
b ΨB

a

)

(∇cua) ⊥
(b
d ⊥

c)
e ∆gde + ΨA

a ΨB
b ue∇e

(

⊥
(a
c ⊥

b)
d ∆gcd

)

= ΨA
a ΨB

b ∇
(aub)

(

ucud∆gcd
)

− ΨA
a ΨB

b

(

⊥b
d ∇cua+ ⊥a

d ∇cub
)

⊥c
e ∆gde + ΨA

a ΨB
b ue∇e

(

⊥
(a
c ⊥

b)
d ∆gcd

)

= ΨA
a ΨB

b

[

∇(aub)
(

ucud∆gcd
)

− 2
(

⊥
(a
c ∇eub)

)

⊥e
d ∆gcd + ue∇e

(

⊥
(a
c ⊥

b)
d ∆gcd

)]

= ΨA
a ΨB

b

{[(

∇(aub)
)

ucud − 2 ⊥e
d⊥

(a
c ∇eub) + ue∇e

(

⊥
(a
c ⊥

b)
d

)]

∆gcd

+ ⊥
(a
c ⊥

b)
d ue∇e

(

∆gcd
)}

= ΨA
a ΨB

b

{

⊥
(a
c ⊥

b)
d ue∇e

(

∆gcd
)

+
[

⊥
(a
e ⊥

b)
f

(

∇(eu f )
)

ucud

−2 ⊥
(a
c ⊥

b)
e ∇due

]

∆gcd
}

. (A30)
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Appendix A.5. Entropy Creation Rate Derivation

The major steps used to develop the cross-listed Equation (A31) in the main text:

1

3!
ΘBCD∆sBCD =

1

2
DT

ab

[

δgab − 2∇(aξb)
]

+
1

2
DT

ab

{

⊥a
c⊥

b
d ue∇e

(

δgcd − 2∇(cξd)
)

+
[

⊥a
(e⊥

b
f )

(

∇eu f
)

ucud − 2 ⊥
(a
c ⊥

b)
e ∇due

](

δgcd − 2∇(cξd)
)}

=
1

2
DT

ab

[

δgab − 2∇(aξb)
]

+
1

2

{

DT
abuc∇c

(

δgab − 2∇(aξb)
)

+
[

DT
cd

(

∇(cud)
)

uaub − 2DT
c(a∇b)u

c
](

δgab − 2∇(aξb)
)}

=
1

2

[

DT
ab +DT

cd

(

∇(cud)
)

uaub − 2DT
c(a∇b)u

c −∇c

(

DT
abuc

)]

[

δgab − 2∇(aξb)
]

+∇c

[

1

2
DT

abuc
(

δgab − 2∇(aξb)
)

]

= −
[

DT
ab +DT

cd

(

∇(cud)
)

uaub − 2DT
c(a∇b)u

c −∇c

(

DT
abuc

)]

∇(aξb)

+
1

2

[

DT
ab +DT

cd

(

∇(cud)
)

uaub − 2DT
c(a∇b)u

c −∇c

(

DT
abuc

)]

δgab

+∇c

[

1

2
DT

abuc
(

δgab − 2∇(aξb)
)

]

= ∇b
[

DT
ba +DT

cd

(

∇(cud)
)

ubua − 2DT
c(a∇b)u

c −∇c

(

DT
bauc

)]

ξa

+
1

2

[

DT
ab +DT

cd

(

∇(cud)
)

uaub − 2DT
c(a∇b)u

c −∇c

(

DT
abuc

)]

δgab

−∇a
{[

DT
ab +DT

cd

(

∇(cud)
)

uaub − 2DT
c(a∇b)u

c −∇c

(

DT
abuc

)]

ξb
}

+∇c

[

1

2
DT

abuc
(

δgab − 2∇(aξb)
)

]

, (A31)

Steps leading to the entropy creation rate Γs start with projecting the equation of
motion Equation (70) onto ua:

(−uaΘa)Γs = ua∇b
[

DT
ba +DT

cd

(

∇(cud)
)

ubua − 2DT
c(a∇b)u

c −∇c

(

DT
bauc

)]

= ∇b
{

ua
[

DT
ba +DT

cd

(

∇(cud)
)

ubua − 2DT
c(a∇b)u

c −∇c

(

DT
bauc

)]}

−
[

DT
ba +DT

cd

(

∇(cud)
)

ubua − 2DT
c(a∇b)u

c −∇c

(

DT
bauc

)]

∇bua

= ∇b
[

DT
cd

(

∇(cud)
)

uauaub − 2uaDT
c(a∇b)u

c − ua∇c

(

DT
bauc

)]

−
[

DT
ba − 2DT

c(a∇b)u
c −∇c

(

DT
bauc

)]

∇bua

= ∇b
[

−DT
cd

(

∇(cud)
)

ub −DT
cbua∇auc −∇c

(

uaDT
bauc

)

+DT
bauc∇cua

]

−
[

DT
ba − 2DT

c(a∇b)u
c −∇c

(

DT
bauc

)]

∇(bua)

= −∇c

[

DT
bauc

(

∇(bua)
)]

+∇c

(

DT
bauc

)

∇(bua) −
[

DT
ba − 2DT

c(a∇b)u
c
]

∇(bua)

= −DT
bauc∇c

[

∇(bua)
]

−∇c

(

DT
bauc

)

∇(bua) +∇c

(

DT
bauc

)

∇(bua)

−
[

DT
ba − 2DT

c(a∇b)u
c
]

∇(bua)

= −DT
bauc∇c

[

∇(bua)
]

−
[

DT
ba − 2DT

c(a∇b)u
c
]

∇(bua) . (A32)
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Appendix A.6. Useful Partial Derivatives

A few useful formulas are

∂gAB

∂gDE
= −

1

2
(gADgBE + gAEgBD) ,

∂ġAB

∂ġDE
=

1

2

(

δA
DδB

E + δB
DδA

E

)

,

∂ϵABC

∂gDE
= −

1

2
ϵABC gDE

∂Θ

∂gDE
= −

1

2

∂gAB

∂gDE
ġAB =

1

2
gADgBE ġAB

∂Θ

∂ġDE
= −

1

2

∂ġAB

∂ġDE
gAB = −

1

2
gDE ,

∂H̄(1)

∂ḡDE
=

1

3

∂ḡAB

∂ḡDE
gAB =

1

3
gDE ,

∂H̄(1)

∂gDE
=

1

3

∂gAB

∂gDE
ḡAB = −

1

6
ḡAB(gADgBE + gAEgBD) ,

∂H̄(2)

∂gDE
=

1

3

∂gAB

∂gDE
ḡAB =

1

3
ḡDE ,

∂H̄(2)

∂ḡDE
=

1

3

∂ḡAB

∂ḡDE
gAB = −

1

6
gAB(ḡAD ḡBE + ḡAE ḡBD) . (A33)
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