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Abstract: This paper is devoted to the study of stationary trajectories of free particles. From a classical

point of view, this appears to be an almost trivial problem: Free particles should follow straight

lines as predicted by Newton’s first law, and straight lines are indeed the stationary trajectories of

the standard action integrals in the classical theory. In the following, however, a general relativistic

approach is studied, and in this situation it is much less evident what action integral should be used.

As it turns out, using the traditional Einstein–Hilbert principle gives us stationary states very much

in line with the classical theory. But it is suggested that a different action principle, and in fact one

which is closer to quantum mechanics, gives stationary states with a much richer structure: Even

if these states in a sense can represent particles which obey the first law, they are also inherently

rotating. Although we may still be far from understanding how general relativity and quantum

mechanics should be united, this may give an interesting clue to why rotation (or rather spin, which

is a different but related concept) seems to be the natural state of motion for elementary particles.

Keywords: law of inertia; general relativity; quantum mechanics; Lagrangian; rotation; spin

1. Introduction

Newton’s first law has, ever since it was formulated, been one of the most indisputable
laws of physics (see [1]). Before Newton, it may have been a non-obvious statement, but to
his followers it acquired an almost axiomatic status:

“Every body continues in its state of rest, or of uniform motion in a straight line,
unless it is compelled to change that state by an external force.”

Later generations of physicists have tried to derive Newton’s laws from more fun-
damental principles, most importantly the principle of least action: Bodies travel along
straight lines because this is the simplest (or “most economical”) way of developing. In a
more mathematical language, and in the simplest possible situation in classical physics
with just one particle, this can be expressed by saying that the straight line is the unique
action-minimizing trajectory between the starting point and the endpoint.

When the big revolutions in physics came along at the beginning of the twentieth
century, the first law survived remarkably well, both within general relativity and quantum
mechanics. In general relativity, bodies should now move along geodesics instead of just
straight lines. In quantum mechanics, Feynman’s democracy of all histories approach
has given us a sound motivation for identifying the trajectories which are stationary with
respect to the action with the probability-maximizing trajectories, i.e., coarsely speaking
the ones that have a reasonable chance of occurring. But none of these modifications is
usually thought of as altering the essential meaning of the first law itself.

Could there possibly still be something to add to the first law after more than three
centuries? In this paper, I will argue that there may actually be more to say. The point is
not that the first law as we know it is wrong. But it may in fact be that, in a certain sense,
the stationary solutions have a both more complex and more interesting structure than
is usually thought. This opinion is based on a curious and perhaps unexpected property

Symmetry 2024, 16, 1694. https://doi.org/10.3390/sym16121694 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16121694
https://doi.org/10.3390/sym16121694
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8640-3510
https://doi.org/10.3390/sym16121694
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16121694?type=check_update&version=1


Symmetry 2024, 16, 1694 2 of 13

of Lorentz geometry, a property which turns out to be particularly interesting when we
attempt to unify general relativity and quantum mechanics.

The present paper is the result of an attempt to apply general relativity to the study
of elementary particles. This is rather contrary to the historically dominating approach,
where gravity is almost always neglected. Although there seems to be a general agreement
among physicists that every particle should in principle give rise to a Schwarzschild metric
surrounding it, the effects of this metric are in general considered to be so weak that they
can be left out of the discussion.

Here, the idea will instead be the opposite one: Almost all properties of elementary
particles will be neglected, except the influence that comes from the metric which they
induce. It should be kept in mind that, as it is, we do not yet have access to any firm
knowledge about how these metrics are induced. For this reason, the metrics in this
paper should not be considered to be based on some fundamental physical theory. Rather,
they should be viewed as simple mathematical attempts to illustrate some properties
which could potentially be important, not only in Lorentz geometry, but also for the grand
unification of general relativity and quantum mechanics.

Before going into details, let me also say that I agree with the general opinion that the
effects of the Schwarzschild metric away from a particle are probably negligible for almost
everything in particle physics. However, this is not the full story. The Schwarzschild metric
is not defined in all of space-time because of the singularity at the origin. If we insist on a
metric defined everywhere, which agrees with the Schwarzschild metric asymptotically,
then inevitably it will have to have non-zero Ricci curvature somewhere, most likely close
to or inside the particle.

The point is that this non-zero Ricci curvature may not be negligible at all. In fact,
if we believe that the concept of mass–energy in general relativity in a unified theory
should be essentially equivalent to the concept of mass–energy in quantum mechanics,
then one can argue that this Ricci curvature could be as important as the usual quantum
mechanical mass–energy.

The key tool in the following will be the principle of least action. In a certain sense,
this may be the closest we have to a universal law of physics. On the other hand, it is not
at all clear how this principle should be interpreted and what the action should look like,
in particular in general relativity. There, the most commonly used action principle is the
Einstein–Hilbert principle (see [2,3]):

I =
∫

R dV. (1)

Arguably, this is the simplest choice. But there is no generally accepted deduction of (1)
from fundamental principles, and it is also well known (see [4]) that there are many other
action principles which can be used to generate the field equations of general relativity.
In the following, (1) will be compared to another (non-standard) action principle:

I =
∫

R2 dV. (2)

In particular, it will be seen that the stationary states of (2) have a more complicated,
and also more interesting, structure than those of (1), especially when it comes to properties
related to rotation and spin.

Remark 1. The word non-standard here refers to the fact that (2) does not reproduce the field
equation in the usual way using the classical calculus of variation (as in the case of (1)). Only when
we apply a multiple-histories perspective to general relativity, can the ordinary field equations be
obtained. A complete treatment of this approach would use methods from statistical mechanics,
and would also be very difficult to make rigorous. However, in the Appendix A a description of the
main ideas is included (see also [5]).
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In a sense, this is all much closer to quantum mechanics than is the Einstein–Hilbert principle.
It is in fact very much at the heart of this paper that the classical Einstein–Hilbert principle, even if
it was a great step forwards at the time when it was introduced, may nowadays be a road blocker on
our way to a unification between general relativity and quantum physics.

Remark 2. The action principle (2) is by no means the only attempt to use classical differential
geometry to bridge the gap from general relativity to quantum mechanics in general and spin in
particular. Particularly interesting examples have been discussed within the framework of Einstein–
Cartan theory, using an extended geometric framework in order to include, e.g., spinors. See,
e.g., [6,7].

This paper can be seen as a continuation of my paper [8]. The main theme is the
same; namely, that in Lorentz geometry, as viewed from the perspective of (2), rotation
is, coarsely speaking, more natural than non-rotation. In particular, the ground states of
particles, i.e., the states with the lowest energy, in a certain sense seem to be rotating under
rather general circumstances, even if the concept of rotation itself may not be well defined
in Lorentz geometry (in particular when the Ricci curvature is non-zero). In the previous
paper, it was merely argued that curvature, as measured by (2), goes down when we start to
rotate the metric. In this paper, the purpose is to show how the metrics, which are actually
stationary with respect to the action principle (2), can be computed. (See the Mathematica
file in the Supplementary Materials).

This is considerably more precise information. But it can only be reached at the price
of much heavier computations. In this paper, I have decided to work with just two very
simple metrics, where everything can be computed. Nevertheless, the goal should be to
prove theorems for general classes of metrics, at least as general as in [8,9] to start with.
Hence, this paper should only be considered as a first attempt to attack the problem in
extremely simple special cases.

2. Stationary States

In this section, I investigate the consequences of the action principles (1) and (2) in
Section 1, and in particular take a closer look at their stationary metrics, which from now on
will be referred to as stationary states. It would be far beyond the reach of this paper to try
to analyze all such states, so I will limit myself to very simple metrics in what can loosely
be described as circular orbits (see below). It should also be remembered that rotation is a
very non-trivial concept in Lorentz geometry. This is especially so when the Ricci tensor
is non-zero, and the simple model here is by no means the final and perfect one. At best,
it can perhaps be viewed as a model which concentrates on the connection between the
metric of a hypothetical orbiting particle and the surrounding space-time, but neglects
the effects of the rotation on the particle itself. However, it will hopefully be sufficient to
demonstrate the remarkable difference between (1) and (2).

To make this discussion more precise, let us start by considering the following simple
model for a particle of radius 1 in a circular orbit of radius d, and which moves around the
z-axis with velocity b.

First, consider the function

hb(x, y, z, t) = 1 + ϕ((x − d cos(bt/d))2 + (y − d sin(bt/d))2 + z2), (3)

where d > 0 and ϕ(s) is a sufficiently differentiable one-variable function with support in
[0, 1]. Then, let

g(b) = hbdx2 + hbdy2 + hbdz2 − 1

hb
dt2. (4)

Clearly, this gives a metric which coincides with the usual Minkowski metric, except
close to the curve

Γ0 : (x, y, z, t) = (d cos(bt/d), d sin(bt/d), 0, t). (5)
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Remark 3. The reader may wonder why this particular method of parametrization is used. This
will hopefully become clearer later on (see Remark 5). In fact, it will be seen that b, with this
parametrization, acquires a more or less universal value, independent of d.

A very schematic picture of such a metric is given in Figure 1.

t=1 t=0

t=2

t=3

t=4

t=5

Figure 1. To the left, a very schematic illustration of a perturbation of the standard metric on Euclidean

three-space (although by necessity drawn in two dimensions), which circulates with time around an

axis in space (to the right).

As has already been said, the choice of this kind of metric is not based on any particular
physical theory. For the moment it just serves as an example of a specific mathematical
phenomenon, and the main reason for this choice is simplicity. In fact, everything we need
can be computed explicitly using Mathematica, at least for sufficiently simple choices of ϕ.
I will come back to the question of possible physical implications in Section 3.

As a particularly simple starting point, let us start with the specific choices

ϕ(s) =
1

25
(s − 1)2 and ϕ(s) = − 1

25
(s − 1)2 (6)

for 0 ≤ s < 1 and ϕ(s) = 0 otherwise. It is important to note that these choices of ϕ(s) are
regular enough to avoid singular contributions to the curvature.

Remark 4. It can be argued that the most interesting case is when ϕ(s) is, at least predominantly,
non-negative. A physical motivation for this assumption is that it can be interpreted as saying
that time should run more slowly in the presence of matter (compare with (3) and (4)). However,
although the two cases in (6) are geometrically rather different, the resulting stationary states are
remarkably similar. Here, only the case with the plus sign is presented, but the computations in the
minus sign case are included in the Mathematica file of the Supplementary Materials.

It does not make sense to compute the integrals in (1) and (2) over all of space-time,
since the result would obviously be infinite. What makes sense however is to compute the
time average over a given finite time interval, e.g., IT = [0, T], i.e.,

E1 =
1

T

∫

R3×IT

Rg

√

−det(g) dxdydzdt, (7)

and

E2 =
1

T

∫

R3×IT

R2
g

√

−det(g) dxdydzdt. (8)

In the case of the given metric g above, it is easy to see, by a simple rotation invariance
argument in R

3, that if we compute these integrals only over the x, y, z-variables, then
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the results will be independent of t. From this, it follows that the integrals can be further
simplified to

E1 =
∫

R3
Rg

√

−det(g) dxdydz =
∫

Db(t)
Rghb dxdydz, (9)

and

E2 =
∫

R3
R2
g

√

−det(g) dxdydz =
∫

Db(t)
R2
ghb dxdydz, (10)

where

Db(t) = {(x, y, z) : (x − d cos(bt/d))2 + (y − d sin(bt/d))2 + z2 ≤ 1}. (11)

Here,
√

−det(g) = hb comes from (4), and the integrals are in fact independent of the
choice of t.

Note that these integrals can be interpreted as the integrals (1) and (2) per unit of
time. In other words, E1 and E2 represent action per unit of time, which means, according
to the classical interpretation of action, that they represent some kind of energy. I do not
claim that it is obvious what kind of energy they would represent. Nevertheless, it may be
interesting to keep this interpretation in mind.

To compute integrals like these is not difficult in principle but, as is often the case
when the Riemann tensor is involved, extremely time and labor consuming. In fact, almost
all computations in this paper were carried out on a computer; see the Mathematica file in
the Supplementary Materials.

Let us now determine the stationary points of (1) and (2) in the following sense: In
principle, we want to compare the values of E1 and E2 along the circular orbit in (5) with
their values along close-by curves, but different choices of spaces of such curves are not
obviously equivalent. Here, I have chosen to work with the perhaps simplest choice, but it
is worth keeping in mind that there may be better alternative formulations, although it is
the opinion of the author that the main results would not be affected.

In the following, the space B will be the space of all sufficiently differentiable curves
which are periodic with period 2πd/b, i.e., with the same period in t as gb itself.

It is important to note that every curve which is close to Γ0 (in the sense that not only
are the curves close, but also their direction vectors are close) can be parametrized by t. It
follows that all small perturbations can be written in the form ( f0(t) + ϵ f (t), t), where f0

and ϵ f denote

f0(t) :







x = d cos(bt/d),
y = d sin(bt/d),
z = 0,

ϵ f (t) :







x = ϵ f1(t),
y = ϵ f2(t),
z = ϵ f3(t).

(12)

In other words, we will use the same time parameter t for all curves involved. There
is of course a case for using invariant methods, but for reasons of technical complexity in
the computations, this is currently out of reach.

When computing the variations with respect to perturbations in the space B, the inte-
grals can no longer be reduced to three dimensions (as in (9) and (10)), since the variations
in general do not share the rotational invariance properties of the metric we start with.
Hence, the integration in the time direction must also be taken into account. Keeping the
periodicity in mind, this is accomplished by making T in (7) and (8) equal to the period
2πd/b.

After some very long computations (see the Mathematica file in the Supplementary
Materials) of the curvature, some even longer integrations, and finally some partial integra-
tions in the t-variable (as is standard when deriving Euler–Lagrange equations), we finally
arrive at the following (note that f3(t) does not contribute to the first-order term for any
b, d):

E1( f0 + ϵ f ) = (13)
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E1( f0) + ϵ

∫ 2πd/b

0
c∗(b, d)

(

cos

(

bt

d

)

f1(t) + sin

(

bt

d

)

f2(t)

)

dt + O(ϵ2),

where

c∗(b, d) =
b

2πd

157376πb2

2165625d
=

78688b3

2165625d2
, (14)

and
E2( f0 + ϵ f ) = (15)

E2( f0) + ϵ

∫ 2πd/b

0
c∗∗(b, d)

(

cos

(

bt

d

)

f1(t) + sin

(

bt

d

)

f2(t)

)

dt + O(ϵ2),

where

c∗∗(b, d) =
8b3

78203125d4
× (16)

[

(−625625 + 625625i)d2
(

(−10248 − 10248i) + 5
√

7872271 − 9841045i cot−1
(√

−1 − 5i
)

+

(3320 + 7125i)
√
−1 + 5i cot−1

(√
−1 + 5i

))

+

64b2
(

547 + 33d2
(

−3605978 + 34125
√
−22006 − 4210i cot−1

(√
−1 − 5i

)

+

34125
√
−22006 + 4210i cot−1

(√
−1 + 5i

)))]

.

From the first formula (13), it is very easy to see that no orbiting metric (with d > 0)
could ever be stationary in the Einstein–Hilbert case, since we can always choose f1, f2 so
that the first-order term is non-zero. In fact, in this case, the only stationary solution is the
straight line corresponding to d = 0, which is formally not included in (13). This is actually
exactly what we should expect from a classical point of view.

More interesting, however, is the second formula (15). In this case, it is actually equally
easy to see that there are no stationary solutions as long as c∗∗(b, d) ̸= 0. But the point
is that in this case there are non-trivial solutions in addition to the straight line. In fact,
the equation

c∗∗(b, d) = 0 (17)

has non-trivial real solutions for b (for positive values of d).
Due to its simple rational form, (17) can be solved exactly. As could be suspected from

the equation itself, however, the expressions are quite complicated. A numerical plot of the
zeros is shown in Figure 2.

Figure 2. The solutions to the equation c∗∗(b, d) = 0 for d > 0.

Remark 5. What Figure 2 tells us is that the speed parameter b is essentially independent of
the radius d of the orbit, except for small values of this radius (as compared with the size of the
3-dimensional region where the metric deviates from the flat standard metric).
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Summarizing the above discussion, we have the following theorems:

Theorem 1. Periodic metrics of the type g(b), as in (3) and (4), where d > 0, are never stationary
with respect to the minimizing principle (1).

Theorem 2. Periodic metrics of the type g(b), as in (3) and (4), where d > 0, are stationary with
respect to the minimizing principle (2) if and only if b and d satisfy the equation c∗∗(b, d) = 0.

Remark 6. A natural question to ask next is: What is the character of these stationary metrics
discussed above? Preliminary computer computations of the second variations seem to show that
all stationary metrics, both rotating and non-rotating, are (local) minima. However, the value of
the integral in (2) tends to be smaller for the rotating ones, as compared to the non-rotating ones,
indicating that the rotating ones are the natural “ground states”.

For the numerical computations, see the Mathematica file in the Supplementary Materials.
There it is shown that the value of the “energy” in (10) for the non-rotating stationary metric is
approximately 0.092, whereas the corresponding value for the rotating ones (with d not too small) is
0.051, that is, approximately 55% of the value in the non-rotating case.

3. Possible Areas of Application

Can the results in the previous section lead to new physics? First of all it should
be remembered that everything proved here is based on classical differential geometry
without any trace of ordinary quantum mechanics in the methodology. Such an approach
could hardly be expected to give any final solutions to the fundamental problems in
particle physics. Having said this, however, it is my belief that studying the implications of
classical general relativity within the realm of quantum physics may be precisely what is
needed today in order to achieve the grand unification, since, historically, there has been a
very definite bias towards studying implications in the other direction, or even towards
attempting to somehow deduce general relativity from quantum mechanics.

Keeping this in mind, I will here give two examples of situations where differential
geometry may have something to add to our understanding. None of these examples
should be considered as more than possible shadows of the concepts of a final theory.
But still, these shadows may be easier for us to understand in a context where we have
access to the machinery of classical differential geometry.

The first example of a situation in which the stationary states in this paper may have
relevance comes from string theory. A possible (classical) model for an open string, which
has been discussed in more detail by the author in [8,9], may look as follows: We simply
define a string by the region in space which it occupies. And for an open string, the simplest
such region is the convex hull of two spheres.

In particular, studying such rotating strings, where mass is concentrated in the two
spheres at the ends, can mathematically be viewed as considering two orbiting metrics, as in
Section 2, rotating around a common axis (see Figure 3). In this case, the mathematics used
to derive the stationary metrics in Section 2 carries over essentially without any changes at
all, at least if we assume that the string is long enough so that the metrical disturbances
at the ends do not interfere with each other. This is, for example, the situation for the
schematic rotating string in Figure 3. And in general, strings in string theory are usually
thought of as being thin objects, or perhaps even as being simply one-dimensional.

Summarizing, the stationary states of the classical strings as described here with the
least energy (as measured by the integral in (10)) are rotating. This, in a sense, mimics what
happens in usual string theory. But in the present paper, the underlying mechanism is
purely classical and is based on the concept of curvature.
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Figure 3. A schematic illustration of a classical string (to the left). To the right, the same string rotating

around an axis in space (not in time).

This kind of classical strings does not seem very controversial from the point of view
of Newton’s first law: Their main property of interest consists in the observation that the
states of such strings with the lowest energy are rotating. But if we consider their centers of
mass, these are still expected to move along straight lines (or more generally, geodesics),
just as in the classical theory.

But what happens if we just consider the stationary states in Section 3 themselves,
without pairing them together to strings as above? Clearly, they would, if interpreted as
free particles traveling in space-time, be traveling in closed orbits or along helices. Such
behavior is certainly not what we expect from free particles.

There could however be exceptions: I would actually suggest thinking about such
stationary states, as in Section 2, as candidates for a kind of classical theory of photons. It is
not my intention here to advance some new speculative theory about what a photon actually
is. I only want to draw attention to the fact that the minimizing principle in Section 2
can actually give rise to something with both wave-like and particle-like properties (see
Figure 4).

Figure 4. A schematic illustration of such a classical photon, as in the text.

Obviously, the kind of classical stationary states considered here may be far from the
usual quantum mechanical picture, and it is by no means obvious how to bridge this gap
at this point. Nevertheless, the dichotomy between the two aspects of light, as waves and
as particles, has been one of the defining factors in the development of modern quantum
physics, most clearly manifested in Bohr’s complementarity principle (see [10]). So perhaps
it could be fruitful for our understanding to study this kind of two-sidedness in a completely
classical situation, where we have full access to our geometric intuition? There have been
many situations in the history of physics where the key to new quantum phenomena has
been to start from a corresponding classical analogue.

4. Discussion and Conclusions

What could the calculations in this paper possibly have to say about physics in general
and the unification of general relativity and quantum physics in particular? Although
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the metrics used in Section 2 should not be considered to represent any kind of realistic
physical model, the fact that rotating metrics appear to generate less scalar curvature than
non-rotating ones seems to be a very general one. This has previously been investigated by
the author in [8,9], but from a slightly different point of view. It is the author’s belief that the
kind of structure of the stationary states that has been studied in this paper may be a very
general phenomenon. But so far, the only firm information that we have is based on very
heavy computer computations, which can only be carried out for very simple examples.

The problem with the grand unification is the problem of building a bridge between
two very different conceptual frameworks: General relativistic concepts, like curvature,
have no natural interpretation in quantum mechanics; and likewise, quantum mechanical
concepts, like wave functions, have no natural interpretation in general relativity. It is the
belief of the author that the best road towards a unification is to try to study concepts which
have meaningful interpretations in both worlds.

This paper is part of an attempt to show that the idea of rotation/spin could be such a
concept. Although it is of course well known that quantum mechanical spin is something
different from classical rotation, it is equally well known that there must be some kind of
connection. The way spin was discovered, essentially through the work of Pauli [11] and
Dirac [12], shows that it is an indispensable part of quantum mechanics. On the other hand,
this approach, ingenious as it was, gives no hint to what really underlies the concept.

What the results in this paper are intended to show is that a conceptual reformulation
of general relativity could give us such a hint to how we may investigate this problem on a
deeper level.

Supplementary Materials: The following supporting information can be downloaded at: https:

//www.mdpi.com/article/10.3390/sym16121694/s1, In fact, almost all computations in this paper

has been carried out using Mathematica on an ordinary mac. The corresponding Mathematica file

can be downloaded and run on any computer running a sufficiently modern version of Mathematica.

For the particular method for computing curvature on a computer, the reader is referred to [13].

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article or Supplementary Materials.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. Multiple Histories as a Possible Foundation for General Relativity

This approach has emerged from a very simple way of treating multiple histories,
with roots in classical statistical mechanics. It is not at all claimed that this approach covers
all or even the most central problems of multiple-history theory (which obviously need
a quantum mechanical treatment), but it may still be that some problems can most easily
be understood using classical probabilities. In any case, making the following heuristic
motivation of the field equations in the case of the action principle based on (2) into
completely rigorous mathematics is a huge project. Here, it is included only to show the
possibilities of this approach, and it should be kept in mind that certainly a lot of work
remains.

The starting point is to consider all possible geometries, defined by different metrics,
in some region. Together, these are said to constitute an ensemble. Although there is an
enormous number of such geometries on a microscopic scale, it can very well be that on a
macroscopic scale, under suitable circumstances, there is only one geometry (or perhaps a
few) that has a non-negligible probability of occurring. This is perfectly analogous to what
happens, e.g., in the classical theory of gases (see [14]).

So, how do we define the ensemble of all such metrics g in a given macroscopic region
U in 4-space, subject to certain boundary conditions and, in addition, to the condition that
the four-volume of U with respect to g is a fixed number? In other words, how do we
assign probabilities to all these geometries? From a general relativistic point of view, it

https://www.mdpi.com/article/10.3390/sym16121694/s1
https://www.mdpi.com/article/10.3390/sym16121694/s1
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seems natural to assume that these probabilities should depend on the curvature, and by
far the most natural real measure of curvature is given by the scalar curvature R.

But even if we restrict ourselves to probabilities which just depend on R, there are
still many ways to assign a statistical weight to each geometry, and we know very little
about how this should be performed: When looking at the geometry at shorter and shorter
distances, the geometric fluctuations are expected to become larger and larger for quantum
mechanical reasons, but that is essentially as much as we can say.

Fortunately, however, it may not be necessary to know all the details about these
probabilities. In fact, assume more or less any probability distribution (with mean-value
zero) for the total scalar curvature

∫

Uα

R dV, (A1)

on a generic small set Uα, and assume also that the probability distributions on disjoint sets
behave more or less as independent stochastic variables. Using the central limit theorem
(see Fischer [15]), and the additivity of the integral in (A1) in disjoint regions, we can
conclude that the statistical weight of a larger set U, which can be written as a disjoint
union U = ∪αUα, should behave as

∼ exp{−µ

∫

U
R2 dV}, for some positive constant µ. (A2)

(see Tamm 2021 [5] for more details). Observe that the scalar curvature R in this setting
is not something which is defined at each point from the beginning. Rather, it should be
viewed as a kind of average:

R =
1

m(U)

∫

U
R′ dV, (where m(U) denotes space-time volume). (A3)

Note the perhaps somewhat confusing notation: Strictly speaking, R and R′ are both
measures of curvature, but are defined on different length scales. Only on a macroscopic
scale do these averages converge to the smooth classical function we are used to, and what
happens at very short distances, where the concept of curvature is bound to lose its meaning,
is something which we know very little about.

It is also worth recalling that ensembles in statistical mechanics are notoriously difficult
to define and treat in a rigorous way. But on the other hand, they are usually very insensitive
to the exact details of these definitions. Instead of going deeper into the nature of the
ensemble, I will here try to explain how this is all connected to the action

L =
∫

U
R2 dV, (A4)

and why the macroscopic metrics which dominate the ensemble should satisfy the field
equations in vacuum, Rij = 0.

A standard procedure in statistical mechanics (see [14]) looks as follows: First, compute
the “state sum” (summing over all possible metrics):

Ξ = ∑
g

exp{−µ

∫

U
R2

g dV}. (A5)

The negative of the logarithm of the state sum, L = − log Ξ, gives what is usually
called the “Helmholtz free energy”. Theory now tells us that the macrostates which
minimize L (among all states with a given volume) are the by far most probable ones,
i.e., the ones which are observed in nature.

Remark A1. Note that we are here working in four dimensions, not in three as in the usual theory.
In particular, the Helmholtz free energy here is not directly related to ordinary energy in the usual
sense.
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To compute the state sum and the free energy exactly can be a huge task. However,
usually the sum is dominated by a single term (or at most a few), together with the
corresponding “density of states Ωg”, i.e., the number of close-by metrics with more or less
the same value of the weight function:

Ξ ∼ exp{−µ

∫

U
R2

g dV} · Ωg, (A6)

L = − log Ξ ≈ µ

∫

U
R2

g dV − log Ωg. (A7)

Finding the states which minimize the free energy can be very difficult, since they are
determined by a complicated interplay between the sizes of the two terms in (A7) above. It
is in fact a very common situation in statistical mechanics that the two terms in (A7) compete
with each other: Sometimes the states with the largest weight win, and sometimes states
with lower probability win (because there are many more of them). Compare, e.g., with the
Ising model ([14,16]).

A possible method to minimize L could be to try to compute and solve the Euler–
Lagrange equation, but in this geometric situation, this would be a very difficult problem.

However, the case of the vacuum equations is a kind of exception: If there is a solution
to Rij = 0 in the region U, which furthermore fulfills the given boundary conditions, then
it can be argued that this solution should also minimize L. And, conversely, that a metric
which minimizes L should satisfy Rij = 0.

In fact, in this case we can try to simultaneously minimize both terms in (A7) by using
methods from statistical mechanics instead of the Euler–Lagrange equation.

In the present situation, it is obvious that a metric with Rij = 0 will also have R = 0,

which of course minimizes the R2 integral. But it is also clear that there are many other
metrics with R = 0 with the same property. So the question is: Why will the second term
− log Ω be smaller (log Ω will be bigger) for metrics with Rij = 0?

The reason for this is a subtle one, and the answer that statistical mechanics gives
is that it has to do with the character of the minima: Given a metric g with Rg = 0 and
an ϵ > 0, to compute the density of states Ωg basically means to figure out how many
variations δg there are such that R2

g+δg < ϵ. In addition, it must be noted that in the

macroscopic case, it is really the number of such variations when ϵ → 0 which matters.
And it is here that higher-order terms become important, not just the first-order terms as in
the Euler–Lagrange equation: A minimum where the second variation vanishes is much
flatter than a minimum where it does not, which means that in the first case there will be
many more variations contributing to Ωg.

In our case, we obtain for the orders of magnitude of the variations (writing R instead
of Rg):

if Rij ̸= 0, then δR ∼ |δg| and δ(R2) ∼ |δg|2, (A8)

if Rij = 0, then δR ∼ |δg|2 and δ(R2) ∼ |δg|4. (A9)

The difference between the second-order terms in (A8) and the fourth-order terms
in (A9) is exactly what makes metrics with Rij = 0 overwhelmingly more probable than
other metrics with just R = 0.

The first statement (A8) is a rather trivial one: Its essence is just the same as the fact
from elementary analysis that if γ(s) is differentiable and γ(0) = 0, then for small ∆s,
γ(∆s) ∼ ∆s, and γ2(∆s) ∼ (∆s)2. As for the second statement (A9), the corresponding
idea could similarly be expressed by saying that if γ(0) = γ′(0) = 0, then for small ∆s,
γ(∆s) ∼ (∆s)2, and γ2(∆s) ∼ (∆s)4. But the problem here is that for this comparison to
make sense, we somehow need to identify the derivative of R in the direction δgij with the
component Rij of the Ricci tensor. As it turns out, this is in a sense exactly what can be
achieved, but to establish this demands non-trivial differential geometry. Below is included
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an argument, but it is a short and non-technical explanation, rather than a technically
complete proof.

Writing h and hij for δg and δgij, we can compute the s-derivative of the scalar
curvature R(s) along the differentiable, volume-preserving one-parameter family gs =
g0 + s · h + . . . of metrics passing through a given extremal metric g = g0. The result is that
at s = 0,

dR

ds
= −∑

i,j

hijRij + divergence terms, where hij = ∑
k,l

gikgjlhkl . (A10)

(For this calculation, see, e.g., [17].)
Remembering from (A3) that the macroscopic curvature R should be interpreted as a

mean value, we obtain for a volume-preserving microscopic variation h with support in U
that the divergence terms disappear (by the divergence theorem), and that we are left with

d

ds
R = − 1

m(U)

∫

U

(

∑
i,j

Rijh
ij

)

dV ≈ −∑
i,j

Rij
1

m(U)

∫

U
hij dV. (A11)

Here, we use that the macroscopic Rijs vary very slowly on the microscopic set U.
Also, the calculation above must include the contribution from the variation in dV, which,
however, vanishes because of the condition of fixed volume. From this formula it is clear
that if Rij = 0, then R is flat, in the sense that the left-hand side in (A11) vanishes in
all directions.

If, on the other hand, the left-hand side in (A11) vanishes in all directions, then it is
a standard exercise in linear algebra to check that Rij = 0, using the fact that the hijs can
be chosen arbitrarily, only subject to the condition that the variation is volume-preserving,
which can be expressed as follows (see [17]):

∑
i,j

gij

∫

U
hij dV = 0. (A12)

In fact, the only case in which the Rijs can be chosen ̸= 0 so that the right-hand side
of (A11) is zero for all hij satisfying (A12), is to let Rij = k · gij for some k ̸= 0. But this is
not compatible with the condition that R, which is the trace of Rij, is zero.

Summing up, − log Ωg should then be minimized precisely when the vacuum field
equations are fulfilled.
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