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We give a short review on the study of the moduli space and the spectrum of chiral operators for
gauge theories living on branes at singularities. We focus on theories with four real supercharges
in 3+1 and 2+1 dimensions. The theories are holographically dual to AdS5 × H5 or AdS4 × H7
backgrounds, in Type-IIB or -M theory, respectively. We demonstrate that most of the information
on the moduli space and spectrum of the quiver gauge theories is encoded in the concept of the
“Master Space”, which is roughly the full moduli space for one brane, consisting of mesonic and
baryonic degrees of freedom. We summarize the relevant information in generating functions for
chiral operators, which can be computed using plethystics techniques and the language of complex
geometry.

1. Introduction

We discuss the properties of a class of supersymmetric gauge theories that arise in brane
constructions and in the AdS/CFT correspondence. We focus on the case of theories with
four real supercharges. In this case the structure of the moduli space and the spectrum of
BPS operators is conveniently described in the language of complex geometry and most of
the results can be summarized in terms of supersymmetric generating functions for BPS
states. The corresponding generating function reveals a rich structure of the chiral ring, its
generators and their relations, and shares information about the dimension of the moduli
space of vacua and the effective number of degrees of freedom in the system.

Generating functions for chiral operators in four-dimensional supersymmetric gauge
theories have been extensively studied in the past years, ranging from SQCD [1–4] to quiver
gauge theories living on branes at singularities [5–14]. The computation of such generating
functions is a very hard problem but it can be simplified in particular circumstances. In the
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case of classical SQCD the simplification arises from the fact that there is no superpotential
for the chiral fields. In the case of superconformal quiver gauge theories, one can exploit the
fact that they have an AdS5 × H5 or AdS4 × H7 dual [15–17]. Information from the field
theory and from the holographic dual can be combined to give a better understanding of the
superconformal theory.

In this review article, we consider in detail the case of branes at CalabiYau singularities
which are relevant for the AdS/CFT correspondence in three and four dimensions. A long
standing problem is the reconstruction of the gauge theory from the dual geometry. This
problem has been solved in four dimensions for toric CalabiYau using the language of Tilings
[18, 19], providing the complete dictionary that relates toric CalabiYau to the corresponding
quiver gauge theory. Some progress has been recently made also in three dimensions using
Chern-Simons theories [20–27]. We demonstrate the importance of the concept of the master
space, which is roughly the moduli space for one single brane, in all of these investigations.

The paper is organized as follows. In Section 2 we introduce the concept of generating
functions and Hilbert series and provide some simple examples. In Section 3 we discuss
the case of D3-branes at CalabiYau threefold singularities in Type-IIB. We introduce and
study quivers for orbifold and conifold singularities and analyze the moduli space and the
spectrum of chiral operators. We first discuss the case of one brane and introduce the concept
of master space [14, 28], which is the space of solution of F-terms conditions. The master
space contains information on both the mesonic and baryonic directions in the moduli space
for one as well as for many branes. We then discuss the case of many branes and demonstrate
how it is determined by the master space. In Section 4 we discuss the case of membranes at
CalabiYau fourfold singularities in M theory. We demonstrate how the use of N = 2 Chern-
Simons theories helps in writing quiver theories with CalabiYau four moduli space and the
role of the master space. We illustrate the general results with a choice of selected quivers
which play an important role in both four- and three-dimensional gauge theories.

2. Generating Functions for Supersymmetric Gauge Theories

An important role in the study of supersymmetric gauge theories is played by chiral
operators, which are annihilated by the supercharges of one chirality, for example Qα. It is
convenient to work modulo operators of the form {Qα, . . .}, which are called descendants and
give a vanishing contribution to the correlation functions of chiral operators. Chiral operators
have no short distance singularities in the Operator Product Expansion and therefore their
product is well defined and it is still a chiral operator (see e.g., [29]). We then define the chiral
ring as the set of chiral operators modulo descendants.

When we consider an N = 1 supersymmetric gauge theory with vector multiplets Wα

and a collection of charged chiral superfields Φi interacting with a superpotential W(Φi), the
chiral operators are given by the lowest components of gauge-invariant products of Φi and
Wα. The equation of motion

DαD
α
Φi = ∂ΦiW(Φ) (2.1)

implies that all derivatives of the superpotential are descendants and vanish in the chiral ring.
It is then very easy to write all chiral operators made with Φi. They are given by all possible
gauge-invariant products of the scalar fields φi subject to the F-term constraint ∂φiW(φ) = 0,
where φi is the lowest component of the superfield Φi.
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Insertions of Wα give more general scalar and fermionic chiral operators. However,
since the maximum number of insertion of Wα preserving chirality is two, the set of chiral
operators involving Wα can be reconstructed from those made with Φi. We refer to [30] for a
general discussion of the role of Wα and to [13] for the case of superconformal quivers.

Given a N = 1 supersymmetric gauge theory with a collection of U(1) global
symmetries

∏G
i=1U(1)i, we can introduce a set of auxiliary parameters (fugacities) {ti}Gi=1 and

define the generating function for the chiral ring

g({ti}) =
∑

k1,...,kG

nk1,...,kGt
k1
1 · · · tkGG , (2.2)

where nk1,...,kG is the number of operators with charges {k1, . . . , kG} under the global U(1)G

symmetry. If part of the global symmetry is nonAbelian, one can introduce a fugacity per
eachU(1) symmetry in the Cartan subalgebra of this nonAbelian group. The number of chiral
operators is typically infinite, but, if we consider enough global symmetries, the numbers
nk1,...,kG become nonnegative integers. In mathematical language, we compute the Hilbert series
of a graded ring.

In the superconformal case we give an alternative interpretation to the Hilbert series.
The N = 1 superconformal algebra always contains a generator for the R symmetry denoted
by U(1)R. Chiral operators are the lowest components of a short (BPS) multiplet and are
protected by supersymmetry and by the conformal algebra. In particular, their dimension
Δ and R charge are related by Δ = 3R/2. By restricting to just one parameter t for the R
symmetry we can write a single variable generating function (which is termed unrefined
Hilbert series)

g(t) =
∑

k

nkt
k

(2.3)

counting the number nk of chiral operators of R-charge equal to k. Given the relation Δ =
3R/2, we are equivalently counting chiral operators with a given dimension.

From a statistical mechanics perspective the functions g({ti}) and g(t) are interpreted
as partition functions that count chiral operators. For each conserved charge ki one introduces
a conjugate parameter μi called the chemical potential and fugacity ti related to the chemical
potential by ti = e−μi . With this interpretation the function g({t}) is the partition function
in the grand-canonical ensemble for which μ is fixed and nk is the partition function in the
canonical ensemble in which the charge k is fixed. The transition between g(t) and nk is given
by the discrete Legendre transform (2.3) and the inverse is given by a contour integral

nk =
∮

|t|=1

dt

2πit
t−kg(t). (2.4)

We can take a complementary point of view and consider the chiral operators as functions
on the moduli space of the supersymmetric gauge theory. The vacuum moduli space, M, is
given by the vanishing of the scalar potential as a function of the scalar components φi of
the superfields of the field theory. This, in turn, is the set of zeros of D-terms and F-terms
modulo gauge transformations. It is a standard fact that the D-term conditions and the gauge
transformations can be exchanged by modding out by the complexified gauge group. In a
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mathematical language, M is the symplectic quotient of the space of F-term solutions by the
action of the complexified gauge symmetries. We denote the space of solutions of F-terms by
F� and the symmetries by GD� , then we have

M � F�//GD� . (2.5)

Chiral operators are invariant under the complexified gauge group, functions of φi and no
φ, and are subject to the F-terms. They are therefore holomorphic functions on the moduli
space. Vice versa, we can associate a chiral operator to any holomorphic function on the moduli
space. We can then reinterpret (2.2) as counting holomorphic functions on the moduli space.

It is a general mathematical fact that g(t) is a rational function which can be written as

g(t) =
P(t)
Q(t)

(2.6)

for some polynomials P(t) andQ(t). It is a well-known and interesting fact that g(t) has a pole
at t → 1 of order equal to the dimension of the moduli space. Q(t) encodes the generators of
the moduli space and can always be written in a factorized form

Q(t) =
∏

i

(1 − tni), (2.7)

where the product runs over all generators and ni is the charge of the ith generator. P(t)
encodes the relations satisfied by the generators. In very special cases P(t) can be written in
a factorized form, and then g(t) is said to be of an Euler form,

P(t) =
∏

j

(1 − tmj ), (2.8)

where the product runs over all possible relations and mj is the degree of the jth relation.
In such cases the moduli space is said to be a complete intersection and enjoys the special
property that the number of relations plus the dimension of the moduli space is equal to the
number of generators.

If the theory has a nonAbelian global symmetry, G, then it is possible to write the
function g({ti}) as a sum over characters of irreducible representations of G:

g({ti}) =
∑

R

nRχR({ti}), (2.9)

where χR is the character of the irreducible representation R and nR is the number of times
this representation appears on the moduli space.

The structure of the moduli space of a supersymmetric gauge theory is usually
complicated, and should be best cast in the language of algebraic varieties. Typically,
M consists of a union of various branches, such as the mesonic branch or the baryonic
branch, the Coulomb branch or the Higgs branch; the names are chosen according to some
characteristic property of the specific branch.
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Correspondingly, the generating function (2.2) is hard to compute, even at the classical
level. In principle, thanks to the results of commutative algebra, generating functions like
(2.2) can be computed in an algorithmic way. We first compute the Hilbert series of an
extended ring consisting of all the elementary fields modded out by the ideal of F-terms and
graded with the parameter ti and an extra set of gauge charges zk labeling the Cartan part
of the gauge group. This computation is algorithmic and can be performed with computer
algebra programs like Macaulay2 [31]. We then project on the set of gauge-invariants by
averaging on the parameters zi with the Haar-Weyl measure of the gauge group. We refer to
[12] for a discussion and examples. This procedure works well in the case where there are no
F-terms (e.g., SQCD, see [1, 3, 32]) and for theories with small number of fields and moderate
values of N.

Let us just examine an explicit example. To study it properly we need the following
definition.

Notations. the plethystic exponential of a multivariable function f(t1, . . . , tn) that vanishes at the
origin, f(0, . . . , 0) = 0, is defined to be

PE
[
f(t1, . . . , tn)

]
:= exp

( ∞∑

r=1

f
(
tr1, . . . , t

r
n

)

r

)

. (2.10)

The fermionic plethystic exponential of a multivariable function f(t1, . . . , tn) that vanishes at the
origin, f(0, . . . , 0) = 0, is defined to be

PEF

[
f(t1, . . . , tn)

]
:= exp

( ∞∑

r=1

(−1)r+1f
(
tr1, . . . , t

r
n

)

r

)

. (2.11)

As discussed in detail below, the plethystic exponential is the right tool to study symmetric
products. In the case of a moduli space with a single generator with fugacity t and no
relations, we can write

g(t) = PE[t] =
1

1 − t (2.12)

More generally, the plethystic exponential of g(t1, . . . , tn) = t1 + · · ·+ tn gives the Hilbert series
for a freely generated moduli space with n generators with fugacities t1, . . . , tn:

PE[t1 + · · · + tn] = 1
(1 − t1) · · · (1 − tn) . (2.13)

Similarly the fermionic analog is

PEF[t1 + · · · + tn] = (1 + t1) · · · (1 + tn). (2.14)
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2.1. A Simple Example

As a simple example, let us consider the gauge theory which consists of an SU(N) gauge
group with matter given by 1 chiral multiplet transforming in the adjoint representation, 1
transforming in the fundamental representation, and 1 in the antifundamental representation,
with W = 0. Details of this theory and the computations can be found in [32]. There are
three U(1) global symmetries that act on each of these representations. Let us denote the
corresponding fugacities by ta, tf , tf̃ , respectively. Since W = 0, the F-flat moduli space is

simply given by C
N2−1+2N . As an algebraic variety, it is freely generated by the N2 − 1 + 2N

elementary fields. The generating function takes the form of a rational function as in formula
(2.6):

gF�

(
ta, tf , tf̃

)
=

1

(1 − ta)N2−1(1 − tf
)N

(
1 − tf̃

)N . (2.15)

The trivial numerator reflects the absence of relations among the generators, and the
denominator has the form given in (2.7), where the product runs over the elementary fields.

To obtain the partition function for the theory, we need to project on gauge-invariant
operators. We first introduce fugacities zi for the Cartan subalgebra of SU(N) and write a
refined generating function

gF�

(
ta, tf , tf̃ ; z1, . . . , zN−1

)
= PE

[
[1, 0, . . . , 0, 1]ta + [1, 0, . . . , 0]tf + [0, . . . , 0, 1]tf̃

]
, (2.16)

where [n1, . . . , nN−1] denotes the character for the irreducible representation of SU(N) with
Dynkin labels n1, . . . , nN−1. The projection on gauge-invariants can be done by integrating
over the Haar measure of SU(N),

∫

μ({zi})gF�

(
ta, tf , tf̃ ; z1, . . . , zN−1

)
. (2.17)

Explicit computation can be made for small values of N and the final result can be
obtained by observing that the moduli space is a complete intersection. It is easy to find the
generators of the moduli space. Denote the lowest components of the 3 chiral multiplets by
φ,Q,Q. Then the generators are

Mk = QφkQ, k = 0, . . . ,N − 1, uk =
1
k

Tr
(
φk

)
, k = 2, . . . ,N (2.18)

giving N adjoint mesons and N − 1 adjoint invariants (operators with higher values of k are
not independent as discussed below), together with 2 adjoint baryons

B = εi0i1···iN−1Qi0

(
φQ

)
i1
· · ·

(
φN−1Q

)

iN−1
, B = εi0i1···iN−1Q

i0
(
Qφ

)i1 · · ·
(
QφN−1

)iN−1
. (2.19)

These are 2N + 1 generators and since on a generic point on the moduli space the gauge
group is completely Higgsed, the dimension of the moduli space is 2N, meaning that there
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is one relation which is satisfied between these generators. This relation can be derived by
constructing the N × N symmetric matrix A with entries Ai,j = Mi+j−2. The entries of this
matrix are the gauge-invariant adjoint mesons Mk, k = 0, . . . , 2N − 2, and it is easy to see that
the determinant satisfies

det(A) = BB. (2.20)

The higher-order invariants can be expressed in terms of lower-order invariants by a
use of the Cayley-Hamilton theorem which states that the characteristic polynomial of the
matrix φ

P(x) = det
(
x − φ) =

N∑

j=0

sN−jxj , s0 = 1, s1 = 0, (2.21)

satisfies the relation P(φ) = 0 as a matrix relation, and hence multiplying by Q to the left and
by φkQ to the right one gets,

N∑

j=0

sN−jMj+k = 0, k = 0, . . . ,N − 2, (2.22)

giving N − 1 relations among (2N − 1) + (N − 1) = 3N − 2 variables, Mk and sj . These
relations can be used in order to express Mk for the values k = N, . . . , 2N − 2 in terms of
Mk k = 0 . . . ,N − 1 and the sj . The relations between the variables sj and uj are well known
and go under the name Newton relations,

nsn +
n∑

j=1

jujsn−j = 0, n = 2, . . . ,N. (2.23)

One can also view this as a complete intersection moduli space which is defined over
the (2N − 1) + 2+ (N − 1) + (N − 1) = 4N − 1 variables Mk,B, B, uk, sk which are subject to the
1+ (N − 1) + (N − 1) = 2N − 1 relations (2.20), (2.22) and (2.23) thus giving a 2N dimensional
moduli space.

To compute the Hilbert series, we first need the 3 fugacities for each gauge-invariant
under the global symmetry U(1)f × U(1)a × U(1)f . These are counting the number of Q’s,

φ’s, and Q’s in each gauge-invariant: tf t
k
atf for Mk, tN

f
t
N(N−1)/2
a for B, and t

N(N−1)/2
a tN

f
for B.

The resulting Hilbert series is given by writing the generators in the denominator and the
relations in the numerator

g
(
tf , ta, tf

)
=

1 − tN
f
t
N(N−1)
a tNf

(

1 − tN
f
t
N(N−1)/2
a

)(
1 − tN(N−1)/2

a tNf

)(∏N−1
k=0

(
1 − tf tkatf

))(∏N
k=2

(
1 − tka

)) .

(2.24)



8 Advances in High Energy Physics

Note that such a simple form is only possible when the moduli space is a complete
intersection. In more general cases, other methods for computing the Hilbert series need to
be applied, as outlined above.

3. D3-Branes at Singularities

Closely related to the AdS/CFT correspondence is the topic of D3-branes living at conical
singularities. In this context the moduli space M has an elegant geometrical realization.
When D3-branes are transverse to an affine (noncompact) threefold CalabiYau cone X, a
supersymmetric gauge theory exists on the world-volume of the branes. This is a gauge
theory of quiver type with U(N) gauge groups and bifundamental or adjoint fields. By
taking the near horizon limit of the geometry induced by the D3-branes we obtain the string
background AdS5 × H5, where H5 is the Sasaki-Einstein base of the cone X. It is then a
prediction of the AdS/CFT correspondence that the theory on N physical D3-branes at the
singularity flows in the IR to a superconformal field theory [15, 17]. The isometries of the
(noncompact) CalabiYau becomes global symmetries in the dual theory, which are usually
referred as mesonic. The maximum rank of the mesonic symmetry group is three, which is
realized for toric CalabiYau singularities. Our main interest is the IR physics of this system,
where conformal invariance holds; in this limit all Abelian gauge symmetries become weakly
coupled and remain as global symmetries called baryonic symmetries. The remaining gauge
symmetry Gn.a.

D� is fully nonAbelian, typically given by products of SU(N) groups. It is then
natural to distinguish between mesonic and baryonic operators. A mesonic operator has zero
baryonic charge, and thus it is invariant under the Abelian U(1) factors.

Under these circumstances, the moduli space, obtained by dividing by the non-
Abelian gauge group,

M � F�//Gn.a.
D� (3.1)

is a combined mesonic and baryonic moduli space. These mesonic and baryonic branches
are not necessarily separate (irreducible) components of M but are instead in most cases
intrinsically merged into one or more components in M. Even when mesonic and baryonic
directions are mixed, it still makes sense to talk about the more familiar mesonic moduli space
mesM, as the subvariety of M parameterized by mesonic operators only. The mesonic moduli
space can be obtained as a further quotient of M by the Abelian symmetries:

mesM � M//U(1)D� . (3.2)

It is of particular interest to consider the case of a single D3-brane transverse to the
CalabiYau threefold X, which enlightens the geometrical interpretation of the moduli space.
The gauge theory on a single D3-brane is an Abelian U(1)g theory. Since the motion of the
D-brane is parameterized by this transverse space, the moduli space of this Abelian theory
must coincide with the noncompact CalabiYau threefold X transverse to the D3-brane and
has complex dimension three. However, we could examine the IR limit of the theory where
the entire gauge group decouples. In this situation, the moduli space M is given by the space
of F-flatness F�. M is an algebraic variety of dimension greater than three, which contains
properly X as a subvariety. We could identify X as the mesonic part of the moduli space.
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Geometrically, F� is a fibration over the mesonic moduli space X given by relaxing the
U(1) D-term constraints in (3.2). Physically, F� is obtained by adding baryonic directions
to the mesonic moduli space (Of course, we cannot talk about baryons for N = 1, but we
can alternatively interpret these directions as Fayet-Iliopoulos (FI) parameters in the stringy
realization of the N = 1 gauge theory. Indeed on the world-volume of a single D-brane there
is a collection of U(1) gauge groups, each giving rise to an FI parameter, which relax the
D-term constraints.).

For N > 1, the situation is more subtle. Again, the common lore says that the moduli
space is probed by a collection of N physical branes which are mutually BPS branes and
thus can be arbitrarily located in the internal manifold. Hence the moduli space is given by
the symmetrized product of N copies of X. Actually this is only true for the mesonic moduli
space. The full moduli space M is a bigger algebraic variety of more difficult characterization.
In the next section this situation is elucidated and it is shown how the properties of M for
arbitrary number of branes are encoded in the moduli space for a single brane. In view of
the importance of the moduli space for one brane even for larger N, we adopt the important
convention that the N = 1 moduli space is dubbed the master space.

Let us clarify the previously abstruse discussion with explicit examples.

3.1. The Case of One Brane: The Master Space

The moduli space for one brane is the space of solutions F� of the F-terms where the fields
are taken to be c-numbers. The generating function for one brane is just the Hilbert series of
the quotient ring

C
[
φ1, . . . , φE

]

{dW = 0} (3.3)

generated by the elementary fields φi modulo the ideal of F-terms. This generating function
can be easily computed for all reasonable (= not too large) quivers by using computer algebra
programs. Let us discuss some simple examples.

3.1.1. The Case of C
3

The case of one brane probing X = C
3 is described by the N = 4 SYM with gauge group U(1).

In N = 1 notations, the theory has three chiral adjoint supermultiplets Φi interacting with the
superpotential

W = Φ1[Φ2,Φ3]. (3.4)

In the case of one brane, the lowest components φi are c-numbers and the F-terms are trivial.
The master space is just described by three free complex variables φi. Since the U(1) acts
trivially on the adjoint fields, there is no distinction between the master space and the mesonic
moduli space. Both coincide with C

3. The gauge-invariant chiral operators are given by all the
possible products φn1

1 , φ
n2
2 , φ

n3
3 .

X = C
3 = R

6 has a large isometry SO(6), with rank three. The subgroup U(3) acts in
the obvious way on the three variables φi. The Cartan subgroup is U(1)3, where the ith U(1)
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acts on the corresponding variable φi → eiαφi for i = 1, 2, 3. We can introduce fugacities ti for
the three U(1) actions and use them to grade the chiral operators. The resulting Hilbert series
is

g1

(
t1, t2, t3,F�

C3

)
=

1
(1 − t1)(1 − t2)(1 − t3) . (3.5)

We can now introduce SU(3) weights x1, x2 which reflect the fact that the chemical potentials
t1, t2, t3 are in the fundamental representation of SU(3), and a chemical potential t for the
U(1)R charge,

(t1, t2, t3) = t
(

x1,
x2

x1
,

1
x2

)

. (3.6)

We can get an expansion in terms of irreducible representations of SU(3)

g1

(
t1, t2, t3;F�

C3

)
= PE[t[1, 0]] =

∞∑

n=0
[n, 0]tn. (3.7)

where the symbol [n,m] denotes the character of the SU(3) representation with Dynkin labels
(n,m). For example, for the fundamental representation we have

[1, 0] = x1 +
x2

x1
+

1
x2
. (3.8)

3.1.2. The Case of the Conifold

One of the most familiar examples of a conical CalabiYau singularity is the conifold X = C,
described by the equation

xy = zw (3.9)

in C
4. This variety is a complete intersection in C

4. In general the set of n algebraic equations
in C

m is a complete intersection if it defines a variety of dimension m − n, meaning that each
single equation reduces the complex dimension by exactly one unit. For the conifold, the
dimension (3) can be obtained as the difference between the numbers of variables (4) and the
number of equations (1).

The quiver is given in Figure 1. The gauge group is U(1) × U(1) and we have two
bifundamental fieldsAi with charges (1,−1) and two fields Bi with charges (−1, 1). The gauge
theory has an explicit global symmetry SU(2)1 × SU(2)2 ×U(1)R ×U(1)B and the four fields
transform under these symmetries according to Table 1. For one brane, the F-terms are trivial
and the master space for the conifold is simply F� = C

4, parameterized by four free variables
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Table 1: The transformation, under the explicit global symmetry group SU(2)1 × SU(2)2 ×U(1)R ×U(1)B ,
of the 4 fields in the conifold theory. The monomials indicate the associated chemical potentials in the
Plethystic programme.

SU(2)1 (2j1, 2m1) SU(2)2 (2j2, 2m2) U(1)R U(1)B Monomial

A1 (1,+1) (0, 0)
1
2

1 t1x

A2 (1,−1) (0, 0)
1
2

1
t1
x

B1 (0, 0) (1,+1)
1
2

−1 t2y

B2 (0, 0) (1,−1)
1
2

−1
t2
y

Toric diagram Quiver

SU(N) SU(N)

A1,2

B1,2

WC = Tr (εilεjkAiBjAlBk)

Figure 1: The quiver and toric diagrams, as well as the superpotential for the conifold C.

A1,2 and B1,2 [8, 11]. We can introduce four fugacities for the four U(1)s in the symmetry
group and write the refined Hilbert series for the master space F�

C:

g1

(
t1, t2, x, y;F�

C = C
4
)
=

1
(1 − t1x)(1 − t1/x)

(
1 − t2y

)(
1 − t2/y

) . (3.10)

We used the choice of fugacities indicated in Table 1. x and y are fugacities for the Cartan
subgroup of the two SU(2) symmetries. t1 and t2, respectively, count the number of A and
B fields. We could alternatively define b which counts baryon number and t which counts
(twice) the total R-charge; then t1 = tb and (t2 = t/b). Indeed, if we remove the refinement by
setting t1 = t, t2 = t, x = 1, y = 1, we would obtain the familiar Hilbert series for C

4 which is
g1(t; C4) = (1 − t)−4.

The Mesonic Moduli Space

The mesonic moduli space is obtained by further dividing by the gauge group U(1) ×U(1).
The overall U(1) acts trivially and we are left with a U(1) action where the Ai has charge +1
and the Bi charge −1. The mesonic gauge-invariant operators are

x = A1B1, y = A2B2, z = A1B2, w = A2B1 (3.11)

which satisfies (3.9) and correctly reproduce C as the mesonic moduli space.
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We can easily write the refined Hilbert series for the mesonic moduli space using the
fact that the manifold is a complete intersection

g1
(
t, x, y; mesM = C) =

1 − t4
(
1 − t2xy)(1 − t2x/y)(1 − t2y/x)(1 − t2/xy) . (3.12)

In this formula each factor in the denominator corresponds to a generator x, y, z,w. The
numerator is associated with the relation xy = zw (with fugacity t4). The refined Hilbert
series only depends on three fugacities t, x, y. In fact, the baryonic symmetry associated with
b is acting trivially on the mesonic moduli space. There are exactly three remaining mesonic
symmetries.

The refined Hilbert series can be easily expanded in terms of representation of the
global symmetry. Denoting by [n1;n2] the character for the representation of highest weight
n1 = 2j1 and n2 = 2j2 of the symmetry group SU(1)1 × SU(2)2 we have

g1
(
t, x, y; mesM = C) =

∞∑

n=0
[n;n]t2n. (3.13)

The t2n terms in this sum are associated with the gauge-invariant operator Ai1Bj1 · · ·AinBjn
which has the correct R-charge and it is completely symmetric in the indices of the A’s and
in the indices of the B’s, thus transforming in the [n;n] representation of SU(1)1 × SU(2)2.

We can see the master space as a C
∗ fibration over the mesonic moduli space obtained

by relaxing the D-term constraint. In the case of the conifold C, we divide the master space
C

4 by a C
∗ action corresponding to the U(1) gauge group:

C =
C[A1, A2, B1, B2]
{+1,+1,−1,−1} . (3.14)

The U(1) group corresponds to a baryonic symmetry, and we may as well say that we mod
the master space by all the complexified baryonic symmetries.

This symplectic quotient description allows for an alternative derivation of the Hilbert
series of C from the Hilbert series of the master space C

4:

g1
(
t, x, y; mesM = C) =

∮

|b|=1

db

2πib
1

(1 − tbx)(1 − tb/x)(1 − ty/b)(1 − t/by) . (3.15)

The integrand is just the fully refined Hilbert series for the master space as given in (3.10).
By integrating over the fugacity b, which is associated with the U(1) gauge action or,
equivalently, with the baryonic number, we project on operators invariant under the C

∗

action. The contour integral should be done on the unit circle in the complex plane and takes
contributions from the two poles inside the circle, b = ty and b = t/y, where we have taken
|t| < 1 in order to have a convergent geometrical series. An easy computation reproduces
(3.12).
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3 2

1

WC3/Z3 = εαβγUαV βWγ

α, β, γ = 1, 2, 3

Figure 2: The quiver diagram and superpotential for dP0.

3.1.3. The Case of C
3/Z3

Let us next study the orbifold C
3/Z3 with action (1, 1, 1) on the C

3. This is also referred to
in the literature as dP0, the cone over the zeroth del Pezzo surface. The quiver theory is
summarized in Figure 2. For this case, the nine F-terms are

UαV β = UβV α, V αWβ = V βWα, WαUβ =WβUα, α /= β. (3.16)

In principle, nine equations for nine fields should reduce the moduli space to a point.
However the variety (3.16) in C

9 is an example of a set of equations which are not a complete
intersection. It is easy to see that the generic point can be parametrized by five complex
variables and therefore the manifold has dimension five.

There are various methods to compute the refined Hilbert series for the master space.
The computation of the Hilbert series of quotient rings in commutative algebra is algorithmic
and can be performed with computer algebra programs like Macaulay2 [31]. In the specific
case, we can also follow an analytical route which is available for all toric quivers. The
formulation in terms of Tilings [18, 19] allows to express all F-term constraints in terms
of a Gauged Linear Sigma Model (GLSM) and reexpress the master space as a symplectic
quotient. In the case of C

3/Z3 this is done as follows.
The F-term constraints can be explicitly solved by introducing six auxiliary variables

Ui −→ piq1, Vi −→ piq2, Wi −→ piq3. (3.17)

In the Tiling description these arise as perfect matchings as shown in Figure 3. The previous
parameterization is defined modulo a C

∗ action on the pi with charge −1 and on the qi with
charge +1. We can therefore see the master space as the quotient

F�
C3/Z3

=
C

6

{−1,−1,−1, 1, 1, 1} , (3.18)

where we order the perfect matchings as p1, p2, p3, q1, q2, q3. We see from this description that
the master space is a five-dimensional toric variety with SU(3) × SU(3) × U(1) symmetry,
where the first SU(3) is visible in the quiver and superpotential as the global SU(3) symmetry
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Figure 3: (a) The perfect matchings for the dimer model corresponding to dP0, with the external perfect
matchings pi and the internal perfect matchings qi; (b) The toric diagram of dP0 with the labeled
multiplicity of GLSM fields. The master space is given by the perfect matchings modulo relations [14].
There is one relation among perfect matching p1 + p2 + p3 = q1 + q2 + q3 and this gives the description of
the master space as C6/{−1,−1,−1, 1, 1, 1}. We refer to [18, 19] for details on the Tiling construction and to
[14] for a detailed discussion of this example.

and the second SU(3) is hidden. We can introduce weights for the action of the global
symmetry on perfect matchings as follows:

p1, p2, p3, q1, q2, q3 −→ tx1,
t

x2
,
tx2

x1
,

1
y1
, y2,

y1

y2
, (3.19)

where t is the U(1) charge, x1, x2 are weights for the first SU(3) and y1, y2 are weights for
the second SU(3). Note that these weights and the labels are chosen such that they indicate
the highest weight states of the fundamental and antifundamental representations of SU(3).
Such weight assignments allows for an easier tracking of highest weight states for higher
dimensional representations, when a character expansion is performed. The Hilbert series for
the master space is then given by the Molien-Weyl formula

g1

(
t, x1, x2, y1, y2;F�

C3/Z3

)

=
∮

|z|=1

dz

2πiz
1

(1 − tx1/z)(1 − tx2/x1z)(1 − t/x2z)
(
1 − y2z

)(
1 − zy1/y2

)(
1 − z/y1

) .
(3.20)

The Hilbert series for just one charge is computed by setting the nonAbelian fugacities
to 1

g1

(
t;F�

C3/Z3

)
=
∮

|z|=1

dz

2πiz(1 − t/z)3(1 − z)3
=

1 + 4t + t2

(1 − t)5
. (3.21)
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This expression has a pole of order five as expected for a five-dimensional variety. Taking the
plethystic logarithm [7] of this expression we find 9 generators at order t subject to 9 relations
at order t2,

PE−1
[
g1

(
t;F�

C3/Z3

)]
= 9t − 9t2 + · · · . (3.22)

This agrees exactly with the content of (3.16) which says that F�
dP0

should be the incomplete
(since the plethystic logarithm does not terminate) intersection of 9 quadrics in 9 variables.

Now, we would like to refine the Hilbert series to include all the 5 global charges. From
(3.19), we recognize the 9 quiver fields as transforming in the [1, 0] × [0, 1] representation
of SU(3) × SU(3). For short, we denote an irreducible representation of this group as a
collection of 4 nonnegative integer numbers, here [1, 0; 0, 1] and with obvious extension to
other representations. We end up with the refinement of the Hilbert series for F�

C3/Z3
as

g1

(
t, x1, x2, y1, y2;F�

C3/Z3

)

=
(

1 − [0, 1; 1, 0]t2 + ([1, 1; 0, 0] + [0, 0; 1, 1])t3 − [1, 0; 0, 1]t4 + t6
)

PE[[1, 0; 0, 1]t].
(3.23)

The Hilbert series admits a simple and natural series expansion of the form

g1

(
t, x1, x2, y1, y2;F�

C3/Z3

)
=

∞∑

n=0
[n, 0; 0, n]tn. (3.24)

The Mesonic Moduli Space

The master space is a (C∗)2 fibration over the mesonic moduli space. The Hilbert series for the
latter can be computed by integrating the Hilbert series of the master space in the directions
corresponding to the U(1) actions, which are weighted by y1 and y2:

g1

(

t, x1, x2; mesM =
C

3

Z3

)

=
∮

|y1|=1

dy1

2πiy1

∮

|y2|=1

dy2

2πiy2
g1

(
t, x1, x2, y1, y2;F�

C3/Z3

)
=

∞∑

n=0
[3n, 0]t3n.

(3.25)

In the case of just one charge, setting the nonAbelian fugacities to 1, the Hilbert series
simplifies to

g1

(

t; mesM =
C

3

Z3

)

=
1 + 7t3 + t6

(1 − t3)3
. (3.26)

We see that the mesonic moduli space is a toric variety of dimension three, with a nonAbelian
SU(3) symmetry.
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We can easily see that the Hilbert series (3.25) is the expected Hilbert series for C
3/Z3.

The orbifold C
3/Z3 is obtained by modding C

3 with coordinates z1, z2, z3 by the discrete
group Z3

zi −→ ωzi, i = 1, 2, 3, ω3 = 1. (3.27)

By writing the ten basic invariants Qijk = zizjzk, we see that we can write C
3/Z3 as

the noncomplete intersection of 27 quadrics in C
10. The generators Qijk are completely

symmetric in the indices and transform in the [3, 0] representation of SU(3). The holomorphic
functions on C

3/Z3 are given by all polynomials that are invariant under the Z3 action;
these can be constructed as symmetrized products of zi and there is one such holomorphic
function for each [3n, 0] irreducible representation of SU(3). We then see that, if we
assign fugacity t to the zi, the Hilbert series of C

3/Z3 correctly reproduces (3.25). In field
theory, the generators Qijk correspond to the mesonic gauge-invariant operators UiVjWk;
the latter are completely symmetric in the indices precisely due to the F-term relations
(3.16).

The Molien Invariant

Since the mesonic moduli space is an orbifold by a discrete symmetry group Z3, it is possible
to compute its Hilbert series by using the Molien invariant. See details on this computation
in [7, 9]. The action of the orbifold group on the 3 fugacities is ti → ωti, ω

3 = 1, and we take
the average of the orbit over the orbifold group,

g1

(

t1, t2, t3;
C

3

Z3

)

=
1
3

(
1

(1 − t1)(1 − t2)(1 − t3) +
1

(1 −ωt1)(1 −ωt2)(1 −ωt3) +
1

(1 −ω2t1)(1 −ω2t2)(1 −ω2t3)

)

=
1 + t21t2 + t

2
2t3 + t

2
3t1 + t

2
1t3 + t

2
2t1 + t

2
3t2 + t1t2t3 + t

2
1t

2
2t

2
3

(
1 − t31

)(
1 − t32

)(
1 − t33

) ,

(3.28)

which agrees with the expression in (3.25).

3.1.4. The General Case

We now discuss some general features of the master space for D3-branes at a conical
CalabiYau singularity [14]. In the case of a toric CalabiYau X there is quite a general
description of the associated quiver using Tilings [18, 19] and we mostly focus on this case.
Many specific examples are discussed in details in [14].
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In the case of a toric CalabiYau, we have [14] the following.

(i) F� is a toric variety of complex dimension g + 2, where g is the number of gauge
groups. This is so because X � F�//U(1)g , and an overall U(1) decouples; thus
3 = dim(F�) − (g − 1). It is toric since it is acted upon by exactly g + 2C

∗-actions
corresponding to the classical global symmetries of the gauge theory: one R and two
flavor, coming from the isometries of the toric threefold X, as well as g−1 baryonic,
IR relic symmetries of the nontrivial U(1) factors, some of which are anomalous.

(ii) In the previously considered examples the moduli space was irreducible, but this
is not the general case. The moduli space of gauge theories is well-known to have
many branches and F� is typically a reducible algebraic variety. This generalizes
the familiar case of N = 2 gauge theories, where the moduli space is divided
into a Coulomb branch and a Higgs branch. In the toric case, F� contains a top-
dimensional irreducible component of the same dimension, dubbed the coherent
component and denoted as IrrF�, as well as many smaller-dimensional irreducible
(generically) linear pieces, realized as coordinate hyperplanes.

(iii) The coherent component IrrF� is itself an affine CalabiYau (We should better say
that it is Gorenstein.) of dimension g + 2. This is related to an intriguing property of
the Hilbert Series for IrrF�. The numerator P(t) of g(t;IrrF�), which we recall to be an
integer polynomial of degree, say, n, has a palindromic symmetry for its coefficients
aj=0,...,n: P(t) is invariant under the exchange aj ↔ an−j . This is certainly true for the
Hilbert series (3.10) and (3.21) and it is, in general, a consequence of a theorem by
Stanley [33] and the fact that IrrF� is CalabiYau. Interestingly, the same palindromic
property of the Hilbert series is shared by the classical moduli space of SQCD for
all values of Nc and Nf [4]; indeed the moduli space of SQCD is CalabiYau.

(iv) A detailed description of IrrF� as algebraic variety is provided in [14]. F� and IrrF�

can be written as a set of algebraic equations in C
E, where E is the number of

elementary fields. Alternatively, one can provide a symplectic quotient description
of the toric variety which is useful for computing the Hilbert series. The latter
description is directly related to the Dimer model of the quiver and the intriguing
fact that perfect matchings generate the coherent component. We refer to [14] for
details on the algebraic properties of F� and IrrF�, the computation of their Hilbert
series and the relation to Dimers.

(v) It is known that a given toric CalabiYau corresponds to many different quivers
which are related by Seiberg duality. The set of such quivers where all gauge groups
have the same number of colors is known as the set of toric phases of the given
theory. For N > 1, all these different nonAbelian gauge theories are equivalent
under Seiberg duality and flow to the same IR fixed point. For N = 1 there is no
precise sense in which Seiberg duality can be defined, since there is no nonAbelian
gauge group. Nevertheless we expect to see some relic of this duality. And in fact,
although not isomorphic, the coherent component of the master space for different
toric phases are closely related: their generating functions coincide, not only as a
function of the R-symmetry parameter t but also when refined with all the non
anomalous charge parameters. This follows from the fact that, as we discuss in
the following, the coherent component of the master space determines the BPS
spectrum for N > 1. Dual theories have the same non anomalous symmetries and
the same spectrum of BPS operators.
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Many other properties of the master space including the structure of the linear components,
the relation to RG flows, and the existence of hidden symmetries are discussed in [14]. In the
next section we see that perhaps the most important property of the master space is the fact
that it determines the generating function for chiral operators for any value of N.

3.2. The Case of Many Branes

As we already said, the world-volume theory forN D3-branes is a quiver theory with product
U(N) gauge groups and, in the IR, the U(1) factors decouple since only the special unitary
groups exhibit asymptotic freedom and are strongly coupled in the IR. Thus the moduli space
of interest is the space of solutions to the F-flatness, modded out by a nonAbelian gauge group

MN =
F�
N(

SU(N1) × · · · × SU(
Ng

)) , (3.29)

where the index N recalls that we are dealing with N branes. The moduli space MN is of
difficult characterization since the quotient is fully nonAbelian and it cannot be described by
toric methods, as in the N = 1 case.

The mesonic moduli space is obtained from the full moduli space by performing a
further quotient by the Abelian symmetries:

mesMN ≡ SymNX � MN//U(1)g−1. (3.30)

For D3-branes at singularities, the mesonic moduli space should reproduce the motion of N
mutually BPS D3-branes on the CalabiYau and it should be given by the symmetric product
of N copies of X. We see that the mesonic moduli space, for X being a CalabiYau threefold,
is of dimension 3N. From this result we can infer the dimension of the full moduli space MN

which must be 3N + g − 1 for general N.
In the next section we discuss the main features of the nonAbelian moduli space using

the examples of C
3 and the conifold C. We need some Plethysm [7]. To obtain the partition

function gN(t) for SymNX from the partition function g1(t) for X, one expands in power
series the ν-inserted plethystic exponential

PE
[
νg1(t1, . . . , tn)

]
= exp

( ∞∑

r=1

νrg1
(
tr1, . . . , t

r
n

)

r

)

=
∞∑

N=0

gN(t1, . . . , tn)νN. (3.31)

3.2.1. The Case of C
3

As we have seen, the master space F� in the case of one brane coincides with the CalabiYau
manifold X = C

3. In the nonAbelian case, the fields Φi are N by N matrices, transforming
in the adjoint representation of the U(N) gauge group. The F-terms require that the adjoint
fields Φi commute:

[
Φi,Φj

]
= 0. (3.32)
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The commuting matrices Φi can be simultaneously diagonalized using the action of the
gauge group. The nonAbelian problem is thus reduced to N copies of the Abelian one,
parameterized by the eigenvalues of the matrices Φi. As usual, the Weyl group of U(N)
survives as a discrete gauge symmetry after diagonalization. It acts as the group of
permutation of the N Abelian copies of C

3. As a result, the nonAbelian moduli space is the
symmetric product SymN

C
3. The Abelian part of the group still acts trivially on the adjoint

fields, and therefore the moduli space is purely mesonic.
The generating function for SymN

C
3 can be extracted from the term of order νN in the

ν-inserted Plethystic exponential

g
(
ν; t1, t2, t3; C3

)

= PE
[
νg1

]
=

∞∑

N=0

gN
(
t1, t2, t3; C3

)
νN, g1

(
t1, t2, t3; C3

)
=

1
(1 − t1)(1 − t2)(1 − t3) .

(3.33)

The full expression can be explicitly written as 3 infinite products

g
(
ν; t1, t2, t3; C3

)
=

∞∏

n1=0

∞∏

n2=0

∞∏

n3=0

1
1 − νtn1

1 t
n2
2 t

n3
3

, (3.34)

which coincides with the grand-canonical partition function of the three dimensional
harmonic oscillator.

All the generating functions gN(t1, t2, t3; C3) can be expanded in terms of characters of
the U(3) global symmetry. Some examples are reported in [14].

3.2.2. The Case of the Conifold

The case of the conifold is more interesting since it has a baryonic branch.

The Mesonic Moduli Space

The IR CFT is described by a quiver with two gauge groups SU(N) ×SU(N) and four chiral
bifundamental fields, A1,2 transforming in the (N,N) representation and B1,2 transforming
in the (N,N) representation, interacting with the quartic superpotential εijεpqAiBpAjBq.
The charges of the fields under the global symmetries and the corresponding fugacities
are summarized in Table 1. The mesonic gauge-invariant operators are those neutral under
U(1)B. We have four basic ones:

zij = Tr
(
AiBj

)
. (3.35)

By relaxing the trace in this expression, we can consider the zij = AiBj as N × N
matrices transforming in the adjoint of the first gauge group. It is easy to check that the F-
terms imply that zij commute and satisfy the matrix equation

z11z22 − z12z21 = 0 (3.36)
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which corresponds to the defining equation for the conifold singularity. The mutually
commuting zij can be simultaneously diagonalized by an adjoint action of the first gauge
group. Due to the matrix equation (3.36), the eigenvalues must satisfy the conifold equation.
As in the case of C

3, we reduce the problem to N copies of the Abelian one. Finally, using
the remaining Weyl permutation symmetry, we see that the mesonic moduli space is indeed
SymNC.

Now it is very simple to write the generating function gN(t, x, y;mesMN) for the
mesonic moduli space using the Plethystic Exponential [7]. Since mesMN ≡ SymNX, we
conclude from the previous discussion that gN is obtained from g1, computed in (3.12), by
applying the Plethystic Exponential:

PE
[
νg1

(
t, x, y;C)] =

∞∑

N=0

gN
(
t, x, y;mes MN

)
νN,

g1 =
1 − t4

(
1 − t2xy)(1 − t2x/y)(1 − t2y/x)(1 − t2/xy) .

(3.37)

The Baryonic Branch

The plethystic program can be efficiently applied also to the study of the baryonic branch
[12]. As we saw, the generating function for the master space is freely generated by the four
basic fields of the conifold gauge theory and it takes the form

g1

(
t1, t2, x, y;F�

C
)
=

1

(1 − t1x)(1 − t1/x)
(
1 − t2y

)
(

1 − t2
y

) .
(3.38)

In the following, we set x = y = 1 for simplicity. General formulae including the
SU(2) chemical potentials can be found in [11]. We can decompose g1 into sectors with fixed
baryonic charge B, each with multiplicity one:

g1

(
t1, t2;F�

C
)
=

∞∑

B=−∞
g1,B

(
t1, t2;F�

C
)
,

g1,B>0

(
t1, t2;F�

C
)
=

∞∑

n=0
(n + 1 + B)(n + 1)tn+B1 tn2 ,

g1,B<0

(
t1, t2;F�

C
)
=

∞∑

n=0
(n + 1)(n + 1 + |B|)tn1 tn+|B|2 .

(3.39)

It is manifest that each term in g1,B has a monomial bB corresponding to a baryonic charge
B. The decomposition into each baryonic charge can be computed by expanding g1(t, b;C)
in a formal Laurent series in b. g1,B>0 contains all monomial Ai1Bj1 · · ·Ain+BBjn transforming
in the [n + B;n] representation of SU(1)1 × SU(2)2, and analogously g1,B<0 contains all
Ai1Bj1 · · ·AinBjn+|B| transforming in the [n;n + |B|] representation. It is then obvious that the
sum of all g1,B reconstructs the generating function of the free ring in the four generators
A1, A2, B1, B2.
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It is quite remarkable that the generating function for the entire moduli space is
obtained by applying the Plethystic Exponential to each sector of definite baryonic charge.
The result for generic N is indeed obtained as follows:

g
(
ν; t1, t2;F�

C
)
=

∞∑

B=−∞
PE

[
νg1,B

(
t1, t2;F�

C
)]
,

g
(
ν; t1, t2;F�

C
)
=

∞∑

N=0

νNgN
(
t1, t2;F�

C
)
.

(3.40)

We can compute, for example, the generating function for N = 2, by taking the coefficient of
ν2 in this expression:

g2(t1, t2;C) = 1 + t1t2 + t21t
2
2 − 3t41t

2
2 − 3t21t

4
2 + t

5
1t

3
2 + t

3
1t

5
2 − 3t31t

3
2 + 4t41t

4
2

(
1 − t21

)3(1 − t1t2)3(1 − t22
)3

. (3.41)

This expression can be written in a more revealing form by noting that the U(4) symmetry of
the master space, C

4, remains the global symmetry for the special case where the number of
color is N = 2 [14]. We therefore expect to expand the Hilbert series in terms of characters of
irreducible representations of U(4), where the U(1) symmetry is the fugacity is denoted by t.
This is computed in [14] and takes the form

g2(t1, t2;C) =
∞∑

n1=0

∞∑

n2=0
[2n1, 2n2, 0]t2n1+4n2 , (3.42)

where the character of an irreducible representation of SU(4) is denoted by [n1, n2, n3].
An explicit analysis reveals that the moduli space is generated by the following operators,
transforming in the [2, 0, 0] representation of SU(4) of dimension 10: 3 baryons detAiAj , 3
baryons detBiBj and 4 mesons TrAiBj . The structure of the generating functions for N ≥ 2 is
discussed in details in [11, 12].

Formula (3.41) and its analogs for small values of N can be compared with the result
in the classical theory computed using computer algebra programs, like Macaulay2, and it
turns out that there is perfect agreement [11, 12].

Formula (3.40) is motivated by a computation in the gravitational dual, where the BPS
states can be represented as states of supersymmetric D3-branes [8, 34]. A review of the dual
computation is too detailed and we refer to [8] for details. Let us notice few things, however.

(i) BPS states in the gravitational AdS dual can be obtained by quantizing classical
configurations of supersymmetric D3-branes. The latter fall in classes according to
the homology of the cycle they are wrapping. It can be shown that the baryonic
quantum number B is in correspondence with the homology number of the base
T1,1 of the conifold. The (geometric) quantization of classical supersymmetric D3-
branes is done in each sector independently and it amounts to taking the Plethystic
Exponential in each sector [8, 34, 35]. This explains the conjecture in formula
(3.40).
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(ii) By quantizing D3-branes, we can perform a computation valid at strong coupling
and large N. In fact, g1,B, which is is the generating function for sections of a
given line bundle on C, can be computed in a purely geometric way using the
equivariant Atiyah-Singer theorem [8, 36]. Quite remarkably, the computation
agrees with (3.39) and the large N strong coupling prediction for the BPS
generating function agrees with a computation performed in the classical theory for
small N.

(iii) Formula (3.40) is intriguing and once more shows the deep connection of the quiver
gauge theory with the geometry: the left hand side, which is computed in the quiver
theory using F-terms, has an expansion as a sum of functions that can be computed
using the geometry of the CalabiYau only.

3.2.3. The General Case

Here we try to summarize what we have learned from the previous examples.
In general, for all quivers describing D3-branes at conical singularities, we must

have mesMN ≡ SymNX, and this can be explicitly proven in the case of quivers based
on Tilings. As a consequence of this identification, the generating function gN(ti, mesMN)
for the mesonic moduli space can be always written using the Plethystic Exponential
[7],

PE
[
νg1(ti, mesMN)

]
=

∞∑

N=0

gN(ti, mesMN)νN. (3.43)

More delicate is the case of the generating function of the entire moduli space M, including
the baryonic directions. In the case of the conifold the previous discussion gives a remarkably
simple and neat answer. The situation is, in general, more complicated. In all the examples
examined in [12], it seems true that there exists a decomposition of the generating function
for the master space into sectors with definite baryonic charge

g1

(
ti; IrrF�

)
=
∑

B

g1,B(ti), (3.44)

such that the generating function for the entire moduli space is obtained by applying the
Plethystic Exponential to each sector,

∑

B

PE
[
νg1,B(ti)

]
=

∞∑

N=0

νNgN(ti). (3.45)

In the previous formula, the sum over B in (3.44) is in general a sum over a lattice of charges,
related to the GKZ decomposition of the moduli space of resolution of the CalabiYau. We
refer to [12] for examples and discussion.
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4. Membranes at Singularities

Quiver theories play also an important role in understanding the world-volume theories for
M2 branes probing four-dimensional CalabiYau singularities Y. These are the holographic
duals of backgrounds of the form AdS4 × H7, where H7 is the Sasaki-Einstein seven
dimensional base of Y. The construction of the dual field theory has been an unsolved
problem for long time. It has been recently understood that N = 2 Chern-Simons gauge
theories [24–26] play an important role in this question and give rise to theories with the right
properties. The construction generalizes the proposal for the maximally supersymmetric case
[20].

We then consider quiver theories N = 2 theories in 2+1 dimensions with U(N) gauge
groups and adjoint and bifundamental chiral matter superfields Φab interacting through
a superpotential W(Φab). We use the letter a = 1, . . . , g to label the gauge groups. With
standard Yang-Mills interactions, the moduli space is obtained by solving the F and D term
constraints (We use the same symbol to denote the scalar N = 2 superfields and their lowest
components.)

∂ΦabW = 0,

Da(Φ) ≡
∑

b

ΦabΦ
†
ab −

∑

c

Φ†
caΦca +

[
Φaa,Φ

†
aa

]
= 0

(4.1)

and dividing by the gauge group. We can then determine the moduli space as discussed in
the previous Section. The master space F� is a g − 1 fibration over the mesonic moduli space
X. Let us only consider quivers where X is a CalabiYau threefold.

Consider now the same theory without Yang-Mills kinetic term for the gauge groups
but with a Chern-Simons interaction with integer coefficients ka, satisfying

∑
ka = 0. The

moduli space is now bigger [24–26]. In N = 2 supersymmetry in three dimensions the gauge
vector has a scalar partner σ, which, in a Chern-Simons theory, has no kinetic term and it is
an auxiliary field. The bosonic potential is

∑

Φab

Tr
(
(σaΦab −Φabσb)(σaΦab −Φabσb)† + |∂ΦabW |2

)
, (4.2)

where the auxiliary fields are determined by the constraints

Da(Φ) =
ka
2π

σa. (4.3)

The potential is minimized by

∂ΦabW = 0,

σaΦab −Φabσb = 0.
(4.4)
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In the Abelian case, all σa ≡ σ are equal and the equations Da(Φ) = (ka/2π)σ reduce to
the standard D-terms of an N = 2 theory with a FI term depending on the Chern-Simons
couplings. Since

∑
a ka = 0 and

∑
aDa(Φ) = 0 by construction, one of these equations is

redundant. Moreover, any linear combination of gauge groups with coefficientma orthogonal
to the CS parameters

∑
a kama = 0 has a vanishing moment map. We are thus imposing g − 2

D-term constraints, where g is the number of gauge groups. We can impose simultaneously
the D-term constraints and the corresponding U(1) gauge transformations by modding out
by the complexified gauge group. We do not need to impose the last D term condition since
it determines the value of the auxiliary field σ. Moreover, the corresponding U(1) group,
through its CS coupling with the overall gauge field, it is broken to Zk, where k = gcd({ka})
[20, 37, 38]. As a result the Abelian moduli space has a dimension of one unit bigger than
X and it has the general form Y/Zk [24–26]. We see that Y can be obtained from the master
space by dividing by g − 2 complexified U(1) groups. In the interesting case where X was
a threefold, we obtain a four-dimensional manifold. For toric quiver based on Tilings, and
some other generalization, one can explicitly show that the moduli space is still CalabiYau
[26].

Modding by the remaining complexified U(1), which in the membrane theory is
broken to Zk, we would obtain the threefold X. We thus see that Y is in general a C

∗ fibration
over X. X is uniquely specified by the gauge group and matter field of the quiver, while Y is
specified also by the choice of Chern-Simons couplings ka. By varying ka we obtain a family
of C

∗ fibrations over Z. We thus have the chain of fibrations

F� −−−−−→
(C∗)g−2

Y {ka}−→
C∗

X (4.5)

which is determined by a choice of a particular C
∗ direction in the master space depending

on the Chern-Simons couplings ka.
The non Abelian case requires some care, as not all operators are manifestly gauge-

invariant. It is conjectured in the literature that this difficulty is solved by the introduction of
so called “monopole operators” which are special objects in 2+1 dimensions. This proposal
states that the chiral operators in the Lagrangian are dressed by monopole operators
such that the collection of generators on the moduli space become a set of commuting
adjoint valued operators and then this naturally leads to symmetric products of the CY4
singularity. To date there have not been satisfactory solutions to this problem. There
is a simple argument which supports the conjecture that the moduli space for higher
values of N is the symmetric product and it goes as follows. By a gauge transformation,
we can diagonalize all the σa. The equations σaΦab = Φabσb tell you that there is a
branch where (generically) all the fields Φab are diagonal. This reduces the problem to N
copies of the Abelian one. The remaining discrete gauge symmetry corresponding to the
Weyl group of SU(N) implies that the moduli space is generically the N-fold symmetric
product of the Abelian one. We see that the Chern-Simons theory nicely enforces in 2+1
dimensions a structure of the moduli space which is very natural from the point of
view of M2 branes. It is possible, as in 3+1 dimensions, that the moduli space for some
particular quiver contains various different branches of the moduli space. Henceforth we
avoid these subtle issues and always refer to the branch corresponding to the symmetric
product.

Let us examine some very simple examples. Many others can be found in [24–27, 39–
50].
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4.1. A Case Based on the Conifold Quiver (ABJM)

We need at least two gauge groups to enforce the condition
∑

a ka = 0. A quick look at the
classification of brane Tilings in [47] shows that there are two theories with 2 gauge groups,
the 2-square model and the 2-hexagon model. We also need a quartic superpotential, as this is
the natural scale invariant interaction term in 2+1 dimensions. This selects the 2-square model
which corresponds to the conifold in 3+1 dimensions. Thus, we have the conifold quiver with
two gauge groups and opposite Chern-Simons terms U(N)k × U(N)−k, fields Ai, Bi, i = 1, 2
transforming in the (N,N) and (N,N) representation of the gauge group, respectively, and
interacting with the superpotential

W = A1B1A2B2 −A1B2A2B1. (4.6)

We call this theory C̃{k,−k}.
It is by now well known that this theory, dubbed ABJM theory, has N = 6

supersymmetry and it is the candidate dual for the background AdS4 × S7/Zk [20]. This
can be seen by studying the Abelian moduli space. The master space for the conifold theory
is C

4, as discussed in Section 3.1.2. Since the number of gauge groups is g = 2 there is no
complexified gauge group to mod by. The non trivial U(1) is broken to Zk and we recover the
result [20] that the moduli space for the theory is C

4/Zk, with an orbifold action (1, 1,−1,−1).
For k = 1, the Hilbert series takes a simple form,

g
(
t, C̃{1,−1}

)
=

1

(1 − t)4
. (4.7)

The generators are A1, A2, B1, B2 corresponding to the fundamental fields of the conifold
theory.

The moduli space for higher k is then given by the Zk action 1, 1,−1,−1 on the
generators, respectively. Let us compute the Hilbert Series for this model by averaging on
the discrete group using the discrete Molien formula

g
(
t, C̃{k,−k}

)
=

1
k

k−1∑

j=0

1
(
1 −ωjt

)2(1 −ω−j t
)2

=
1 − t4 + 2ktk − 4ktk+2 + 2ktk+4 − t2k + t2k+4

(1 − t2)4(1 − tk)2

=
1 + t2 + 2ktk − 2ktk+2 − t2k − t2k+2

(1 − t2)3(1 − tk)2
,

(4.8)

with ωk = 1. The generators are now AiBj and Ak, Bk, as indicated by the denominator of
the first expression. We also see that the Hilbert series is palindromic, as is the master space
in 3+1 dimensions, and it has a pole of order 4 at t = 1, indicating that the moduli space is a
CalabiYau fourfold.
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For large values of k the Hilbert Series behaves like

g
(
t, C̃{k,−k}

)
=

1 + t2

(1 − t2)3

(
1 +O

(
tk
))
, (4.9)

which is the Hilbert series for the conifold. The large k limit is equivalent to dividing the
four-dimensional moduli space by the C

∗ action specified by the charges under the remaining
U(1) gauge group. We see that, as discussed above, the four-dimensional CalabiYau is a C

∗

fibration over the conifold.

4.1.1. A Remark: The Extended Supersymmetry of the ABJM Model

The Hilbert series (4.8) counts the holomorphic functions on the fourfold CalabiYau C
4/Zk.

These can be also set in one-to-one correspondence with the N = 2 chiral KK supermultiplets
arising in the compactification on S7/Zk. However, the ABJM models have extended N = 6
supersymmetry and the N = 2 chiral supermultiplets are actually part of bigger N = 6 chiral
multiplets. It is then of some interest to write a generating function for N = 6 chiral multiplets
on AdS4 × S7/Zk [52].

Let us first consider the case k = 1 with N = 8 supersymmetry. The chiral multiplets are
actually in one-to-one correspondence with harmonic functions on S7, which can be written
as symmetric traceless tensors and transform in the [n, 0, 0, 0] representation of the SO(8)
global symmetry. The generating function for all harmonic functions on S7 is then

g1

(
t;S7

)
=
(

1 − t2
)

PE
[
[1, 0, 0, 0]SO(8)t

]
=

∞∑

n=0
[n, 0, 0, 0]SO(8)t

n. (4.10)

The role of (1− t2) is to remove traces from the symmetric product expansion. An extension of
this formula to include the spin degrees of freedom under the little group in 3+1 dimensions
is as follows. Introduce the fugacity x for and the formula takes the form

(
1 − t2)

x4
PE

[
[1, 0, 0, 0]SO(8)t

]
PEF

[
[0, 0, 0, 1]SO(8)x

]
, (4.11)

but will not be discussed further. The result for higher values of k is obtained by using the
discrete Molien invariant. The action of Zk ⊂ U(1) breaks SO(8) to SU(4) × U(1), where
SU(4) is the R-symmetry for N = 6 supersymmetry in 2+1 dimensions. For this purpose we
introduce the fugacity b for U(1), and decompose the 8 dimensional representation of SO(8)
into two irreducible representations of SU(4):

[1, 0, 0, 0]SO(8)t = [1, 0, 0]SU(4)t1 + [0, 0, 1]SU(4)t2, (4.12)

where t1 = tb, t2 = t/b. Explicit expressions for the characters of the SU(4) representations
can be taken to be with 3 complex fugacities, z1, z2, z3 in the form,

[1, 0, 0] = z1 +
z2

z1
+
z3

z2
+

1
z3
, [0, 0, 1] =

1
z1

+
z1

z2
+
z2

z3
+ z3. (4.13)
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The partition function is then

g1

(

t, b, z1, z2, z3;
S7

Zk

)

=
1
k

k−1∑

j=0

g1

(
t,wjb, z1, z2, z3;S7

)
. (4.14)

It is interesting to note that in the limit where k goes to infinity, all states with non zero
baryonic charge disappear from the spectrum and we obtain the generating function

g1

(
t, z1, z2, z3; P3

)
=

∞∑

n=0
[n, 0, n]t2n, (4.15)

where [n, 0, n] denotes an SU(4) representation.
In the limit where k → ∞ the M theory compactification on AdS4 × S7/Zk can be

effectively reduced to the Type-IIA compactification on AdS4 × P
3. The generating function

(4.15) is reinterpreted as the partition function for N = 6 chiral multiplets in the KK
compactification on P

3, which indeed fall in [n, 0, n] representations of SU(4) [53].
The Hilbert series (4.8) and (4.9) can be analogously interpreted as the partition

functions for the N = 2 KK chiral multiplets on AdS4 × S7/Zk and AdS4 × P
3, respectively.

They differ from the equations (4.14) and (4.15) since we are counting only an N = 2 subset
of the protected operators in N = 6 supersymmetry. For example, out of dim[n, 0, n] =
(n + 1)2(n + 2)2(2n + 3)/12 protected operators in N = 6 there are precisely (n + 1)2 operators
which are holomorphic under the N = 2 subgroup. We therefore sum

∞∑

n=0
(n + 1)2t2n =

1 + t2

(1 − t2)3
, (4.16)

and get the result computed in (4.9).

4.2. A Case Based on the C
3/Z3 Quiver

Another simple example [26] is based on the quiver for C
3/Z3 with Chern-Simons couplings

(k1, k2,−k1,−k2). As we saw in Section 3.1.3, the master space has dimension five. The moduli
space is given by modding the five-dimensional master space by the U(1) gauge symmetry
prescribed by the CS terms. We find a two parameter family of CalabiYau fourfolds that can
be identified with the cone over the manifolds Yp,k(CP 2) [25, 54].

We focus, for simplicity, on the case of CS parameters k1 = k2 = 1. The corresponding
fourfold is the cone over the coset (This is sometimes called M3,2.) manifold M1,1,1 =
SU(3)×SU(2)×U(1)/SU(2)×U(1)×U(1) with global symmetry SU(3)×SU(2)×U(1)R. The
coincidence of this global symmetry with the gauge group of the standard model for particle
interactions was a reason for enhanced activity back in the 80’s. The Calabi Yau fourfold is
then obtained by modding out by the gauge groupU(1)1−U(1)2 which, as seen from equation
(3.17) corresponds to the action {0, 0, 0, 2,−1,−1} on perfect matchings and it breaks the global
symmetry on the master space from SU(3) × SU(3) × U(1) to SU(3) × SU(2) × U(1). Note
that part of the hidden symmetry now becomes a symmetry of the mesonic moduli space in
the 2+1 dimensional theory. By setting y1 = wx, y2 = w2 in (3.20), x becomes the fugacity for
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SU(2) and w is the fugacity for the U(1) which is gauged. The integration over w leaves 4
fugacities t, x1, x2, x which parametrize the four toric symmetries of the CalabiYau:

g

(

t, x, y, x̃; C̃3/Z3

)

=
∮

dz

2πiz
dw

2πiw
1

(1 − tx1/z) (1 − tx2/x1z)(1 − t/x2z)(1 −w2z)(1 − zx/w)(1 − z/wx)

=
∞∑

k=0

[3k, 0; 2k]t3k,

(4.17)

where [n,m; s] denotes irreps of SU(3)×SU(2). From the last expression we recognize indeed
the KK spectrum of M theory compactified on M1,1,1 [55].

The case of higher k is obtained by modding out by an action Zk ⊂ U(1)1 + U(1)2 −
2U(1)3 which further breaks the global symmetry to SU(3) ×U(1) ×U(1). The Hilbert series
for k > 1 can be computed with the methods described above and is given in [48].
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