
Durham E-Theses

Perturbative Corrections in SHERPA

HALL, OLIVER,ALEXANDER

How to cite:

HALL, OLIVER,ALEXANDER (2014) Perturbative Corrections in SHERPA, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/10557/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/10557/
 http://etheses.dur.ac.uk/10557/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Perturbative Corrections in
SHERPA

Oliver Hall

A Thesis presented for the degree of

Doctor of Philosophy

Institute for Particle Physics Phenomenology

Department of Physics

University of Durham

England

September 2013



Perturbative Corrections in SHERPA

Oliver Hall

Submitted for the degree of Doctor of Philosophy

September 2013

Abstract

The use of Monte Carlo event generators for the simulation of LHC collider

experiments, has in recent years driven a demand for greater accuracy of predictions

in such generators. This thesis will be concerned with the addition of certain

perturbative corrections in the event generator SHERPA.

In this vein a framework for the automatic calculation of the real correction terms is

presented, based on the the subtraction mechanism of of Frixione, Kunszt and

Signer. This resulting framework is implemented in the matrix element generator

AMEGIC++, which will then allow the calculation of the real components of an NLO

QCD for any process; this can be supplemented with virtual corrections to provide

a full NLO QCD prediction. This implementation is then rigorously tested and

found to be consistent with known NLO results.

This subtraction framework is then utilized to perform a series of tests on the

relative efficiency of the FKS and Catani Seymour subtraction methods; these tests

are conducted over multiple processes and the affect of the multiplicity of the state

is investigated.

In addition the contribution of photon induced processes to lepton and W boson

production is discussed, taking into account contributions from the QED part of

parton distribution functions and from equivalent photons in the

Weizsaecker–Williams approximation. Typically these processes contribute on the

per cent level compared to standard quark and gluon-induced processes; however,

when applying various cuts this picture may change and the photon induced

processes may become significant.
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Introduction

The threshold of high energy physics is currently being pushed back by experiments at

the LHC at CERN. This has enabled discoveries at the high energy frontier, including

what appears to be the long elusive Higgs boson. Such discoveries are made possible

by a wealth of theoretical work that enables the accurate modelling of desired signals

and backgrounds.

The modelling of such effects for collider purposes is incorporated into programs

known collectively as Monte Carlo event generators. These provide the link between

experiments such as the LHC and the theoretical community, with their ability to

provide simulations of collider events. Such tools are used extensively for the analysis

and interpretation of collider data, in addition to the determination of experimental

signatures of new theoretical models. This thesis is focused on development for and

use of the event generator SHERPA.

The fundamental task of a Monte Carlo event generator is to provide predictions

for events seen in colliders, as such it must predict what is measured experimentally.

The fundamental experimental quantity to compute in a collider environment is a

cross section, σ, which can be measured, for a given process, as the number of events

of over the integrated luminosity (total number of particles per unit area); this is

expressed as σ = N
L

. To undertake this task a Monte Carlo must utilize a mixture of

fundamental physical theory and phenomenological models, the stages of this mod-

elling can be seen in the figure given below. The first of these is to employ cross

section calculations of fundamental, free particles. These are based on the matrix

element of the desired process, which is computed using quantum field theory. The



cross section is then calculated, in essence, by performing a phase space integral of the

squared matrix element over all the final state momenta of the process with the con-

straint of momentum conservation between initial and final states; this is expressed

below

σab→X(p1, p2) =
1

2E1E2

∏
i

∫
d3ki
(2π)3

1

2Ei
(2π)4δ(4)(p1 + p2 −

∑
i

ki)|M(ab→ X)|2

In the case of hadron colliders such as the LHC, the initial states to be described in

the cross section are bound states, such as protons, of more fundamental particles;

this complicates the computation of cross sections. However for the case of the high-

energy collisions that are of interest here, hadronic bound states can be interpreted

as distributions of free particles, each with a fraction of the total hadronic momenta.

Such distributions can be computed from experimental results and are, rather tauto-

logically, known as parton distribution functions. The use of PDFs in Monte Carlos’

is represented in the figure by blue partons emanating from the incoming hadrons

(large green blobs in the figure). The computation of the hadronic cross section pro-

ceeds by employing the cross sections of the constituent particles convolved with their

respective distribution functions, this is naturally expressed as

σHadronic =
∑
a,b

1∫
0

dη1

1∫
0

dη2f
H1
a (η1)fH2

b (η2)σ̂ab→X(η1P1, η2P2)

where fHia (ηi) represent the PDFs and ηi is the partonic fractions. The task of a

Monte Carlo is not yet complete however, as the final states measured by colliders

provide a picture that is more complicated than can adequately be computed from

the ’free unbound’ cross sections so far described. There are two observations that

are worth considering from such events; in the first instance such events have large

multiplicities of particles, so much so that it is not feasible to calculate the precise

matrix element, and additionally that these particles are often bound hadronic states.

Such events are described in the Monte Carlo by utilizing the simple cross section set

up to describe a hard process, essentially one which involves significant momentum

transfers, represented in the figure by the intersection of partonic lines in a large

red dot. The partons involved in this process are then subject to a parton shower.



A parton shower simply evolves such a parton from the hard process to a lower

energy scale at which it is observed; as this evolution occurs the parton successively

branches into multiple partons and as such is similar to the the emission of x-rays

by high energy electrons as they decelerate. Diagrammatically this can be seen from

the successive branching of parton lines moving away outward from the hard process.

In using this technique the high multiplicity of final state events is described. The

problem of hadronisation of final state particles is the least well described aspect of

the collider event, and entirely relies on phenomenological models fitted from data. In

a Monte Carlo these models would kick in below a certain hadronisation scale, below

which the parton shower would cease and partons would transform into hadrons

based on the parameters in the hadronisation model. This stage can again be seen

diagrammatically through the transformation, at the edges of the figure, of partonic

lines into various green ’blobs’ which represent the hadrons.

Hadronic collisions can also contain an additional component that is the result of

the secondary interactions of the hadrons, in addition to the hard process. This is

known as the underlying event of the interaction, and cannot be modelled directly

from basic theory. As a result, similarly to hadronisation, this is modelled with vari-

ous phenomenologically inspired models which must be fitted to data. The underlying

event is diagrammatically represented in the figure, by the purple ’blob’ and resulting

purple partonic lines.



Diagrammatic representation of collider process as modelled in a monte carlo event

generator (www.sherpa-mc.de). The stages of monte carlo modelling can be seen in

this diagram; the large red centre represents the hard process, which then decays and

showers into multiple partons, finally these hadronise in the ’green’ stage



Part one of thesis will then be concerned with the calculation of next to leading

order corrections in QCD. Such calculations are principally motivated by the reduc-

tion of errors associated with perturbative scale choices, such as the factorization and

renormalisation scales which result from performing such calculations. A drawback

for such corrections is the often time consuming nature of such calculations. The au-

tomatic calculation of such corrections is therefore well motivated; in this vein general

algorithms for the calculation of the real component of NLO corrections, such as the

subtraction mechanism of Frixione, Kunszt and Signer, are of interest. Additionally,

while such mechanisms undoubtedly improve the efficiency of such calculations , the

phase space integration of corrections calculated from such mechanisms can be com-

putationally costly in particular for higher multiplicity processes. This is to some

extent unavoidable however, given that there is not a prescribed method for such cal-

culations. Knowledge of the relative efficiency of various NLO calculational schemes

can be of use in minimising this cost.

In this context this thesis will provide an overview of perturbative QCD, and will

emphasise material relevant to the discussion of next to leading order corrections

and Monte Carlo event generators. It will then provide a detailed overview of next to

leading order calculations, including the motivation of such calculations, and describe

how the real part of such calculations can be calculated using subtraction schemes.

A detailed explanation of the subtraction mechanism of Frixione Kunszt and Signer

is then undertaken, as a prelude to the description, in the following chapter, of the

implementation of this method into the AMEGIC++ matrix element generator for

NLO calculations of generic processes. Tests of this implementation are presented,

including consistency under various parameter variations as well as comparisons with

calculations based on different mechanisms. Finally this implementation is used to

compare the relative efficiency of the FKS subtraction scheme with the method of

Catani and Seymour for a number of processes. The relative efficiency of the FKS

method is found to be larger in cases of larger partonic multiplicity.

Part two of this thesis will consider the applications of photon-photon induced



processes to observables at the LHC. The motivation for such considerations is the

need for increasing accuracy on observables at the LHC, which is necessary to set

increasingly stringent bounds on new physics beyond the Standard Model. On this

basis it is not unreasonable that high level accuracy is a important for a number of

processes; it is argued that examples of such processes include the high mass Drell

Yan tail and the leptonic decay channels of W pair production. The calculation

of photon-photon induced processes, which are formally part of the next to next to

leading order electro-weak correction (the full electro-weak corrections are not consid-

ered), is undertaken based on the observation that a more modern set of PDFs which

correct for QED effects has recently become available, namely the NNPDF2.3QED

set allowing a comparison to be made with the standard MRST2004QED set.

These QED corrected PDFs calculate the photonic component to parton distri-

bution functions allowing photon-photon induced processes to be calculated in the

same fashion as partonic ones. Additionally the production of particles associated

with strong electromagnetic fields of the colliding protons, which can be modelled

by the equivalent photon approximation (EPA) or Weizsaecker Williams method, is

considered. It is clear that this component, which is often overlooked, provides a con-

tribution to photon-photon induced processes. The work considering such processes

in this thesis is thus summarized; the background simulation set up in SHERPA for

the photon-photon induced processes, based on both the QED PDFs and the EPA

contributions is described in addition to the partonic baselines. The use of this set

up for the case of Drell-Yan and W pair production is presented. For both processes

the simulation set up is directly compared to ATLAS and CMS data, with details of

analysis cuts provided. The contribution of the photon channels is then discussed.



Part I

NLO Calculations in SHERPA
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Introduction to Part I

The calculation of fixed order cross sections in perturbative QCD is central to efforts

to model collider events, particularly in the context of Monte Carlo Event genera-

tors such as SHERPA. Improvements to these calculations, in terms of accuracy and

reduction of errors, is therefore of primary importance for increasing the predictive

power of collider models. Next to leading order corrections provide such an improve-

ment, compared with leading order cross sections; in the first instance they provide

a formally higher perturbative accuracy to the cross section, this improvement in

perturbative accuracy also has the effect of a reduction in certain errors associated

with scales.

Formally speaking the use of fixed order calculations introduces a dependence upon

artificial scales, and as such the higher the perturbative order of the calculation the

lower such a dependence is. The usual drawback of calculating such corrections is

that they are often time consuming to perform and include singularities, which while

cancel, can often make such computations difficult to perform, especially when using

numerical methods. As such general algorithms for the calculation of the real compo-

nent of the NLO correction, such as the subtraction mechanism of Frixione, Kunszt

and Signer are of interest. In addition the existence of general algorithms allows the

possibility of tools to calculate such corrections automatically. However, while the use

of such algorithms undoubtedly improves efficiency for NLO calculations, they also

include components that can become computationally expensive to calculate. While

this is to some extent unavoidable, given that there is not a prescribed method for

such calculations; knowledge of the relative efficiency of various NLO calculational

schemes can be of use in minimising this cost.



The first part of this thesis is structured thus: An introduction is presented to

perturbative QCD, in which the theoretical background relevant for NLO calcula-

tions is described and in addition includes discussions relevant to collider physics

and Monte Carlos. A review of next to leading order calculations is then shown,

where the primary motivations for such corrections are discussed in detail and calcu-

lation details of such corrections presented. The concept of a subtraction mechanism

is discussed, which allows the numerical computation of the real part; the Catani-

Seymour subtraction formalism is described as an example of such a computation.

The subtraction scheme of Frixione, Kunszt and Signer is then reviewed in detail,

with formulae necessary for computations presented.

A discussion is then presented detailing the implementation of the FKS subtraction

mechanism in the AMEGIC++ matrix element generator, a component of SHERPA, al-

lowing the automatic computation of the real component of the NLO correction to

be made. The technical details necessary for this implementation, such as kinematic

mappings are explicitly shown. The implementation is then subjected to testing to

determine its validity; including its performance under numerical cutoffs, its consis-

tency with other calculational methods and its variation under internal parameters.

The FKS implementation is used in conjunction with an implementation of the

Catani-Seymour formalism, also in AMEGIC++, to investigate the relative efficiency

of both methods for conducting NLO calculations. As such results are presented for

both methods concerning the computational speed of the subtracted real component

of the calculations, which, time-wise can often be the bottleneck for NLO calcula-

tions. This is conducted for the processes e+e− → jj, e+e− → jjj, e+e− → jjjj

and jj → e+e−, for both methods. Both are varied over a large range of internal

parameters which can affect the result. The results are then discussed, with reference

to process dependent factors. Finally the findings of this work are summarised and

relevant conclusions drawn.



Chapter 1

The Foundations of QCD

Quantum Chromodynamics, the theory of strong interactions, is the foundation of

most of the material presented in this work. It is the main theoretical backdrop to

any attempts to describe the physics of high energy hadronic colliders, especially in

the LHC era. There is a vast literature associated with the theory, most of which is

beyond the bounds of this work.

1.1 QCD as a Gauge Theory

At its foundations, QCD is a non-Abelian quantum field theory, defined in the first

instance by its classical Lagrangian density [7]

LClassical = −1

4
F µν, aF a

µν +
∑

flavours

q̄fi
(
i /D −mf

)
ij
qfj (1.1)

where the index f denotes the flavours of quark, with mf denoting their masses (for

most purposes in this work mf can be safely set to zero).

The fields {qi}, which describe the quarks are represented by spinors, a spin 1
2

representation of the Lorentz group and can be shown to have mass-dimensionality

of [qi] = 3
2

[8]; these are by construction anti-commuting objects which ensure that

quarks are fermionic. The indices, i on the quark fields, indicate the colour states of

the quarks; as these fields lie in the fundamental (or conjugate fundamental for {q̄i})
5
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representation of the SU(3) colour group, they can take the values i ∈ {r, g, b}. The

fields {Aaµ} lie in the vector representation of the Lorentz group, and are thus spin

1 vector bosons or gauge bosons and can be shown to have mass-dimensionality of

[Aaµ] = 1; in QCD these are known as gluons. The gluonic fields also have a colour

index, a, which can take the values a = {0, ....., 8}, these fields thus lie in the adjoint

representation of the SU(3) colour group. The field strength tensor and the covariant

derivative given in the Lagrangian are defined in terms of these fields as follows:

F a
µν = ∂µAaν − ∂νAaµ − gsfabcAbµAcν (1.2)

/Dij = δijγ
µ∂µ − igsγµAaµtaij (1.3)

The factor γµ represents the set of gamma matrices, which act on spinor indices; they

are defined as obeying the Clifford algebra {γµ, γν} = 2gµν . The factor gs given in

these expressions is the coupling constant of QCD, and will play a larger role later;

the terms ta represent the generators of SU(3) in its fundamental representation, and

fabc are the structure constants of SU(3), defined from the commutation relations of

these generators

[ta, tb] = ifabctc (1.4)

The Lagrangian is defined to be invariant under a local gauge transformation of

the colour group SU(3). Under a local gauge transformation, the quark and gluon

fields are defined to transform as

qi(x)→ Uij(x)qj(x) (1.5)

q̄i(x)→ q̄j(x)U−1
ji (x) (1.6)

taAaµ(x)→ U(x)taAaµ(x)U(x)−1 +
i

gs
(∂U(x))U−1(x) (1.7)

where U(x) = eiλ
a(x)ta . These definitions then lead to the following gauge transfor-

mations for Dµ and F a
µν

Dµqi → Uij(x)Dµqj (1.8)

taF a
µν → U(x)taF a

µνU
−1(x) (1.9)
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From the definitions given in 1.5 to 1.9 it is then clear that the Lagrangian is invariant

under the local SU(3) gauge transformations.

The notion of gauge invariance is sufficient to define the classical Lagrangian of QCD,

however for a correct quantisation of this theory the gauge freedom must be con-

strained.

This is exemplified by attempts to define a propagator for the gluon field, in

the gauge invariant theory. The propagator, which can be calculated as the Green’s

function of the classical equation of motion for the ’free’ gluonic field (ie without any

interaction terms with quarks), is defined as the vaccum expectation value of a pair

of fields; the gluonic propagator is therefore defined by

∆µν(x− y) = δab〈0|[Aaµ(x)Abν(y)]|0〉 (1.10)

where ∆µν(x− y) is the propagator. The (’free’) gluonic field, in the gauge invaraint

theory, obeys the equation of motion(
gµν∂2 − ∂µ∂ν

)
Aaν(x) = 0 (1.11)

Hence the gluonic propagator defined in the gauge invariant theory would then have

to obey (
gµν∂2 − ∂µ∂ν

)
∆νρ(x, y) = iδµρδ(x− y) (1.12)

Given that the operators present in 1.12 are not invertible, computing the Greens

function is not possible; hence the propagator cannot be computed in the gauge in-

varaint theory. The quantisation procedure is therefore carried out after constraining

the gauge freedom of the gluon field.

Generally this gauge fixing can take the form of some constraint on the gauge

boson fields, this constraint can be expressed in terms of a Lagrange multiplier

added to the classical Lagrangian, and is generally referred to as a gauge fixing term

Lgauge fixing = [G(Aaµ)]2. The standard choice for gauge fixing gives the contribution

Lgauge fixing = − 1

2ξ

(
∂µAaµ

)2
(1.13)

which corresponds to the constraint ∂µAaµ = 0 (Lorentz gauge) and where the param-

eter ξ sets a choice of gauge, common choices are ξ = 1 (Feynman gauge) or ξ = 0



8 1.2. Renormalisation of QCD

(Landau gauge).

The addition of this gauge fixing term to the Lagrangian of a non-Abelian gauge the-

ory entails the introduction of the Faddeev-Popov, or ghost, terms to the Lagrangian.

This constraint, when applied to the functional integral of the quantum field theory

gives rise to additional contributions to the Lagrangian. Following the method of

Faddeev and Popov, these contributions can be written in terms of additional fields,

known as ghost fields and give the following addition to the Lagrangian [7].

Lghost = ∂µη̄
a∂µηa − gsfabc∂µη̄aηbAµ c (1.14)

The fields η, which are anti-commuting scalars, are not interpreted as representing

physical particles; however in perturbative calculations they do give rise to contribu-

tions via internal lines as virtual particles. The addition of these terms in perturbative

calculations cancels unphysical polarisations of gauge bosons, which otherwise appear

and act to ensure the unitarity of the theory. The full Lagrangian for QCD, a com-

bination of the classical part and additional terms due to the gauge fixing, can now

be used to derive the Feynman rules for QCD [9].

1.2 Renormalisation of QCD

Renormalisation is a concept central to modern understanding of Quantum Field The-

ory and is a much richer subject than will be presented in this briefest of overviews,

more thorough reviews can be found in [7] and [8]. Renormalisation has two principle

consequences that are relevant for these purposes; the first is that it enables diver-

gences in the virtual corrections associated with arbitrarily high momentum scales to

be absorbed, meaning that perturbation theory remains a valid tool. Secondly it has

the consequence of causing parameters in the theory to gain a scale dependence. The

technicalities will not be discussed in detail, nor will subjects such as what consti-

tutes a renormalisable QFT; it is sufficient for the purposes of this work to state the

QCD is a renormalisable theory and to briefly discuss the procedure for QCD and its

consequences.

The motivating factor for renormalisation is, as has been alluded to, the appearance



1.2. Renormalisation of QCD 9

of apparent singularities in quantum corrections of perturbation theory, which in-

volve integrals over unconstrained momenta known as loop contributions; clearly this

is a significant problem for the use of perturbation theory in QCD (and other QFTs).

These contributions are represented in terms of Feynman diagrams that contain com-

Figure 1.1: The one loop Feynman diagrams contributing to the self energy of quarks

and gluons. From top right: the fermion loop contribution to gluon self energy, the

gluon loop contribution to quark self energy, the ghost loop contribution to the gluon

self energy and the gluon loop contribution to the gluon self energy.

plete loops of particles, typical one-loop Feynman diagrams are given in figure 1.1.

In a renormalised theory bare parameters and fields present in the Lagrangian in 1.1,

do not, in higher order perturbation theory, correspond to the physically measurable

or renormalised quantities; perturbative calculations should then be performed with

the renormalised, not bare quantities [7]. The reparamaterization of the theory in

terms of renormalised quantities is mathematically carried out by a simple rescaling.

For the parameters that are of interest, the quark and gluon fields and the strong

coupling, this rescaling is given by:

q0 = Z1/2
q qr (1.15)

Aµ a0 = Z
1/2
G Aµ ar (1.16)

g2
s r = Zgsg

2
s r (1.17)

if the rescaling parameters, Zi are rewritten in the form Zi = 1 + δi, the bare La-

grangian can be split up in terms of a renormalised Lagrangian (the same as the bare

L but in terms of the renormalised quantities) and Lagrangian of counter terms:

L0,QCD = Lr,QCD + Lcnt,QCD (1.18)
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The motivation for this re-writing is simply that the perturbative series in terms of

the renormalised quantities, which will be of the same form as for the bare ones, now

has counter terms which will be used to deal with singularities. This counter term

Lagrangian can easily be obtained from performing the rescalings on parameters in

1.1, for example the quark gluon coupling term in Lcnt,QCD is given by

Lcnt,QCD =

(
δq +

1

2
δG + δgs

)
gs,rq̄γ

µAaµtaq (1.19)

where contributions of the order O(δiδj) have been ignored (the justification is that

they contribute only at NNLO for the renormalisation of the strong coupling, which

is not relevant for discussion of order NLO). The counter term Lagrangian now yields

contributions to the perturbative calculations and, as has been stated, the idea is to

use the counter terms to remove singularities from loop integrals.

To parametrise the singularities present, some form of regularisation is necessary

for their representation; the conventional way to represent singularities in higher

order QCD calculations is dimensional regularisation. In dimensional regularisation

momentum integrals which would give divergent contributions are computed in 4−2ε

dimensions, as opposed to four. The term ε, is then taken to tend to zero, singularities

are then expressed as poles in ε. The momentum integrals are then re-written

d4k → µ2εd4−2εk (1.20)

where the scale µ is introduced to maintain the dimensionality of the couplings and

fields; without this scale, couplings such as gs become dimensionful to the O(ε).

The cancellation of singularities may also include the cancellation of finite pieces in

addition to the poles in ε; a consistent choice of these finite terms is known as a

renormalisation scheme. The simplest example of a renormalisation scheme is min-

imal subtraction, usually written as MS, which as its name suggests has no finite

contributions, the cancellation of singularities then simply amounts to the cancel-

lation of poles in ε. To finite order in perturbation theory there exists a scheme

dependence on results. The scheme used in this thesis is that of modified minimal

subtraction MS, in this scheme poles are represented as

1

ε̄
=

1

ε
+ log 4π − γE (1.21)
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where γE is the Euler gamma constant. The MS pole can also be written in the form

1

ε̄
=

(4π)ε

Γ(1− ε)
1

ε
(1.22)

which is often a convenient factor to subtract. It should be noted that dimensional

regularisation also parametrises infra-red singularities, which will be the subject of

much of this thesis.

The use of renormalisation conditions, which fix the renormalised parameters in

the theory at a certain energy scale µR (the renormalisation scale), then enables the

counter terms to be set such that the cancellation of UV divergences takes place.

The consequence of this is the introduction into the theory of scale dependence of

parameters. This dependence upon scale is expressed in the form of renormalisation

group equations which describe the running of parameters in the theory with scale;

for the strong coupling this is described by

µR
∂αs
∂µR

= β(αs(µR)) (1.23)

where the strong coupling is written in terms of αs = g2s
4π

, and the beta function is

expressed as:

β(αs) = −α
2
s

2π
β0 +O(α3

s) β0 =
11Nc − 2Nf

6
(1.24)

where for QCD Nc = 3. To O(αs), which is of interest as the main focus of this work

are tools for NLO QCD, this yields the running of αs, from [9] to be

αs(µR) =
αs(µ)

1 + β0
αs(µ)

2π
log µR

µ2

(1.25)

The results of this running on αs have two clear, but profound, consequences; at

high scales it can be seen that αs becomes small, a phenomena known as asymptotic

freedom. It is assumed throughout this work that it is appropriate to treat QCD in

perturbation theory, and it is clear that at sufficiently high scales this is an appropri-

ate assumption. Conversely however at lower energy scales it is seen that αs becomes
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larger, lower than around 500 MeV perturbation theory for αs is no longer appropri-

ate as higher order terms become too large to ignore [9]. This low energy growth of

αs is consistent with the phenomena of colour confinement, whereby coloured objects

such as quarks are only found in bound colourless objects such as hadrons.

Renormalisation has the consequence of the introduction into the theory of a

scale µR; the scale at which αs is fixed. The use of such a scale is to some extent

an artifact of the calculation, physical observables should not have a dependence on

such a scale which is introduced by hand. Reassuringly an all orders calculation

in perturbative QCD does indeed remove any dependence upon µR [9]; however in

practical calculations the perturbative series is almost always truncated. A truncated

perturbative calculation does retain a residual dependence upon µR, the reason for

this can be motivated from the form of the beta function; the variation of αs(µ)

with the scale µ is at least O(α2
s), hence any scale variation can only be removed by

additional contributions at higher orders. This can be explicitly seen by considering

the expansion of αs in terms of a new scale.

αs(µ) = αs(µR) +
α2
s(µR)

2π
β0 log

µ2

µ2
R

+O(α3
s(µR)) (1.26)

The expansion of αs demonstrates that the variation due to the scale is an order of

α2
s and higher; hence the inclusion of terms of at least O(αn+1

s ) are required to re-

move the scale variation of terms of O(αns ). The truncation of the series thus causes

a residual dependence on the value of µR, this dependence is notably reduced the

higher the fixed order of the calculation, which provides additional motivation for

performing higher order corrections.

The truncation of the perturbative series also leads to a dependence upon the

renormalisation scheme of the calculation, and usually appears in the context of

renormalised parameters such as αs in a similar fashion to the scale dependence.

Again this is simply the result of the truncation of the perturbative series, any all

orders calculation is free of such a dependence. As with scale dependence this can be
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reduced with the inclusion of higher orders, although generally it is not as significant

a source of error as the scale dependence.

1.3 Unresolved Limits of QCD Matrix Elements

Before proceeding with further discussion, it will prove useful to describe some use-

ful results associated with QCD matrix elements (specifically leading order matrix

elements) in the limit that one of the legs/particles somehow becomes kinematically

unresolved from the other legs/particles in the process. The kinematics allow for this

to occur in two distinct ways; the limit when a particle tends to zero energy and a

limit where the angle separating two particles momenta tends to zero. The note that

will be made here is that, for the discussion in this thesis, only one particle unresolved

limits will prove useful; and the discussion in this section is strictly limited to such

cases.

1.3.1 Notation

Before giving explicit expressions, it will prove useful to define some convenient no-

tation, which takes inspiration from the conventions of [10]. First of all it is useful to

define the shorthand rn = a1, ....an, k1, ..., kn ,where ai is the flavour, and ki momenta

of particle i, for expressions where the particle and flavour content of matrix elements

will change. Some constants from colour algebra are then expressed as

C(q) = CF =
N2
c − 1

2Nc

γ(q) =
3

2
CF (1.27)

C(g) = CA = Nc γ(g) =
N2
c − 1

2Nc

TF =
1

2
(1.28)

The following definitions are made.

M(n,0)(rn) =
1

2s

1

ω(a1)ω(a2)

∑
Colour,spin

∣∣A(n,0)(rn)
∣∣2 (1.29)

M(n)
kl (rn) =

1

2s

δkl − 2

ω(1)ω(2)

∑
Colour,spin

A(n,0)(rn) ~Q(ak). ~Q(al)A(n,0)(rn)∗ (1.30)
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Where { ~Q} gives a representation of the colour algebra, taij for quarks and T abc for

gluons, so it can be shown that ~Q(ak). ~Q(al) = ~Q(al). ~Q(ak) and ~Q(ak). ~Q(ak) = C(ak)

The factors, ω(a1) and ω(a2), ensure that the spin and colour of initial state particles

in M is averaged over; thus for quarks ω(a1) = 2NC = 6 and for gluons ω(g) =

2(N2
C − 1) = 16.

1.3.2 Explicit Expressions

The first unresolved limit that will be considered is the soft limit; physically this

amounts to the additionally radiated particle in real amplitude tending to low (or

zero) energy. Taking the soft limit of the matrix element squared is a well known

result, and in QCD is given to be

lim
ki→0
Mn+1({k}n+1) = δgai4παs

∑
k 6=l

k̂k.k̂m

k̂k.kik̂l.ki
Mn

kl({k̂}n) (1.31)

where it is noted that this limit applies only for gluons. The soft limit involves a sum

over all the momentum of all (coloured) particles, with no dependence on the species

(quark or gluon) of the particle. The soft limit for quarks, although kinematically

possible for massless quarks (which unless otherwise stated they will be in this work)

does not lead to a divergent contribution and is therefore not considered. The result

is clearly divergent for ki → 0, a result that will become more relevant in the next

chapter.

The single unresolved limits of QCD matrix elements squared also include the

collinear limit of two partons. In this limitM factorises, in a form not unfamiliar to

the soft limit above. In its most general form the factorisation is described by

lim
ki||kj
M(n+1)({k}n+1) =

4παs
ki · kj

P µν
ajaij

(z)M(n)
µν (r

aij
[i,j], {k̂}n) (1.32)

where collinear limits of this kind are dealt with in detail in [11], and r
aij
[i,j], using the

notation of the previous section, defines the set of n particles and momenta; where

particles i and j are excluded and replaced by a combined parton aij. This combined

particle has its flavour defined by a combination of the flavours of particles i and
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j. This limit, unlike the soft limit contains a spin dependence, symbolised by the

tensorial notation of both terms, in addition to a splitting function dependence on

the flavours of partons i and j. The splitting functions are universal for all processes,

and are given as a function of z, which describes the fractional energy of one of

the collinear partons, which in this case is labelled j. The splitting functions are

labelled in terms of the flavours of one of the collinear partons and the combined

parton, which completely describes the splitting process. The spin indices in the

factorisation formula above are dependent upon the flavour of the combined parton

which arises from the collinear limit; if this is a quark they take the form of spinor

indices and for gluons they are Lorentz indices. For quark splittings the factorisation

is spin independent and the splitting functions can therefore be written in the form

P ss′

aiq
= δss′Paiq(z) (1.33)

where Paiaj(z) are the spin averaged, or Altarelli-Parisi splitting functions; for quark

splittings they are given below.

Pgq(z) = CF

(
1 + z2

1− z2

)
(1.34)

Pqq(z) = CF

(
1 + (1− z)2)

z

)
(1.35)

The gluonic splitting functions retain a spin dependence, and are given by

P µν
qg (z) = TF

[
−gµν + 4z(1− z)

kµ⊥k
ν
⊥

k2
⊥

]
(1.36)

P µν
gg (z) = 2CA

[
−gµν

(
z

1− z +
1− z
z

)
− 2(1− ε)z(1− z)

kµ⊥k
ν
⊥

k2
⊥

]
(1.37)

where k⊥ is the momentum transverse to the direction of the combined momentum

pij. The momenta of the collinear partons can be written in terms of the combined

momenta pij, k⊥ and a light-like momentum n.

pj = zpij + k⊥ + ξ1n (1.38)

pi = (1− z)pij − k⊥ + ξ2n (1.39)
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The definitions k⊥ ·pij = k⊥ ·n = 0 are made; the light-like vector n must be included

for p2
i = p2

j = 0, which also fixes the quantities ξ1 and ξ2.

ξ1 = −1

z

k2
⊥

2pij · n
(1.40)

ξ2 = − 1

1− z
k2
⊥

2pij · n
(1.41)

The factorised matrix elements squared can be re-written in terms of the spin aver-

aged or Altarelli-Parisi splitting functions and terms that have the explicit angular

dependence

lim
ki||kj
M(n+1)({k}n+1) =

4παs
ki · kj

Pajaij(z)M(n)(r
aij
[i] , {k̂}n)+

4παs
ki · kj

Qajaij(z)M̃(n)(r
aij
[i] , {k̂}n) (1.42)

where again Pajaij(z) are the Altarelli-Parisi splitting functions. The term

Qajaij(z)M̃(n)(r
aij
[i] , {k̂}n) is the explicit angular contribution, which can be obtained

from the off-diagonal terms in the tensorial product in 1.32, and is defined in appendix

B. The gluonic spin averaged splitting functions (for quarks they are given above)

are

Pgg(z) = 2CA

(
z

1− z +
1− z
z

+ z(1− z)

)
(1.43)

Pqg(z) = TF
(
z2 + (1− z)2

)
(1.44)

it is noted these can be obtained from spin averaging 1.36 and 1.37. Unsurprisingly

the functions Qajaij(z) can be read off to be

Qgg(z) = −4CAz(1− z) (1.45)

Qqg(z) = 4TF z(1− z) (1.46)

It is commonplace to neglect angular contributions to the collinear splitting, as in

most cases after integrating over the phase space these terms disappear. However

in subtraction terms, which will be detailed in the next section and are based on

unresolved limits of matrix elements, will need to include angular contributions to

avoid numerical instabilities when the phase space integral is taken.
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The Altarelli-Parisi splitting functions, given above are sometimes written in a

regularised form, the regularisation is often included due to singularities in the split-

ting functions when z tends to one or zero. The regularisation is accomplished by use

of plus distributions; where a plus distribution of a function, with a singular term at

zero would act as
∫
dxf(x)+ =

∫
dxf(x) − f(0). The regularised splitting functions

are then expressed as:

P̂qq(z) = CF

(
1 + z2

1− z

)
+

(1.47)

P̂gq(z) = CF
1 + (1− z)2)

z
(1.48)

P̂gg(z) = 2CA

((
z

1− z

)
+

+
1− z
z

+ z(1− z)

)
(1.49)

where the Pqg is unchanged as it is always finite.

1.4 Collider Physics and the QCD Parton Model

In the environment of a hadron collider it must be noted that the hadrons, typically

protons or anti-protons used in the collider, are bound states of coloured objects. The

need to accurately describe the physics of hadron colliders, such as the LHC, is one

of the driving forces behind the research in perturbative QCD; however perturbative

calculations of cross sections from quantum field theory do not seem well suited to

processes with hadronic initial states.

However hadrons are bound states of coloured particles and so collisions between

these objects must be related to the perturbative calculations of cross sections from

quantum field theory, which are calculated for free particles. The description of such

collisions in terms of partonic density functions (PDFs) and partonic cross sections

of (free) partons, will be reviewed in this section.

1.4.1 Näıve Parton Model

The description of hadronic cross sections in terms of PDF’s and partonic cross sec-

tions calculated from quantum field theory (usually QCD in the context of this work)
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is best motivated from the naive parton model. In the framework of this model,

some fairly basic assumptions are given which allow the naive calculation of hadronic

cross sections. The fundamental assumptions of this model are that the hadrons, at

the high energies typically found in colliders, can be simply modelled as a collection

of unbound (i.e. free) partons, which each have a fraction, η of the hadronic en-

ergy. These partons are considered to be the fundamental objects found in the QFT,

typically quarks and gluons (although non QCD objects such as photons also have

non-negligible contributions). A key assumption of the model is that hadronic cross

sections at these energy scales can then factorise into convolutions, over the fraction

η, of partonic cross sections with a distribution function of the parton. These distri-

bution functions are the partonic density functions (PDFs), and give the distribution

of a given parton at a specified energy fraction. The factorisation of the hadronic

cross section can now be written as

σHadronic =
∑
a,b

1∫
0

dη1

1∫
0

dη2f
H1
a (η1)fH2

b (η2)σ̂ab→X(η1P1, η2P2) (1.50)

(see [12]) where fHa (η) are the PDFs. The PDFs are essentially a set of empirically

determined functions, that cannot be calculated perturbatively from first principles.

1.4.2 The Parton Model and QCD

The näıve parton model, described in the previous section, rested upon the assump-

tion that partons in the hadron (at high energies) can be thought of as essentially free

objects moving in the same direction as the hadron, each with a fraction, η, of the

total hadronic momenta. These assumptions hold fairly well for tree level processes,

however for higher order perturbative corrections in QCD, the model requires some

modification. When considering higher O(αs) perturbative corrections to the parton

model it is clear that there is a contribution from the ’free’ partons in the hadron

radiating other partons. However this complicates the naive parton model; perturba-

tive corrections now contain ’free’ partons with non-zero transverse momentum from

radiative corrections, clearly a departure from the näıve model in which partons have



1.4. Collider Physics and the QCD Parton Model 19

no transverse momentum. To reconcile the PDF parton model with perturbation the-

ory, µF , the factorisation scale is introduced; partonic transverse momentum above

the factorisation scale is said to contribute to the hard (i.e. partonic) process, and be-

low this scale gives corrections to the PDF. Radiative contributions to PDFs require

the reconsideration of the PDFs given in the näıve model; these are now regarded as

bare distributions, analogous to bare couplings in renormalisation, the ’renormalised’

distributions now with an explicit dependence on the factorisation scale contain these

radiative corrections. These distributions can be written, like the renormalised cou-

plings, in terms of the bare distributions plus higher order corrections, in this case

radiative corrections; to O(αs) this is given by [9]

fai(η, µF ) = fai(η) +
αs
2π

∑
j

1∫
η

dy

y
P̂aiaj

(
η

y

)
faj(y) log

(
µF
κcut

)
+O(α2

s) (1.51)

where fai(η) are the bare PDFs, P̂aiaj(z) are the (regularised) Altarelli-Parisi collinear

splitting functions, y is the fractional partonic energy pre-splitting and the cutoff

scale κcut given in the PDF radiative correction above, gives a crude regularisation.

The partonic cross section will contain a similar term with a log µ2
F dependence,

obtained from counter terms which are discussed later in chapter two; these are

added to partonic cross sections specifically to remove the low transverse momentum

scale physics from the partonic process. From the form of 1.51, it is noted that the

’renormalised’ distributions absorb the singularities associated with κcut → 0, again

in a similar fashion to renormalisation.

The scale dependence introduced in the PDFs from radiative corrections, now

fixes PDFs to a factorisation scale. The evolution of PDFs with that scale can be

computed, using the radiative corrections given above, yielding the expression [9]

µ2∂fai(η, µ
2)

∂µ2
=
αs
2π

∑
j

1∫
η

dy

y
P̂aiaj

(
η

y

)
faj(y, µ

2) +O(α2
s) (1.52)

which is the famous Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution

equation [13] [14] [15]. The solutions of the DGLAP equation allow PDFs to be de-

fined at one momentum to be determined at another, in analogy to beta functions
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computed from renormalised quantum field theories. Splitting the physics of the pro-

cess crudely into a soft component associated with the PDFs and the hard component

associated with the partonic scattering cross section, yields a residual dependence of

both of these quantities on the factorisation scale. These contributions will however

cancel at all orders, meaning that the hadronic cross section is not dependent on

this artificial scale µF . However in practice hadronic cross sections are calculated to

a finite order in perturbation theory and the truncation of the series causes a de-

pendence on µF to appear, analogous to the appearance of a renormalisation scale

dependence for fixed order calculations. In practical calculations the factorisation

scale is usually set equal to the renormalisation scale as this prevents corrections of

the form log
µ2f
µ2R

appearing, and generally both scales are chosen to be of the same

order as the hard process. An estimate of the error associated with scale dependence

can be obtained by varying the factorisation scale over a range of scales, in practical

terms this may amount to a factor of two over the original scale choice. A judicious

choice of factorisation (and renormalisation) scale can reduce the error associated

with scale dependence on a fixed order calculation; several calculation methods, such

as the Principle of Minimum Sensitivity (PMS) [16] [17], exist for this purpose (for

most processes the choice of the hard scale is justified by these methods). However

as this error is always at an O(αs) greater than the order of the calculation, the scale

dependence is reduced by including higher order corrections.

The introduction of the factorisation scale introduces some subtleties into partonic

calculations; at higher orders contributions to the partonic cross section must not

include radiative corrections below the factorisation scale and it must therefore be

modified to meet this requirement. Discussion of PDFs and partonic cross sections at

higher order is left to chapter two, after some of the machinery of such calculations

has been described.
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1.5 Jet Algorithms

The phenomena of colour confinement, where coloured objects such as quarks are

only observed in bound colourless states such as hadrons, presents a problem when

comparisons are made between experiment and theoretical predictions based on per-

turbative QCD. The treatment of this problem for initial states is described by PDFs

and factorisation which are summarised in the previous section, however for final

states this issue is dealt with by the introduction of jets. Jets can be simply de-

scribed as a collection of hadrons in a detector, that are somehow assigned to one

common bulk of hadronic matter. Sometimes what constitutes a jet can be fairly

intuitive, for example two narrowly collimated bulges of hadronic matter in a detec-

tor can be clearly interpreted as a two jet event; however this is not always the case

and precise definitions are necessary to enable valid comparisons between theory and

experiment. For this reason jet algorithms are introduced, which, for a given input

of protojets, hadronic clusters in experiments and partons in theory, return jets. The

use of jet algorithms, first introduced in [18], is not unique and quite a number exist;

for various applications the optimal choice of jet algorithms will be different.

Jet algorithms are usually formulated in terms of variables that are conveniently re-

lated under Lorentz boosts. The reference frame used for theoretical calculations

(usually the partonic centre of mass frame) and the lab frame will, in general, be dif-

ferent; this motivates the use of variables in jet algorithms that have no or a simple

frame dependence. In a collider, where the beam axis is said to lie in the z direction,

it is clear that the lab and the centre of mass frames are simply related by boosts in

the z direction; as a result the momentum of final state particles transverse to the

beam axis, pT will be invariant under these boosts, as will the azimuthal angle φ.

Both of these are variables often used in jet algorithms, in addition to the rapidity η

which is defined to be

η =
1

2
log

(
E + kz
E − kz

)
(1.53)
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Under a Lorentz boost in the z direction the variables E and kz transform as E =

γ(E + βkz) pz = γ(βE + kz); hence under a boost in z

η′ = η +
1

2
log

1 + β

1− β (1.54)

hence the difference in rapidity between any two particles is invariant under these

boosts.

1.5.1 Infrared Safety

A key issue associated with jets is the ability to link theoretical calculations in per-

turbative QCD with the experimental situation of colour confinement and hadronic

matter. The use of jet algorithms then allows a precise definition of jets that can be

used for both theoretical and experimental purposes. The major part of this work is

dedicated to providing tools for NLO QCD predictions; for NLO (and higher order)

accuracy the definitions of jets must be constrained by the notion of infra-red (IR)

safety. The constraint around IR safety is associated with the real emission compo-

nent of a NLO cross section. The calculational details of NLO cross sections are left

to later chapters, however the relevant point here is that in NLO calculations the

tree level matrix element with an additional parton forms part of the O(αs) correc-

tion, if a parton goes unresolved. These unresolved partons produce divergences in

soft and collinear limits, which cancel IR divergences from loops; IR safety amounts

to jet algorithms which are insensitive to the addition of partons with these limits.

Essentially the condition of infrared jet safety is that the addition of soft or collinear

partons to the final state does not alter the structure of the jets, and hence allows

the cancellation described above to occur.

If the jet algorithms are sensitive to the addition of soft or collinear partons, the

divergent structures in the real and loop contributions can be split into terms with

different jet structures, meaning that a proper cancellation of singularities cannot

take place - a result which is not consistent with perturbation theory [19].
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1.5.2 Generalised kT Clustering Algorithms

A common set of jet algorithms which exhibit infra-red safety is the set of general

kT clustering algorithms; to provide an example of jet algorithms these algorithms

are discussed in this section. This set of algorithms consists of three algorithms

with a slight parameter difference, and are all by constuction IR safe, they are: the

kT or Durham algorithm outlined in [20] and [21], the Cambridge-Aachen algorithm

outlined in [22] and [23] and finally the anti-kT algorithm described in [24]. The

generalised kT algorithm is split into two steps; the first is a clustering procedure

which decides whether a given set of protojets are merged into a jet and a merging

procedure which defines the momentum of the jet in terms of the merged protojets

momenta. The quantities used in the algorithms can now be defined as

di = k2p
iT (1.55)

Rij = (ηi − ηj)2 + (φi − φj)2 (1.56)

dij = min(k2p
iT , k

2p
jT )

Rij

D2
(1.57)

where D is the jet resolution parameter, where the value is usually given in the range

0.4 < D < 1.0, η is the rapidity of the protojet and φ the azimuthal angle. The value

of the parameter discriminates the different algorithms.

p = −1 Anti−KT (1.58)

p = 0 Cambridge− Aachen

p = 1 KT Algorithm

The clustering algorithm is defined by an iterative procedure; a list of protojets is

input into the algorithm, the quantities di and dij are then calculated for all protojets.

The minimum of di and all dij’s for each protojet is calculated; if the minimum is di

then the protojet becomes a jet, if a dij is the minimum then protojets i and j are

merged. The algorithm is carried out iteratively until there are simply jets in the

process. The merging of momenta can then take the following form

Eij = Ei + Ej (1.59)

~kij = ~ki + ~kj (1.60)
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The result of the algorithm is simply a list of jets with well defined momenta.

The differences between the algorithms result from different analysis priorities, as jet

definitions are arbitrary the user is free to use the most convenient definition for their

purpose. The Cambridge-Aachen algorithm, which has no dependence the transverse

momenta and is therefore clustered according to how collinear the particles are, is

most favoured to measure the collinear splitting of partons, however it will clearly not

cluster soft partons with a large angular separation. The kT or Durham algorithm

will cluster soft events well but has the disadvantage of producing jets which have

complicated structure in the detector; for experimental purposes simple cone like

structures are favoured. Anti-kT is often used because it produces these simple well

defined cone like structures in experimental data, due to its inverse dependence upon

kT ; it does however have a downside similar to that of Cambridge-Aachen in that

soft partons with large angles are often not clustered.



Chapter 2

Next-to Leading Order

Calculations

The main purpose of this thesis is to describe and test tools developed for the calcu-

lation of cross sections in perturbative QCD at Next-to Leading Order (NLO). The

computational details for the calculation of processes at NLO will be outlined in this

chapter, and considered more thoroughly in chapter three for the method of FKS

subtraction. This chapter will mostly be concerned with the appearance of infra-red

divergences in NLO calculations, and will discuss how such divergences occur and

how these cancel in the full calculation. Additionally, the computational difficulties

associated with these calculations are discussed, particuarly with numerical methods,

and the concept of a subtraction scheme is introduced. Given that NLO calculations

can be, if not technically difficult to perform, at least computationally expensive, the

justification for performing such calculations is important and will also be reviewed.

It is noted that, unless otherwise stated, the notation used in this section will be that

described in section 1.3.1 of chapter one.

2.1 Motivation

The motivation for performing Next to Leading Order calculations for processes in

QCD is fairly simple, to improve the accuracy of such calculations and obtain more
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reliable error estimates. The inclusion of higher order terms in a perturbative calcu-

lation will by definition improve the accuracy of such calculations. However for QCD

calculations in particular there is additional motivation for seeking higher order cor-

rections, which has been touched upon in chapter one. This is of course the introduc-

tion of artificial scales into perturbative calculations, principally the renormalisation

scale, µR and (for hadronic processes) the factorisation scale. The dependence of

fixed order calculations in perturbative QCD on these scales represents one of the

principle sources of error in such calculations, which is significant as these scales are

introduced for technical reasons and are not physical. An all orders calculation would

of course remove this dependence; however, as was described in chapter one, for a

truncated series the variation over such scales is at least an O(αs) greater than the

highest order term. This gives us two results, namely that no fixed order calculation

can entirely be free of scale dependence, but also that such scale dependence reduces

the higher the order of the calculation. Thus one of the principle sources of error can

be reduced by performing higher order calculations. This is of course motivation for

calculating QCD processes to the highest order technically possible. However higher

order calculations, for reasons which will become apparent later in this chapter, are

often technically difficult and computationally intensive to calculate - in many cases

NLO is simply the best estimate that can currently be calculated. However NLO

calculations are particularly well motivated from this argument as the biggest reduc-

tion in this scale dependence must come from going to NLO from LO, as the scale

uncertainty is of O(αs) larger the order of the calculation.
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Figure 2.1: Lepton pair mass distribution of the Drell Yan Z mass peak, between

85 < mll < 100 GeV shown for LO and NLO. The error bands indicate the correlated

variation of the factorisation and renormalisation scales between mll/2 < µ < 2mll

The reduction in such a scale dependence from LO to NLO is shown in figure

2.1 for the Drell Yan process, and as can be seen, this reduction is not insubstantial.

Calculations that are only of leading order in a perturbative series are therefore

particularly plagued by high uncertainties associated with scale variation. This is

a particular problem for high multiplicity processes, for example if a leading order

term is of order O(αns ) then a correction of the order nαn+1
s log(µ/µR) is the leading

contribution to the scale variation; if n is large then the scale variation can be of

the order of the LO term. For such processes NLO calculations are then essential to

obtain a reasonable estimate of the cross section.
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2.2 Schematics of NLO calculations

Next to Leading Order (NLO) calculations in perturbative QCD are simply the O(αs)

corrections to the leading term in the perturbative series. The general composition

of the NLO correction must therefore include all possible corrections to the process

at O(αs). The components of an NLO calculation are given, schematically, in 2.1,

and is composed of the leading order (Born) term, dσ(B) and the O(αs) corrections

to this term. These contributions can be divided into two distinct parts; virtual cor-

rections (dσ(V )) in the form of (one) loop Feynman diagrams and the real corrections

(dσ(R)), which give contributions from am additional (unresolved) radiative emission.

In addition to these terms, for hadronic initial states the partonic cross section must

include counter terms (dσ(C)) originating from PDFs; the reason for these counter

terms is discussed in chapter one. As can be seen from 2.1, the virtual and counter

terms exist on the Born level phase space, whilst the real term must include the phase

space of the extra emision.

σNLO =

∫
m

dσ(B) +

∫
m

dσ(V ) +

∫
m

dσ(C) +

∫
m+1

dσ(R) (2.1)

Both the real and the virtual terms of this NLO cross section contain divergent

terms, both of which are associated with an unrestrained phase space integral; for

the virtual term this is associated with loop integrals and for the real term this is

associated with the unresolved partonic emission. The singularity structure of both

the real and virtual corrections, which are explicitly given in later sections of this

chapter, potentially poses a problem for perturbation theory. However perturbation

theory is saved by the cancellation between the singularities present in both terms.

The guarantee of this cancellation is the theorem of Kinoshita, [25] and Lee and

Nauenberg, [26], which states that QCD is free of infra-red divergences, at all orders

in perturbation theory, if all contributions at the relevant order are summed.
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2.3 Virtual Contributions

The virtual corrections, of a process in perturbative QCD, are contributions in the

perturbative series, which contain amplitudes with integral(s) over a virtual momenta.

These amplitudes are represented, in Feynman diagrams, as containing a loop of

particles, which gives the contribution of integral over unconstrained momenta which

appears in propagators, a simple example is given in figure 2.2. It is from these

loop integrals that the divergent terms in the virtual contribution arise. At NLO

Figure 2.2: One loop diagram representing the virtual contribution at NLO of the

process qq → γ∗

the virtual contributions purely consist of amplitudes which contain only one loop

term and a Born like final state, other terms are part of higher order corrections.

The virtual terms can therefore be easily integrated over the same phase space as the

Born term. Schematically the NLO virtual contribution can be written as

M(n,1)(rn) =
1

2s

1

ω1ω2

∑
Colour,spin

A(1 loop)(rn)A(tree)(rn)∗+A(tree)(rn)A(1 loop)(rn)∗ (2.2)

The details associated with calculations of loop integrals will not be considered

in this thesis, however the form of the resulting singularities is of interest. The

divergent structure of loop terms has already been partially discussed in chapter

one in the context of renormalisation; the loop integral over unconstrained momenta

generally leads to two types of divergent structures, ultra-violet (UV) and infra-red
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(IR), which are essentially divergences from arbitrarily high or low momenta and are

associated with the upper and lower bounds of the loop integral. The appearance of

these singularities becomes apparent when considering the form of these integrals; a

generic loop diagram has the structure, from propagators of internal fields∫
d4k

kµ1 ...kµm

Πn
i=1(ki − pi)2

(2.3)

which for a crude discussion of singularities can be written as∫
d4k

kµ1 ...kµm

k2n
(2.4)

The integral, which runs over the entire phase space of the loop momenta, can

become divergent either as the loop momentum becomes arbitrarily large (ultra vi-

olet) or when it tends to zero (infra-red); given the crude parametrisation of a loop

integral above, it is clear that for m ≥ n − 4 a UV divergence will occur in 2.4 and

that for n ≥ m + 4 an IR divergence will occur. The appearance of IR singularities

in the virtual term is dealt with by their explicit cancellation with similar divergent

structures in the real emission contributions - a cancellation which is guaranteed,

order by order, in the KLN theorem. The IR divergent structure of the virtual term

at NLO can be calculated generally and it is shown in [27] and [28] (the latter gives

loop contributions for higher order terms as well) to be

M(n,1)(rn) =
αs
2π

1

Γ(1− ε)

(
4πµ2

Q2

)ε
V (ε) (2.5)

where

V = −
(

1

ε2

∑
n

C(an) +
1

ε

∑
n

γ(an)

)
M(n)(rn)

+
1

2ε

∑
nm

log
2kk · kl
Q2

M(n)
kl (rn) +MFinite (2.6)

Where the γ constants are described by

γ(q) =
3

2
CF γ(g) =

N2
c − 1

2Nc

(2.7)

for quarks and gluons respectively. This simply gives the infra-red pole structure

of virtual terms at NLO, the finite contribution is left for actual calculation of loop
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diagrams which will not be considered in this thesis. The scale Q2 is introduced,

which is an arbitary mass scale introduced by Ellis and Sexton to help the writing of

the result - for convenience it is usually set to the Mandelstam variable s. The result

above is calculated in conventional dimensional regularisation.

2.4 Real Emission Contributions

The contribution of radiative terms, to the NLO cross section, is generally known

as the real emission term. In QCD, radiative corrections to the Born term of O(αs)

simply consist of Born like terms with one additional partonic leg; if the extra parton

is unresolved such a term constitutes an NLO correction to the leading order term,

and hence must be included in NLO calculation. Such terms can be computed, in

QCD, with identical methods to that of the Born term, as they can simply be cal-

culated from tree-level Feynman diagrams. The appearance of an unresolved parton

in the real term poses the question as to the behaviour of QCD amplitudes in the

unresolved limits. It will be seen that these limits, which amount to the unresolved

particle becoming either soft, or collinear with another particle, are important for

the singularitiy structure of the real term. It has already been demonstrated that

infra-red divergences occur in the virtual terms, which are not absorbed by renormal-

isation, and it is the divergences from these unresolved limits that will cancel those

from the loop terms. Schematically the form of the real emission term is given by

dσ(R) =Mn+1(rn+1, {kn+1})J (n)dφn+1 (2.8)

WhereMn+1 is the n+1 particle matrix element squared, dφn+1 represents the phase

space integral and J (n) the jet function. It is seen in this form that the jet function

(sometimes described as the measurement function) describes a final state with n re-

solved jets, from a n+ 1 parton final state. One of the partons is therefore somehow

unresolved, there is therefore no restriction of its kinematics and it is free to take

limits that make the matrix element singular. The previous chapter reviewed such

unresolved amplitudes, and they will be considered here in the context of the real
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emission term.

The unresolved limits of the limits of the matrix element squared, which are

described in chapter one, are in the notation of this chapter given by:

lim
ki→0
M(n+1)({k}n+1) = δgai4παs

∑
n 6=m

k̂n.k̂m

k̂n.kik̂m.ki
M(n)

nm({k̂}n) (2.9)

for the soft limit, and

lim
ki||kj
M(n+1)({k}n+1) =

4παs
ki · kj

Pajaij(z)M(n)(r
aij
[i] , {k̂}n)+

4παs
ki · kj

Qajaij(z)M̃(n)(r
aij
[i] , {k̂}n) (2.10)

for the collinear limit, where the Altarelli-Parisi splitting functions are given in the

previous chapter. It is commonplace to neglect angular contributions to the collinear

splitting, as after integrating over phase space these terms disappear; however such

terms must be included in subtraction terms (see next section), when using numerical

methods, to ensure stability. Both of these expressions are clearly divergent in their

respective unresolved limits; and it is noted that the form of these singularities is

broadly the same (if factors from the phase space are included), and take the form

of 2.11.

lim
x→0

1

x
(2.11)

To give a comparison with the virtual singularity structure, the phase space integral of

the unresolved momenta, over such singular terms, can be calculated in dimensional

regularisation to produce a crude pole structure. If this integral is performed on

singularity structures of the form given in 2.11, the pole structure will be of the form

of 1
ε

(see [10]). Given that there is no kinematic reason to exclude it, the double limit

of an unresolved parton, such that it becomes both soft and collinear with another

parton, can exist. Naively this would give a divergent structure of the form 1
Ei(1−cos θij)

and a naive pole structure by previous arguments would be 1
ε2

. Continuing with this

naive expression of singularities, the total singularity structure of an unresolved real

matrix integrated over momenta of the unresolved parton would therefore be of the
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form 2.12. (
A

ε2
+
B

ε
+ C

)
Mn({k̂}n) (2.12)

This singular structure, which as can be seen from equations 2.5 and 2.6, is of the

same form identified as the singular structure of the virtual term. The argument

given above is of a crude nature but does serve to illustrate that the form of the

singularities in the real emission term does indeed match the form of singularities in

the virtual term given in 2.5 and 2.6.

2.5 PDFs and Partonic Cross Sections at NLO

The discussion of PDFs, in section 1.3 of this thesis, describes the introduction of

the factorisation scale into PDFs; this provides a distinction between low scale and

high scale physics resulting from radiative corrections to the leading order partonic

process. Such radiative corrections will occur in higher order corrections, and as such

must be discussed here in the context of NLO calculations. As discussed in chapter

one, radiative corrections which are below the factorisation scale give contributions

to the PDFs and above to the partonic process. However, for the calculation of

NLO cross sections, all radiative corrections are treated as part of the real correction.

As result, for hadronic calculations, the use of PDFs requires corrections to prevent

double counting of radiative contributions below the factorisation scale, which are

implictly included in PDFs. To prevent this double counting, of radiative corrections

below the factorisation scale, the introduction of counter terms to the partonic cross

section are necessary. When such corrections are included, the hadronic cross section

will retain the form 2.13.

dσHadronic =
∑
a,b

1∫
0

dη1

1∫
0

dη2f
H1
a (η1, µ

2
f )f

H2
b (η2, µ

2
f )dσ̂ab→X(η1P1, η2P2) (2.13)

However the partonic cross section is replaced by 2.14, [29] which is the partonic cross

section supplemented with counter terms.

dσ̂(k1, k2) = dσ(k1, k2) + dσcnt
1 (k1, k2) + dσcnt

2 (k1, k2) (2.14)
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These counter terms, which prevent the inclusion of the soft radiative contributions

already present in the PDFs, are to NLO given by 2.15; where the terms Kad(x) are

factorisation scheme dependent functions, which in conventional dimensional regu-

larisation are zero (Kad(x) = 0).

dσcnt
1 (k1, k2) =

αs
2π

1

Γ(1− ε)

(
4πµ2

µ2
F

)ε∑
d

∫
dx

(
Pda(x)

1

ε
+Kda(x)

)
dσ

(B)
db (x1k1, k2)

(2.15)

Where the scale µ, introduced in 2.15, is an arbitrary scale that allows the writing

down of the result in dimensional regularisation; in most cases the choice µ = µF =

µR, the renormalisation scale, is made. The form of these counter terms can be ob-

tained from considering the soft radiative contributions to the PDF given in equation

1.51, after a reparamaterization of integrals and the rewriting of the singularity in

terms of dimensional regularisation these contributions can be written in the form of

equation 2.15.

It is important to note that this contribution enables the cancellation, of initial state

collinear singularities, from the real term; this does not occur with just the virtual

piece (although all other singularities from the real term are indeed cancelled by the

virtual contribution). The introduction of these counter terms into the partonic cross

section, a result required by factorisation, is therefore very important for perturba-

tive QCD. The singularities from these counter terms are required for the complete

cancellation of singularities present in perturbative corrections beyond leading order.

2.6 Subtraction

Previous sections of this chapter has discussed the various components of NLO cal-

culations, these are principally; the virtual terms, composed of quantum corrections,

and the real terms, which are composed of radiative corrections. Both the real and

virtual terms contain, as discussed in prior sections, singularities associated with

infra-red limits, in either phase space or loop integrals. Such terms are guaranteed

to cancel when the real and virtual terms are combined. However for practical cal-

culations, this explicit cancellation can be problematic to achieve.
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The singularity structure for virtual terms is usually computed by use of dimensional

regularisation in loop calculations; thus the singular structure for the virtual term

is commonly expressed in terms of poles. To enable an explicit cancellation of this

pole structure by the real terms, it is necessary to use dimensional regularisation for

the phase space integration of real terms. However, beyond simple low multiplicity

processes, the use of numerical methods is required to perform the phase space inte-

gration of the calculation; as dimensional regularisation is an analytic method, it is

not practical to compute real corrections in this fashion.

There clearly exists a practical problem for NLO calculations of non-trivial processes;

an uncancelled explicit pole structure is combined with a divergent numerical inte-

gral, and although it is known the divergent structure does indeed cancel the pole

structure, performing the calculation such that this cancellation is explicit requires

some additional technicalities.

The method of choice to allow this explicit cancellation is subtraction; essentially this

involves constructing a term on the real phase with an identical singular structure

to the real term, this term is subtracted from the real term to cancel any singulari-

ties. To ensure the NLO calculation remains unchanged, the subtraction term is also

added back to the calculation; however this subtraction term is usually integrated

analytically (using dimensional regularisation) to explicitly cancel the pole structure

of the virtual terms. There do exist other methods, notably phase space slicing [30]

which essentially performs a kind of cutoff regularisation upon the real phase space

integral and phase space sector decompostion [31], however neither will be discussed

in this work in any depth as the focus will be on the use of subtraction.

The unresolved limits of the QCD matrix elements are described in the previous

chapter, and it is clear from these results that the singular regions of the real term

are the result of the two possible unresolved limits of the partons. These limits are

explicitly the soft limits of any (gluonic) parton, and the collinear limit of any two

(massless) partons; the subtraction term is required to have the same singularity

structure, hence its behaviour in these kinematic limits must be the same as the real
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term as shown in 2.16.

lim
ki→0 or ki||kj

dσ(R) = lim
ki→0 or ki||kj

dσ(S) (2.16)

The subtraction terms are constructed such that, in addition to having the same sin-

gularity structure as the real term, they can simply be integrated over the momenta

of the unresolved parton analytically. This allows this integral, over the unresolved

partons phase space, to be performed in dimensional regularisation, yielding an ex-

plicit pole structure; the ’added back’ subtraction term is written in this way. After

performing this analytic integral, over the unresolved partonic phase, on the subtrac-

tion term, it becomes an object on the same Born level phase phase as the virtual

term. Additionally this integrated subtraction term contains an explict pole struc-

ture, which is able to cancel the pole structure of the virtual term; this cancellation

is guaranteed by the KLN theorem and the definition of the subtraction term. The

integrated subtraction term and the virtual term can then be combined into one term

with no pole structure, which is integrated over the same n particle phase space. The

form of an NLO calculation using subtraction is given by 2.17, where dσ(S) represents

the subtraction term.

σNLO =

∫
m

dσ(B) +

∫
m

[
dσ(V ) +

∫
1

dσ(S)

]
+

∫
m+1

[ dσ(R) − dσ(S)] (2.17)

Implicitly the one particle phase space integral in
∫

1
dσ(S), in 2.17, is performed

using dimensional regularisation. Subtraction terms are not unique, and there exist

a number of completely general methods for calculating them, the most popular

of which are that of Dipole subtraction by Catani and Seymour [32] and the FKS

subtraction of Frixione, Kunszt and Signer [10]. Both of these methods are reviewed

later in this thesis.

2.6.1 Overview of Catani Seymour Dipoles

The Catani Seymour dipole subtraction method, which is one of the most popular

methods for the calculation of QCD processes at NLO, was introduced in [32], this was

later extended in [33] to include massive partons. In this method, subtraction terms
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for NLO calculations are formed from a set of universal functions, known as dipoles.

Schematically the subtraction term constructed from Catani Seymour dipoles takes

the form of some convolution of the dipole functions, and a Born like term, as shown

in 2.18.

dσ(s) =
∑

Dipoles

dσB ⊗ dVDipole (2.18)

These dipole functions are constructed by utilizing the general factorisation of QCD

amplitudes in the soft and collinear limits. As it is such kinematic limits that are

responsible for the IR singularities of the real term, these results can be used to

construct terms with the same singular structures as the real term. For the real

term, these factorisation results force it to take the forms 1.32 and 2.9 in the collinear

and soft limits respectively. Additionally, in both of these kinematic limits, this

factorisation extends to the phase space, which is split into a into a Born like phase

space integral and the integral over the phase space of the unresolved parton; this is

schematically written in 2.19.

lim
ki→0 or ki||kj

dφn+1 = lim
ki→0 or ki||kj

n+1∏
l=1

d3kl
2El(2π)3

δ(4)(p1 + p2 −
n+1∑
i

ki)

=
d3ki

2Ei(2π)3

n∏
l=1

d3kl
2El(2π)3

δ(4)(p1 + p2 −
n∑
l

kl) (2.19)

The tactic of dipole subtraction is to exploit these factorisations to construct the uni-

versal dipole functions. The phase space factorisation firstly allows the subtraction

terms to be split into a Born like term, and a dipole function on the unresolved par-

tons’ phase space; this partially justifies the structure in 2.18. The form of the dipole

functions must follow from the splitting functions from factorisation. Examining the

unresolved limits given in equations 2.9 and 1.32, it is seen that for the soft limit the

splitting function is parametrised by the soft momenta and the momenta of two other

spectator partons; for the collinear limit the splitting is parametrised defined by the

two momenta in the collinear limit. So it is apparent that the dipole functions must

be constructed from the momenta of three particles, one of which is ’soft’ and two of
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which can become collinear. The subtraction terms can now be rewritten such that

dσS =
∑
i 6=j 6=k

Dijk (2.20)

where Dijk is composed of the dipole functions. Generally it can be written in the

form

Dijk =
∑

spin,colour

Vijk(z, yijk)An(.., aij..)
~Q(ak). ~Q(aij)

~Q2(aij)
An∗(..., aij..) (2.21)

where Vijk represents the dipole functions, the remaining terms give the Born like

matrix element with colour factors. The full structure of the subtraction term is

now clear, the partons i, j and k are defined to be the emitted, the emitter and

the spectator; i is the parton that becomes unresolved, it can either become soft or

collinear to parton j (other collinear limits are considered with other dipole terms),

the spectator k is then needed to give to parametrise the soft limit. The reduced Born

level term, which also includes colour factors from the splittings, replaces the flavours

of partons i and j with a combined parton aij, while the flavour of the spectator is

unaffected. However to produce the kinematics for the Born term the momenta of

the emitted, emitter and spectator are subject to a kinematic map, 2.22.

{k1, ..., ki, kj, kk, ...kn+1} → {k̂1, ..., k̂ij, k̂k, ..., k̂n} (2.22)

The momenta of i and j are mapped into a combined momenta for the Born term,

however unlike for the flavour map the spectator’s momenta is in general also mapped.

The nature of the map is dependent upon the structure of the partons i, j and k within

the real process, different maps are required for dipoles with all final state partons,

and those with different mixes of initial and final state partons; (note, as parton i

is defined to become unresolved it must always be in the final state). The universal

dipole functions, Vijk are in general dependent upon the flavours of the partons i, j

and k, which reflects this dependence on the factorisatation results 2.9 and 1.32. It is

also useful to separate the dipole functions into sections, dependent upon whether the

emitter and spectator partons are in the initial or final state, these sections are given

the labels; final-final, initial-final, final-initial and initial-initial (emitter-spectator).
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It should be noted that the emitted parton must always be a final state parton if

it is to become unresolved. This separation into sections reflects different kinematic

mapping and variables that are used in the dipole functions. To obtain the full sub-

traction term, the dipole subtraction terms must be summed to include all possible

partons, in all possible configurations, such that all singularity structures possible in

the real term are countered.

The subtraction of the dipole terms described above must also be accompanied

by the addition of the integrated term as described in the previous sections. To

obtain the integrated term the full sum of all the dipole subtraction terms must

be integrated over the phase space of the unresolved parton. This integral can be

calculated analytically, and completely generally as the dipole functions are universal;

for convenience, this integral is usually performed using dimensional regularisation,

as is schematically shown in 2.23.∫
m+1

dσ(s) =

∫
m

∑
Dipoles

dσB ⊗
∫

1

d4−2εVdipole (2.23)

The full list of integrated dipole terms is given explicitly in the original papers by

Catani and Seymour. The explicit cancellation of poles can then be accomplished by

the addition of this term with the virtual piece, and the PDF counter terms.



Chapter 3

Review of FKS Subtraction

The concept of a subtraction scheme for the calculation of the real contributions to

a next to leading order cross section has been reviewed in the previous chapter, and

the example of the popular Catani Seymour dipole subtraction given. As was de-

scribed in chapter two, a subtraction scheme handles divergences in the real emission

contribution of a NLO cross section by subtracting a term with an identical singular

structure, giving a finite term. This subtraction term is added back into the cross

section after having been integrated over the phase space of the unresolved parton.

Subtraction terms are chosen such that the integral can be performed analytically,

in dimensional regularisation; this yields a pole structure that must explicitly cancel

that of the virtual terms. The subtraction procedure of Frixione, Kunszt and Signer

(henceforth FKS), is just such a method and is generally applicable to any process in

QCD. It was first formulated in [10], for three jet QCD processes and was expanded

upon in [34]. Existing implementations of FKS include the POWHEG box, [35] and

MADFKS [36], which is a completely automated implementation of FKS subtraction

within MADGRAPH. The FKS subtraction method will be reviewed in this chapter,

with a view to its implementation described in later chapters.

40
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3.1 Structure of FKS subtraction

The FKS subtraction procedure constructs subtractions terms rather differently to

the Catani Seymour dipole method described in chapter two. In the FKS formalism

the subtraction terms are constructed by first parameterising the singular structures

of the real term, using angular and energy variables; these structures represent re-

gions of phase space where distinct singular limits of the real matrix element exist.

The subtraction terms are then formed by applying the relevant singular limits, for

each of these structures, to the real term. The subtraction terms are then guaranteed

to have the same divergent structures as the real matrix element squared, as they

are explicitly constructed from it. This is a somewhat different philosophy to dipole

subtraction, whereby universal structures defining the singular limits of any matrix

element are calculated. However, like dipole subtraction, FKS relies on the factorisa-

tion of the matrix elements in the soft and collinear singular limits, which has been

described in chapter one, in order to construct the subtraction terms.

To construct the subtraction terms in FKS, the real (n+1) particle phase space must

be partitioned into the different singular regions of the real term; in FKS the parti-

tioned regions are defined in terms of pairs of partons (in the real matrix element),

as is schematically shown in 3.1.

dσ(R) =
∑
ij

Sijdσ
(R) (i, j) ε PFKS (3.1)

The partition of the phase space is described by a partitioning function Sij, which is

a function of the momenta of partons i and j; the full phase space is recovered after

summing over all possible pairs. ∑
i,j

Sij = 1 (3.2)

The set of these pairs, defined as PFKS the set of all FKS pairs, which can represent

the FKS singular regions is constrained according to 3.3;

PFKS = {3 ≤ i ≤ n+ 1 ∀ ai ε SU(3)c, 0 ≤ j ≤ n+ 1 ∀ aj ε SU(3)c, i 6= j} (3.3)

essentially the variable i can be any final state parton and j can be any parton in

the process (including the initial state) that is not i, the full set of pairs that obeys
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these conditions is the set of FKS pairs. These partition regions described by Sij

are defined such that only unresolved limits associated with the partons i and j are

allowed; specifically the only limits allowed are parton i becoming soft, and partons

i and j becoming collinear. Other unresolved kinematic limits acting on Sij lead to

it vanishing, namely:

lim
kn→0

Sij = 0 if n 6= i (3.4)

lim
kn||km

Sij = 0 if n,m 6= i, j (3.5)

These constraints force certain conditions on the form of the partitioning function

in the various unresolved limits. Considering first the soft limit of the parton i, the

definition

lim
ki→0

Sij = cij (3.6)

is made for this limit on the partitioning function. By the definitions given in 3.2

and 3.4 it is then required that ∑
j

cij = 1 (3.7)

Considering the collinear limit, it is fairly clear from 3.2 and 3.5 that the constraint

lim
ki||kj

Sij + Sji = 1 (3.8)

must be obeyed. In the original FKS formulation, the terms Sij are defined in terms

of Θ functions; however later work [35] defines them in terms of kinematic variables.

There is no unique definition, as any functions that obey the constraints given above

are valid for use in FKS; a choice of Sij is however given in the implementation of

FKS described later in this thesis.

After this partition the real term is split into a series of terms, Sijdσ
(R), with the

phase space constrained such that only one collinear and one soft singularity are

allowed in each term. By splitting up the phase space in this way all the singular

regions can be considered and subtracted separately.
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3.2 Constructing the Subtraction Terms

The FKS subtraction formalism, as has been discussed, relies on a partition of the

real term in regions with only specific singular limits of the matrix element; the

subtraction terms are then constructed by applying these singular limits to the real

term in each of these regions. For the case of the phase space slice, Sijdσ
(R), now

written for convenience as dσ
(R)
ij , only the unresolved limits allowed by Sij can applied

to dσ
(R)
ij ; explicitly these are the soft limit of parton i, Ei → 0, and collinear limit of

partons i and j, cos θij → 1.

The subtraction terms for dσ
(R)
ij are then formed by acting these limits on dσ

(R)
ij itself.

This subtraction procedure can be written schematically (for the soft limit) as∫
n+1

dσ
(R)
ij =

∫
n

∫
i

dσ
(R)
ij |Ei→0 +

∫
n+1

dσ
(R)
ij − dσ

(R)
ij |Ei→0 (3.9)

where the term
∫
i
dσ

(R)
ij |Ei→0 is understood to be integrated over the one particle

phase space such that a pole structure can be extracted and explicitly cancelled with

loop contributions.

To write down the subtraction terms, the phase space integral over the matrix

element squared must be considered; for the phase space slice Sijdσ
(R) this can be

written in terms of a product of the phase spaces of all final state particles.

dσ
(R)
ij = Sijdσ

(R) =

∫ n+1∏
k

dφkδ
4(p1 + p1 −

n+1∑
i=1

ki)SijM(rn+1, {kn+1})
Jn({kn+1})
N (an+1)

(3.10)

WhereN (an+1) is the symmetry factor which is included to account for the presence of

identical particles in the final state. The phase space integral in 3.10 is simply product

of the phase spaces for all final state particles, and it is convenient for this discussion

to seperate the phase space of particle i; which according to the Sij functions is the

only particle in this term with unresolved limits.

n+1∏
k

dφk = dφi

n+1∏
k,k 6=i

dφk = dφidΦn (3.11)
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To enable the construction of the subtraction term, the form one particle phase

dφi, must be considered. This is explicitly given in 3.12 using dimensional regulari-

sation formalism of chapter one; the use of which will allow the construction of the

subtraction terms.

dφi =
d3−2εki

(2π)3−2ε2k0
i

=
1

2(2π)3−2ε

(√
s

2

)2−2ε

ξ1−2ε
i (1− y2

ij)
−εdξidyijdΩ2−2ε

i (3.12)

Where ξi = 2Ei√
s

and yij = 1 − ki.kj
EiEj

= cos θij; these variables are understood to be

given in the partonic centre of mass frame. The construction of the subtraction terms

will now be considered for a generic function of the one particle phase space; for the

purpose of simplification, at first only the energy variable ξi will be considered. The

integral given in 3.13 represents the integral of this function over the (energy) part

of the phase space. ∫
dξiξ

−1−2ε
i g(ξi) (3.13)

If it is supposed that this integral is singular in the soft limit of ξi, the subtraction

procedure can be applied to 3.13 to give an finite integral and an explicitly singular

term. In FKS it is the singular limit of the function itself which is used as the

subtraction term, in the case of 3.13 the soft limit of g(ξi). To demonstrate this

subtraction the soft limit of this function, Θ(ξi − ξcut)ξ
−1−2ε
i g(0) (where the theta

function represents a phase space cut whose function will be explained later) is simply

added and subtracted as is shown in 3.14.∫
dξi
{

Θ(ξi − ξcut)ξ
−1−2ε
i g(0) + ξ−1−2ε

i (g(ξi)−Θ(ξi − ξcut)g(0))
}

(3.14)

To give the equivalent of the integrated term, the integral over ξi is performed on one

of the soft limit terms. As this is formally divergent, dimensional regularisation has

implicitly been used to write down the result.∫
dξiξ

−1−2ε
i g(ξi) = −ξ

−2ε
cut

2ε
g(0)

+

∫
dξi

g(ξi)−Θ(ξi − ξcut)g(0)

ξi

(
1− 2ε log ξi +O(ε3)

)
(3.15)

This expression now mimics the form for a schematic subtraction for the soft term

given in equation 3.9, with a subtracted piece plus a term with an explicit pole struc-

ture easily integrated over dξi. The variable ξcut, introduced in 3.14, parameterises



3.2. Constructing the Subtraction Terms 45

the phase space cut and it should be noted that the above expression as a whole has

no dependence upon this parameter. This result can then be used to give the identity

ξ−1−2ε
i = −ξ

−2ε
cut

2ε
δ(ξi) +

(
1

ξi

)
c

− 2ε

(
log ξi
ξi

)
c

(3.16)

Where (
1

ξi

)
c

f(ξi) =
1

ξi
(f(ξi)−Θ(ξcut − ξi)f(0)) (3.17)

Analogously a similar term for the collinear variable yij can be shown to be

(1− yij)−1−ε = −(ycut)
−ε

ε
δ(1− yij) +

(
1

1− yij

)
c

+O(ε) (3.18)

Where (
1

1− yij

)
c

f(yij) =
1

1− yij
[f(yij)−Θ(yij − 1 + ycut)f(1)] (3.19)

The subtraction procedure for a generic function, g(ξi), allows the writing of the above

results for the soft and collinear variables ξi and yij; which perform the subtraction

of the singular limits of these variables. Given that the one particle phase space

integral for a parton i, which was parameterised in 3.12, also implictly appears in

the the expression for dσ
(R)
ij in 3.10, the results for ξ−1−2ε

i and (1 − yij)
−1−ε can

also be applied to dσ
(R)
ij . Since the only singular limits which can apply, to dσ

(R)
ij ,

are precisely those limits considered in 3.17 and 3.18; these results can be used to

construct the subtraction terms. Forming the subtraction terms from 3.17 and 3.18

instantly splits the calculation into terms proportional to a delta function, which will

be the basis for the integrated terms, and a real cross section with subtracted singular

limits expressed in the form of plus distributions.

The terms proportional to delta functions can be analytically integrated over

the one particle phase space, which, as dimensional regularisation is used will give

an explicit pole structure; these constitute the integrated terms, which after this

procedure become functions on the Born phase space. The remaining terms contain

plus-like distributions, which implicitly subtract the singular limits of the real term;

these correspond to the real subtracted term. The finite, real subtracted term can be

written as

dσ
(RS)
ij =

(
1

ξi

)
c

(
1

1− yij

)
c

ξ2
i (1− yij)M(n+1)(rn+1)Sij

Jn
N (an+1)

dΦn+1 (3.20)
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Where for the real subtracted term the limit ε→ 0 has been taken, hence these terms

are now calculated in the standard four dimensions. Schematically this finite, real

subtracted piece is of the following form

dσ
(RS)
ij = dσ

(R)
ij −

1

ξi(1− yij)
[Θ(ξcut − ξi)H(0, yij) + Θ(yij − 1 + ycut)H(ξi, 1)

−Θ(ξcut − ξi)Θ(yij − 1 + ycut)H(0, 1)] dξidyij (3.21)

Where the function H(ξi, yij) is defined to be.

H(ξi, yij) = ξ2
i (1− yij)M(n+1)(rn+1)Sij

Jn
N (an+1)

1

2(2π)3

(√
S

2

)2

dξidyijdΩ2
idΦn (3.22)

The subtraction terms, as schematically given in 3.21, are split into three terms; the

soft, collinear and soft-collinear limit of dσ
(RS)
ij . To write down explicit expressions for

these subtraction terms, the factorisation of the QCD amplitudes in soft and collinear

limits can be used; use of these results to show expressions for real subtraction terms

is delayed until the next section.

3.3 Real Subtraction Terms

The previous section discusses the construction of the subtraction terms for a generic

phase space slice of the real term, dσ
(RS)
ij , the real subtraction part of this term is

then given explicitly in 3.20. The complete subtraction structure for FKS is simply

the sum of the subtraction terms of all the individual phase space slices , as expressed

by 3.23.

dσ(RS) =
∑
ij

dσ
(RS)
ij (3.23)

There is nothing unique about the results in 3.20, for a generic slice, dσ
(RS)
ij of the

real term; and as a result they can be applied to any partition of the phase space;
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The complete real subtraction term, in FKS, is therefore simply the sum of these

terms for all the phase space slices, as given in 3.24.

dσ(RS) =
∑

i,j ε PFKS

(
1

ξi

)
c

(
1

1− yij

)
c

ξ2
i (1− yij)M(n+1)(rn+1)Sij

Jn
N (an+1)

dΦn+1

(3.24)

For each partition of the phase space the plus distributions enforce the subtraction

of these unresolved singular limits, which are divided into the soft subtraction term

and the collinear subtraction term which are subtracted separately. In addition a

soft-collinear subtraction term, subject to both unresolved limits, and with a change

of sign, is included from the plus distributions to ensure this combined limit is not

subject to double counting from other subtraction terms. These subtraction terms

from plus distributions are given schematically in the previous section as the singular

limit of the real term which they subtract, for example the soft term

Θ(ξcut − ξi)H(0, yij)

where H(ξi, yij) is properly defined in equation 3.22. The approach that is taken, and

which will allow FKS subtraction to be applied algorithmically to a generic process,

to calculate these unresolved limits will be to utilise factorisation of QCD amplitudes.

The factorisation of QCD matrix elements is discussed in chapter one, and in the case

of FKS allows the soft or collinear unresolved limits of the real term to be written

in terms of a Born like term and a generic function of the unresolved momenta. The

subtraction terms for FKS, which are entirely comprised of such limits of the real

term, can then be written in this fashion and hence given a concrete functional form

that is analogous to that of Catani Seymour dipoles.

The factorisation, in the soft and collinear kinematic limits, also applies to the phase

space; the phase space for the real term in such limits factorises into a Born like

phase space, which is acted on by the Born level term, and a one particle phase

space of the soft/collinear parton. This phase space factorisation is discussed, in

the context of Catani Seymour subtraction, in chapter two and also applies to the

present discussion. For the calculation of subtraction terms this Born like phase space

must be computed from the from the real phase space, such that this factorisation
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occurs and that both phase spaces are equivalent in either the soft or collinear limit.

Computationally this is accomplished by a set of momentum maps, from the real to

the Born set, and vary according the subtraction term; unlike in Catani Seymour

these maps are not specified for FKS. Discussion of these maps is withheld until the

implementation is described in chapter four.

For the remainder of this section the explicit form of the subtraction terms, using the

QCD factorisation results will be reviewed.

3.3.1 Soft Term

The soft subtraction term, given implicitly as the unresolved limit of H(0, yij) in 3.21,

can, for a generic phase space slice, be considered by taking the soft limit of 3.22

dσS,soft =
1

ξi(1− yij)

[
ξ2
i (1− yij)M(n+1)Sij

Jn
N (an+1)

dΦn+1

]
ξi→0

=
1

ξi(1− yij)
[
ξ2
i (1− yij)M(n+1)

]
ξi→0

Sij(ξi = 0)
Jn

N (an+1)
({k̂})dφidφ̂n (3.25)

To calculate this limit, as has been discussed, the factorisation of QCD amplitudes is

made use of; the soft limit of a generic QCD matrix element squared is quoted from

chapter one to be

lim
ξi→0

ξ2
i (1− yij)M(n+1)({k}n+1) = δgai4παsξ

2
i (1− yij)

∑
n6=m

k̂n.k̂m

k̂n.kik̂m.ki
M(n)

nm({k̂}n)

(3.26)

The effect of the soft limit on the momenta is formally taken to be equivalent to

performing a map on the momenta, the notation of k̂ is taken to indicate the mapping.

It is noted that this term, due to the ξ2
i term is in fact finite in this limit; this is

a general observation of the singular limits of H(ξi, yij), which despite containing

divergent matrix elements is constructed such that it is in fact finite. This forces the

result that the singular part of the subtraction term is solely the result of 1
ξi(1−yij)

in

the plus distributions.
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3.3.2 Collinear Term

The collinear subtraction term, like the soft term, is given implicitly in the subtracted

real term in 3.21 via the plus distribution for yij. This term can be read off to be

dσS,coll =
1

ξi(1− yij)

[
ξ2
i (1− yij)M(n+1)Sij

Jn
N (an+1)

dΦn+1

]
yij→1

=
1

ξi(1− yij)
[
ξ2
i (1− yij)M(n+1)

]
yij→1

Sij(yij = 1)
Jn

N (an+1)
({k̂})dφidΦ̂n (3.27)

Where again the effect of the collinear limit on the phase space integral is taken to

give the phase space integral over the mapped momenta. Again to calculate this

term, the collinear limit of the matrix element squared is considered; the well known

result is quoted from chapter one and is given by

lim
yij→1

ξ2
i (1− yij)M(n+1)({k}n+1) =

16παs
zs

P̄ (0)
ajaij

(z)M(n)(r
aij
[i] , {k̂}n)+

16παs
zs

Q̄ajaij(z)M̃(n)(r
aij
[i] , {k̂}n) (3.28)

where again the effect of the limit on the momenta is taken to be equivalent to

mapping the momenta. It is noted that this term, much like the soft term, is in fact

finite in this limit due to the appearance of the factor 1 − yij; as has been noted

the singular part is the result of the term 1
1−yij in the plus distributions. P

(0)
ajaij(z)

are the Altarelli-Parsi splitting functions, where P̄ (z) = (1 − z)P (z). The splitting

functions present in this term, the Altarelli-Parsi splitting functions P
(0)
ajaij(z) (where

P̄ (z) = (1 − z)P (z)) and the functions Q̄(z) associated with the angular term in

the expression are given as functions of the fractional energy, z, of the parton j after

splitting (where this splitting would give the n+1 parton process for the real). For the

final state collinear term the fractional energy is defined to be z =
Ej

Ej+Ei
, which after

the phase space mapping is given by z = 1− Ei

Êij
. For initial state terms this fractional

energy is instead given by z = 1− ξi. The second term in the expression is given by a

splitting kernel, Q̄(z) and a term M̃(n)({k̂}n), which is known as the reduced matrix

element; as has been shown in chapter one this term is the result of spin dependence

of the splitting functions, which only occurs for gluons. Generally an integral over the

phase space would see this term vanish, however it must in principle be included to



50 3.4. Integrated terms

avoid large numerical instabilities in the integration. Its form is discussed in chapter

one and is given explicitly in appendix B.

3.3.3 Soft Collinear Term

The soft collinear limit, which is included as one of the subtraction terms has not

been included as a limit above. To obtain this term, the soft limit of the collinear

term can be applied (the reverse application of limits will also yield the same result

but it is somewhat easier to obtain this way) this yields

lim
ξi→0 yij→1

ξ2
i (1 − yij)M(n+1)({k}n+1) = δgai

16παs
s

P̄ (0)
ajaij

(1)M(n)({k̂}n) (3.29)

It is noted that this term, which has a different sign to the other terms, exists to

prevent double counting of singular limits. Essentially it ensures that the region of

the soft-collinear limit is subtracted only once (it is implicitly included in both the

soft and collinear terms).

3.4 Integrated terms

The integrated terms of a generic subtraction scheme are simply given by the integral

of the subtraction terms over the phase space of the unresolved parton in the real

process.

dσ(I) =

∫
1

dσ(sub) (3.30)

The subtraction terms are by construction divergent over this integral, and to be

written down a regularisation scheme is required; the choice made here will be that of

dimensional regularisation. For FKS subtraction, in which dimensional regularisation

has been used in the derivation of the structure, this seems an appropriate choice. The

pole structure from the complete integrated term will then cancel the pole structure

from the virtual terms (assuming loop integrals are calculated using dimensional

regularisation as seems sensible). For FKS the integrated terms can be obtained from

the first term of the ξ1−2ε
i and y−1−ε

ij expressions given in section 3.2. These terms
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are proportional to delta functions, and so are in principle not difficult to integrate.

The section below will simply quote the results of these integrals, a more complete

derivation of the integrated terms is given in [10]. As with the real subtraction terms,

the setting of matrix elements squared to ξi = 0 or yij = 1 is conducted by using the

factorisation of these terms in the soft and collinear limits. The appearance of Born

matrix elements in the integrated terms are the result of using this factorisation.

3.4.1 Soft Term

The integrated soft term can simply be read off from the section 3.2, it is given by

dσ
(s)
ij = −ξ

−2ε
cut

2ε
δ(ξi)ξ

2
iM(n+1)(rn+1)Sij

Jn
N (an+1)

1

2(2π)3−2ε

(√
S

2

)2−2ε

(1− y2
ij)
−εdξidyijdΩ2−2ε

i dφn (3.31)

Performing the one particle phase space integral (ie the integrals of ξi, yij and Ωi)

this becomes

dσ
(I,S)
ij = δgai

αs
2π

1

2

∑
n 6=m

(
Idiv
nm + Ireg

nm

)
Mnm(rn,[i])cij

Jn
N (an+1)

dφn (3.32)

Where cij is the soft limit of Sij. This has the property
∑
j

cij = 1, so

dσ
(I,S)
i =

∑
j

dσ
(I,S)
ij = δgai

αs
2π

1

2

∑
n6=m

(
Idiv
nm + Ireg

nm

)
Mnm(rn,[i])

Jn
N (an+1)

dφn (3.33)

The index i, representing the soft particle from the n+ 1 matrix element has no real

effect on this term. It can therefore be summed over trivially, the effect is to change

from the normalisation factor from the real process, N (an+1) to the normalisation

factor for the Born process. This sum now gives the total soft subtraction term.

dσ(I,S) =
∑
i

dσ
(I,S)
i =

1

2

αs
2π

∑
n6=m

(
Idiv
nm + Ireg

nm

)
Mnm(rn,[i])

Jn
N (an)

dφn

=
1

2

αs
2π

∑
n6=m

(
Idiv
nm + Ireg

nm

)
dσ(B)

nm (rn) (3.34)
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This is the total integrated soft term. The quantities Idiv
nm and Ireg

nm are given by

Ireg
nm =

[
log2 ξcutS

Q2
+ log

ξ2
cuts

Q2
log

kn.km
2EnEm

− Li2

(
kn.km

2EnEm

)
+

1

2
log2 2kn.km

EnEm
− log

(
4− 2kn.km

EnEm

)
log

kn.km
2EnEm

− 2 log2 2

]
(3.35)

Idiv
nm =

(4π)ε

Γ(1− ε)

(
µ2
R

Q2

)ε [
1

ε2
− 1

ε

(
log

2kn.km
Q2

− log
4EnEm
ξ2

cuts

)]
(3.36)

This is the result assuming all coloured objects in the process are massless. However

when there are massive coloured particles the above is modified, the results of which

are shown in appendix B. It is interesting to note that massive partons enter this term

(if they exist in the process) not through FKS pairs (from which massive particles

are excluded) but from considering the eikonal limit, which includes a sum over all

coloured objects. The scale Q2 is again the Ellis-Sexton scale which also appears in

the virtual terms.

3.4.2 Final state collinear terms

The integrated collinear term for final state partons, that is both i and j are final

state partons, can be read off to be

dσ(C) = −(ycut)
−ε

ε
δ(1− yij)

[(
1

ξi

)
c

− 2ε

(
log ξi
ξi

)
c

]
ξ2
iM(n+1)(rn+1)

Sij
Jn

N (an+1)

1

2(2π)3−2ε

(√
S

2

)2−2ε

(1− y2
ij)dξidyijdΩ2−2ε

i dφn (3.37)

The one particle phase space integrals can be performed and the result for the final

state collinear term is given below.

dσ(I,C) =
αs
2π

(4π)−ε

Γ(1− ε)

(
µ2

Q2

)ε
1

ε

[
γ(aj)− 2C(aj) log

2Ej
ξcut

√
s

]
dσ(B)(rn)

+
αs
2π

dσ(B)(rn)
∑
j

[
γ

′
(aj)− log

sycut

2Q2

(
γ(aj)− 2C(aj) log

2Ej
ξcut

√
s

)
+2C(aj)

(
log2 2Ej√

s
− log2 ξcut

)
− 2γ(aj) log

2Ej√
s

]
(3.38)

An implicit sum over the i index has been performed, as for the soft term, this has

the same effect of changing the normalisation factors. Again the scale Q2 is that
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of Ellis-Sexton scale which also appears in the virtual terms. The terms γ(aj) and

γ
′
(aj) is defined for quarks and gluons as

γ(g) =
N2
c − 1

2Nc

γ
′
(g) =

67

9
CA −

2π2

3
CA −

23

9
TFNF (3.39)

γ(q) =
3

2
CF γ

′
(q) =

13

2
CF −

2π2

3
CF (3.40)

where NF is defined as the number of quark flavours.

3.4.3 Initial state collinear term

The collinear limit with any initial state parton (in the FKS pair i is restricted to be

in the final state, hence only j can be in the initial state), like other collinear limits

for the real term is in principle singular, as such it has an associated subtraction

term in FKS. The associated integrated subtraction term for this piece is completely

analogous to the term given for final state collinear term in the previous subsection.

However the reason for the separate consideration here is their combination with

terms from the PDFs. Divergences from the initial state collinear limits are not com-

pletely cancelled by loop contributions, however these are cancelled by the inclusion

of the PDF counter terms discussed in chapters one and two. It is recalled that these

are necessary to maintain the distinction between the hard process considered in the

partonic cross section and the softer terms which contribute via PDFs. To O(αs) the

PDF counter terms to the partonic cross section are given by

dσcnt
1 (k1, k2) =

αs
2π

1

Γ(1− ε)

(
4πµ2

µ2
f

)ε∑
d

∫
dx

(
Pda(x)

1

ε
+Kda(x)

)
dσ

(B)
db ((1−ξi)k1, k2)

(3.41)

where Kda are regularisation scheme dependent functions, for MS, which is the scheme

employed for all results in this work Kad = 0. When combined with the counter term
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from the PDF the initial state integrated term becomes

dσ
(Cin+cnt)
j =

αs
2π

(
(4π)−ε

Γ(1− ε)

(
µ2

Q2

)ε
1

ε
− log

µ2
f

Q2

)
× [γ(a1) + 2C(aj) log ξcut] dσ(B)(rn [i])

+
αs
2π

∑
aij

{
ξiP

(0)
aijaj .

(1− ξi)
[(

1

ξi

)
c

log
sycut

2µ2
+ 2

(
log ξi
ξi

)]
−ξiP (1)

aijaj
(1− ξi)

(
1

ξi

)
c

}
dσ(B)(r

aij
n[i], (1− ξi)kj)dξi (3.42)

An implicit sum over the i index has been performed for the collinear part, as was

done for the soft term, this has the same effect of changing the normalisation factors.

Again the scale Q2 is that of Ellis-Sexton scale which also appears in the virtual

terms.



Chapter 4

Implementation

The following chapter will describe the implementation of the FKS subtraction, which

is reviewed in the previous chapter, into the event generator AMEGIC++ [6], part of

the SHERPA Monte Carlo event generator package [37]. This allows the automatic

calculation, of the real and subtraction terms, of a NLO cross section within the FKS

method; at present this implementation is restricted to the case of massless partons.

The actual calculation of FKS subtracted cross sections requires more details than the

review of the method given in chapter three. Most of these relate to the subtracted

real term, which is often the bottleneck for any NLO calculation (for many processes

the virtual term is bottleneck). These include choices for the FKS partitioning func-

tions, and the kinematic mapping of the phase space for subtraction terms; these are

issues which are not specified by the FKS subtraction scheme and are thus details of

the implemenatation.

The biggest issue associated with the implementation are the aforementioned kine-

matic maps, associated with n parton matrix elements in the subtraction terms for

the n + 1 matrix elements. These maps, from n + 1 to n parton kinematics, must

have the same limiting behaviour as the subtraction terms themselves (ie soft or

collinear); such maps are discussed in depth for all relevant limits and include a dis-

tinction between initial and final state partons. The explicit forms of the subtraction

terms are given and the organisation of the real and subtraction terms in the code are

discussed. Additionally the validity of the implemenatation is tested, and the results

55
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are discussed.

4.1 Partitioning Functions

The construction of subtraction terms in the FKS formalism relies upon a partition

of phase space of the real term, as was reviewed in chapter three; each partition of

the phase space must allow only a restricted set of unresolved limits of the real term.

In FKS this is accomplished by the introduction of partitioning functions, which in

chapter three are labelled as Sij; the subscript ij refers to the FKS pair i,j. For

the general description of FKS the precise form of these variables is not necessary,

however the form is restricted by the constraints, described in more detail in chapter

three, but are also summarised below.

lim
ki→0

Sij = cij where
∑
j

cij = 1

lim
ki||kj

Sij + Sji = 1 lim
kn→0

Sij = 0 if n 6= i

lim
kn||km

Sij = 0 if n,m 6= i, j

The choice of partitioning functions, Sij is, as has been discussed, not unique as

any set of functions obeying the contraints outlined in chapter three are appropriate.

However this section will describe the functional form of Sij used in this implemen-

tation.

The original FKS paper [10] gave the partitions in terms of Θ functions, while other

implementations such as [38] use functions of products, kn.km. This work will utilise

the partition functions defined in [36]; these are based on angular and energy vari-

ables, as FKS is itself and are shown in 4.1 to 4.6.

Sij =
1

Ddij
hij(zij) zij =

Ei
Ei + Ej

(4.1)

dnm =

(
2En√
s

)as (2En√
s

)as
(1− βnβm cos θnm) βn =

√
1− m2

n

E2
n

(4.2)

Where as, bs are arbitrary real, positive parameters; for this implementation the choice

as = 1 and bs = 1 has been used.
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D =
∑

klεPFKS

1

dkl
hkl (4.3)

hij =


1 ∀j ≤ 2

h(z) ∀ j ≥ 3

 (4.4)

h(z) =
(1− z)2ah

z2ah + (1− z)2ah
ah = 1 (4.5)

Again h(z) does not have a unique choice, but it must obey

lim
z→0

h(z) = 1 lim
z→1

h(z) = 0 h(z) + h(1− z) = 1 (4.6)

These properties are required from the definition of the partitioning function, the first

terms ensure the correct soft limits for i and j and the final term that lim
ki||kj

Sij+Sji = 1

(for final state j).

4.1.1 Some efficiencies

The general form of the partitioning function Sij is given in the section above. How-

ever in the implementation it is possible to minimise the number of subtraction terms

and therefore speed up calculations, by alternating the form of Sij under certain con-

ditions. To make such alterations, it is useful to compare unresolved limits allowed

by partitioning functions which differ only in the order of partons; for example Sij

and Sji. Such partitions will allow the same collinear limit of partons i and j, but

will however admit different soft limits. For example Sij will admit the soft limit of

parton i and Sji that of j. This is relavant to the discussion because, under certain

conditions, the soft limit of a parton may not lead to a singular form of the real

matrix element. This occurs for partons which are not gluons, and as a result it is

not necessary to construct subtraction terms for such unresolved limits.

As a result some of the partitions Sji can be neglected if parton j is not gluonic,

as the collinear limit can be accommodated in Sij; given an appropriate modification

of Sij. For FKS pairs (i,j), both of which are in the final state and which contain only
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one gluon, such a modification would require the results lim
yij→1

Sij = 1 and Sji = 0. To

accomodate this, the partitioning functions defined in 4.4 can be modified to take the

form given in 4.7 to 4.8; with other elements of the partitioning functions remaining

unchanged from those definitions given in 4.1 to 4.6.

hij = 1 if ai ∈ g, aj 6∈ g (4.7)

hji = 0 if ai ∈ g, aj 6∈ g (4.8)

Additionally for FKS pairs where neither parton is gluonic limits, and hence where

neither soft subtraction term is necessary, a similar modification of the partitioning

functions can be made to 4.7. Analogously to the one gluon case, the choice can be

made to set one contribution to zero. In this case the choice

hij = 1 hji = 0 ∀ i < j (4.9)

is made.

4.2 Integrated Terms

The integrated subtraction terms of any subtraction scheme, are formed by an ana-

lytic integral of a subtraction term over a one particle phase space, which is somehow

factorised from a Born level phase space; in FKS this is the phase space of an unre-

solved parton in either a soft or collinear limit.

The integrated term therefore always lies in the Born level phase space. The

organisation of the calculation in AMEGIC++ utilises this fact by performing the cal-

culation of the Born and integrated terms at the same stage. In this respect the

organisation of the integrated term in the FKS implementation differs little from the

treatment of integrated subtraction terms in the Catani Seymour implementation in

AMEGIC++ described in [39]. The full integrated subtraction terms, for FKS, are

given in chapter three, and for FKS pairs associated with entirely final state partons

there is little to add to the discussion given there. In this implementation the treat-

ment of the initial state collinear terms is slightly different to the expressions given in
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the chapter three. The reorganisation of these terms is for reasons of computational

efficiency, by allowing for fewer recalculations of the matrix elements; this is discussed

in full in the following subsection. The calculation of the integrated terms takes place,

in the AMEGIC++ implementation, within the file Single Virtual CorrectionFKS, in-

cluding both the simple final state terms and the initial state terms described below.

This file also calls the results of the virtual piece of the calculation and also contains

the option to check the pole cancellation between integrated and virtual terms.

4.2.1 Initial state terms

The expression for the integrated subtraction terms, given in 4.10 and discussed in

chapter three, is considered separately from final state collinear subtraction terms

because it has been combined with the PDF counter term.

dσ
(Cin+cnt)
j =

αs
2π

(
(4π)−ε

Γ(1− ε)

(
µ2

Q2

)ε
1

ε
− log

µ2
f

Q2

)
× [γ(a1) + 2C(aj) log ξcut] dσ(B)(rn [i])

+
αs
2π

∑
aij

{
ξiP

(0)
aijaj .

(1− ξi)
[(

1

ξi

)
c

log
sYcut

2µ2
+ 2

(
log ξi
ξi

)]
−ξiP (1)

aijaj
(1− ξi)

(
1

ξi

)
c

}
dσ(B)(r

aij
n[i], (1− ξi)kj)dξi (4.10)

The form of the initial state term, as shown in 4.10, is of a splitting function convo-

luted with a matrix element squared; where the partonic flavour of the initial state

FKS parton is summed over. It is noted that for the calculation of the full hadronic

cross section, all possible partonic cross sections which contribute to the hadronic

process must be included; the full hadronic cross section calculation is therefore writ-

ten in terms of a sum over all initial state partons. Combining this sum with the

initial state integrated terms yields a term of the form given in 4.11, for the form of
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the hadronic integrated terms (associated with initial state partons).

∑
a1,a2

∫
dη1dη2fa(η1)fb(η2)

∫
m

{[
C

(
1

ε

)
+ h

]
dσB(rn, η1p1, η2p2)

+
∑
a′1

∫ 1

0

dξiga1a′1(x)
[
dσB(ra

′
1
n , (1− ξi)η1p1, η2p2)−Θ(ξi − ξcut)dσ

B(ra
′
1
n , η1p1, η2p2)

]
+Ka1a′1

(1)dσB(ra
′
1
n , η1p1)

+
∑
a′2

∫ 1

0

dξiga2a′2(ξi)
[
dσB(ra

′
2
n , η1p1, (1− ξi)η2p2)−Θ(ξi − ξcut)dσ

B(ra
′
2
n , η1p1, η2p2)

]
+Ka2a′2

(1)dσB(ra
′
2
n , η2p2)

}
(4.11)

It must be noted that in this context C
(

1
ε

)
and gab(x) represent generic functions,

and where h is a generic constant. The aim here is to rewrite this term such that

it is more computationally efficient; in this effort it heavily borrows from [39], which

shows the same method applied to initial state integrated dipole terms in Catani

Seymour subtraction. It is noted that, computationally, the calculation of the Born

level matrix element is the most demanding. Therefore it is not ideal that the form

of the integrated term given above requires the re-computation of this three times to

deal with rescaling the initial state partonic energy (i.e. dσB(η1p1, η2p2), dσB((1 −
ξi)η1p1, η2p2) and dσB(η1p1, (1− ξi)η2p2)) and that the partonic process changes with

the presence of splitting function terms. To deal with this in a more efficient manner,

it would be nicer to rewrite this expression in terms of one matrix element with no

rescaling. This can indeed be done by two steps; the first is to reorder the sum over

partons for a and a′ for the relevant terms. The second is to change integration

variables on the terms with rescaled partonic momenta from η to η′ = (1 − ξi)η,

with η′ then relabelled to η. Applying this to the integrated, initial state collinear

term now takes the form of 4.12; which is the form the integrated term takes in this
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implemenatation of FKS.

∑
a1,a2

∫
dη1dη2fa(η1)fb(η2)

∫
m

dσB({al}, η1p1, η2p2)

{
C

(
1

ε

)
+ h

+
∑
a′1

1−η1∫
0

dξi

[
fa′1(η1/(1− ξi))
(1− ξi)fa1(η1)

ga1a′1(x)− fa′1(η1)

fa1(η1)
Θ(ξi − ξcut)ga1a′1(x)

]

+
∑
a′1

fa′1(η1)

fa1(η1)

Ka2a′2
(1) +

1∫
1−η1

dξiΘ(ξi − ξcut)ga1a′1(x)


+
∑
a′2

1−η2∫
0

dξi

[
fa′2(η1/(1− ξi))
(1− ξi)fa2(η2)

ga2a′2(x)− fa′2(η2)

fa2(η2)
Θ(ξi − ξcut)ga2a′2(x)

]

+
∑
a′2

fa′2(η2)

fa2(η2)

Ka2a′2
(1) +

1∫
1−η2

dξiΘ(ξi − ξcut)ga2a′2(x)

 (4.12)

In the implementation the integral over ξi, as expressed in 4.12, is computed numer-

ically in Single Virtual CorrectionFKS; for each call of the integrated terms for the

phase space integration the file calls a new value of ξi, thus the ξi integral is performed

with the phase space integration.

4.3 Real Subtraction Terms

4.3.1 Organisation of the Calculation

The real subtraction term is, by definition, the finite contribution that is yielded by

addition of subtraction terms to the real cross section, schematically it has the form

of 4.13

dσ(RS) = dσ(R) −
∑

dσ(sub) (4.13)

It is, as can be seen, constructed from two objects. The first is a tree level ma-

trix element squared, with an additional partonic added to the Born level process;

in terms of implementation this can be obtained fairly easily when working in an

automatic matrix element generator such as AMEGIC++. The second are the full

set of subtraction terms, which in FKS are constructed by splitting the real phase
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space into regions defined by FKS pairs; in each region the subtraction terms are

represented implicitly by plus distributions of energy and angular variables of the

FKS pairs. The explicit form of the subtraction terms can be calculated by taking

the singular limits of these variables on the real term; this, as has been discussed

in chapter three, is the result of the factorisation of the real matrix element in such

limits. In the implementation the real subtraction term is constructed from a file,

Single Real CorrectionFKS, which calls the real matrix element squared from the

matrix element generator. The subtraction is then organised thus; the real process

file iterates over all valid pairs of partons from the real process and assigns these to

become FKS pairs. For each FKS pair, the collinear subtraction subtraction term is

then calculated in the file Single CollTermFKS; this subtraction file also contains the

required functions to perform the required kinematic map from the real to Born phase

space or {k}n+1 → {k̂}n. The soft terms are subtracted separtely, but the structure

of the computation is similar to the collinear part. The iteration over possible FKS

pairs in the collinear terms is then replaced with a similar iteration over final state

gluons, the functional form of the soft subtraction term is then calculated in Sin-

gle SoftTermFKS. This again calculates the appropriate kinematic maps although

the soft maps are in general different to the collinear ones. The soft-collinear sub-

traction terms then are calculated within the soft term, though in principle they can

be included with the collinear terms. It should be noted that the subtraction terms,

as calculated in both subtraction files, utilize Born level terms calculated within the

AMEGIC++ matrix element generator; these are then accessed within these files to

form the subtraction terms.

4.3.2 Kinematics

The full NLO cross section requires the integration of all terms that make up the NLO

calculation over their respective phase spaces. The real subtraction term, in which

both the real and subtraction terms are defined on an n+1 particle phase space, must

then be integrated over this n + 1 particle phase space. In the implementation this

integral is carried out with the Monte Carlo integration routine native to SHERPA,
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details of which are beyond the scope of this thesis, but which can be found in [37].

However, the construction of the subtraction terms via plus distributions creates

complications for the momenta of the subtraction terms. Consider the example of

subtracting a soft term.∫
dφn+1

1

ξi
f(k1, ....kn+1)−

∫
dξidyijdΩ

1

ξi

[
dφ[i]f(ξi = 0, {k̂}[i])

]
ξi=0

(4.14)

Where {k̂} is defined as the set of n momenta which result from the soft limit of ki.

It is clear, from momentum conservation, that this new set of momenta are not equal

to the momenta from the real term, but must somehow correspond to a soft and/or

collinear limit of that set of momenta. It is noted that in such limits the phase

space factorises into a Born like phase space and a one particle phase for the an

unresolved parton; it is neccessary, for the calculation of the real subtraction terms,

to be able to construct such a phase space from the real phase space. To accomplish

this, kinematic maps are constructed which map a set of n+ 1 momenta to a set of n

momenta i.e. {k}n+1 → {k̂}n, which are equivalent to these limits. The construction

of such maps can be non trivial, as the result of constraints on the phase space;

such as the requirement that the momenta must remain on their mass shells. The

notation used from now on in this section will clearly show unmapped momenta as k

and mapped momenta as k̂.

The mapping of momenta, for use in subtraction terms, in this fashion does not

ensure that the correct phase space integral is applied to the subtraction terms.

The Monte Carlo integration of these terms is carried out over the unmapped phase

space, however given the nature of the plus distributions it is the mapped phase space

which must be integrated over. To correct this, without substantial modification of

the Monte Carlo intergration native to SHERPA , Jacobians are constructed from the

relevant relations between the mapped and unmapped monenta. Including these

Jacobians in the subtraction terms then ensures that integration over the unmapped

phase space, becomes equivalent to conducting the integral over the mapped phase

space, as is required by the plus distributions. In the notation of 4.14, this is is

represented by 4.15.

dφ̂ndξidyijdΩi = Jdφn+1 (4.15)
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For other subtraction schemes, such as Catani-Seymour, these kinematic maps are

specified for particular subtraction terms; however this is not the case for FKS. In

the original FKS papers [10] and [34] no kinematic maps are given, as no unique map

exists; rather any map which gives the correct infrared limits (the soft or collinear

limits) can in principle be used. The maps presented in the following section are those

chosen for this implementation and it is stressed that other choices are possible. The

momentum maps for subtraction terms used in this implementation will in general be

different for both the two kinematic limits and to whether the remapping is applied

to initial or final state partons; that the mapping for the soft and collinear limits,

should in general be different, is fairly intuitive given the difference in the kinematics,

however the dependence on initial and final states is not. This dependence is the result

of constraints placed on the mapping of initial state partonic momenta, where the

use of PDFs restricts any mapping of partonic momenta to a rescaling. All maps

used have been tested for the correct soft or collinear limits to ensure their validity.

4.3.3 Final State Collinear Map

This section will detail the momentum map used for collinear subtraction terms,

where the FKS partons for this term are both in the final state. The map is con-

structed by considering the collinear limit of ki, kj but it is also valid in the ki soft

limit, it is outlined in detail in [40]. To begin, the following definitions are made:

q = p1 + p2 k = ki + kj (4.16)

krec =
∑
n6=i,j

kn M2
rec = k2

rec (4.17)

krec = q − k ~krec = −~k (4.18)

where p1,2 are the initial state partonic momenta (for hadronic initials) or simply

the initial state momenta (for e.g. electrons). To map the momenta, all final state

partons, except ki and kj are boosted, and a new combined momentum kij is defined

as

k̂ij = q − Bkrec (4.19)
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where B is this boost; this is defined to act in the direction ~krec. This definition for

kij now ensures conservation of momentum. The combined momenta kij is required

to remain massless; combining ths requirement with 4.19 allows the boost velocity to

be computed as shown in 4.20.

β =
q2 − (k0

rec + | ~krec|)2

q2 + (k0
rec + | ~krec|)2

(4.20)

The set of mapped momenta, excluding k̂ij, are now defined as by acting this boost

upon the unmapped momenta, as expressed by 4.21.

k̂l = Bkl, l 6= i, j (4.21)

The mapping of k̂ij is then defined by 4.19. This map can then be applied to n + 1

momenta from the real term to construct appropriate momenta for the subtraction

terms.

When the Monte Carlo integration of the subtraction term occurs in SHERPA, this

will be conducted over the unmapped phase space; this is problematic as the plus

distributions, upon which the subtraction scheme is built, require the phase space

integral of the subtraction terms to be performed over the mapped space. To ensure

the correct integration, the Jacobian defined by the transformation of the real to

mapped phase space can be utilized; such a Jacobian must, by definition obey 4.15.

For this phase space mappping the Jacobian is computed in [40], and is expressed in

4.22.

J =
Êij
E2
j

(
k0
j −

2ki.kj√
s

)
(4.22)

The procedure of initiating a phase space integral over dφn+1 and then mapping this

to an n momenta phase space for subtraction terms is a choice that has been made

in the implementation. It is instead perfectly possible to generate an n momenta

phase space dφ̂n, with independent variables ξi, yij and ω which give the one particle

phase phase space over ki, and perform an inverse map to real phase space, {k}n+1.

This is in fact done in some implementations of FKS subtraction, notably MADFKS,

but the structure of how phase space integrals are handled in SHERPA means that in
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practice it is simpler to make the choice outlined above.

The use of plus distributions to construct the subtraction terms, leads to the re-

quirement that, for the collinear subtraction terms, the mapped momenta should

be equivalent to the unmapped momenta in the collinear limit. Such a constraint

presents a useful test, both of the map and its implemenatation.

In the language of this momentum map, this requirement corresponds to the boost

specified by 4.20 tending to the identity. For a Lorentz boost specified by a boost

factor, β, this requirement must correspond to the boost factor tending to zero in

the collinear limit as expressed in in 4.23; taking such a limit trivially reduces such

a Lorentz boost to the identity. For a Lorentz boost specified by a factor β, this

requirement is simply that the boost factor expressed in 4.23.

lim
ki||kj

β = 0 (4.23)

The condition 4.23 is however not apparent from the form of 4.20, and will now be

considered to show the validity of this phase space mapping. The condition 4.23 can

be shown by considering the form of krec in the collinear limit, which in the partonic

centre of mass frame can be expressed by 4.24-4.25.

k0
rec = q0 − Ei − Ej (4.24)

|~krec| = Ei + Ej (4.25)

Utilizing the results of 4.24 and 4.25, for the collinear limits of krec the result 4.26 is

apparent.

lim
ki||kj

(k0
rec + | ~krec|)2 = q2 (4.26)

The limit expressed in 4.26, combined with the expression for the boost factor in 4.20,

leads simply to 4.23. Hence the collinear limit of this map reduces to the identity in

the collinear limit, as required.

4.3.4 Initial State Soft map

The soft subtraction term, when calculated independently from the collinear term

should have no dependence on other partons in the process; however despite the fact
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that soft contributions are indeed calculated in this way, there is a distinction to be

made between initial and final state kinematic terms from soft maps. This distinction

is a result of considering states that (at Born level) are entirely leptonic, in either

the initial or final states; in this case what is phrased as an initial state soft map is

used only for processes with soley partonic initial states and leptonic final states. In

the case of partonic initial and leptonic final state particles, any unresolved partonic

emission must occur off the initial state partons; as a result it is the kinematics of

the initial state partons that must be subject to the kinematic map (and vice-versa

with leptonic initial and partonic final states).

The momentum map for the soft initial state terms will now be outlined, again it is

described in detail in [40]. As with the final state collinear map, it is convenient to

begin with some definitions; for this map the quantity Ktot is defined in 4.27.

Ktot =
∑
n,[i]

kn = x1P1 + x2P2 − ki (4.27)

To map the final states, excluding ki, the boosts, BL constructed such that Ktot has a

zero longitudinal component and BT constructed such that Ktot has a zero transverse

component, are used to boost the final state excluding ki

k̂l = B−1
L BTBLkl (4.28)

The boost now leaves 4.27 to be of the form

K̂tot =
∑

[i]

k̂n = x̂1P1 + x̂2P2 (4.29)

Where the factors x̂1,2 are rescaled partonic fractions. The rescaling factors can be

determined, by noting that the boosts in 4.28 preserve the invariant mass and rapidity

between K and K̂. Considering the centre of mass frame for K, this amounts to the

conditions 4.30 for rapidity and 4.31 for the invariant mass.

1

2
log

2− ξi(1− yi1)

2− ξi(1 + yi1)
=

1

2
log

x̂1

x̂2

(4.30)

s− ξis =
x̂1x̂2

x1x2

s (4.31)
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The rescaling factors can then be computed, by a simple manipulation from 4.30 and

4.31, to be:

x̂1 = x1

√
1− ξi

√
2− ξi(1− yi1)

2− ξi(1 + yi1)
, x̂2 = x2

√
1− ξi

√
2− ξi(1 + yi2)

2− ξi(1− yi2)
(4.32)

where as FKS variables are constructed in the centre of mass frame, such that

yi1 = −yi2. A key point to note is that the partonic momenta that are being mapped

are fractions of hadronic momenta; as this is a measurable quantity it cannot be

mapped. However, the partonic fraction, x which gives the partonic momenta, can

be mapped. So the partonic momenta are mapped what is really happening is a

rescaling of x (so initial state momenta cannot be boosted in a generic direction, as

this would change the direction of the hadronic momenta). So the mapping of par-

tonic momenta, in this case, takes the form of a rescaling of the partoncic fractions,

So for soft and soft-collinear terms the fraction x in the PDFs must be mapped.

The use of the SHERPA Monte Carlo integration routine for the subtraction term,

which will perform the integral over the unmapped phase space as discussed previ-

ously, requires the definition of a Jacobian to perform the integral over the mapped

phase space. For the case of this map, the Jacobian is simply results from the par-

tonic rescalings, and is given by 4.33; the affect of the Lorentz boosts does not change

the integration measure.

J =
x1x2

x̂1x̂2

=
1

1− ξi
(4.33)

While this factor has been labelled a Jacobian, and in effect performs the same role,

this factor is actually the result of a rescaling of the variable s = 2x1x2P1.P2 to

ŝ = 2x̂1x̂2P1.P2 and not from any mapping of integrated variables.

The construction of subtraction terms, from plus distributions, leads to require-

ments on the momentum maps used for the subtraction terms; for the soft maps

the application of the momentum map must be equivalent to the soft limit of the

unmapped momenta. It is apparent, from their functional form, that in the soft limit

the mapped partonic energy fractions become equal to the unmapped ones, i.e.

lim
ξ1,2→0

x̂1,2 = x1,2 (4.34)
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which clearly fulfils the requirement on the map. The boosts acting on the final

state momenta must therefore tend to the identity in the soft limit, to complete the

requirements on the map.

It is clear that in the soft limit Ktot =
∑
n,[i]

kn = x1P1 + x2P2; and consequently

the boosts constructed with respect to this parameter can be constrained. It is noted

that in the partonic centre of mass frame (in which calculations are conducted) Ktot

will already possess zero longitudinal and transverse momentum; the construction of

the boosts to ensures these results will then lead to the identity.

4.3.5 Final State soft map

For reasons outlined in the previous subsection, the soft term requires separate maps

for initial and final partonic states, the final state map is outlined here. The overview

of this map is as follows; simply remove the soft parton ki, and construct a Lorentz

transform on remaining momenta such that they will be boosted into their combined

rest frame. The boosted momenta are then rescaled to ensure energy conservation.

This map is outlined in [41], and contains the implicit assumption that the input

partonic momenta are in the centre of mass frame.

As for the previous maps it will be convenient to begin with some definitions; first of

all the Lorentz boost 4.35 is defined, in addition to the parameters Q and λ in 4.36

and 4.37.

Λµ
ν(K, K̃) = gµν − 2

(K + K̃)µ(K + K̃)ν(
K + K̃

)2 + 2
K̃µKν

K2
(4.35)

Q = p1 + p2 (4.36)

λ =

√
1− 2pi.Q

Q.Q
(4.37)

The Lorentz transform, as expressed by 4.35, is simply a generic transform to map

one momenta, K̃ onto another K, and can be used to in this map to boost the final

state partonic momenta, without ki the soft parton, to their combined rest frame. The

mapped momneta, for all final state partonic momenta [ki], are defined to accomplish
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this according to 4.38.

k̂µ =
1

λ
Λ(Q, (Q− ki)/λ)µνk

ν (4.38)

The boost 4.38 is, broadly speaking, transforming the set of final state momenta

excluding ki into their combined centre of mass frame; while the 1
λ

term performs a

rescaling that ensures conservation of momentum with the initial states.

The use of the SHERPA monte carlo integration routine for the subtraction term, which

will perform the integral over the unmapped phase space as discussed previously,

requires the definition of a Jacobian to perform the integral over the mapped phase

space. For this map, the Jacobian is largely a result of the scale factors present in

the transformation 4.38, and is given in 4.39.

J =
1

λ2(n−1)−2
(4.39)

This factor can simply be derived by considering a rescaling of the momenta by 1/λ

(i.e. k → 1
λ
k). The change of the integral measure under such a rescaling is given in

4.40.

n∏
m

dk3
m

2k0
m(2π)3

δ4(p1 + p1 −
n∑
n=1

kn) =
n∏
k̂

1

λ2

dk̂3
m

2k̂0
m(2π)3

λ4δ4(p1 + p1 −
n∑
n=1

k̂n) (4.40)

Accumulating the factors of λ clearly yields 4.39.

While the above is sufficient to define the map, it is important to consider its validity;

one key requirement on such a map is the mapped phase space’s equivalence to the

real phase space in the (soft) kinematic limit. The condition on the Lorentz boost,

expressed in 4.38, caused by this requirement amounts to the transform becoming

the identity, in the kinematic limit. The functional form of the variables and boost

can be used to show this algebraically. The application of the soft limit to 4.37 is

relatively straightforward and leads to the result

lim
ki→0

λ = 1 (4.41)

this limit also gives the functional form of the boost to be Λ(Q,Q). After some

unremarkable algebra the boost becomes

Λ(Q,Q)µν = gµν (4.42)
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which is simply the identity. This map therefore must produce mapped momenta

that are equivalent to unmapped momenta in the soft limit.

4.3.6 Initial state Collinear map

This subsection will now detail the momentum map used for collinear subtraction

terms with FKS pairs which include an initial state parton. As has been discussed the

presence of initial state partons restricts the mapping of these partons to a rescaling.

The overview of this map is that kj is mapped to some fraction, z of itself (which

corresponds to the fraction z in the splitting functions), the final state momenta are

then Lorentz boosted to ensure conservation of momentum. As for the previous maps,

it is convienient to begin with some definitions; the fraction, z, used for the partonic

rescaling, is defined to be

z =

(
1− ki.Q

k1.k2

)
(4.43)

where this value is also the partonic fraction of the collinear splitting. Additionally

the Lorentz boost 4.44 is defined.

Λµ
ν(K, K̃) = gµν − 2

(K + K̃)µ(K + K̃)ν(
K + K̃

)2 + 2
K̃µKν

K2
(4.44)

The boost 4.44 is also found in the final state soft map, and is used for the same

purpose here, to boost all final state momenta, excluding ki, to their collective rest

frame. In this mapping, the z fraction is then used to rescale the initial state FKS

parton, j in the manner of 4.45.

k̂j =

(
1− ki.Q

k1.k2

)
kj (4.45)

The mapped final state momenta are then constructed by applying a Lorentz boost

on all the existing momenta, excluded ki, according to 4.46

k̂n = Λµ
ν(k̂1 + k̂2, Q− ki)kνn (4.46)

Where k̂ represents the mapped momenta, kn represents all final state momenta,

Q = k1 + k2, and the Lorentz transform is given in 4.44. This boost, as for the
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equivalent boost in the final state map, simple transforms the final state momenta,

excluding ki, to their collective rest frame. This map is detailed in [32], and is in fact

the same map used for Initial-Initial dipole functions in Catani Seymour subtraction.

For Collinear mapping the rescaling of PDFs, as required for soft terms, does not

occur. The reason is that in the soft limit, the momenta ki must be treated as if it’s

zero, hence the total partonic energy of the process will change, requiring remapped

PDF’s. For collinear terms, the momenta ki does not tend to zero, it simply becomes

collinear to kj; hence the total momenta in the initial state is unchanged, meaning

that the partonic energy fractions, x are unchanged by this map.

For other phase mappings presented in this work, the Jacobian associated with mod-

ifying the integration measure of unmapped phase space, to that of the mapped one

is discussed. In the case of this map, the only actions on the momenta are a rescaling

of one initial state parton, and a Lorentz boost on all final state partons. For rea-

sons that are discussed above, namely that the rescaling doesn’t change the partonic

fractions, there is no factor analagous to 4.33 for this map; additionally the affect of

Lorentz boosting, as has been discussed for other maps, does not change the integra-

tion measure. Hence for the case of this mapping, there is not a Jacobian factor.

The plus distribution for the collinear variable requires that the map is essentially

the equivalent of taking the collinear limit of the original momenta; hence this leads

to the requirement that the mapped momenta are equivalent to the unmapped mo-

menta in the collinear limit. This requirement is manifested in the momentum map,

by the constraint that the Lorentz boost expressed in 4.46 must tend to the identity

in the collinear limit. To show this, it is appropriate to start with the collinear limit

of k̂j, which is apparent from 4.46 as k̂j = kj − ki. The functional form of the boost

Λµ
ν(k̂1 + k̂2, Q− ki) must then, after some unremarkable algebra become

Λ(Q− ki, Q− ki)µν = gµν (4.47)

which is simply the identity. This map therefore must produce mapped momenta

that are equivalent to unmapped momenta in the collinear limit.
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4.4 Technical Cutoff

The implementation of a subtraction scheme such as FKS must deal with the sin-

gularities present in the integration of the real term. In theory this is completely

dealt with by the subtraction term. However for numerical calculations, the pres-

ence of infinite, or very large, numbers in the calculation can be problematic; this

mostly occurs in the form of large fluctuations in the numerical calculation, and can

therefore be the cause of large errors. There are two issues that cause these prob-

lems for numerical calculations; the first is the limited precision of numerical values

availible computationally. The second is the result of the unresolved limits of QCD

matrix elements, these have been discussed in previous chapters and form the ba-

sis for the construction of the FKS subtraction term. However in these discussions,

only the leading term in this limit is considered; this is appropriate when considering

singularities however, it is noted that for both the soft and collinear limits, of the

matrix element squared, subleading terms exist; these terms are of order O( 1
ξi

) for

the soft and O( 1
(1−yij)1/2

) for the collinear limit. The presence of such terms causes no

contribution to the singularity structure, hence their absence from prior discussion.

However it is clear that such terms will appear divergent in the soft or collinear limit,

despite being finite over the full phase space integral; and it these terms in the soft

and collinear regions that can cause large fluctuations and errors. To deal with these

issues, a numerical cutoff is placed upon the calculation, for the FKS variables ξi and

1 − yij. As is clear from discussion of the FKS method, singularities from the real

term correspond to the 1
ξi

and 1
1−yij becoming large in the soft or collinear limits; to

implement a cutoff of this form a lower limit, αmin can simply be placed on ξi and

1−yij. This approach rests upon the assumption that as the phase space cut is made

finer, the approximation to the analytic answer becomes better; consequently, as cut

is adjusted to become finer, the result of the calculation should converge to the same

value. This is considered in the next section, for this implementation, and the results

are commented upon.
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4.5 Tests of the Implementation

In the following section a series of tests, that have been applied to the implementation,

are described and the results of these tests are presented and discussed. These tests

are either straightforward checks, such as comparisons with other NLO codes or

technical checks such as correct behaviour in the cutoff region.

4.5.1 Parameter Variation

One check on an implementation of FKS subtraction is to consider the cutoff pa-

rameters ξcut and Ycut. These appear as phase space cuts in the subtraction terms

from the plus distributions and are explicitly part of the integrated terms. For self

consistency the variation of these parameters should not vary the cross section, as

they are introduced artificially by the subtraction scheme. Hence a good check on

the implementation is to calculate the cross section with varying values of ξcut and

Ycut. To this effect the variation for both ξcut and Ycut (with the other held constant)

is plotted in figures 4.1 to 4.6 for e+e− → jj, e+e− → jjj and jj → e+e−. These

results plot the combined Born and integrated terms , the real term and the total

cross section against the cutoff parameters. These figures also display the fractional

errors of Born and Integrated terms, and the real terms. Additionally the combined

values are plotted with the equivalent result from Catani Seymour subtraction. The

combined Born and integrated piece and the real term are both calculated to 1%

accuracy in SHERPA, the NLO cross section here is simply the sum of these two

pieces.

As can be seen from figures 4.1 to 4.6, there is no variation over either of these pa-

rameters in any of the specified processes, this is therefore a good indication that

FKS subtraction has been successfully implemented.
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Figure 4.1: The variation of the NLO cross section for e+e− → jj as calculated by

the FKS implementation with the soft cutoff parameters ξcut. The Integrated and

Real terms are plotted separately to display their variation
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Figure 4.2: The variation of the NLO cross section for e+e− → jj as calculated by

the FKS implementation with the collinear cutoff parameter Ycut. The Integrated

and Real terms are plotted separately to display their variation
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Figure 4.3: The variation of the NLO cross section for e+e− → jjj as calculated

by the FKS implementation with the soft parameter ξcut. The Integrated and Real

terms are plotted separately to display their variation
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Figure 4.4: The variation of the NLO cross section for e+e− → jjj as calculated by

the FKS implementation with the collinear cutoff parameter Ycut. The Integrated

and Real terms are plotted separately to display their variation
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Figure 4.5: The variation of the NLO cross section for jj → e+e− as calculated by the

FKS implementation with the soft parameter ξcut. The Integrated and Real terms

are plotted separately to display their variation
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Figure 4.6: The variation of the NLO cross section for jj → e+e− as calculated by

the FKS implementation with the collinear cutoff parameter Ycut. The Integrated

and Real terms are plotted separately to display their variation
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4.5.2 Convergence test for Subtraction Terms

The need for technical cutoffs in the implementation is discussed in the previous

section, and is for the twofold reasons of limited numerical precision in computations

and the behavouir of subleading terms of the matrix element in the unresolved limits.

Consequently a cutoff, αmin, is required on the values of the FKS variables ξi and

yij, that prevent the discussed problems; which occur in the regions where 1
ξi

and 1
yij

become large.

So a useful test of this implementation is to vary αmin with the real subtracted

piece; if the implementation is correct, then as αmin becomes small σ(RS) should tend

to a common value. This test is conducted for the process e+e− → jj, jj → e+e−,

and the plots shown in figures 4.7 and 4.8 give the variation of σ(RS) with αmin for

these processes. The values of σ(RS) are calculated with FKS cut off parameters ξcut,

Ycut set to 1,2 respectively, which allow the subtraction terms to be calculated over

the entire phase space. As such the only phase space cuts associated with values of

σ(RS) are the result of αmin.
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Figure 4.7: The subtracted real term, σ(RS) calculated for the process e+e− → jj

in FKS for different numerical cutoff values, αmin, in the integration. FKS cutoff

parameters, ξcut and Ycut set to 1,2 respectively such that only phase space cuts are

the result of αmin.
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As can be seen from the plots given in figures 4.7 and 4.8 there is a convergence

of σ(RS) for αmin < 10−5, which indicates that this cutoff procedure is valid for αmin

below this value.
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Figure 4.8: The subtracted real term, σ(RS) calculated for the process jj → e+e−

in FKS for different numerical cutoff values, αmin, in the integration. FKS cutoff

parameters, ξcut and Ycut set to 1,2 respectively such that only phase space cuts are

the result of αmin.

4.5.3 Comparison with Catani Seymour Cross Sections

One of the most obvious comparisons for an implementation of NLO calulations is

to cross check the results against the same calculation implemented with a different

method. For the implementation of FKS subtraction within AMEGIC++ the obvious

check on the calculation is the comparison against the existing Catani Seymour im-

plementation in the same generator, which is described in [39]. The following table

gives a list of processes for which both FKS and Catani-Seymour subtraction is used

to calculate the real component of the NLO cross sections.

All energies, cuts, PDFs and jet selectors used are identical for both methods (the set

up for running simply differs by a switch which distinguishes FKS from CS), and the

details are not discussed as the aim here is to demonstrate consistency with another
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method rather than provide comprehensive predictions. Given the cross sections that

Process σBRNLO CS [pb] σBRNLO FKS [pb]

e+e− → jj 42530± 10 42520± 9

e+e− → jjj 16190± 80 16260± 80

e+e− → jjjj 2530± 60 2550± 40

jj → ho → τ+τ− 1.68± 0.002 1.7± 0.02

jj → e+e− 2047± 2 2020± 20

Table 4.1: The Born and real components of the NLO cross sections caclulated with

the Catani-Seymour and FKS implementations within AMEGIC++ [6], which in each

case has been run with one million events.

are listed above which give an agreement, within error, between the two implemen-

tations, it is not unreasonable to conclude that FKS has been correctly implemented

within AMEGIC++ . It is noted that there is an absence of cross sections for proceses

which would require kinematic maps applied to both the initial and final states, for

example deep inelastic scattering; this is because currently such a kinematic map has

not been encorporated within this implementation and does not reflect any difficulties

with the subtraction scheme.



Chapter 5

Comparison with Catani Seymour

The implementation of FKS subtraction in AMEGIC++, described and tested in the

previous chapters, is in part motivated by the desire for the fully automatic calcu-

lation of NLO corrections. However, an automatic implementation of a subtraction

scheme has already be accomplished in [39] for Catani Seymour dipoles. Indeed so

far the dipole subtraction procedure has been the method of choice for calculation

of the NLO processes. The implementation of an automatic FKS subtraction in

AMEGIC++ therefore requires additional motives. The principle motive for this is

fairly simple, to speed up calculations. The usual (though not always) bottleneck for

QCD processes at NLO is the real subtracted piece and this is essentially because it

requires the calculation of a more complex matrix element integrated over a larger

phase space. There is, however, some computational speed to be gained by opti-

mising the subtraction scheme that is used and it is in this vein that FKS has been

implemented.

5.1 Comparison of the Subtraction Terms

The comparison of the subtraction terms for the FKS and Catani Seymour methods in

this chapter is, as has been stated, motivated by attempts to improve the efficiency of

NLO calculations with particular reference to the real subtraction term. The purpose

of this section is to consider the subtraction terms in each method and attempt to

84
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discuss general statements about the efficiency of each method relative to the other.

The subtraction method of Catani and Seymour, reviewed in chapter two, yields

a structure of subtraction terms that is described by a sum over universal dipole

functions convoluted with a Born level matrix elements squared. The universal dipole

functions are constructed from kinematic variables of three partons in the real matrix

elements; the complete set of subtraction terms is computed by the sum over all

possible configurations of dipole functions, this is schematically represented in the

equation below.

dσsub =
∑
i,j,k

Vijk ⊗ dσB({k̂n}) (5.1)

Where Vijk are a set of universal functions. The key point to note here is that this

is a sum over all three parton configurations possible from the set of n + 1 partons

of the real term. FKS subtraction, reviewed thoroughly in chapter three, is based

upon constructing subtraction terms from pairs of objects. In the implementation of

FKS, described in previous sections, soft subtraction terms are considered separately

from these pairs. Schematically the FKS subtraction (in this implementation) can be

written as

dσsub =
∑

i,jεPFKS

f(ki, kj)dσ({k̂}n) +
∑
iεg

f(ki)dσ({k̂}n) (5.2)

Comparing the subtraction structure of both methods, it can be seen that in both

methods subtraction terms are composed of some kinematic function convoluted with

a Born level matrix element squared. In the case of Catani Seymour subtraction

these kinematic functions are the dipoles and for FKS they are represented by either

Altarelli-Parisi splitting functions, in the collinear limit, or eikonal factors for the soft

limit. In subtraction terms of this form, the most computationally intensive compo-

nent is the calculation of the Born level matrix element squared; comparatively the

kinematic functions are ’cheap’. Upon this, the assumption is built that individual

subtraction terms in either method are not significantly more or less computationally

intensive to calculate. It is therefore not unreasonable to reduce the comparison of

the computational efficiency to simply considering the number of subtraction terms

necessary for each method.
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From the structure of the Catani Seymour and FKS subtraction terms given above

some crude statements on the number of subtraction terms used from each method

can be made. For Catani Seymour the full subtraction term is obtained by a sum

over all possible three parton configurations possible from the real process; for FKS,

which is constructed from pairs of partons, the full subtraction term is obtained by

a sum over all possible pairs. A naive comparison of subtraction terms, for a real

process with n+ 1 partons, would therefore give the number of subtraction terms for

Catani Seymour subtraction to be

(n+ 1)!

3!(n− 2)!
(5.3)

And for FKS
(n+ 1)!

2!(n− 1)!
(5.4)

These are simply the results from combinatorics from picking all possible sets of three

partons (for Catani Seymour) and pairs (FKS). This is a naive comparison, as many

of these terms in both of these subtraction procedures are zero (mostly because the

corresponding Born term for them doesn’t exist), and these values are in reality the

upper bound for the number of subtraction terms for a given process. It does however

provide a useful guide to the scaling of subtraction terms for large values of n. This

gives a scaling of ≈ n3 for Catani Seymour and ≈ n2 for FKS; given this scaling

it is fairly clear that for high multiplicity process there are fewer subtraction terms

present in FKS.

An additional component of the implementation of subtraction schemes, which is

discussed in previous chapters, is the introduction of kinematic cuts on the subtraction

terms. These are present, both in the FKS implementation detailed in chapter four

and the Catani Seymour implementation against which it is compared, outlined in

[39]. These kinematic cuts are introduced to increase the efficiency of the calculation,

by only calling the subtraction terms in regions of phase space where singular terms

begin to emerge. This introduces additional parameters into the calculation, the

invariance of the result on these parameters is tested in chapter four. The form of
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these cuts for Catani Seymour and FKS is shown in the expressions below and is

neatly summarised thus: in FKS two parameters exist, one for the soft and one for

the collinear subtraction terms, which apply cuts on the relevant variables (ξi or yij).

In Catani Seymour a single dipole cutoff parameter applies to all dipole functions

which cuts on a dipole dependent kinematic variable (see [39] for details).

dσsub =
∑
i,j,k

Θ(αdip − yijk)Vijkdσnm({k̂n}) (5.5)

Where yijk =
pi.pj

pi.pj+pi.pk+pj .pk

dσsub =
∑

i,jεPFKS

Θ(yij − (1− Ycut))f(ki, kj)dσ({k̂}n) +
∑
iεg

Θ(ξcut − ξi)f(ki)dσ({k̂}n)

(5.6)

Where ξi = 2Ei√
s

and yij = 1− ki.kj/EiEj.
This provides a somewhat more complex picture of the relative number of terms

required for Catani Seymour and FKS subtraction; the number of subtraction terms

used now has a kinematic dependence and so clear comparisons from combinatorics

provided above are not necessarily reliable.

5.2 Results

The discussion of the relative efficiency of FKS and Catani Seymour subtraction

methods given in the previous section introduced the assumption that, for compu-

tational reasons, this analysis could be reduced to a comparison of the numbers of

subtraction terms used by each method. A simple crude comparison of terms, given

in the previous section showed that for high multiplicity events FKS will produce

fewer subtractions (and conversely that for small n there are fewer Catani Seymour

terms), however there are complicating factors to this argument. One of these is that

not all combinations of either FKS pairs or Catani Seymour triplets produce valid

Born level matrix elements. The other complicating factor is the presence of kine-

matic cuts on the subtraction terms, which in essence give a phase space dependence

to the number of subtraction terms.
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A more direct comparison is therefore needed to provide information as to the

efficiency of the two subtraction schemes relative to each other. In this vein this

section will detail runs of the real subtraction terms calculated from both the Catani

Seymour and FKS in AMEGIC++, where the total number of subtraction terms

called are measured.

The results of these runs are plotted in figures 5.1 to 5.4, for the processes e+e− →
jj, jj → e+e−, e+e− → jjj and e+e− → jjjj. The number of subtraction terms

measured is defined to be the number of calls to these terms necessary to integrate

the real-subtracted piece to 0.1% accuracy for e+e− → jj and 1% accuracy for the

other processes; these results are given for a large range of FKS and Catani Seymour

cutoff parameters.

The phase space cuts associated with subtraction terms, discussed in the previous

section with more detail in chapter three for FKS and in [39] for Catani Seymour, do

not cut the phase space in the same way for both methods; this is simply the result of

applying these cuts on different kinematical variables. The phase space cuts on the

subtraction terms have an obvious impact on measuring the numbers of subtraction

terms used to calculate the real subtracted cross section; as a result when comparing

the numbers of subtraction terms used, for the Catani Seymour and FKS methods in

a particular process, care must be taken to ensure the cuts on the phase space used

in both methods give a similar restriction on the phase space in which subtraction

terms are calculated to enable a valid comparison to be made.

To ensure this region is comparable in both, a definition is made to compare the

phase space cuts in both methods, in terms of the percentage of subtraction terms

called. This can be computed from the number of subtraction terms called, and the

number without applying phase space cuts (for any given process the number of sub-

traction terms for both methods is straightforward to obtain). The range of FKS and

Catani Seymour cutoffs in figures 5.1 to 5.4 are broadly equivalent by this measure.

It is worth commenting on some general features of these figures before specific
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Figure 5.1: The number of function calls for the integration of σ(RS) to 0.1% accuracy

for the process e+e− → jj for both FKS and Catani Seymour. These are shown

against the FKS soft and collinear cutoff parameters ξcut and Ycut. Function calls for

Catani Seymour runs shown for different values of dipole cutoff parameter, αdip
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Figure 5.2: The number of function calls for the integration of σ(RS) to 1% accuracy

for the process jj → e+e− for both FKS and Catani Seymour. These are shown

against the FKS soft and collinear cutoff parameters ξcut and Ycut. Function calls for

Catani Seymour runs shown for different values of dipole cutoff parameter, αdip
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Figure 5.3: The number of function calls for the integration of σ(RS) to 1% accuracy

for the process e+e− → jjj for both FKS and Catani Seymour. These are shown

against the FKS soft and collinear cutoff parameters ξcut and Ycut. Function calls for

Catani Seymour runs shown for different values of dipole cutoff parameter, αdip
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Figure 5.4: The number of function calls for the integration of σ(RS) to 1% accuracy

for the process e+e− → jjjj for both FKS and Catani Seymour. These are shown

against the FKS soft and collinear cutoff parameters ξcut and Ycut. Function calls for

Catani Seymour runs shown for different values of dipole cutoff parameter, αdip
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Figure 5.5: The real subtraction calculated in the Catani Seymour subtraction

scheme, calculated with αdip ∈ [1, 0.1]

comments that are the purpose of this chapter. One obvious feature of these figures

is the fluctuations in the function calls that occur in the figures 5.1 to 5.4 over the

variation of the cutoff parameters; whilst for most there are clear trends in the number

of function calls over cutoff parameter values, it is as clear that fluctuations over these

trends occur. While it is not the purpose of this work to precisely determine this effect;

it is worth noting that such fluctuations are probably partly caused by inconsistent

precision with respect to the Monte Carlo integration of the real subtracted term.

The requirement, stated above, that the for these results the real subtracted piece

should be integrated to 1% (or 0.1%) accuarcy seems at odd with this; however,

a more accurate statement of this requirement would be that the real subracted

piece is integrated to atleast 1% (or 0.1%) accuarcy. It is also apparent from the

results presented in chapter 4 that the numerical values of the real subtraction term

in FKS vary quite significantly over the range of cutoff parameters; as an example

figure 5.5 is presented which displays the numerical value of the Catani Seymour real

subtraction term for various values of αdip, calculated for the process e+e− → jj.

It is seen in figure 5.5 that, without phase space cuts on the subtraction term, the

real subtraction term is negative; as the cuts are applied the cross section becomes

larger, becoming positive for αdip < 0.45. It is also noted that in this region, around

αdip = 0.5, the Catani Seymour real subtraction term becomes numerically small;
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correspondingly it is seen from figure 5.1 that the number of function calls for this

process at αdip = 0.5 show an increase over the αdip = 1 value. To consider the reason

for this, the calculation of the errors in Monte Carlo integrals shuold be examined.

Given that Monte Carlo integrals are simply sums of a function evaluated at random

points in the phase space, then the error on this is simply the standard error. For

the Monte Carlo integral of a subtracted real term, the error is therefore

δ =
1√
N

√√√√√ N∑
i=1

(Ai −Bi)
2

N
−

(
N∑
i=1

Ai −Bi

)2

N2
(5.7)

where Ai represents the real matrix element and Bi the subtraction term. The pro-

cedure followed in this chapter, for counting subtraction terms, requires that the

accuarcy of the σRS integral is at least 1%; hence it is the fractional error that is of

interest to this discussion. For the σRS integral this can be written as

δ

σRS
=

1√
N

√√√√√√√√
N

N∑
i=1

(Ai −Bi)
2

(
N∑
i=1

Ai −Bi

)2 − 1 (5.8)

As can be seen from 5.8 the fractional error is largest, for a given number of phase

space points, when the ratio of the sum of the squared (Monte Carlo points) to the

square of the sum (of Monte Carlo points), is largest. This is worthy of note, because

this ratio should be largest for precisely those values of σRS where the real and sub-

traction terms are similar in size, so the region in figure 5.5 where σRS changes sign; a

simple example of this is to consider the ratio of the x2+1 and (x+1)2 which is largest

around region where x = −1. It is noted that the region of the largest fractional error

occurs for cutoff values of around αdip = 0.5, which correlates with the peak seen in

the number of subtraction term function calls. Given that the fractional error is fixed

for the Monte Carlo integration results in this chapter, the effect of relatively large

fractional errors would be relatively large numbers of Monte Carlo points necessary

to resolve integrals to this fixed fractional error; its is surmised that this effect is the

cause of this peak in function calls. Examining the corresponding figures for FKS in

chapter four, figures 4.1 to 4.6, it is clear that FKS real subtraction term can, for
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some processes take relatively smaller numerical values; it is therefore possible that

this can account for some of the fluctuations in the cutoff-function call results for

FKS. It is again emphasised that the main design of this chapter is to compare the

computational efficency of the FKS and Catani Seymour subtraction schemes; and

that dicussion above concerning variations over parameters within such schemes is

far from complete, or systematic.

The results plotted in figures 5.1 and 5.2 give the number of subtraction term

function calls against the FKS cutoff parameters, ξcut and Ycut for e+e− → jj and

jj → e+e−; with an equivalent range of cutoffs for the Catani Seymour dipoles. From

the combinatorics argument for these 2→ 2 processes it is clear the upper bounds on

subtraction terms is lower for Catani Seymour than for FKS, and therefore it might

be expected that there are in fact fewer dipole terms than FKS terms. The plots

for e+e− → jj, both for ξcut and Ycut variation show a significantly lower number of

subtraction term function calls for Catani Seymour than FKS, seemingly in agree-

ment with the combinatorical argument. Examining the Drell Yan plots a similar

agreement can be reached; however, it should be noted that for this process FKS

appears to be slightly more competitive.

The results given in figures 5.3 and 5.4 give the number of subtraction term function

calls against FKS cutoff parameters, as for 5.1 and 5.2; for the processes e+e− → jjj

and e+e− → jjjj. From combinatorics arguments for the process e+e− → jjj the

upper bounds on the number of subtraction terms is lower for Catani Seymour; for

e+e− → jjjj, the upper bounds are the same for both methods. However the results

plotted in 5.3 for e+e− → jjj show that the number of subtraction terms called for

both processes varies between broadly similar numbers of subtraction term calls for

an equivalent range of cutoff values. In addition the number of subtractions without

cutoffs can be trivially obtained from the code; for e+e− → jjj this yields 30 for FKS

and 36 for Catani Seymour. This would seem to indicate that for this process FKS

and Catani Seymour are broadly equivalent in terms of the speed of the calculation.

The results plotted for e+e− → jjjj, show the number of calls, considering the vari-
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ation over equivalent cutoff parameters, is slightly but significantly lower for FKS

than Catani Seymour. In addition, the number of subtractions without cutoffs can

be trivially obtained from the code, for e+e− → jjjj this yields 69 for FKS and 138

for Catani Seymour. This then leads to the obvious conclusion, that for e+e− → jjjj

FKS calls fewer subtraction terms than Catani Seymour, for equivalent cuts. The

results from both e+e− → jjj and e+e− → jjjj show that the comparisons using the

upper bounds on subtraction terms from combinatorics overestimates FKS subtrac-

tion terms far more than Catani Seymour terms. However the broad conclusion from

combinatorics, that for larger multiplicity processes FKS becomes proportionately

more competitive, does indeed hold.



Chapter 6

Conclusions to Part I

Part I of this thesis addresses the calculation of next to leading order QCD cross

sections, with particular relevance to the real correction term of such calculations.

The automation of such calculations in the Monte Carlo event generator SHERPA is

the stated aim of this work.

The underlying physics of perturbative QCD has been described in chapter one,

providing the necessary theoretical backdrop for NLO calculations. A discussion of

aspects of NLO calculations is then presented in chapter two, which addresses the

structure such calculations in addition to their motivation; which is usually to reduce

errors associated with perturbative scales. The presence of singularities, which are

expressed in terms of poles, in the real and virtual parts of NLO calculations is de-

scribed; while the cancellation of such singularities between these terms is motivated.

The difficulty in numerically computing singularity free NLO cross sections is then

discussed, with reference to different phase spaces for the real and virtual terms, and

the concept of a subtraction scheme introduced. Such schemes subtract a term with

an identical singularity structure to the real term; these terms are then added back to

the virtual term, after being integrated analytically over the additional one particle

phase space present for the real term. These integrated terms contain explicit pole

structures which guarantee cancellation of all poles present in the virtual term. The

example of the Catani Seymour dipole subtraction is then presented as a demostra-

tion of such a subtraction scheme. In chapter three a review of the FKS subtraction
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scheme is presented. This scheme, which constructs subtraction terms by partitioning

the real term phase space and taking all allowed singular limits, is described explicitly

with all details provided to compute real corrections. In chapter 4 an implementation

has been presented which allows the automatic calculation of the real correction using

the matrix element generator AMEGIC++; this implementation is based on the FKS

subtraction scheme. The full details of this implementation, including the explicit

forms of both the real and integrated subtraction used, the kinematic maps for the

subtraction and the partitioning functions are presented. Tests of this code have then

been performed, to ensure the correct parameter evolution and singular limits of both

the subtraction terms and the kinematic maps; all of these tests indicate a properly

working implementation.

In chapter 5 a study is presented into the relative efficiency of the FKS and

Catani Seymour dipole subtraction schemes. For this work the implementation of

FKS subtraction is then used, in conjunction with an implementation of Catani Sey-

mour dipole subtraction within AMEGIC++, to make this comparative study. The

comparison of the two schemes, for computational speed, is based on measuring the

total number of times the code will call a subtraction term, in order to numerically

integrate a real process (using one of the subtraction schemes), to a given accuracy.

For this measure results are presented for a wide, but comparable range of cutoff pa-

rameters in both schemes. Given these results it is seen that Catani Seymour dipole

subtraction is significantly faster for low multiplicity processes, while for higher mul-

tiplicity processes (n ≥ 4) FKS becomes more efficient.



Part II

Simulating Photon Induced

Processes
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Introduction to Part II

In previous chapters the demand for higher accuracy in theoretical calculations of

collider processes has motivated a large body of work surrounding the calculation of

higher order corrections in perturbative QCD. Indeed, the first round of data taking at

the LHC, which in addition to the Higgs-like boson discovery has lead to increasingly

stringent bounds on new physics beyond the Standard Model, makes it clear that the

focus of experimental analyses at the LHC will shift more and more towards precision

measurements and on ever more piercing tests of Standard Model dynamics at the

highest scales. There is then a likelihood that there will be a number of observables

where high level precision in the theoretical understanding will be crucial in order to

match experimental accuracy and allow the full advantage of the high-quality data

delivered by the LHC collaborations to be taken. Examples for such processes and

observables include

• the large-mass tail of the Drell-Yan mass spectrum, which may be influenced

by heavy resonances [42], and

• observables based on the leptons in the pair production of W -bosons and their

subsequent leptonic decays, which may help to shed light on anomalous gauge

couplings [5], and which of course play an important role as a background to

Higgs production and decay into W pairs.

In the second part of this thesis the contribution of electroweak corrections, and in

particular photon-induced processes, to certain processes will be investigated. Stan-

dard considerations of perturbative corrections tend to focus on higher-order QCD

corrections, some of which are now available at the next to next to leading order
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(NNLO) level at fixed order [43] and at next to leading order in Monte Carlo simu-

lations [35]; however it will be argued that such electroweak corrections may play an

important role in order to achieve high level precision in predictions. This will ignore

the full wealth of NLO electroweak corrections, calculations of which are available for

the processes considered here in [44] [45]; the focus will instead be on photon induced

processes, which, formally speaking, are part of the NNLO electroweak contribution.

The consideration of such corrections is triggered by two observations:

• recently a second and more modern set of parton distribution functions (PDFs)

which include QED effects became available, allowing the comparison of results

obtained by the MRST2004QED and the NNPDF2.3QED sets [46,47], focusing

of course on the impact of the photon PDF (γPDF);

• in addition to contributions induced by the photon PDFs, there are also quasi-

elastic processes, where the intense electromagnetic fields accompanying the

protons give rise to the production of charged particles. Such processes are typ-

ically described by the equivalent photon approximation (EPA) or Weizsaecker-

Williams method [48], and quite often overlooked. It will be argued here, how-

ever, that they become fairly significant when vetoes on the central production

of additional particles or jets are applied.

Part two of this thesis is structured thus:

The simulational aspects of SHERPA, which is used to generate these results, are

discussed; including a summary of the various modelling stages of the generator. This

is followed by an overview of parton showering, including various aspects which are

important to this thesis such as the MC@NLO method. Other subjects relevant to the

simulations such as the merging of matrix elements and partons, and cluster hadro-

nisation models are also very briefly reviewed. A discussion of the photon induced

processes is then presented; this focuses on the motivation for, and description of,

the two contributions that form corrections of this sort. The first of these contribu-

tions comes from the photon component of hadronic PDFs, a component that arises

from QED corrections to the PDF evolution kernels, and which can fairly obviously
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give a contribution to photon induced cross sections. This photon PDF component

is discussed in chapter 8, where the simple extension of factorisation formulae for

calculating photon induced cross sections is presented; the QED corrections to PDF

evolution kernels that give rise to the photon component are discussed in this chapter,

in addition to a very brief overview of the determination of photon PDFs from data.

The second photon component, the equivalent photon approximation of Weizsaecker

and Williams, is then briefly discussed; this includes a summary the approximations’

assumptions, in addition to a demonstrating the calculation of photonic cross sections

with this method. The distribution functions used for the EPA in SHERPA (and hence

for this thesis) are then explicitly presented.

In chapter 9 the setup for the simulation of relevant results is given, and there

then follows the presentation of results. This is split according to the two processes

simulated, lepton pair production and the production of W pairs (which are subject

to leptonic decays only). In both cases results are presented which compare a QCD

baseline with the baseline supplemented with both photon induced channels. These

are then compared with relevant data from ATLAS and CMS, where available; the

details of experimental analyses used in this section are presented in appendix A. In

addition the effect of extra jet emissions is investigated, using the same setup of QCD

baseline predictions with photon induced channels as for the above case, for both of

the processes. For the case of W pair production, results are also given simulating

the same process at LHC run two energies which is undertaken to test the significance

of the photon induced channels at these higher energies. This is with regard to, the

possibly that the photon induced rate may be slightly increased as a result of the tails

of some distributions at these higher energies. The influence of the photon induced

channels is discussed for both channels based on the results presented. Finally the

findings of this work are summarised and some conclusions drawn.



Chapter 7

Simulating Processes in SHERPA

Before specific discussion of photon induced processes is undertaken, the simulation

environment, which takes place in the SHERPA event generator, will be outlined in

this chapter, although specific cases relating to photon induced cases will be discussed

in chapter 8.

7.1 Event Generation in SHERPA

The simulation of events in SHERPA is conducted with a series of many theoretical

and technological methods necessary for a modern Monte Carlo event generator. The

hard process of the event is calculated using the automatic matrix element generators

COMIX [49] and AMEGIC++ [6], which collectively allow the calculation of nearly

arbitrary processes with up to eight or more final state particles at tree-level to take

place; both of these generators are employed for simulations presented later in this

work. In AMEGIC++ the construction of matrix elements is based on the method of

helicity amplitudes, a formalism for the automatic generation of which is described

in [6]; the helicity amplitude formalism employed here is similar to methods found

in [50] [51] and [52]. COMIX however employs Berends-Giele recursion relations,

see [53] [54] and [55]; this technique, which is for example also used in ALPGEN [56], is

generally more efficient for the calculation of matrix elements with large multiplicities.

The processes calculated by the matrix element generators, which are subject
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to parton showering and various other modelling phases, must be integrated over

the appropriate phase space. To conduct this integration, SHERPA utilizes multiple

weighted channels in which Monte Carlo integration is performed, the use of these

multiple weighted channels is outlined in [57] and are automatically generated by

SHERPA . The parton showering employed with SHERPA is based on Catani Seymour

subtraction terms, as originally proposed in [58] and implemented in [59] and, in-

dependently, in [60]; parton showering is reviewed later in this chapter and details

of the SHERPA showering are provided. Parton showering in SHERPA can be supple-

mented by merging with real matrix elements, this merging was originally proposed

in [61] and [62], and its implementation within the SHERPA setup is described in [63].

This concept, which will be touched upon in the context of the discussion of parton

showers presented later in this chapter, is conducted for some simulations presented

later in this thesis.

The inclusion of next to leading order calculations within SHERPA is for these simu-

lations conducted with the Catani Seymour subtraction scheme, the implementation

into SHERPA is described in [39]. Where NLO QCD predictions are used the par-

ton shower employs the MC@NLO technique [64], the implementation into SHERPA of

which is described in [65], to match the higher order correction to the parton shower;

this is discussed in the context of parton showers later in this chapter. After the

parton shower, the hadronisation model employed within SHERPA kicks in, this is a

modified form of the cluster model, [66] and [67], which is described in [68]; some

details of this model will be provided later in this chapter.

7.2 Parton Showers

The calculation of cross sections based on fixed order perturbation theory is well

established practice in perturbative QCD; however calculations of this nature are

often not sufficient to describe experimental set ups. The fixed order perturbative

approach has two major flaws for this purpose: one is the high multiplicity of processes

in colliders, often as a result of parton cascades, which are infeasible to calculate with
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perturbation theory. The second is enhanced contributions from higher orders, which

are usually logarithmic in nature and are problematic as corrections to the Born term

of more than O(α2
s) are somewhat unfeasible to compute.

To model such effects perturbative QCD is, however, of use in the construction

of numerical methods to approximate both parton cascades and enhanced logs from

higher order; such numerical methods are known as parton showers.

For the moment a brief digression is taken to radioactive decay processes, where

it is noted that the no-decay probability for an unstable isotope obeys

dP

dt
= −λP (7.1)

where λ is the decay constant, and identified as the rate of decay per unit time

of the isotope. The solution for the no decay probability is then the familiar P =

exp

(
−

t∫
t0

dtλ

)
. The example of radioactive decays is illustrative of the treatment

of partons in parton showers; where a partonic branching is the equivalent of the

radioactive decay. The decay rate, λ, of the radioactive process therefore has its

partonic equivalent in the branching probability; in parton showers these branchings

are approximated using the kinematic limits of parton splittings, which are described

in chapter one. For most parton showers the collinear branching is considered, analo-

gous to the DGLAP evolution of the parton distribution functions; for such splittings

the differential branching probability is described by 7.2.

dPbranching =
dQ′2

Q′2

∫
dz
αs
2π
Paiaj(z) (7.2)

The no branching probability must, based on the radioactive decay analogy, obey

d∆

dQ2
= −∆(Q2)

∫
dz

z

αs
2π
Paiaj(z) (7.3)

where ∆, the no branching probability, must take the form

∆(Q2) = exp

[∫ Q2

Q2
0

dq′2

q′2

∫
dz
αs
2π
Paiaj(z)

]
(7.4)

and is known as a Sudakov form factor [69]. This Sudakov form factor describes

the no branching probability of partons, to rewrite this in a more concrete fashion



106 7.2. Parton Showers

the probability of no resolvable branching between scales Q and Q′ is given by the

Sudakov form factor described by

∆(Q2, Q′2) = exp

− Q′2∫
Q2

dq′2

q′2

zmax∫
zmin

dz
αs
2π
Paiaj(z)

 (7.5)

The limits on the partonic fraction, z integral in the Sudakov form factor are some-

what ambiguously given as zmin and zmax; these values can be determined by consid-

ering the kinematics of partons splitting.

This connection with probability allows the construction of a Markov chain of

partonic emissions, which is known as parton shower. The algorithm for the con-

struction of a simple parton shower simulation will be presented below; however the

structure of calculations in which parton showers are used will be briefly outlined.

Typically for collider processes that are of interest a fixed order calculation is con-

ducted for a high-momentum transfer process with low multiplicity, the partonic legs

of this calculation are then subject to the chain of partonic emissions, simulated in

the parton shower.

To demonstrate the methodology of a parton shower, it will be convenient to

return to the radioactive decay process example. In such a process it is noted that

the probability of a decay at time t, given the above, must be given by

PDecay(t) = λ(t) exp

− t∫
t0

dtλ(t)

 (7.6)

where the instaneous decay probability is combined with the probability of it not

decaying previously. Hence the probability of a decay in a certain period can be

written as

P(t1, t2) =

t2∫
t1

dtλ(t) exp

− t∫
t0

dtλ(t)

 (7.7)

where P(t1, t2) represents the probability a decay will occur at time t2 given it has

not decayed a time t1. The idea is to use this probability distribution to randomly

generate a decay event; this proceeds by generating a random number R ∈ [0, 1] and
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by making the identification:

tDecay∫
0

dtPDecay(t) = R
∞∫

0

dtPDecay(t) (7.8)

the generation of a random number can therefore be used to ’generate’ a decay event;

with the decay time calculated from 7.8. In the case of the radioactive decay process,

this can be computed to be

1− exp

− tDecay∫
0

dtλ(t)

 = R (7.9)

The decay time of a radioactive nuclei, in this example, can thus be generated by

solving the expression

exp

− tDecay∫
0

dtλ(t)

 = R′ (7.10)

for tDecay; where R′ ∈ [0, 1] is another random number, equivalent to 1 − R. It

is seen the expression of the LHS of this equation is the no decay probability. This

alogorithm can be applied to the branching of partons in an analogous fashion. There-

fore to generate partonic branchings at a particular monentum scale the no branching

probability, represented by the Sudakov, must be equated to a random value to gen-

erate a branching scale. Hence the branching scale of a parton in the parton shower

is simmulated by generating a random number, and making the identification

∆(Q2, Q2
Branch) = R′ (7.11)

[69] where R′ is also a random number ∈ [0, 1] and Q is the initial monentum scale

for the parton in question.

The solution of 7.11 for the scale Q2
Branch therefore determines the scale at which a

simmulated branching will take place. Thus generating random numbers in this con-

text amounts to generating the next branching; these chains of generated branchings

then continue until the branching scale QBranch falls below the scale for a resolvable

emission. This nicely allows the determination of the branching scales of partons in

the final state, however this does not uniquely determine the kinematics of daughter
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partons. For collinear branching (which is what is considered by using DGLAP evo-

lution) the kinematics of the daughter partons amounts to a choice of the partonic

fraction, z and again this value is generated by using random numbers. This is simply

accomplished by making the identification

z∫
zmin

dz
αs
2π
P (z) = R′

zmax∫
zmin

dz′
αs
2π
P (z′) (7.12)

where R′ ε [0, 1] is a second random number. Therefore a solution of 7.12 for z de-

termines the generated partonic fraction.

The treatment of initial state radiation is similar to that of final state radiation,

however it is complicated by kinematic considerations. For final state branching the

scale is simply evolved downwards until it falls below the scale of resolvable emission,

however this cannot be simply repeated for initial state branching due to the need

to match the kinematics of the initial state partons of the hard process. The parton

shower algorithm is modified such that the scale is evolved backwards from the hard

scale process towards the hadron. A consequence of this is that the Sudakov form

factor is modified by the PDFs; the probability of no branching between two scales

in the initial state evolution is given by

Π(Q2, Q′2, x) =
f(x,Q2)

f(x,Q′2)
∆(Q2, Q′2) (7.13)

[9], which is equivalent to

Π(Q2, Q′2, x) = exp

− Q2∫
Q′2

dq′2

q′2

∫
dz
αs
2π
Paiaj(z)

f(x/z,Q′2)

f(x,Q′2)

 (7.14)

This gives a modified Sudakov form factor which can be used in a algorithmic fashion

similar to the final state forward branching; branching is said to have occurred at

scale Q′2 which is generated from

Π(Q2, Q′2) = R (7.15)

where again use is made of random variables to generate the splitting scale.
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The partonic fraction z is determined by generating a second random variable in

the same fashion as for final state radiation; however there is again a slight modifi-

cation from PDFs which in the expression yields

z∫
zmin

dz
αs
2π

P (z′)

z′
f(x/z′) = R′

zmax∫
zmin

dz′
αs
2π

P (z′)

z
f(x/z′) (7.16)

Where the value x indicates the partonic fraction of the daughter parton. The so-

lution of 7.16 for z allows the determination of the partonic z for initial state splitting.

The Markov chain of parton emissions, as has been described above, gives an ap-

proximation for high-multiplicity final states; however, parton showers also provide

enhanced contributions from higher orders in addition to an approximation of the

leading order matrix element for a high-multiplicity event. These enhanced contri-

butions enter via the Sudakov form factor, which has hitherto been simply treated as

a no-branching probability (which it still is at leading order). The enhanced contri-

butions are logarithmic in nature and come from both virtual terms and unresolved

emissions. At this point it is work considering the form of the exponent in the Sudakov

form factor, it is fairly clear that this exponent is logarithmic in the scale Q from

simple integration. However an additional logarithmic contribution can result from

the integrals of some splitting functions. Considering only these double logarithmic

terms the Sudakov form factor can be written as

∆(Q2, Q2
0) ≈ exp

(
−kF

αs
2π

log2 Q
2

Q2
0

)
= 1− kF

αs
2π

log2 Q
2

Q2
0

+ ...O
(
αns log2n Q

2

Q2
0

)
(7.17)

where kF is a generic factor from the splitting functions (whose precise form is not

relevant for this purpose). It is clear that a series expansion of the Sudakov form

factor involves an infinite series of these logarithmic terms. These terms, which as

can be seen occur at an arbitrary order of αs, represent the enhanced pieces from

higher fixed order contributions and can in some regions become large which presents

a problem for simple fixed order calculations. However the inclusion of Sudakov will

implicitly sum all such contributions to all orders. The technique of including a series
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of logarithmic contributions to all orders in αs is known as resummation, which is a

broader technical field in its own right beyond parton showers; the formal logarith-

mic accuracy of parton showers is dependent upon the details of the shower, however

all include an all orders resummation of the double logarithms shown in the above

example [70].

In the above discussion, the definition of the ordering scale, Q2, has been left

deliberately vague; there is some ambiguity in the choice of this scale which is reflected

in different choices in different shower implementations. In earlier versions of the

event generator PYTHIA the invariant mass scale of the parton is used, see [71] [72]

however later versions are ordered by transverse momenta [73].

Ordering with respect to the angle between branching partons, known as angu-

lar ordering, is implemented in the event generator HERWIG++, see [74] and [75].

Angular ordering of showers is a largely used as a result of its ability to approximate

some of the soft logarithmic terms present, that for example are not approximated

in an invariant mass ordered shower. This is simply the result of the form of matrix

elements in the soft gluonic limit. When the angle between the soft gluon and a par-

ton becomes large with respect to the angular ’scale’ at which the parton branches,

interference effects in the matrix element largely mean that the soft gluonic emission

can be neglected. When the opposite is true, the soft gluonic splitting can give a size-

able contribution however, such terms can then be modelled as a previous collinear

branching in the angularly order shower. As a result showers ordered in this fashion

implicitly approximate large soft contributions (from both branching and higher or-

ders), in addition to the collinear terms.

7.2.1 Parton Showering in SHERPA

The parton showering algorithm introduced for the more general discussion above

implicitly described the parton shower by using the DGLAP evolution, and there-

fore implicitly the use of Altarelli-Parisi splitting functions to approximate the par-
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ton branching. While it is perfectly possible to construct a modern shower algo-

rithm based in these splitting functions, this is not the choice taken in SHERPA. In

SHERPA the place of Altarelli-Parisi splitting functions is taken by Catani Seymour

dipole subtraction terms, which are spin-averaged (so there is no tensorial depen-

dence). This choice is taken as the dipole functions, which include both singular

limits, allow the resummation of soft logarithmic terms when used in the shower.

While this can be achieved in DGLAP showers by angular ordering, this presents

its own set of problems. The formulation of dipole showers was first outlined in [58]

and [76] and the implementation of this formalism was then made in SHERPA [59];

the key results of which are summarised in this section.

Catani Seymour dipole functions were originally formulated to allow a general

method for the construction of subtraction terms for use in the real terms of NLO

calculations; as a result of this these dipole functions represent the singular limits of

a parton in a cross section. Consequently they can be adapted for use as splitting

functions, and given the limit that a branched parton is nearly soft or collinear, can

be used to express a m+ 1 particle cross section in terms of a m particle one; this is

expressed in 7.18.

dσm+1 = dσm
∑
ij

∑
k 6=i,j

dyij, k
yij, k

dz
dφ

2π

αs
2π

1

N
J(yij, k)〈Vij, k(z, yij, k)〉 (7.18)

Where spin-averaged Catani Seymour dipoles are expressed as Vij, k(z, yij, k), with a

Jacobian factor J(yij, k) and where the partonic labels i,j and k refer to the branching

of a parton into partons i and j where k is a spectator. The variables z and yij, k

are defined functions of the three partons i,j and k momenta; for massless final state

partons these are expressed below.

z =
pi.pk

pi.pk + pj.pk
yij, k =

pi.pj
pi.pj + pi.pk + pj.pk

(7.19)

The Jacobian factor J(yij, k) allows the one particle phase space integral, over the

additional parton momenta, to be expressed in terms of the relevant kinematic vari-

ables of the dipole function, z and yij, k in addition to an angular integral dφ. These
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variables define the mapping of kinematics between the mother and daughter par-

tons as well as a shift for the spectator. Shown below is this mapping from mother to

daughter partons; the mother kinematics are denoted as p̃ and daughter kinematics

as p.

pi = zp̃ij +
k2
⊥

zp̃ij.p̃k
p̃k + k⊥ (7.20)

pj = (1− z)p̃ij +
k2
⊥

(1− z)p̃ij.p̃k
p̃k − k⊥ (7.21)

pk = (1− yij k)p̃k (7.22)

where k⊥ is the transverse momenta of the branched partons i and j with respect to

the mother parton ĩj; this can be related to yij, k as

yij, k =
−k2
⊥

z(1− z)(pi.pj + pi.pk + pj.pk)
(7.23)

It is noted that this form of the kinematic variable yij, k allows the following

identification to be made
dk2
⊥

k2
⊥

=
dyij, k
yij, k

(7.24)

This is important as to construct a parton shower algorithm, a scale with which to

evolve the shower must be chosen, and the transverse momenta of branched partons

can be used as such a scale. Given that the conventional parton shower algorithms are

based on approximating the cascade of partonic branching with Altarelli-Parisi split-

ting functions, the identification of the Catani Seymour dipoles as splitting functions,

in both the soft and collinear limits, as described above, motivates the possibility of

constructing such a shower based on the dipoles. The construction of such a parton

shower algorithm requires a Sudakov form factor, and in analogy with the DGLAP

case the Sudakov for dipole showering can be expressed as

∆
(K)
ij,k(t, t0) = exp

[
−

t∫
t0

dt

t

αs
2π

∫
dz

dφ

2π
Kij,k(t, z, φ)

]
(7.25)

where Kij,k(t, z, φ) represent the spin-averaged Catani Seymour dipole functions and

the Jacobian factor, and where for convenience transverse momenta is expressed as

k2
⊥ = t. Again as the dipole function performs the role of approximating the branching
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of the cross section, as the Altarelli-Parisi splitting functions do in the collinear case,

this Sudakov can be interpreted as a no branching probability. The shower algorithm

described in the previous section can therefore be used to construct the dipole shower

simply by replacing the Sudakov form factor with the dipole form shown above and

utilizing the dipole functions to approximate the branching that occurs, as opposed

to the Altarelli-Parisi splitting functions. In addition this formulation of the parton

shower requires the ordering of the shower by k2
⊥.

7.2.2 NLO calculations and Parton Showers

The use of parton showers for simulating collider events is well motivated, given the

ability of these algorithms to approximate to a high degree large jet multiplicities

in such events; in addition to implicitly resuming enhanced logarithmic corrections

which are beyond leading order in the strong coupling. However the inclusion, where

possible, of NLO corrections to the hard processes simulation are equally well moti-

vated; principally so by reductions in the error associated with certain perturbative

scales, which must be introduced into fixed order calculations, such as the renormal-

isation and factorisation scales. Combining both of these techniques for Monte Carlo

simulations is therefore of high importance for providing accurate predictions. How-

ever, an NLO hard process calculation cannot be simply supplemented by a parton

shower using the parton shower algorithm presented earlier in this chapter for use

with Born level processes.

The principle difficulty arises because the parton shower resums the leading loga-

rithmic terms of parts of the NLO calculation, hence to simply attach a conventional

parton shower to a hard process, which is calculated at NLO, double counts these

terms. To consider this issue it is first prudent to examine the form of an NLO cal-

culation, since all calculations which will be parton showered will be calculated using

a subtraction scheme; the form of the NLO calculation considered here will utilize a

subraction scheme. The form of these calculations, which is expressed below, con-

sists of, in addition to the leading order Born term, a virtual term calculated from

loop diagrams and a real emission term which is Born like but includes an additional
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unconstrained parton; these are supplemented by terms from the subtraction scheme.

σNLO =

∫
m

dσ(B) +

∫
m

[
dσ(V ) +

∫
1

dσ(S)

]
+

∫
m+1

[
dσ(R) − dσ(S)

]
(7.26)

Given the structure of a parton shower the terms which can cause O(αs) corrections,

and hence give an approximation to the NLO calculation, have two components;

firstly the Sudakov form factor itself, from the O(αs) term in the expansion of the

exponential, and the first branching term, which can approximate part of the real

emission term. Considering a parton shower which uses a generic evolution kernel

Γ(Φ1), where the Sudakov is represented by 7.27;

∆(Q2, Q′2) = exp

− Q′2∫
Q2

dΦ1Γ(Φ1)

 (7.27)

then the appropriate terms to consider from the parton shower are given by 7.28.

dσPS = dσ(B)

∆(Q2, Q2
0) +

∫
Q2

0

dΦ1Γ(Φ1)∆(Q2, Q2
Φ1

)

 (7.28)

The scales Q2, Q2
0 and Q2

Φ1
respectively represent the starting scale of the shower,

the cutoff scale, and scale of the first emission. To properly match NLO calculations

to parton showers, these terms that are double counted in the shower and the NLO

calculation must be properly accounted for. A set prescription for this procedure

does not exist, but there are two principle methods, known as MC@NLO [64] and

POWHEG [77]; generic considerations about matching parton showers to fixed order

NLO calculations are considered in [65].

To perform such a matching is not a simple task, as the parton shower approxi-

mation does not distinguish between corrections associated from real or virtual cor-

rections but combines elements of both where such double counting occurs; the of-

fending pieces of the parton shower therefore cannot simply be subtracted off the

fixed order calculation. To perform an appropriate matching both the MC@NLO and

POWHEG methods begin by considering the form of the parton shower evolution ker-

nel Γ(Φ1). This object must, by the construction of a parton shower, approximate
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the branching of a partonic cross section and therefore must also approximate to the

ratio of real-emission to Born in an NLO calculation; for example the Altarelli-Parisi

splitting functions approximate this ratio in the collinear limit. At this point it is

appropriate to partition the real emission term into finite and singular pieces;

dσ(R) = dΦm+1R(Φm+1) = dΦm+1

[
RF (Φm+1) +RS(Φm+1)

]
(7.29)

where the terms RF (Φm+1) and RS(Φm+1) are the finite and singular pieces of the

real term respectively. It is clear that the approximation of the real to Born ratio

by the kernel must occur in the singular limits of the real emission term, so the

identification

Γ(Φ1) =
RS(Φm+1)

B(Φm)
(7.30)

can be made, where B(Φm) denotes the Born level matrix element squared.

Using these definitions the NLO calculation with the relevant parton shower dou-

ble counting subtracted can be schematically described by:

dσNLO PS =

[
dσ(B) + dσ(V ) +

∫
1

dσ(S) + dΦm+1

(
RS(Φm+1)−Dsub(Φm+1)

) ]

×
[

∆(Q2, Q2
0) +

∫
Q2

0

dΦ1
RS(Φm+1)

B(Φm)
∆(Q2, Q2

Φ1
)

]
+ dΦm+1RF (Φm+1) (7.31)

where Dsub(Φm) are the functional form of the subtraction terms defined such that

dσ(S) = dΦm+1D
sub(Φm+1) (7.32)

The differential form 7.31, when integrated over the full phase space must yield

normal NLO cross section. The form of the singular and finite pieces of the real term

therefore determine the method of NLO parton showering matching; it is noted that

a choice of how this partition occurs will also determine the evolution kernel that is

used in the parton shower. The choice employed in the MC@NLO formalism amounts

to identifying the singular component of the real term as the subtraction term(s) used
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in the NLO calculation, this greatly simplifies the above expression and yields

dσMC@NLO =

[
dσ(B) + dσ(V ) +

∫
1

dσ(S)

][
∆MC@NLO(Q2, Q2

0)

+

∫
Q2

0

dΦ1
Dsub(Φm+1)

B(Φm)
∆MC@NLO(Q2, Q2

Φ1
)

]
+ dΦm+1

[
R(Φm+1)−Dsub(Φm+1)

]
(7.33)

where it is noted that the parton showering must now occur with subtraction

terms used in the NLO calculation as evolution kernel. As result the Sudakov form

factor must take the form

∆MC@NLO(Q2, Q′2) = exp

− Q′2∫
Q2

dΦ1
αs
2π
Dsub(Φm+1)

 (7.34)

This summarizes the MC@NLO method first described in [64], although the form

that is given here is taken from [65].

The POWHEG method, in the formalism of 7.31 amounts to making the choice of

RS(Φm+1) = R(Φm+1).

dσPOWHEG = dσ(B)

[
∆POWHEG(Q2, Q2

0) +

∫
Q2

0

dΦ1
R(Φm+1)

B(Φm)
∆POWHEG(Q2, Q2

Φ1
)

]

(7.35)

Where the factor dσ(B) is simply the differential form of the NLO cross section.

dσ(B) = dσ(B) + dσ(V ) +

∫
1

dσ(S) + dΦm+1

[
R(Φm+1)−Dsub(Φm+1)

]
(7.36)

Again this forces the kernel of the showering algorithm to take the new form, in

this case the ratio of the real to Born terms. As result the Sudakov form factor must

take the form

∆POWHEG(Q2, Q′2) = exp

− Q′2∫
Q2

dΦ1
R(Φm+1)

B(Φm)

 (7.37)

for POWHEG.
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Both of these formalisms force the evolution kernel of the shower to take a partic-

ular form, however this can be problematic for defining a parton shower alogorithm.

This is the case for the MC@NLO method, where the evolution kernel in the Sudakov

form factor can take negative values; as a result such a Sudakov could not be used

to describe a no branching probability. This issue is addressed by use of a modi-

fied form of the well known veto algorithm [78], found in [79]. The veto algorithm,

as commonly used in parton shower algorithms, allows for the generation of parton

branchings for showers, with evolution kernels that do not have a known integral.

The generation of a branching scale proceeds, as given in 7.11 and using the notation

of 7.27, is given by

∆(Q2, Q2
Branch) = exp

− Q′2∫
Q2

dΦ1Γ(Φ1)

 = R′ (7.38)

If the integral of the kernel, Γ(Φ) is unknown, then computing the branching scale

from 7.11 presents difficulties. The veto algorithm resovles this by defining a new

function, g(Φ) which has a known integral and provides an overestimate of Γ(Φ) (i.e.

g(Φ) ≥ Γ(Φ)) and generating branching scales by

exp

− Q′2∫
Q2

dΦ1g(Φ1)

 = R′ (7.39)

Which, as g(Φ) has a known integral, can be used to compute a branching scale. The

branchings generated by 7.41 are then accepted as branchings for the parton shower,

with a probability Γ(Φ)/g(Φ). The branching probability, using the veto alogorithm

then takes the form

PBranch(Q′2) =
Γ(Φ1)

g(Φ1)

Q′2∫
Q2

dΦ1g(Φ1) exp

− Q′2∫
Q2

dΦ1g(Φ1)

 (7.40)

To deal with kernels that can take negative values, the algorithm is modified by

introducing an additional overestimate function, h(Φ), which is always positive; this

procedure also requires that Γ(Φ)/g(Φ) remains positive. Branching scales are then
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generated with

exp

− Q′2∫
Q2

dΦ1h(Φ1)

 = R′ (7.41)

and are again accepted with a probability Γ(Φ)/g(Φ) (hence this quantity mustbe

positive). The distributions generated from these steps then have weights applied to

them; these are expressed below

WBranch =
h(Φ)

g(Φ)
WNo Branch =

h(Φ)

g(Φ)

h(Φ)− f(Φ)

g(Φ)− f(Φ)
(7.42)

for branched and unbranched events respectively. It is noted that the weighting proce-

dure for the additional overestimate function, h(Φ) is applied analytically as opposed

to the probabilistic ’hit and miss’ of the previous overestimate function g(Φ).

In SHERPA the NLO matching scheme which is utilized for the simulation of results

presented in this thesis is the MC@NLO formalism. In the SHERPA implementation

the calculation of the NLO term is conducted with Catani Seymour dipoles, and as

a result the MC@NLO calculation as presented above also utilizes these subtraction

terms. The parton showering therefore must occur using these subtraction terms as

the evolution kernel, which SHERPA natively employs for this purpose anyway.

7.2.3 Merging Matrix Elements with Parton Showers

The combination of NLO fixed order calculations and parton showers described in the

previous section, accomplishes a merging of the NLO calculations and parton showers

by removing terms in the parton shower which caused the double counting of certain

logarithmic corrections included in the parton shower. A principle part of these

corrections relate to the real emission term of the NLO calculation, which in essence is

simply a tree level matrix element term with an additional partonic leg (compared to

the Born term). While this extra partonic leg, in the NLO case, becomes unresolved

for the real correction term, corrections for this term can motivate correcting the

parton shower for hard partonic emissions described by tree-level matrix elements.

The correction of a leading order parton shower to include the matrix element for the
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first partonic emission, above the merging scale QMS, can be motivated by equation

7.31 to take the form 7.43.

dσCKKW = dΦm+1B(Φm)

[
∆(Q2, Q2

0) +

∫
Q2

0

dΦ1Θ
(
Q2

MS −Q2
Φ1

)
Γ(Φ1)∆(Q2, Q2

Φ1
)

+

∫
Q2

0

dΦ1
R(Φm+1)

B(Φm)
Θ
(
Q2

Φ1
−Q2

MS

)
∆(Q2, Q2

Φ1
)

]
(7.43)

Where again the Sudakov form factor is defined with an abstract kernel Γ(Φ1), yield-

ing

∆(Q2, Q′2) = exp

− Q′2∫
Q2

dΦ1Γ(Φ1)

 (7.44)

It is seen that this expression, for the first emission process in the parton shower,

showers normally for emission scales below the merging scale Q2
MS; however if the first

emission process is above the merging scale the Born hard process matrix element is

replaced by tree-level matrix element for an additional partonic emission (compared

to the Born term). Therefore this formalism simply corrects the hard process to

include an extra jet emission if this jet emission is sufficiently hard itself. It is noted

that performing this procedure has the effect that the parton shower contributions

no longer integrate, over the full phase space, to unity; although this effect is not

problematic if the merging scale is chosen appropriately.

While this approach is effective, it can be extended beyond the first emission in

the parton shower; this can be accomplished by performing the same procedure used

to correct the Born level parton shower to the extra emission term. This corrects

the first emission for this hard process; the procedure can then be used iteratively

to correct for hard emissions (those greater than the merging scale) for any emission

in the parton shower. The correction to the real emission hard process term of the
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parton shower can therefore be expressed as

dσCKKW−L = dΦm+1R(Φm+1)Θ
(
Q2

Φ1
−Q2

MS

)
∆(Q2, Q2

Φ1
)[

∆(Q2
Φ1
, Q2

0) +

∫
Q2

0

dΦ1Θ
(
Q2

MS −Q2
Φ2

1

)
Γ(Φ2

1)∆(Q2, Q2
Φ1

)

+

∫
Q2

0

dΦ2
1

R2(Φm+2)

R(Φm+1)
Θ
(
Q2

Φ2
1
−Q2

MS

)
∆(Q2

Φ1
, Q2

Φ2
1
)

]
(7.45)

where the term R2(Φm+1) is the tree-level term with two additional partonic emis-

sions relative to the Born and Φ2
1 represents the additional partonic phase space for

the second emission. These formalisms for the merging of matrix elements and parton

showers are known as the CKKW and CKKW-L procedures for the first and multi

emission corrections respectively, and are described by [61] and [62]. The implemen-

tation of these procedures into SHERPA is described in [63].

There are various technicalities in this procedure which have been glossed over in

this brief overview, examples of which include the running of the strong coupling in

the parton shower; for matrix element calculations a consistent value of αs must be

used while in a parton shower the scale of this coupling changes with the shower and

is generally corrected for by an additional weighting factor. Other issues include the

corrections for initial state radiation and choices of scale, which are described in [63].

This multi-jet merging scheme can be combined with NLO matching methods

to produce hard emissions, usually just the initial process, at NLO. The MENLOPS

formalism [80] and [81] combines the POWHEG method, summarised in equation 7.35

with the multi-jet merging described above. While this method is somewhat involved

and will not be described in detail, its essentials are as follows; the Born term in

equation 7.43 is reweighted to the NLO result, as is done for the POWHEG method in

equation 7.35. The Sudakov form factors must take the form of the POWHEG method,

as shown in in equation 7.37, and as a result the evolution kernel in 7.43 must also

take this form. In MENLOPS this NLO correction is only conducted for the initial

Born process.
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7.3 Hadronisation in SHERPA

Hadronisation is a significant problem for modelling in Monte Carlos as the pertur-

bative components, the partons (quarks and gluons), must become confined within

hadrons; since this process must occur in the non-perturbative regime of QCD where

the theoretical methods for QCD described in this thesis are not valid, and alternative

descriptions must be used. For the description of hadronisation in most Monte Carlo

simulations, some sort of phenomenologically motivated model is used. Hadronisation

within SHERPA employs a modified form of the cluster model of hadronisation [66]

and [67], which is described in [68]. Cluster models of hadronisation are essentially

based on the notion of pre-confinement of partons produced from parton showers.

Preconfinement is simply the result that the partonic products of the shower can be

arranged into colour singlet clusters and thus pre-hadronisation colour singlet ob-

jects exist. These colour singlet clusters are therefore the basic objects which will be

hadronised.

This idea of preconfinement is best demonstrated in the large colour, Nc, limit; in

this limit the leading colour approximation can be used (leading order in 1
Nc

) whereby

the colour structure of a gluon can simply be represented by a colour-anti colour line.

During a parton shower the flow of colour can therefore by tracked and colour lines

used to determine the colour singlet clusters. The use of these cluster models is

interfaced with the parton shower; when the shower evolution reaches below the

hadronisation scale, which is usually around 1 GeV, the shower will stop and the

partons will be clustered into colour singlets with colour partners.

In practice this means that an enforced splitting into a quark-anti quark pair occurs

for all gluons. These colour singlet objects are taken as the proto-hadrons, and the

model decays these objects into various hadron species. Usually this decay process

occurs by considering these clustered objects to be excited mesonic states; in the

simplest employment of the cluster model these simply become the observed hadron

species by selecting random two body decays that are allowed by kinematics and

flavour.



Chapter 8

Photon Induced Processes

The contribution of photon induced processes to production channels, such as Drell-

Yan, at the LHC is the emphasis of the second part of this thesis. As such this

chapter will present the two contributions to these photon induced process, which

are the photon component of the PDFs and Weizsacker-Williams distributions. In

both cases the rationale behind these contributions is discussed, and the expressions

used to calculate their components to the photon induced cross sections are explicitly

given.

8.1 Photon PDFs

The photon component of the parton distribution function, will in this section, be

motivated and introduced with a view to the use of these objects in later chapters.

Some overview of the calculation of the intial distribution functions for photons is

given, but this is not pursued in detail . A brief consideration will also be given to

QED corrections to the parton shower formalisms which are also included in simula-

tions described in this thesis.

The photonic contribution of a parton distribution function is a key part of the

simulation of the photon induced processes. At present there exist two significant

PDF sets which include photonic PDFs; the standard MRST2004QED [46] and the

more recent set NNPDF2.3QED [47], both of these sets can be obtained from the

122
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LHAPDF [82] package.

The motivation for a photon component of the parton distribution functions arises

from considering the QED corrections to the DGLAP evolution kernels; essentially

as it is possible for quarks in a hadron to branch photons such a contribution must

exist. It is therefore possible to write a modified DGLAP evolution kernel for the

evolution of PDFs to include QED splitting effects

µ2∂fai(η, µ
2)

∂µ2
=
∑
j

1∫
η

dy

y

[
αs
2π
Paiaj

(
η

y

)
faj(y, µ

2) +
α

2π
PQED
aiaj

(
η

y

)
e2
aj
faj(y, µ

2)

]
(8.1)

Where eaj is the fractional electric charge of the partonic component, and use is

made of the QED equivalent of the Altarelli-Parisi splitting functions, which are

listed below.

PQED
γq (z) =

(
1 + z2

1− z2

)
(8.2)

PQED
qq (z) =

(
1 + (1− z)2)

z

)
(8.3)

PQED
γγ (z) = −2

3

∑
i

e2
i δ(1− x) (8.4)

PQED
qγ (z) =

(
z2 + (1− z)2

)
(8.5)

As can be seen these are similar to their QCD equivalents, bar some constant factor,

with the exception of the PQED
γγ splitting function which, as there are no direct photon-

photon couplings in QED, only receives corrections from virtual terms and as a result

is proportional to δ(1− x). It can be seen that such an inclusion of QED effects of,

particularly the quark to photon splitting, naturally leads to a photon component of

the PDF. The set of evolution equations, implicitly defined in the above expression,

now includes an evolution kernel for a photon distribution, which can be written out

explicitly to be

µ2∂fγ(η, µ
2)

∂µ2
=

α

2π

∑
j

1∫
η

dy

y
PQED
γaj

(
η

y

)
e2
aj
faj(y, µ

2) (8.6)

This expression confirms that a photon component of a PDF set, if QED effects are

included, must in principle be included, however determining an initial distribution
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function for this component requires additional input.

The starting photon distribution functions in the MRST2004QED PDF set [46]

are determined by considering the radiation of photons off quarks in the hadron.

This set uses the assumption that this effect is dominant in the high x region, and

this component is therefore determined from considering only valence quarks. The

photon distribution at the initial scale, Q2
0 is thus determined from the one photon

emissions off the valence quark; if the (collinear) leading logarithmic components of

this emission are considered then the photon distributions can be written in terms of

the valence quark distributions to be, for a proton

fγ(x,Q
2
0) =

α

2π

1∫
x

dy

y
PQED
γq

(
η

y

)[
4

9
log

(
Q2

0

m2
u

)
u0(y) +

1

9
log

(
Q2

0

m2
u

)
d0(y)

]
(8.7)

Note that from [46] that u0(x) and d0(x) are in fact ’valence-like’ distributions and

are in fact determined from the valence distributions.

The more recent photon PDF set of NNPD2.3QED [47] adopts a more conven-

tional approach to determining initial photonic distribution function, in that it is

more reminiscent of techniques to determine such contributions for quarks and glu-

ons. This is accomplished, essentially, by matching measured data for a process,

for example deep inelastic scattering, to distribution function, which is convoluted

with the relevant partonic cross section; for the photon PDFs QED effects must be

included in this process.

The computation of hadronic cross section, utilizing the photon PDFs proceeds using

the factorisation theorem as has been discussed in chapter one for strongly interacting

partons; the computation of a photon induced process from hadronic collisions can

therefore be computed from

σHadronic =

1∫
0

dη1

1∫
0

dη2f
H1
γ (η1)fH2

γ (η2)σ̂γγ→X(η1P1, η2P2) (8.8)

which is simply the usual factorisation formula with the photon included as a parton.

It should be noted that the use of photon PDFs is not exclusive to purely photon
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induced process; for example a process γq → X is perfectly calculable, and would

simply be given by 8.9.

σHadronic =

1∫
0

dη1

1∫
0

dη2f
H1
γ (η1)fH2

q (η2)σ̂γq→X(η1P1, η2P2) (8.9)

However such contributions are not considered in this work, for results contributing

Drell Yan or W pair production processes. Partonic processes of this form would

constitute part of the NLO EW corrections to either the photon induced or partonic

induced processes, which are not considered for this thesis.

8.1.1 QED Corrections to Parton Showering

The inclusion of photon PDFs in the simulation setup is supplemented here by the

inclusion of QED corrections to the parton shower formalism; a review of parton

showers is presented in chapter one of this thesis, and will not be repeated here. The

modification of the PDF evolution kernel to include QED effects is described above

and forces the inclusion of photon PDFs. It is noted however that the same physics

is used to describe a parton shower, and therefore inclusion of QED effects in parton

showers can in principle be included by supplementing the QCD splitting kernels with

QED ones. For DGLAP evolution the QED splitting functions are described in the

above section, and for parton showers based on DGLAP evolution the incorporation

of QED splitting in showers simply amounts to the inclusions of these splitting terms

in the Sudakov form factors, and in the branching terms where appropriate splittings

occur in the shower [83]. The inclusion of the QED effects therefore modifies the

Sudakov form factor to include the following term:

∆QED(Q,Q′) = exp

− Q′2∫
Q2

dq′2

q′2

∫
dz
αs
2π
PQED
ij (z)

 (8.10)

However the parton shower algorithm made use of within SHERPA utilizes Catani

Seymour dipoles, in their spin averaged form, as the evolution kernels, as opposed to

the Altarelli-Parisi splitting functions of DGLAP. To include the QED emissions in a

parton shower formulated in this fashion, the QED dipole splitting must be included
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in the manner shown above for the Altarelli-Parisi QED splitting functions. The

Sudakov form factor is then defined as

∆QED(Q,Q′) = exp

− Q′2∫
Q2

dΦij,k
1 KQED

ijk (Φij,k
1 )

 (8.11)

where KQED
ijk (Φij,k

1 ) are the Catani Seymour spin-averaged dipole splitting functions.

8.2 Equivalent Photon Approximation

In the discussion in the previous section concerning the use of photon PDFs to sim-

ulate photon induced processes, which is of necessity in determining such correc-

tions, however, this simply gives the inelastic component of the cross section. In

the case of the similar QED corrections for elastic processes, this essentially involves

electromagnetic fields of the protons interacting and causing particle production.

The observation, first made by Fermi [84] and later developed by Weizsaecker and

Williams [85] [86], that the electromagnetic field of a ultra-relativistic object can be

effectively modelled as a spectrum of real photons is known as the effective photon

approximation (EPA). The use of this approximation can be applied for both single

and double photon cases; in the first case the approximate photonic interaction only

comes from one of the initial state particles whilst the in later from both. In this the-

sis only the double photon case is relevant, and the former case will not be discussed

although the interested reader is referred to [48]. For the double photon case, the

equivalent photon approximation causes the complete cross section to factorise in a

manner similar to that of the hadronic PDF cross section. It is essentially reduced to

a convolution of the double photon cross section with the EPA distribution functions

for both initial state particles, the photon distributions are therefore analogous to

the PDFs and the photon cross section analogous to the partonic one; it is explicitly

given below.

σEPA =

1∫
0

dη1

1∫
0

dη2f
EPA(η1)fEPA(η2)σ̂γγ→X(η1P1, η2P2) (8.12)
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Where the photon spectra are described by fEPA(η1).

These spectra were initially calculated in a semi-classical limit, and later this was

extended to using Feynman diagrammatic methods. In this formalism the EPA dis-

tribution for point-like particles such as electrons can be calculated within the context

of the approximation. However for bound states such as protons the calculation of

this distribution must be supplemented with empirical modelling of the proton struc-

ture. The fitting for this distribution employed within SHERPA for protons is shown

below and is based on the formalism given in [48], .

The EPA spectrum function, fEPA(x) is then given for a proton by

fEPA(x) =
α

π

1− x
x

[
ϕ

(
q2

max

q2
0

)
− ϕ

(
q2

min

q2
0

)]
, (8.13)

wherein x = Eγ/Ehadron, q2
max = 2 GeV2, and q2

min(x) = (m2
p x

2 + p2
⊥,min)/(1−x). The

function φ is given by

ϕ(z) =
(1− b)y

4z(1 + z)3
+ (1 + ay)

[
− log

(
1 +

1

z

)
+

3∑
k=1

1

k(1 + z)k

]

+ c
(
1 + y

4

) [
log

1 + z − b
1 + z

+
3∑

k=1

bk

k(1 + z)k

]
,

(8.14)

with y = x2/(1 − x) and a = 1
4
(1 + µ2

p) + 4
m2

p

q20
≈ 7.16, b = 1 − 4m2

p

q20
≈ −3.96 and

c =
µ2p−1

b4
≈ 0.028. mp is the proton mass and µ2

p ≈ 7.78, q2
0 ≈ 0.71 GeV2 [48].

It is this spectrum for the proton that is implemented within SHERPA and is used

for the EPA component of photon induced processes in all simulations presented in

later chapters.



Chapter 9

Photon Induced Processes Results

The addition of photon induced channels to the simulation of certain processes at

the LHC is the subject of the second part of this thesis; in previous chapters the

motivation for, and calculation of these channels has been described. In this chapter

results of simmulations which include these channels, in addition to standard QCD

components, are presented and discussed; where possible they are compared to data

from ATLAS or CMS. The processes used to demostrate the contribution of photon

channels are, as has been discussed, the production of lepton pairs and the production

of W pairs with leptonic decay products. The motivation for the choice of these

processes is, as has been discussed already, their use in determining bounds on new

physics; in the case of the lepton-pairs bounds on heavy mass resonances and for the

case of the W pairs its status as an important background to a key Higgs production

channel. For both of these channels a description of the setup of the simulation

will be given, followed by a presentation of this simmulation compared with relevant

data from ATLAS or CMS; additionally, for both processes results will be presented

which indicate the effect of the photon channels on the emission of additional jets.

For the W pair process the simmulation is conducted again for 14 TeV collisions, in

anticipation of run two of LHC analyses.

128
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9.1 Lepton-pair production

The production of lepton pairs is given as the first example for the simulation of pho-

tonic processes. The set up for this simulation incorporates a baseline Drell-Yan pro-

duction at NLO accuracy in QCD, which is obtained using the SHERPA implementation

of the MC@NLO formalism. This is supplemented by the addition of the di-photon

production of lepton pairs, which occurs in two channels. The first of these is

the photonic component of proton PDFs, which is incorporated into the PDF sets

MRSTQED2004 [46] and NNPDF2.3QED [47]. The photonic channel here is sim-

ulated separately for both sets, resulting in separate photonic contributions which

are given for all results in this section. This is justified by the possibly large er-

rors associated with photon PDFs. The second originates from the photons emitted,

quasi-elastically, from protons. This channel is simulated with the Equivalent Pho-

ton Approximation of Weizsaecker and Williams [48], which is discussed in chapter 8,

and which has been implemented within SHERPA. Both of these channels utilize the

matrix element for photo-production of leptons, γγ → ll, which is calculated within

SHERPA at leading order.

9.1.1 Inclusive lepton pair production

For the case of Lepton pair production, the simulational set up in SHERPA, described

above, is utilized to compare against recent precision Drell-Yan measurements by

ATLAS [4] and CMS [2] and [3]. The details of the analysis framework imple-

mented for these results are described, for both ATLAS and CMS, in appendix A.

For each experimental set up the relevant analysis framework is implemented in a

RIVET analysis [87], which is interfaced with SHERPA to produce a simulation to com-

pare with the relevant data. The theoretical errors on the simulation data have as the

dominant contribution the factorisation and renormalisation scale errors (there are

additional small contributions from the Monte Carlo integration of the processes);

these are computed by the correlated variation of the factorisation and renormalisa-

tion scales between µ/2 and 2µ, where µ is the central value of the scale used.
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Figure 9.1: Invariant lepton-pair mass spectra as measured by ATLAS [4] (left, and

for ee final states) and by CMS [2] (right, and for lepton-lepton final states). The

experimental data is compared with SHERPA simulations, starting from a baseline

QCD sample simulated with the MC@NLO implementation in SHERPA (black); the

QED PDF (green and blue) and EPA (red) contributions are successively added.

These analyses are presented in figures 9.1 and 9.2, and all show lepton pair

invariant mass distributions based on Drell-Yan data and the results of the SHERPA

simulations. Figure 9.1 shows the invariant mass distribution of electrons in the high

mass tail (116-1500 GeV) based on the ATLAS analysis described in [4] and the

invariant mass of lepton pairs in the lower mass region (15-600 GeV) based on the

CMS analysis [2]. Figure 9.2 shows the invariant mass distributions for electron and
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Figure 9.2: Invariant lepton-pair mass spectra as measured by CMS [3] (left for ee,

right for µµ final states). The experimental data is compared with SHERPA sim-

ulations, starting from a baseline QCD sample simulated with the MC@NLO im-

plementation in SHERPA (black); the QED PDF (green and blue) and EPA (red)

contributions are successively added.

muon pairs over the combination of the mass regions shown in the previous figure

(15-1500 GeV), based on the analysis described in [2]. For the CMS analyses in this

section, based on results from [2] and [3], the differential distributions are normalised

to the cross section in the z mass region (defined to be 60-120 GeV). Analyses based on

ATLAS results show simply give the differential cross section. It is noted, from these

figures, that the shapes of these distributions are reasonably described by the QCD

baseline contributions; the ATLAS results appear to be undershot by the baseline
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by about 10%, whilst such an occurrence is not seen for the CMS results. Here it is

worth stressing that normalisation of the CMS processes would remove such an effect,

and therefore explain why it occurs only for the ATLAS analysis.

Regarding the photon channels, a number of points can be clearly discerned from

these figures. It is apparent that the photon channels can contribute sizeably to

this process, and are particularly significant in the high mll tail (≥ 500 GeV); for

CMS analyses these corrections can be as large as 10-20% whilst for ATLAS they

are slightly smaller, though still significant, and of the order of 5-10%. A cautionary

note will be struck, given that both theoretical and experimental errors, in the high

mll region are large (≥ 10%) for these results; however, the enhancement due to this

channel is still reasonably significant by this measure.

Additionally it is apparent that there is a clear difference in the size of the pho-

ton channel, in relation to the photon PDF set used; again this is an effect more

discernible in the high mll region. The photon channel for which the MRST photon

PDF set is used is visibly enhanced with respect to this channel computed using

the NNPDF set; this is particularly clear for the CMS comparisons shown in figure

9.2, although this is less clear for the higher mass region shown in 9.1 for the AT-

LAS analysis; although the MRST set is still relatively enhanced with respect to the

NNPDF set. It is possible that this may be the result of phase space cuts applied in

the ATLAS analysis [4], which do not occur for the CMS analyses; which are notion-

ally unfolded for the full phase space. It is also observed that photon channels which

utilize the NNPDF set remain in reasonably good agreement with data; however the

same channel simmulated using the MRST set often does not, and can be sizeably

enhanced with respect to the data. This however is not too surprising as the former

originates from an actual fit to LHC data, while the latter is an older set which relies

on a relatively crude parametrisation to obtain photon distributions; this parametri-

sation is summarised in chapter 8. It is also noted that the affect of photon channel

contributions appear to be dominated by the photon PDF components, which con-

tribute significantly to the process. The component based on the equivalent photon

approximation, when compared separately to the QCD baseline, shows relatively lit-
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tle enhancement over the mll mass spectrum none of which is significant with respect

to errors.

9.1.2 Jet activity

For some searches for new physics, the production of lepton pairs in association

with jets can be an important background. In this vein, the setup utilized in the

previous section can be modified to consider the effect of photon induced processes

on jet activity in lepton pair production. In this task the setup is modified slightly

and MC@NLO setup is replaced by using MENLOPS for the QCD baseline process,

otherwise all aspects of the simulation are unchanged.

In figure 9.3 the average number of jets 〈Njet〉 is depicted as a function of the invariant

mass of the lepton pair. Jets in this plot are defined by the anti-kT algorithm [24]

with R = 0.4 and p
(jet)
⊥ ≥ 20 GeV; a full analysis framework used for this simulation

is provided in appendix A. Again the theoretical errors on the simulation have, as

the dominant contribution, the factorisation and renormalisation scale errors; and

as before these are computed by the correlated variation of the factorisation and

renormalisation scales.

Generally, including photon induced processes reduces the number of jets by up to

30% for channels using the NNPDF set and up to 35% for the MRST set. Again it is

seen that this affect is dominant in the high mll tail region but, as expected, it does

not influence the number of jets around the Z-pole, for m`` ≈ MZ , since there the

QCD baseline entirely dominates the overall production cross section. The effect of

the EPA induced contibution, which appears to dominate the photon chanel, seems

large in that it reduces the average jet multiplicity by between 10-20%, and again has

the largest effect in the high mll region. It is likely that such a large EPA component

is the result of forward lepton production, and as such unobservable in colliders, a

region where the EPA cross section is large.
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Figure 9.3: Average number of jets emitted per mass bin for Drell-Yan Process

The SHERPA simulations, starting from a baseline QCD sample simulated with the

MENLOPS implementation in SHERPA (black); the QED PDF (green and blue) and

EPA (red) contributions are successively added.

9.2 W -pair production

The process of WW production at the LHC will be given as another test of the con-

tribution of photon-induced channels. The set up for this simulation incorporates a
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baseline WW production at NLO accuracy in QCD; which is computed using the

MC@NLO formalism. The virtual contribution to the qq̄ → WW process is calcu-

lated in MCFM [88], and interfaced with SHERPA for the calculation of this process.

The main baseline process is supplemented by the inclusion of the gluon gluon pro-

duction channel, which is the result of the effective gluon gluon to WW vertex, and

is included as this channel can become enhanced due to the large gluon PDF. This

is then supplemented by the addition of the photon-photon production of W pairs,

which again occurs in two channels. The first of these is the photonic contribu-

tion to the PDFs, which is incorporated into the PDF sets MRSTQED2004 [46] and

NNPDF2.3QED [47]; the photonic channel is simulated separately for both sets as

for the lepton pair production analysis. The second is the result of quasi-elastic emis-

sions of photons from protons, described by the Equivalent Photon Approximation of

Weizsaecker and Williams [48]. Both of these channels utilize the γγ → WW matrix

element, which is calculated within SHERPA at leading order.

For this analysis, the W-pairs simmulated are decayed into lepton-neutrino pairs

only; which is the choice employed by most experimental analyses of this process,

such as [1]. The simulational set up produces on-shell W pairs, which are then de-

cayed to produce the leptons used in the analysis.

9.2.1 ATLAS analysis

The analysis of WW production in this section is based on data from the ATLAS

experiment described in [1]. As for the case of lepton pair production, discussed in

the previous section, the SHERPA simulational set up, including the photon channels,

is utilized to give a comparison with these results. The experimental analysis of WW

production in ATLAS given in [1], is based on the measurements of electrons and

muons from the leptonic decay channels of the W . The analyses presented in this

section will focus on distributions over observables of one or both of the detected

leptons, from the decays of the W pairs, such as the lepton pair mass or the p⊥

of the lepton pair. The kinematic cuts on this analysis, which are summarized in

appendix A, are thus conducted on such variables; as with previous analyses these
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are implemented into a RIVET analysis [87], which is then interfaced with SHERPA to

produce a simulation of the experimental framework. As for the Drell-Yan processes

the dominant source of theoretical error is the factorisation and renormalisation scale

errors (there are additional small contributions from the Monte Carlo integration of

the processes); these are computed by the standard of variation of the factorisation

and renormalisation scales between µ/2 and 2µ, where µ is the central value of the

scale used.

Figure 9.4 shows the normalised leading lepton p⊥ distribution, based upon data

unfolded in the ATLAS analysis [1], restricted to the fiducial region as described in

appendix one. In addition to this, figure 9.5 shows data from the same fiducial region;

however this data is not unfolded. To give a meaningful comparison, the background

channels described in [1] are removed, and the SHERPA analysis is subject to global

acceptance factors for each of the decay channels, which are again described in [1].

The fit to the shape of these distributions, provided by the QCD baseline, is not

unreasonable; however, it does deviate from the data slightly. This is best illustrated

in the normalised distribution in figure 9.4 where the vague shape of the distribution

appears to agree with data, whilst the simulation disagrees with data for several

bins. It is also noted that this baseline undershoots the data by a significant margin

of around 20% for the event distributions shown in figure 9.5, an effect that would

not appear in the normalised distribution of figure 9.4. This may be the result of this

data having only crudely been compensated for detector effects; however, a similar

affect was found by [1], which used a similar QCD prediction setup to the baseline

simulation conducted for this analysis.

In contrast to the lepton pair production process presented earlier in this chapter,

the effect of the photon channels appears less discernible in figures 9.4 and 9.5. The

photon channels do not appear to deviate with any significance from the QCD baseline

process; whilst a modest effect appears in the tail of the leading lepton p⊥ spectrum

in figure 9.5, this is not significant compared to the size of the errors (which are large

in the tail region). The contrast between the photon channels, computed using the

MRST and NNPDF photon PDF sets, not appear to be discernible, based on these
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results; however, this most likely reflects that the photon induced channels are not

particularly significant for this process.
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Figure 9.4: The normalised fiducial differential WW cross section as a distribu-

tion in leading lepton p⊥ as measured by [5]. The experimental data is compared

with SHERPA simulations, starting from a baseline QCD sample simulated with the

MC@NLO implementation in SHERPA (black); the QED PDF (green and blue) and

EPA (red) contributions are successively added.
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Figure 9.5: Distribution of WW production events for leading lepton transverse

momentum and the azimuthal decorrelation of the lepton pair as measured by [5] (left

for p⊥, right for φll). The experimental data is compared with SHERPA simulations,

starting from a baseline QCD sample simulated with the MC@NLO implementation

in SHERPA (black); the QED PDF (green and blue) and EPA (red) contributions are

successively added.
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9.2.2 High-mass tail

The previous section details the set up and simulation of the WW production analysis

of [1]; in this section, in anticipation of LHC run two energies, the same analysis

framework is used for simulation 14 TeV collisions. For this analysis, the simulation

will continue to use the phase space cuts identified with the analysis in [1]; which are

again implemented via a RIVET analysis, details of which continue to be described

in appendix A. It must be stated that this section will present no comparison with

data, simply the results of the simulation setup previously described, in an attempt

to discern the effect of photon induced channels, if any, on this process. The process

therefore is identical to the previous section, namely production of WW events which

then decay leptonically.

Figure 9.6 shows the differential distributions of the lepton pair p⊥ and mass as

described by the SHERPA simulation; both include a large tail region, extended up to

1 TeV for the mass and 200 GeV for the p⊥. except that it is simulated at 14 TeV.

Again the dominant source of error is the scale variation error, which is estimated

by the correlated variation of the relevant scales in the same fashion as described for

previous cases.

Regarding the photon channels in this section, it is seen that they do not appear

to be particularly significant relative to the QCD baseline; as was the case for the 7

TeV results. For the lepton pair p⊥ and mass distributions, shown in figure 9.6, a

more extended tail region is shown compared to 7 TeV results; the photon channels

appear more significant in these tail regions, giving 5% corrections to the lepton

mass distribution ≥ 500 GeV and similar corrections to the lepton p⊥ spectrum

above ≥ 150 GeV. However it is noted that such corrections are completely dwarfed

by the error, which is scale dominated, for the tail regions. As such, no enhancement

of the photon channel of significance is observed. The contrast between the photon

channels computed using the MRST and NNPDF photon PDF sets do not appear

to be discernibly different, based on these results. This is also the case for the

same process at 7 TeV, and there as here this probably reflects that photon induced

channels are not particularly significant for this process. Even in the high lepton
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Figure 9.6: Differential cross section for WW production with respect to the trans-

verse momentum (left) and invariant mass (right) of the lepton pair, simulated at

14 TeV with an analysis framework consistent with [5]. The SHERPA simulations,

starting from a baseline QCD sample simulated with the MC@NLO implementation

in SHERPA (black); the QED PDF (green and blue) and EPA (red) contributions are

successively added.
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mass and p⊥ tails where the photon channels do appear to be large, although still

dominated by error, there is no significant difference in photon channels computed

using the different sets.

Jet Activity of WW Processes

As with the case of the lepton pair production, the issue of how the photon channels

influence the production of additional jets will be investigated for the W pair channel.

For this case the ratio of the one to zero jet rates are simply plotted over the same

distributions shown in figure 9.6; the effect of the photon induced channels on this

result can be used, in a similar fashion to the analysis shown in figure 9.3, to describe

the effect of these channels on jet activity.
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Figure 9.7: Ratio of 1-jet to 0-jet rates in WW production, shown as a distribu-

tion transverse momentum (left) and invariant mass (right) of the lepton pair and

simulated at 14 TeV with an analysis framework consistent with [5]. The SHERPA

simulations, starting from a baseline QCD sample simulated with the MC@NLO im-

plementation in SHERPA (black); the QED PDF (green and blue) and EPA (red)

contributions are successively added.
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These analyses are shown in figure 9.7, whereby this ratio is shown for the lepton

invariant mass and transverse mass distributions. Again the dominant contribution

to the error is the result of scale variation, which is computed identically to all

other cases. Given that the effect of photon channels on this process is, as has been

discussed, not significant relative to the size of the errors, it is perhaps not surprising

that the effect of these channels on the jet ratio is not particularly significant. It is

noted however, that as with lepton mass and p⊥ distributions for this analysis, some

sizable affects occur in the high mass a p⊥ tail regions; principally these are reductions

of the jet ratio of about 5-10% in the tail region for the photon PDF channels,and

of about 10% for the EPA channel. However it is noted these effects are dwarfed by

large errors.



Chapter 10

Conclusions to Part II

In part II of this thesis a study has been presented on the effect of photon induced

channels on two key processes, at the LHC, for the bounding of new physics; namely

Drell-Yan production and W pair production. This was accomplished by the use of

the Monte Carlo event generator SHERPA, for the simulation of both baseline and

photon channel contributions.

The physics behind Monte Carlo event generators, such as SHERPA , is reviewed

in chapter 7 and the various modeling techniques used in this study are discussed.

Particular attention is paid to aspects of Monte Carlo’s that are used directly in this

work, and as such discussions are given on parton showering, in addition to com-

bination of parton showering with both NLO calculations and matrix elements; the

MC@NLO and CKKW-L formalisms are briefly discussed in this context. A moti-

vation for, and discussion of, photon induced process is then presented in chapter

8. Such processes are composed of two channels; the first of these is the photon

component of a PDF, which arises naturally from considering QED corrections to

parton evolution kernels, and can in principle become quite large; the two photon

PDF sets used in this thesis, MRSTQED2004 and NNPDF2.3QED are briefly de-

scribed in this context. Additionally the quasi-elastic component of photon process,

which arises from photons emitted from protons (which then remain intact for such

events), is considered, this is modelled by the Equivalent Photon Approximation

of Weizsacker and Williams; the EPA distributions implemented within SHERPA for
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protons are explicitly given. In chapter 9 the results of these studies are presented

for the production of lepton pairs and W pair production, in both cases the simula-

tions are compared with data from ATLAS or CMS. For both of these processes the

shape of the distributions from data is reasonably well-fitted by the QCD baseline

simulation, for Drell-Yan the agreement in excellent whilst for the W pair process

it is less so. The effect of photon induced channels is found to be quite sizeable for

lepton pair production, particularly in the high mll region for this process, for photon

channels computed using the MRST photon PDF set. This enhancement of the mass

distribution leads to a disagreement with data from CMS; for the newer NNPDF set

no such disagreement is observed. The affect of the photon channels is found to be

not particularly significant for the W pair process; and even when this process was

considered at LHC run two energies the photon induced channels do not produce a

sizeable contribution, that is significant with respect to the size of the errors. For

both process, the effect of the photon channels is considered for the production of

extra jets; for lepton pair production a sizeable reduction in the average jet multiplic-

ity is found. This effect is dominated by the EPA component of the photon channel,

a result that is most likely due to enhancement of the EPA cross section in forward

region; while for WW production the effect of photon channels is once again found

to be small.

It is concluded that for predictions concerning Drell-Yan processes, particularly

discovery searches in the high lepton pair mass region, the inclusion of photon induced

channels is recommended for high precision results; particularly the photon PDF

component. It is further concluded that the more appropriate photon PDF set to

use is the NNPDF set, which is the more recent and found to be in better agreement

with data. For searches that are sensitive to extra jet emissions in this process, the

inclusion of the EPA channel should also be included. For W pair production the

photon induced channels are small, and therefore can for the most part be overlooked.



Appendix A

Details of the Experimental

Analyses

The results presented in chapter 9 of this thesis compare simulations against certain

experimental analyses. These analyses are subject to certain kinematic cuts and

definitions of leptons and jets that were defined for the experimental results; to give

a meaningful comparison to such results these constraints must be reproduced for

the simulations. This is accomplished, for this thesis by the general Monte Carlo

analysis software RIVET [87]. These constraints, as implemented within RIVET will

be presented in this appendix for all analyses used in this thesis.

At this point it will be useful to introduce a definition. Throughout this appendix

there will be references to radius cones, in both the context of lepton isolation criteria

and jet constraints; these are defined, in this context, as the combined radius of

pseudorapidity, η and azimuthal angle φ expressed below.

∆R =
√

(∆η)2 + (∆φ)2 (A.0.1)

A.1 ATLAS WW Analysis [1]

The results obtained by the ATLAS experiment for this section will detail the ex-

perimental cuts made for the ATLAS experiment analysis for W pair production

events; these events are constrained to include only leptonic decay processes for the
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W bosons. This analysis is described in [1], and the analysis details necessary for the

simulation and implemented in a RIVET analysis are described below.

The leptonic decay products of the muons are required to obey constraints on

transverse momenta and pseudorapidity, which are summarised in table A.1.

Electron pseudorapidity |η| < 1.37 or 1.52 < |η| < 2.47

Muon pseudorapidity |η| < 2.4

Lepton p⊥ threshold p⊥ > 20 GeV

Leading lepton p⊥ threshold p⊥ > 30 GeV

Table A.1: A summary of pseudorapidity and p⊥ cuts on leptons as described in

ATLAS analysis [1]

The Leptons are also required to obey isolation criteria, for this analysis cuts

are placed on the sum of all transverse energy and momentum within the cone of

∆R < 0.3 around proto-leptons, the thresholds are given in the table below.

Lepton isolation criteria for transverse energy
∑

∆R<0.3

E⊥ < 0.14Elepton
⊥

Electron isolation criteria for transverse momentum
∑

∆R<0.3

p⊥ < 0.15pelectron
⊥

Muon isolation criteria for transverse momentum
∑

∆R<0.3

p⊥ < 0.13pmuon
⊥

Table A.2: Isolation criteria on leptons as described in ATLAS analysis [1]. All

isolation criteria are taken within a cone of radius ∆R < 0.3

The jets in this analysis are defined with the anti-kT algorithm [24] with radius

parameter R = 0.4. These anti-kT jets are, like the leptons, subject to kinematic

cuts which are described in the table below, and which also gives the jet veto criteria.

The jet veto criteria simply states the conditions a jet must meet in order to veto

an event, and in this context is introduced into the experimental analysis to reduce

backgrounds.



148 A.1. ATLAS WW Analysis [1]

Jets Anti-kT , R = 0.4, p⊥ > 20 GeV, |η| < 4.9

Jet Veto p⊥ > 25GeV and |η| < 4.5

Table A.3: Summary of cuts on jet pseudorapidity and transverse momentum in

addition to the jet veto requirements from ATLAS analysis [1]

The relative missing energy, p⊥, rel is defined as

pmiss
⊥ rel =

 pmiss
⊥ sin(∆φ) if ∆φ < π

2

pmiss
⊥ if ∆φ > π

2

 (A.1.2)

where ∆φ is the angle between pmiss
⊥ and the nearest lepton or jet and pmiss

⊥ is the sum

of all missing transverse momenta.

This definition allows the channel specific cuts to be defined in the table below

The analysis also defines cuts on the specific leptonic decays channels possible for

the W pair, these are simply all the combined individual W → eν̄e and W → µν̄µ

decay channels for W pairs; these cuts are defined in the table below.

ee channel µµ channel eµ channel

mll mll > 15 GeV mll > 15 GeV mll > 10 GeV

|mll −mz| |mll −mz| > 15 GeV |mll −mz| > 15 GeV |mll −mz| > 0 GeV

pmiss
⊥, rel p⊥,rel > 45 GeV p⊥,rel > 45 GeV p⊥,rel > 25 GeV

Table A.4: Summary of channel specific cuts on the mass of leptons pairs and missing

energy from ATLAS analysis [1]. The notation ’eµ channel’ defines an event in which

the lepton pair has undergone one W → eν̄e and oneW → µν̄µ decay

In addition to constraints on various leptonic and jet kinematics, the analysis also

requires that the certain leptonic and jet components are clearly separated by certain

radius values which if not met cause one or both components to be discarded from

the analysis, these are summarised below to be:

• if electrons and a jet are separated by ∆R < 0.3 the jet is discarded
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• if an electrons and muon are separated by ∆R > 0.1 then the electron is

discarded

• For electrons within ∆R > 0.1 of each other, the lowest p⊥ electron is discarded

A.2 CMS Drell-Yan Analysis [2, 3]

The results presented in this section give a summary of the analysis used to simulate

against Drell-Yan results from CMS using data from 2011 in [2] and 2012 [3], which

use a common analysis framework. The results used from these analyses are recon-

structed over the entire phase space, and as a result no kinematic cuts are applied in

this analysis

The Leptons are also required to obey isolation criteria, for this analysis cuts are

placed on the sum of all transverse momenta, with the cone of ∆R < 0.3 around the

proto-lepton, the thresholds are given in the table below.

Electron isolation criteria for transverse momentum
∑

∆R<0.3

p⊥ < 0.1pelectron
⊥

Muon isolation criteria for transverse momentum
∑

∆R<0.3

p⊥ < 0.15pmuon
⊥

Table A.5: Isolation criteria on leptons from CMS analyses [2] and [3]. All isolation

criteria are taken within a cone of radius ∆R < 0.3.

A.3 Drell-Yan ATLAS Analysis [4]

The results presented in this section give a summary of the analysis used to simulate

against Drell-Yan results from ATLAS as described in [4], unlike the CMS Drell-Yan

analyses, this analysis is constrained to measure only electrons. This analysis can, for

the purposes of simulating a Monte Carlo comparison, be described by the following

set of constraints on lepton kinematics, the electrons are then required to pass a set

of isolation criteria; the kinematic constraints are given in the table below.
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Electron pseudorapidity |η| < 2.47 or 1.52 < |η| < 2.47

Electron p⊥ threshold p⊥ > 25 GeV

Table A.6: Summary of pseudorapidity and p⊥ cuts on electrons as described by

ATLAS analysis [4]

The electrons are also required to obey isolation criteria, for this analysis cuts are

placed on the sum of all transverse momenta, with the cone of ∆R < 0.2 around the

proto-electron, ∑
∆R<0.2

p⊥ < 7 GeV (A.3.3)

The measured data is then extrapolated to the region |η| ≤ 2.5 and corrected for

isolation effects. QED final state radiation off the electrons is treated in two ways: 1)

“dressed” leptons, defined through recombination with all photons within ∆R = 0.1

and 2) “Born” leptons, defined through correcting the data for all final state radiation

off the leptons, as extracted from Monte-Carlo modelling. In this thesis, the presented

calculation is compared to the data using the “Born” lepton definition.

A.4 Lepton Pair Jet Analysis

The jet activity plot, shown in figure 9.3 in chapter 9, also contains analysis specific

information which requires a description. While this is not an experimental analy-

sis and there is no data compared against, there are choices on jet definitions and

isolation which will now be summarised.

• Jets in this analysis are defined to be anti-kT jets using a radius parameter of

the R = 0.4

• Jets are required to have p⊥ > 20 GeV

• The jets are required to be separated from the lepton pair by a radius parameter

of ∆R > 0.3.
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The first requirement is required to stop very large jet multiplicities, and is taken from

ATLAS jet requirements that are for example defined in [1]. The second requirement

is necessary to prevent jets that would, in experimental analysis, become absorbed

into lepton momenta by the isolation criteria; the choice of the radius of ∆R > 0.3

reflects the isolation requirement of the CMS Drell-Yan analysis.



Appendix B

FKS Expressions

This appendix simply shows expressions relevant to the FKS subtraction scheme

which are not directly included in the text. Principally these are; the integrated soft

terms when massive partons are present in the process and the angular components

of the collinear limit of the real term.

B.1 Massive Partons in the Integrated Soft Term

It is recalled that the integrated soft term is given by

dσ(I,S) =
1

2

αs
2π

∑
n6=m

(
Idiv
nm + Ireg

nm

)
dσ(B)

nm (B.1.1)

The result for Inm for purely massless partons in the process is quoted in the section

3.1.1, however when massive partons exist in the process, despite their exclusion from

being in FKS pairs, they do enter FKS subtraction terms through the soft subtraction

term, which includes a double sum over all colour objects. The following expressions

involving massive partons can all be found in [36]. For massive n, with massless m

Idiv
nm =

(4π)ε

Γ(1− ε)

(
µ2

Q2

)ε [
1

2ε2
+

1

ε

(
log

2kn.km
Q2

− 1

2
log

4m2
nE

2
m

ξ2
cutsQ

2

)]
(B.1.2)
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Ireg
nm = log ξcut

(
log

ξcuts

Q2
+ 2 log

kn.km
mnEm

)
− π2

12
+

1

4
log2 s

Q2

− 1

4
log2 1 + βn

1− βn
+

1

2
log2 kn.km

(1− βn)EnEm
+ log

s

Q2
log

kn.km
mnEm

− Li2

(
1− (1 + βn)EnEm

kn.km

)
+ Li2

(
1− kn.km

(1− βn)EnEm

)
For massive n and m

Idiv
nm =

(4π)ε

Γ(1− ε)

(
µ2

Q2

)ε(
− 1

2ε

1

vnm
log

1 + vnm
1− vnm

)
(B.1.3)

Ireg
nm =

1

2vnm
log

1 + vnm
1− vnm

log
ξ2

cuts

Q2
+

(1 + vnm)(kn.km)2

2m2
n

(
J (A)(αnmEn.αnmEnβn)

−J (A)(Em, Emβm)
)

J (A)(x, y) =
1

2λν

[
log2 x− y

x+ y
+ 4Li2

(
1− x+ y

µ

)
+ 4Li2

(
1− x− y

µ

)]
(B.1.4)

vnm =

√
1−

(
mnmm

knkm

)2

(B.1.5)

αnm =
1 + µnm
m2
n

kn.km (B.1.6)

λ = αnmEn − Em (B.1.7)

µ =
αnmm

2
n −m2

m

2λ
(B.1.8)

The self eikonal piece, Inn which only exists in the massive case is given by

Idiv
nn =

(4π)ε

Γ(1− ε)

(
−1

ε

)
(B.1.9)

Ireg
nn = log

ξ2
cuts

Q2
− 1

βn
log

1 + βn
1− βn

(B.1.10)

B.2 The Reduced Matrix element from Collinear

Limits

In FKS subtraction, the collinear limit is used for the collinear subtraction term. For

a collinear limit of 2 particles i,j with momenta ki, kj
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lim
ki||kj
M(n+1)({k}n+1) =

4παs
ki · kj

Pajaij(z)M(n)(r
aij
[i] , {k̂}n)+

4παs
ki · kj

Qajaij(z)M̃(n)(r
aij
[i] , {k̂}n) (B.2.11)

Where

M̃(r
aij
[i] , {k̂}n) =

1

2s

1

ω(a1)ω(a2)
Re

[
〈kikj〉
[kikj]

∑
c,s

A+

(
r
aij
[i]

)
A∗−
(
r
aij
[i]

)]
(B.2.12)

where A+/−
(
r
aij
[i]

)
is understood to mean the helicity of parton aij is + or -. Where

〈kikj〉 and [kikj] are spinor products, with definitions of these spinor products (for

Dirac spinors) given in [89] it is fairly trivial to obtain the collinear limit of this ratio.
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