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Abstract
The use of Monte Carlo event generators for the simulation of LHC collider
experiments, has in recent years driven a demand for greater accuracy of predictions
in such generators. This thesis will be concerned with the addition of certain
perturbative corrections in the event generator SHERPA.

In this vein a framework for the automatic calculation of the real correction terms is
presented, based on the the subtraction mechanism of of Frixione, Kunszt and
Signer. This resulting framework is implemented in the matrix element generator
AMEGIC++, which will then allow the calculation of the real components of an NLO
QCD for any process; this can be supplemented with virtual corrections to provide
a full NLO QCD prediction. This implementation is then rigorously tested and
found to be consistent with known NLO results.

This subtraction framework is then utilized to perform a series of tests on the
relative efficiency of the FKS and Catani Seymour subtraction methods; these tests
are conducted over multiple processes and the affect of the multiplicity of the state
is investigated.

In addition the contribution of photon induced processes to lepton and W boson
production is discussed, taking into account contributions from the QED part of
parton distribution functions and from equivalent photons in the
Weizsaecker—Williams approximation. Typically these processes contribute on the
per cent level compared to standard quark and gluon-induced processes; however,
when applying various cuts this picture may change and the photon induced

processes may become significant.
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Introduction

The threshold of high energy physics is currently being pushed back by experiments at
the LHC at CERN. This has enabled discoveries at the high energy frontier, including
what appears to be the long elusive Higgs boson. Such discoveries are made possible
by a wealth of theoretical work that enables the accurate modelling of desired signals
and backgrounds.

The modelling of such effects for collider purposes is incorporated into programs
known collectively as Monte Carlo event generators. These provide the link between
experiments such as the LHC and the theoretical community, with their ability to
provide simulations of collider events. Such tools are used extensively for the analysis
and interpretation of collider data, in addition to the determination of experimental
signatures of new theoretical models. This thesis is focused on development for and

use of the event generator SHERPA.

The fundamental task of a Monte Carlo event generator is to provide predictions
for events seen in colliders, as such it must predict what is measured experimentally.
The fundamental experimental quantity to compute in a collider environment is a
cross section, o, which can be measured, for a given process, as the number of events
of over the integrated luminosity (total number of particles per unit area); this is
expressed as 0 = % To undertake this task a Monte Carlo must utilize a mixture of
fundamental physical theory and phenomenological models, the stages of this mod-
elling can be seen in the figure given below. The first of these is to employ cross
section calculations of fundamental, free particles. These are based on the matrix

element of the desired process, which is computed using quantum field theory. The



cross section is then calculated, in essence, by performing a phase space integral of the
squared matrix element over all the final state momenta of the process with the con-
straint of momentum conservation between initial and final states; this is expressed

below

Oap—sx (P1,D2) = 2E1E2 H/ 27)45 (p1 + P2 — Zk IM(ab— X)|?

In the case of hadron colliders such as the LHC, the initial states to be described in
the cross section are bound states, such as protons, of more fundamental particles;
this complicates the computation of cross sections. However for the case of the high-
energy collisions that are of interest here, hadronic bound states can be interpreted
as distributions of free particles, each with a fraction of the total hadronic momenta.
Such distributions can be computed from experimental results and are, rather tauto-
logically, known as parton distribution functions. The use of PDF's in Monte Carlos’
is represented in the figure by blue partons emanating from the incoming hadrons
(large green blobs in the figure). The computation of the hadronic cross section pro-
ceeds by employing the cross sections of the constituent particles convolved with their

respective distribution functions, this is naturally expressed as

1 1
OHadronic = Z/dm /dn2fc{{1(n1)fzf{2(772)a'ab—>X(7]1P17772P2)
ab 0

where fH%(n;) represent the PDFs and #; is the partonic fractions. The task of a
Monte Carlo is not yet complete however, as the final states measured by colliders
provide a picture that is more complicated than can adequately be computed from
the 'free unbound’ cross sections so far described. There are two observations that
are worth considering from such events; in the first instance such events have large
multiplicities of particles, so much so that it is not feasible to calculate the precise
matrix element, and additionally that these particles are often bound hadronic states.
Such events are described in the Monte Carlo by utilizing the simple cross section set
up to describe a hard process, essentially one which involves significant momentum
transfers, represented in the figure by the intersection of partonic lines in a large

red dot. The partons involved in this process are then subject to a parton shower.



A parton shower simply evolves such a parton from the hard process to a lower
energy scale at which it is observed; as this evolution occurs the parton successively
branches into multiple partons and as such is similar to the the emission of x-rays
by high energy electrons as they decelerate. Diagrammatically this can be seen from
the successive branching of parton lines moving away outward from the hard process.
In using this technique the high multiplicity of final state events is described. The
problem of hadronisation of final state particles is the least well described aspect of
the collider event, and entirely relies on phenomenological models fitted from data. In
a Monte Carlo these models would kick in below a certain hadronisation scale, below
which the parton shower would cease and partons would transform into hadrons
based on the parameters in the hadronisation model. This stage can again be seen
diagrammatically through the transformation, at the edges of the figure, of partonic
lines into various green 'blobs’ which represent the hadrons.

Hadronic collisions can also contain an additional component that is the result of
the secondary interactions of the hadrons, in addition to the hard process. This is
known as the underlying event of the interaction, and cannot be modelled directly
from basic theory. As a result, similarly to hadronisation, this is modelled with vari-
ous phenomenologically inspired models which must be fitted to data. The underlying
event is diagrammatically represented in the figure, by the purple ’blob’ and resulting

purple partonic lines.



Diagrammatic representation of collider process as modelled in a monte carlo event
generator (www.sherpa-mc.de). The stages of monte carlo modelling can be seen in
this diagram; the large red centre represents the hard process, which then decays and

showers into multiple partons, finally these hadronise in the 'green’ stage



Part one of thesis will then be concerned with the calculation of next to leading
order corrections in QCD. Such calculations are principally motivated by the reduc-
tion of errors associated with perturbative scale choices, such as the factorization and
renormalisation scales which result from performing such calculations. A drawback
for such corrections is the often time consuming nature of such calculations. The au-
tomatic calculation of such corrections is therefore well motivated; in this vein general
algorithms for the calculation of the real component of NLO corrections, such as the
subtraction mechanism of Frixione, Kunszt and Signer, are of interest. Additionally,
while such mechanisms undoubtedly improve the efficiency of such calculations , the
phase space integration of corrections calculated from such mechanisms can be com-
putationally costly in particular for higher multiplicity processes. This is to some
extent unavoidable however, given that there is not a prescribed method for such cal-
culations. Knowledge of the relative efficiency of various NLO calculational schemes

can be of use in minimising this cost.

In this context this thesis will provide an overview of perturbative QCD, and will
emphasise material relevant to the discussion of next to leading order corrections
and Monte Carlo event generators. It will then provide a detailed overview of next to
leading order calculations, including the motivation of such calculations, and describe
how the real part of such calculations can be calculated using subtraction schemes.
A detailed explanation of the subtraction mechanism of Frixione Kunszt and Signer
is then undertaken, as a prelude to the description, in the following chapter, of the
implementation of this method into the AMEGIC++ matrix element generator for
NLO calculations of generic processes. Tests of this implementation are presented,
including consistency under various parameter variations as well as comparisons with
calculations based on different mechanisms. Finally this implementation is used to
compare the relative efficiency of the FKS subtraction scheme with the method of
Catani and Seymour for a number of processes. The relative efficiency of the FKS

method is found to be larger in cases of larger partonic multiplicity.

Part two of this thesis will consider the applications of photon-photon induced



processes to observables at the LHC. The motivation for such considerations is the
need for increasing accuracy on observables at the LHC, which is necessary to set
increasingly stringent bounds on new physics beyond the Standard Model. On this
basis it is not unreasonable that high level accuracy is a important for a number of
processes; it is argued that examples of such processes include the high mass Drell
Yan tail and the leptonic decay channels of W pair production. The calculation
of photon-photon induced processes, which are formally part of the next to next to
leading order electro-weak correction (the full electro-weak corrections are not consid-
ered), is undertaken based on the observation that a more modern set of PDFs which
correct for QED effects has recently become available, namely the NNPDF2.3QED
set allowing a comparison to be made with the standard MRST2004QED set.
These QED corrected PDFs calculate the photonic component to parton distri-
bution functions allowing photon-photon induced processes to be calculated in the
same fashion as partonic ones. Additionally the production of particles associated
with strong electromagnetic fields of the colliding protons, which can be modelled
by the equivalent photon approximation (EPA) or Weizsaecker Williams method, is
considered. It is clear that this component, which is often overlooked, provides a con-
tribution to photon-photon induced processes. The work considering such processes
in this thesis is thus summarized; the background simulation set up in SHERPA for
the photon-photon induced processes, based on both the QED PDFs and the EPA
contributions is described in addition to the partonic baselines. The use of this set
up for the case of Drell-Yan and W pair production is presented. For both processes
the simulation set up is directly compared to ATLAS and CMS data, with details of

analysis cuts provided. The contribution of the photon channels is then discussed.



Part 1

NLO Calculations in SHERPA



Introduction to Part 1

The calculation of fixed order cross sections in perturbative QCD is central to efforts
to model collider events, particularly in the context of Monte Carlo Event genera-
tors such as SHERPA. Improvements to these calculations, in terms of accuracy and
reduction of errors, is therefore of primary importance for increasing the predictive
power of collider models. Next to leading order corrections provide such an improve-
ment, compared with leading order cross sections; in the first instance they provide
a formally higher perturbative accuracy to the cross section, this improvement in
perturbative accuracy also has the effect of a reduction in certain errors associated
with scales.

Formally speaking the use of fixed order calculations introduces a dependence upon
artificial scales, and as such the higher the perturbative order of the calculation the
lower such a dependence is. The usual drawback of calculating such corrections is
that they are often time consuming to perform and include singularities, which while
cancel, can often make such computations difficult to perform, especially when using
numerical methods. As such general algorithms for the calculation of the real compo-
nent of the NLO correction, such as the subtraction mechanism of Frixione, Kunszt
and Signer are of interest. In addition the existence of general algorithms allows the
possibility of tools to calculate such corrections automatically. However, while the use
of such algorithms undoubtedly improves efficiency for NLO calculations, they also
include components that can become computationally expensive to calculate. While
this is to some extent unavoidable, given that there is not a prescribed method for
such calculations; knowledge of the relative efficiency of various NLO calculational

schemes can be of use in minimising this cost.



The first part of this thesis is structured thus: An introduction is presented to
perturbative QCD, in which the theoretical background relevant for NLO calcula-
tions is described and in addition includes discussions relevant to collider physics
and Monte Carlos. A review of next to leading order calculations is then shown,
where the primary motivations for such corrections are discussed in detail and calcu-
lation details of such corrections presented. The concept of a subtraction mechanism
is discussed, which allows the numerical computation of the real part; the Catani-
Seymour subtraction formalism is described as an example of such a computation.
The subtraction scheme of Frixione, Kunszt and Signer is then reviewed in detail,
with formulae necessary for computations presented.

A discussion is then presented detailing the implementation of the FKS subtraction
mechanism in the AMEGIC++ matrix element generator, a component of SHERPA, al-
lowing the automatic computation of the real component of the NLO correction to
be made. The technical details necessary for this implementation, such as kinematic
mappings are explicitly shown. The implementation is then subjected to testing to
determine its validity; including its performance under numerical cutoffs, its consis-
tency with other calculational methods and its variation under internal parameters.
The FKS implementation is used in conjunction with an implementation of the
Catani-Seymour formalism, also in AMEGIC++, to investigate the relative efficiency
of both methods for conducting NLO calculations. As such results are presented for
both methods concerning the computational speed of the subtracted real component
of the calculations, which, time-wise can often be the bottleneck for NLO calcula-
tions. This is conducted for the processes ete™ — jj, ete™ — jjj, efe™ — jjjj
and j7 — eTe™, for both methods. Both are varied over a large range of internal
parameters which can affect the result. The results are then discussed, with reference
to process dependent factors. Finally the findings of this work are summarised and

relevant conclusions drawn.



Chapter 1

The Foundations of QCD

Quantum Chromodynamics, the theory of strong interactions, is the foundation of
most of the material presented in this work. It is the main theoretical backdrop to
any attempts to describe the physics of high energy hadronic colliders, especially in
the LHC era. There is a vast literature associated with the theory, most of which is

beyond the bounds of this work.

1.1 QCD as a Gauge Theory

At its foundations, QCD is a non-Abelian quantum field theory, defined in the first
instance by its classical Lagrangian density [7]

1
LClassical = _ZF!W’ aF;ilV + Z qu (Zm - mf)zj qu (11>

flavours

where the index f denotes the flavours of quark, with m; denoting their masses (for
most purposes in this work my can be safely set to zero).

The fields {g;}, which describe the quarks are represented by spinors, a spin %
representation of the Lorentz group and can be shown to have mass-dimensionality
of [¢;] = 2 [8]; these are by construction anti-commuting objects which ensure that
quarks are fermionic. The indices, ¢ on the quark fields, indicate the colour states of

the quarks; as these fields lie in the fundamental (or conjugate fundamental for {g;})
)
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representation of the SU(3) colour group, they can take the values ¢ € {r,g,b}. The
fields {\A7} lie in the vector representation of the Lorentz group, and are thus spin
1 vector bosons or gauge bosons and can be shown to have mass-dimensionality of
[AZ] = 1; in QCD these are known as gluons. The gluonic fields also have a colour
index, a, which can take the values a = {0, ....., 8}, these fields thus lie in the adjoint
representation of the SU(3) colour group. The field strength tensor and the covariant

derivative given in the Lagrangian are defined in terms of these fields as follows:
i, = 0,A) — 0,A; — gsfabcAZA,f (1.2)

lDij = 07" 0y — igs" AL (1.3)

The factor v* represents the set of gamma matrices, which act on spinor indices; they

are defined as obeying the Clifford algebra {+* ~"} = 2¢*”. The factor g, given in

these expressions is the coupling constant of QCD, and will play a larger role later;

the terms t® represent the generators of SU(3) in its fundamental representation, and

f% are the structure constants of SU(3), defined from the commutation relations of
these generators

[te, %] = i fobete (1.4)

The Lagrangian is defined to be invariant under a local gauge transformation of

the colour group SU(3). Under a local gauge transformation, the quark and gluon

fields are defined to transform as

gi(x) = U (z)q;(x) (1.5)
Gi(z) = g(2)Uy;' (x) (1.6)
19.4%(2) = U(2)t" A% (2)U () + gi (U (2)) U~ (x) (1.7)

a

where U(x) = @ These definitions then lead to the following gauge transfor-

mations for D, and F}j,

D,.gi — Usj(2)Dyug; (1.8)

a a a a —1
tFy, — U(x)t"F, U (v) (1.9)
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From the definitions given in 1.5 to 1.9 it is then clear that the Lagrangian is invariant
under the local SU(3) gauge transformations.

The notion of gauge invariance is sufficient to define the classical Lagrangian of QCD,
however for a correct quantisation of this theory the gauge freedom must be con-
strained.

This is exemplified by attempts to define a propagator for the gluon field, in
the gauge invariant theory. The propagator, which can be calculated as the Green'’s
function of the classical equation of motion for the free’ gluonic field (ie without any
interaction terms with quarks), is defined as the vaccum expectation value of a pair

of fields; the gluonic propagator is therefore defined by
A,ul/(x - y) - 5ab<0| [AZ(‘I)AZ(y)] |0> (110>

where A, (z —y) is the propagator. The (’free’) gluonic field, in the gauge invaraint

theory, obeys the equation of motion
(9" 0* — 0"0") Al(z) =0 (1.11)

Hence the gluonic propagator defined in the gauge invariant theory would then have
to obey

(g"0% — 0"0") Ayp(z,y) = i6,,0(x — y) (1.12)
Given that the operators present in 1.12 are not invertible, computing the Greens
function is not possible; hence the propagator cannot be computed in the gauge in-
varaint theory. The quantisation procedure is therefore carried out after constraining
the gauge freedom of the gluon field.

Generally this gauge fixing can take the form of some constraint on the gauge
boson fields, this constraint can be expressed in terms of a Lagrange multiplier
added to the classical Lagrangian, and is generally referred to as a gauge fixing term
Lgauge fixing = |G (AZ)P The standard choice for gauge fixing gives the contribution

1 ar 2
Egauge fixing — _% (aMAl) (113)

which corresponds to the constraint 9" A} = 0 (Lorentz gauge) and where the param-

eter £ sets a choice of gauge, common choices are £ = 1 (Feynman gauge) or £ = 0
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(Landau gauge).

The addition of this gauge fixing term to the Lagrangian of a non-Abelian gauge the-
ory entails the introduction of the Faddeev-Popov, or ghost, terms to the Lagrangian.
This constraint, when applied to the functional integral of the quantum field theory
gives rise to additional contributions to the Lagrangian. Following the method of
Faddeev and Popov, these contributions can be written in terms of additional fields,

known as ghost fields and give the following addition to the Lagrangian [7].
£ghost — auﬁaauna o gsfabcauﬁanbAH c (114)

The fields 1, which are anti-commuting scalars, are not interpreted as representing
physical particles; however in perturbative calculations they do give rise to contribu-
tions via internal lines as virtual particles. The addition of these terms in perturbative
calculations cancels unphysical polarisations of gauge bosons, which otherwise appear
and act to ensure the unitarity of the theory. The full Lagrangian for QCD, a com-
bination of the classical part and additional terms due to the gauge fixing, can now

be used to derive the Feynman rules for QCD [9].

1.2 Renormalisation of QCD

Renormalisation is a concept central to modern understanding of Quantum Field The-
ory and is a much richer subject than will be presented in this briefest of overviews,
more thorough reviews can be found in [7] and [8]. Renormalisation has two principle
consequences that are relevant for these purposes; the first is that it enables diver-
gences in the virtual corrections associated with arbitrarily high momentum scales to
be absorbed, meaning that perturbation theory remains a valid tool. Secondly it has
the consequence of causing parameters in the theory to gain a scale dependence. The
technicalities will not be discussed in detail, nor will subjects such as what consti-
tutes a renormalisable QFT; it is sufficient for the purposes of this work to state the
QCD is a renormalisable theory and to briefly discuss the procedure for QCD and its
consequences.

The motivating factor for renormalisation is, as has been alluded to, the appearance



1.2. Renormalisation of QCD 9

of apparent singularities in quantum corrections of perturbation theory, which in-
volve integrals over unconstrained momenta known as loop contributions; clearly this
is a significant problem for the use of perturbation theory in QCD (and other QFTSs).

These contributions are represented in terms of Feynman diagrams that contain com-

Figure 1.1: The one loop Feynman diagrams contributing to the self energy of quarks
and gluons. From top right: the fermion loop contribution to gluon self energy, the
gluon loop contribution to quark self energy, the ghost loop contribution to the gluon

self energy and the gluon loop contribution to the gluon self energy.

plete loops of particles, typical one-loop Feynman diagrams are given in figure 1.1.
In a renormalised theory bare parameters and fields present in the Lagrangian in 1.1,
do not, in higher order perturbation theory, correspond to the physically measurable
or renormalised quantities; perturbative calculations should then be performed with
the renormalised, not bare quantities [7]. The reparamaterization of the theory in
terms of renormalised quantities is mathematically carried out by a simple rescaling.
For the parameters that are of interest, the quark and gluon fields and the strong

coupling, this rescaling is given by:

w = Z/%q (1.15)
Al = g2 Ame (1.16)
gg'f = ngggr (117)

if the rescaling parameters, Z; are rewritten in the form Z; = 1 4 §;, the bare La-
grangian can be split up in terms of a renormalised Lagrangian (the same as the bare

L but in terms of the renormalised quantities) and Lagrangian of counter terms:

Lo,qcp = Lrgep + Lent,qep (1.18)
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The motivation for this re-writing is simply that the perturbative series in terms of
the renormalised quantities, which will be of the same form as for the bare ones, now
has counter terms which will be used to deal with singularities. This counter term
Lagrangian can easily be obtained from performing the rescalings on parameters in

1.1, for example the quark gluon coupling term in Len qep is given by
1 =~ aqa
Lent,qop = (5q + 50 + 595) Jsr V" AL (1.19)

where contributions of the order O(d;0,) have been ignored (the justification is that
they contribute only at NNLO for the renormalisation of the strong coupling, which
is not relevant for discussion of order NLO). The counter term Lagrangian now yields
contributions to the perturbative calculations and, as has been stated, the idea is to
use the counter terms to remove singularities from loop integrals.

To parametrise the singularities present, some form of regularisation is necessary
for their representation; the conventional way to represent singularities in higher
order QCD calculations is dimensional regularisation. In dimensional regularisation
momentum integrals which would give divergent contributions are computed in 4 — 2¢
dimensions, as opposed to four. The term ¢, is then taken to tend to zero, singularities

are then expressed as poles in €. The momentum integrals are then re-written
d*k — p*d* >k (1.20)

where the scale y is introduced to maintain the dimensionality of the couplings and
fields; without this scale, couplings such as g; become dimensionful to the O(e).
The cancellation of singularities may also include the cancellation of finite pieces in
addition to the poles in €; a consistent choice of these finite terms is known as a
renormalisation scheme. The simplest example of a renormalisation scheme is min-
imal subtraction, usually written as MS, which as its name suggests has no finite
contributions, the cancellation of singularities then simply amounts to the cancel-
lation of poles in €. To finite order in perturbation theory there exists a scheme
dependence on results. The scheme used in this thesis is that of modified minimal

subtraction MS, in this scheme poles are represented as

1 1
- =—+logdr — g (1.21)
€

€
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where 7 is the Euler gamma constant. The MS pole can also be written in the form

%— (4m)° 1 (1.22)

TT(1-¢€e
which is often a convenient factor to subtract. It should be noted that dimensional
regularisation also parametrises infra-red singularities, which will be the subject of

much of this thesis.

The use of renormalisation conditions, which fix the renormalised parameters in
the theory at a certain energy scale pg (the renormalisation scale), then enables the
counter terms to be set such that the cancellation of UV divergences takes place.
The consequence of this is the introduction into the theory of scale dependence of
parameters. This dependence upon scale is expressed in the form of renormalisation
group equations which describe the running of parameters in the theory with scale;

for the strong coupling this is described by

oo
pra— = Blas(ur 1.23
T = (o (nn) (123
where the strong coupling is written in terms of a, = %, and the beta function is
expressed as:
_ 1IN, — 2Ny

2
Bla) = =3+ O(ad) Bo = (1.24)

6

where for QCD N. = 3. To O(«as), which is of interest as the main focus of this work
are tools for NLO QCD, this yields the running of as, from [9] to be

s (M)
1+ By log ’;—’;‘

as(/’LR) = (125>

2

The results of this running on «y have two clear, but profound, consequences; at
high scales it can be seen that o, becomes small, a phenomena known as asymptotic
freedom. It is assumed throughout this work that it is appropriate to treat QCD in
perturbation theory, and it is clear that at sufficiently high scales this is an appropri-

ate assumption. Conversely however at lower energy scales it is seen that oy becomes
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larger, lower than around 500 MeV perturbation theory for ay is no longer appropri-
ate as higher order terms become too large to ignore [9]. This low energy growth of
as is consistent with the phenomena of colour confinement, whereby coloured objects

such as quarks are only found in bound colourless objects such as hadrons.

Renormalisation has the consequence of the introduction into the theory of a
scale ug; the scale at which «y is fixed. The use of such a scale is to some extent
an artifact of the calculation, physical observables should not have a dependence on
such a scale which is introduced by hand. Reassuringly an all orders calculation
in perturbative QCD does indeed remove any dependence upon pg [9]; however in
practical calculations the perturbative series is almost always truncated. A truncated
perturbative calculation does retain a residual dependence upon pg, the reason for
this can be motivated from the form of the beta function; the variation of ag(u)
with the scale  is at least O(a?), hence any scale variation can only be removed by
additional contributions at higher orders. This can be explicitly seen by considering
the expansion of oy in terms of a new scale.

az(pr)
™

2
(1) = () + =51 By log 5—R + O(03(ur)) (1.26)

The expansion of o, demonstrates that the variation due to the scale is an order of
a? and higher; hence the inclusion of terms of at least O(a”*!) are required to re-
move the scale variation of terms of O(a). The truncation of the series thus causes
a residual dependence on the value of ug, this dependence is notably reduced the
higher the fixed order of the calculation, which provides additional motivation for

performing higher order corrections.

The truncation of the perturbative series also leads to a dependence upon the
renormalisation scheme of the calculation, and usually appears in the context of
renormalised parameters such as «; in a similar fashion to the scale dependence.
Again this is simply the result of the truncation of the perturbative series, any all

orders calculation is free of such a dependence. As with scale dependence this can be
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reduced with the inclusion of higher orders, although generally it is not as significant

a source of error as the scale dependence.

1.3 Unresolved Limits of QCD Matrix Elements

Before proceeding with further discussion, it will prove useful to describe some use-
ful results associated with QCD matrix elements (specifically leading order matrix
elements) in the limit that one of the legs/particles somehow becomes kinematically
unresolved from the other legs/particles in the process. The kinematics allow for this
to occur in two distinct ways; the limit when a particle tends to zero energy and a
limit where the angle separating two particles momenta tends to zero. The note that
will be made here is that, for the discussion in this thesis, only one particle unresolved
limits will prove useful; and the discussion in this section is strictly limited to such

cases.

1.3.1 Notation

Before giving explicit expressions, it will prove useful to define some convenient no-
tation, which takes inspiration from the conventions of [10]. First of all it is useful to
define the shorthand r,, = a4, ....a,, k1, ..., k, ,where a; is the flavour, and k; momenta
of particle 7, for expressions where the particle and flavour content of matrix elements

will change. Some constants from colour algebra are then expressed as

N2 -1 3
— = ¢ = — 1.2
C(q) =Cr o V(q) 5CF (1.27)
N2 -1 1
Clg) = Ca=Ne 2(9) = —55— Tr=3 (1.28)
The following definitions are made.
MOy = LS gm0, (1.29)
2s w(al)w(ag) Colour,spin
n 1 6 n S *
M () = oo 2 AT @) Aa) A ) (1.30)

Colour ,spin
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Where {C_j} gives a representation of the colour algebra, t{; for quarks and Ty, for
gluons, so it can be shown that Q(az).Q(a) = Q(a;).Q(ax) and Q(ax).Q(ar) = Clay)
The factors, w(a;) and w(ay), ensure that the spin and colour of initial state particles

in M is averaged over; thus for quarks w(a;) = 2N¢ = 6 and for gluons w(g) =

2(NZ — 1) = 16.

1.3.2 Explicit Expressions

The first unresolved limit that will be considered is the soft limit; physically this
amounts to the additionally radiated particle in real amplitude tending to low (or
zero) energy. Taking the soft limit of the matrix element squared is a well known
result, and in QCD is given to be

e (LkY, 1.31
AT w({Ftn) (1.31)

: n+1 _
Jim M (R} 1) = Oga,dmars ;

where it is noted that this limit applies only for gluons. The soft limit involves a sum
over all the momentum of all (coloured) particles, with no dependence on the species
(quark or gluon) of the particle. The soft limit for quarks, although kinematically
possible for massless quarks (which unless otherwise stated they will be in this work)
does not lead to a divergent contribution and is therefore not considered. The result
is clearly divergent for k; — 0, a result that will become more relevant in the next

chapter.

The single unresolved limits of QCD matrix elements squared also include the
collinear limit of two partons. In this limit M factorises, in a form not unfamiliar to

the soft limit above. In its most general form the factorisation is described by

lim MO (i) = 205 pi (A0 (050 () (1.32)

i |k ki-k; 9% mv AT [i,5]
where collinear limits of this kind are dealt with in detail in [11], and TEZZ;.}, using the
notation of the previous section, defines the set of n particles and momenta; where
particles 7 and j are excluded and replaced by a combined parton a;;. This combined

particle has its flavour defined by a combination of the flavours of particles ¢ and
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j. This limit, unlike the soft limit contains a spin dependence, symbolised by the
tensorial notation of both terms, in addition to a splitting function dependence on
the flavours of partons ¢ and j. The splitting functions are universal for all processes,
and are given as a function of z, which describes the fractional energy of one of
the collinear partons, which in this case is labelled j. The splitting functions are
labelled in terms of the flavours of one of the collinear partons and the combined
parton, which completely describes the splitting process. The spin indices in the
factorisation formula above are dependent upon the flavour of the combined parton
which arises from the collinear limit; if this is a quark they take the form of spinor
indices and for gluons they are Lorentz indices. For quark splittings the factorisation

is spin independent and the splitting functions can therefore be written in the form
P2 = 855 Payg(2) (1.33)

where P, (2) are the spin averaged, or Altarelli-Parisi splitting functions; for quark

splittings they are given below.

Py(2) = Cp Gf—i) (1.34)
Py(z) = Cr (@) (1.35)

The gluonic splitting functions retain a spin dependence, and are given by

v uv kikji
Py (z) =Tr | —g" +42(1 — 2) W2 (1.36)
(N o z 1—2\ B B kY kY
Pl (z) = 2C, [ g (1 — + . ) 2(1 —e)z(1 —2) K (1.37)

where k| is the momentum transverse to the direction of the combined momentum
pi;- The momenta of the collinear partons can be written in terms of the combined

momenta p;;, ki and a light-like momentum n.

pj = Zpij —|— k/l —|— fln (138)

pi=(1—2)py — ki +&n (1.39)
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The definitions k&, -p;; = k1 -n = 0 are made; the light-like vector n must be included

for p? = p? = 0, which also fixes the quantities & and &.

1R
= —— 1.40
& 2 2pi-n ( )

1 k2
o= — - (1.41)

The factorised matrix elements squared can be re-written in terms of the spin aver-

aged or Altarelli-Parisi splitting functions and terms that have the explicit angular

dependence
. n Ao n) (.0
lim M) ({k} ) = —> ajaij(z)/\/l( )(7“[7;] Aktn)+

where again F,q,;(2) are the Altarelli-Parisi splitting functions. The term
Qaja; ()M (rg]’ ,{k},) is the explicit angular contribution, which can be obtained
from the off-diagonal terms in the tensorial product in 1.32, and is defined in appendix

B. The gluonic spin averaged splitting functions (for quarks they are given above)

P,(z) = 204 (1 i ~+ ! ; S z)) (1.43)
Py(z) = Tp (224 (1-2)?) (1.44)

it is noted these can be obtained from spin averaging 1.36 and 1.37. Unsurprisingly

the functions Qg;q4,,(2) can be read off to be

Qge(2) = —4Cxz(1—2) (1.45)

Qu(2) = 4Tpz(1— 2) (1.46)

It is commonplace to neglect angular contributions to the collinear splitting, as in
most cases after integrating over the phase space these terms disappear. However
in subtraction terms, which will be detailed in the next section and are based on
unresolved limits of matrix elements, will need to include angular contributions to

avoid numerical instabilities when the phase space integral is taken.
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The Altarelli-Parisi splitting functions, given above are sometimes written in a
regularised form, the regularisation is often included due to singularities in the split-
ting functions when z tends to one or zero. The regularisation is accomplished by use
of plus distributions; where a plus distribution of a function, with a singular term at
zero would act as [dzf(x); = [dxf(x) — f(0). The regularised splitting functions

are then expressed as:

Po(z) = OF(llJ:Z;)+ (1.47)
Pylz) = pr (1.48)
Py(z) = 204 ((1 - Z>+ 1 - S (11— z)) (1.49)

where the P,, is unchanged as it is always finite.

1.4 Collider Physics and the QCD Parton Model

In the environment of a hadron collider it must be noted that the hadrons, typically
protons or anti-protons used in the collider, are bound states of coloured objects. The
need to accurately describe the physics of hadron colliders, such as the LHC, is one
of the driving forces behind the research in perturbative QCD; however perturbative
calculations of cross sections from quantum field theory do not seem well suited to
processes with hadronic initial states.

However hadrons are bound states of coloured particles and so collisions between
these objects must be related to the perturbative calculations of cross sections from
quantum field theory, which are calculated for free particles. The description of such
collisions in terms of partonic density functions (PDFs) and partonic cross sections

of (free) partons, will be reviewed in this section.

1.4.1 Naive Parton Model

The description of hadronic cross sections in terms of PDF’s and partonic cross sec-

tions calculated from quantum field theory (usually QCD in the context of this work)
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is best motivated from the naive parton model. In the framework of this model,
some fairly basic assumptions are given which allow the naive calculation of hadronic
cross sections. The fundamental assumptions of this model are that the hadrons, at
the high energies typically found in colliders, can be simply modelled as a collection
of unbound (i.e. free) partons, which each have a fraction, n of the hadronic en-
ergy. These partons are considered to be the fundamental objects found in the QFT,
typically quarks and gluons (although non QCD objects such as photons also have
non-negligible contributions). A key assumption of the model is that hadronic cross
sections at these energy scales can then factorise into convolutions, over the fraction
7, of partonic cross sections with a distribution function of the parton. These distri-
bution functions are the partonic density functions (PDF's), and give the distribution
of a given parton at a specified energy fraction. The factorisation of the hadronic

cross section can now be written as

1 1
OHadronic = Z/dm /anf(fIl(nl)flfIQ(n2>a—ab—>X(771P17772P2) (1.50)
a,b 0 0

(see [12]) where fI(n) are the PDFs. The PDFs are essentially a set of empirically

determined functions, that cannot be calculated perturbatively from first principles.

1.4.2 The Parton Model and QCD

The naive parton model, described in the previous section, rested upon the assump-
tion that partons in the hadron (at high energies) can be thought of as essentially free
objects moving in the same direction as the hadron, each with a fraction, 7, of the
total hadronic momenta. These assumptions hold fairly well for tree level processes,
however for higher order perturbative corrections in QCD, the model requires some
modification. When considering higher O(a;) perturbative corrections to the parton
model it is clear that there is a contribution from the ’free’ partons in the hadron
radiating other partons. However this complicates the naive parton model; perturba-
tive corrections now contain ’free’ partons with non-zero transverse momentum from

radiative corrections, clearly a departure from the naive model in which partons have
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no transverse momentum. To reconcile the PDF parton model with perturbation the-
ory, pup, the factorisation scale is introduced; partonic transverse momentum above
the factorisation scale is said to contribute to the hard (i.e. partonic) process, and be-
low this scale gives corrections to the PDF. Radiative contributions to PDFs require
the reconsideration of the PDF's given in the naive model; these are now regarded as
bare distributions, analogous to bare couplings in renormalisation, the 'renormalised’
distributions now with an explicit dependence on the factorisation scale contain these
radiative corrections. These distributions can be written, like the renormalised cou-
plings, in terms of the bare distributions plus higher order corrections, in this case

radiative corrections; to O(a;) this is given by [9]

Jaliie) = fafn) + 52 5 / Y b, (1) g o (£2) 4 0) (151

Reut

where f,.(n) are the bare PDF's, Paz.a].(z) are the (regularised) Altarelli-Parisi collinear
splitting functions, y is the fractional partonic energy pre-splitting and the cutoff
scale key given in the PDF radiative correction above, gives a crude regularisation.
The partonic cross section will contain a similar term with a log u% dependence,
obtained from counter terms which are discussed later in chapter two; these are
added to partonic cross sections specifically to remove the low transverse momentum
scale physics from the partonic process. From the form of 1.51, it is noted that the
'renormalised’ distributions absorb the singularities associated with k. — 0, again
in a similar fashion to renormalisation.

The scale dependence introduced in the PDFs from radiative corrections, now
fixes PDF's to a factorisation scale. The evolution of PDFs with that scale can be

computed, using the radiative corrections given above, yielding the expression [9]

el ) o 5> / Wby (1) folr) 406 (152)

which is the famous Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution
equation [13] [14] [15]. The solutions of the DGLAP equation allow PDFs to be de-

fined at one momentum to be determined at another, in analogy to beta functions



20 1.4. Collider Physics and the QCD Parton Model

computed from renormalised quantum field theories. Splitting the physics of the pro-
cess crudely into a soft component associated with the PDF's and the hard component
associated with the partonic scattering cross section, yields a residual dependence of
both of these quantities on the factorisation scale. These contributions will however
cancel at all orders, meaning that the hadronic cross section is not dependent on
this artificial scale pup. However in practice hadronic cross sections are calculated to
a finite order in perturbation theory and the truncation of the series causes a de-
pendence on ppr to appear, analogous to the appearance of a renormalisation scale
dependence for fixed order calculations. In practical calculations the factorisation
scale is usually set equal to the renormalisation scale as this prevents corrections of
the form log % appearing, and generally both scales are chosen to be of the same
order as the hard process. An estimate of the error associated with scale dependence
can be obtained by varying the factorisation scale over a range of scales, in practical
terms this may amount to a factor of two over the original scale choice. A judicious
choice of factorisation (and renormalisation) scale can reduce the error associated
with scale dependence on a fixed order calculation; several calculation methods, such
as the Principle of Minimum Sensitivity (PMS) [16] [17], exist for this purpose (for
most processes the choice of the hard scale is justified by these methods). However
as this error is always at an O(ay) greater than the order of the calculation, the scale
dependence is reduced by including higher order corrections.

The introduction of the factorisation scale introduces some subtleties into partonic
calculations; at higher orders contributions to the partonic cross section must not
include radiative corrections below the factorisation scale and it must therefore be
modified to meet this requirement. Discussion of PDFs and partonic cross sections at
higher order is left to chapter two, after some of the machinery of such calculations

has been described.
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1.5 Jet Algorithms

The phenomena of colour confinement, where coloured objects such as quarks are
only observed in bound colourless states such as hadrons, presents a problem when
comparisons are made between experiment and theoretical predictions based on per-
turbative QCD. The treatment of this problem for initial states is described by PDF's
and factorisation which are summarised in the previous section, however for final
states this issue is dealt with by the introduction of jets. Jets can be simply de-
scribed as a collection of hadrons in a detector, that are somehow assigned to one
common bulk of hadronic matter. Sometimes what constitutes a jet can be fairly
intuitive, for example two narrowly collimated bulges of hadronic matter in a detec-
tor can be clearly interpreted as a two jet event; however this is not always the case
and precise definitions are necessary to enable valid comparisons between theory and
experiment. For this reason jet algorithms are introduced, which, for a given input
of protojets, hadronic clusters in experiments and partons in theory, return jets. The
use of jet algorithms, first introduced in [18], is not unique and quite a number exist;
for various applications the optimal choice of jet algorithms will be different.

Jet algorithms are usually formulated in terms of variables that are conveniently re-
lated under Lorentz boosts. The reference frame used for theoretical calculations
(usually the partonic centre of mass frame) and the lab frame will, in general, be dif-
ferent; this motivates the use of variables in jet algorithms that have no or a simple
frame dependence. In a collider, where the beam axis is said to lie in the z direction,
it is clear that the lab and the centre of mass frames are simply related by boosts in
the z direction; as a result the momentum of final state particles transverse to the
beam axis, pr will be invariant under these boosts, as will the azimuthal angle ¢.
Both of these are variables often used in jet algorithms, in addition to the rapidity »

which is defined to be

1 E+k,
] 1.
n og<E_kz) (1.53)
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Under a Lorentz boost in the z direction the variables £ and k, transform as E =

v(E + Bk,) p. = v(BE + k,); hence under a boost in z

1. 1+8
/

=n+-1
=n+gloe g

(1.54)

hence the difference in rapidity between any two particles is invariant under these

boosts.

1.5.1 Infrared Safety

A key issue associated with jets is the ability to link theoretical calculations in per-
turbative QCD with the experimental situation of colour confinement and hadronic
matter. The use of jet algorithms then allows a precise definition of jets that can be
used for both theoretical and experimental purposes. The major part of this work is
dedicated to providing tools for NLO QCD predictions; for NLO (and higher order)
accuracy the definitions of jets must be constrained by the notion of infra-red (IR)
safety. The constraint around IR safety is associated with the real emission compo-
nent of a NLO cross section. The calculational details of NLO cross sections are left
to later chapters, however the relevant point here is that in NLO calculations the
tree level matrix element with an additional parton forms part of the O(«a;) correc-
tion, if a parton goes unresolved. These unresolved partons produce divergences in
soft and collinear limits, which cancel IR divergences from loops; IR safety amounts
to jet algorithms which are insensitive to the addition of partons with these limits.
Essentially the condition of infrared jet safety is that the addition of soft or collinear
partons to the final state does not alter the structure of the jets, and hence allows

the cancellation described above to occur.

If the jet algorithms are sensitive to the addition of soft or collinear partons, the
divergent structures in the real and loop contributions can be split into terms with
different jet structures, meaning that a proper cancellation of singularities cannot

take place - a result which is not consistent with perturbation theory [19].
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1.5.2 Generalised kp Clustering Algorithms

A common set of jet algorithms which exhibit infra-red safety is the set of general
kr clustering algorithms; to provide an example of jet algorithms these algorithms
are discussed in this section. This set of algorithms consists of three algorithms
with a slight parameter difference, and are all by constuction IR safe, they are: the
kr or Durham algorithm outlined in [20] and [21], the Cambridge-Aachen algorithm
outlined in [22] and [23] and finally the anti-ky algorithm described in [24]. The
generalised kp algorithm is split into two steps; the first is a clustering procedure
which decides whether a given set of protojets are merged into a jet and a merging
procedure which defines the momentum of the jet in terms of the merged protojets

momenta. The quantities used in the algorithms can now be defined as

i = ki (1.55)

Ry = (n;—m)* + (6 — ¢;)° (1.56)
. Ri;

dij = min(kF, k) 13 (1.57)

where D is the jet resolution parameter, where the value is usually given in the range
0.4 < D < 1.0, n is the rapidity of the protojet and ¢ the azimuthal angle. The value

of the parameter discriminates the different algorithms.

p = —1  Anti—Krp (1.58)

p =0 Cambridge — Aachen

p = 1 Kr Algorithm
The clustering algorithm is defined by an iterative procedure; a list of protojets is
input into the algorithm, the quantities d; and d;; are then calculated for all protojets.
The minimum of d; and all d;;’s for each protojet is calculated; if the minimum is d;
then the protojet becomes a jet, if a d;; is the minimum then protojets ¢ and j are
merged. The algorithm is carried out iteratively until there are simply jets in the
process. The merging of momenta can then take the following form

Ei; = B, + E; (1.59)

kij = ki + k) (1.60)
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The result of the algorithm is simply a list of jets with well defined momenta.

The differences between the algorithms result from different analysis priorities, as jet
definitions are arbitrary the user is free to use the most convenient definition for their
purpose. The Cambridge-Aachen algorithm, which has no dependence the transverse
momenta and is therefore clustered according to how collinear the particles are, is
most favoured to measure the collinear splitting of partons, however it will clearly not
cluster soft partons with a large angular separation. The kr or Durham algorithm
will cluster soft events well but has the disadvantage of producing jets which have
complicated structure in the detector; for experimental purposes simple cone like
structures are favoured. Anti-kr is often used because it produces these simple well
defined cone like structures in experimental data, due to its inverse dependence upon
kr; it does however have a downside similar to that of Cambridge-Aachen in that

soft partons with large angles are often not clustered.



Chapter 2

Next-to Leading Order

Calculations

The main purpose of this thesis is to describe and test tools developed for the calcu-
lation of cross sections in perturbative QCD at Next-to Leading Order (NLO). The
computational details for the calculation of processes at NLO will be outlined in this
chapter, and considered more thoroughly in chapter three for the method of FKS
subtraction. This chapter will mostly be concerned with the appearance of infra-red
divergences in NLO calculations, and will discuss how such divergences occur and
how these cancel in the full calculation. Additionally, the computational difficulties
associated with these calculations are discussed, particuarly with numerical methods,
and the concept of a subtraction scheme is introduced. Given that NLO calculations
can be, if not technically difficult to perform, at least computationally expensive, the
justification for performing such calculations is important and will also be reviewed.
It is noted that, unless otherwise stated, the notation used in this section will be that

described in section 1.3.1 of chapter one.

2.1 Motivation

The motivation for performing Next to Leading Order calculations for processes in

QCD is fairly simple, to improve the accuracy of such calculations and obtain more
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reliable error estimates. The inclusion of higher order terms in a perturbative calcu-
lation will by definition improve the accuracy of such calculations. However for QCD
calculations in particular there is additional motivation for seeking higher order cor-
rections, which has been touched upon in chapter one. This is of course the introduc-
tion of artificial scales into perturbative calculations, principally the renormalisation
scale, ur and (for hadronic processes) the factorisation scale. The dependence of
fixed order calculations in perturbative QCD on these scales represents one of the
principle sources of error in such calculations, which is significant as these scales are
introduced for technical reasons and are not physical. An all orders calculation would
of course remove this dependence; however, as was described in chapter one, for a
truncated series the variation over such scales is at least an O(«;) greater than the
highest order term. This gives us two results, namely that no fixed order calculation
can entirely be free of scale dependence, but also that such scale dependence reduces
the higher the order of the calculation. Thus one of the principle sources of error can
be reduced by performing higher order calculations. This is of course motivation for
calculating QCD processes to the highest order technically possible. However higher
order calculations, for reasons which will become apparent later in this chapter, are
often technically difficult and computationally intensive to calculate - in many cases
NLO is simply the best estimate that can currently be calculated. However NLO
calculations are particularly well motivated from this argument as the biggest reduc-
tion in this scale dependence must come from going to NLO from LO, as the scale

uncertainty is of O(a,) larger the order of the calculation.
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Figure 2.1: Lepton pair mass distribution of the Drell Yan Z mass peak, between

85 < my < 100 GeV shown for LO and NLO. The error bands indicate the correlated

variation of the factorisation and renormalisation scales between my /2 < p < 2my,

The reduction in such a scale dependence from LO to NLO is shown in figure

2.1 for the Drell Yan process, and as can be seen, this reduction is not insubstantial.

Calculations that are only of leading order in a perturbative series are therefore

particularly plagued by high uncertainties associated with scale variation. This is

a particular problem for high multiplicity processes, for example if a leading order

term is of order O(a®) then a correction of the order na ™ log(u/pr) is the leading

contribution to the scale variation; if n is large then the scale variation can be of

the order of the LO term. For such processes NLO calculations are then essential to

obtain a reasonable estimate of the cross section.
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2.2 Schematics of NLO calculations

Next to Leading Order (NLO) calculations in perturbative QCD are simply the O(a)
corrections to the leading term in the perturbative series. The general composition
of the NLO correction must therefore include all possible corrections to the process
at O(as). The components of an NLO calculation are given, schematically, in 2.1,
and is composed of the leading order (Born) term, do® and the O(a,) corrections
to this term. These contributions can be divided into two distinct parts; virtual cor-
rections (dg(")) in the form of (one) loop Feynman diagrams and the real corrections
(do®)), which give contributions from am additional (unresolved) radiative emission.
In addition to these terms, for hadronic initial states the partonic cross section must
include counter terms (do(®)) originating from PDFs; the reason for these counter
terms is discussed in chapter one. As can be seen from 2.1, the virtual and counter
terms exist on the Born level phase space, whilst the real term must include the phase

space of the extra emision.

ONLO Z/do(B)+/ da(v)+/ dU(C)+/ do' (2.1)
m m m m+1

Both the real and the virtual terms of this NLO cross section contain divergent
terms, both of which are associated with an unrestrained phase space integral; for
the virtual term this is associated with loop integrals and for the real term this is
associated with the unresolved partonic emission. The singularity structure of both
the real and virtual corrections, which are explicitly given in later sections of this
chapter, potentially poses a problem for perturbation theory. However perturbation
theory is saved by the cancellation between the singularities present in both terms.
The guarantee of this cancellation is the theorem of Kinoshita, [25] and Lee and
Nauenberg, [26], which states that QCD is free of infra-red divergences, at all orders

in perturbation theory, if all contributions at the relevant order are summed.
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2.3 Virtual Contributions

The virtual corrections, of a process in perturbative QCD, are contributions in the
perturbative series, which contain amplitudes with integral(s) over a virtual momenta.
These amplitudes are represented, in Feynman diagrams, as containing a loop of
particles, which gives the contribution of integral over unconstrained momenta which
appears in propagators, a simple example is given in figure 2.2. It is from these

loop integrals that the divergent terms in the virtual contribution arise. At NLO

Figure 2.2: One loop diagram representing the virtual contribution at NLO of the

process qq — v*

the virtual contributions purely consist of amplitudes which contain only one loop
term and a Born like final state, other terms are part of higher order corrections.
The virtual terms can therefore be easily integrated over the same phase space as the

Born term. Schematically the NLO virtual contribution can be written as

MOD () = 5o 37 A, A 1) A 1,) AT ) (22

Colour,spin

The details associated with calculations of loop integrals will not be considered
in this thesis, however the form of the resulting singularities is of interest. The
divergent structure of loop terms has already been partially discussed in chapter
one in the context of renormalisation; the loop integral over unconstrained momenta

generally leads to two types of divergent structures, ultra-violet (UV) and infra-red
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(IR), which are essentially divergences from arbitrarily high or low momenta and are
associated with the upper and lower bounds of the loop integral. The appearance of
these singularities becomes apparent when considering the form of these integrals; a

generic loop diagram has the structure, from propagators of internal fields

kpr | Hm
dtp— 2.3
/ H?:1(ki - pi)Q ( )

which for a crude discussion of singularities can be written as

Kt kgt
/ d%kT (2.4)

The integral, which runs over the entire phase space of the loop momenta, can
become divergent either as the loop momentum becomes arbitrarily large (ultra vi-
olet) or when it tends to zero (infra-red); given the crude parametrisation of a loop
integral above, it is clear that for m > n — 4 a UV divergence will occur in 2.4 and
that for n > m + 4 an IR divergence will occur. The appearance of IR singularities
in the virtual term is dealt with by their explicit cancellation with similar divergent
structures in the real emission contributions - a cancellation which is guaranteed,
order by order, in the KLN theorem. The IR divergent structure of the virtual term
at NLO can be calculated generally and it is shown in [27] and [28] (the latter gives

loop contributions for higher order terms as well) to be

MOD () = g_;F(ll— 3 (422{; ) V(e) (2.5)
where
V— (;2 Y Clan) + % Zv(%)) M (1)

1 2k -k
- % %; log 0?2 Miz)(rn) + Mrinite  (2.6)

Where the v constants are described by

3 CNZ-1

7(61)=§CF v(g) = N, (2.7)

for quarks and gluons respectively. This simply gives the infra-red pole structure

of virtual terms at NLO, the finite contribution is left for actual calculation of loop
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diagrams which will not be considered in this thesis. The scale Q? is introduced,
which is an arbitary mass scale introduced by Ellis and Sexton to help the writing of
the result - for convenience it is usually set to the Mandelstam variable s. The result

above is calculated in conventional dimensional regularisation.

2.4 Real Emission Contributions

The contribution of radiative terms, to the NLO cross section, is generally known
as the real emission term. In QCD, radiative corrections to the Born term of O(a)
simply consist of Born like terms with one additional partonic leg; if the extra parton
is unresolved such a term constitutes an NLO correction to the leading order term,
and hence must be included in NLO calculation. Such terms can be computed, in
QCD, with identical methods to that of the Born term, as they can simply be cal-
culated from tree-level Feynman diagrams. The appearance of an unresolved parton
in the real term poses the question as to the behaviour of QCD amplitudes in the
unresolved limits. It will be seen that these limits, which amount to the unresolved
particle becoming either soft, or collinear with another particle, are important for
the singularitiy structure of the real term. It has already been demonstrated that
infra-red divergences occur in the virtual terms, which are not absorbed by renormal-
isation, and it is the divergences from these unresolved limits that will cancel those

from the loop terms. Schematically the form of the real emission term is given by
do'® = Mn+1<rn+la {kn+1})‘](n)d¢n+l (2‘8>

Where M™*! is the n+1 particle matrix element squared, d¢,,; represents the phase
space integral and J™ the jet function. It is seen in this form that the jet function
(sometimes described as the measurement function) describes a final state with n re-
solved jets, from a n + 1 parton final state. One of the partons is therefore somehow
unresolved, there is therefore no restriction of its kinematics and it is free to take
limits that make the matrix element singular. The previous chapter reviewed such

unresolved amplitudes, and they will be considered here in the context of the real
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emission term.

The unresolved limits of the limits of the matrix element squared, which are

described in chapter one, are in the notation of this chapter given by:
; (n+1) — _tmetm A g () ([
Jim MOD({k} i) = b 7o, 3 MG (29)
for the soft limit, and

4o
: (n+1) _ s
klillr\gj Mk o) ki - k;

Payary (2)M® (i (k) +

for the collinear limit, where the Altarelli-Parisi splitting functions are given in the
previous chapter. It is commonplace to neglect angular contributions to the collinear
splitting, as after integrating over phase space these terms disappear; however such
terms must be included in subtraction terms (see next section), when using numerical
methods, to ensure stability. Both of these expressions are clearly divergent in their
respective unresolved limits; and it is noted that the form of these singularities is
broadly the same (if factors from the phase space are included), and take the form
of 2.11.

lim — (2.11)

To give a comparison with the virtual singularity structure, the phase space integral of
the unresolved momenta, over such singular terms, can be calculated in dimensional
regularisation to produce a crude pole structure. If this integral is performed on
singularity structures of the form given in 2.11, the pole structure will be of the form
of £ (see [10]). Given that there is no kinematic reason to exclude it, the double limit

of an unresolved parton, such that it becomes both soft and collinear with another

1

parton, can exist. Naively this would give a divergent structure of the form B cosd)
7 ij

and a naive pole structure by previous arguments would be 6% Continuing with this
naive expression of singularities, the total singularity structure of an unresolved real

matrix integrated over momenta of the unresolved parton would therefore be of the
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form 2.12.
A B -
(6—2 +—+ C) M ({k}n) (2.12)
This singular structure, which as can be seen from equations 2.5 and 2.6, is of the
same form identified as the singular structure of the virtual term. The argument
given above is of a crude nature but does serve to illustrate that the form of the

singularities in the real emission term does indeed match the form of singularities in

the virtual term given in 2.5 and 2.6.

2.5 PDFs and Partonic Cross Sections at NLO

The discussion of PDFs, in section 1.3 of this thesis, describes the introduction of
the factorisation scale into PDFs; this provides a distinction between low scale and
high scale physics resulting from radiative corrections to the leading order partonic
process. Such radiative corrections will occur in higher order corrections, and as such
must be discussed here in the context of NLO calculations. As discussed in chapter
one, radiative corrections which are below the factorisation scale give contributions
to the PDFs and above to the partonic process. However, for the calculation of
NLO cross sections, all radiative corrections are treated as part of the real correction.
As result, for hadronic calculations, the use of PDF's requires corrections to prevent
double counting of radiative contributions below the factorisation scale, which are
implictly included in PDF's. To prevent this double counting, of radiative corrections
below the factorisation scale, the introduction of counter terms to the partonic cross
section are necessary. When such corrections are included, the hadronic cross section

will retain the form 2.13.

1 1
doHadronic = Z/dm /d772ffl<7717N?)flfm(n%N?‘)d&abaX(nlpla772P2) (2.13)
a,b 0 0

However the partonic cross section is replaced by 2.14, [29] which is the partonic cross

section supplemented with counter terms.

dé’(kl, ]{72) = dO'(kZl, kg) + dO’int(k’l, k’g) + dagm(kzl, ]{?2) (214)
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These counter terms, which prevent the inclusion of the soft radiative contributions
already present in the PDFs, are to NLO given by 2.15; where the terms K,4(z) are
factorisation scheme dependent functions, which in conventional dimensional regu-

larisation are zero (K,q(z) = 0).

Qg 1 4
0o k) = 3 = M)Z/ e (Puna) L+ Kaale) ) dof a1k, )
(2.15)

Where the scale p, introduced in 2.15, is an arbitrary scale that allows the writing
down of the result in dimensional regularisation; in most cases the choice y = pup =
[tr, the renormalisation scale, is made. The form of these counter terms can be ob-
tained from considering the soft radiative contributions to the PDF given in equation
1.51, after a reparamaterization of integrals and the rewriting of the singularity in
terms of dimensional regularisation these contributions can be written in the form of
equation 2.15.

It is important to note that this contribution enables the cancellation, of initial state
collinear singularities, from the real term; this does not occur with just the virtual
piece (although all other singularities from the real term are indeed cancelled by the
virtual contribution). The introduction of these counter terms into the partonic cross
section, a result required by factorisation, is therefore very important for perturba-
tive QCD. The singularities from these counter terms are required for the complete

cancellation of singularities present in perturbative corrections beyond leading order.

2.6 Subtraction

Previous sections of this chapter has discussed the various components of NLO cal-
culations, these are principally; the virtual terms, composed of quantum corrections,
and the real terms, which are composed of radiative corrections. Both the real and
virtual terms contain, as discussed in prior sections, singularities associated with
infra-red limits, in either phase space or loop integrals. Such terms are guaranteed
to cancel when the real and virtual terms are combined. However for practical cal-

culations, this explicit cancellation can be problematic to achieve.
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The singularity structure for virtual terms is usually computed by use of dimensional
regularisation in loop calculations; thus the singular structure for the virtual term
is commonly expressed in terms of poles. To enable an explicit cancellation of this
pole structure by the real terms, it is necessary to use dimensional regularisation for
the phase space integration of real terms. However, beyond simple low multiplicity
processes, the use of numerical methods is required to perform the phase space inte-
gration of the calculation; as dimensional regularisation is an analytic method, it is
not practical to compute real corrections in this fashion.

There clearly exists a practical problem for NLO calculations of non-trivial processes;
an uncancelled explicit pole structure is combined with a divergent numerical inte-
gral, and although it is known the divergent structure does indeed cancel the pole
structure, performing the calculation such that this cancellation is explicit requires
some additional technicalities.

The method of choice to allow this explicit cancellation is subtraction; essentially this
involves constructing a term on the real phase with an identical singular structure
to the real term, this term is subtracted from the real term to cancel any singulari-
ties. To ensure the NLO calculation remains unchanged, the subtraction term is also
added back to the calculation; however this subtraction term is usually integrated
analytically (using dimensional regularisation) to explicitly cancel the pole structure
of the virtual terms. There do exist other methods, notably phase space slicing [30]
which essentially performs a kind of cutoff regularisation upon the real phase space
integral and phase space sector decompostion [31], however neither will be discussed

in this work in any depth as the focus will be on the use of subtraction.

The unresolved limits of the QCD matrix elements are described in the previous
chapter, and it is clear from these results that the singular regions of the real term
are the result of the two possible unresolved limits of the partons. These limits are
explicitly the soft limits of any (gluonic) parton, and the collinear limit of any two
(massless) partons; the subtraction term is required to have the same singularity

structure, hence its behaviour in these kinematic limits must be the same as the real
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term as shown in 2.16.

lim  de® = lim  do® (2.16)
kl‘*)(] or k’LHkJ ki%O or szkj

The subtraction terms are constructed such that, in addition to having the same sin-
gularity structure as the real term, they can simply be integrated over the momenta
of the unresolved parton analytically. This allows this integral, over the unresolved
partons phase space, to be performed in dimensional regularisation, yielding an ex-
plicit pole structure; the ’added back’ subtraction term is written in this way. After
performing this analytic integral, over the unresolved partonic phase, on the subtrac-
tion term, it becomes an object on the same Born level phase phase as the virtual
term. Additionally this integrated subtraction term contains an explict pole struc-
ture, which is able to cancel the pole structure of the virtual term; this cancellation
is guaranteed by the KLN theorem and the definition of the subtraction term. The
integrated subtraction term and the virtual term can then be combined into one term
with no pole structure, which is integrated over the same n particle phase space. The
form of an NLO calculation using subtraction is given by 2.17, where do®) represents

the subtraction term.

UNLO:/ dU(B)+/

Implicitly the one particle phase space integral in fl de®, in 2.17, is performed

da(v)—I—/da(s)
1

+/ [do® — do™)] (2.17)
m+1

using dimensional regularisation. Subtraction terms are not unique, and there exist
a number of completely general methods for calculating them, the most popular
of which are that of Dipole subtraction by Catani and Seymour [32] and the FKS
subtraction of Frixione, Kunszt and Signer [10]. Both of these methods are reviewed

later in this thesis.

2.6.1 Overview of Catani Seymour Dipoles

The Catani Seymour dipole subtraction method, which is one of the most popular
methods for the calculation of QCD processes at NLO, was introduced in [32], this was

later extended in [33] to include massive partons. In this method, subtraction terms
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for NLO calculations are formed from a set of universal functions, known as dipoles.
Schematically the subtraction term constructed from Catani Seymour dipoles takes
the form of some convolution of the dipole functions, and a Born like term, as shown

in 2.18.

do® = 3" do” @ dVpipole (2.18)
Dipoles

These dipole functions are constructed by utilizing the general factorisation of QCD
amplitudes in the soft and collinear limits. As it is such kinematic limits that are
responsible for the IR singularities of the real term, these results can be used to
construct terms with the same singular structures as the real term. For the real
term, these factorisation results force it to take the forms 1.32 and 2.9 in the collinear
and soft limits respectively. Additionally, in both of these kinematic limits, this
factorisation extends to the phase space, which is split into a into a Born like phase
space integral and the integral over the phase space of the unresolved parton; this is

schematically written in 2.19.

ntl a3k, n+1
li dopi1 = li —— 5@ — k;
kﬁogrnkinkj Ons1 kﬁogflkinkj H 2F,(27)3 (p1 + p2 Z )

n

43k,
+ k) (2.19)
T 2F, 27T311_‘[2El P +p2 - Z ’

The tactic of dipole subtraction is to exploit these factorisations to construct the uni-
versal dipole functions. The phase space factorisation firstly allows the subtraction
terms to be split into a Born like term, and a dipole function on the unresolved par-
tons’ phase space; this partially justifies the structure in 2.18. The form of the dipole
functions must follow from the splitting functions from factorisation. Examining the
unresolved limits given in equations 2.9 and 1.32, it is seen that for the soft limit the
splitting function is parametrised by the soft momenta and the momenta of two other
spectator partons; for the collinear limit the splitting is parametrised defined by the
two momenta in the collinear limit. So it is apparent that the dipole functions must

be constructed from the momenta of three particles, one of which is ’soft’ and two of
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which can become collinear. The subtraction terms can now be rewritten such that

do® = > Dy (2.20)
i#j7#k

where D;;;, is composed of the dipole functions. Generally it can be written in the

form

—

Dijr= Y v;jk(z,yijk)A”(..,aij..)wm*(..., agj..) (2.21)
spin,colour (ai;)

where Vj;, represents the dipole functions, the remaining terms give the Born like
matrix element with colour factors. The full structure of the subtraction term is
now clear, the partons ¢, j and k are defined to be the emitted, the emitter and
the spectator; 7 is the parton that becomes unresolved, it can either become soft or
collinear to parton j (other collinear limits are considered with other dipole terms),
the spectator k is then needed to give to parametrise the soft limit. The reduced Born
level term, which also includes colour factors from the splittings, replaces the flavours
of partons ¢ and j with a combined parton a,;, while the flavour of the spectator is

unaffected. However to produce the kinematics for the Born term the momenta of

the emitted, emitter and spectator are subject to a kinematic map, 2.22.
{kl, ey ki, kj, kk, ...kn+1} — {f{l, . Rija f{k, ceey lA{n} (222)

The momenta of 7 and j are mapped into a combined momenta for the Born term,
however unlike for the flavour map the spectator’s momenta is in general also mapped.
The nature of the map is dependent upon the structure of the partons i, j and k£ within
the real process, different maps are required for dipoles with all final state partons,
and those with different mixes of initial and final state partons; (note, as parton i
is defined to become unresolved it must always be in the final state). The universal
dipole functions, Vj;;, are in general dependent upon the flavours of the partons i, j
and k, which reflects this dependence on the factorisatation results 2.9 and 1.32. It is
also useful to separate the dipole functions into sections, dependent upon whether the
emitter and spectator partons are in the initial or final state, these sections are given

the labels; final-final, initial-final, final-initial and initial-initial (emitter-spectator).
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It should be noted that the emitted parton must always be a final state parton if
it is to become unresolved. This separation into sections reflects different kinematic
mapping and variables that are used in the dipole functions. To obtain the full sub-
traction term, the dipole subtraction terms must be summed to include all possible
partons, in all possible configurations, such that all singularity structures possible in

the real term are countered.

The subtraction of the dipole terms described above must also be accompanied
by the addition of the integrated term as described in the previous sections. To
obtain the integrated term the full sum of all the dipole subtraction terms must
be integrated over the phase space of the unresolved parton. This integral can be
calculated analytically, and completely generally as the dipole functions are universal;
for convenience, this integral is usually performed using dimensional regularisation,

as is schematically shown in 2.23.

/ do®® = /
m+1 m

The full list of integrated dipole terms is given explicitly in the original papers by

Y Ao’ / A2 Viinole (2.23)
1

Dipoles

Catani and Seymour. The explicit cancellation of poles can then be accomplished by

the addition of this term with the virtual piece, and the PDF counter terms.



Chapter 3

Review of FKS Subtraction

The concept of a subtraction scheme for the calculation of the real contributions to
a next to leading order cross section has been reviewed in the previous chapter, and
the example of the popular Catani Seymour dipole subtraction given. As was de-
scribed in chapter two, a subtraction scheme handles divergences in the real emission
contribution of a NLO cross section by subtracting a term with an identical singular
structure, giving a finite term. This subtraction term is added back into the cross
section after having been integrated over the phase space of the unresolved parton.
Subtraction terms are chosen such that the integral can be performed analytically,
in dimensional regularisation; this yields a pole structure that must explicitly cancel
that of the virtual terms. The subtraction procedure of Frixione, Kunszt and Signer
(henceforth FKS), is just such a method and is generally applicable to any process in
QCD. It was first formulated in [10], for three jet QCD processes and was expanded
upon in [34]. Existing implementations of FKS include the POWHEG box, [35] and
MADFKS [36], which is a completely automated implementation of FKS subtraction
within MADGRAPH. The FKS subtraction method will be reviewed in this chapter,

with a view to its implementation described in later chapters.
40
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3.1 Structure of FKS subtraction

The FKS subtraction procedure constructs subtractions terms rather differently to
the Catani Seymour dipole method described in chapter two. In the FKS formalism
the subtraction terms are constructed by first parameterising the singular structures
of the real term, using angular and energy variables; these structures represent re-
gions of phase space where distinct singular limits of the real matrix element exist.
The subtraction terms are then formed by applying the relevant singular limits, for
each of these structures, to the real term. The subtraction terms are then guaranteed
to have the same divergent structures as the real matrix element squared, as they
are explicitly constructed from it. This is a somewhat different philosophy to dipole
subtraction, whereby universal structures defining the singular limits of any matrix
element are calculated. However, like dipole subtraction, FKS relies on the factorisa-
tion of the matrix elements in the soft and collinear singular limits, which has been
described in chapter one, in order to construct the subtraction terms.

To construct the subtraction terms in FKS, the real (n+ 1) particle phase space must
be partitioned into the different singular regions of the real term; in FKS the parti-
tioned regions are defined in terms of pairs of partons (in the real matrix element),

as is schematically shown in 3.1.
do™® =3 " S,;de™ (i, j) € Prxs (3.1)
]

The partition of the phase space is described by a partitioning function S;;, which is
a function of the momenta of partons ¢ and j; the full phase space is recovered after

summing over all possible pairs.
» S=1 (3.2)
1,3

The set of these pairs, defined as Prkg the set of all FKS pairs, which can represent

the FKS singular regions is constrained according to 3.3;
Prks ={3<i<n+1Va eSUB),0<j<n+1Va; eSU®B), i#j} (3.3)

essentially the variable ¢ can be any final state parton and j can be any parton in

the process (including the initial state) that is not 4, the full set of pairs that obeys
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these conditions is the set of FKS pairs. These partition regions described by S;;
are defined such that only unresolved limits associated with the partons i and j are
allowed; specifically the only limits allowed are parton i becoming soft, and partons
¢ and j becoming collinear. Other unresolved kinematic limits acting on \S;; lead to

it vanishing, namely:

kliglo S =0 if n#i (3.4)
thI]? Si;=0 if n,m#i,j (3.5)

These constraints force certain conditions on the form of the partitioning function
in the various unresolved limits. Considering first the soft limit of the parton ¢, the

definition

lim Sij = Cyy (36)

ki —0

is made for this limit on the partitioning function. By the definitions given in 3.2

and 3.4 it is then required that
D ey =1 (3.7)
J

Considering the collinear limit, it is fairly clear from 3.2 and 3.5 that the constraint

lim S;; +5; =1 3.8
k3|r|2] j 0 (3.8)

must be obeyed. In the original FKS formulation, the terms S;; are defined in terms
of © functions; however later work [35] defines them in terms of kinematic variables.
There is no unique definition, as any functions that obey the constraints given above
are valid for use in FKS; a choice of S;; is however given in the implementation of
FKS described later in this thesis.

After this partition the real term is split into a series of terms, Sijda(R), with the
phase space constrained such that only one collinear and one soft singularity are
allowed in each term. By splitting up the phase space in this way all the singular

regions can be considered and subtracted separately.
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3.2 Constructing the Subtraction Terms

The FKS subtraction formalism, as has been discussed, relies on a partition of the
real term in regions with only specific singular limits of the matrix element; the
subtraction terms are then constructed by applying these singular limits to the real
term in each of these regions. For the case of the phase space slice, Sijda(R), now
written for convenience as daw , only the unresolved limits allowed by \S;; can applied
to daw ; explicitly these are the soft limit of parton i, F; — 0, and collinear limit of
partons ¢ and j, cos;; — 1.

The subtraction terms for dai(f) are then formed by acting these limits on dai(f ) itself.

This subtraction procedure can be written schematically (for the soft limit) as

/ da(R //da / da,ij) — daz-(f)
1

where the term f da | E;—o0 1s understood to be integrated over the one particle

(3.9)

phase space such that a pole structure can be extracted and explicitly cancelled with

loop contributions.

To write down the subtraction terms, the phase space integral over the matrix
element squared must be considered; for the phase space slice Sijda(R) this can be

written in terms of a product of the phase spaces of all final state particles.

® Jo({kas1})
dolf? = 5,0 = [ [0 01 41 = SRS M O ) )

( n+1)
(3.10)

Where N (an1) is the symmetry factor which is included to account for the presence of
identical particles in the final state. The phase space integral in 3.10 is simply product
of the phase spaces for all final state particles, and it is convenient for this discussion
to seperate the phase space of particle 7; which according to the \S;; functions is the

only particle in this term with unresolved limits.

n+1 n+1
[T dow = des [] der = deide, (3.11)
k k, ki
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To enable the construction of the subtraction term, the form one particle phase
d¢;, must be considered. This is explicitly given in 3.12 using dimensional regulari-
sation formalism of chapter one; the use of which will allow the construction of the

subtraction terms.

d3_2€k'i B 1 (ﬁ

(2m)3-2e2k)  2(2m)3-2¢ \ 2

2—2¢
dg; = ) §7(1 = y) " d&idy; AT (3.12)

Where & = 2\% and y;; = 1 — {;—ZZ = cos 0;;; these variables are understood to be
given in the partonic centre of mass frame. The construction of the subtraction terms
will now be considered for a generic function of the one particle phase space; for the
purpose of simplification, at first only the energy variable &; will be considered. The

integral given in 3.13 represents the integral of this function over the (energy) part

of the phase space.
/ A& (&) (3.13)

If it is supposed that this integral is singular in the soft limit of &;, the subtraction
procedure can be applied to 3.13 to give an finite integral and an explicitly singular
term. In FKS it is the singular limit of the function itself which is used as the
subtraction term, in the case of 3.13 the soft limit of ¢g(&;). To demonstrate this
subtraction the soft limit of this function, ©(&; — & )& ' 2g(0) (where the theta
function represents a phase space cut whose function will be explained later) is simply

added and subtracted as is shown in 3.14.

/ A& {O(& — )&y 77 9(0) + &7 (9(&) — O(& — Eeur)g(0)) (3.14)

To give the equivalent of the integrated term, the integral over &; is performed on one
of the soft limit terms. As this is formally divergent, dimensional regularisation has

implicitly been used to write down the result.

[ s g6 =-S5 g00)
[ 2Ol py s o)) a1

This expression now mimics the form for a schematic subtraction for the soft term
given in equation 3.9, with a subtracted piece plus a term with an explicit pole struc-

ture easily integrated over d§;. The variable £ .., introduced in 3.14, parameterises



3.2. Constructing the Subtraction Terms 45

the phase space cut and it should be noted that the above expression as a whole has

no dependence upon this parameter. This result can then be used to give the identity

Where
(é)ﬁ@»=§¢f@)—@@@f—@vm» (3.17)
Analogously a similar term for the collinear variable g;; can be shown to be
=00y 4 () ol eay
¢ 1=y ).
Where

1 1
(1=5) 700 = 1= ) = B0 = 1w (319
- Yii /. 1 — i
The subtraction procedure for a generic function, g(&;), allows the writing of the above
results for the soft and collinear variables &; and y;;; which perform the subtraction
of the singular limits of these variables. Given that the one particle phase space
integral for a parton i, which was parameterised in 3.12, also implictly appears in
the the expression for dal-(f) in 3.10, the results for & '7* and (1 — y;;)"17¢ can

also be applied to dai(f). EJR);

Since the only singular limits which can apply, to do
are precisely those limits considered in 3.17 and 3.18; these results can be used to
construct the subtraction terms. Forming the subtraction terms from 3.17 and 3.18
instantly splits the calculation into terms proportional to a delta function, which will
be the basis for the integrated terms, and a real cross section with subtracted singular
limits expressed in the form of plus distributions.

The terms proportional to delta functions can be analytically integrated over
the one particle phase space, which, as dimensional regularisation is used will give
an explicit pole structure; these constitute the integrated terms, which after this
procedure become functions on the Born phase space. The remaining terms contain
plus-like distributions, which implicitly subtract the singular limits of the real term;

these correspond to the real subtracted term. The finite, real subtracted term can be

written as

1 1 .
dojj"? = (5_) <1 _ y..> &1~ l/z'j)/\/l("ﬂ)(Tn+1)5ijmd@n+1 (3.20)
/e /e n
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Where for the real subtracted term the limit € — 0 has been taken, hence these terms
are now calculated in the standard four dimensions. Schematically this finite, real

subtracted piece is of the following form

1
daz(fs) = dagf) - m Ot —&)H(0,yi5) + O(yij — 1+ yeur) H(&, 1)

Where the function H(§;,y;;) is defined to be.

H(&, yi3) = &1 — yig) M (r,41) S5
I, 1 <\/§

N(ani1)22m)3 \ 2

2

The subtraction terms, as schematically given in 3.21, are split into three terms; the

9. To write down explicit expressions for

soft, collinear and soft-collinear limit of dai(f
these subtraction terms, the factorisation of the QCD amplitudes in soft and collinear
limits can be used; use of these results to show expressions for real subtraction terms

is delayed until the next section.

3.3 Real Subtraction Terms

The previous section discusses the construction of the subtraction terms for a generic
phase space slice of the real term, daz-(]]-’3 S), the real subtraction part of this term is
then given explicitly in 3.20. The complete subtraction structure for FKS is simply
the sum of the subtraction terms of all the individual phase space slices , as expressed
by 3.23.
doFS) = Z daffs) (3.23)
ij

There is nothing unique about the results in 3.20, for a generic slice, daz-(f”s) of the

real term; and as a result they can be applied to any partition of the phase space;



3.3. Real Subtraction Terms 47

The complete real subtraction term, in FKS, is therefore simply the sum of these

terms for all the phase space slices, as given in 3.24.

1 1 In
At = Z ( ) < >51'2(1—yz‘j)M(nH)(Tn+1)5ijj\/’—dq)n+1

i &i 1 — i (Any1)

(3.24)
For each partition of the phase space the plus distributions enforce the subtraction
of these unresolved singular limits, which are divided into the soft subtraction term
and the collinear subtraction term which are subtracted separately. In addition a
soft-collinear subtraction term, subject to both unresolved limits, and with a change
of sign, is included from the plus distributions to ensure this combined limit is not
subject to double counting from other subtraction terms. These subtraction terms
from plus distributions are given schematically in the previous section as the singular

limit of the real term which they subtract, for example the soft term

@(gcut - gz)H(()) yz]>

where H (&;,y;;) is properly defined in equation 3.22. The approach that is taken, and
which will allow FKS subtraction to be applied algorithmically to a generic process,
to calculate these unresolved limits will be to utilise factorisation of QCD amplitudes.
The factorisation of QCD matrix elements is discussed in chapter one, and in the case
of FKS allows the soft or collinear unresolved limits of the real term to be written
in terms of a Born like term and a generic function of the unresolved momenta. The
subtraction terms for FKS, which are entirely comprised of such limits of the real
term, can then be written in this fashion and hence given a concrete functional form
that is analogous to that of Catani Seymour dipoles.

The factorisation, in the soft and collinear kinematic limits, also applies to the phase
space; the phase space for the real term in such limits factorises into a Born like
phase space, which is acted on by the Born level term, and a one particle phase
space of the soft/collinear parton. This phase space factorisation is discussed, in
the context of Catani Seymour subtraction, in chapter two and also applies to the
present discussion. For the calculation of subtraction terms this Born like phase space

must be computed from the from the real phase space, such that this factorisation
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occurs and that both phase spaces are equivalent in either the soft or collinear limit.
Computationally this is accomplished by a set of momentum maps, from the real to
the Born set, and vary according the subtraction term; unlike in Catani Seymour
these maps are not specified for FKS. Discussion of these maps is withheld until the
implementation is described in chapter four.

For the remainder of this section the explicit form of the subtraction terms, using the

QCD factorisation results will be reviewed.

3.3.1 Soft Term

The soft subtraction term, given implicitly as the unresolved limit of H (0, y;;) in 3.21,

can, for a generic phase space slice, be considered by taking the soft limit of 3.22

1 T
d Ssoft _ _ — |2 1— vy, M n+1)Sl I 4o,
’ &i(1 = yij) G- uy) TN (ansy) 60
= ; 201 — yss (n+1) e /. N a3
= g [0 s MO 86 = Ot (kD) dawdd, (325)

To calculate this limit, as has been discussed, the factorisation of QCD amplitudes is
made use of; the soft limit of a generic QCD matrix element squared is quoted from

chapter one to be

511_113053(1 =y MUY (R 1) = dgadma (1= yy) Y 0 ]:km Mo ({k}n)

i (3.26)
The effect of the soft limit on the momenta is formally taken to be equivalent to
performing a map on the momenta, the notation of k is taken to indicate the mapping.
It is noted that this term, due to the & term is in fact finite in this limit; this is
a general observation of the singular limits of H(¢;,v;;), which despite containing
divergent matrix elements is constructed such that it is in fact finite. This forces the
in

result that the singular part of the subtraction term is solely the result of m
2 %]

the plus distributions.
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3.3.2 Collinear Term

The collinear subtraction term, like the soft term, is given implicitly in the subtracted

real term in 3.21 via the plus distribution for y;;. This term can be read off to be

1 In
d Seoll _ = 22 1 — y;: )M n+1)Sl —do,
o fz(l — yw) f ( y]) JN(an—H) +1 .
1 ) J > :
_ 2(1 — s (n+1) s = 1) — dd 2
51(1 _ yij) [5@( yz])M ]yij—>l SZJ (yZ] )N(an+1) ({k})dQSZd n (3 7)

Where again the effect of the collinear limit on the phase space integral is taken to
give the phase space integral over the mapped momenta. Again to calculate this
term, the collinear limit of the matrix element squared is considered; the well known

result is quoted from chapter one and is given by

16mag

P ()M (i {kya)+

16 s a 7
" Quyon (DM (R} (3.28)

Jim (1= ) MO () =

where again the effect of the limit on the momenta is taken to be equivalent to
mapping the momenta. It is noted that this term, much like the soft term, is in fact
finite in this limit due to the appearance of the factor 1 — y;;; as has been noted

1 : . . . (0)
=y, 0 the plus distributions. Pajaij(Z)

the singular part is the result of the term
are the Altarelli-Parsi splitting functions, where P(z) = (1 — z)P(z). The splitting
functions present in this term, the Altarelli-Parsi splitting functions PCE]L)IU( ) (where
P(z) = (1 — 2)P(z)) and the functions Q(z) associated with the angular term in
the expression are given as functions of the fractional energy, z, of the parton j after

splitting (where this splitting would give the n+1 parton process for the real). For the

which after

final state collinear term the fractional energy is defined to be z = Ei o

. For initial state terms this fractional

the phase space mapping is given by z = 1— B
energy is instead given by z = 1 —¢&;. The second term in the expression is given by a
splitting kernel, Q(z) and a term M ™ ({k},), which is known as the reduced matrix
element; as has been shown in chapter one this term is the result of spin dependence

of the splitting functions, which only occurs for gluons. Generally an integral over the

phase space would see this term vanish, however it must in principle be included to
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avoid large numerical instabilities in the integration. Its form is discussed in chapter

one and is given explicitly in appendix B.

3.3.3 Soft Collinear Term

The soft collinear limit, which is included as one of the subtraction terms has not
been included as a limit above. To obtain this term, the soft limit of the collinear
term can be applied (the reverse application of limits will also yield the same result

but it is somewhat easier to obtain this way) this yields

- 16T, - o
lim &1 — g MOV RYur) = G PO, (DMO({R)) (3.29)

&4)0 yij—>1

It is noted that this term, which has a different sign to the other terms, exists to
prevent double counting of singular limits. Essentially it ensures that the region of
the soft-collinear limit is subtracted only once (it is implicitly included in both the

soft and collinear terms).

3.4 Integrated terms

The integrated terms of a generic subtraction scheme are simply given by the integral
of the subtraction terms over the phase space of the unresolved parton in the real

process.

do!!) = / do ) (3.30)
1

The subtraction terms are by construction divergent over this integral, and to be
written down a regularisation scheme is required; the choice made here will be that of
dimensional regularisation. For FKS subtraction, in which dimensional regularisation
has been used in the derivation of the structure, this seems an appropriate choice. The
pole structure from the complete integrated term will then cancel the pole structure
from the virtual terms (assuming loop integrals are calculated using dimensional
regularisation as seems sensible). For FKS the integrated terms can be obtained from

the first term of the &~ and yigl_e expressions given in section 3.2. These terms
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are proportional to delta functions, and so are in principle not difficult to integrate.
The section below will simply quote the results of these integrals, a more complete
derivation of the integrated terms is given in [10]. As with the real subtraction terms,
the setting of matrix elements squared to § = 0 or y;; = 1 is conducted by using the
factorisation of these terms in the soft and collinear limits. The appearance of Born

matrix elements in the integrated terms are the result of using this factorisation.

3.4.1 Soft Term

The integrated soft term can simply be read off from the section 3.2, it is given by

dO'(s): gcut 5(5 )§2M(n+1)(7‘ ) Jn 1 \/g 2—2¢
’ o Y N ang) 2(2mP %\ 2

(1 —y7) d&dy;dQ7*dg, (3.31)

Performing the one particle phase space integral (ie the integrals of &;,y;; and ;)

this becomes

(1,S) div e Jn
do-lj gaz 2 2 Z I Ir g Mnm(rn,[z}>cz‘]‘/\/-(—

an+1)d¢n (3.32)

nm

Where ¢;; is the soft limit of S;;. This has the property > ¢;; = 1, so
J

(I S) d (1,5) as 1 gdiv | greg ) In d 3.33
Z Tij 9“12 2 Z( nm T nm) M”m(rn,[%])N(an+l> ¢n ( : )

n#m

The index 7, representing the soft particle from the n 4+ 1 matrix element has no real
effect on this term. It can therefore be summed over trivially, the effect is to change
from the normalisation factor from the real process, N (a,y1) to the normalisation

factor for the Born process. This sum now gives the total soft subtraction term.

1 Qg iv €| Jn
do—(I7S) _ ZdO_Z(I,S) — 5% Z (I'Sm ‘f‘I;Zr%) Mnm(rn,[l])md(bn

n#m
Lo
227

n#Em

(T + 758) do'lB) (ra)  (3.34)
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This is the total integrated soft term. The quantities Z3Y and ZI°¢ are given by

e gcu S f?u S knkm . knkm
Z;fm% = {logQ Qt2 + log Q; log SE.E, — Liy Yoo
1 2k, .k 2k, .k K.k
—log? == _og (4 — =2 ) ] T 21og?2 .
Tyl g T8 ( EnEm> 5B E, %% ] (3.35)
. 4m)e (AN T1 1 2k, .k AE,E
Ile — ( HFR — 2 n-hvm 1 nt“m .
" T(1—e) (QZ) L? € (Og Q* s )} (3:36)

This is the result assuming all coloured objects in the process are massless. However
when there are massive coloured particles the above is modified, the results of which
are shown in appendix B. It is interesting to note that massive partons enter this term
(if they exist in the process) not through FKS pairs (from which massive particles
are excluded) but from considering the eikonal limit, which includes a sum over all
coloured objects. The scale Q2 is again the Ellis-Sexton scale which also appears in

the virtual terms.

3.4.2 Final state collinear terms

The integrated collinear term for final state partons, that is both ¢ and j are final
state partons, can be read off to be
cu e 1 1 7
do(©) — _M(;(l — y) {(6_) 9 ( 0§€ ) } MO ()
€ i/ ¢ i c

S. . I 1 \/E
YN (an41) 2(2m)372¢ | 2

2—2¢
) (1 = y5)d&dy;;dQ7*dg,  (3.37)

The one particle phase space integrals can be performed and the result for the final

state collinear term is given below.

—€ 2\ € .
oty — Qs (4m)7C (“ ) E {y(aj) — 20(a;) log 2 } do®(r,)
E:

N 2 F(l - E) @ € gcut\/g

Qs 15B) "(a;) — log 2Jeut N ,
+ 24 <rn>;[v (0~ 10 2% (3 (a) — 2o

2FE; )
gcut\/g

2F 2F;
+20(0y) (1082 22 g6 ) ~ 20 hog 22| (239)

An implicit sum over the 7 index has been performed, as for the soft term, this has

the same effect of changing the normalisation factors. Again the scale Q2 is that



3.4. Integrated terms 53

of Ellis-Sexton scale which also appears in the virtual terms. The terms 7(a;) and

7'(ay) is defined for quarks and gluons as

N2 -1 2 23
19) = =5~ 7= _CA - iCA — S TeNr (3.39)
3 ’ 27T
1a) =350 (0= —CF - Cr (3.40)

where Np is defined as the number of quark flavours.

3.4.3 Initial state collinear term

The collinear limit with any initial state parton (in the FKS pair i is restricted to be
in the final state, hence only 7 can be in the initial state), like other collinear limits
for the real term is in principle singular, as such it has an associated subtraction
term in FKS. The associated integrated subtraction term for this piece is completely
analogous to the term given for final state collinear term in the previous subsection.
However the reason for the separate consideration here is their combination with
terms from the PDF's. Divergences from the initial state collinear limits are not com-
pletely cancelled by loop contributions, however these are cancelled by the inclusion
of the PDF counter terms discussed in chapters one and two. It is recalled that these
are necessary to maintain the distinction between the hard process considered in the
partonic cross section and the softer terms which contribute via PDFs. To O(«) the

PDF counter terms to the partonic cross section are given by

Ao (k1. k) = ;);ml_e (““) > / do (Pda ~+ Kao >) dogy) (1€ k)
(3.41)

where K, are regularisation scheme dependent functions, for MS, which is the scheme

employed for all results in this work K,q = 0. When combined with the counter term
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from the PDF the initial state integrated term becomes

dO_(Cm—‘rcnt) (471-)76 ,U_Q ‘ 1 . 1 :Ug”
J 27T [(1—e¢) \Q? QQ

X [’7(011) + 2O(aj> log fcut] dU(B) (Tn [z])

s cut lggz
e e i-o [(g) o 2 (%)

a;j ¢

&P, (1- &) (&)C}daw(zﬁp( Sk (3.42)

An implicit sum over the ¢ index has been performed for the collinear part, as was
done for the soft term, this has the same effect of changing the normalisation factors.
Again the scale Q% is that of Ellis-Sexton scale which also appears in the virtual

terms.



Chapter 4

Implementation

The following chapter will describe the implementation of the FKS subtraction, which
is reviewed in the previous chapter, into the event generator AMEGIC++ [6], part of
the SHERPA Monte Carlo event generator package [37]. This allows the automatic
calculation, of the real and subtraction terms, of a NLO cross section within the FKS
method; at present this implementation is restricted to the case of massless partons.
The actual calculation of FKS subtracted cross sections requires more details than the
review of the method given in chapter three. Most of these relate to the subtracted
real term, which is often the bottleneck for any NLO calculation (for many processes
the virtual term is bottleneck). These include choices for the FKS partitioning func-
tions, and the kinematic mapping of the phase space for subtraction terms; these are
issues which are not specified by the FKS subtraction scheme and are thus details of
the implemenatation.

The biggest issue associated with the implementation are the aforementioned kine-
matic maps, associated with n parton matrix elements in the subtraction terms for
the n + 1 matrix elements. These maps, from n 4+ 1 to n parton kinematics, must
have the same limiting behaviour as the subtraction terms themselves (ie soft or
collinear); such maps are discussed in depth for all relevant limits and include a dis-
tinction between initial and final state partons. The explicit forms of the subtraction
terms are given and the organisation of the real and subtraction terms in the code are

discussed. Additionally the validity of the implemenatation is tested, and the results
55
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are discussed.

4.1 Partitioning Functions

The construction of subtraction terms in the FKS formalism relies upon a partition
of phase space of the real term, as was reviewed in chapter three; each partition of
the phase space must allow only a restricted set of unresolved limits of the real term.
In FKS this is accomplished by the introduction of partitioning functions, which in
chapter three are labelled as S;;; the subscript ij refers to the FKS pair 7,5. For
the general description of FKS the precise form of these variables is not necessary,
however the form is restricted by the constraints, described in more detail in chapter

three, but are also summarised below.

k’i~>0

lim Sij = G where E Cij = 1
J

klll‘f‘ilJ Sij + Sji =1 kl,}gno Sij =0 if n 7& [

The choice of partitioning functions, S;; is, as has been discussed, not unique as
any set of functions obeying the contraints outlined in chapter three are appropriate.
However this section will describe the functional form of S;; used in this implemen-
tation.

The original FKS paper [10] gave the partitions in terms of © functions, while other
implementations such as [38] use functions of products, kj,.k,,. This work will utilise
the partition functions defined in [36]; these are based on angular and energy vari-
ables, as FKS is itself and are shown in 4.1 to 4.6.

1 E;
S;i = ——h;i(2 = ———
Dd;; i(25) “i E; + E;

2E,\" (2E,\" 2
dnm—(\/g> (\/§> (1 = BnBm cos ) ﬁn—ﬂl—g—% (4.2)

Where a,, by are arbitrary real, positive parameters; for this implementation the choice

(4.1)

as = 1 and by, = 1 has been used.
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1
D= —h 4.3
klPZ " (43)
€EFFKS
1Vj <2
hij = (4.4)
h(z) V j>3
1 — 2ap,
hz) = — =2 ap =1 (4.5)

Z2ah + (1 _ z)Qah

Again h(z) does not have a unique choice, but it must obey

limh(z) =1 limh(z)=0 h(z)+h(l—2)=1 (4.6)

z—0 z—1

These properties are required from the definition of the partitioning function, the first

terms ensure the correct soft limits for ¢ and 7 and the final term that ]}i‘r‘g Sii+S; =1
illk;

(for final state j).

4.1.1 Some efficiencies

The general form of the partitioning function S;; is given in the section above. How-
ever in the implementation it is possible to minimise the number of subtraction terms
and therefore speed up calculations, by alternating the form of S;; under certain con-
ditions. To make such alterations, it is useful to compare unresolved limits allowed
by partitioning functions which differ only in the order of partons; for example S;;
and Sj;. Such partitions will allow the same collinear limit of partons ¢ and j, but
will however admit different soft limits. For example S;; will admit the soft limit of
parton ¢ and Sj; that of j. This is relavant to the discussion because, under certain
conditions, the soft limit of a parton may not lead to a singular form of the real
matrix element. This occurs for partons which are not gluons, and as a result it is
not necessary to construct subtraction terms for such unresolved limits.

As a result some of the partitions Sj; can be neglected if parton j is not gluonic,

as the collinear limit can be accommodated in .S;;; given an appropriate modification

5

of S;j. For FKS pairs (i,7), both of which are in the final state and which contain only
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one gluon, such a modification would require the results lim1 Sij =1land S;; =0. To
Yij—

accomodate this, the partitioning functions defined in 4.4 can be modified to take the

form given in 4.7 to 4.8; with other elements of the partitioning functions remaining

unchanged from those definitions given in 4.1 to 4.6.
hij =1 if a; € g, Q; ¢ g (47)

hj;=0 ifa,€g, a;j &g (4.8)

Additionally for FKS pairs where neither parton is gluonic limits, and hence where
neither soft subtraction term is necessary, a similar modification of the partitioning
functions can be made to 4.7. Analogously to the one gluon case, the choice can be

made to set one contribution to zero. In this case the choice

is made.

4.2 Integrated Terms

The integrated subtraction terms of any subtraction scheme, are formed by an ana-
lytic integral of a subtraction term over a one particle phase space, which is somehow
factorised from a Born level phase space; in FKS this is the phase space of an unre-
solved parton in either a soft or collinear limit.

The integrated term therefore always lies in the Born level phase space. The
organisation of the calculation in AMEGIC++ utilises this fact by performing the cal-
culation of the Born and integrated terms at the same stage. In this respect the
organisation of the integrated term in the FKS implementation differs little from the
treatment of integrated subtraction terms in the Catani Seymour implementation in
AMEGIC++ described in [39]. The full integrated subtraction terms, for FKS, are
given in chapter three, and for FKS pairs associated with entirely final state partons
there is little to add to the discussion given there. In this implementation the treat-

ment of the initial state collinear terms is slightly different to the expressions given in
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the chapter three. The reorganisation of these terms is for reasons of computational
efficiency, by allowing for fewer recalculations of the matrix elements; this is discussed
in full in the following subsection. The calculation of the integrated terms takes place,
in the AMECGIC++ implementation, within the file Single_Virtual CorrectionFKS, in-
cluding both the simple final state terms and the initial state terms described below.
This file also calls the results of the virtual piece of the calculation and also contains

the option to check the pole cancellation between integrated and virtual terms.

4.2.1 Initial state terms

The expression for the integrated subtraction terms, given in 4.10 and discussed in
chapter three, is considered separately from final state collinear subtraction terms

because it has been combined with the PDF counter term.

dO-(CLTL+Cnt) (477)_6 :u_z ‘ 1 . 1 /Lfc
G o ri—o \Q? &2

X [y(a1) + 2C(a;) log Een) do B (r, i)

Qs 5Yout log &;
g fer, 06 () e g2 (2]

—& P, (1- &) (§> }da(B)( oy (1= &)k;)dg (4.10)

The form of the initial state term, as shown in 4.10, is of a splitting function convo-
luted with a matrix element squared; where the partonic flavour of the initial state
FKS parton is summed over. It is noted that for the calculation of the full hadronic
cross section, all possible partonic cross sections which contribute to the hadronic
process must be included; the full hadronic cross section calculation is therefore writ-
ten in terms of a sum over all initial state partons. Combining this sum with the

initial state integrated terms yields a term of the form given in 4.11, for the form of
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the hadronic integrated terms (associated with initial state partons).

S [antwatnision [ {](2)+1] o mm)

al,a2

1
+ Z/ dfz‘galafl (z) [dUB(TfL% (1 = &)mp1,mp2) — O — fcut)dUB(T?f, mpi, 772192)]
al) 0

+Ka1a’1 (DdUB (7“3/1 ,1P1)

1
+> / AEiGasey (§) [A07 (5, mipn, (1= )map) = O(& — Eead) Ao (185, iy, 7o) |
al, 0

 Kasag ()P (1, mpp) | (4.11)

It must be noted that in this context C (%) and g.(x) represent generic functions,
and where h is a generic constant. The aim here is to rewrite this term such that
it is more computationally efficient; in this effort it heavily borrows from [39], which
shows the same method applied to initial state integrated dipole terms in Catani
Seymour subtraction. It is noted that, computationally, the calculation of the Born
level matrix element is the most demanding. Therefore it is not ideal that the form
of the integrated term given above requires the re-computation of this three times to
deal with rescaling the initial state partonic energy (i.e. do®(nip1,nep2), doB((1 —
&)mp1, nepe) and doP (nyp1, (1 —&)neps)) and that the partonic process changes with
the presence of splitting function terms. To deal with this in a more efficient manner,
it would be nicer to rewrite this expression in terms of one matrix element with no
rescaling. This can indeed be done by two steps; the first is to reorder the sum over
partons for a and a’ for the relevant terms. The second is to change integration
variables on the terms with rescaled partonic momenta from 7 to ' = (1 — &;)n,
with 77 then relabelled to . Applying this to the integrated, initial state collinear

term now takes the form of 4.12; which is the form the integrated term takes in this
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implemenatation of FKS.

> [ ananfimiten) | o anry o (1) +n

al,a2

fal 771/(1—&)) . fa’l(nl) o (r
+Z/%[§wam@ﬁmﬂ&mmuﬂ

1

fa’1<771) ' o (2
+thﬁmwmilﬁﬂagm%u>
T hym/(1-€) fu (12)
+Z/k4 Tt o) = Ty O16 ~ s
fa’Q(UQ) /

+ Kaza’2<1) + / dgz@(gz - gcut)gaza’z (ZIZ’) (412)

, J a2(772) 2
In the implementation the integral over &;, as expressed in 4.12, is computed numer-
ically in Single_Virtual CorrectionFKS; for each call of the integrated terms for the
phase space integration the file calls a new value of &;, thus the §; integral is performed

with the phase space integration.

4.3 Real Subtraction Terms

4.3.1 Organisation of the Calculation

The real subtraction term is, by definition, the finite contribution that is yielded by
addition of subtraction terms to the real cross section, schematically it has the form
of 4.13

Ao = 4o -3~ o) (4.13)

It is, as can be seen, constructed from two objects. The first is a tree level ma-
trix element squared, with an additional partonic added to the Born level process;
in terms of implementation this can be obtained fairly easily when working in an
automatic matrix element generator such as AMEGIC++. The second are the full

set of subtraction terms, which in FKS are constructed by splitting the real phase
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space into regions defined by FKS pairs; in each region the subtraction terms are
represented implicitly by plus distributions of energy and angular variables of the
FKS pairs. The explicit form of the subtraction terms can be calculated by taking
the singular limits of these variables on the real term; this, as has been discussed
in chapter three, is the result of the factorisation of the real matrix element in such
limits. In the implementation the real subtraction term is constructed from a file,
Single_Real CorrectionFKS, which calls the real matrix element squared from the
matrix element generator. The subtraction is then organised thus; the real process
file iterates over all valid pairs of partons from the real process and assigns these to
become FKS pairs. For each FKS pair, the collinear subtraction subtraction term is
then calculated in the file Single_CollTermFKS; this subtraction file also contains the
required functions to perform the required kinematic map from the real to Born phase
space or {k}ns1 — {k}n. The soft terms are subtracted separtely, but the structure
of the computation is similar to the collinear part. The iteration over possible FKS
pairs in the collinear terms is then replaced with a similar iteration over final state
gluons, the functional form of the soft subtraction term is then calculated in Sin-
gle_Soft TermFKS. This again calculates the appropriate kinematic maps although
the soft maps are in general different to the collinear ones. The soft-collinear sub-
traction terms then are calculated within the soft term, though in principle they can
be included with the collinear terms. It should be noted that the subtraction terms,
as calculated in both subtraction files, utilize Born level terms calculated within the
AMEGIC++ matrix element generator; these are then accessed within these files to

form the subtraction terms.

4.3.2 Kinematics

The full NLO cross section requires the integration of all terms that make up the NLO
calculation over their respective phase spaces. The real subtraction term, in which
both the real and subtraction terms are defined on an n+ 1 particle phase space, must
then be integrated over this n 4 1 particle phase space. In the implementation this

integral is carried out with the Monte Carlo integration routine native to SHERPA,
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details of which are beyond the scope of this thesis, but which can be found in [37].
However, the construction of the subtraction terms via plus distributions creates
complications for the momenta of the subtraction terms. Consider the example of

subtracting a soft term.

1 1 .
[ donerg ) - [ gt [dousie =0 i) (41)

Where {]AC} is defined as the set of » momenta which result from the soft limit of ;.
It is clear, from momentum conservation, that this new set of momenta are not equal
to the momenta from the real term, but must somehow correspond to a soft and/or
collinear limit of that set of momenta. It is noted that in such limits the phase
space factorises into a Born like phase space and a one particle phase for the an
unresolved parton; it is neccessary, for the calculation of the real subtraction terms,
to be able to construct such a phase space from the real phase space. To accomplish
this, kinematic maps are constructed which map a set of n 4+ 1 momenta to a set of n
momenta i.e. {k}ns1 — {k}n, which are equivalent to these limits. The construction
of such maps can be non trivial, as the result of constraints on the phase space;
such as the requirement that the momenta must remain on their mass shells. The
notation used from now on in this section will clearly show unmapped momenta as k
and mapped momenta as k.
The mapping of momenta, for use in subtraction terms, in this fashion does not
ensure that the correct phase space integral is applied to the subtraction terms.
The Monte Carlo integration of these terms is carried out over the unmapped phase
space, however given the nature of the plus distributions it is the mapped phase space
which must be integrated over. To correct this, without substantial modification of
the Monte Carlo intergration native to SHERPA , Jacobians are constructed from the
relevant relations between the mapped and unmapped monenta. Including these
Jacobians in the subtraction terms then ensures that integration over the unmapped
phase space, becomes equivalent to conducting the integral over the mapped phase
space, as is required by the plus distributions. In the notation of 4.14, this is is
represented by 4.15.

A dé;dy;;ASY = Jddp 4 (4.15)
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For other subtraction schemes, such as Catani-Seymour, these kinematic maps are
specified for particular subtraction terms; however this is not the case for FKS. In
the original FKS papers [10] and [34] no kinematic maps are given, as no unique map
exists; rather any map which gives the correct infrared limits (the soft or collinear
limits) can in principle be used. The maps presented in the following section are those
chosen for this implementation and it is stressed that other choices are possible. The
momentum maps for subtraction terms used in this implementation will in general be
different for both the two kinematic limits and to whether the remapping is applied
to initial or final state partons; that the mapping for the soft and collinear limits,
should in general be different, is fairly intuitive given the difference in the kinematics,
however the dependence on initial and final states is not. This dependence is the result
of constraints placed on the mapping of initial state partonic momenta, where the
use of PDF's restricts any mapping of partonic momenta to a rescaling. All maps

used have been tested for the correct soft or collinear limits to ensure their validity.

4.3.3 Final State Collinear Map

This section will detail the momentum map used for collinear subtraction terms,
where the FKS partons for this term are both in the final state. The map is con-
structed by considering the collinear limit of k;, k; but it is also valid in the &; soft

limit, it is outlined in detail in [40]. To begin, the following definitions are made:

q=p1+D2 k =k +k; (4.16)

krec = Z k” MrQec = krzec (417)
n#i,j

bree = q — k Free = —k (4.18)

where p; o are the initial state partonic momenta (for hadronic initials) or simply
the initial state momenta (for e.g. electrons). To map the momenta, all final state
partons, except k; and k; are boosted, and a new combined momentum k;; is defined
as

'Z%ij =q — Bkrec (419)
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where B is this boost; this is defined to act in the direction Erec. This definition for
k;; now ensures conservation of momentum. The combined momenta k;; is required
to remain massless; combining ths requirement with 4.19 allows the boost velocity to

be computed as shown in 4.20.

2 _ (k0 k* 2
ﬁ: q ( rec_'_‘ TC|) (42())
q2 _'_ (kl(r)ec + |krec‘)2

The set of mapped momenta, excluding l%ij, are now defined as by acting this boost

upon the unmapped momenta, as expressed by 4.21.
by =Bk, 1+, (4.21)

The mapping of l%ij is then defined by 4.19. This map can then be applied to n + 1
momenta from the real term to construct appropriate momenta for the subtraction
terms.

When the Monte Carlo integration of the subtraction term occurs in SHERPA, this
will be conducted over the unmapped phase space; this is problematic as the plus
distributions, upon which the subtraction scheme is built, require the phase space
integral of the subtraction terms to be performed over the mapped space. To ensure
the correct integration, the Jacobian defined by the transformation of the real to
mapped phase space can be utilized; such a Jacobian must, by definition obey 4.15.

For this phase space mappping the Jacobian is computed in [40], and is expressed in

J = = (kg? — TJ) (4.22)

J

4.22.

The procedure of initiating a phase space integral over d¢, 1 and then mapping this
to an n momenta phase space for subtraction terms is a choice that has been made
in the implementation. It is instead perfectly possible to generate an n momenta
phase space dq@n, with independent variables ;, ;; and w which give the one particle
phase phase space over k;, and perform an inverse map to real phase space, {k},1.
This is in fact done in some implementations of FKS subtraction, notably MADFKS,

but the structure of how phase space integrals are handled in SHERPA means that in
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practice it is simpler to make the choice outlined above.

The use of plus distributions to construct the subtraction terms, leads to the re-
quirement that, for the collinear subtraction terms, the mapped momenta should
be equivalent to the unmapped momenta in the collinear limit. Such a constraint
presents a useful test, both of the map and its implemenatation.

In the language of this momentum map, this requirement corresponds to the boost
specified by 4.20 tending to the identity. For a Lorentz boost specified by a boost
factor, (3, this requirement must correspond to the boost factor tending to zero in
the collinear limit as expressed in in 4.23; taking such a limit trivially reduces such
a Lorentz boost to the identity. For a Lorentz boost specified by a factor [, this

requirement is simply that the boost factor expressed in 4.23.

lim 8 =0 (4.23)

kil lkj
The condition 4.23 is however not apparent from the form of 4.20, and will now be
considered to show the validity of this phase space mapping. The condition 4.23 can
be shown by considering the form of k... in the collinear limit, which in the partonic

centre of mass frame can be expressed by 4.24-4.25.

K.=q¢ - E —E; (4.24)

|l;:rec| = E; + Ej (425)

Utilizing the results of 4.24 and 4.25, for the collinear limits of k... the result 4.26 is
apparent.

lim (k. + |kree])? = ¢° (4.26)

kZHk] rec
The limit expressed in 4.26, combined with the expression for the boost factor in 4.20,
leads simply to 4.23. Hence the collinear limit of this map reduces to the identity in

the collinear limit, as required.

4.3.4 Initial State Soft map

The soft subtraction term, when calculated independently from the collinear term

should have no dependence on other partons in the process; however despite the fact
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that soft contributions are indeed calculated in this way, there is a distinction to be
made between initial and final state kinematic terms from soft maps. This distinction
is a result of considering states that (at Born level) are entirely leptonic, in either
the initial or final states; in this case what is phrased as an initial state soft map is
used only for processes with soley partonic initial states and leptonic final states. In
the case of partonic initial and leptonic final state particles, any unresolved partonic
emission must occur off the initial state partons; as a result it is the kinematics of
the initial state partons that must be subject to the kinematic map (and vice-versa
with leptonic initial and partonic final states).

The momentum map for the soft initial state terms will now be outlined, again it is
described in detail in [40]. As with the final state collinear map, it is convenient to

begin with some definitions; for this map the quantity K. is defined in 4.27.

Ktot = Z kn = 371P1 —+ .CL’QPQ — ]{Zz (427)

n,[i]
To map the final states, excluding k;, the boosts, By, constructed such that K. has a

zero longitudinal component and By constructed such that K. has a zero transverse

component, are used to boost the final state excluding k;
ki = B BrBLk, (4.28)
The boost now leaves 4.27 to be of the form

K =Y _ky=21P + &3P (4.29)

[i]
Where the factors 2 2 are rescaled partonic fractions. The rescaling factors can be
determined, by noting that the boosts in 4.28 preserve the invariant mass and rapidity

between K and K. Considering the centre of mass frame for K, this amounts to the

conditions 4.30 for rapidity and 4.31 for the invariant mass.

1 2-6(1—yn) 1 T
—1 = —log — 4.30
2 ng—fi(l‘i"yﬂ) 2 %8 To (4:30)

A A

T1T2

s (4.31)

s —&s=
T1T9
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The rescaling factors can then be computed, by a simple manipulation from 4.30 and

4.31, to be:

Ty =21/ 1 — &\/2 gl yil) z 2V 1 — éZ\/ & 1 - yﬁ) <4-32)

2_51 1+yzl) 2— gz 1—%2)

where as FKS variables are constructed in the centre of mass frame, such that

yi1 = —Yi2. A key point to note is that the partonic momenta that are being mapped
are fractions of hadronic momenta; as this is a measurable quantity it cannot be
mapped. However, the partonic fraction, x which gives the partonic momenta, can
be mapped. So the partonic momenta are mapped what is really happening is a
rescaling of x (so initial state momenta cannot be boosted in a generic direction, as
this would change the direction of the hadronic momenta). So the mapping of par-
tonic momenta, in this case, takes the form of a rescaling of the partoncic fractions,
So for soft and soft-collinear terms the fraction = in the PDFs must be mapped.

The use of the SHERPA Monte Carlo integration routine for the subtraction term,
which will perform the integral over the unmapped phase space as discussed previ-
ously, requires the definition of a Jacobian to perform the integral over the mapped
phase space. For the case of this map, the Jacobian is simply results from the par-
tonic rescalings, and is given by 4.33; the affect of the Lorentz boosts does not change

the integration measure.
T1T2 1

= 4.33

1y 1—=¢& (4.33)
While this factor has been labelled a Jacobian, and in effect performs the same role,
this factor is actually the result of a rescaling of the variable s = 2x129P;. P, to

§ = 22129 P;. P, and not from any mapping of integrated variables.

The construction of subtraction terms, from plus distributions, leads to require-
ments on the momentum maps used for the subtraction terms; for the soft maps
the application of the momentum map must be equivalent to the soft limit of the
unmapped momenta. It is apparent, from their functional form, that in the soft limit

the mapped partonic energy fractions become equal to the unmapped ones, i.e.

lim ZEl 2 = T12 (434)

£1,2—0
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which clearly fulfils the requirement on the map. The boosts acting on the final
state momenta must therefore tend to the identity in the soft limit, to complete the
requirements on the map.

It is clear that in the soft limit Kyt = Y kn = 21 P + 22P»; and consequently
the boosts constructed with respect to this pnzi[;]ameter can be constrained. It is noted
that in the partonic centre of mass frame (in which calculations are conducted) Kot

will already possess zero longitudinal and transverse momentum; the construction of

the boosts to ensures these results will then lead to the identity.

4.3.5 Final State soft map

For reasons outlined in the previous subsection, the soft term requires separate maps
for initial and final partonic states, the final state map is outlined here. The overview
of this map is as follows; simply remove the soft parton k;, and construct a Lorentz
transform on remaining momenta such that they will be boosted into their combined
rest frame. The boosted momenta are then rescaled to ensure energy conservation.
This map is outlined in [41], and contains the implicit assumption that the input
partonic momenta are in the centre of mass frame.

As for the previous maps it will be convenient to begin with some definitions; first of
all the Lorentz boost 4.35 is defined, in addition to the parameters () and A in 4.36

and 4.37. 3 ) )
- (K+ K)"(K +K), K*K,

AN (K, K) =g", —2 (4.35)
(K + f(>2 K
Q =p1+p2 (4.36)
2@
=105 (4.37)

The Lorentz transform, as expressed by 4.35, is simply a generic transform to map
one momenta, & onto another K, and can be used to in this map to boost the final
state partonic momenta, without k; the soft parton, to their combined rest frame. The

mapped momneta, for all final state partonic momenta [k;], are defined to accomplish
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this according to 4.38.

= TAQ. (@~ KA (4.39)

The boost 4.38 is, broadly speaking, transforming the set of final state momenta
excluding k; into their combined centre of mass frame; while the % term performs a
rescaling that ensures conservation of momentum with the initial states.

The use of the SHERPA monte carlo integration routine for the subtraction term, which
will perform the integral over the unmapped phase space as discussed previously,
requires the definition of a Jacobian to perform the integral over the mapped phase
space. For this map, the Jacobian is largely a result of the scale factors present in
the transformation 4.38, and is given in 4.39.

1

This factor can simply be derived by considering a rescaling of the momenta by 1/\

(ie. k— %k) The change of the integral measure under such a rescaling is given in
4.40.

n 3 n n o n

1;[ %54@1 +p1— ; ky) = 1}%%/\454@1 +p1— ; l;?n) (4.40)
Accumulating the factors of A clearly yields 4.39.
While the above is sufficient to define the map, it is important to consider its validity;
one key requirement on such a map is the mapped phase space’s equivalence to the
real phase space in the (soft) kinematic limit. The condition on the Lorentz boost,
expressed in 4.38, caused by this requirement amounts to the transform becoming
the identity, in the kinematic limit. The functional form of the variables and boost
can be used to show this algebraically. The application of the soft limit to 4.37 is

relatively straightforward and leads to the result

lim A =1 (4.41)

k;i—ﬂ)
this limit also gives the functional form of the boost to be A(Q, Q). After some

unremarkable algebra the boost becomes

AMQ,Q)F, =g", (4.42)
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which is simply the identity. This map therefore must produce mapped momenta

that are equivalent to unmapped momenta in the soft limit.

4.3.6 Initial state Collinear map

This subsection will now detail the momentum map used for collinear subtraction
terms with FKS pairs which include an initial state parton. As has been discussed the
presence of initial state partons restricts the mapping of these partons to a rescaling.
The overview of this map is that k; is mapped to some fraction, z of itself (which
corresponds to the fraction z in the splitting functions), the final state momenta are
then Lorentz boosted to ensure conservation of momentum. As for the previous maps,

it is convienient to begin with some definitions; the fraction, z, used for the partonic

z= (1 - kQ) (4.43)

rescaling, is defined to be

ky .k
where this value is also the partonic fraction of the collinear splitting. Additionally
the Lorentz boost 4.44 is defined.

. (K + K)"(K + K), _K'K,

Auy(K7 K) = gluu —2 N\ 2 K2 (444>
(K +K)

The boost 4.44 is also found in the final state soft map, and is used for the same
purpose here, to boost all final state momenta, excluding k;, to their collective rest
frame. In this mapping, the z fraction is then used to rescale the initial state FKS
parton, j in the manner of 4.45.

A kQ
i=(1——= |k 4.4
k] ( kl.kQ) k] ( 5)

The mapped final state momenta are then constructed by applying a Lorentz boost

on all the existing momenta, excluded k;, according to 4.46
fon = A (kg 4 ko, Q — i)K2 (4.46)

Where k represents the mapped momenta, k, represents all final state momenta,

Q) = ki + ko, and the Lorentz transform is given in 4.44. This boost, as for the
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equivalent boost in the final state map, simple transforms the final state momenta,
excluding k;, to their collective rest frame. This map is detailed in [32], and is in fact
the same map used for Initial-Initial dipole functions in Catani Seymour subtraction.
For Collinear mapping the rescaling of PDFs, as required for soft terms, does not
occur. The reason is that in the soft limit, the momenta k; must be treated as if it’s
zero, hence the total partonic energy of the process will change, requiring remapped
PDF’s. For collinear terms, the momenta k; does not tend to zero, it simply becomes
collinear to k;; hence the total momenta in the initial state is unchanged, meaning
that the partonic energy fractions, x are unchanged by this map.

For other phase mappings presented in this work, the Jacobian associated with mod-
ifying the integration measure of unmapped phase space, to that of the mapped one
is discussed. In the case of this map, the only actions on the momenta are a rescaling
of one initial state parton, and a Lorentz boost on all final state partons. For rea-
sons that are discussed above, namely that the rescaling doesn’t change the partonic
fractions, there is no factor analagous to 4.33 for this map; additionally the affect of
Lorentz boosting, as has been discussed for other maps, does not change the integra-
tion measure. Hence for the case of this mapping, there is not a Jacobian factor.
The plus distribution for the collinear variable requires that the map is essentially
the equivalent of taking the collinear limit of the original momenta; hence this leads
to the requirement that the mapped momenta are equivalent to the unmapped mo-
menta in the collinear limit. This requirement is manifested in the momentum map,
by the constraint that the Lorentz boost expressed in 4.46 must tend to the identity
in the collinear limit. To show this, it is appropriate to start with the collinear limit
of /%j, which is apparent from 4.46 as l%j = kj — k;. The functional form of the boost

A“l,(l%l + ko, Q — k;) must then, after some unremarkable algebra become

AMQ = ki, Q — ki), = g", (4.47)

which is simply the identity. This map therefore must produce mapped momenta

that are equivalent to unmapped momenta in the collinear limit.
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4.4 Technical Cutoff

The implementation of a subtraction scheme such as FKS must deal with the sin-
gularities present in the integration of the real term. In theory this is completely
dealt with by the subtraction term. However for numerical calculations, the pres-
ence of infinite, or very large, numbers in the calculation can be problematic; this
mostly occurs in the form of large fluctuations in the numerical calculation, and can
therefore be the cause of large errors. There are two issues that cause these prob-
lems for numerical calculations; the first is the limited precision of numerical values
availible computationally. The second is the result of the unresolved limits of QCD
matrix elements, these have been discussed in previous chapters and form the ba-
sis for the construction of the FKS subtraction term. However in these discussions,
only the leading term in this limit is considered; this is appropriate when considering
singularities however, it is noted that for both the soft and collinear limits, of the
matrix element squared, subleading terms exist; these terms are of order (’)(%) for
the soft and O(W) for the collinear limit. The presence of such terms causes no
contribution to the singularity structure, hence their absence from prior discussion.
However it is clear that such terms will appear divergent in the soft or collinear limit,
despite being finite over the full phase space integral; and it these terms in the soft
and collinear regions that can cause large fluctuations and errors. To deal with these
issues, a numerical cutoff is placed upon the calculation, for the FKS variables &; and
1 — y;;. As is clear from discussion of the FKS method, singularities from the real
term correspond to the % and i becoming large in the soft or collinear limits; to
implement a cutoff of this form a lower limit, o, can simply be placed on &; and
1 —y;;. This approach rests upon the assumption that as the phase space cut is made
finer, the approximation to the analytic answer becomes better; consequently, as cut
is adjusted to become finer, the result of the calculation should converge to the same
value. This is considered in the next section, for this implementation, and the results

are commented upon.
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4.5 Tests of the Implementation

In the following section a series of tests, that have been applied to the implementation,
are described and the results of these tests are presented and discussed. These tests
are either straightforward checks, such as comparisons with other NLO codes or

technical checks such as correct behaviour in the cutoff region.

4.5.1 Parameter Variation

One check on an implementation of FKS subtraction is to consider the cutoff pa-
rameters &t and Y. These appear as phase space cuts in the subtraction terms
from the plus distributions and are explicitly part of the integrated terms. For self
consistency the variation of these parameters should not vary the cross section, as
they are introduced artificially by the subtraction scheme. Hence a good check on
the implementation is to calculate the cross section with varying values of &+ and
Yeut- To this effect the variation for both &, and Yo, (with the other held constant)
is plotted in figures 4.1 to 4.6 for ete™ — jj, eTe” — jjj and jj — eTe”. These
results plot the combined Born and integrated terms , the real term and the total
cross section against the cutoff parameters. These figures also display the fractional
errors of Born and Integrated terms, and the real terms. Additionally the combined
values are plotted with the equivalent result from Catani Seymour subtraction. The
combined Born and integrated piece and the real term are both calculated to 1%
accuracy in SHERPA, the NLO cross section here is simply the sum of these two
pieces.

As can be seen from figures 4.1 to 4.6, there is no variation over either of these pa-
rameters in any of the specified processes, this is therefore a good indication that

FKS subtraction has been successfully implemented.
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Figure 4.1: The variation of the NLO cross section for ete™ — jj as calculated by
the FKS implementation with the soft cutoff parameters &... The Integrated and

Real terms are plotted separately to display their variation
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Figure 4.2: The variation of the NLO cross section for ete™ — jj as calculated by

the FKS implementation with the collinear cutoff parameter Y.,. The Integrated

and Real terms are plotted separately to display their variation
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Figure 4.4: The variation of the NLO cross section for eTe™ — 757 as calculated by
the FKS implementation with the collinear cutoff parameter Y. The Integrated

and Real terms are plotted separately to display their variation
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Figure 4.5: The variation of the NLO cross section for jj — ete™ as calculated by the
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Figure 4.6: The variation of the NLO cross section for jj — eTe™ as calculated by

the FKS implementation with the collinear cutoff parameter Y.,. The Integrated

and Real terms are plotted separately to display their variation
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4.5.2 Convergence test for Subtraction Terms

The need for technical cutoffs in the implementation is discussed in the previous
section, and is for the twofold reasons of limited numerical precision in computations
and the behavouir of subleading terms of the matrix element in the unresolved limits.
Consequently a cutoff, ap,, is required on the values of the FKS variables & and

L and L

Yij, that prevent the discussed problems; which occur in the regions where ‘. "
2 ]

become large.

So a useful test of this implementation is to vary au,;, with the real subtracted
piece; if the implementation is correct, then as o, becomes small o9 should tend
to a common value. This test is conducted for the process ete™ — j7, jj — ete™,
and the plots shown in figures 4.7 and 4.8 give the variation of ¢(#%) with au;, for

these processes. The values of o/t

are calculated with FKS cut off parameters .,
Yeus set to 1,2 respectively, which allow the subtraction terms to be calculated over
the entire phase space. As such the only phase space cuts associated with values of

o9 are the result of qupin.
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Figure 4.7: The subtracted real term, o
in FKS for different numerical cutoff values, a,,, in the integration. FKS cutoff
parameters, .,y and Y.y set to 1,2 respectively such that only phase space cuts are

the result of ayyiy.
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As can be seen from the plots given in figures 4.7 and 4.8 there is a convergence

of o) for appim < 1075, which indicates that this cutoff procedure is valid for amin
below this value.
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Figure 4.8: The subtracted real term, o/*9)

calculated for the process jj — ete™
in FKS for different numerical cutoff values, ., in the integration. FKS cutoff

parameters, .. and Y.y set to 1,2 respectively such that only phase space cuts are
the result of apip.

4.5.3 Comparison with Catani Seymour Cross Sections

One of the most obvious comparisons for an implementation of NLO calulations is
to cross check the results against the same calculation implemented with a different
method. For the implementation of FKS subtraction within AMEGIC++ the obvious
check on the calculation is the comparison against the existing Catani Seymour im-

plementation in the same generator, which is described in [39]. The following table
gives a list of processes for which both FKS and Catani-Seymour subtraction is used
to calculate the real component of the NLO cross sections.

All energies, cuts, PDFs and jet selectors used are identical for both methods (the set

up for running simply differs by a switch which distinguishes FKS from CS), and the

details are not discussed as the aim here is to demonstrate consistency with another
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method rather than provide comprehensive predictions. Given the cross sections that

Process oBR, CS [pb] | o&%, FKS [pb]
ete~ — jj 42530 10 | 42520 + 9
etem = jjj 16190 +80 | 16260 + 80
etem = jjij 2530 £ 60 | 2550 + 40

i = hy — THr | 168 £0.002 | 1.7 % 0.02

jj —ete 2047 £ 2 2020 £ 20

Table 4.1: The Born and real components of the NLO cross sections caclulated with

the Catani-Seymour and FKS implementations within AMEGIC++ [6], which in each

case has been run with one million events.

are listed above which give an agreement, within error, between the two implemen-

tations, it is not unreasonable to conclude that FKS has been correctly implemented

within AMEGIC++ . It is noted that there is an absence of cross sections for proceses

which would require kinematic maps applied to both the initial and final states, for

example deep inelastic scattering; this is because currently such a kinematic map has

not been encorporated within this implementation and does not reflect any difficulties

with the subtraction scheme.



Chapter 5

Comparison with Catani Seymour

The implementation of FKS subtraction in AMEGIC++, described and tested in the
previous chapters, is in part motivated by the desire for the fully automatic calcu-
lation of NLO corrections. However, an automatic implementation of a subtraction
scheme has already be accomplished in [39] for Catani Seymour dipoles. Indeed so
far the dipole subtraction procedure has been the method of choice for calculation
of the NLO processes. The implementation of an automatic FKS subtraction in
AMEGIC++ therefore requires additional motives. The principle motive for this is
fairly simple, to speed up calculations. The usual (though not always) bottleneck for
QCD processes at NLO is the real subtracted piece and this is essentially because it
requires the calculation of a more complex matrix element integrated over a larger
phase space. There is, however, some computational speed to be gained by opti-
mising the subtraction scheme that is used and it is in this vein that FKS has been

implemented.

5.1 Comparison of the Subtraction Terms

The comparison of the subtraction terms for the FKS and Catani Seymour methods in
this chapter is, as has been stated, motivated by attempts to improve the efficiency of
NLO calculations with particular reference to the real subtraction term. The purpose

of this section is to consider the subtraction terms in each method and attempt to
84
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discuss general statements about the efficiency of each method relative to the other.
The subtraction method of Catani and Seymour, reviewed in chapter two, yields
a structure of subtraction terms that is described by a sum over universal dipole
functions convoluted with a Born level matrix elements squared. The universal dipole
functions are constructed from kinematic variables of three partons in the real matrix
elements; the complete set of subtraction terms is computed by the sum over all
possible configurations of dipole functions, this is schematically represented in the

equation below.

o =) Vi ®do” ({ka}) (5.1)

h,hk
Where Vi, are a set of universal functions. The key point to note here is that this
is a sum over all three parton configurations possible from the set of n + 1 partons
of the real term. FKS subtraction, reviewed thoroughly in chapter three, is based
upon constructing subtraction terms from pairs of objects. In the implementation of
FKS, described in previous sections, soft subtraction terms are considered separately
from these pairs. Schematically the FKS subtraction (in this implementation) can be

written as

o = 3" fki ky)do({k}e) + > f(ki)do({k}n) (5.2)

,J€PrKs ieg
Comparing the subtraction structure of both methods, it can be seen that in both
methods subtraction terms are composed of some kinematic function convoluted with
a Born level matrix element squared. In the case of Catani Seymour subtraction
these kinematic functions are the dipoles and for FKS they are represented by either
Altarelli-Parisi splitting functions, in the collinear limit, or eikonal factors for the soft
limit. In subtraction terms of this form, the most computationally intensive compo-
nent is the calculation of the Born level matrix element squared; comparatively the
kinematic functions are ’cheap’. Upon this, the assumption is built that individual
subtraction terms in either method are not significantly more or less computationally
intensive to calculate. It is therefore not unreasonable to reduce the comparison of
the computational efficiency to simply considering the number of subtraction terms

necessary for each method.
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From the structure of the Catani Seymour and FKS subtraction terms given above
some crude statements on the number of subtraction terms used from each method
can be made. For Catani Seymour the full subtraction term is obtained by a sum
over all possible three parton configurations possible from the real process; for FKS,
which is constructed from pairs of partons, the full subtraction term is obtained by
a sum over all possible pairs. A naive comparison of subtraction terms, for a real
process with n + 1 partons, would therefore give the number of subtraction terms for

Catani Seymour subtraction to be

n+1)!
3('(77, - ;)' (5:3)
And for FKS
(n+1)!
2l(n —1)! (54)

These are simply the results from combinatorics from picking all possible sets of three
partons (for Catani Seymour) and pairs (FKS). This is a naive comparison, as many
of these terms in both of these subtraction procedures are zero (mostly because the
corresponding Born term for them doesn’t exist), and these values are in reality the
upper bound for the number of subtraction terms for a given process. It does however
provide a useful guide to the scaling of subtraction terms for large values of n. This
gives a scaling of ~ n?® for Catani Seymour and ~ n? for FKS; given this scaling
it is fairly clear that for high multiplicity process there are fewer subtraction terms
present in FKS.

An additional component of the implementation of subtraction schemes, which is
discussed in previous chapters, is the introduction of kinematic cuts on the subtraction
terms. These are present, both in the FKS implementation detailed in chapter four
and the Catani Seymour implementation against which it is compared, outlined in
[39]. These kinematic cuts are introduced to increase the efficiency of the calculation,
by only calling the subtraction terms in regions of phase space where singular terms
begin to emerge. This introduces additional parameters into the calculation, the

invariance of the result on these parameters is tested in chapter four. The form of



5.2. Results 87

these cuts for Catani Seymour and FKS is shown in the expressions below and is
neatly summarised thus: in FKS two parameters exist, one for the soft and one for
the collinear subtraction terms, which apply cuts on the relevant variables (&; or y;;).
In Catani Seymour a single dipole cutoff parameter applies to all dipole functions

which cuts on a dipole dependent kinematic variable (see [39] for details).

o™ = 3" O(aaip — i) Vi ({n}) (5.5)

1,7,k

Pi-Pj
Di-Pj+Pi-Pk+Pj Pk

Where v, =

o = 37 Oy — (1= Yeu)) f(ki kAo ({h}) + 37 O(€u — €) (k) do({k}.)

,J€PrKs i€g

(5.6)
Where & =

=1—ki.k;/EE;.

This provides a somewhat more complex picture of the relative number of terms
required for Catani Seymour and FKS subtraction; the number of subtraction terms
used now has a kinematic dependence and so clear comparisons from combinatorics

provided above are not necessarily reliable.

5.2 Results

The discussion of the relative efficiency of FKS and Catani Seymour subtraction
methods given in the previous section introduced the assumption that, for compu-
tational reasons, this analysis could be reduced to a comparison of the numbers of
subtraction terms used by each method. A simple crude comparison of terms, given
in the previous section showed that for high multiplicity events FKS will produce
fewer subtractions (and conversely that for small n there are fewer Catani Seymour
terms), however there are complicating factors to this argument. One of these is that
not all combinations of either FKS pairs or Catani Seymour triplets produce valid
Born level matrix elements. The other complicating factor is the presence of kine-
matic cuts on the subtraction terms, which in essence give a phase space dependence

to the number of subtraction terms.
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A more direct comparison is therefore needed to provide information as to the
efficiency of the two subtraction schemes relative to each other. In this vein this
section will detail runs of the real subtraction terms calculated from both the Catani
Seymour and FKS in AMEGIC++, where the total number of subtraction terms

called are measured.

The results of these runs are plotted in figures 5.1 to 5.4, for the processes ete™ —

Te~ — jjj and ete™ — jjjj. The number of subtraction terms

i, ji — ete e
measured is defined to be the number of calls to these terms necessary to integrate
the real-subtracted piece to 0.1% accuracy for ete™ — jj and 1% accuracy for the
other processes; these results are given for a large range of FKS and Catani Seymour

cutoff parameters.

The phase space cuts associated with subtraction terms, discussed in the previous
section with more detail in chapter three for FKS and in [39] for Catani Seymour, do
not cut the phase space in the same way for both methods; this is simply the result of
applying these cuts on different kinematical variables. The phase space cuts on the
subtraction terms have an obvious impact on measuring the numbers of subtraction
terms used to calculate the real subtracted cross section; as a result when comparing
the numbers of subtraction terms used, for the Catani Seymour and FKS methods in
a particular process, care must be taken to ensure the cuts on the phase space used
in both methods give a similar restriction on the phase space in which subtraction

terms are calculated to enable a valid comparison to be made.

To ensure this region is comparable in both, a definition is made to compare the
phase space cuts in both methods, in terms of the percentage of subtraction terms
called. This can be computed from the number of subtraction terms called, and the
number without applying phase space cuts (for any given process the number of sub-
traction terms for both methods is straightforward to obtain). The range of FKS and

Catani Seymour cutoffs in figures 5.1 to 5.4 are broadly equivalent by this measure.

It is worth commenting on some general features of these figures before specific
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Figure 5.1: The number of function calls for the integration of ¢(#%) to 0.1% accuracy
for the process ee~ — jj for both FKS and Catani Seymour. These are shown
against the FKS soft and collinear cutoff parameters &.,; and Y. Function calls for

Catani Seymour runs shown for different values of dipole cutoff parameter, aq;p
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Figure 5.2: The number of function calls for the integration of ¢(#%) to 1% accuracy
for the process jj — ete™ for both FKS and Catani Seymour. These are shown
against the FKS soft and collinear cutoff parameters &.,; and Y. Function calls for

Catani Seymour runs shown for different values of dipole cutoff parameter, aq;p
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for the process ete~ — jjj for both FKS and Catani Seymour. These are shown
against the FKS soft and collinear cutoff parameters &.,; and Y.y. Function calls for

Catani Seymour runs shown for different values of dipole cutoff parameter, aq;p
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Figure 5.5: The real subtraction calculated in the Catani Seymour subtraction

scheme, calculated with agi, € [1,0.1]

comments that are the purpose of this chapter. One obvious feature of these figures
is the fluctuations in the function calls that occur in the figures 5.1 to 5.4 over the
variation of the cutoff parameters; whilst for most there are clear trends in the number
of function calls over cutoff parameter values, it is as clear that fluctuations over these
trends occur. While it is not the purpose of this work to precisely determine this effect;
it is worth noting that such fluctuations are probably partly caused by inconsistent
precision with respect to the Monte Carlo integration of the real subtracted term.
The requirement, stated above, that the for these results the real subtracted piece
should be integrated to 1% (or 0.1%) accuarcy seems at odd with this; however,
a more accurate statement of this requirement would be that the real subracted
piece is integrated to atleast 1% (or 0.1%) accuarcy. It is also apparent from the
results presented in chapter 4 that the numerical values of the real subtraction term
in FKS vary quite significantly over the range of cutoff parameters; as an example
figure 5.5 is presented which displays the numerical value of the Catani Seymour real

subtraction term for various values of g, calculated for the process e™

e” = jjJ.
It is seen in figure 5.5 that, without phase space cuts on the subtraction term, the
real subtraction term is negative; as the cuts are applied the cross section becomes
larger, becoming positive for ag;, < 0.45. It is also noted that in this region, around

aqip = 0.5, the Catani Seymour real subtraction term becomes numerically small;



94 5.2. Results

correspondingly it is seen from figure 5.1 that the number of function calls for this
process at agip = 0.5 show an increase over the agi, = 1 value. To consider the reason
for this, the calculation of the errors in Monte Carlo integrals shuold be examined.
Given that Monte Carlo integrals are simply sums of a function evaluated at random
points in the phase space, then the error on this is simply the standard error. For

the Monte Carlo integral of a subtracted real term, the error is therefore

. i (A; = By)? @ A; - Bi)
5= = — = (5.7)
VN N N?

where A; represents the real matrix element and B; the subtraction term. The pro-

cedure followed in this chapter, for counting subtraction terms, requires that the
accuarcy of the org integral is at least 1%; hence it is the fractional error that is of

interest to this discussion. For the ogrg integral this can be written as

2
5 1 Ni (A; — By)

p— = i <ZZI o Bl)z -1 (5.8)

L=

=

As can be seen from 5.8 the fractional error is largest, for a given number of phase
space points, when the ratio of the sum of the squared (Monte Carlo points) to the
square of the sum (of Monte Carlo points), is largest. This is worthy of note, because
this ratio should be largest for precisely those values of org where the real and sub-
traction terms are similar in size, so the region in figure 5.5 where ors changes sign; a
simple example of this is to consider the ratio of the 2 +1 and (z+1)? which is largest
around region where x = —1. It is noted that the region of the largest fractional error
occurs for cutoff values of around agqi, = 0.5, which correlates with the peak seen in
the number of subtraction term function calls. Given that the fractional error is fixed
for the Monte Carlo integration results in this chapter, the effect of relatively large
fractional errors would be relatively large numbers of Monte Carlo points necessary
to resolve integrals to this fixed fractional error; its is surmised that this effect is the
cause of this peak in function calls. Examining the corresponding figures for FKS in

chapter four, figures 4.1 to 4.6, it is clear that FKS real subtraction term can, for
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some processes take relatively smaller numerical values; it is therefore possible that
this can account for some of the fluctuations in the cutoff-function call results for
FKS. It is again emphasised that the main design of this chapter is to compare the
computational efficency of the FKS and Catani Seymour subtraction schemes; and
that dicussion above concerning variations over parameters within such schemes is

far from complete, or systematic.

The results plotted in figures 5.1 and 5.2 give the number of subtraction term
function calls against the FKS cutoff parameters, £.; and Y.y for efe” — jj and
jj — eTe; with an equivalent range of cutoffs for the Catani Seymour dipoles. From
the combinatorics argument for these 2 — 2 processes it is clear the upper bounds on
subtraction terms is lower for Catani Seymour than for FKS, and therefore it might
be expected that there are in fact fewer dipole terms than FKS terms. The plots
for ete™ — j7, both for &, and Yy variation show a significantly lower number of
subtraction term function calls for Catani Seymour than FKS, seemingly in agree-
ment with the combinatorical argument. Examining the Drell Yan plots a similar
agreement can be reached; however, it should be noted that for this process FKS
appears to be slightly more competitive.

The results given in figures 5.3 and 5.4 give the number of subtraction term function
calls against FKS cutoff parameters, as for 5.1 and 5.2; for the processes eTe™ — jjj
and ete™ — j777. From combinatorics arguments for the process ee™ — jjj the
upper bounds on the number of subtraction terms is lower for Catani Seymour; for
ete™ — jjjj, the upper bounds are the same for both methods. However the results
plotted in 5.3 for eTe™ — jjj show that the number of subtraction terms called for
both processes varies between broadly similar numbers of subtraction term calls for
an equivalent range of cutoff values. In addition the number of subtractions without
cutoffs can be trivially obtained from the code; for ete™ — 577 this yields 30 for FKS
and 36 for Catani Seymour. This would seem to indicate that for this process FKS
and Catani Seymour are broadly equivalent in terms of the speed of the calculation.

The results plotted for ete™ — 5554, show the number of calls, considering the vari-
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ation over equivalent cutoff parameters, is slightly but significantly lower for FKS
than Catani Seymour. In addition, the number of subtractions without cutoffs can
be trivially obtained from the code, for ete™ — jjj7 this yields 69 for FKS and 138
for Catani Seymour. This then leads to the obvious conclusion, that for eTe™ — jjjj
FKS calls fewer subtraction terms than Catani Seymour, for equivalent cuts. The
results from both ete™ — 757 and ete™ — jj7j show that the comparisons using the
upper bounds on subtraction terms from combinatorics overestimates FKS subtrac-
tion terms far more than Catani Seymour terms. However the broad conclusion from
combinatorics, that for larger multiplicity processes FKS becomes proportionately

more competitive, does indeed hold.



Chapter 6

Conclusions to Part 1

Part I of this thesis addresses the calculation of next to leading order QCD cross
sections, with particular relevance to the real correction term of such calculations.
The automation of such calculations in the Monte Carlo event generator SHERPA is
the stated aim of this work.

The underlying physics of perturbative QCD has been described in chapter one,
providing the necessary theoretical backdrop for NLO calculations. A discussion of
aspects of NLO calculations is then presented in chapter two, which addresses the
structure such calculations in addition to their motivation; which is usually to reduce
errors associated with perturbative scales. The presence of singularities, which are
expressed in terms of poles, in the real and virtual parts of NLO calculations is de-
scribed; while the cancellation of such singularities between these terms is motivated.
The difficulty in numerically computing singularity free NLO cross sections is then
discussed, with reference to different phase spaces for the real and virtual terms, and
the concept of a subtraction scheme introduced. Such schemes subtract a term with
an identical singularity structure to the real term; these terms are then added back to
the virtual term, after being integrated analytically over the additional one particle
phase space present for the real term. These integrated terms contain explicit pole
structures which guarantee cancellation of all poles present in the virtual term. The
example of the Catani Seymour dipole subtraction is then presented as a demostra-

tion of such a subtraction scheme. In chapter three a review of the FKS subtraction
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scheme is presented. This scheme, which constructs subtraction terms by partitioning
the real term phase space and taking all allowed singular limits, is described explicitly
with all details provided to compute real corrections. In chapter 4 an implementation
has been presented which allows the automatic calculation of the real correction using
the matrix element generator AMEGIC++; this implementation is based on the FKS
subtraction scheme. The full details of this implementation, including the explicit
forms of both the real and integrated subtraction used, the kinematic maps for the
subtraction and the partitioning functions are presented. Tests of this code have then
been performed, to ensure the correct parameter evolution and singular limits of both
the subtraction terms and the kinematic maps; all of these tests indicate a properly

working implementation.

In chapter 5 a study is presented into the relative efficiency of the FKS and
Catani Seymour dipole subtraction schemes. For this work the implementation of
FKS subtraction is then used, in conjunction with an implementation of Catani Sey-
mour dipole subtraction within AMEGIC++, to make this comparative study. The
comparison of the two schemes, for computational speed, is based on measuring the
total number of times the code will call a subtraction term, in order to numerically
integrate a real process (using one of the subtraction schemes), to a given accuracy.
For this measure results are presented for a wide, but comparable range of cutoff pa-
rameters in both schemes. Given these results it is seen that Catani Seymour dipole
subtraction is significantly faster for low multiplicity processes, while for higher mul-

tiplicity processes (n > 4) FKS becomes more efficient.



Part 11

Simulating Photon Induced

Processes
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Introduction to Part 11

In previous chapters the demand for higher accuracy in theoretical calculations of
collider processes has motivated a large body of work surrounding the calculation of
higher order corrections in perturbative QCD. Indeed, the first round of data taking at
the LHC, which in addition to the Higgs-like boson discovery has lead to increasingly
stringent bounds on new physics beyond the Standard Model, makes it clear that the
focus of experimental analyses at the LHC will shift more and more towards precision
measurements and on ever more piercing tests of Standard Model dynamics at the
highest scales. There is then a likelihood that there will be a number of observables
where high level precision in the theoretical understanding will be crucial in order to
match experimental accuracy and allow the full advantage of the high-quality data
delivered by the LHC collaborations to be taken. Examples for such processes and

observables include

e the large-mass tail of the Drell-Yan mass spectrum, which may be influenced

by heavy resonances [42], and

e observables based on the leptons in the pair production of W-bosons and their
subsequent leptonic decays, which may help to shed light on anomalous gauge
couplings [5], and which of course play an important role as a background to

Higgs production and decay into W pairs.

In the second part of this thesis the contribution of electroweak corrections, and in
particular photon-induced processes, to certain processes will be investigated. Stan-
dard considerations of perturbative corrections tend to focus on higher-order QCD

corrections, some of which are now available at the next to next to leading order
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(NNLO) level at fixed order [43] and at next to leading order in Monte Carlo simu-
lations [35]; however it will be argued that such electroweak corrections may play an
important role in order to achieve high level precision in predictions. This will ignore
the full wealth of NLO electroweak corrections, calculations of which are available for
the processes considered here in [44] [45]; the focus will instead be on photon induced
processes, which, formally speaking, are part of the NNLO electroweak contribution.

The consideration of such corrections is triggered by two observations:

e recently a second and more modern set of parton distribution functions (PDFs)
which include QED effects became available, allowing the comparison of results
obtained by the MRST2004QED and the NNPDF2.3QED sets [46,47], focusing
of course on the impact of the photon PDF (yPDF);

e in addition to contributions induced by the photon PDFs, there are also quasi-
elastic processes, where the intense electromagnetic fields accompanying the
protons give rise to the production of charged particles. Such processes are typ-
ically described by the equivalent photon approximation (EPA) or Weizsaecker-
Williams method [48], and quite often overlooked. It will be argued here, how-
ever, that they become fairly significant when vetoes on the central production

of additional particles or jets are applied.

Part two of this thesis is structured thus:

The simulational aspects of SHERPA, which is used to generate these results, are
discussed; including a summary of the various modelling stages of the generator. This
is followed by an overview of parton showering, including various aspects which are
important to this thesis such as the MC@QNLO method. Other subjects relevant to the
simulations such as the merging of matrix elements and partons, and cluster hadro-
nisation models are also very briefly reviewed. A discussion of the photon induced
processes is then presented; this focuses on the motivation for, and description of,
the two contributions that form corrections of this sort. The first of these contribu-
tions comes from the photon component of hadronic PDFs, a component that arises

from QED corrections to the PDF evolution kernels, and which can fairly obviously
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give a contribution to photon induced cross sections. This photon PDF component
is discussed in chapter 8, where the simple extension of factorisation formulae for
calculating photon induced cross sections is presented; the QED corrections to PDF
evolution kernels that give rise to the photon component are discussed in this chapter,
in addition to a very brief overview of the determination of photon PDFs from data.

The second photon component, the equivalent photon approximation of Weizsaecker
and Williams, is then briefly discussed; this includes a summary the approximations’
assumptions, in addition to a demonstrating the calculation of photonic cross sections
with this method. The distribution functions used for the EPA in SHERPA (and hence
for this thesis) are then explicitly presented.

In chapter 9 the setup for the simulation of relevant results is given, and there
then follows the presentation of results. This is split according to the two processes
simulated, lepton pair production and the production of W pairs (which are subject
to leptonic decays only). In both cases results are presented which compare a QCD
baseline with the baseline supplemented with both photon induced channels. These
are then compared with relevant data from ATLAS and CMS, where available; the
details of experimental analyses used in this section are presented in appendix A. In
addition the effect of extra jet emissions is investigated, using the same setup of QCD
baseline predictions with photon induced channels as for the above case, for both of
the processes. For the case of W pair production, results are also given simulating
the same process at LHC run two energies which is undertaken to test the significance
of the photon induced channels at these higher energies. This is with regard to, the
possibly that the photon induced rate may be slightly increased as a result of the tails
of some distributions at these higher energies. The influence of the photon induced
channels is discussed for both channels based on the results presented. Finally the

findings of this work are summarised and some conclusions drawn.



Chapter 7

Simulating Processes in SHERPA

Before specific discussion of photon induced processes is undertaken, the simulation
environment, which takes place in the SHERPA event generator, will be outlined in
this chapter, although specific cases relating to photon induced cases will be discussed

in chapter 8.

7.1 Event Generation in SHERPA

The simulation of events in SHERPA is conducted with a series of many theoretical
and technological methods necessary for a modern Monte Carlo event generator. The
hard process of the event is calculated using the automatic matrix element generators
CoMIX [49] and AMEGIC++ [6], which collectively allow the calculation of nearly
arbitrary processes with up to eight or more final state particles at tree-level to take
place; both of these generators are employed for simulations presented later in this
work. In AMEGIC++ the construction of matrix elements is based on the method of
helicity amplitudes, a formalism for the automatic generation of which is described
in [6]; the helicity amplitude formalism employed here is similar to methods found
in [50] [51] and [52]. CoOMIX however employs Berends-Giele recursion relations,
see [53] [54] and [55]; this technique, which is for example also used in ALPGEN [56], is
generally more efficient for the calculation of matrix elements with large multiplicities.

The processes calculated by the matrix element generators, which are subject
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to parton showering and various other modelling phases, must be integrated over
the appropriate phase space. To conduct this integration, SHERPA utilizes multiple
weighted channels in which Monte Carlo integration is performed, the use of these
multiple weighted channels is outlined in [57] and are automatically generated by
SHERPA . The parton showering employed with SHERPA is based on Catani Seymour
subtraction terms, as originally proposed in [58] and implemented in [59] and, in-
dependently, in [60]; parton showering is reviewed later in this chapter and details
of the SHERPA showering are provided. Parton showering in SHERPA can be supple-
mented by merging with real matrix elements, this merging was originally proposed
in [61] and [62], and its implementation within the SHERPA setup is described in [63].
This concept, which will be touched upon in the context of the discussion of parton
showers presented later in this chapter, is conducted for some simulations presented
later in this thesis.

The inclusion of next to leading order calculations within SHERPA is for these simu-
lations conducted with the Catani Seymour subtraction scheme, the implementation
into SHERPA is described in [39]. Where NLO QCD predictions are used the par-
ton shower employs the MCQNLO technique [64], the implementation into SHERPA of
which is described in [65], to match the higher order correction to the parton shower;
this is discussed in the context of parton showers later in this chapter. After the
parton shower, the hadronisation model employed within SHERPA kicks in, this is a
modified form of the cluster model, [66] and [67], which is described in [68]; some

details of this model will be provided later in this chapter.

7.2 Parton Showers

The calculation of cross sections based on fixed order perturbation theory is well
established practice in perturbative QCD; however calculations of this nature are
often not sufficient to describe experimental set ups. The fixed order perturbative
approach has two major flaws for this purpose: one is the high multiplicity of processes

in colliders, often as a result of parton cascades, which are infeasible to calculate with
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perturbation theory. The second is enhanced contributions from higher orders, which
are usually logarithmic in nature and are problematic as corrections to the Born term
of more than O(a?) are somewhat unfeasible to compute.

To model such effects perturbative QCD is, however, of use in the construction
of numerical methods to approximate both parton cascades and enhanced logs from
higher order; such numerical methods are known as parton showers.

For the moment a brief digression is taken to radioactive decay processes, where

it is noted that the no-decay probability for an unstable isotope obeys

4P
= AP (7.1)

where \ is the decay constant, and identified as the rate of decay per unit time

of the isotope. The solution for the no decay probability is then the familiar P =

t
exp (— |/ dt)\). The example of radioactive decays is illustrative of the treatment

to
of partons in parton showers; where a partonic branching is the equivalent of the

radioactive decay. The decay rate, A\, of the radioactive process therefore has its
partonic equivalent in the branching probability; in parton showers these branchings
are approximated using the kinematic limits of parton splittings, which are described
in chapter one. For most parton showers the collinear branching is considered, analo-
gous to the DGLAP evolution of the parton distribution functions; for such splittings
the differential branching probability is described by 7.2.

d 2
dpbranching 52,2 /dZ Paiaj(z) (72>

The no branching probability must, based on the radioactive decay analogy, obey

dA
o~ —A(Q%)

where A, the no branching probability, must take the form

Q2 2
A(Q?) = exp [ /Q 2 dq‘{g / dz(;—;Paiaj(z)] (7.4)

and is known as a Sudakov form factor [69]. This Sudakov form factor describes

dz oy

. %Paiaj (2) (7.3)

the no branching probability of partons, to rewrite this in a more concrete fashion
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the probability of no resolvable branching between scales ) and @’ is given by the
Sudakov form factor described by

/2 / dngaia]. (2) (7.5)

Zmin

Q/2
AQ%Q?) = exp | /
Q2

The limits on the partonic fraction, z integral in the Sudakov form factor are some-
what ambiguously given as 2z, and zp,.y; these values can be determined by consid-
ering the kinematics of partons splitting.

This connection with probability allows the construction of a Markov chain of
partonic emissions, which is known as parton shower. The algorithm for the con-
struction of a simple parton shower simulation will be presented below; however the
structure of calculations in which parton showers are used will be briefly outlined.
Typically for collider processes that are of interest a fixed order calculation is con-
ducted for a high-momentum transfer process with low multiplicity, the partonic legs
of this calculation are then subject to the chain of partonic emissions, simulated in
the parton shower.

To demonstrate the methodology of a parton shower, it will be convenient to
return to the radioactive decay process example. In such a process it is noted that

the probability of a decay at time ¢, given the above, must be given by

t

Ppecay(t) = Alt) exp | — / dtA(t) (7.6)

to
where the instaneous decay probability is combined with the probability of it not
decaying previously. Hence the probability of a decay in a certain period can be

written as
to t

Pt t2) = /dt/\(t) exp —/dt)\(t) (7.7)

t1 to
where P(t1, 1) represents the probability a decay will occur at time ¢y given it has
not decayed a time t;. The idea is to use this probability distribution to randomly

generate a decay event; this proceeds by generating a random number R € [0, 1] and
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by making the identification:

tDecay

/ dtPpecay(t) = R / dtPpecay (t) (7.8)
0 0

the generation of a random number can therefore be used to ’generate’ a decay event;
with the decay time calculated from 7.8. In the case of the radioactive decay process,
this can be computed to be

tDccay

1—exp | — / dtA(t) | =R (7.9)

0
The decay time of a radioactive nuclei, in this example, can thus be generated by

solving the expression
tDecay

exp | — / dtA(t) | =R’ (7.10)

for tpecay; where R’ € [0,1] is another random number, equivalent to 1 — R. It
is seen the expression of the LHS of this equation is the no decay probability. This
alogorithm can be applied to the branching of partons in an analogous fashion. There-
fore to generate partonic branchings at a particular monentum scale the no branching
probability, represented by the Sudakov, must be equated to a random value to gen-
erate a branching scale. Hence the branching scale of a parton in the parton shower

is simmulated by generating a random number, and making the identification

A<Q27 Q2Branch) = R/ (711>

[69] where R’ is also a random number € [0,1] and @ is the initial monentum scale
for the parton in question.

The solution of 7.11 for the scale Q3,,,, therefore determines the scale at which a
simmulated branching will take place. Thus generating random numbers in this con-
text amounts to generating the next branching; these chains of generated branchings
then continue until the branching scale Qgranen falls below the scale for a resolvable
emission. This nicely allows the determination of the branching scales of partons in

the final state, however this does not uniquely determine the kinematics of daughter
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partons. For collinear branching (which is what is considered by using DGLAP evo-
lution) the kinematics of the daughter partons amounts to a choice of the partonic
fraction, z and again this value is generated by using random numbers. This is simply

accomplished by making the identification

/ dzg—;P(z):R’ / dz'g‘—;P(z') (7.12)

where R’ € [0,1] is a second random number. Therefore a solution of 7.12 for z de-

termines the generated partonic fraction.

The treatment of initial state radiation is similar to that of final state radiation,
however it is complicated by kinematic considerations. For final state branching the
scale is simply evolved downwards until it falls below the scale of resolvable emission,
however this cannot be simply repeated for initial state branching due to the need
to match the kinematics of the initial state partons of the hard process. The parton
shower algorithm is modified such that the scale is evolved backwards from the hard
scale process towards the hadron. A consequence of this is that the Sudakov form
factor is modified by the PDFs; the probability of no branching between two scales

in the initial state evolution is given by

2
Q% Q%) = S MG Q") (7.13)
[9], which is equivalent to
QQ
noy dq” as flz/2,Q?)
I(Q? Q% x) = exp —/ 2 /dz%Paiaj(z)W (7.14)

Q/Z
This gives a modified Sudakov form factor which can be used in a algorithmic fashion
similar to the final state forward branching; branching is said to have occurred at

scale Q" which is generated from
Q% Q%) =R (7.15)

where again use is made of random variables to generate the splitting scale.
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The partonic fraction z is determined by generating a second random variable in
the same fashion as for final state radiation; however there is again a slight modifi-
cation from PDF's which in the expression yields

[ as P(2) e as P(Z)
/ dz%Tf(x/z') =R / dz’%Tf(x/z’) (7.16)

Zmin Zmin

Where the value z indicates the partonic fraction of the daughter parton. The so-

lution of 7.16 for z allows the determination of the partonic z for initial state splitting.

The Markov chain of parton emissions, as has been described above, gives an ap-
proximation for high-multiplicity final states; however, parton showers also provide
enhanced contributions from higher orders in addition to an approximation of the
leading order matrix element for a high-multiplicity event. These enhanced contri-
butions enter via the Sudakov form factor, which has hitherto been simply treated as
a no-branching probability (which it still is at leading order). The enhanced contri-
butions are logarithmic in nature and come from both virtual terms and unresolved
emissions. At this point it is work considering the form of the exponent in the Sudakov
form factor, it is fairly clear that this exponent is logarithmic in the scale ) from
simple integration. However an additional logarithmic contribution can result from
the integrals of some splitting functions. Considering only these double logarithmic
terms the Sudakov form factor can be written as

A(Q?, Q?) ~ exp ( kp— log? Q2> k:F— log? % <& +...0 (ag log?" Q—z)

Q5 Q3 @

(7.17)
where kp is a generic factor from the splitting functions (whose precise form is not
relevant for this purpose). It is clear that a series expansion of the Sudakov form
factor involves an infinite series of these logarithmic terms. These terms, which as
can be seen occur at an arbitrary order of «y, represent the enhanced pieces from
higher fixed order contributions and can in some regions become large which presents
a problem for simple fixed order calculations. However the inclusion of Sudakov will

implicitly sum all such contributions to all orders. The technique of including a series
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of logarithmic contributions to all orders in ay is known as resummation, which is a
broader technical field in its own right beyond parton showers; the formal logarith-
mic accuracy of parton showers is dependent upon the details of the shower, however
all include an all orders resummation of the double logarithms shown in the above

example [70].

In the above discussion, the definition of the ordering scale, )%, has been left
deliberately vague; there is some ambiguity in the choice of this scale which is reflected
in different choices in different shower implementations. In earlier versions of the
event generator PYTHIA the invariant mass scale of the parton is used, see [71] [72]
however later versions are ordered by transverse momenta [73].

Ordering with respect to the angle between branching partons, known as angu-
lar ordering, is implemented in the event generator HERWIG++, see [74] and [75].
Angular ordering of showers is a largely used as a result of its ability to approximate
some of the soft logarithmic terms present, that for example are not approximated
in an invariant mass ordered shower. This is simply the result of the form of matrix
elements in the soft gluonic limit. When the angle between the soft gluon and a par-
ton becomes large with respect to the angular ’scale’ at which the parton branches,
interference effects in the matrix element largely mean that the soft gluonic emission
can be neglected. When the opposite is true, the soft gluonic splitting can give a size-
able contribution however, such terms can then be modelled as a previous collinear
branching in the angularly order shower. As a result showers ordered in this fashion
implicitly approximate large soft contributions (from both branching and higher or-

ders), in addition to the collinear terms.

7.2.1 Parton Showering in SHERPA

The parton showering algorithm introduced for the more general discussion above
implicitly described the parton shower by using the DGLAP evolution, and there-

fore implicitly the use of Altarelli-Parisi splitting functions to approximate the par-
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ton branching. While it is perfectly possible to construct a modern shower algo-
rithm based in these splitting functions, this is not the choice taken in SHERPA. In
SHERPA the place of Altarelli-Parisi splitting functions is taken by Catani Seymour
dipole subtraction terms, which are spin-averaged (so there is no tensorial depen-
dence). This choice is taken as the dipole functions, which include both singular
limits, allow the resummation of soft logarithmic terms when used in the shower.
While this can be achieved in DGLAP showers by angular ordering, this presents
its own set of problems. The formulation of dipole showers was first outlined in [58]
and [76] and the implementation of this formalism was then made in SHERPA [59];

the key results of which are summarised in this section.

Catani Seymour dipole functions were originally formulated to allow a general
method for the construction of subtraction terms for use in the real terms of NLO
calculations; as a result of this these dipole functions represent the singular limits of
a parton in a cross section. Consequently they can be adapted for use as splitting
functions, and given the limit that a branched parton is nearly soft or collinear, can
be used to express a m + 1 particle cross section in terms of a m particle one; this is
expressed in 7.18.

dyz k: de as
dopsr =doy, Y ymjk oo v Wi k) Vi k(20 Yz, 1)) (7.18)
i k#i,j

Where spin-averaged Catani Seymour dipoles are expressed as Vi; x(z,yij 1), with a
Jacobian factor J(y;; ) and where the partonic labels 7,5 and k refer to the branching
of a parton into partons ¢ and j where k is a spectator. The variables z and y;; 1
are defined functions of the three partons i,j and kK momenta; for massless final state

partons these are expressed below.

p= PP = Di-Pj (7.19)

k
Di-Pk + Pj-Pk Di-Pj + Di-Pk + Pj-Pk

The Jacobian factor J(y;; ) allows the one particle phase space integral, over the
additional parton momenta, to be expressed in terms of the relevant kinematic vari-

ables of the dipole function, z and y;; ; in addition to an angular integral d¢. These
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variables define the mapping of kinematics between the mother and daughter par-
tons as well as a shift for the spectator. Shown below is this mapping from mother to

daughter partons; the mother kinematics are denoted as p and daughter kinematics

as p.
_ k2
Di = 2ZPij + — L pr+ ko (7.20)
ZPij Pk
2
pi = (L=2)py+ —————Pr— ko (7.21)
! ) ’ (1 _Z)pij-pk
pr = (L= yijr)Pk (7.22)

where k| is the transverse momenta of the branched partons ¢ and j with respect to
the mother parton 4j; this can be related to Yij, k @S

_ki

Yij, k =
P21 = 2)(pips + ik + Dj-Pr)

(7.23)

It is noted that this form of the kinematic variable y;; 1 allows the following
identification to be made
dr _ dyyx (7.24)
k‘i Yij, k
This is important as to construct a parton shower algorithm, a scale with which to
evolve the shower must be chosen, and the transverse momenta of branched partons
can be used as such a scale. Given that the conventional parton shower algorithms are
based on approximating the cascade of partonic branching with Altarelli-Parisi split-
ting functions, the identification of the Catani Seymour dipoles as splitting functions,
in both the soft and collinear limits, as described above, motivates the possibility of
constructing such a shower based on the dipoles. The construction of such a parton

shower algorithm requires a Sudakov form factor, and in analogy with the DGLAP

case the Sudakov for dipole showering can be expressed as

t

dt o d

Al('flz(t,to) = exp [— / - /dz%KU,k(t, 2, (b)] (7.25)
to

where KC;; (¢, 2, ¢) represent the spin-averaged Catani Seymour dipole functions and
the Jacobian factor, and where for convenience transverse momenta is expressed as

k% =t. Again as the dipole function performs the role of approximating the branching
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of the cross section, as the Altarelli-Parisi splitting functions do in the collinear case,
this Sudakov can be interpreted as a no branching probability. The shower algorithm
described in the previous section can therefore be used to construct the dipole shower
simply by replacing the Sudakov form factor with the dipole form shown above and
utilizing the dipole functions to approximate the branching that occurs, as opposed
to the Altarelli-Parisi splitting functions. In addition this formulation of the parton

shower requires the ordering of the shower by k?.

7.2.2 NLO calculations and Parton Showers

The use of parton showers for simulating collider events is well motivated, given the
ability of these algorithms to approximate to a high degree large jet multiplicities
in such events; in addition to implicitly resuming enhanced logarithmic corrections
which are beyond leading order in the strong coupling. However the inclusion, where
possible, of NLO corrections to the hard processes simulation are equally well moti-
vated; principally so by reductions in the error associated with certain perturbative
scales, which must be introduced into fixed order calculations, such as the renormal-
isation and factorisation scales. Combining both of these techniques for Monte Carlo
simulations is therefore of high importance for providing accurate predictions. How-
ever, an NLO hard process calculation cannot be simply supplemented by a parton
shower using the parton shower algorithm presented earlier in this chapter for use
with Born level processes.

The principle difficulty arises because the parton shower resums the leading loga-
rithmic terms of parts of the NLO calculation, hence to simply attach a conventional
parton shower to a hard process, which is calculated at NLO, double counts these
terms. To consider this issue it is first prudent to examine the form of an NLO cal-
culation, since all calculations which will be parton showered will be calculated using
a subtraction scheme; the form of the NLO calculation considered here will utilize a
subraction scheme. The form of these calculations, which is expressed below, con-
sists of, in addition to the leading order Born term, a virtual term calculated from

loop diagrams and a real emission term which is Born like but includes an additional
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unconstrained parton; these are supplemented by terms from the subtraction scheme.

UNLO:/dU(B)+/ +/

m m m+1

da(v)—i-/da(s)

1

do® — dO'(S)] (7.26)

Given the structure of a parton shower the terms which can cause O(ay) corrections,
and hence give an approximation to the NLO calculation, have two components;
firstly the Sudakov form factor itself, from the O(as) term in the expansion of the
exponential, and the first branching term, which can approximate part of the real
emission term. Considering a parton shower which uses a generic evolution kernel
['(®,), where the Sudakov is represented by 7.27;

0"

A(Q? Q™) = exp —/d<I>1F(<I>1) (7.27)
QZ

then the appropriate terms to consider from the parton shower are given by 7.28.

do™ =do® | A(Q% Q3) + / Ao I(91)A(Q, Q3,) (7.28)
Q3

The scales Q?, Q3 and Q?I,I respectively represent the starting scale of the shower,
the cutoff scale, and scale of the first emission. To properly match NLO calculations
to parton showers, these terms that are double counted in the shower and the NLO
calculation must be properly accounted for. A set prescription for this procedure
does not exist, but there are two principle methods, known as MC@QNLO [64] and
POWHEG [77]; generic considerations about matching parton showers to fixed order
NLO calculations are considered in [65].
To perform such a matching is not a simple task, as the parton shower approxi-
mation does not distinguish between corrections associated from real or virtual cor-
rections but combines elements of both where such double counting occurs; the of-
fending pieces of the parton shower therefore cannot simply be subtracted off the
fixed order calculation. To perform an appropriate matching both the MCQNLO and
POWHEG methods begin by considering the form of the parton shower evolution ker-

nel T'(®). This object must, by the construction of a parton shower, approximate
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the branching of a partonic cross section and therefore must also approximate to the
ratio of real-emission to Born in an NLO calculation; for example the Altarelli-Parisi
splitting functions approximate this ratio in the collinear limit. At this point it is

appropriate to partition the real emission term into finite and singular pieces;
do® = AP, 1 R(Prs1) = dPrpit [RT(Ppg1) + R (Ppsr)] (7.29)

where the terms R (®,,,1) and RS(®,,,,) are the finite and singular pieces of the
real term respectively. It is clear that the approximation of the real to Born ratio
by the kernel must occur in the singular limits of the real emission term, so the

identification

(7.30)

can be made, where B(®,,,) denotes the Born level matrix element squared.

Using these definitions the NLO calculation with the relevant parton shower dou-

ble counting subtracted can be schematically described by:

do™NOPS = 1de® 4 doV) + / do'®) + A, 41 (RS (Ppi1) — D (Prngr))
1
R%(®,,
X A(Q{Qg) + /dq)lﬁA(Q?, ngl) + d<I>m+1RF(<I>m+1) (7.31)

Q3

where DS"(®,,) are the functional form of the subtraction terms defined such that
do® = dd,,, D (®,,.1) (7.32)

The differential form 7.31, when integrated over the full phase space must yield
normal NLO cross section. The form of the singular and finite pieces of the real term
therefore determine the method of NLO parton showering matching; it is noted that
a choice of how this partition occurs will also determine the evolution kernel that is
used in the parton shower. The choice employed in the MC@QNLO formalism amounts

to identifying the singular component of the real term as the subtraction term(s) used
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in the NLO calculation, this greatly simplifies the above expression and yields

dO'MC@NLO _ [dO'(B) +d0(v) +/ dO_(S) AMC@NLO(QQ,Q3>

1

Dsub q)m
+/dq)1 ( +1>AMC@NLO(Q2’Q(21>1)

B(®,,) + APt [R(q)m+1) — DSUb(CI)m+1)]

Q3
(7.33)
where it is noted that the parton showering must now occur with subtraction
terms used in the NLO calculation as evolution kernel. As result the Sudakov form
factor must take the form
Q/Z
AMC@NLO(QQ’QQ) —exp | — / dq)l%Dsub(q)erl) (734)
Q2 "
This summarizes the MC@QNLO method first described in [64], although the form
that is given here is taken from [65].
The POWHEG method, in the formalism of 7.31 amounts to making the choice of
Rs(q)erl) = R((I)m+1)'

doPOWHEG _  4=(B)

arovimo(g2, ) + [ v, Bl arowiea gz, gz,
@4

(7.35)

Where the factor da'?) is simply the differential form of the NLO cross section.
dz®) = do® + do™) + / Ao + d®,i1 [R(Ppg1) — D™ (@pir)]  (7.36)
1

Again this forces the kernel of the showering algorithm to take the new form, in
this case the ratio of the real to Born terms. As result the Sudakov form factor must

take the form

/2

APOWHEG(Q2’ Q/Z) —exp | — / dq)l
Q2

R(q)m+1>

B (7.37)

for POWHEG.
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Both of these formalisms force the evolution kernel of the shower to take a partic-
ular form, however this can be problematic for defining a parton shower alogorithm.
This is the case for the MC@QNLO method, where the evolution kernel in the Sudakov
form factor can take negative values; as a result such a Sudakov could not be used
to describe a no branching probability. This issue is addressed by use of a modi-
fied form of the well known veto algorithm [78], found in [79]. The veto algorithm,
as commonly used in parton shower algorithms, allows for the generation of parton
branchings for showers, with evolution kernels that do not have a known integral.
The generation of a branching scale proceeds, as given in 7.11 and using the notation
of 7.27, is given by

0"
M@, Q) =0 | = [ amir(@) | =® (7.38)
02

If the integral of the kernel, I'(®) is unknown, then computing the branching scale
from 7.11 presents difficulties. The veto algorithm resovles this by defining a new
function, g(®) which has a known integral and provides an overestimate of I'(®) (i.e.

g(®) > TI'(P)) and generating branching scales by

0"
exp | - / 4P g(,) | =R’ (7.39)
02
Which, as g(®) has a known integral, can be used to compute a branching scale. The
branchings generated by 7.41 are then accepted as branchings for the parton shower,
with a probability I'(®)/g(®). The branching probability, using the veto alogorithm
then takes the form

Q/2 Q/2
Prrann(Q7) = géii; /dq>19<q)1>exp _/dq)lg(q)l) (7.40)
Q? Q?

To deal with kernels that can take negative values, the algorithm is modified by
introducing an additional overestimate function, h(®), which is always positive; this

procedure also requires that I'(®)/g(®) remains positive. Branching scales are then
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generated with
Q/Q

exp | — / d®h(Py) | =R’ (7.41)
02
and are again accepted with a probability I'(®)/g(®) (hence this quantity mustbe
positive). The distributions generated from these steps then have weights applied to
them; these are expressed below

IR _ (®) h(®) — f(P)
g(@) NPT (@) g(@) — f(@)

WBranch = (742)

for branched and unbranched events respectively. It is noted that the weighting proce-
dure for the additional overestimate function, h(®) is applied analytically as opposed

to the probabilistic ’hit and miss’ of the previous overestimate function g(®).

In SHERPA the NLO matching scheme which is utilized for the simulation of results
presented in this thesis is the MCQNLO formalism. In the SHERPA implementation
the calculation of the NLO term is conducted with Catani Seymour dipoles, and as
a result the MCQ@QNLO calculation as presented above also utilizes these subtraction
terms. The parton showering therefore must occur using these subtraction terms as

the evolution kernel, which SHERPA natively employs for this purpose anyway.

7.2.3 Merging Matrix Elements with Parton Showers

The combination of NLO fixed order calculations and parton showers described in the
previous section, accomplishes a merging of the NLO calculations and parton showers
by removing terms in the parton shower which caused the double counting of certain
logarithmic corrections included in the parton shower. A principle part of these
corrections relate to the real emission term of the NLO calculation, which in essence is
simply a tree level matrix element term with an additional partonic leg (compared to
the Born term). While this extra partonic leg, in the NLO case, becomes unresolved
for the real correction term, corrections for this term can motivate correcting the
parton shower for hard partonic emissions described by tree-level matrix elements.

The correction of a leading order parton shower to include the matrix element for the
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first partonic emission, above the merging scale QQ\s, can be motivated by equation

7.31 to take the form 7.43.

do“®*WV = do,,. 1 B(D,,)

AQ%Q2) + / 10,0 (Q2s — Q3,) T(B1)A(Q% Q3)
Q3

v [anSede @, - aty) A Q)| ()
Q3

Where again the Sudakov form factor is defined with an abstract kernel I'(®4), yield-
ing
Q/Q

AQLQ?) = exp | — / A%, T(®y) (7.44)
Q2

It is seen that this expression, for the first emission process in the parton shower,
showers normally for emission scales below the merging scale Q%;4; however if the first
emission process is above the merging scale the Born hard process matrix element is
replaced by tree-level matrix element for an additional partonic emission (compared
to the Born term). Therefore this formalism simply corrects the hard process to
include an extra jet emission if this jet emission is sufficiently hard itself. It is noted
that performing this procedure has the effect that the parton shower contributions
no longer integrate, over the full phase space, to unity; although this effect is not

problematic if the merging scale is chosen appropriately.

While this approach is effective, it can be extended beyond the first emission in
the parton shower; this can be accomplished by performing the same procedure used
to correct the Born level parton shower to the extra emission term. This corrects
the first emission for this hard process; the procedure can then be used iteratively
to correct for hard emissions (those greater than the merging scale) for any emission

in the parton shower. The correction to the real emission hard process term of the
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parton shower can therefore be expressed as

AoV = A, 1 R(Pry1)© (QF, — Qiis) AQ°,Q3,)

A5, @) + [ 010 (Qhs - Qhe) PBDAQGR)

Q3
R2(¢)m+2)
2 2 12 2 2
+ [ a9t Em e (03 — Oh) AR, Q)| (749
Q3

where the term Ry(®,,41) is the tree-level term with two additional partonic emis-
sions relative to the Born and ®? represents the additional partonic phase space for
the second emission. These formalisms for the merging of matrix elements and parton
showers are known as the CKKW and CKKW-L procedures for the first and multi
emission corrections respectively, and are described by [61] and [62]. The implemen-
tation of these procedures into SHERPA is described in [63].

There are various technicalities in this procedure which have been glossed over in
this brief overview, examples of which include the running of the strong coupling in
the parton shower; for matrix element calculations a consistent value of oz must be
used while in a parton shower the scale of this coupling changes with the shower and
is generally corrected for by an additional weighting factor. Other issues include the

corrections for initial state radiation and choices of scale, which are described in [63].

This multi-jet merging scheme can be combined with NLO matching methods
to produce hard emissions, usually just the initial process, at NLO. The MENLOPS
formalism [80] and [81] combines the POWHEG method, summarised in equation 7.35
with the multi-jet merging described above. While this method is somewhat involved
and will not be described in detail, its essentials are as follows; the Born term in
equation 7.43 is reweighted to the NLO result, as is done for the POWHEG method in
equation 7.35. The Sudakov form factors must take the form of the POWHEG method,
as shown in in equation 7.37, and as a result the evolution kernel in 7.43 must also
take this form. In MENLOPS this NLO correction is only conducted for the initial

Born process.
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7.3 Hadronisation in SHERPA

Hadronisation is a significant problem for modelling in Monte Carlos as the pertur-
bative components, the partons (quarks and gluons), must become confined within
hadrons; since this process must occur in the non-perturbative regime of QCD where
the theoretical methods for QCD described in this thesis are not valid, and alternative
descriptions must be used. For the description of hadronisation in most Monte Carlo
simulations, some sort of phenomenologically motivated model is used. Hadronisation
within SHERPA employs a modified form of the cluster model of hadronisation [66]
and [67], which is described in [68]. Cluster models of hadronisation are essentially
based on the notion of pre-confinement of partons produced from parton showers.
Preconfinement is simply the result that the partonic products of the shower can be
arranged into colour singlet clusters and thus pre-hadronisation colour singlet ob-
jects exist. These colour singlet clusters are therefore the basic objects which will be
hadronised.

This idea of preconfinement is best demonstrated in the large colour, N, limit; in
this limit the leading colour approximation can be used (leading order in Ni) whereby
the colour structure of a gluon can simply be represented by a colour-anti colour line.
During a parton shower the flow of colour can therefore by tracked and colour lines
used to determine the colour singlet clusters. The use of these cluster models is
interfaced with the parton shower; when the shower evolution reaches below the
hadronisation scale, which is usually around 1 GeV, the shower will stop and the
partons will be clustered into colour singlets with colour partners.

In practice this means that an enforced splitting into a quark-anti quark pair occurs
for all gluons. These colour singlet objects are taken as the proto-hadrons, and the
model decays these objects into various hadron species. Usually this decay process
occurs by considering these clustered objects to be excited mesonic states; in the
simplest employment of the cluster model these simply become the observed hadron
species by selecting random two body decays that are allowed by kinematics and

flavour.



Chapter 8

Photon Induced Processes

The contribution of photon induced processes to production channels, such as Drell-
Yan, at the LHC is the emphasis of the second part of this thesis. As such this
chapter will present the two contributions to these photon induced process, which
are the photon component of the PDFs and Weizsacker-Williams distributions. In
both cases the rationale behind these contributions is discussed, and the expressions
used to calculate their components to the photon induced cross sections are explicitly

given.

8.1 Photon PDFs

The photon component of the parton distribution function, will in this section, be
motivated and introduced with a view to the use of these objects in later chapters.
Some overview of the calculation of the intial distribution functions for photons is
given, but this is not pursued in detail . A brief consideration will also be given to
QED corrections to the parton shower formalisms which are also included in simula-
tions described in this thesis.

The photonic contribution of a parton distribution function is a key part of the
simulation of the photon induced processes. At present there exist two significant
PDF sets which include photonic PDFs; the standard MRST2004QED [46] and the

more recent set NNPDF2.3QED [47], both of these sets can be obtained from the
122
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LHAPDF [82] package.

The motivation for a photon component of the parton distribution functions arises
from considering the QED corrections to the DGLAP evolution kernels; essentially
as it is possible for quarks in a hadron to branch photons such a contribution must
exist. It is therefore possible to write a modified DGLAP evolution kernel for the
evolution of PDF's to include QED splitting effects

5fal dy s o
e ) Z/ [ Py, (g) foy (0% + 5 PAP (g) eijfaj(y7u2)]

(8.1)
Where e,; is the fractional electric charge of the partonic component, and use is
made of the QED equivalent of the Altarelli-Parisi splitting functions, which are
listed below.

PI(z) = (ijﬁ) 52)
PaP(z) = (w) (8.3)
PA() = —2 3" es(1—a) (8.4)
PIPG) = (24 (1- ) (55)

As can be seen these are similar to their QCD equivalents, bar some constant factor,
with the exception of the P2*P splitting function which, as there are no direct photon-
photon couplings in QED, only receives corrections from virtual terms and as a result
is proportional to §(1 — z). It can be seen that such an inclusion of QED effects of,
particularly the quark to photon splitting, naturally leads to a photon component of
the PDF. The set of evolution equations, implicitly defined in the above expression,
now includes an evolution kernel for a photon distribution, which can be written out

explicitly to be

0 d
Mf”# %Z/ Up %?D( ) 2 oy, 1) (8.6)

This expression confirms that a photon component of a PDF set, if QED effects are

included, must in principle be included, however determining an initial distribution



124 8.1. Photon PDF's

function for this component requires additional input.

The starting photon distribution functions in the MRST2004QED PDF set [46]
are determined by considering the radiation of photons off quarks in the hadron.
This set uses the assumption that this effect is dominant in the high = region, and
this component is therefore determined from considering only valence quarks. The
photon distribution at the initial scale, Q3 is thus determined from the one photon
emissions off the valence quark; if the (collinear) leading logarithmic components of
this emission are considered then the photon distributions can be written in terms of

the valence quark distributions to be, for a proton
1

2 2
Rt =g [ Leae (1) |Siog () uat) + 1o (2 ) o] 67

x

Note that from [46] that ug(z) and do(x) are in fact 'valence-like’ distributions and

are in fact determined from the valence distributions.

The more recent photon PDF set of NNPD2.3QED [47] adopts a more conven-
tional approach to determining initial photonic distribution function, in that it is
more reminiscent of techniques to determine such contributions for quarks and glu-
ons. This is accomplished, essentially, by matching measured data for a process,
for example deep inelastic scattering, to distribution function, which is convoluted
with the relevant partonic cross section; for the photon PDFs QED effects must be
included in this process.

The computation of hadronic cross section, utilizing the photon PDFs proceeds using
the factorisation theorem as has been discussed in chapter one for strongly interacting
partons; the computation of a photon induced process from hadronic collisions can

therefore be computed from

1

1
OHadronic — /d771 /d772f$1(771)]”52(772)&77%X(771P1>772P2) (88)
0 0

which is simply the usual factorisation formula with the photon included as a parton.

It should be noted that the use of photon PDFs is not exclusive to purely photon
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induced process; for example a process vq¢ — X is perfectly calculable, and would
simply be given by 8.9.
1 1

OHadronic — /d771 /d772f51(nl)f;{Q(ﬁz)&yqﬁX(me772P2) (89>
0 0

However such contributions are not considered in this work, for results contributing
Drell Yan or W pair production processes. Partonic processes of this form would
constitute part of the NLO EW corrections to either the photon induced or partonic

induced processes, which are not considered for this thesis.

8.1.1 QED Corrections to Parton Showering

The inclusion of photon PDFs in the simulation setup is supplemented here by the
inclusion of QED corrections to the parton shower formalism; a review of parton
showers is presented in chapter one of this thesis, and will not be repeated here. The
modification of the PDF evolution kernel to include QED effects is described above
and forces the inclusion of photon PDFs. It is noted however that the same physics
is used to describe a parton shower, and therefore inclusion of QED effects in parton
showers can in principle be included by supplementing the QCD splitting kernels with
QED ones. For DGLAP evolution the QED splitting functions are described in the
above section, and for parton showers based on DGLAP evolution the incorporation
of QED splitting in showers simply amounts to the inclusions of these splitting terms
in the Sudakov form factors, and in the branching terms where appropriate splittings
occur in the shower [83]. The inclusion of the QED effects therefore modifies the

Sudakov form factor to include the following term:

q/2 T

Q/2
AWP(Q, Q) = exp | - [ 9L [ 42 poeo 8.10
QQ

However the parton shower algorithm made use of within SHERPA utilizes Catani
Seymour dipoles, in their spin averaged form, as the evolution kernels, as opposed to
the Altarelli-Parisi splitting functions of DGLAP. To include the QED emissions in a

parton shower formulated in this fashion, the QED dipole splitting must be included



126 8.2. Equivalent Photon Approximation

in the manner shown above for the Altarelli-Parisi QED splitting functions. The

Sudakov form factor is then defined as

Q/2
AD(Q, @) = exp | - / A0 AP (@14) (8.11)
QQ

where IC%ED((I)? k) are the Catani Seymour spin-averaged dipole splitting functions.

8.2 Equivalent Photon Approximation

In the discussion in the previous section concerning the use of photon PDFs to sim-
ulate photon induced processes, which is of necessity in determining such correc-
tions, however, this simply gives the inelastic component of the cross section. In
the case of the similar QED corrections for elastic processes, this essentially involves
electromagnetic fields of the protons interacting and causing particle production.
The observation, first made by Fermi [84] and later developed by Weizsaecker and
Williams [85] [86], that the electromagnetic field of a ultra-relativistic object can be
effectively modelled as a spectrum of real photons is known as the effective photon
approximation (EPA). The use of this approximation can be applied for both single
and double photon cases; in the first case the approximate photonic interaction only
comes from one of the initial state particles whilst the in later from both. In this the-
sis only the double photon case is relevant, and the former case will not be discussed
although the interested reader is referred to [48]. For the double photon case, the
equivalent photon approximation causes the complete cross section to factorise in a
manner similar to that of the hadronic PDF cross section. It is essentially reduced to
a convolution of the double photon cross section with the EPA distribution functions
for both initial state particles, the photon distributions are therefore analogous to
the PDFs and the photon cross section analogous to the partonic one; it is explicitly

given below.

1 1
OEPA — /d771/dUQfEPA(n1)fEPA(772)5w—>X(771P1,772P2) (8'12)
0 0
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Where the photon spectra are described by fEP4 ().

These spectra were initially calculated in a semi-classical limit, and later this was
extended to using Feynman diagrammatic methods. In this formalism the EPA dis-
tribution for point-like particles such as electrons can be calculated within the context
of the approximation. However for bound states such as protons the calculation of
this distribution must be supplemented with empirical modelling of the proton struc-
ture. The fitting for this distribution employed within SHERPA for protons is shown
below and is based on the formalism given in [48], .

The EPA spectrum function, fgpa(z) is then given for a proton by

- S () (%) e

wherein © = E, / Enaaron, @aax = 2 GeV?, and ¢2, (z) = (m2a? +p3 1)/ (1 — ). The

function ¢ is given by

(1—-b)y :
_ 1 1
P2 = Lag e T aw) | ~los +;kl+z
l+2-b < (51
¥
c(1+5) |log———— +Zlk:1—|—z !

M~ —3.96 and

0

* ~ 0.028. my, is the proton mass and p2 ~ 7.78, ¢3 ~ 0.71 GeV? [48].

with y = a2/(1 - 2) and @ = 1(1+ i2) + 424 ~
0

%
CcC =

It is this spectrum for the proton that is implemented within SHERPA and is used
for the EPA component of photon induced processes in all simulations presented in

later chapters.



Chapter 9

Photon Induced Processes Results

The addition of photon induced channels to the simulation of certain processes at
the LHC is the subject of the second part of this thesis; in previous chapters the
motivation for, and calculation of these channels has been described. In this chapter
results of simmulations which include these channels, in addition to standard QCD
components, are presented and discussed; where possible they are compared to data
from ATLAS or CMS. The processes used to demostrate the contribution of photon
channels are, as has been discussed, the production of lepton pairs and the production
of W pairs with leptonic decay products. The motivation for the choice of these
processes is, as has been discussed already, their use in determining bounds on new
physics; in the case of the lepton-pairs bounds on heavy mass resonances and for the
case of the W pairs its status as an important background to a key Higgs production
channel. For both of these channels a description of the setup of the simulation
will be given, followed by a presentation of this simmulation compared with relevant
data from ATLAS or CMS; additionally, for both processes results will be presented
which indicate the effect of the photon channels on the emission of additional jets.
For the W pair process the simmulation is conducted again for 14 TeV collisions, in

anticipation of run two of LHC analyses.
128
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9.1 Lepton-pair production

The production of lepton pairs is given as the first example for the simulation of pho-
tonic processes. The set up for this simulation incorporates a baseline Drell-Yan pro-
duction at NLO accuracy in QCD, which is obtained using the SHERPA implementation
of the MC@QNLO formalism. This is supplemented by the addition of the di-photon
production of lepton pairs, which occurs in two channels. The first of these is
the photonic component of proton PDFs, which is incorporated into the PDF sets
MRSTQED2004 [46] and NNPDF2.3QED [47]. The photonic channel here is sim-
ulated separately for both sets, resulting in separate photonic contributions which
are given for all results in this section. This is justified by the possibly large er-
rors associated with photon PDFs. The second originates from the photons emitted,
quasi-elastically, from protons. This channel is simulated with the Equivalent Pho-
ton Approximation of Weizsaecker and Williams [48], which is discussed in chapter 8,
and which has been implemented within SHERPA. Both of these channels utilize the
matrix element for photo-production of leptons, vy — [l, which is calculated within

SHERPA at leading order.

9.1.1 Inclusive lepton pair production

For the case of Lepton pair production, the simulational set up in SHERPA, described
above, is utilized to compare against recent precision Drell-Yan measurements by
ATLAS [4] and CMS [2] and [3]. The details of the analysis framework imple-
mented for these results are described, for both ATLAS and CMS, in appendix A.
For each experimental set up the relevant analysis framework is implemented in a
RIVET analysis [87], which is interfaced with SHERPA to produce a simulation to com-
pare with the relevant data. The theoretical errors on the simulation data have as the
dominant contribution the factorisation and renormalisation scale errors (there are
additional small contributions from the Monte Carlo integration of the processes);
these are computed by the correlated variation of the factorisation and renormalisa-

tion scales between p/2 and 2u, where p is the central value of the scale used.
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Figure 9.1: Invariant lepton-pair mass spectra as measured by ATLAS [4] (left, and
for ee final states) and by CMS [2] (right, and for lepton-lepton final states). The
experimental data is compared with SHERPA simulations, starting from a baseline
QCD sample simulated with the MC@QNLO implementation in SHERPA (black); the
QED PDF (green and blue) and EPA (red) contributions are successively added.

These analyses are presented in figures 9.1 and 9.2, and all show lepton pair
invariant mass distributions based on Drell-Yan data and the results of the SHERPA
simulations. Figure 9.1 shows the invariant mass distribution of electrons in the high
mass tail (116-1500 GeV) based on the ATLAS analysis described in [4] and the
invariant mass of lepton pairs in the lower mass region (15-600 GeV) based on the

CMS analysis [2]. Figure 9.2 shows the invariant mass distributions for electron and
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Figure 9.2: Invariant lepton-pair mass spectra as measured by CMS [3] (left for ee,
right for pp final states). The experimental data is compared with SHERPA sim-
ulations, starting from a baseline QCD sample simulated with the MCQNLO im-
plementation in SHERPA (black); the QED PDF (green and blue) and EPA (red)

contributions are successively added.

muon pairs over the combination of the mass regions shown in the previous figure
(15-1500 GeV), based on the analysis described in [2]. For the CMS analyses in this
section, based on results from [2] and [3], the differential distributions are normalised
to the cross section in the z mass region (defined to be 60-120 GeV). Analyses based on
ATLAS results show simply give the differential cross section. It is noted, from these
figures, that the shapes of these distributions are reasonably described by the QCD
baseline contributions; the ATLAS results appear to be undershot by the baseline
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by about 10%, whilst such an occurrence is not seen for the CMS results. Here it is
worth stressing that normalisation of the CMS processes would remove such an effect,
and therefore explain why it occurs only for the ATLAS analysis.

Regarding the photon channels, a number of points can be clearly discerned from
these figures. It is apparent that the photon channels can contribute sizeably to
this process, and are particularly significant in the high my, tail (> 500 GeV); for
CMS analyses these corrections can be as large as 10-20% whilst for ATLAS they
are slightly smaller, though still significant, and of the order of 5-10%. A cautionary
note will be struck, given that both theoretical and experimental errors, in the high
my region are large (> 10%) for these results; however, the enhancement due to this

channel is still reasonably significant by this measure.

Additionally it is apparent that there is a clear difference in the size of the pho-
ton channel, in relation to the photon PDF set used; again this is an effect more
discernible in the high m; region. The photon channel for which the MRST photon
PDF set is used is visibly enhanced with respect to this channel computed using
the NNPDF set; this is particularly clear for the CMS comparisons shown in figure
9.2, although this is less clear for the higher mass region shown in 9.1 for the AT-
LAS analysis; although the MRST set is still relatively enhanced with respect to the
NNPDF set. It is possible that this may be the result of phase space cuts applied in
the ATLAS analysis [4], which do not occur for the CMS analyses; which are notion-
ally unfolded for the full phase space. It is also observed that photon channels which
utilize the NNPDF set remain in reasonably good agreement with data; however the
same channel simmulated using the MRST set often does not, and can be sizeably
enhanced with respect to the data. This however is not too surprising as the former
originates from an actual fit to LHC data, while the latter is an older set which relies
on a relatively crude parametrisation to obtain photon distributions; this parametri-
sation is summarised in chapter 8. It is also noted that the affect of photon channel
contributions appear to be dominated by the photon PDF components, which con-
tribute significantly to the process. The component based on the equivalent photon

approximation, when compared separately to the QCD baseline, shows relatively lit-
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tle enhancement over the m; mass spectrum none of which is significant with respect

to errors.

9.1.2 Jet activity

For some searches for new physics, the production of lepton pairs in association
with jets can be an important background. In this vein, the setup utilized in the
previous section can be modified to consider the effect of photon induced processes
on jet activity in lepton pair production. In this task the setup is modified slightly
and MCQNLO setup is replaced by using MENLOPS for the QCD baseline process,
otherwise all aspects of the simulation are unchanged.

In figure 9.3 the average number of jets (Nje) is depicted as a function of the invariant
mass of the lepton pair. Jets in this plot are defined by the anti-ky algorithm [24]
with R = 0.4 and p(jet) > 20 GeV; a full analysis framework used for this simulation
is provided in appendix A. Again the theoretical errors on the simulation have, as
the dominant contribution, the factorisation and renormalisation scale errors; and
as before these are computed by the correlated variation of the factorisation and
renormalisation scales.

Generally, including photon induced processes reduces the number of jets by up to
30% for channels using the NNPDF set and up to 35% for the MRST set. Again it is
seen that this affect is dominant in the high my; tail region but, as expected, it does
not influence the number of jets around the Z-pole, for my, ~ M, since there the
QCD baseline entirely dominates the overall production cross section. The effect of
the EPA induced contibution, which appears to dominate the photon chanel, seems
large in that it reduces the average jet multiplicity by between 10-20%, and again has
the largest effect in the high my region. It is likely that such a large EPA component
is the result of forward lepton production, and as such unobservable in colliders, a

region where the EPA cross section is large.
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Figure 9.3: Average number of jets emitted per mass bin for Drell-Yan Process
The SHERPA simulations, starting from a baseline QCD sample simulated with the
MENLOPS implementation in SHERPA (black); the QED PDF (green and blue) and

EPA (red) contributions are successively added.

9.2 IV-pair production

The process of WW production at the LHC will be given as another test of the con-

tribution of photon-induced channels. The set up for this simulation incorporates a
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baseline WW production at NLO accuracy in QCD; which is computed using the
MCQ@QNLO formalism. The virtual contribution to the q¢ — WW process is calcu-
lated in MCFM [88], and interfaced with SHERPA for the calculation of this process.
The main baseline process is supplemented by the inclusion of the gluon gluon pro-
duction channel, which is the result of the effective gluon gluon to WW vertex, and
is included as this channel can become enhanced due to the large gluon PDF. This
is then supplemented by the addition of the photon-photon production of W pairs,
which again occurs in two channels. The first of these is the photonic contribu-
tion to the PDFs, which is incorporated into the PDF sets MRSTQED2004 [46] and
NNPDF2.3QED [47]; the photonic channel is simulated separately for both sets as
for the lepton pair production analysis. The second is the result of quasi-elastic emis-
sions of photons from protons, described by the Equivalent Photon Approximation of
Weizsaecker and Williams [48]. Both of these channels utilize the vy — WW matrix
element, which is calculated within SHERPA at leading order.

For this analysis, the W-pairs simmulated are decayed into lepton-neutrino pairs
only; which is the choice employed by most experimental analyses of this process,
such as [1]. The simulational set up produces on-shell W pairs, which are then de-

cayed to produce the leptons used in the analysis.

9.2.1 ATLAS analysis

The analysis of WW production in this section is based on data from the ATLAS
experiment described in [1]. As for the case of lepton pair production, discussed in
the previous section, the SHERPA simulational set up, including the photon channels,
is utilized to give a comparison with these results. The experimental analysis of W/
production in ATLAS given in [1], is based on the measurements of electrons and
muons from the leptonic decay channels of the W. The analyses presented in this
section will focus on distributions over observables of one or both of the detected
leptons, from the decays of the W pairs, such as the lepton pair mass or the p,
of the lepton pair. The kinematic cuts on this analysis, which are summarized in

appendix A, are thus conducted on such variables; as with previous analyses these
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are implemented into a RIVET analysis [87], which is then interfaced with SHERPA to
produce a simulation of the experimental framework. As for the Drell-Yan processes
the dominant source of theoretical error is the factorisation and renormalisation scale
errors (there are additional small contributions from the Monte Carlo integration of
the processes); these are computed by the standard of variation of the factorisation
and renormalisation scales between /2 and 2u, where u is the central value of the

scale used.

Figure 9.4 shows the normalised leading lepton p, distribution, based upon data
unfolded in the ATLAS analysis [1], restricted to the fiducial region as described in
appendix one. In addition to this, figure 9.5 shows data from the same fiducial region;
however this data is not unfolded. To give a meaningful comparison, the background
channels described in [1] are removed, and the SHERPA analysis is subject to global
acceptance factors for each of the decay channels, which are again described in [1].
The fit to the shape of these distributions, provided by the QCD baseline, is not
unreasonable; however, it does deviate from the data slightly. This is best illustrated
in the normalised distribution in figure 9.4 where the vague shape of the distribution
appears to agree with data, whilst the simulation disagrees with data for several
bins. It is also noted that this baseline undershoots the data by a significant margin
of around 20% for the event distributions shown in figure 9.5, an effect that would
not appear in the normalised distribution of figure 9.4. This may be the result of this
data having only crudely been compensated for detector effects; however, a similar
affect was found by [1], which used a similar QCD prediction setup to the baseline
simulation conducted for this analysis.

In contrast to the lepton pair production process presented earlier in this chapter,
the effect of the photon channels appears less discernible in figures 9.4 and 9.5. The
photon channels do not appear to deviate with any significance from the QCD baseline
process; whilst a modest effect appears in the tail of the leading lepton p, spectrum
in figure 9.5, this is not significant compared to the size of the errors (which are large
in the tail region). The contrast between the photon channels, computed using the

MRST and NNPDF photon PDF sets, not appear to be discernible, based on these
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results; however, this most likely reflects that the photon induced channels are not

particularly significant for this process.
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Figure 9.4: The normalised fiducial differential WW cross section as a distribu-
tion in leading lepton p, as measured by [5]. The experimental data is compared
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EPA (red) contributions are successively added.
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Figure 9.5: Distribution of WW production events for leading lepton transverse
momentum and the azimuthal decorrelation of the lepton pair as measured by [5] (left
for p,, right for ¢). The experimental data is compared with SHERPA simulations,
starting from a baseline QCD sample simulated with the MCQNLO implementation
in SHERPA (black); the QED PDF (green and blue) and EPA (red) contributions are

successively added.
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9.2.2 High-mass tail

The previous section details the set up and simulation of the WW production analysis
of [1]; in this section, in anticipation of LHC run two energies, the same analysis
framework is used for simulation 14 TeV collisions. For this analysis, the simulation
will continue to use the phase space cuts identified with the analysis in [1]; which are
again implemented via a RIVET analysis, details of which continue to be described
in appendix A. It must be stated that this section will present no comparison with
data, simply the results of the simulation setup previously described, in an attempt
to discern the effect of photon induced channels, if any, on this process. The process
therefore is identical to the previous section, namely production of WW events which
then decay leptonically.

Figure 9.6 shows the differential distributions of the lepton pair p; and mass as
described by the SHERPA simulation; both include a large tail region, extended up to
1 TeV for the mass and 200 GeV for the p,. except that it is simulated at 14 TeV.
Again the dominant source of error is the scale variation error, which is estimated
by the correlated variation of the relevant scales in the same fashion as described for
previous cases.

Regarding the photon channels in this section, it is seen that they do not appear
to be particularly significant relative to the QCD baseline; as was the case for the 7
TeV results. For the lepton pair p; and mass distributions, shown in figure 9.6, a
more extended tail region is shown compared to 7 TeV results; the photon channels
appear more significant in these tail regions, giving 5% corrections to the lepton
mass distribution > 500 GeV and similar corrections to the lepton p; spectrum
above > 150 GeV. However it is noted that such corrections are completely dwarfed
by the error, which is scale dominated, for the tail regions. As such, no enhancement
of the photon channel of significance is observed. The contrast between the photon
channels computed using the MRST and NNPDF photon PDF sets do not appear
to be discernibly different, based on these results. This is also the case for the
same process at 7 TeV, and there as here this probably reflects that photon induced

channels are not particularly significant for this process. Even in the high lepton
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Figure 9.6: Differential cross section for WW production with respect to the trans-
verse momentum (left) and invariant mass (right) of the lepton pair, simulated at
14 TeV with an analysis framework consistent with [5]. The SHERPA simulations,
starting from a baseline QCD sample simulated with the MCQNLO implementation
in SHERPA (black); the QED PDF (green and blue) and EPA (red) contributions are

successively added.
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mass and p, tails where the photon channels do appear to be large, although still
dominated by error, there is no significant difference in photon channels computed

using the different sets.

Jet Activity of WIW Processes

As with the case of the lepton pair production, the issue of how the photon channels
influence the production of additional jets will be investigated for the W pair channel.
For this case the ratio of the one to zero jet rates are simply plotted over the same
distributions shown in figure 9.6; the effect of the photon induced channels on this
result can be used, in a similar fashion to the analysis shown in figure 9.3, to describe

the effect of these channels on jet activity.
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Figure 9.7: Ratio of 1-jet to 0-jet rates in WW production, shown as a distribu-
tion transverse momentum (left) and invariant mass (right) of the lepton pair and
simulated at 14 TeV with an analysis framework consistent with [5]. The SHERPA
simulations, starting from a baseline QCD sample simulated with the MCQNLO im-
plementation in SHERPA (black); the QED PDF (green and blue) and EPA (red)

contributions are successively added.
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These analyses are shown in figure 9.7, whereby this ratio is shown for the lepton
invariant mass and transverse mass distributions. Again the dominant contribution
to the error is the result of scale variation, which is computed identically to all
other cases. Given that the effect of photon channels on this process is, as has been
discussed, not significant relative to the size of the errors, it is perhaps not surprising
that the effect of these channels on the jet ratio is not particularly significant. It is
noted however, that as with lepton mass and p, distributions for this analysis, some
sizable affects occur in the high mass a p, tail regions; principally these are reductions
of the jet ratio of about 5-10% in the tail region for the photon PDF channels,and
of about 10% for the EPA channel. However it is noted these effects are dwarfed by

large errors.



Chapter 10

Conclusions to Part 11

In part II of this thesis a study has been presented on the effect of photon induced
channels on two key processes, at the LHC, for the bounding of new physics; namely
Drell-Yan production and W pair production. This was accomplished by the use of
the Monte Carlo event generator SHERPA, for the simulation of both baseline and
photon channel contributions.

The physics behind Monte Carlo event generators, such as SHERPA , is reviewed
in chapter 7 and the various modeling techniques used in this study are discussed.
Particular attention is paid to aspects of Monte Carlo’s that are used directly in this
work, and as such discussions are given on parton showering, in addition to com-
bination of parton showering with both NLO calculations and matrix elements; the
Mc@NLO and CKKW-L formalisms are briefly discussed in this context. A moti-
vation for, and discussion of, photon induced process is then presented in chapter
8. Such processes are composed of two channels; the first of these is the photon
component of a PDF, which arises naturally from considering QED corrections to
parton evolution kernels, and can in principle become quite large; the two photon
PDF sets used in this thesis, MRSTQED2004 and NNPDF2.3QED are briefly de-
scribed in this context. Additionally the quasi-elastic component of photon process,
which arises from photons emitted from protons (which then remain intact for such
events), is considered, this is modelled by the Equivalent Photon Approximation

of Weizsacker and Williams; the EPA distributions implemented within SHERPA for
144
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protons are explicitly given. In chapter 9 the results of these studies are presented
for the production of lepton pairs and W pair production, in both cases the simula-
tions are compared with data from ATLAS or CMS. For both of these processes the
shape of the distributions from data is reasonably well-fitted by the QCD baseline
simulation, for Drell-Yan the agreement in excellent whilst for the W pair process
it is less so. The effect of photon induced channels is found to be quite sizeable for
lepton pair production, particularly in the high m;; region for this process, for photon
channels computed using the MRST photon PDF set. This enhancement of the mass
distribution leads to a disagreement with data from CMS; for the newer NNPDF set
no such disagreement is observed. The affect of the photon channels is found to be
not particularly significant for the W pair process; and even when this process was
considered at LHC run two energies the photon induced channels do not produce a
sizeable contribution, that is significant with respect to the size of the errors. For
both process, the effect of the photon channels is considered for the production of
extra jets; for lepton pair production a sizeable reduction in the average jet multiplic-
ity is found. This effect is dominated by the EPA component of the photon channel,
a result that is most likely due to enhancement of the EPA cross section in forward
region; while for W W production the effect of photon channels is once again found

to be small.

It is concluded that for predictions concerning Drell-Yan processes, particularly
discovery searches in the high lepton pair mass region, the inclusion of photon induced
channels is recommended for high precision results; particularly the photon PDF
component. It is further concluded that the more appropriate photon PDF set to
use is the NNPDF set, which is the more recent and found to be in better agreement
with data. For searches that are sensitive to extra jet emissions in this process, the
inclusion of the EPA channel should also be included. For W pair production the

photon induced channels are small, and therefore can for the most part be overlooked.



Appendix A

Details of the Experimental

Analyses

The results presented in chapter 9 of this thesis compare simulations against certain
experimental analyses. These analyses are subject to certain kinematic cuts and
definitions of leptons and jets that were defined for the experimental results; to give
a meaningful comparison to such results these constraints must be reproduced for
the simulations. This is accomplished, for this thesis by the general Monte Carlo
analysis software RIVET [87]. These constraints, as implemented within RIVET will
be presented in this appendix for all analyses used in this thesis.

At this point it will be useful to introduce a definition. Throughout this appendix
there will be references to radius cones, in both the context of lepton isolation criteria
and jet constraints; these are defined, in this context, as the combined radius of

pseudorapidity, n and azimuthal angle ¢ expressed below.

AR = \/(An)? + (Ag)? (A.0.1)

A.1 ATLAS WW Analysis [1]

The results obtained by the ATLAS experiment for this section will detail the ex-
perimental cuts made for the ATLAS experiment analysis for W pair production

events; these events are constrained to include only leptonic decay processes for the
146
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W bosons. This analysis is described in [1], and the analysis details necessary for the

simulation and implemented in a RIVET analysis are described below.

The leptonic decay products of the muons are required to obey constraints on

transverse momenta and pseudorapidity, which are summarised in table A.1.

Electron pseudorapidity In| < 1.37 or 1.52 < |n| < 2.47
Muon pseudorapidity In| < 2.4

Lepton p, threshold p1 > 20 GeV

Leading lepton p; threshold | p; > 30 GeV

Table A.1: A summary of pseudorapidity and p, cuts on leptons as described in

ATLAS analysis [1]

The Leptons are also required to obey isolation criteria, for this analysis cuts
are placed on the sum of all transverse energy and momentum within the cone of

AR < 0.3 around proto-leptons, the thresholds are given in the table below.

. . . . lepton
Lepton isolation criteria for transverse energy >, E| <0.14E7
AR<0.3
Electron isolation criteria for transverse momentum | Y. p, < 0.15pslectron
AR<0.3
Muon isolation criteria for transverse momentum > pi < 0.13ppren
AR<0.3

Table A.2: Isolation criteria on leptons as described in ATLAS analysis [1]. All

isolation criteria are taken within a cone of radius AR < 0.3

The jets in this analysis are defined with the anti-kr algorithm [24] with radius
parameter R = 0.4. These anti-kp jets are, like the leptons, subject to kinematic
cuts which are described in the table below, and which also gives the jet veto criteria.
The jet veto criteria simply states the conditions a jet must meet in order to veto
an event, and in this context is introduced into the experimental analysis to reduce

backgrounds.
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Jets Anti-k7, R=0.4, p; > 20 GeV, |n| < 4.9
Jet Veto | p; > 25GeV and |n| < 4.5

Table A.3: Summary of cuts on jet pseudorapidity and transverse momentum in

addition to the jet veto requirements from ATLAS analysis [1]

The relative missing energy, p, e is defined as

s prsssin(Ag) if Ag < Z
Plvel = L, 2 (A12)
pT™ if Ag > 7

miss

where A¢ is the angle between p7** and the nearest lepton or jet and p7'* is the sum

of all missing transverse momenta.

This definition allows the channel specific cuts to be defined in the table below
The analysis also defines cuts on the specific leptonic decays channels possible for
the W pair, these are simply all the combined individual W — er, and W — puv,

decay channels for W pairs; these cuts are defined in the table below.

ee channel e channel et channel

my my > 15 GeV my > 15 GeV my > 10 GeV

lmy —m,| | |my —m,| > 15 GeV | |my — m,| > 15 GeV | [my — m,| > 0 GeV

pffsfel DLrel > 45 GeV Plrel > 45 GeV PLrel > 25 GeV

Table A.4: Summary of channel specific cuts on the mass of leptons pairs and missing
energy from ATLAS analysis [1]. The notation 'ex channel’ defines an event in which

the lepton pair has undergone one W — ev, and oneW — uv, decay

In addition to constraints on various leptonic and jet kinematics, the analysis also
requires that the certain leptonic and jet components are clearly separated by certain
radius values which if not met cause one or both components to be discarded from

the analysis, these are summarised below to be:

e if electrons and a jet are separated by AR < 0.3 the jet is discarded
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e if an electrons and muon are separated by AR > 0.1 then the electron is

discarded

e For electrons within AR > 0.1 of each other, the lowest p, electron is discarded

A.2 CMS Drell-Yan Analysis [2, 3]

The results presented in this section give a summary of the analysis used to simulate
against Drell-Yan results from CMS using data from 2011 in [2] and 2012 [3], which
use a common analysis framework. The results used from these analyses are recon-
structed over the entire phase space, and as a result no kinematic cuts are applied in
this analysis

The Leptons are also required to obey isolation criteria, for this analysis cuts are
placed on the sum of all transverse momenta, with the cone of AR < 0.3 around the

proto-lepton, the thresholds are given in the table below.

Electron isolation criteria for transverse momentum | > p; < 0.1pSectron
AR<0.3

Muon isolation criteria for transverse momentum > pr <0.15pTuen
AR<0.3

Table A.5: Isolation criteria on leptons from CMS analyses [2] and [3]. All isolation

criteria are taken within a cone of radius AR < 0.3.

A.3 Drell-Yan ATLAS Analysis [4]

The results presented in this section give a summary of the analysis used to simulate
against Drell-Yan results from ATLAS as described in [4], unlike the CMS Drell-Yan
analyses, this analysis is constrained to measure only electrons. This analysis can, for
the purposes of simulating a Monte Carlo comparison, be described by the following
set of constraints on lepton kinematics, the electrons are then required to pass a set

of isolation criteria; the kinematic constraints are given in the table below.
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Electron pseudorapidity | |n| < 2.47 or 1.52 < |n| < 2.47

Electron p,; threshold p1 > 25 GeV

Table A.6: Summary of pseudorapidity and p; cuts on electrons as described by

ATLAS analysis [4]

The electrons are also required to obey isolation criteria, for this analysis cuts are
placed on the sum of all transverse momenta, with the cone of AR < 0.2 around the

proto-electron,

> pL<T7GeV (A.3.3)
AR<0.2

The measured data is then extrapolated to the region || < 2.5 and corrected for
isolation effects. QED final state radiation off the electrons is treated in two ways: 1)
“dressed” leptons, defined through recombination with all photons within AR = 0.1
and 2) “Born” leptons, defined through correcting the data for all final state radiation
off the leptons, as extracted from Monte-Carlo modelling. In this thesis, the presented

calculation is compared to the data using the “Born” lepton definition.

A.4 Lepton Pair Jet Analysis

The jet activity plot, shown in figure 9.3 in chapter 9, also contains analysis specific
information which requires a description. While this is not an experimental analy-
sis and there is no data compared against, there are choices on jet definitions and

isolation which will now be summarised.

e Jets in this analysis are defined to be anti-k7 jets using a radius parameter of

the R=104
e Jets are required to have p; > 20 GeV

e The jets are required to be separated from the lepton pair by a radius parameter

of AR > 0.3.
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The first requirement is required to stop very large jet multiplicities, and is taken from
ATLAS jet requirements that are for example defined in [1]. The second requirement
is necessary to prevent jets that would, in experimental analysis, become absorbed
into lepton momenta by the isolation criteria; the choice of the radius of AR > 0.3

reflects the isolation requirement of the CMS Drell-Yan analysis.



Appendix B

FKS Expressions

This appendix simply shows expressions relevant to the FKS subtraction scheme
which are not directly included in the text. Principally these are; the integrated soft
terms when massive partons are present in the process and the angular components

of the collinear limit of the real term.

B.1 Massive Partons in the Integrated Soft Term

It is recalled that the integrated soft term is given by

qos) _Las

55 2 (T +T%) o) (B.1.1)

n#m

The result for Z,,, for purely massless partons in the process is quoted in the section
3.1.1, however when massive partons exist in the process, despite their exclusion from
being in FKS pairs, they do enter FKS subtraction terms through the soft subtraction
term, which includes a double sum over all colour objects. The following expressions

involving massive partons can all be found in [36]. For massive n, with massless m

: 4r)e A\ 1 1 2k, .k 1, 4m?E?
TV — <— — — +— |1 =T _ 1 o B.1.2
e T(1 =€) (Q2> [262 T (og Q? 2 8¢ sQ? ( )

cut
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Te gcuts knkm w2 1 9 S
778 = log Eeut <log 02 + 2log mE. ) 12 + —log” —

1 L 2L+ B 1 Ky Ko s

)
(U B)EE bk
L, (1_ >+L12 (1_(1_6n)EnEm>

For massive n and m

: 4m)e 2\ € 11 1+w
v — ( LA —— 1 L B.1.3
" T(1 =€) (Q2> ( 2€ Upm 8 1— vnm) ( )

1 T4 vpm . E24s (14 vum)(knkm)?® 4
Ii8 = 1 log > (i B E
nm 2vnm og 1_ o o Q2 + 27’)7% (J (anm n-Onm nﬁn)

_J(A) (Ema Emﬁm))
TN () = —— og2 “=Y ari, (1- 1Y fan, (1- 52| B

’ 2\v Tty 2 1 2 L o

M\
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_ LA
m mz ———kn.km (B.1.6)
A=y — En (B.1.7)
Qpmm? — m?

—_"nn m B.1.

p o (B.1.8)
The self eikonal piece, Z,,, which only exists in the massive case is given by
: 47r)€ 1
PA I GO B.1.9
1 1

Tro6 _ og Sow® _ Ly 14 O (B.1.10)

T80y T B, 1,
B.2 The Reduced Matrix element from Collinear
Limits

In FKS subtraction, the collinear limit is used for the collinear subtraction term. For

a collinear limit of 2 particles 7,5 with momenta k;, k;
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4o

; (n+1) _ (n) (.95 7.
A M (k) = 2o Faja, (DMEP (g k)
dra, o
O o (2)M™ 5 {i}) (B.2.11)
klk] JAij [7]
Where

1
— 2sw(ap)w(ag)

M(ri {k}n) (B.2.12)

o oA G4 ()

where A, /_ <r§]3) is understood to mean the helicity of parton a;; is + or -. Where
(k;k;) and [k;k;] are spinor products, with definitions of these spinor products (for

Dirac spinors) given in [89)] it is fairly trivial to obtain the collinear limit of this ratio.



Bibliography

[1] ATLAS Collaboration, G. Aad et al., (2013), 1304.7098.

[2] S. Chatrchyan and others”.

[3] CMS Collaboration, (2012).

[4] ATLAS Collaboration, G. Aad et al., (2013), 1305.4192.

[5] ATLAS Collaboration, G. Aad et al., Phys.Rev. D87, 112001 (2013), 1210.2979.
[6] F. Krauss, R. Kuhn, and G. Soff, JHEP 02, 044 (2002), hep-ph/0109036.

[7] M. E. Peskin and D. V. Schroeder, 1995 Westview Press. .

[8] S. Weinberg., Cambridge University Press, 1996 .

9] W. J. S. R. Keith Ellis and B. R. Webber., Cambridge University Press, 1996 .

[10] S. Frixione, Z. Kunszt, and A. Signer, Nucl.Phys. B467, 399 (1996), hep-
ph/9512328.

[11] S. Catani and M. Grazzini, Nucl.Phys. B570, 287 (2000), hep-ph/9908523.
[12] J. C. Collins and D. E. Soper, Ann.Rev.Nucl.Part.Sci. 37, 383 (1987).

[13] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

[14] Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

[15] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).
155



156 Bibliography

[16] P. M. Stevenson, Phys. Rev. D 23, 2916 (1981).

[17] G. Grunberg, Phys. Rev. D 29, 2315 (1984).

[18] G. F. Sterman and S. Weinberg, Phys.Rev.Lett. 39, 1436 (1977).

[19] G. P. Salam, Eur. Phys. J. C67, 637 (2010), 0906.1833.

20] S. D. Ellis and D. E. Soper, Phys.Rev. D48, 3160 (1993), hep-ph/9305266.

[21] S. Catani, Y. L. Dokshitzer, M. Seymour, and B. Webber, Nucl.Phys. B406,
187 (1993).

[22] M. Wobisch and T. Wengler, (1998), hep-ph/9907280.

[23] Y. L. Dokshitzer, G. Leder, S. Moretti, and B. Webber, JHEP 9708, 001 (1997),
hep-ph/9707323.

[24] M. Cacciari, G. P. Salam, and G. Soyez, JHEP 0804, 063 (2008), 0802.1189.
[25] T. Kinoshita, J.Math.Phys. 3, 650 (1962).

[26] T. Lee and M. Nauenberg, Phys.Rev. 133, B1549 (1964).

[27] R. K. Ellis and J. Sexton, Nucl.Phys. B269, 445 (1986).

[28] S. Catani, Phys.Lett. B427, 161 (1998), hep-ph/9802439.

[29] B. Potter, (1997).

[30] B. Harris and J. Owens, Phys.Rev. D65, 094032 (2002), hep-ph/0102128.
31] G. Heinrich, Int.J.Mod.Phys. A23, 1457 (2008), 0803.4177.

[32] S. Catani and M. Seymour, Nucl.Phys. B485, 291 (1997), hep-ph/9605323.

[33] S. Catani, S. Dittmaier, M. H. Seymour, and Z. Trocsanyi, Nucl.Phys. B627,
189 (2002), hep-ph/0201036.

[34] S. Frixione, Nucl.Phys. B507, 295 (1997), hep-ph/9706545.



Bibliography 157

[35] S. Alioli, P. Nason, C. Oleari, and E. Re, JHEP 1006, 043 (2010), 1002.2581.

[36] R. Frederix, S. Frixione, F. Maltoni, and T. Stelzer, JHEP 0910, 003 (2009),
0908.4272.

[37] T. Gleisberg et al., JHEP 0402, 056 (2004), hep-ph/0311263.

[38] S. Frixione, E. Laenen, P. Motylinski, and B. R. Webber, JHEP 0603, 092
(2006), hep-ph/0512250.

[39] T. Gleisberg and F. Krauss, Eur.Phys.J. C53, 501 (2008), 0709.2881.

[40] S. Frixione, P. Nason, and C. Oleari, JHEP 0711, 070 (2007), 0709.2092.
[41] C. Chung, M. Kramer, and T. Robens, JHEP 1106, 144 (2011), 1012.4948.
[42] CMS Collaboration, (2009).

[43] M. Czakon and A. Mitov, JHEP 1212, 054 (2012), 1207.0236.

[44] Y. Li and F. Petriello, Phys.Rev. D86, 094034 (2012), 1208.5967.

[45] E. Accomando, A. Denner, and A. Kaiser, Nucl.Phys. B706, 325 (2005), hep-
ph /0409247

[46] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Eur. Phys. J.
C39, 155 (2005), hep-ph/0411040.

[47] The NNPDF Collaboration, R. D. Ball et al., (2013), 1308.0598.

[48] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G. Serbo, Phys. Rept. 15,
181 (1974).

[49] T. Gleisberg and S. Héche, JHEP 12, 039 (2008), 0808.3674.
[50] R. Kleiss and W. J. Stirling, Nucl. Phys. B262, 235 (1985).

[51] A. Ballestrero, E. Maina, and S. Moretti, Nucl. Phys. B415, 265 (1994), hep-
ph /9212246,



158 Bibliography

[52] H. Murayama, I. Watanabe, and K. Hagiwara, (1992).

[53] F. A. Berends and W. T. Giele, Nucl. Phys. B306, 759 (1988).
[54] F. A. Berends and W. Giele, Nucl. Phys. B294, 700 (1987).
[55] R. Kleiss and H. Kuijf, Nucl. Phys. B312, 616 (1989).

[56] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa, JHEP
07, 001 (2003), hep-ph/0206293.

[57] R. Kleiss and R. Pittau, Comput. Phys. Commun. 83, 141 (1994), hep-
ph /9405257

[58] Z. Nagy and D. E. Soper, JHEP 0510, 024 (2005), hep-ph/0503053.
[59] S. Schumann and F. Krauss, JHEP 0803, 038 (2008), 0709.1027.

[60] M. Dinsdale, M. Ternick, and S. Weinzierl, Phys. Rev. D76, 094003 (2007),
0709.1026.

[61] S. Catani, F. Krauss, R. Kuhn, and B. R. Webber, JHEP 11, 063 (2001),
hep-ph/0109231.

[62] L. Lonnblad, JHEP 05, 046 (2002), hep-ph/0112284.

[63] S. Hoche, F. Krauss, S. Schumann, and F. Siegert, JHEP 05, 053 (2009),
0903.1219.

[64] S. Frixione and B. R. Webber, JHEP 0206, 029 (2002), hep-ph/0204244.

[65] S. Hoeche, F. Krauss, M. Schonherr, and F. Siegert, JHEP 1209, 049 (2012),
1111.1220.

[66] T. D. Gottschalk, Nucl. Phys. B239, 349 (1984).

[67] B. R. Webber, Nucl. Phys. B238, 492 (1984).



Bibliography 159

[68] J.-C. Winter, F. Krauss, and G. Soff, Eur. Phys. J. C36, 381 (2004), hep-
ph/0311085.

[69] A. Buckley et al., Phys.Rept. 504, 145 (2011), 1101.2599.

[70] C. Balazs, J. Huston, and I. Puljak, Phys.Rev. D63, 014021 (2001), hep-
ph/0002032.

[71] T. Sjostrand, Phys.Lett. B157, 321 (1985).
[72] H.-U. Bengtsson and T. Sjostrand, Comput.Phys.Commun. 46, 43 (1987).
[73] T. Sjostrand and P. Z. Skands, Eur.Phys.J. C39, 129 (2005), hep-ph/0408302.

[74] S. Gieseke, P. Stephens, and B. Webber, JHEP 0312, 045 (2003), hep-
ph/0310083.

[75] G. Marchesini and B. Webber, Phys.Rev. D38, 3419 (1988).
[76] Z. Nagy and D. E. Soper, p. 101 (2006), hep-ph/0601021.
[77] P. Nason, JHEP 0411, 040 (2004), hep-ph/0409146.

[78] T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP 0605, 026 (2006), hep-
ph/0603175.

[79] S. Platzer and M. Sjodahl, Eur.Phys.J.Plus 127, 26 (2012), 1108.6180.

[80] S. Hoche, F. Krauss, M. Schonherr, and F. Siegert, JHEP 1108, 123 (2011),
1009.1127.

[81] K. Hamilton and P. Nason, JHEP 06, 039 (2010), 1004.1764.

[82] M. R. Whalley, D. Bourilkov, and R. C. Group, (2005), hep-ph/0508110.
[83] M. H. Seymour, Z. Phys. C56, 161 (1992).

[84] E. Fermi, Z.Phys. 29, 315 (1924).

[85] C. von Weizsacker, Z.Phys. 88, 612 (1934).



160 Bibliography

[86] E. Williams, Phys.Rev. 45, 729 (1934).
[87] A. Buckley et al., (2010), 1003.0694.

[88] J. M. Campbell and R. Ellis, Nucl.Phys.Proc.Suppl. 205-206, 10 (2010),
1007.3492.

[89] L. J. Dixon, (1996), hep-ph/9601359.



