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Abstract. We construct the simplest solutions of the previously obtained precanonical
Schrödinger equation for quantum gravity, which correspond to the plane waves on the spin
connection bundle and reproduce the Minkowski space-time on average. Quantum fluctuations
lead to the emergence of the minimal acceleration a0 related to the range of the Yukawa modes in
the fibers of the spin connection bundle. This minimal acceleration is proportional to the square
root of the cosmological constant Λ generated by the operator re-ordering in the precanonical
Schrödinger equation. Thus the mysterious connection between the minimal acceleration in the
dynamics of galaxies as described by Milgrom’s MOND and the cosmological constant emerges as
an elementary effect of precanonical quantum gravity. We also argue that the observable values
of a0 and Λ can be obtained when the scale of the parameter κ introduced by precanonical
quantization is subnuclear, in agreement with the previously established connection between
the scale of κ and the mass gap in quantum SU(2) Yang-Mills theory.

1. Introduction
The approaches to quantum gravity based on applying the standard methods of quantization
to different versions of the gravitational Lagrangian [1,2] almost inevitably lead to fundamental
conceptual and technical problems of quantum gravity, such as the mathematical definition of
the Wheeler-De Witt equation, the problem of time, the interpretation of (the measurement
problem in) quantum cosmology, the problem of the correct classical limit in the loop quantum
gravity, and the 122 orders of magnitude discrepancy between the theoretically plausible value
of the cosmological constant and the observable one.

The approach called precanonical quantization [3–7] was proposed as a response to these
problems. It departs from the various forms of canonical quantization, which are based on the
canonical Hamiltonian formalism with a necessarily distinguished time variable, and instead
uses a space-time symmetric generalization of the Hamiltonian formalism from mechanics to
field theory known in the calculus of variations under the name of the De Donder-Weyl
(DW) Hamiltonian formulation [8–10]. The precanonical quantization is based on the Dirac
quantization of the Heisenberg-like subalgebra of Poisson-Gerstenhaber brackets of differential
forms representing dynamical variables, which were found in the DW Hamiltonian formulation
in [6, 11–14] and further explored and generalized e.g. in [15–18].

Quantization of brackets defined on differential forms naturally leads to a hypercomplex
generalization of quantum theory where operators and wave functions are Clifford-algebra-
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valued [4–7]. The Clifford algebra in question is the complexified Clifford algebra of space-time.
The DW Hamiltonian formulation and the quantization of Poisson-Gerstenhaber brackets of
differential forms are space-time symmetric by construction. No distinction between space and
time variables is required. No notion of field configurations or their initial or boundary data,
i. e. the sections of the bundle whose base is space-time and whose fibers are spaces where
the fields take values, is required by the procedure of precanonical quantization. The quantum
dynamics of fields is described using the sections of the Clifford bundle over the bundle of field
variables φa over the space-time with the coordinates xµ. These sections are called precanonical
wave functions and, in general, have the form (in n = 1 + 3 dimensions)

Ψ(φa, xµ) = ψ + ψµγ
µ +

1

2!
ψµνγ

µν + ...+
1

4!
ψµ1µ2...µ4γ

µ1µ2...µ4 . (1)

The field variables φa can be the Yang-Mills field variables Aaµ [7, 19–21] or metric density

variables hµν [22–25], or tetrad variables eIµ [26], or spin connection variables ωIJµ [27–31].
The covariant analogue of the Schrödinger equation for the precanonical wave function has
the form [22–25,27–31]

i~κ /̂∇Ψ− ĤΨ = 0, (2)

where Ĥ is the operator of the covariant analogue of the Hamiltonian in the DW Hamiltonian-like
formulation:

H := ∂µφ
apµφa − L, pµφa :=

∂L

∂∂µφa
, (3)

/̂∇ is the operator of the covariant Dirac operator on the space-time, and the parameter κ is
an ultraviolet quantity of the dimension of the inverse spatial volume. It appears on purely
dimensional grounds given the fact that the physical dimension of classical H is that of the
mass density (in c = 1 units used throughout the paper). Note that κ is also introduced
in the course of the precanonical quantization when the Poisson-Gerstenhaber brackets are
replaced by commutators, and the representation of operators corresponding to differential forms
is constructed in terms of Clifford-algebra-valued operators. In particular, the 3-dimensional
volume element dx := dx1 ∧ dx2 ∧ dx3 is mapped to the Clifford algebra element

dx 7→ 1

κ
γ0, (4)

where γI denote the flat space-time Dirac matrices, γIγJ + γJγI = 2ηIJ , I, J = 0, 1, 2, 3. This
map is very similar to what is known as the “quantization map” or “Chevalley map” in the
Clifford algebra literature.

The relation between the description of quantum fields in terms of Clifford-algebra-valued
precanonical wave functions Ψ(φa, xµ) and the standard QFT can be established if the latter is
formulated in the Schrödinger functional picture [32]. In this picture, QFT is described in terms
of time-dependent functionals of initial field configurations φa(x), Ψ([φa(x)], t), which obey the
canonical Schrödinger equation

i~∂tΨ− ĤΨ = 0, (5)

where Ĥ =
∫
dxT̂ 0

0 is the operator of the canonical Hamiltonian.
Taking into account that the precanonical wave function Ψ(φa, xµ) gives the probability

amplitude of detecting the field value φ at the space-time point x and the Schrödinger wave
functional Ψ([φa(x)], t) is the probability amplitude of observing the field configuration φ(x)
on the hypersurface of constant time t, one can anticipate that the Schrödinger wave functional
is a continuous product, or product integral, over the spatial points x, of precanonical wave
functions restricted to the configuration Σ given by φ = φ(x), i.e. ΨΣ(φ = φ(x),x, t), and
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transformed from the representation with a diagonal Ĥ to the representation with a diagonal
T̂ 0

0 = Ĥ − ∂iφa(x)p̂iφa . The resulting expression of the Schrödinger wave functional Ψ in terms
of the precanonical wave functions Ψ is given by the continuous product or the Volterra product
integral over x denoted as Px:

Ψ = Tr

{
R
x

e−iφ(x)γi∂iφ(x)/κΨΣ(φ(x),x, t) | 1κ 7→γ0dx

}
, (6)

where the inverse of the quantization map (4) is used as a natural step of transformation from
the Clifford algebraic objects of precanonical quantization to the C-valued functional of the
canonical quantum field theory in the Schrödinger representation. In [34,35] we have shown, for
interacting scalar fields in Minkowski space-time, that Ψ constructed in equation (6) satisfies
the standard Schrödinger equation (5) as a consequence of (the flat space-time version of) the
precanonical Schrödinger equation (2) restricted to the surface of initial data φa = φa(x) at the
moment of time t. A similar relation has been found also for quantum Yang-Mills theory on
Minkowski space-time [19, 21] and for scalar fields on curved space-time [36–38]. The existence
of this relationship shows that standard QFT based on canonical quantization is the limiting
case of QFT based on precanonical quantization corresponding to the inverse quantization
map 1

κγ0 7→ dx or, loosely speaking, to the limiting case of infinite κ corresponding to the

unregularized volume of the momentum space, which equals δ3(x = 0).
Let us also note that the existence of the space-time symmetric Hamilton-Jacobi (HJ) theory

of fields which is associated with the DW Hamiltonian theory [8–10, 40–42] raises a question
about the existence of a formulation of quantum field theories which reproduces the DW HJ
theory in the classical limit. The precanonical quantization leads to such a formulation, at least
in the case of scalar fields (cf. [4, 43]).

In the previous papers, the precanonical quantization has been applied to general relativity
in metric variables [22–25], to the teleparallel equivalent of general relativity [26], and to general
relativity in vielbein variables [27–31]. In this paper, we will briefly outline the latter in Section
2 and then, in Section 3, construct the solutions of the precanonical Schrödinger equation for
quantum gravity corresponding to the quantum version of Minkowski space-time in Cartesian
coordinates. We will find that quantum effects lead to the emergence of minimal acceleration
related to the range of the Yukawa modes of the precanonical wave function in the spin-
connection space. We will show that this minimal acceleration is related to the square root of the
cosmological constant. The latter appears from the reordering of operators in the precanonical
Schrödinger equation for gravity. We will also obtain realistic estimations of both quantities,
albeit with an error of several orders of magnitude, when the scale of the parameter κ is below
approximately 100 MeV, which is consistent with our previous rough estimation of the mass gap
in the quantum SU(2) gauge theory [20].

2. Precanonical quantum vielbein gravity
In this section, we mainly collect together the key results from our previous considerations
in [27–30]. The construction of precanonical quantum vielbein gravity starts from the Einstein-
Palatini Lagrangian density

L =
1

8πG
ee

[α
I e

β]
J (∂αω

IJ
β + ωα

IKωβK
J) +

1

8πG
Λe, (7)

where the vielbein coefficients eαI and the spin connection coefficients ωα
IK are the independent

field variables, and e := det(eIµ). The DW Hamiltonian formulation leads to the constraints

pα
ωIJβ

:=
∂L

∂ ∂αωIJβ
≈ 1

8πG
ee

[α
I e

β]
J , pα

eIβ
:=

∂L

∂ ∂αeIβ
≈ 0 (8)
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and the DW Hamiltonian density on the surface of constraints

H := pω∂ω + pe∂e− L ≈ −pα
ωIJβ

ωα
IKωβK

J − 1

8πG
Λe. (9)

The constraints are second class according to the extension of the Dirac classification to the
DW theory [39]. The calculation of the generalized Dirac brackets of forms representing the
fundamental variables leads to the vanishing brackets of vielbeins and their polymomenta and
very simple brackets of spin connection coefficients and their polymomenta, e.g.,

{[pαe , e′$α′ ]}D = 0,

{[pαω, ω′$β ]}D = {[pαω, ω′$β ]} = δαβ δ
ω
ω′ ,

{[pαe , pω$α′ ]}D= {[pαe , ω$α′ ]}D= {[pαω, e′$α′ ]}D= 0,

where $α := ∂α dx0 ∧ dx1 ∧ ... ∧ dx3 is the basis of 3-forms on 4-dimensional spacetime.
Quantization of these brackets according to the following generalization of Dirac’s quantization
rule

[Â, B̂] = −i~Ÿ�e{[A,B ]}D (10)

which leads to the operator representations of the polymomenta of spin connection, the vielbeins,

the DW Hamiltonian H, such that Ĥ =: ”eH, and the quantum Dirac operator:

p̂α
ωIJβ

= −i~κeγ̂[α ∂

∂ωIJβ]

, where γ̂α := êαI γ
I , (11)

êβI = −8πiG~κγJ
∂

∂ωIJβ
, (12)“H = 8πG~2κ2 γIJωα

KMωβM
L ∂

∂ωKLβ

∂

∂ωIJα
− 1

8πG
Λ, (13)“6∇ = −8πiG~κγIJ

∂

∂ωIJµ

Å
∂µ +

1

4
ωµKLγ

KL ↔∨
ã
, (14)

where
↔
∨ denotes the commutator (antisymmetric) Clifford product γIJ

↔
∨ Ψ = 1

2

[
γIJ ,Ψ

]
.

Hence the precanonical Schrödinger equation for quantum gravity takes the form

γ IJ
∂

∂ωIJµ

Ç
∂µ +

1

4
ωµKLγ

KL ↔∨ − ∂

∂ωKLβ
ωµ

KMωβM
L

å
Ψ(ω, x) + λΨ(ω, x) = 0, (15)

where λ := Λ
(8πG~κ)2

is a dimensionless combination of the fundamental constants of the theory,

which depends on the operator ordering of ω and ∂ω.
Note that equation (15) was first obtained in [27] without explicitly specifying the action

of the spin connection term on the wave function. The need for the commutator product
was understood later in [36], and the coefficient 1

2 in front of the commutator comes from the
consideration of the Ehrenfest theorem similar to that in [7], which is still unpublished.

The scalar product of precanonical wave functions is given by

〈Φ|Ψ〉 := Tr

∫
Φ‘[dω]Ψ, (16)

where Ψ := γ0Ψ†γ0 and the operator-valued invariant integration measure on the 24-dimensional
space of spin connection coefficients ‘[dω] ∼ ê−6

∏
µIJ

dωIJµ . (17)
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The operator ê−1 is constructed from the operators êβI in (12).
Thus, we arrive at the “spin connection foam” formulation of the geometry of quantum

gravity in terms of the Clifford-algebra-valued wave function on the bundle of spin connection
coefficients over spacetime, Ψ(ω, x), and the transition amplitudes on the total space of this
bundle, 〈ω, x|ω′, x′〉, which are the Green functions of (15). The wave function corresponds to
the “quantum fuzziness” of points of the total space and the Green functions correspond to the
quantum correlations between the points, i.e. a quantum analogue of the classical connection.

The normalizability of precanonical wave functions: 〈Ψ|Ψ〉 < ∞, leads to the vanishing
contribution of the large curvatures R = dω+ω ∧ω to the probabilistic measure defined by the
norm, and that ensures the quantum-gravitational avoidance of a curvature singularity by the
precanonical wave function.

In the context of quantum cosmology, Ψ(ω, x) defines the spatially homogeneous statistics of
local fluctuations of the spin-connection, which is classically given by the Hubble parameter ȧ/a,
not the “distribution of quantum universes according to the Hubble parameter” as suggested by
the picture of the superspace of 3-geometries emerging from the canonical quantization. Hence
the problem of the “external observer” of the “quantum ensemble of universes” disappears.

The evolution of matter and radiation on the background of quantum gravitational
fluctuations whose statistics and correlations are predicted by (15) may lead to predictable
consequences for the distribution of matter and radiation at large cosmological scales, which
may be observable.

In general, analysis of solutions of precanonical Schrödinger equation for quantum gravity,
equation (15), is a formidable task. In the following section, we will construct the simplest
solutions which can be interpreted as a quantum wave counterpart of the Minkowski space-time.

3. Quantum wave states of Minkowski space-time
The Minkowski metric in Cartesian coordinates:

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2,

is characterized by the vanishing spin connection coefficients

ωIJµ = 0. (18)

In this case, the precanonical Schrödinger equation (15) with Λ = 0 takes the simple form

γIJ∂ωIJµ ∂µΨ = 0. (19)

In terms of the plane waves on the total space (xµ, ωIJµ )

Ψ ∼ eikµxµ+iπµIJω
IJ
µ Ψ̃(kµ, π

µ
IJ) (20)

we obtain
γIJkµπ

µ
IJ = 0. (21)

From (21), we obtain the dispersion relation

kµπ
µ
IJkνπ

νIJ = 0, (22)

which reflects a strong anisotropy due to the fibred structure of the (x, ω) space.
Therefore, any solution of (19) has the form

Ψ(ω, x) =

∫
d4k

∫
d24π δ(kµπ

µ
IJkνπ

ν
IJ)eikµx

µ+iπµIJω
IJ
µ Ψ̃(kµ, π

µ
IJ). (23)
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The solutions of interest should be normalizable. The normalizability on the subspace of
vanishing spin connection coefficients ω = 0 takes the form

Tr

∫
d24ω δ24(ω)Ψ(ω, x)ê−6Ψ(ω, x) = Tr(Ψ(0, x)ê−6Ψ(0, x)) = 1, (24)

where the short-hand notations Ψ(0, x) and ê−6Ψ(0, x) mean Ψ(ω, x) and ê−6Ψ(ω, x) taken at
ω = 0.

The states which lead to the Minkowski space-time on the classical level have to satisfy the
conditions

〈ĝµν〉(x) = Tr

∫
d24ωδ24(ω)Ψ(ω, x)ê−6ĝµνΨ(ω, x)) = ηµν ,

where the operator of the metric derived from the representation (12) has the form

ĝµν = −(8πG)2~2κ2ηIKηJL∂ωIJµ ∂ωKLν . (25)

Hence the wave functions which reproduce the Minkowski space-time on average should satisfy

Tr(Ψ(0, x)ê−6ĝµν(Ψ(0, x)) = ηµν . (26)

In terms of the Fourier components (26) implies that

Ψ̃(π, k) = Ψ̃(−π, k). (27)

By comparison with the normalizability condition, we conclude that

−(8πG)2~2κ2ηIKηJL∂ωIJµ ∂ωKLν Ψ(0, x) = ηµνΨ(0, x).

Therefore, for the plane waves,

(8πG)2~2κ2πµIJπ
νIJ = ηµν . (28)

Then, from the dispersion relation, it follows

ηµνkµkν = 0. (29)

Thus, the states corresponding to the (1+3)-dimensional Minkowski space-time in the classical
limit have:

• the light-like modes (29) along the space-time dimensions (the base of the total space of
the bundle of spin connection coefficients over space-time);

• 4 massive (Yukawa) modes (28) in the spin-connection spaces (the fibers of the total
space of the bundle of spin connection coefficients over space-time), which propagate in
6-dimensional subspaces with the coordinates ωIJµ for each µ = 0, 1, 2, 3;

• the range of those massive modes in ω-space is 8πG~κ, whose value we estimate below;

• the modes corresponding to the spatial µ = 1, 2, 3 are tachyonic. Those tachyonic modes,
however, do not violate the causality in space-time as they propagate along the fibers
associated to each point of space-time rather than in the space-time itself.

Note that the spin connection has the mass dimension +1, κ has the mass dimension +3,
and the square of the Planck length G~ has the mass dimension −2. Hence the range of the
Yukawa modes in the spin connection space, 8πG~κ, is given in the units of mass dimension
+1, which is also the mass dimension of acceleration.

If κ were Planckian, which is a seemingly natural first guess, then the range of Yukawa modes
in the spin connection space is also Planckian, and they could be attributed to the quantum
foaminess of space-time at the Planck scale, as is usually assumed. However, our study of
quantum Yang-Mills theory from the perspective of precanonical quantization (see below) has
produced evidence that κ is more likely a sub-nuclear scale quantity, which leads to a drastically
different scale of the phenomena in question.
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3.1. An estimation of κ from the mass gap in pure gauge theory
From the Lagrangian of a pure non-abelian Yang-Mills theory we can derive the corresponding
DW Hamiltonian function [7, 19] and precanonically quantize it. It leads to the following
expression for the DW Hamiltonian operator for the quantum pure YM field with the coupling
constant g [7, 19,20] “H =

1

2
~2κ2 ∂

∂Aµa∂Aaµ
− 1

2
ig~κCabcAbµAcνγν

∂

∂Aaµ
. (30)

The fact that the eigenvalues of the DW Hamiltonian operator for the pure YM field yield the
spectrum of masses of the propagating modes is manifested in the precanonical Schrödinger
equation in flat space-time

i~γµ∂µΨ =
1

κ
“HΨ. (31)

In [21], we have shown that equations (30) and (31) for the wave function Ψ(A, x) reproduce
the functional Schrödinger equation for the wave functional Ψ([A(x)], t) after the (3+1)
decomposition and the “dequantization map” 1

κγ0 7→ $0 = dx (cf. (4)).

In the temporal gauge Aa0 = 0, we can limit ourselves to the operator (30) written only in
terms of the spatial components Aai . For SU(2) theory with a, b, c = 1, 2, 3 and i, j = 1, 2, 3,
we were able to estimate the gap between the ground state and the first excitation with the
vanishing non-abelian charge (a “color” or rather “isospin” in the context of SU(2))

〈 1

κ
Ĥ〉 >

Å
8g2~4κ

32

ã1/3

|ai′1|, (32)

where ai′1 is the first root of the derivative of the Airy function. This gap in the spectrum of the
DW Hamiltonian operator can be identified with the mass gap

∆µ ≈ 0.86(g2~4κ)1/3. (33)

Therefore, the scale of κ is close to the scale of the mass gap. For SU(3) YM theory, this formula
will have a different numerical coefficient in front and a different value of the coupling constant
g. The SU(3) QCD mass gap lies between the pion masses at 130 MeV and the alleged glueball
masses at a few GeV. The numerical factor in (33) for SU(3) may change several times, and the
coupling constant g is of the order 10−2 − 10−1 (in the units of

√
~). With those uncertainties,

we estimate κ1/3 is below 1 GeV with an error of up to 2 orders of magnitude.

3.2. The minimal acceleration
With the GeV-scale κ we obtain

8πG~κ ∼ 10−23±3×2 cm−1. (34)

This quantity is compatible with the scale of the Hubble radius RH ∼ 1028 cm and the
cosmological constant |Λ| ∼ 10−56 cm−2, if the scale of κ is below 100 MeV, which is on the edge
of our margin of error. In this case, 8πG~κ coincides with the scale of the minimal acceleration
a0 ∼

√
Λ which is known from Milgrom’s theory of MOND [44–48]. Note that the Yukawa

modes in the spin-connection space, which set the threshold of acceleration 8πG~κ, emerge
from quantum fluctuations of spin connection around the vanishing value of the spin connection
of Minkowski space-time. They establish the limit below which quantum fluctuations of space-
time violate the notion of acceleration-less inertial frames which underlies classical Minkowski
space-time. Note also that our value of the minimal acceleration appears here in the context of
a quantum analogue of the Minkowski space-time and it may slightly change for the quantum
analogues of more realistic cosmological space-times.
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3.3. The cosmological constant
We have already pointed out that the expression of the precanonical Schrödinger equation for
gravity (15) is defined up to the operator ordering of ω and ∂ω. A reordering in the spin
connection term will produce a constant of the order 1

443 added to the dimensionless λ = Λ
(8πG~κ)2

constructed from the bare cosmological constant Λ. If the latter equals zero, then the
contribution to the cosmological constant from the reordering of operators, i.e. essentially from
the quantum fluctuations of the spin connection, can be estimated as Λω ∼ 42(8πG~κ)2. For
κ ∼ 100±3×2 GeV3, in agreement with the estimation in Section 3.1, we obtain Λω ∼ 10−45±2×6

cm−2. This estimation is again consistent with the observed value of the cosmological constant
if the scale of κ is below approximately 100 MeV. In this case, the minimal acceleration in (34)
is related to Λω as follows

a0 ≈
1

4

√
Λω, (35)

which is close to the current observed value a0 ≈ 1.2 × 10−10 m·s−2 or a0 ≈ 10−29 cm−1

in the c = 1 units. Thus the mysterious connection between the phenomenological minimal
acceleration in the dynamics of galaxies as described by MOND (as an alternative to the dark
matter) and the cosmological constant (as the simplest dark energy) emerges as an elementary
effect of precanonical quantum gravity.
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