 Thesis-1990-Qian

CPPM cCentre de Physique des Particules de Marseille

Thése de Doctorat présentée par
"QIAN Zuxuan

pour obtenir le grade de Docteur de I'Univetsité Aix-Marseille II,
Faculté des Sciences de Luminy,

spécialité Physique théorique et des particules élémentaires

Architecture distribuée

pour un logiciel d’analyse interactive
en physique des particules:

Soutenue le 21 Septembre 1990 devant la commission d’examen :

Messieurs :

J.V. Allaby
" ].J. Aubert, Président
A. Bonissent

F. Etienne

P. Palazzi

M. Van Caneghem .




CPPM

Centre de Physique des Particules de Marseille

Theése de Doctorat présentée par

QIAN Zuxuan

pour obtenir le grade de Docteur de 1'Université Aix-Marseille II,
Faculté des Sciences de Luminy,
spécialité Physique théorique et des particules élémentaires

Architecture distribuée
pour un logiciel d’analyse interactive
en physique des particules

Soutenue le 21 Septembre 1990 devant la commission d’examen :

Messieurs :

J.V. Allaby
J.J. Aubert, Président
A. Bonissent

F. Etienne CERN LIBRARIES, G

e WWWWWWWW

CM-P00081066







Avant-propos

Ce travail s’inscrit dans le cadre de la collaboration ALEPH, du nom de
I’'un des quatres détecteurs de I’accélérateur LEP au CERN (Geneve).

L’analyse de données de physique des particules est une procédure de
réduction complexe de données : des millions d’événements sont condensés
progressivement jusqu’a quelques chiffres qui confirment ou infirment
certaines prédictions théoriques. Pour effectuer ce travail, de nombreux
logiciels d’analyse de données sont développés soit pour une utilisation
générale (ex. manipulation d’histogrammes) soit pour I'analyse
spécifique de données des expériences. Ils sont habituellement écrits en
FORTRAN et organisés en bibliotheque de procédures appelées par

V' utilisateur. Le physicien, pour effectuer son analyse, a besoin de
connaissances sur les structures de données traitées et sur les composants
des bibliotheques de procédures.

Le projet PIGAL (Prolog Interactive and Graphic for ALEPH analysis)
vise a construire un environnement interactif permettant d’assister le
physicien dans son travail : visualiser et analyser événement par
événement, ou bien effectuer I’analyse statistique, en le libérant de la
connaissance détaillée de la structure de données, ainsi que des aspects
fastidieux de I'écriture des programmes. Dans cet environnement le
physicien trouve les outils pour I'analyse de données, par ex. sélection
des événements, représentation graphique 2D/3D, histogrammation de
variables physiques, et aussi pour la mise au point de logiciels
d’analyse, par ex. test d’algorithmes, surveillance de changement de
programmes.

Certains problémes sont apparus pendant le développement, notamment
celui de V'intégration de logiciels développés dans d’autres contextes,

comme le programme de représentation d’histogramme et le programme
d’analyse physique. Le probléme d’incompatibilité des ressources de ces




logiciels a été résolu au niveau de I'architecture du logiciel :
I'architecture répartie. Cette expérience a montré que l'utilisation de
techniques distribuées dans le domaine des systémes d’analyse est
efficace. Ce travail permet d’envisager une architecture plus génerale
pour des logiciels hétérogénes complexes avec une structure extrémement
simple.

Un autre probléme est lié & 'évolution trés rapide des matériels
- graphiques, qui impose d’adapter souvent le programme, ce qui peut étre
plus facilement fait dans un environnement distribué. :

- Lelogiciel PIGAL a été congu & Marseille et réalisé par une équipe de 9
personnes avec une large contribution de différents laboratoires.

J'ai participé au développement du systéme, concernant : I'interface
PIGAL avec le programme de reconstruction, le progiciel
d’histogrammes, la sélections d’événement, Vintégration du logiciel de
représentation d’histogramme, I'intégration du logiciel de
représentation des conditions de déclenchement (trigger), et finalement
la conception et sa réalisation de I'architecture distribuée.

iv




Remerciements

Je tiens tout particuliérement @ remercier le Professeur Jean-
Jacques Aubert pour m’avoir accueilli dans son laboratoire et
installée dans des conditions idéales de travail.

Messieurs Alain Bonissent et Frangois Etienne m’ont dirigé
tout au long de ce travail. Leurs suggestions sur tous les
domaines abordés ont largement contribué a la réalisation de ce
projet. Je les remercie pour leur encouragement, patience et
disponibilité.

Je tiens a exprimer toute ma gratitude 4 Monsieur Paolo Palazzi
pour des conseils sincéres et de l'aide amical qu’il m’a donnés
depuis toujours. Je le remercie, ainsi que Messieurs James
Allaby, Jean-Jacques Aubert, Alain Bonissent, Francois Etienne
et Michel Van Caneghem pour avoir accepté de participer au
jury de cette these.

J’adresse tous mes remerciements 4 Messieurs Tim Berners-Lee
et Alberto Aimar, sans qui le prototype du systéme réparti
n’aurait pas vu le jour.

Je sais gré 4 Monsieur Patrice Payre d’avoir corrigé, avec une
patience @ toute épreuve, ce manuscrit écrit en ma troisiéme .
langue etrangeére.

Mes remerciements vont aussi d tous les membres du
laboratoire du Centre de Physique des particules de Marseille
pour U'ambiance qu'ils créent et au sein duquel il est trés
agréable de travailler.







Table des matieres

Avant-propos iii
Remerciements v
Liste des figures ix

1  ALEPH, une expérience de physique des particules au LEP 1
1.1 Détecteur ALEPH 3
1.2 Acquisition et traitement de données 8

2  Traitementde données 13

2.1 Génielogiciel et organisation de données 15

2.2 Logiciels principaux pour le traitement de données ’ALEPH 18
2.3 Nécessité d’un environnement interactif et graphique 21

3  PIGAL,un programme interactif de visualisation et d’analyse 25
3.1 Spécifications initiales de PIGAL 25

3.2 Structure actuelle du logiciel PIGAL 27

3.3 Fonctionnalités de PIGAL et leurs réalisations 37

3.4 Commentaire 64

4  Une architecture répartie pour PIGAL 67

4.1 Notion générale du systéme réparti 68

4.2 Programmation distribuée 70

4.3 Vue générale du prototype 73

4.4 - Architecture du prototype 78

4.5 Pilotage dusystétme 83

4.6 Réalisation 86

4.7 Evaluation des performances du prototype 99

4.8 Expérience sur ladécomposition d’'un systéme 103
4.9 Améliorations éventuelles du systétme 106

4.10 Conclution sur la mise en oeuvre d’un environnement réparti 106

5 Changements récents et développements futurs 111
5.1 Graphique 111

5.2 PROLOG 113

5.3 Architecture répartie 115

6 Conclusions 119

vii




Annexel
Annexe 2
Annexe 3
Annexe 4
Annexe 5
Annexe 6

Exemples de DFD, ERD et DDL 121

Extrait de DFD de PIGAL 125

Présentation simplifiée du langage PROLOG

GKS et graphique 135

Interface Client/Serveur_Trigger 137

Mécanisme de transfert de message

Bibliographie 151
Glossaire 157

viii

141

129




Liste des Figures

O 00 0N e W N =

N NN DN NN [N S T S S U S VA S S o S ot S
OO\]O\W%U)BP—‘O\O(D\]O\UI%UJN'—‘O

Détecteur d’ALEPH 4

Vue longitudinale ’ALEPH 5

Vue transversale d’ALEPH 5

Structure hiérarchisée de 'acquisition de données ’ALEPH 10
Configuration de FALCON 11

Procédure de traitement de données 14

Exemples de ERD et DDL 17

Architecture de PIGAL 29

Syntaxe de EARL utilisée dans PIGAL 31

Exemple de DDL en PROLOG 33

Interfaces PROLOG-FORTRAN dans le contexte de PIGAL 35
Procédures d’interface PROLOG-FORTRAN développées pour PIGAL
Image d’un événement d’ALEPH, représentée par PIGAL 39
Module graphique de PIGAL = 42

Relations entre verbe, entité et nom de subroutine 43

Extrait de la subroutine RTPCO 44

Recherche des relations indirectes 49

Meécanisme de la sélection 50

Base de connaissances sur JULIA 52

Reconstruction interactive 54

Manipulation de la représentation de I'événement par I'histogramme
Structures de données internes du module d’histogramme 61
Création et utilisation de répertoire d’événements 63

Modele Client/Serveur 72

36

57

Exemple d’un ensemble d’écrans de PIGAL dans l'environnement réparti 75

Architecture répartie (représentation logique) 79
Architecture multiprocessus 80
Liste des bibliotheques appelées dans chaque processus 82

ix




29
30
31
32
33
34
35
36
37

38
39
40
41

Pilotage du systetme 85

Méthode pour fractionner un systéme en utilisant RPC 88

Remote Procedure Call (RPC) 89

Interface Client/Serveur_Trigger 90

Extrait de fichiers de définition de I'interface Client/Serveur 92
10 stubs du prototype 93

Organisation de message et mécanisme de transfert 94, 95

Les flux de controle en appel séquentiel et concurrent 96
Configurations pour tester la performance du prototype et les commandes
utilisées 99, 101

Résultat des tests de programme 102

Différentes configurations pratiquées 105

Schéma logique de X-WINDOW 113

Schéma logique d’une architecture répartie pour les logiciels de off-line 117




Chapitre 1

ALEPH, une expérience
de physique des particules au LEP

Le LEP, situé au CERN (prés de Genéve), est le collisionneur électron-
positron de la plus haute énergie au monde. Il a la forme d'un cercle
d’environ 27 km de circonférence, et sa profondeur sous terre varie entre
45 et 175 m. La machine est en mesure d’accélérer les électrons et les
positrons, dans des directions opposées, & des énergies pouvant atteindre
100 GeV par faisceau, ce qui correspond & une énergie de 200 GeV
disponible par collision.

Les faisceaux d’électrons et positrons circulent séparément dans un méme

tube a vide (10"1] Torrs), et entrent en collision en quatre points du cercle,
ot se trouvent les grands détecteurs de particules (ALEPH, L3, DELPHI,
OPAL) qui sont en mesure d’étudier la nature et la fréquence des
différents processus mis en oeuvre dans de telles collisions. Le LEP est

construit pour une luminosité de quelque 1031 em2 571 .

Les recherches expérimentales effectuées au LEP se situent dans le cadre
théorique du modele standard. Aprés la mise en évidence au CERN en
1983 des bosons W et Z°, les expériences du LEP visent a étudier avec .
précision les propriétés de ces particules, afin de préciser les parametres
du modele standard, et de vérifier avec une grande précision ses '
prédictions.




Dans la premiére version (LEP 1), les objectifs sont liés a la physique du
VAS

¢ lamasse et la largeur du Z° .
La mesure précise permet en particulier de fixer le nombre de familles de
leptons et de préciser les paramétres du modele standard, par exemple

sin0,, et les constantes de couplage vectorielles et axiales.

* la découverte de particules standards nécessaires au modéle: le quark
Top, le Higgs.

* la détection de particules nouvelles : leptons lourds, particules
supersymmétriques, particules de charges fractionnaires, etc.

* 'étude de I'interaction forte par étude des jets ou la mesure de la
constante de couplage de cette interaction.

- LEP Il atteindra une énergie de 200 GeV, permettant probablement de
mettre en évidence le quark Top et d’étudier la production de particules

‘Wi, et leur couplage avec Z°[1,2,3].

Le LEP a été mis en route en Aofit 1989, le nombre des événements
enregistrés par ALEPH est présenté dans la table 1.

Table1: Statistique des événements enregistrés dans ALEPH
1990 1989 - Total
Triggers : 685347 468517 1153864
z° : 46863 29704 76567
Bhabhas: 73641 54284 127925




Les principaux résultats de 1’analyse portant sur les données de 1989
sont:
e détermination précise de la masse et de la largeur du Z° [4]:

Mz = 91.182 + 0.026(exp.)+0.030(faisceau) GeV, TI'z=2.541%0.056 GeV

ce qui permet de déterminer la section efficace de desintégration en deux
neutrinos, et donc de fixer le nombre de neutrinos [4 I:

N =3.01+£0.15

e Vérification de I'universalité des leptons [5]: les trois leptons (électron,
muon, tau) ont le méme couplage avec le Z°. Leurs largeurs partielles
sont identiques : 85.4£5.3 Mev

¢ Détermination des taux de branchement [6]

Z° -> bb (0.215), Z°-> cc (0.148)

e des limites ont été fixées sur la masse du boson de Higgs (exclus de
I'intervalle [32Mev-24Gev]) [7]

1.1 Détecteur ALEPH

ALEPH est I’'une de quatre expériences au LEP [8,9]. Le détecteur

d’ALEPH, avec12x12x12 m?3 de dimensions et une masse de 3000 tonnes,
comporte six différentes couches de détecteurs, représentées Fig.1,2,3. Ce
sont, de l'intérieur vers l'extérieur :

¢ le détecteur de Vertex au silicium

e la Chambre & Traces Interne (ITC)

* la Chambre a Projection Temporelle (TPC)
e le Calorimetre Electromagnétique (ECAL)
¢ le Calorimetre Hadronique (HCAL)

¢ la Chambre a Muons




Fig. 1 - Détecteur ALEPH

1. Ligne de faisceau

2. Chambre a Traces Interne (ITC)

3. Moniteur de luminosité

4. Céne de raccordement

5. Chambre & Projection Temporells (TPC)
6. Calorimétre Electromagnétique (ECAL)
7. Solénoide supraconducteur

8. Calorimétre Hadronique (HCAL)

9. Chambre & Muons

10. Calibration Laser




A%
2 rmming e [ Sr. \
. - et
‘ P e————e - \
| ; M\K!"' val .
o] otwae e \
. l’[ LasEe toLanta -
: 0
| — =L 1. 88 . . _ S
H - t )
i g o i
! U (w— =
: . T
o ~< ot N ]
o P = = t ,-DW - -
. 1! = AU 1
/‘» 4 W — ‘ = ~ag tag | H 7—1»3 15 '
! i U i

ESmTme =
:;;\
Ly

\ 4

\ (LTI

'\\\ ) %L:Iﬁlf"ﬂ [{—-\][_A{I ]1 A'l_‘ e ;__'
Hi il 4 —

ALEPH LONGITUDINAL CROSS-SECTION

Fig. 2 Vue longitudinale d'ALEPH

| }
st 1
CURNNT
.{TA&W"A
Z Comey
&
g i o
{ ‘
: |
: i !
'
LA F-———-—"'———-——-—
ot

bt ettt

[€1 Y4}

-ALEPH TRANSVERSE (ROSS-SECTION

Fig. 3 Vue transversale d'ALEPH




Le 4 couches intérieures, y compris ECAL sont soumises A un champ
magnétique de 1,5 Tesla par un solénoide supraconducteur de 6m de
diametre pour 7m de long qui est parcouru par un courant de

5000 Amperes.

Des moniteurs de luminosité sont placés symétriquement de chaque coté
du point de collision et couvrent une région angulaire de 2° & 7° autour du
faisceau. Ils sont sensibles aux électrons des événements de type Bhabha
a petits angles. Ils sont formés de plans de tubes a dérive suivis de
détecteurs de gerbes similaires & ceux du calorimetre électromagnétique.
Leur résolution est 0.20/VE.

Les détecteurs de traces

Le détecteur deVertex, I'ITC et la TPC permettent de mesurer les
trajectoires des particules chargées en localisant Iionisation laissée
dans le matériau du détecteur au passage des particules.

Le détecteur de Vertex [9] est composé de tres fines bandes de silicium qui
mesurent la position de la trace. Son rdle est d’améliorer de quelque 20%
la précision de mesure sur I'impulsion des particules, et d’identifier des
particules & courtes durées de vies (environ 10712s). La précision est de

10 ym en r-¢ et de 20 p en r-z. La séparation

entre deux traces est de 200 umen r-¢

Z

et de 400 um en r-z. : A

, . . r
L I'ItC [9.] est composeei de huit couches ’ \P(r, 5.2)
cylindriques concentriques de
chambres a dérive. Elle couvre 97% 2
de 4n et contient 960 fils sensibles. =TT T[T ~L
L'ITC assure en grande partie le ,\' —
dispositif de déclenchement pour ~eo = y (R
les traces chargées et complete Vi
Vinformation de la TPC en améliorant
le pouvoir de séparation de deux:
traces a e précision de 100 pm, o

aees avec e p - Coordonnées cylindriques

principalement dans le plan(r,¢).

La TPC [9] est le détecteur de traces le plus grand et le plus important. II
s’agit un cylindre de 3.6m de diameétre, rempli d’un gaz ot les électrons,




créés au passage des particules chargées, dérivent dans un champ

 électrique vers 'une des deux plaques d’extrémité, chacune dotée de
20500 plaquettes qui collectent la charge déposée par ces électrons. La
position d’une trace perpendiculairement au faisceau se mesure en
comparant la valeur des charges recueillies sur des plaquettes
adjacentes; sa position le long du faisceau est donnée par le temps de
dérive des électrons jusqu’aux plaques d’extrémités. Les traces sont
courbées par le champ magnétique de 15000 Gauss ce qui permet la
mesure des impulsions des particules. La précision de cette mesure est
d’environ 1% pour des particules de 10 GeV/C d'impulsion.

Les calorimeétres

Les particules neutres ne laissent pas des traces dans les trois détecteurs
internes. Leur énergie est mesurée dans deux calorimetres ECAL, HCAL.
Les calorimétres sont formés alternativement de plaques d’une matiére
dense et de compteurs proportionnels. Les particules, neutres aussi bien
que chargées, & l'exception des neutrinos et des muons, interagissent dans
la matiére en produisant des particules secondaires qui a leur tour
interagissent, et ceci jusqu’a ce que I’énergie soit dissipée dans
I'ionisation produite par les particules. Un échantillonage de cette
jonisation est mesuré par les détecteurs de fagon & pouvoir en déduire
I'énergie initiale.

Le calorimetre ECAL [9] a eté congu pour mesurer I'énergie des photons et
des électrons. 11 est divisé en 70000 secteurs qui pointent vers l'origine de

la collision e*e”. Chaque secteur est séparé en profondeur en trois
compartiments qui donnent une carte détaillée du dépot d’énergie et

‘permettent aussi l'identification des particules électromagnétiques. Des
particules hadroniques peuvent également déposer une partie de leur
énergie dans ECAL. Le dép6t dans les trois couches dépendra de la nature
de la particule incidente : les électrons déposent environ 22% de leur
énergie dans le premier niveau, 72% dans le deuxiéme et 8% dans le
troisieme. A 10 GeV, 20% des pions n’interagissent pas dans le
calorimetre. Ils déposent en général moins de 70% de leur énergie dans le
troisiéme niveau. ECAL a une résolution d’environ 0.18/+E.

Le calorimetre HCAL [9] a été congu pour mesurer l'énergie et la direction
des hadrons. Il est constitué de multiples couches de chambre a fils qui
échantillonnent I'énergie déposée dans du fer par les particules




ionisantes, avec une résolution de 0.8/VE. HCAL donne deux types
d’information : I'énergie déposée (signal des tours) et les déclenchements
de fils. Ceux-ci donnent la trajectoire détaillée des particules
permettant la discrimination entre Pions et Muons, les informations
s’ajoutent a celles de deux chambres servant a I'identification des Muons.
99% des hadrons sont arrétés aprés passage dans les deux calorimétres.

Mesure des muons

Les muons sont les seules particules chargées qui puissent traverser
'épaisseur de fer de 1.2m de la culasse de I'aimant et atteindre la
chambre & muons. Cette derniere est constituée de deux plans de
chambres a fils. La séparation des deux couches est de 50 cm, ce qui
permet de mesurer la direction de traces avec une précision de
10-15 mrad.

1.2 Acquisition et traitement de données

ALEPH utilise largement des derniers développements de I'électronique
et des techniques de calcul. Les données sont recueillies dans 500000
canaux électroniques.

L’acquisition de données d’ALEPH [9], utilisant FASTBUS, est un
systéme hiérarchisé (voir Fig.4). Elle comprend :

* Lesélectroniques de lecture (Front-end electronics) qui sont intégrées
dans les détecteurs. '

* Letiming, lesystéme de déclenchement (trigger et MTS) synchronisent
les électroniques de lecture et informent les contréleurs de lecture sur la
disponibilité de données.

* Les contrfleur de lecture (ROC) initialisent les modules électroniques,
acquierent les informations, structurent les données et effectuent la
premiere calibration.




e Les EBs (Event Builder) construisent 1'événement au niveau de chaque
sous-détecteur, effectuent les formatages de données et les transmettent
au MEB (Main Event Builder).

e 1’ordinateur héte collectionne toutes les données venues du MEB et des
ordinateurs des sous-détecteurs, effectue ’analyse d’événements en ligne
et stocke les événements sur disque pour l’analyse en différé.

Les processeurs, intégrés a I'équipement, sont les microprocesseurs de la
famille 68000 avec systéme d’exploitation OS-9. Le composant principal
du systéme d’acquisition est un cluster VAX qui se compose de:

1 VAX 8700 : I'ordinateur principal
1 VAX 8250 : pour le détecteur TPC
2 VAX 8200 : pour les détecteurs ECAL et HCAL respectlvement
* une vingtaine de stations du travail de type VAX




LTS
FIO
FiO
Fio FiC
data in data in
l data in data in
ROC | roc | | Roc| 7]
Les{| [[e3]
EB EB
MEB
Subdetector ’ ’ Main host and Subdetector
computer event processor computer
Disks + tapes
Event /
reconstruction
Off-line analysis

Fig. 4 Structure hiérarchisée de 'acquisition de données d'ALEPH, le flux des données présenté du
haut vers le bas :

* Timing et le systéme de déclenchement (Trigger, MTS-Main Trigger Supervisor)
synchronisent les électroniques de lecture
+ ROC (Readout Controller) initialise les modules électroniques, acquiert les informations
« EB (Event Builder) construit I'événement au niveau de chaque sous-détecteur _
MEB (Main Event Builder) collectionne les données d'un événement venues de différents EBs
« L'ordinateur héte collectionne, analyse et stocke les données pour le traitement en différé




Les données brutes, une fois recueillies par les ordinateurs d’acquisition,
sont transmises au FALCON (Facility for ALeph COmputing and
Networking)[10], qui est le systéme principal de reconstruction de
données, situé dans la zone d’expérience. La liaison entre systeme
d’acquisition et FALCON est assurée par deux disques communs de

1 Gigaoctet.

VS3200
(8MB)

V83200

(8MB) Stations sans disque

VS3200
(8MB)

. VS3200(GPX)
VT320 (16MB)

VAX3600 (25;;)
(32MB)

Processeur de contrble

TK70
(296MB)

Processeur principal

Fig. 5 La configuration du systéme principal de la reconstruction de données
Jd'ALEPH (FALCON) : les reconstructions s'effectuent en paraliéle dans un
ensemble de stations DEC VS3200, contrdlées par une VS3200 & écran-couleur.

11




Pour des raisons de coit et d’efficacité, la reconstruction d’événements

. d’ALEPH se fait en paralléle : plusieurs événements sont reconstruits en
méme temps. Le systéme FALCON (Fig.5) est basé sur une architecture
LAVC (DEC Local Area VAX Cluster) composée d'un VAX 3600 équipé de
deux disques RA82 de 622 Mégaoctets et d’un ensemble de stations DEC
V853200 (8Mégaoctets de mémoire chacune). Un terminal VS3200 a écran-
couleur sert de moniteur de contréle. Avec une telle structure, ALEPH a
obtenu 8 Mégaflops de puissance de calcul pour un flux d’entrée de

100 Kilooctet/s (données brutes) et un flux de sortie de 20 Kilooctet/s
(données reconstruites). ‘ :

12




Chapitre 2

Traitement de données

Dans son fonctionnement nominal, le LEP devrait permettre de collecter

plusieurs millions de Z° par an. Une procédure de réduction de données
doit étre effectuée pour les condenser progressivement jusqu’a quelques
chiffres qui confirment ou infirment ces prédictions théoriques du modele
standard.

La chaine de traitement de données dans ALEPH est schématisée en

Fig. 6. Les données brutes sont acquises par le systéme en ligne, puis
traitées par le programme de reconstruction. Les résultats du programme
de reconstruction constituent le POT (Production Qutput Tape), qui est le
point de départ de I'analyse physique. A partir du POT, on sélectionne
les événements présentant des caractéristiques particuliéres, calcule les
nouvelles quantités physiques et prépare les histogrammes de ces
quantités.

De nombreux logiciels ont été développés pour effectuer ce travail. Dans
ce chapitre seront présentés les méthodes principales de conception de
logiciels utilisés dans ALEPH et quelques logiciels utilisés pour le
traitement de données. La plupart d’entre eux ont été développés par les
membres d’ALEPH.

13




1

Acquérir .
les données

Détecteur
d'ALEPH

Données
brutes

2

Produire
MDST
(POT)

DST (POT) .

3

Sélectionner
es événement

Evénements sélectionnés

P P{jocédures Calculer
e calcul X
PHYSICIEN [~~-~-=-~- les variables
< physiques
Coupures*s MINI-DST

; ;N-TUPLE

Etudier
histogrammes,
& statistiques

symbole :

O processus _i_données Résultats de physique

Fig. 6 Traitement de données : les données sont sélectionnées progressivement par différents
processus sous controle de physiciens ’

14




2.1 Génie logiciel et organisation de données

Les logiciels utilisés dans le domaine de la physique des particules,
comme tous les logiciels, ont leur propre cycle de vie - période allant de
la décision initiale d’implémentation d'un logiciel 4 la fin de son
utilisation. Cette période est composée de plusieurs phases :

e Demande des utilisateurs

¢ Analyse

¢ Conception

* Implémentation et vérification
* Opération et évolution

De nombreuses méthodes de génie logiciel sont utilisées pendant cette
période pour

e accélérer le processus de production de logiciel

e améliorer la qualité du systeme

e construire une application qui satisfait précisement a la requéte des
utilisateurs

ALEPH a choisi SASD (Structured Analysis and Structured Design)
[11,12,13] et le modéle Entité-Association (Entity-Relationship model)
[13,14] comme méthodes principales pour la conception de logiciels.
SASD est une collection de techniques pour modéliser le systéme réel. La
fonction essentielle de SASD est de diviser un systéme en sous-ensembles
plus petits et plus simples.

La phase d’analyse SA concentre I'intérét sur le processuset le flux de
données ( Process modelling). La représentation graphique de ce modele
est le DFD (Data Flow Diagram). Dans le DFD, le systéme réel se
présente comme un réseau de processus qui transforment les données.
Chaque processus peut étre & son tour décrit par un nouveau DFD plus
détaillé. Le flux de données est décomposé en méme temps. La Fig.6 est un
exemple de DFD.

Dans la phase SD, le systéme réel est modélisé dans le diagramme

structuré (SC - Structure Charts) qui se compose de différents modules de
logiciel (par ex. fonction et subroutine en FORTRAN). Le flux de contr6le

15




et le flux de données entre modules sont aussi indiqués.

Lemodele Entité-Association est une stratégie pour définir la structure
de données et, comme tout modeéle de données, consiste en :

des structures de données bien définies,

une collection d’opérateurs pour manipuler les données,

des procédures de validation pour vérifier que les données obéissent aux
contraintes imposées.

Dans le logiciel d’ALEPH on emploie le modeéle ER a l’aide du systéme
ADAMO (Aleph DAta MOdel ) [15,16,17]. Les données sont structurées
sous forme d’ensembles d’"ENTITES définies par les valeurs de propriétés
dites ATTRIBUTS. Les RELATIONS (fonctions) entre ensembles sont
aussi définies.

Le modele ER se préte bien a une représentation par diagrammes, les
ERDs (Entity-Relationship Diagram), composés de boites (les
ensembles) et de fleches (les relations). On utilise par la suite un
langage de définition de données ou DDL (Data Definition Language)
pour décrire en détail chaque ensemble d’entités, ses attributs et ses
relations.

On trouvera Fig.7 un exemple de ERD et son DDL correspondaht. C’estun
extrait de la description de la reconstruction des énergies des gerbes dans
le Calorimetre électromagnétique. L'exemple complet de cette
description se trouve dans ’Annexe 1.

Le systtme ADAMO vérifie que la définition des données soit complete
et cohérente, et la stocke dans un dictionnaire, a partir duquel on produit
des parties de code qui matérialisent les données dans le cadre de
différents langages de programmation: FORTRAN, C, PROLOG, SQL,
etc. La Fig.11 montre un exemple de traduction du DDL en PROLOG

- utilisée dans le systéme PIGAL

Le DDL, référence unique sur les structures de données d’ALEPH, garantit
la consistance et la validité des données a travers toutes les phases du
cycle de vie du logiciel. Une grande partie des systémes logiciels de
I'expérience utilise le modele sous différentes formes.

16




1) ERD

Ecal Storey Data .|..____» Ecal Cluster

Dans ERD, les boites représentent des ENTITE, les fidches représentent des RELATION,
la double fléche signifie que un "Ecal Cluster” contient plusieurs "Ecal Storey Data",
Ja barre sur la fléche signifie que certains "Ecal Storey Data® n‘appartiennent & aucun

"Ecal cluster”.

2) DDL

DEFINE ESET

ESDA : 'Ec storey data'

= (Thetad = INTE [1,228] : 'J (theta) index',
FhiT = INTE [1, 384] : 'T (phi) index',
Depthk = INTE [1, 3] : 'Stack number’',
MEnergy = REAL {-1.,90.] : 'Energy in Gev',
SubComponent= INTE [1.5] : 'subcomponent number’',
TIOaddress = INTE [1,221184]: 'Add:encoded 1i,j,k address’',
DIrection = INTE [1,25000] : 'Ndeb:start add in roseve'’,
EcalRegion = INTE [1,36] : 'Region number')

’

ECLU : 'Ecal cluster'
= (Charge,
Energqgy,

oo-)

i
END ESET
DEFINE RSET

(ESDA [0,1] -> [1,*] ECLU)
'Clusters are constructed from Storeys';

END REST

Fig. 7 Les exemples de ERD (Entity-Relationship Diagram) et DDL (Data Definition
Language) : ils sont tirés du document DDL ‘Calorimétre Electromagnétique’.

17




2.2 Logiciels principaux pour le traltement de
données d’ALEPH

Les logiciels principaux utilisés dans la chaine du traitement de données
d’ALEPH sont le logiciel de reconstruction ( JULIA ), le logiciel
d’analyse physique (ALPHA) et le logiciel d’analyse statistique
(PAW).

. La physique que I'on veut étudier dans un détecteur comme ALEPH est
caractérisée par les leptons, quarks et gluons émis a la collision. Les

| lepton chargés sont détectables. Les quarks et les gluons n’existent pas a
Iétat libre mais forment les hadrons, qui sont composés de plusieurs
quarks. Ces derni¢res particules sont reconstruites par le programme
JULIA. Les résultats de la reconstruction permettent d’analyser, en
utilisant le logiciel ALPHA, les événements et d’étudier la physique
associée a la recherche d’états finaux particuliers comme par exemple la
physique des leptons, la physique associée aux jets ou encore la physique
associée aux particules manquantes avec la différence entre I'énergie
reconstruite et I'énergie de collision...

On trouve Fig.6 les positions de ces logiciels dans la chaine d’analyse :

* JULIA correspond au processus 2. Il produit le POT a partir des données
brutes.

* ALPHA correspond aux processus 3 et 4. Il effectue I'analyse physique en
utilisant le POT comme données d’entrée et produit les histogramme ou
les n-tuples.

* PAW, un systéme d’analyse statistique de données, correspond au
processus 5. Il est la derniére étape de la chaine de traitement.

JULIA - Logiciel de reconstruction

JULIA reconstruit & 'aide de I'information, généralement mesure de
signaux électriques des différents détecteurs, les caractéristiques des
particules qui ont été produites lors de la collision.

18




Il effectue les associations topologiques suivantes :

e association des coordonnées des impacts mesurés dans les ITC et TPC,
selon des trajectoires théoriques (hélices)

¢ regroupement des cellules calorimétriques voisines, ainsi qu'une
premiére identification de particules (électrons, muons, hadrons chargés
ou neutres, photons gamma)

Reconstruction dans la TPCs):

La TPC donne une image, point par point, des traces chargées. La
reconstruction des traces se fait par les étapes suivantes :

relier les points dans I'espace, former les traces -

calculer leurs impulsions '

réduire I'information des fils en une estimation de temps et de charge

* associer les fils et traces TPC

e mesurer la densité d’ionisation pour chaque trace dont on déduit une
hypothese d’identification (choisie parmi les quatres possibilités: e, m,
K p).

Reconstruction dans les ECAL, HCAL [19,2021]:

La mesure de I'énergie et I'identification des particules dans ECAL et
HCAL se font aussi en plusieurs étapes :

* regrouper un ensemble de cellules touchées voisines en amas qui sont
considérés comme entités de base pour une reconnaissance de forme ou
pour une association éventuelle avec une particule chargée vue dans la
TPC

e associer ces amas avec les traces de la TPC, permettant de distinguer
deux types d’amas : chargés ou neutres ' ' ;

e associer les amas de ECAL et HCAL

e effectuer une reconnaissance de forme ( par la répartition en étages, point
de départ et de fin en profondeur de la gerbe) et déterminer la nature de

la particule ou la présence dans un méme amas de deux particules
différentes.

Le programme est écrit en FORTRAN 77 standard. Il utilise BOS [22]

19




comme gestionnaire de mémoire ainsi que pour les opérations d’entrée-
sortie sur bande magnétique, ou sur disque (acces direct). JULIA contient
plus que 70000 lignes de code et occupe environ 5 Mégaoctets de mémoire.

- ALPHA - Logiciel d’analyse physique

ALPHA (ALeph PHysics Analysis package) [23] est un logiciel
d’analyse physique pour les données d’ALEPH. 1l offre quelques facilités
permettant de simplifier la programmation pour I’analyse.

ALPHA utilise en entrée un fichier dit répertoire d’événement (utilisé
par la plupart des logiciels d’analyse d’ALEPH) pour accélérer 1’accés
aux données.

Les fonctions principales d’ALPHA sont les suivantes :

e assurer la lecture des événements par un acceés direct aux données et

- effectuer les sélections selon les critéres physiques définis par
I'utilisateur.

* convertir les données reconstruites dans des structures internes en
facilitant la manipulation.

* fournir une bibliothéque de subroutines de physique : calcul de nouvelles
quantités, acces aux contenus de certaines variables, manipulation des
4-vecteurs d’impulsion, calcul de la topologie des événements : valeurs
propres, vecteurs propres des tenseurs, sphéricité, thrust, masse
invariante de deux particules, recherche des jets, etc.

/
Les sorties d’ALPHA sont variées : répertoires d’événements, événements
complets, histogrammes ou N-Tuples utilisés par les logiciels d’analyse
statistique, par exemple PAW.

PAW - Logiciel de représentation statistique de
données

PAW (Physics Analysis Workstation) [24] est un outil général d’analyse
et de présentation de données. Il permet d’effectuer I'analyse statistique
sur les objets familiers aux physiciens, par ex. histogramme, n-tuples,
vecteur, etc.

20




PAW est interfacé avec de nombreux types de station de travail
graphique, permettant d’obtenir une représentation d’histogramme de
haute qualité.

Les fonctions essentielles de PAW sont les suivantes :

accéder aux données sous forme d’histogramme, n-tuples ou vecteur
e créer, remplir et manipuler les histogrammes

* représenter les histogrammes en graphique 2D ou 3D

produire des graphiques préts pour publication

Ce logiciel est écrit enti¢trement en FORTRAN 77 et contient plus de
100000 lignes de code.

2.3 Nécessité d’un environnement interactif et
graphique

L’analyse de données est un processus de réduction des données sous
contrdle d’un physicien (Fig.6). Normalement, chaque physicien doit
faire ces travaux “en batch” (traitement différé). Il doit alors envisager
toutes les anormalies qui pourraient apparaitre pendant le traitement.
Les inconvénients sont multiples: il est difficile de tout prévoir et de plus
il existe différentes facons de traiter les anormalies suivant le contexte.
Mais quand on travaille “en batch”, aucune intervention n’est possible |
durant I'exécution. '

Un environnement interactif et graphique serait nécessaire pour
différentes phases du travail :

* Pendant le développement du programme, on a besoin de traiter peu
d’événements, ce qui permet de tester les étapes intermédiaires des
algorithmes. On a besoin de produire et de représenter des histogrammes
sur des variables sensibles, de changer parametres et algorithmes d'une
maniere interactive, de ré-exécuter le programme pour tester I'effet de
ces changements. '

21




* Pendant I'analyse, on a besoin d’accéder rapidement et facilement aux
événements sélectionnés, de produire des histogrammes, de visualiser
des événements intéressants, de vérifier les données de ces événements,

etc.

* Pendant ces deux phases on a besoin d'un moyen de visualiser des données
d’ ALEPH, leur structure, leur relation ...

Depuis 5 ans, I'utilisation de moyen interactif et graphique dans la
physique de particules est devenue possible grace au dernier
développement de stations de travail graphique en réseau. Dans ALEPH
ainsi que dans d’autres expériences, différents systémes sont développés.
En voici quelque exemples :

PAW

IDA
KAL
TIP
DALI

REASON:

PIGAL

: (Physic Analysis Workstation) un systéme de

représentation statistique des données développé an CERN
[24] |

: (Interactive environnement for Data Analysis) un systéme

interactif développé a SLAC [25]

: (Kinematic Analysis Language) un systéme interactif

d’analyse développé & ARGUS

: (Table Interaction and Plotting) interface interactive a

ADAMO basée sur PAW [26]

: systéme interactif graphique 2D pour ALEPH [27]

(Realtime Event Analysis Workstation Project) un
nouveau systéme développé a SLAC, utilisé sur une machine
NeXT [53]

: (Prolog Interactive and Graphics for Aleph analysis) un

logiciel d’analyse interactive de données pour ALEPH

Ces logiciels intégrent plus ou moins les parties logiques suivantes :

1 Linterface d’utilisateur qui analyse les demandes de l'utilisateur sous
différentes formes, par ex. langage de commande (naturel ou
programmation), menu, pictogramme ...

2 Module de contrdle qui synchronise différents composants du systéme
effectuant chacun une fonction spécifique

3 Serveur de données qui acceéde aux événements

4 Sélection de données permettant de choisir les données qui correspondent
aux critéres physiques

5 Calcul de nouvelles quantités physiques : codage d’algorithmes

6 Préparation d’histogrammes qui crée, remplit, manipule les

22




histogrammes
7 Préparation de données pour la visualisation d’événements
8 Préparation de données pour la visualisation des contenus et des
structures de données
9 Représentation d’histogrammes
10 Visualisation d’événements en graphique 2D ou 3D
11 Représentation de données avec leur structure
12 Accés a 1abase de données

Pourtant ils sont tous différents au point de vue

¢ dela structure du systéme

¢ delorganisation des données

¢ de la réalisation de l'interface avec l'utilisateur

 du niveau d’utilisation de graphique 2D, 3D (matériel, logiciel)
* des utilitaires pour 'aide a I’analyse physique

¢ du niveau de manipulation d’histogrammes

¢ de leur réle dans la chaine de traitement de données

Dans le chapitre suivant sera présenté I'un de ces logiciels - PIGAL,

développé au CPPM, Marseille, dans le but d’unifier d’acces aux données-
et leurs manipulations & tous les niveaux de la chaine d’analyse.

23







Chapitfe 3

PIGAL, un programme interactif de
visualisation et d’analyse

Le Projet PIGAL (Prolog Interactive and Graphic for ALEPH analysis),
lancé au début de 1988, a visé a réaliser un environnement multi-
fonctionnel permettant & I'utilisateur d’effectuer les opérations
traditionnelles d’analyse de données d’une manire plus naturelle.
Désormais un tel environnement est mis en service dans ALEPH, la
majorité de fonctionnalités décrites dans les spécifications du projet ont
été réalisées.

Dans ce chapitre, les spécifications initiales du projet seront résumées,
suivies de la description de la structure actuelle du systéme et de ses
fonctionnalités les plus significatives.

3.1 Spécifications initiales de PIGAL

Les spécifications sont divisées en 3 parties :

 Interface utilisateur
Fonctionnalités pour I'analyse
Modularisation en processus

25




Interface avec I'utilisateur

* Menu (pour I'utilisateur non expert) :
Le menu est un moyen simple de familialisation avec le systéme, qui doit
couvrir la plupart des besoins.

* Langage de commande (pour 'utilisateur expert) :
Le langage de commande doit étre le plus naturel possible et capable
d’exprimer les opérations essentielles de sélection de données structurées
dans le modele Entité-Association.

* Macros:
Une macro est un groupe de commandes utilisées fréquemment, avec un
nom spécifique (“nickname”) invoqué par I'utilisateur pendant
V’analyse. Elle pourrait étre publique, contenue dans PIGAL pour une
utilisation générale; ou bien privée, créée et utilisée par I'utilisateur.
L’utilisateur peut créer et enregistrer une macro soit pendant une session
interactive, soit en dehors de la session a Vaide d’un éditeur.

* Possibilité d’enregistrer dans un journal (log file) les commandes
utilisées pendant la session interactive pour une utilisation ultérieure

* Possibilité d’obtenir les informations-d’aide (on-line help)

Fonctionnalités pour I’'analyse

* Facilité d’accéder a différents types de fichiers: données brutes, POT,
Mini-DST

* Capacité d’accéder aux données d’ALEPH sans demander une
connaissance détaillée a priori sur la structure de données, en partlcuher
le changement de DDL n'affecte pas l'utilisateur

¢ Capacité de sélectionnerles événements

* Capacité de visualiser les événements en graphique 3D

* Capacité de modifier interactivement les structures d’entités, ou bien
d’ajouter dynamiquement de nouvelles entités

26




* Manipulation et utilisation avancée d’histogrammes, par ex.
I'utilisateur demande une représentation d’un histogramme, ensuite il
pointe avec la souris sur I'écran un canal intéressant et obtient
automatiquement la liste des événements correspondants

o Capacité de soumettre automatiquement le traitement en différé (batch
job) avec les critéres physiques déterminés au préalable dans une session
interactive

(Les trois derniéres fonctionnalités ne sont pas prétes dans la version
présente du programme.)

Modularisation en processus

I'interface utilisateur est réalisée en langage PROLOG. La plupart de
fonctions sont réalisées en FORTRAN. Les modules nécessaires sont les
suivants :

e modules pour la réduction de données : logiciel de reconstruction JULIA,
facilité pour accéder aux fichier d’événements et pour enregistrer les
événements apres une sélection, algorithme de sélections

» module de visualisation d’événements

» module de manipulation de structure de données

e module de manipulation et représentation d’histogramme

e module del’analyse physiélue contenant les subroutines standards de
calcul de quantités physiques

3.2 Structure actuelle du logiciel PIGAL s

Le logiciel PIGAL est basé sur une architecture modulaire, chaque
module ayant une fonction spécifique. La communication entre modules se
réalise A travers les structures de données de BOS. Dans cette section,
I'explication porte sur :

* la structure actuelle du systeme
e la justification de 'emploi de PROLOG pour réaliser I'analyseur

o7




grammatiéal :
¢ la base de connaissances
* l'interface PROLOG-FORTRAN développée pour PIGAL.

Toutes les commandes et macros invoquées comme exemple seront décrites
individuellement. Leurs spécifications détaillées se trouvent dans le
guide d’utilisation [29]. Les termes “table” et “colonne” seront employés
parfois au lieu de “entité” et “attribut”.

Organisation du systéme

Comme la plupart de systémes d’analyse, PIGAL se compose de trois
parties principales (voir la Fig.8):

Interface utilisateur .

Pour en faciliter I'utilisation, on a choisi un langage quasi naturel comme
base de I'interface utilisateur. Un analyseur grammatical en PROLOG
digere les demandes de l'utilisateur avant leur exécution.

Support des données d’événement

* Les données utilisées dans PIGAL sont lues sur les fichiers d’événements
d’ALEPH, a différents niveaux de traitement : données brutes issues des
détecteurs, données reconstruites issues du programme de reconstruction et
ultérieurement Mini DST

* PIGAL peut reconstruire certaines entités annexes (ex. esda)
dynamiquement si la commande les concerne. Les subroutines nécessaires
du programme de reconstruction JULIA) sont intégrées dans PIGAL et
appelées suivant les besoins.

* Un utilitaire SELTAB effectue les sélections éventuelles sur les entités
concernées

28




“Action

C’est un ensemble des fonctionnalités se réalisant soit en pur PROLOG
soit par coopération de PROLOG et de FORTRAN. Cette partie contient
la plupart des utilitaires, elle intégre aussi les sous-systémes

" développés dans des contextes différents.

Le diagramme de flux de données (DFD) de PIGAL se trouve dans

I Annexe 2.
Input_Command
Analyse
Command
ADAMO_DDL
/ \
Selection_list : Verb,
Qualifier
Selector, Action
Table (Draw,Print...) Display
Table
Z Graphic_Objects
Event
(BOS) .
Graphic
Structure

Fig. 8 Larchitecture de PIGAL contient 3 parties :

1) L'interface d'utilisateur (Analyse Command) : Cette partie analyse les commandes & l'aide de
ADAMO DDL, contrdle la séquence des sélections effectuées par le support de donnees

2) Le support de données (Select Entity) : Cette partie lit les événements d’'un fichier, effectue les
sélections, crée le sélecteur

3) Les modules de fonctionnalités (Action) : Cette partie regoit le sélecteur et les données, effectue
les fonctions (Draw, Print, Histogram ...) & l'aide des structures de données graphiques. Elle
contient aussi certains sous-systémes développés dans des contextes différents

29




Justification de I’emploi de PROLOG pour réaliser
I’analyseur grammatical

Le langage de commande de l'utilisateur est EARL (Entity and
Relationship query Language) [30], un langage quasi naturel congu pour
exprimer les opérations essentielles dans la sélection des données ayant
une structure Entité-Association. Le systéme permet au physicien de
poser ses questions naturellement, par exemple

Draw tracks momentum>l without associated calobjects.
- Select events with 2 leptons.

La syntaxe du léngage de commande est décrite Fig.9. Cette syntaxe
permet d’effectuer une sélection de I’entité par des conditions portant sur
plusieurs attributs ou par ses relations avec d’autres entités.

Un analyseur grammatical est nécessaire pour interpréter ce type du
langage. Celui de PIGAL est écrit en langage PROLOG. Ce choix est basé
sur le fait que PROLOG est un résultat de la recherche sur la
compréhension du langage naturel et sur la programmation en logique, il _
s’adapte donc bien a8 EARL. L’analyseur de PIGAL est constitué d’un
programme effectuant les déductions logiques permettant de transformer
facilement une requéte de I'utilisateur en une séquence d’appels a des
subroutines FORTRAN propres a la satisfaire. Il utilise également la
représentation de certaines connaissances utiles au travail d’analyse :
structure des données, liste des fonctions disponibles, etc.

PROLOG offre une interface avec d’autres langages, ce qui permet
d’utiliser certains programmes existants et de développer des
algorithmes en FORTRAN et C. Ceci est largement utilisé dans PIGAL.

Certains éléments du langage PROLOG sont détaillés dans 1’ Annexe 3.

Une connaissance minimale sur ce langage sera utile pour mieux
comprendre la réalisation de PIGAL.

30




cammand 7 := action object;

action = verb { "/" qualifiers};
qualifiers ;= quall fying-unit;
qualifying-unit := option "=" wvalue;
option . = colouxr

|  view;

| representation;
object entity selection;

o

selection none;
| attribute comparison mmber {and selection};
| oconnector object;
connector = in;
| with;-
|  without;
| out;
camparison = W
' "="'.
l Il>'l;
verb := draw;
| print;
| histogram;

Fig. 9 La syntaxe de EARL utilisée dans PIGAL :
EARL (Entity and Relationship query Language) est un langage quasi naturel,
congu pour exprimer les opérations essentielles dans la sélection des données

qui ont une structure Entité-Association

Base de connaissances
Quand PIGAL regoit une commande de I'utilisateur :

draw calo energy>10

i1cherche a identifier ce quest “calo” et ce que signifie “energy>10".

trouve que calo est une entité complexe formée de deux entités
-élémentaires esda et hsda. Il trouve aussi, par exemple, que ces deux

11

entités ne sont pas instanciées et qu’il faut les reconstruire. Il trouve dans

sa base de faits qu’il existe des subroutines dans le programme de
reconstruction qui peuvent faire ce travail. Ensuite le programme

31




identifie une sélection sur l'attribut energy et trouve de la méme maniére
que energy est un attribut de I'entité calo. La commande est ainsi validée
et transformée en une série d’appels a des subroutines FORTRAN.

Cet exemple traverse presque toutes les parties de la base de
connaissances :

structure tabulaire des données

structure graphique arborescente (entités complexes)

description des modules de reconstruction

relations entre représentation des entités physiques et subroutines
FORTRAN '
description des modules de sélection

Les deux premiéres parties sont décrites ici, car ce sont les bases
communes. Les autres seront expliquées dans les sections suivantes avec
leur utilisations internes. '

Structure de données - ALEPH DDL

Afin de pouvoir I'intégrer dans le programme PIGAL, le DDL est converti
par l'un des outils d’ADAMO sous forme de faits PROLOG. La Fig.10
montre les deux représentations pour l'entité esda.

Structure arborescente - Entité complexe

Certaines entités élémentaires d’ALEPH ne peuvent ﬁas étre dessinées
directement. Si I'on voulait effectuer quelque opération sur cette sorte
d’entités, par exemple I'entité eclu, le programme doit utiliser les
connaissances suivantes: '

entity(esda) ->;
entity(eclu) ->;
complex-entity(eclu,with.nil,esda.nil,v) ->;

La derniere régle signifie que eclu est une entité complexe, si on demande

de visualiser un eclu sélectionné, la représentation porte en fait sur
I'entité esda.

32




ADAMO DDL

DEFINE ESET

ESDA
: 'Ec storey data‘
= (Thetad = INTE [1,228] : 'J (theta) index',

Fhil = INTE [1,384} : 'I (phi) index',
Depthk = INTE [1,3] : 'Stack number',

- Energy = REAL [-1.,90.] : 'Energy in Gev', )
SubComponent= INTE [1.5] : 'subcomponent number’,
I0address = INTE [1,221184]: 'Add:encoded 1i,]j,k address’,
DIrection = INTE [1,25000] : 'Ndeb:start add in roseve',
EcalRegion = INTE {1,36] : 'Region number')

END ESET
DEFINE RSET
(ESDA [0,1] —> [1,*] ECLU)
'Clusters are constructed from Storeys';
(ESba [0,1] -> [0,1] ESDA)
'index of the next storey of the same cluster';
END REST

Régles en PROLOG

esda (thetaj, 1,1} ->;
esda(fhii,1,2) ->;

esda (depthk,1,3) ->;
esda (enexrgy, 2,4) —->;

esda (subcomponent, 1,5} ->;

esda (iocaddress,1,6) ->;
esda(direction,l1l,7) ->;
esda(ecalregion,1,8) ->;
esda(eclu,3,9) ->;
esda(esda,3,10) ->;

Fig. 10 L'exemple de DDL

en haut : ADAMO DDL de l'entité ESDA (Ecal Storey Data) ,

en bas : le méme DDL écrit en PROLOG, comme une partie de sa base de connaissances, utilisé dans
PIGAL. Chaque régle contient : nom de I'entité, nom de l'attribut, type de I'attribut
(entier, réel, relation) et numéro de l'attribut.

33




Interface PROLOG - FORTRAN pour PIGAL

PROLOG offre des possibilités de communication avec les langages
traditionnels. Cette possibilité est capitale pour PIGAL, puisqu’il pilote
des ensembles de logiciels écrits pour la représentation graphique 3D
ainsi que des procédures préexistantes dans le programme de
reconstruction et dans PAW. Il est exclu de les réécrire pour des raisons de
compatibilité, ainsi qu’en raison de 1’énorme investissement humain
qu’ils représentent.

I y a deux sortes d’interface PROLOG - FORTRAN utilisées dans
PIGAL:

¢ Interface standard de PROLOG décrite dans I’Annexe 3
* Interface développée spécialement pour PIGAL

La différence entre les deux interfaces est présentée schématiquement
Fig.11. Les deux assurent la méme fonction, mais sont utilisées dans des
contextes différents. L'interface standard est efficace si ’application
contient peu d’appels. L'autre interface convient mieux quand on gere
beaucoup de sous-programmes FORTRAN ou C. Dans PIGAL, PROLOG
gere plus de 200 subroutines FORTRAN dont une vingtaine seulement par
Vinterface standard. On verra lors du chapitre suivant que ce partage est
important pour l'architecture distribuée de PIGAL .

Linterface standard est simple, son inconvénient est que chaque
subroutine a son propre identificateur, et chaque branche doit gérer
proprement le transfert des arguments entre PROLOG et FORTRAN.
C’est tres difficile a utiliser dans une application comprenant des
centaines d’appels différents. Pour résoudre ce probléme on ajoute une
couche supplémentaire de logiciel, qui permet I'appel de la subroutine
depuis PROLOG, sous la forme :

fortran(nom de subroutine, liste d’arguments d’entrée,
liste d’arguments de sortie)

ici la liste de sortie est de la forme:
(typel.variablel).(type2.variable2)...nil

les types possibles sont : int (entier), real (réel), chxx (chaine de
caracteres de longueur xx).

34




Interface 1
{standard

PROLOG)

Interface 2
(développée
pour PIGAL)

PROLOG Interface PROLOG - FORTRAN Module FORTRAN
USER_RULE
SUDT>/7100/799; w ol e v o= = = = - EmE - ---———--e - » SUB1
SUD2 >/ 7200/799; = of an o = w0 om = = e e e e he e e e e = SUB2
UD35/7300/790; == = m m w m E E e E " _ - - -————————- » SUB3
. GETSTR USER_RULE :
fortran (sub 1) ; = < GETINT o '§ CALLSUB . SPSUBH
e m e GETREALL | | g e e m o B § N D
fortran (sub 2) ; - : = » BUTSTR L = - g iy S»SUB 2
. - PUTINT a3
fortran (sub 3) ; » PUTREAL suB3
routine de

6 subroutines pilotées
par PROLOG pour branchement
construire ou analyser

la liste d'arguments

Fig. 11 interface PROLOG-FORTRAN dans le contexte de PIGAL :

Interface 1 est fournie par linterpréteur PROLOG, chaque appel dans PROLOG a une forme de
prédicat externe qui est transformé dans I'interface en un appel FORTRAN

Interface 2 est développée pour PIGAL parce que l'utilisation de I'interface 1 devient malaise
lorsque les subroutines externes sont trés nombreuses. Ici plusieurs appels dans PROLOG sont
transformés dans linterface en un seul appel FORTRAN, le module FORTRAN gére le branchement
vers |'adresse adéquate

Avec cette interface, on n’a besoin que de 7 subroutines pour gérer le
passage PROLOG-FORTRAN (voir Fig.12). Six d’entre elles (getstr,
getint, getreal, putstr, putint, putreal) servent comme passage
d’arguments. La derniére (callsub) est responsable de tous les appels
FORTRAN. Callsub fait appel a la fonction bibliothéque VAX :
Lib$callg, pour effectuer le branchement vers 'adresse adéquate. Sur
IBM, quelques lignes de code assembleur permettent d’obtenir le méme
résultat. I’adresse de chaque subroutine est obtenue par l'instruction
external, qui fait correspondre a chaque subroutine une variable dont le
contenu est l’adresse de la subroutine.

L'important dans ce mécanisme est qu’il fournisse une interface propre,

unique, formelle entre les modules —- une conditions nécessaire pour
changer facilement le systéme vers une architecture distribuée plus tard.

35




Exemple d'appel

write("filename") -> fortran(write,"filename".nil) ;

Régles en PROLOG

fortran(s-ubroutine-name, i-nput-1list)
inarg putlist(i-nput-list)
- string-ident (x, s-ubroutine—-name)

->

callsub(x);

callsub(a) ->/?560/299;
putstr(a,b) ->/2530/299;
putint(a) ->/2540/299;
putreal(a) ->/2550/299;
getreal(a) ->/2570/299;
getint(a) ->/?580/299;
getstr(a) —->/2590/299;

500

540

560

580

999

Subroutine wuser_rule

subroutine user_rule(nb,error found,error_nb)
integer nb,error nb

logical error_found

character*132 string,stringi,stringo, stringp
error_ found=.false.

icase=nb/100

goto(999,999,999,999,500), icase

continue

ind=(nb-500) /10

goto (999,999,530, 540, 550, 560,570,580,590),ind
call get integer(l,ival,error_ found)

call putint(ival) i

goto 999

call get_string(l,1, %ref(stringi),error_ found)
call callsub(string(l:1))

goto 999

call getint(ival)

call put_ integer(l, ival, error_ found)

goto 999

.
return
end

subroutine callsub(name)

L d

call lib$callg(....)

*

end

subroutine putint (ival)
subroutine putstr(string, lres)
subroutine putreal(val)
subroutine getstr(string,l)
subroutine getint (ival)
subroutine getreal(val)

Fig. 12 Procédures d'interface PROLOG-FORTRAN développées pour PIGAL :
en haut : un exemple de I'appel de la subroutine “write”
au milieu : la reégle 1 transforme le nom de la subroutine dans I'argument du

prédicat externe CALLSUB, les régles 2-8 sont les 7 prédicats externes

assurant cette interface i
en bas : la subroutine user_rule, I'appel ‘call callsub’ se trouve au label 560

36




3.3 Fonctionnalités de PIGAL et leurs
réalisations

Les fonctionnalités sont sous le controle direct du programme principal en
PROLOG, qui assure le logique de l’ensemble du systéme. Le role du
programme PROLOG consiste en premier lieu & vérifier la validité de la
commande : compatibilité avec la grammaire du langage de commande,
et compatibilité des éléments composant une sélection. A chaque niveau
de I'analyse les erreurs sont signalés et les corrections possibles sont
proposées. La commande est alors convertie en une liste d’appels de
subroutines, avec les arguments adéquats, pour effectuer I'action
demandée. "

Les fonctions les plus significatives sont les suivantes :

e représentation d'événement en graphique 3D

o sélection multiple d’entités selon des coupures physiques et recherche de
relations indirectes entre entités

e reconstruction interactive

¢ manipulation interactive d’histogrammes _

e sélection d’événements et création de répertoire d’événements

Chaque fonctionnalité est réalisée soit en pur PROLOG, soit par
combinaison de PROLOG avec FORTRAN.

Dans les sections suivantes ces fonctionnalités et leurs réalisations seront

présentées. La préSentation utilise certaines notions de graphique dont
I’explication se trouve dans I’Annexe 4.

Représentation d’événement en graphique 3D

PIGAL est un logiciel qui peut représenter 'image d’événements
d’ ALEPH en graphique 3D. La Fig.13 est une image d’événement issue
-des commandes suivantes:

draw/col=cyan saea (Contour du détecteur a petit angle}
draw/col=cyan saeb ( -

37




draw/col=cyan lcea (Contour des moniteurs de luminosité)

draw/col=cyan lceb ( - )
draw/col=cyan tpae (Silouhette TPC)
draw/col=cyan tpai ( - )
draw/col=cyan tpbe ( - )
draw/col=cyan tpbi ( - )
draw/col=cyan ecbl (Contour ECAL)
draw/col=cyan hcbl -(Contour HCAL)
draw/col=red pfrf (Trace chargée)

draw/col=blue peco without pfrf
(Objet ECAL non associé a une trace)
draw/col=red peco with pfrf
(Objet ECAL associé 4 au moins une trace)
draw/col=blue phco (Objet HCAL)
draw/col=green tpco (Coordonnée du damier de TPC)

38




Pigal 2.30

ALEPH collaboration 3-D Grophic System

M
Event dote : 830814
Run number : 2509
Event number - 105
AN AN
ATAS e AL
Nl W g
! 3 ’ A e viad ot
BV smva: i myamn VA
A N
/V / \ T el
] A XV A \
/\Y I - ’j’“’“\:x\ < I /
V - /\/\ - z v f v"w\[zx_,\ /A

P

_—
\\.‘

Fig. 13 L'image d'un événement d'ALEPH, représentée par PIGAL







PIGAL permet de

* représenter un événement complet ou partiel (sous-détecteur spécifié, un
ensemble d’entités sélectionnées selon les coupures physiques)

o sélectionner la représentation ou projection (XY Z,8 @, R Z)

* sélectionner les caractéristiques graphiques (couleur, fenétre )

Actuellement, plus de 60 entités peuvent étre dessinées, des contours du
détecteur aux événements apres la reconstruction.

Une fois 'image représentée l'utilisateur peut interagir directement
avec I'image, pointer avec la souris de segments sur 'écran (voir

I’ Annexe 4 pour la notion de “pick”) pour obtenir les informations
internes liées aux objets graphiques (par ex. les données liées a une
trace), et effectuer I’analyse de I'événement de fagon plus générale. Par
exemple '

commande: draw/col=red track
opérations: représenter les traces en couleur rouge
commande: print track pick

opérations: ® demande une opération de pointage sur l'entité track qui
est déja visualisée |
« imprime les données internes d’une trace choisie par
l'utilisateur

Réalisation

L’ensemble des fonctions graphiques est réalisé par un module graphique
écrit en FORTRAN, et qui constitue la moitié du code PIGAL (la Fig.14).
Cette partie est complétement fermée, une fois obtenues les informations
minimum nécessaires (entité, sélecteur) la production d’image se fait de

facon automatique. ’

Pour que PIGAL s’adapte a différentes stations graphiques 3D et &
différentes bibliothéques graphiques commerciales, une interface de
programme d’application indépendante des bibliothéques graphiques a
été développée. La position de cette interface est indiquée dans la
Fig.14. Elle définit une série de macroprimitives et un ensemble de
procédures pour les manipuler. La notion de “macroprimitive” vient de

41




Couche 1 Analyseur grammatical en PROLOG

Couche 2. . Subroutines de préparation Package
graphique
Couche 3 Module graphique de PIGAL

Couche 4 Librairies graphiques standards

L'interface de
programme d'application

Fig. 14 La position du module graphique dans PIGAL : les couches 2 et 3
constituent ce package, entre elles il y a une interface séparant le programme
d'application des bibliothéques graphiques.

la notion de “primitive” dans GKS. Les primitives sont les éléments
graphiques acceptés par GKS : polyline, texte, surface, polymarker ...
Pour PIGAL, on a ajouté dans cette base certains éléments graphiques
utilisés souvent dans I’analyse de données de la physique
expérimentale, par exemple : hélice. Ces deux parties des éléments
graphiques plus le mélange de ces primitives constituent les
macroprimitives de PIGAL.

Le systéme est divisé en 4 couches (Fig.14). L’analyseur grammatical en
PROLOG (couche 1) digére la commande de I'utilisateur, fait appel a
une subroutine de la couche 2. La subroutine transforme les données
(stockées dans une entité) en macroprimitives. Celles-ci seront
transformées ensuite, par les procédures de la couche 3, en primitives
graphiques.

Précisons le fonctionnement de ces 4 couches, en analysant la commande :

draw tpco
(représenter les coordonnées du damier de TPC)

42




Couche 1 : Analyse de commande

Une partie de la base de faits PROLOG concerne la relation entre verbe,
entité et nom de la subroutine effectuant sa représentation, qui a la
forme:

prepare—routine(entity—name,subroutine—name,verb)

La Fig.15 décrit une partie de ces régles. Pour la commande

draw tpco

on vérifie d’abord que tpcd soit une entité représentable, puis que la

relation entre draw et tpco soit présente. Ces conditions étant remplies,
on exécute la subroutine RTPCO située dans la couche 2.

prepare-routine (tpco, rtpco,draw,nil) ->;
prepare-routine (etpl, retpl,draw,nil) ->;
prepare-routine (tgco, rtgco,draw, nil) ->;
prepare-routine (kin2, rkin2,draw,nil) ->;
prepare—routine(ver2,rver2,draw,nil) ->;
prepare-routine (fkin, rfkin, draw,nil) ->;
prepare—routine(fver,rfver,draw,nil) ->;
prepare-routine (tgft, rtgft,draw,nil) ->;
prepare—routine(frft,rfrft,draw,nil) ->; .
prepare-routine (x,y,highli, z) -> prepare-routine (x,y,draw, z);
prepare—routine(x,rerase,erase,nil) -> prepare-routine(x,y,draw,z);

Fig. 15 La relation entre verbe, entité et nom de subroutine effectuant le travail, par exemple : la
premiére régle indique que PROLOG fait appel la subroutine RTPCO pour dessiner I'entité TPCO

Couche 2 : Subroutines de préparation

La couche 2 contient 64 subroutines de préparation, chacune correspond a
une entité représentable (ex. tpco). Les données de I'entité, déja choisies

 par le sélecteur dsel (page 49), seront transformées en macroprimitives
par I'une de ces subroutines. La Fig.16 présente une partie de la

43




subroutine RTPCO qui transforme les données de I'entité tpco en
macroprimitive “polymarker” par I'appel de la procédure DSMARK.

DATA BNAME/'TPCO'/

Get the selected bank for the entity TPCO
CALL RDSEL (NDSEL, BNAME)
IF (NDSEL.EQ.0) RETURN
KDSEL NLINK('DSEL',NDSEL) + 1
NLSEL LROWS (KDSEL)

Access number and family number of the selected entities
DO 70 IL = 1, NLSEL
NLINE = ITABL(KDSEL, IL,1)
IR = ITABL(KDSEL,IL, 2)

Check that this entity is present in the data structure
KTPCO = NLINK(BNAME, IR)
IF(KTPCO.EQ.0) THEN
WRITE(6,*) 'NO ENTITY',BNAME,' AVAILABLE'
GOTO 999
ENDIF

Get space coordinates
NBPT = 1
RO = RTABL(KTPCO,NLINE, JTPCRV)
PHI = RTABL(KTPCO,NLINE, JTPCPH)

XYZ(1) = RO*COS(PHI)
XYZ2(2) = RO*SIN(PHI)
XYZ(3) = RTABL(KTPCO,NLINE, JTPCZV)

Request an entity in graphics structure to store points
NBPRIM = 1
CALL DSMARK (BNAME, NLINE, IR, NBPRIM, NBPT, XYZ)

Check polymarker changes in the current command
CALL GETQUA('MAR', ITYP, IDUM, POLMAR, TDUM)
CALL GETQUA('MSI', ITYP,IDUM, SIZMAR, TDUM)
CALL GETQUA('COL', ITYP, IDUM, COLIND, TDUM)

Report polymarkers changes
IF (POLMAR.NE. Q) :
+ CALL GMODM(BNAME,NLINE, IR, NBPRIM, 'TYPE', POLMAR)
IF (SIZMAR.NE.O) '
+ CALL GMODM(BNAME,NLINE, IR, NBPRIM, 'SIZE', SIZMAR)
IF (COLIND.NE.OQ) .
+ CALL GMODM(BNAME,NLINE, IR, NBPRIM, 'COLO', COLIND)

CONTINUE

Fig. 16 Une partie de la subroutine RTPCO qui produit le macroprimitive ‘marqueur’ en appelant
la procédure DSMARK, et change les attributs graphiques en utilisant la procédure GMODM.

44




Interface entre Couche 2 et Couche 3

DSMARK est I'une de procédures de I'interface entre la couche 2 et la
couche 3, qui sépare le programme d’application d’avec les
bibliothéques graphiques concretes. Grace a cette interface, PIGAL peut
étre adapté aux derniers développements de logiciels graphiques sans
que le code d’application ait besoin d’étre changé.

L’interface contient autant de procédures que de macroprimitives
possibles :

DSLINE (pour Ligne)
DSSURF (pour Surface)
DSMARK (pour Marqueur)
DSTEXT (pour Texte)
DSHIST (pour Axe d’histogramme)
DSHEL (pour Hélice)
[ 2N 2N J

et une série de procédures permettant de changer les attributs graphiques

GMODL (changer les attributs graphiques de Ligne)
GMODM (pour Marqueur)
GMODS (pour Surface)
GMODT (pour Axe d’histogramme)
GMODH (pour Hélice)
e o0

Couche 3 : Module graphique de PIGAL

Le module graphique est la derniére couche avant d’accéder a la
bibliotheéque graphique. Il gére un ensemble de structures de données
graphiques concernant les objets représentables, ainsi que leurs relations
avec l'entité originale (ex. tpco). Ces relations permettent de manipuler
I'image graphique.

Quand l'on pointe un segment sur I'écran avec la souris, l'information

saisie peut remonter directement jusqu’a 'analyseur grammatical. Celui-
ci traduit l'information en une sélection formelle, qui fait référence a

45




I'objet pointé. Lorsque un objet complexe est concerné, cette traduction fait
intervenir la relation entre objet complexe et objet représentable, décrite
dans la section de la base de faits qui représente la structure graphique
hiérachique (page 32).

Couche 4 : bibliothéque graphique

Gréace aux couches 2 et 3 qui séparent le code d’application d’avec les
bibliothéques graphiques, PIGAL a une grande facilité d’adaptation
aux différents produits de logiciels graphiques :

UIS (User Interface Software) de DEC : il fournit un ensemble de
fonctions permettant de piloter les graphiques et les opérations de
fenétrage.

GKS, le standard graphique.

SGR (Structured Graphics Routines) : il permet la création de structures
de données graphiques en mémoire dynamique. Ce systéme cohabite avec
le systétme X-WINDOWS qui assure la gestion des fenétres et des tables
de couleurs de la station VAX. Les deux bibliothéques coopérent pour
offrir des services graphiques de haute qualité et notamment un
graphisme en trois dimensions trés performant.

Sélection d’entités sur critéres multiples et recherche

de relation

indirecte entre entités

Les objets a représenter peuvent étre sélectionnés selon :

un attribut, par exemple pour sélectionner les traces ayant une impulsion
supérieure a10GeV/C, on tape la commande :

tracks momentum>10

une relation, par exemple pour sélectionner les cellules du calorimetre
électromagnétique qui sont dans la méme cluster, on tape la commande :

esda in eclu

critéres multiples, par exemple pour sélectionner les traces ayant une

46




impulsion supérieure & 10GeV/C et n’étant associées avec aucune cellule
du calorimetre électromagnétique (Ecal storey data), on tape la
commande:

tracks momentum>10 without calobject

et pour sélectionner les traces ayant une impulsion supérieure 2 10GeV /C
_ et portant une charge positive, on tape la commande :

tracks momentum>10 and charge>0

relation indirecte, par exemple pour sélectionner les clusters chargés, on
tape la commande

cluster with track

puisque cluster et track n‘ont pas de relation directe, le programme
propose un chemin possible. Lorsque utilisateur a accepté le chemin
proposé, la sélection indirecte est remplacée, pour I'exécution, par une
sélection explicite, mettant en jeu le chemin et l'entité concernée. Dans
cet exemple, c’est Ientité erl3 qui fait la liaison entre ces deux entités
originales, donc la commande devient

cluster with erl3 in track

attribut indirect, par exemple pour sélectionner sur un attribut qui n’est
pas l'attribut de V’entité choisie,

cluster momentum>4

otimomentum n’est pas un attribut de cluster, le programme cherche les
entités ayant une relation avec cluster et possédant un attribut
momentum. Avec le méme mécanisme que dans I'exemple précédent la
commande devient

cluster with erl3 in track momentum>4

Relations entre entités

Les données &’ ALEPH sont organisées dans la cadre du modele Entité-
Association, comme décrit dans le chapitre 2. La relation entre entités
est soit un-a-plusieurs, soit plusieurs-a-un. Dans I'exemple de la Fig.7,
la double fleche signifie une relation plusieurs-d-un. Le support de la
relation est toujours situé du coté plusieurs, par exemple la relation
esda-eclu est représentée dans V'entité esda par la neuviéme colonne
(voir la Fig.10, page 33). Si la relation réelle entre deux entités est

47




plusieurs-a-plusieurs, qui n’est pas permise par ADAMO, une entité
intermédiaire est créée qui porte une relation plusieurs-d-un a chaque
entité originale [16]. Par exemple un cluster de ECAL peut étre touché
par plusieurs traces, et une trace peut traverser plusieurs clusters, donc
leur relation est plusieurs-a-plusieurs, ce qui ne correspond pas au
modele ’ADAMO. On utilise I’entité erl3 pour transformer cette
relation en deux relations plusieurs-a-un.

PIGAL utilise deux termes in et with pour décrire la relation plusieurs-
a-un selon qu’elle suit la fléeche dans I'un ou I’autre sens, par exemple un
cluster comporte plusieurs cellules, on peut donc dire :

esda in eclu ou eclu with esda

Les sélections complexes peuvent étre effectuées a partir de 4 familles
d’opérations élémentaires in, out, with, without. Grace & ce mécanisme,
on peut utiliser des commandes comportant une série de sélections. Par
exemple pour 'opération : “ imprimer toute trace associée & un bloc de
cellules du calorimeétre, dont 'une au moins a une énergie supérieure a
500 Mev et dont I'angle théta est plus grand que 0.3 radians”, on tape la
commande '

Print tracks with clusters with cells energy>0.5 and
theta>.3

Niveau PROLOG

Apres l'analyse de la commande, le programme PROLOG appelle dans
Yordre adéquat les subroutines de la bibliothéque SELTAB en utilisant
les bons arguments. '

Dans le cas d’une relation indirecte, le programme doit exploiter le
dictionnaire DDL pour chercher le chemin permettant d’expliciter la
relation entre deux entités. Ce mécanisme de “navigation” fait appel &
deux éléments fondamentaux du langage PROLOG : unification et
récursivité (voir I’Annexe 3). L'idée principale se trouve dans la Fig.17.

48




régle
regle

régle
régle

reégle
régle
régle

W W

~ oy Lt

chemin(a,b,c,1l) -> relation(a,b,c}):

chemin(a,b,cl.x.c2,1l) -> relation(a,x,cl)
hors(x,1)
chemin(x,b,c2,x.1);

relation(a,b,in) -> attribut(a,b,3,x);
relation(a,b,with) -> attribut(b,a,3,x);

hors(x,nil) ->;
hors(x,x.l) -> impasse;
hors(x,y.1l) -> dif(x,y)hors(x, 1),

Fig. 17 Un exemple en PROLOG pour la recherche des relations indirectes entre
entités. lci a, b, x sont les variables instanciées par le nom d'entité.
“chemin(a,b,c,l)” est réussi s'il existe une relation entre a et b
“chemin(a,b,c1.x.c2,!) est réussi s'il existe une relation entre a et x et

Regle 1 :
Regle 2 :

si “chemin(x,b,c2,x.1)" est réussi. C'est une régle récursive qui va
verifier s'il existe une relation entre x et b, ainsi de suite. Dans cette
régle, | est une liste contenant les entités déja examinées, le terme
“hors(x,l) verifie que x ne fait pas partie de la liste I, ce qui evite une

recherche en boucle sans fin.

Recherche de relation au niveau FORTRAN -
Bibliothéque SELTAB

L’ensemble des subroutines de SELTAB travaille sur une table de deux
colonnes dite sélecteur. La Fig.18 donne un exemple de sélection. Le
sélecteur porte en premire colonne les numéros de ligne de l'entité a
sélectionner, en deuxiéme colonne les numéros de ligne de Ventité
référenciée. Dans cet exemple, esda est I'entité qu’on sélectionne et eclu
est I’entité référenciée. En téte de chaque colonne figure le nom de
I'entité correspondante.

Une fois le sélecteur formé, sous le nom de dsel, il devient la base de
toutes les opérations suivantes : draw, print, histogram, erase, etc.

Ce sélecteur est utilisé a la fois en entrée et en sortie par chacune des
subroutines de SELTAB. Ceci permet d’effectuer des sélections successives
sur la méme entité.

49




Exemple de sélection: esda in eclu humber=1
(sélectionner tous les ESDA dans ECLU numéro 1)

Structure physique de bloc de cellules ECLU

T B [
| 6.

5
ECLU ECLU ECLU
numéro 1 numéro 2 numéro 3

Relation entre les entités "esda" et "eclu”

entité esda entité eclu
(entité & sélectionner) (entité référenciée)

—

[ — 3

[FAR S B

L-eclu 1D

o N S

1
2
1
3
1
3
esda IDJ Lrelation avec eclu

Procédure de la sélection

1. créer le sélecteur dsel 2. "esda in eclu” 3. "number = 1"
esda esda esda eclu esda eclu
1 1 1 1 q=-=-==~-4 -1 1
2 2 2 2 -4-3 1
3 13 |==P 3 | 1 Jr=Pl.5 |
4 4 4 3 Pk - 7
5 5 5 1 -
6 6 6 3

Fig. 18 Le mécanisme de la sélection : .
partie 1 : Structure physique de bloc de cellules “ECLU" - chaque “ECLU" contient un certain
nombre de cellules “ESDA" _
partie 2 : Organisation des données - les données de ESDA et de ECLU sont classées dans deux
. entités esda et eclu. L'entité esda contient la relation avec I'entité eclu, par ex.
“esda” 3 est dans “eclu” 1, “esda” 4 est dans “eclu” 3 ...
partie 3 : Procédure de la sélection - fabrication du sélecteur
1. créer un sélecteur nommé “dsel” avec deux colonnes, les remplir par
I'identificateur de I'entité esda
2. quand on effectue “esda in eclu”, la deuxiéme colonne est remplacée par la colonne
de relation située dans I'entité esda
3. effectuer “number=1", séiectionner sur la colonne “eclu” les lignes dont le contenu
est 1
Le selecteur dsel contient bien les celiules 1, 3, 5, qui correspondent au premier agrégat.

50

S




Les principales subroutines de sélection sont :

¢ SELTAB, qui effectue les conditions >, <, =, par exemple

momentum>5

e SELIN, qui gere la relation in, par exemple

esda in eclu

e SELWITH, qui gere la relation with, c’estle sens inverse dein,
par exemple '

track with vertex

Quelques subroutines supplémentaires permettent d’initialiser le
sélecteur, de manipuler une pile de sélection pour résoudre les probléemes
liés au parenthésage dans les expressions. Les sélections exclusives:
without, out sont aussi possibles.

Reconstruction interactive

PIGAL est congu pour s’adapter a un ficher du type POT (DST) qui est la
sortie de JULIA, aussi bien qu’aux données brutes. Dans le second cas, le
systéme peut accepter des commandes faisant référence a certaines
entités élementaires inexistantes (par exemple des traces) et les
reconstruire si besoins avant I'exécution des commandes. Ceci s'appele
“reconstruction interactive”.

Réalisation

Lors de la lecture d’un événement, un examen des diverses entités
présentes est effectué. Les noms des entités présentes sont mémorisés au
moyen de larégle de PROLOG assert,ex.

entite-possible (x)
fortran (depres,x.l.nil,y.z.nil)
eq(z,1)

assert (entite-presente (x) ,nil);

ici la subroutine DEPRES vérifie si I’entité x existe. Si z=1 (x existe), le

51




programme ajoute une régle

entite-presente (x)

dans la base de connaissances qu’il pourra utiliser ultérieurement.
Pendant l'exécution, lorsqu’une action doit étre effectuée sur une entité
non-existante, cette entité peut étre reconstruite dynamiquement en
appelant les subroutines nécessaires de JULIA. Par exemple I'entité tpco
(coordonnées du damier de TPC) ne se trouve pas directement dans le
fichier de données, il faut la reconstruire avant de dessiner.

Les connaissances sur le programme de reconstruction sont regroupées sous
forme de régle de différents niveaux (la Fig.19) et de la forme :

module (entités d’entrée,entités de sortie,nom de routine)
qui contient trois types d’information :

* une liste des entités d’entrées de cette procédure
* une liste des entités créées par la procédure
* le nom d’une procédure de JULIA

event-module (esda.etpl.nil,erl3.eclu.nil,ecfclu) ->;
event-module (hsda.nil,hclu.nil,hcfclu) ->;
event-module (eclu.nil, ebos.ecob.nil,ecfobj) ->;
event-module (eclu.erl3.nil,eidt.nil,elecid) ->;
event-module (ecob.hclu.etrx.nil, crl3.calo.nil, echecgl) ->;
event-module (nil, esda.nil, epreda) ->;
event-module (nil, hsda.nil, hpreda) ->;

event-module(nil, phst.nil, hpreda) ->;

run-module(nil,nil,einiru) ->;
run-module(nil,nil,hiniru) ->;
run-module (nil,eslo.nil, deeslo) ->;
run-module (nil,hslo.nil, crhslo) ->;

job-module(nil,nil,einijo) ->;
job-module(nil,nil, hinijo) ->;
job-module (nil,nil,cinijo) ->;

Fig. 19 Les connaissances sur le programme de reconstruction JULIA sont groupées sous forme
de module de 3 niveaux : event (exécuter une fois par chaque événement), run (exécuter une fois .
par chaque run), job (exécuter une fois par chaque job).

52




Supposons que la base de faits sur JULIA soit :

regle 1: module (objl.obj2.0bj3.nil,obj4.0bj5.nil, subl)
regle 2: module ( obij7.nil, ob3j3.nil, sub2)
régle 3: module { nil,objl.obj2.nil, sub3)
regle 4: module ( nil, obj7.nil, sub4)

- Le mécanisme de recherche d’une entité est presenté dans I’exemple

suivant, pour une commande

draw obij5

PIGAL effectue une recherche de obj5 par les étapes suivantes :

Action

Résultat

Vérifier les entités existantes

obj5absente

Chercher obj5dans les listes
d’entité produites

Trouve obj5dans la régle 1

Verifier la liste des entités
d’entrée du module

‘Trouve objl,0bj2,0bj3 [qui doivent
exister avant obj5]

Chercher objldans les listes
d’entités produites

. Trouve objldans la régle 3,
la liste des entités d’entrée du
module est vide (régle 3). Donc
objl est évaluable par appel a
sub3.

Appeler sub3

produire obj1,0bj2

Chercher obj3

Trouve la régle 2

Chercher obj7

Trouve la régle 4, la liste des
entités d’entrée du module est
vide (régle 4)

~ Appeler subd

produire obj7

53




Appeler sub2 Produire obj3

Appeler subl produire obj5

On trouvera Fig.20 une partie de DFD (Diagramme de flux de données)
concernant la reconstruction de I'entité eclu et les régles PROLOG
correspondantes.

Diagramme de flux de données

~etdi

epreda

esda
/f rft‘fetp1
: eclu
Régles PROLOG
régle -1 module (epreda, etdi.nil, esda.nil) =->;
régle 2 module (ecfclu, esda.etpl.nil, eclu.nil) ->;

régle 3 module (eprtpc, frft.nil, etpl.nil) ->;

Fig. 20 L'exemple de ia reconstruction interactive
en haut : une partie de DFD présentant le processus de la reconstruction de I'entité ECLU
en bas : les trois régles de PROLOG assurant ce travail. ECLU est I'entité de sortie de la régle
2 qui a besoin des entités ESDA et ETP1 comme arguments d'entrée. ESDA et ETP1 sont les
entités de sortie de la régles 1 et 3 respectivement. Donc les séquences d'exécutions
décidées par PROLOG sont : appel & EPREDA, puis appel &8 EPRTPC, et en fin appel 4 ECFCLU.
Le traitement est contr6lé par les opérations : une opération n'est effectuée que lorsque son
résultat est nécessaire a une autre opération. :

54




Manipulation interactive d’histogramme

Depuis trés longtemps les physiciens du CERN manipulent les
histogrammes de fagon non interactive, au moyen du logiciel HBOOK
[31]:

call hbookl (id, chtitl, nx, xmi, xma, vmx)
call hbook2 (id,chtitl, nx, xmi, xma,ny,ymi, yma, vmx)
call hfill(id, x,vy,weight)

Depuis deux ans on utilise PAW [24], un systéme interactif qui gére les
opérations de HBOOK et permet la représentation d’histogramme sur
différentes stations graphiques. L’utilisateur peut manipuler des
histogrammes par menu ou par commande:

paw> h/create/ldhisto id title ncx xmin xmax
paw> h/create/2dhisto id title ncx xmin xmax ncy ymin

ymax
paw> v/hfill vname id

Au niveau de la création et du remplissage il n’a pas de changement
essentiel par rapport 8 HBOOK, c’est a dire que le remplissage n'est pas
automatique, l'utilisateur doit préparer les données dans un vecteur
avant I'appel aux procédures de HBOOK. De plus, PAW possede sa
propre structure de données (N-tuples) qui ne posséde pas la richesse des
systémes comme ADAMO ou BOS, adaptés a la manipulation des
événements de physique des particules. Avant d’utiliser PAW il est donc
nécessaire de préparer les données.

PIGAL essaye d’améliorer ces deux points, il permet de

o créer les histogrammes interactivement en utilisant les noms
mnémoniques des quantités physiques

¢ remplir les histogrammes automatiquement.

La syntaxe de commande d’histogramme est :

histogram[/qualifiers] attribute [versus attribute] of

" object

La création et le remplissage des histogrammes sont simultanés. Quelque

55




exemples sont listés ici :

Histogramme pour un seul événement : pour créer et remplir un
histogramme représentant I'énergie des cellules du calorimetre
électromagnétique, on utilise

histogram energy of esda

pour créer et remplir un histogramme représentant I'angle théta des
cellules du calorimetre électromagnétique affecté d'un poids energy, on
utilise

histogram/wei=energy theta of esda

pour créer et remplir un histogramme & deux dimensions, on utilise

histogram energy versus phi of esda

Histogramme sur plusieurs événements

macro mev _ (déclaration de la macro mev)
loop ( boucler sur tous les événements
d’un fichier de données d’ ALEPH)
histogram/id=100 number of track
(remplir un histogramme du
nombre de traces de chaque

événement)
_xgetev (lire le prochain événement)
endloop (fin de la boucle)
endmacro (fin de la macro mev)

L'image de I'histogramme (effectuée sur un seul événement) permet
ensuite de manipuler I'événement par pointage avec la souris, par
exemple (Fig.21) : supposons que I'utilisateur ait déja créé un
histogramme ayant pour identificateur ID=10

commande: draw/win=2 hist id=10
opération : dessiner sur la deuxiéme fenétre cet histogramme
commande: draw/win=1/col=red track in range pick

opération : ¢ demande deux opérations de pick sur 'histogramme pour
sélectionner une zone
* représente en couleur rouge les traces track qui sont
représentées dans la zone indiquée.

56




I==8 GKS_WINDQW_2 I KB |

20 - HECOK D = 10, TEST, ENTRIES = 132, H Vel = 2.489. RMS = 1.28;
16 P~
12—
i
GKS__WINDOW_1 8T
4 [

~N g W llﬂl ll!l'lﬂf-lﬂjﬂllf!:,]
1 3.2\ 5.':5\ 7.25 10.14 12.42

Fig. 21 Manipulation de la représentation de I'événement par I'histogramme.

C’est un écran issu des commandes suivantes :
draw track momentumsi (représenter les traces avec la condition imposée)
histogram/id=10/cht="test/nx=100 momentum of track

’ (créer et remplir I'histogramme par impulsion de traces)
draw/win=2 hist id=10 (représenter I'histogramme dans la fenétre 2)
draw/win=1/colzred track in range pick

(On demande une représentation de trace avec les conditions imposées par “in range pick”.

Ce qui implique deux opérations de pick sur I'histogramme dessiné dans la fenétre 2
pour sélectionner le minimum et le maximum des impulsions. Ensuite PIGAL représente
en couleur rouge les traces dont I'impulsion est représentée dans cette zone.)




Réalisation

Dans PIGAL, les histogrammes sont incorporés dans le modéle ER, les
informations sont organisées en trois entités internes hist, dbin et pick
(voir la section 1 de la Fig.22) :

I'entité hist contient les informations concernant la structure de tous les
histogrammes existants dans HBOOK & un moment donné
(identificateur, titre de 1’histogramme, poids, etc.)

chaque ligne de I'entité dbin contient la valeur d’un canal de
I’histogramme choisi.

L’entité pick permet de mettre en relation I'histogramme et 1’objet qu’il
représente (par ex. la trace). '

Un module d’histogramme manipule ces trois entités et les met en
relation avec HBOOK. Les entités hist et dbin sont ensuite transmises
comme des entités élémentaires et peuvent étre dessinées par le
programme graphique.

Les créations et les emplois de ces trois entités internes sont décrits
ci-dessous.

Création et remplissage d’un histogramme

Apres l'analyse de la commande, le programme PROLOG fait appel au
module d’histogramme qui crée et remplit I'histogramme. Ce module
regoit le nom de 'entité, les noms des attributs, leurs types, ainsi que
Vinformation de poids éventuelle, par exemple, la commande

histogram/weight=energy theta of esda

crée et remplit un histogramme représentant I’angle theta des cellules
du calorimetre électromagnétique affecté d'un poids energy. Energyest
un attribut de l’entité esda. '

Avec cet ensemble d’informations, le module d’histogramme fait une
boucle sur les lignes de I'entité choisies par le sélecteur dsel (page 49),
avec ou sans poids, remplit I’histogramme en appelant les procédures de
HBOOK.

58




Une fois I'histogramme construit, toutes les informations numériques sont
stockées dans les variables internes de HBOOK. Le module
d’histogramme ne garde, dans I’entité pick, qu'un descripteur interne
contenant les informations concernant l'identificateur de I'histogramme,
le nom de ’entité histogrammée et les attributs choisis. Par exemple
pour lacommande

histogram/id=100 energy of esda

les informations gardées dans le module d’histogramme sont
I'identificateur 100, le nom de l'entité esda et 1’attribut energy avec son

type.

Représentation d’un histogramme

Le module d’histogramme récupére les informations numériques dans
HBOOK au moment ot l'utilisateur le demande, par exemple

draw hist id=100
Le module d’histogramme travaille étape par étape :

créer les entités hist et dbin ( 'il s’agit de la premiére commande
concernant I’histogramme)

obtenir les informations a l'aide de procédures de HBOOK
transmettre ces informations dans les entités hist et dbin

Ces deux entités sont ensuite dessinées par le programme graphique.

Relation entre la représentation de I’événement et la
représentation de I’histogramme

Dans le dessin d’histogramme, chaque canal est représenté par un
polyline mis en relation avec un segment graphique. Quand l'on pointe
un canal (voir la section 2 de la Fig.22), le programme utilise I'entité
dbin pour trouver l'identificateur de I’histogramme et la valeur du
canal, et lentité pick pour trouver le nom d’entité (par ex. “track” en
Fig.21) et les noms des attributs (par ex. “momentum”). Les informations
trouvées sont transmises au programme principal. Celui-ci forme une

59




nouvelle commande avec une sélection précise.

C’est ainsi que la commande typique :

draw track in range pick

peut étre traduite en

draw track a>momentum and momentum<b

ol a et b sontles valeurs minimales et maximales déterminées par
pointage avec la souris. Cette commande sera a son tour soumise &
I'analyse et exécutée (voir la Fig.21, page 57).

60




Les structures des entités internes du package d‘histogramme

Entités graphiques Entités graphiques

EI.‘ PICK

HIST HID
Dimension

First entity name
Attribut number
Attribut type
Second entity name
Attribut number
Attribut type

DBIN

HID

Value
Channef |
Channel J

Value # 0

- EREEEETE

L'utilisation des entités internes pour l'opération de "in range pick"

Commands pour
représenter un histogramme

PROLOG
6,
'
T
PICK [ W1
& HID == v Opérations de Pick

information utilisée par

PROLOG pour construire Entity
une nouvelle commande Att #
AtiTypdg

Fig. 22 Les structures de données internes du module d'histogramme.
en haut : Structure de trois principales entités internes utilisées par le module d’histogramme de
PIGAL. Derridre les entités dessinables (HIST, DBIN) sont figurées les entités graphiques
utilisées par le module graphique de PIGAL (page 45) ’ -
en bas : Séquence des opérations de la fonction “in range pick”; les ordres sont :
1. créer et remplir HIST et DBIN, créer et remplir les entités graphiques correspondantes
2. représenter I'histogramme en utilisant ies informations stockées dans les entités
graphiques
3. l'opérateur effectue deux “pick” sur I'image de I'histogramme. pour sélectionner une
zone
4. trouver dans l'entité DBIN l'identificateur de cet histogramme, et les valeurs des bins
5. trouver dans l'entité PICK le nom de l'entité (track pour I'exemple de Fig.21) ainsi que
I'attribut original (momentum) de cet histogramme
6. le nom de l'entité, le numéro de I'attribut, le type de I'attribut et les valeurs de deux
bins retournent & PROLOG pour former une nouvelle commande

61




Sélection d’événement et création de répertoire
d’événement '

La sélection peut s’effectuer avec ou sans condition physique.

¢ Sans condition:
Pour lire dans le fichier “zzero.edir” un événement ayant un numéro de
run et un numéro d’événement donnés, on emploie la commande :

xgetev/evt=300/run=4589/fil=’zzero.edir’

¢ Aveccondition: .
L’utilisateur peut classer les événements selon un critere physique de son
choix et créer son propre répertoire d’événements. L’exemple suivant
permet de chercher dans un fichier de données tous les événements
contenant au moins un électron :

macro electron
sevt/dir='electron.edir’
loop
xgetev
sevt track momentum>10 with eidt ippoth=1
endloop
endmacro
ici electron est le nom de la macro, eidt est I’entité d’électrons, ippoth=1
signifie un électron. Donc la condition de sélection est : “chercher les
‘événements qui contiennent au moins un électron dont 'impulsion est
supérieure a 10GeV/C . Les événements sélectionnés sont enregistrés
dans un fichier ‘electron.edir’ et peuvent étre utilisés ultérieurement. La
Fig.23 montre un exemple de cette sorte d’utilisation : un ficher test.edir,
créé par la commande macro slevent (Fig.23a), est utilisé dans la macro
hsevt comme fichier d’entrée pour produire un histogramme (Fig.23b).
Les données sélectionées par test.edir pourraient aussi servir comme
fichier d’entrée d’une sélection ultérieure (Fig.23b).

62




macro slevent
sev/dir="test.edir'

(pot222220.native) loop
Event file xgetev
sevt fkin number>130
endioop
endmacro

SELECT
(slevent

Condition Event directory 1
(fkin number >130) (test.edir)

Fig. 23a La création d'un fichier sélectionné :
“pot222220.native” est le fichier contenant les données reconstruites, “test.edir” est le
répertoire des événements de ce fichier.
4 gauche : la procédure “select” sélectionne les événements avec le critére physique “condition”
et écrit dans le fichier “event directory 1" les informations sur les événements
. satisfaisant & “condition”
4 droite : la macro effectuant cette sélection

xgetev/dir="test.edir’
(pot222220.native) macro hsevt
Event file loop
xgetev
histogram/chi='select-events histo’
Selected events Action /id=10/xmi=120/xma=300
(Histogram) number of fkin
endloop :
Selected events endmacro

Event directory 1

(test.edir) !

Condition

Event directory 2

Fig. 23b L'utilisation du fichier sélectionné :
a gauche : la procédure “get event” lit les événements en se référant & “event directory1”, les
événements sélectionnés peuvent étre utilisés directement par “action”, ou utilisés

comme la source de ia procédure “sélect” pour une sélection supplémentaire
4 droite : la macro effectuant ce travall :

63




Réalisation

La base de ce mécanisme est le sélecteur dsel. Un événement satisfait a
certaines conditions, si dsel contient au moins une ligne (page 49). Un
ensemble de subroutines réalise cette fonction. On crée ainsi un répertoire
d’événements dans lequel sont écrites les références des événements (nom
de fichier original, numéro d’événement, numéro de run , index
d’événement) satisfaisant aux conditions de sélection.

3.4 Commentaire

L'utilisateur dispose d’une vue compléte d’un événement : la
représentation d’événement, les données, les relations entre objets, la
représentation statistique (histogrammes), etc. '

Certains points faibles du systéme ont été remarqués pendant le
développement et la maintenance :

* Le systeme utilise le logiciel de reconstruction (JULIA) pour ac¢éder aux
événements et pour effectuer la reconstruction interactive. Vu que JULIA
lui-méme est un systéme en évolution, I'intégration de JULIA dans
PIGAL cause des difficultés certaines dans la maintenance du logiciel.

- De plus en plus de subroutines FORTRAN ont été ajoutées pour la
représentation d’événement, le systéme est devenu gros et compliqué.

e L'utilisateur a besoin de quelques fonctionnalités nouvelles : la
représentation d’histogramme bidimensionnel en graphique 3D, la
représentation des triggers d’ALEPH (TPC, ITC, ECAL, HCAL...),
I'intégration de certaines fonctions du progiciel d’analyse physique
d’ALEPH. Par ailleurs il existe des outils qui correspondent exactement
a ces besoins, par exemple PAW pour la manipulation d’histogrammes et
TRIGGER_DISPLAY développé dans le groupe de on-line d’ALEPH. Les
deux systemes ont été développés dans leur propres contextes, utilisant
notamment des ressources différentes. PIGAL n’a pas le moyen d’en
profiter puisque les trois programmes ne sont pas homogeénes.

64




Pour qu’un systéme d’analyse interactive soit bien bati, on a besoin d’une
nouvelle conception pour :

e faciliter la maintenance du systeme
e intégrer les logiciels hétérogénes

- C’est le point de départ d’un nouveau systéme basé sur une architecture
répartie, qui sera décrit dans le prochain chapitre.

65







Chapitre 4

Une architecture répartie pour PIGAL

PIGAL permet d’accéder aux événements de différentes fagons : la
représentation graphique, les données, les relations entre objets, les
histogrammes, etc. Le systéme est flexible, facile & utiliser. Mais il
mangque certaines fonctions nécessaires a une analyse physique complete.
Pour répondre a ce besoin, certains logiciels développés séparément ont
été considérés malgrés les problémes d’incompatibilité (page 64).

C’est cette situation qui justifie de donner au systéme une architecture
répartie. Celle-ci est maintenant réalisée dans le prototype présenté
dans ce chapitre.

En plus des fonctionnalités déja présentes, une telle architecture a
permis d’intégrer la représentation de triggers, la représentation
statistique des données, etc. L’environnement est réparti sur plusieurs
processeurs et fournit l'interface multiple avec I'utilisateur.

Ce travail démontre la faisabilité d’utilisation de techniques
_distribuées dans cette domaine.

Dans les sections suivantes, quelques notions élémentaires sur le réseau

d’ordinateurs, la communication et les systémes distribués seront
présentées, suivies par la description du prototype.

67




4.1 Notion générale du systéme réparti 33343

Un systéme réparti est une application composée de plusieurs sous-
ensembles qui sont distribués sur un réseau d’ordinateurs. Pour
caractériser un tel systéme, il faut décrire comment les ordinateurs sont
mis en réseaux.

Réseau d’ordinateurs et Protocoles de communication

Un réseau d’ordinateurs est un ensemble d’ordinateurs et de terminaux
reliés par des lignes de communication. L'utilisateur peut accéder a un
réseau et partager avec d’autres utilisateurs les ressources matérielles ou
logicielles : machines, périphériques, bases de données, etc.

On classe un réseau d’ordinateurs, selon la zone géographique qu'il
couvre, en deux catégories : réseau local (LAN - Local Area Networks) et
réseau a longue distance (WAN - Wide Area Networks). Un LAN est
souvent décrit comme un réseau privé qui fournit une communication a
haute vitesse. Le LAN le plus courant est Ethernet [54], utilisé largement
dans LEP et ALEPH. Le débit maximal théorique d’Ethernet est de

10 Mégabit/seconde.

Les réseaux d’ordinateurs utilisent différents protocoles de
communication. Un protocole est un ensemble de régles respectées par tous
les composants du réseau pendant la communication, pér ex. comment
établir une communication, comment tester si I'information est transmise
correctement, comment corriger les erreurs de transmission, comment
rétablir la communication aprés une interruption, etc. Dans ce domaine,
de plus en plus de constructeurs utilisent un modele en 7 couches :

ISO/OSI (International Standards Organization/Open System
Interconnection). Ce modgle divise le probléme de communication en 7
niveaux :

7 Application
' 6 Présentation
5 Session

4 Transport

68




3 Réseau
2 Liaison
1 Physique

en définissant un protocole pour chaque niveau. L’ensemble des protocoles
(surtout les couches 1-4) garantit la communication et la coopération
entre composants de réseau. Avec cette base, on construit les différentes
applications.

Application répartie

Deux définitions sont utiles pour caractériser un systéme distribué.

e Matériel réparti :
Une architecture répartie se compose de plusieurs processeurs autonomes.
Entre eux il n’y a pas de mémoire partagée. Les processeurs coopérent a
travers des réseaux de communication.

» Logiciel distribué
Un logiciel distribué se compose de plusieur processus qui communicuent
par I'échange de messages.

Les objectifs d’un systéme distribué sont :

1 diminuerle temps de calcul en utilisant le parallélisme

2 construire des applications intrinséquement distribuées, par ex. systeme
de courier éléctronique.

3 assurer le fonctionnement du systéme en cas de probléme de matériel ou
de logiciel. L’arrét d’'une partie du systéme n’entraine pas '
nécessairement 'arrét de la totalité du systeme.

4 réaliser des applications qui utilisent des services spéciaux. Chaque
service peut utiliser un ou plusieur processeurs spécialisés pour obtenir
bonne performance et fiabilité. Si une nouvelle fonction doit étre ajoutée
ou si une fonction existante a besoin d’une puissance supérieure de calcul,
il est facile d’ajouter de nouveaux processeurs.

5 diminuerle temps de développement d’un grand systéme en utilisant des
modules ou des systémes existants.

Dans le cas de PIGAL, l'intérét actuel porte sur les trois dernieres
sections.

69




4.2 Programmation distribuée

Les applications réparties sont réalisées a 1'aide de la méthode de la
programmation distribuée. La différence entre la programmation
distribuée et la programmation centralisée est décrite ici, la notion de
RPC (Remote Procedure Call) [36] - un modeéle de communication choisi
pour le prototype est aussi presentée.

La programmation distribuée se distingue de la programmation
centralisée par trois points :

¢ l'utilisation de processeurs multiples
* la coopération entre processeurs
* la possibilité de détecter et de récupérer les erreurs du systéme

L’utilisation de processeurs multiples

Le systéme se compose de différents sous-ensembles qui s’exécutent en
parallele sur des processeurs différents. La répartition des programmes
est soit transparente, définie par le compilateur et par la bibliotheque
d’exécution du langage, soit programmable, sous controle de l'utilisateur.

La coopération entre processus

La coopération demande deux types d’interaction : communication et
synchronisation. La communication entre processus se divise en deux
catégories : passage de message et partage de données.

Passage de message : modéle pour une
communication point-a-point

La communication met en jeu deux programmes nommés “Emetteur” et
“Récepteur”. L'Emetteur initialise I'interaction par envoi de message ou
par appel & une procédure a distance. Le Récepteur regoit la demande
d’une maniére soit explicite soit implicite. La maniére explicite permet

70




au Récepteur de recevoir le message conditionnellement. Le Récepteur a
le droit de refuser une requéte, par ex. un serveur de fichier peut refuser
une requéte “ouvrir un fichier” si ce fichier est verrouillé. La mani¢re
implicite est absolue, c’est-2-dire que le message est recu sans condition,
le code d’exécution est appelé automatiquement.

~ Cemode de communication est dit monodirectionnel. Certaines
applications ont besoin de communication bidirectionnelle, surtout pour
des applications ayant un modele client/serveur. Le client demande un
service au serveur et attend le résultat renvoyé par ce dernier. La Fig.24
montre les differentes configurations de ce modéle. On utilise
couramment deux types de communication bidirectionnelle : le
mécanisme de rendez-vous[33] et le mécanisme de RPC (remote procedure
call) [36.37.38.39]. Ce dernier mécanisme est choisi pour réaliser le
prototype.

En utilisant RPC, utilisateur a I'impression d’effectuer un appel
normal & une sous-procédure, mais en fait le programme appelant
(Local) et la procédure appelée (Distance) résident eventuellement dans
deux processeurs différents. Quand un appel RPC est évoqué, le
programme L est suspendu, un message contenant les arguments d’entrée .
est construit et envoyé a D. La procédure D exécute la requéte et renvoie
les arguments de sortie mis dans un message & L. RPC est une interaction
synchrone. Le programme L doit attendre jusqu’au moment ot il est str
que le message est bien arrivé a son partenaire D. Ensuite, L et D peuvent
travailler soit en mode séquentiel soit en mode concurrent. L’acceptation
d’un appel RPC est implicite dans la plupart de cas. La réception est
sans condition.

Partage de données : modele de
communication entre plusieurs processus

Les données sont accessibles par plusieurs programmes, tout se passe
comme il s'agissait d"une mémoire commune & tous les processus. En
fait, c’est le systéme d’exécution qui diffuse les données communes entre
processus. Une couche de logiciel réalise la liaison entre le programme
d’application qui a besoin de données partagées et les processeurs
physiquement distribués qui n’ont pas de mémoire partagée.

71




@
(A) . (B)

client 1
serveur 2

Fig. 24 un modéle Client/Serveur de communication bidirectionnelle :

(A) un client accéde & plusieurs serveurs

(B) plusieurs clients accédent & un seul serveur

(C) client 1 demande des services & serveur 1 qui utilise (comme client 2) certaines
procédures situées en client 1 (comme serveur 2)

(D) client 1 demande des services & serveur 1 qui utilise (comme client 2) des

procédures de serveur 2

La possibilité de détecter les erreurs et de récupérer
le systéme en cas de défaillance partielle

11 existe trois méthodes pour traiter les incidents :

¢ Transaction atomique :
Une application répartie consiste en plusieurs processus travaillant
souvent sur un méme objet ( base des données, fichier partagé...). Pour
garantir la cohérence de cet objet, on groupe certaines opérations
ensemble en une transaction atomique. Une transaction est indivisible,
elle est réussie si et seulement si chaque opération concernée est réussie.

72




Si un incident se produit (un processeur est tombé en panne, par exemple)
‘pendant la transaction, les opérations concernées ont le moyen de
retourner a leur état initial, comme si rien ne §’était passé. Cette
propriété s’appele récupérabilité. ‘

¢ Tolérance transparente :
La sécurité du systéme est garantie par sa configuration. Elle est réalisée
au niveau du systéme d’exploitation, par ex. deux processus identiques
s’exécutent sur deux processeurs qui commutent automatiquement en cas de
panne d’un processeur, ou bien un processeur central collectionne
périodiquement les messages et les états de chaque processus utilisés
pour la récupération. '

* Programmation tolérante aux erreurs :
le programme d’application surveille les processus détachés et récupere
les erreurs en cas de problemes.

4.3 Vue générale du prototype

Le systeme précédent (chapitre 3) a été divisé en plusieurs parties afin
de pouvoir étre réparti dans un réseau d’ordinateurs. Il ny a pas
beaucoup de changement du point de vue de l'utilisation, le systeme
garde toutes les fonctionnalités d’origine. Par contre la représentation de
triggers et la représentation statistique des données ont pu étre ajoutées.

Toutes les fonctionnalités du programme sont regroupées dans 5 Serveurs
qui portent les noms suivants :

Serveur _Graphique : représeﬁtation d’événement en graphique 3D
Serveur_JULIA : support de données '
Serveur_Histo : production d’histogrammes

Serveur_PAW : représentation d’histogrammes en graphique 2D ou 3D
Serveur_Trigger : représentation de triggers d’ALEPH

‘Pendant la phase d'initialisation du systéme, 'utilisateur peut placer
dynamiquement les Serveurs sur les processeurs de son choix, par exemple
I'on pourrait placer tous les Serveurs dans le méme processeur (pour

73




faciliter le développement) ou alors les distribuer dans différents
processeurs afin d’optimiser 1'efficacité des Serveurs. En général,
I'interface avec I'utilisateur sera regroupée sur un ou plusieurs écrans.

La Fig.25 est un exemple typique montrant les écrans de contrdle de cette
sorte d’application. Elle représente trois écrans appartenant & une méme
session.

Au début de la session, l'utilisateur place les Serveurs désirés sur trois
stations graphiques respectivement :

¢ Serveur_JULIA, Serveur_Graphique et Client résident dans le méme
processeur (Fig.25a)

* Serveur_Trigger fonctionne dans un processeur séparé (Fig.25b)

¢ Serveur_PAW fonctionne dans un troisieme processeur (Fig.25¢)

Le démarrage du systéme se réalise au fur et a mesure des besoins de
V'utilisateur. Un Serveur est créé uniquement a la premiére demande d'un
service qui en dépend. Donc les Serveurs dont aucun service n’est utilisé
pendant la session ne sont pas chargés en mémoire. Ceci confére au
systéme un maximum d’efficacité et de rapidité .

74




JeAleg olydels), 1@ MOPUIM, 1eAl8S YITNM, Senguej se|) sinealas xnap (. Jeuiuwe)
selles 00ZLA, ©N1eua) B|) 1UBID UN : UOHEIS 818D INS JUBINOHXD,S snsseooud sjo1y (| uesnl] ) e
adAjoj0id np Inajesiun,p sedepalul sap ejquesus unp ejdwexy g2 “bid

anbiydein neaieg Jed eynpoid 18 JualBusAg | &p abewn, {,MOPUIM

e

l

ONUWNOD U HILNI 35U31d]
: . Ynbe  r- 3A0dxd a1qey
:.LonE::.Nc«xv.Aﬁ%:.00+uooooo.mo.:u:.aou.>cuvv
| 1 6} uojssauadxae, zuly, =1}
. . . Hoyd 2upx AOTTOAz[0D/MQUD
QNUWW0D Y YILIN3 3SV3Td
Napd 2uUPH AOTTRA=T]3/AeIp
. ONUIOD U H3IR3 3534
. ynbg ~-- 304X STqY}
Wueq U aeTnqey aaedaad,,

1
N t
i

-

ZoUY i eTnpow

v.na«:.oo*wooooo.«..:u:.ﬂoo.>cguv i 6y uorssauadis)
U 93U T0D/AQD

ANYLAI0D U HILNT 3SHI g

1096

adA} uoyTielsda0a ARTdEIp-IUGA] Jd3u3
sauranaagqns 3ecadd €1

[RUULIaL SAHAS 00210

ZUIA  -- 3400%0 otaey]
2ZNIN =-- 3jJ40dxe erqe}
1380 -- 340dXe O1qey
2HIA -~ L0dXd S[qe}
2NIY -~ 3j40dxa e1qey
13sg  -- 3dodxe erqey |
sGNeoY 000°'ST SF PISY4 dp3ouden 1eas - PTIULS

e — 9174 woay 3Indup 1ubd sueq |
OTF4 Wody INAUE TALH Hueq
@14 Woudy Induy IALI Mueq |

szz_ . . @T}4 wouaj 3Induy 03dl ueq |
L 2HI i
3e9aC N3G

e ecemmmemceumcremmemereawsmemeesessteemmessasnoennnadl

1!
‘06 = A94eua ‘w*'d ‘*senegy 000°'9T ST PILYI or3euden |
Y 'T'02 . = UOTSI0A-HdITUD UITA PIDONPOLd oW Suypesy |
ed 0007 =@dAj T00¥ = Jaqunu *dx3 '} z Jequnu uny |

SuUTIN0AQNS I86sAd LL
SINILNOUENS IZIWILINY

muda 321I6ILINI

ONIM A2YBILINI

gILHYLS 0°Z HOISUIA GE-TUHISHD
S%9 I2TTYILINI

§08 J2IMVTILINI

{pYLM$ PSAYUW oueu TeoTsAud
ipylmeuwey 0YAIP

PR ppapa R AR A s el 4

¥ dequnu und 96YTeRITUI IZDKZHU_

Uo73}0a[a6 ON

e e A A A e I o s e e

AOpUIt A9as ONNC : = B




186611 "ineAleg ep ueioe|

FuUsTaysInd

‘0

ASW ZET

- Bsaua eq0)
=mgo=u._.‘=_
fiflaua feyo)

Afaoua yeqo)

(4B1y 14610 “wof 15aq) wqeyy

(o1 14bra “ybiy 13a1) egeuy

uojoud pajeros]

a2 ~uoapey pesynae afbuyg

fisaun rwnapefryehdeye afhng

filisaha ay0a10 [edynau 9pbuys
fiBaua *apoare pabiieya oy Suysif
. uony; a7 Buyg|

$R0IS 0§ Wid
sInwn Faoug
S35 Bbaave
(314} saauopyauyes

saverd

(g ues3) 'q

0 = IFUN ejep ndul

yde.ag ydety  2°'7 UOTEUIA - HdS

efeyoed A.13ewoaq Te03

(J0M3) BIWIM I = 0lb

(1013) SuIM0L

SI1H ) Y31
SEI00IS 0 1o}

.saapM §30Tun FBaaual)
saoney sy BBauad

* s:unbs Abitoua]

+ (031} seauapjaupeal |
* S0V 1N xedpl
+$200 43H00 weapy)

SIUTN 40 i)
-SATU04S J0f 431
sadN 31790 BBaauo
saanoy s3p0n Baaus
§3uunds Bbaaua
. (A31) sa3uapjauna
$30U JUTY weap

H_91d

===




device nameWTAS:

physical name_MARVS43SWTRS:

isto.sav

.prologlh

_plot/lego 10

: + dka300: [gian

marvs4

PAW > 2d
PRW >

)

)

|

L}

"

A\

\)

A &wf

LN

A

W
O\

¢.
s

o KISLYINCI N

()

)
AL
FON
4
A
e
Wy
hiiily
O
\l

W
AT

SV
,..«.u._.......... W
—w.. -.}..’.\. A
NS
......mo.«..\.“
.v...» f.c.l

v
(POAY AL
B

(}
)

?“.
X

e

Fécran de Serveur_PAW

(Ecran 3)

c.

Cet histogramme est créé et rempli par PIGAL, représenté en mode “lego” par Serveur_PAW



4.4 Architecture du prototype

L'explication sur ce sujet sera divisée en deux étapes : le schéma logique
du systéme suivi par 'architecture concréte avec la description de
chaque composant.

Schéma logique

La structure logique du systéme est décrite Fig.26. Elle se compose de

plusieurs serveurs qui effectuent chacun une fonction

un pilote qui contrdle le systéme

un mécanisme de transfert de commandes du pilote

un mécanisme de transfert de données qui assure les échanges de données
entre les serveurs (ou avec le pilote) '

Le pilote contréle et synchronise les serveurs par I’envoi de commande a

chaque serveur. Une commande contient : le nom d'un service (action) et
ses arguments.

Dans cette architecture il n’y a pas de relation serrée entre serveurs.
Commandes et données sont transmises par deux mécanismes assurant
I'échange d’informations. Leurs interfaces avec les serveurs et le pilote
sont standardisées. Ceci permet d’obtenir une structure trés souple. La
synchronisation entre serveurs est assurée par le pilote. Celui-ci
travaille comme s’il contenait une horloge interne.

Cette structure ressemble a I'architecture d’un ordinateur : les modules
du programme sont I’équivalent des modules d’électronique, et les
mécanismes de I'échange des informations remplissent le role des bus.
Dans une famille d’ordinateurs du méme constructeur, I'utilisateur peut
choisir parmi les sous-ensembles disponibles, ceux qui sont nécessaires
pour ses applications. Par la suite, il peut compléter sa configuration, ou
bien remplacer certains éléments par de nouveaux modules, de
performances supérieures. -

Le présent travail montre qu'une approche identique est possible pour le
logiciel. La modularité, dont les avantages sont reconnus depuis

78




longtemps dans le cas du matériel, est ainsi accessible dans le domaine
‘du logiciel.

Mécanisme de transmission de commande

Destinataire
[Action

PILOTE SERVEUR1| . . . |SERVEURi| . . .| SERVEURR

Mécanisme de transfert de données

Fig. 26 Larchitecture répartie (représentation logique). :
Une série de serveurs liés par un mécanisme de transmission de commandes de contréle et un
mécanisme de transfert de données. Un pilote contrdle les serveurs par 'envoie de commandes.

Vue détaillée

Le prototype est basé sur le modele Client/Serveur : le Client demande
un service au Serveur et attend le résultat. Les différentes configurations
de ce modele sont déja montrées dans la Fig.24, dont la configuration (A)
a été choisie pour le prototype.

La structure du systéme est détaillée dans la Fig.27. On a 6 processus : .le
processus 1 est Client et les processus 2-6 sont Serveurs.

Le Client est le programme principal du systeéme. Il analyse la
commande de 'utilisateur, la transforme en une série de requétes et
‘envoie chaque requéte au module Serveur concerné. Il se compose de deux
parties, 'une est le programme principal de PIGAL, I'autre est le
nouveau développement concernant le pilotage des Serveurs. Celle-ci

79




sera expliquée plus loin (page 83). Chaque Serveur a des fonctionnalités
bien déterminées :

2

Serveur
" PAW

Histo Histo

RPC

3

Serveur
Histo

[Sélecteur,
[Tables,
Qualifier

1

ommande d'utilisateur

Client
RPC
RPC BrC RPC
4 6
Serveur Serveur
Graphique Trigger
[
Qualifier
Sélecteur,
Tables,
Qualifier Tables

5

Serveur
JULIA

Tables,
Sélecteur

Histogramme_DB
(ZEBRA)

Données sélectionnées
(BOS)

ALEPH_Evénement,
ADBS
(BOS)

Fig. 27 Architecture muitiprocessus :
Un Client, Cing Serveurs,

Deux couplages :

1. le couplage de controle Client/Serveur réalisé en appel RPC.
2. le couplage de données Serveur/Serveur et Client/Serveur réalisé par Transfert de fichier

* Serveur_PAW (processus 2) :
un sous-systéme qui représente les histogrammes en graphique 2D ou 3D.
Le systéme original est PAW -

¢ Serveur_Histo(processus 3) :

un sous-systéme pour la production (création et remplissage)
d’histogrammes. C’est le méme module d’interface HBOOK que dans
PIGAL (page 55).

* Serveur_Graphique (processus 4) :
la partie principale de PIGAL, chargée de la représentation

80




d’événement en graphique 3D (page 37) et de I'impression de données
sous forme de table.

e Serveur_JULIA (processus 5) :
un ensemble de JULIA et SELTAB (page 46) qui accéde aux événements et
effectue les sélections éventuelles.

e Serveur_Trigger (processus 6) :
un sous-systéme chargé de la représentation de triggers d’ALEPH
(ECAL, HCAL, LCAL, ITC ...), développé a l'origine dans le groupe de
I'acquisition de données.

1l existe deux niveaux de couplage entre les processus : couplage de
contrdle et couplage de donnée.

* Couplage de controle
Les controles s’effectuent seulement entre le Client et ses Serveurs. Il ny
a pas de relation de pilotage entre Serveurs. Les contréles se réalisent
par RPC. Le module Client envoie les messages au Serveur désiré et en
recoit les résultats (ou une notification d’erreur). Le format du message et
I'interface RPC seront expliqués plus loin. h

* Couplage de donnée
Toutes les données échangées entre les processus (sauf Serveur_PAW) sont
des tables entiéres qui respectent la structure definie par le dictionnaire
DDL d’ADAMO. La structure des tables est indépendante de leur
représentation physique. L’échange de données se réalise a travers un
fichier sur disque. Ceci permet de construire un systéme indépendamment
du gestionnaire de mémoire, qu'il soit BOS, ZEBRA ou C. Le couplage
entre Serveur_PAW et Serveur_Histo est un fichier ZEBRA[40] pbur des
raisons de compatibilité avec PAW.

Les composants de chaque processus peuvent étre trés variés (voir la
Fig.28). Ceci montre qu’une architecture distribuée permet de rassembler
des ressources hétérogénes au fur et 2 mesure des besoins du
développement.

81




1 5 4 3 6 2
PROCESSUS : Serveur | Serveur | Serveur | Serveur | Serveur
Client JULIA Graphique] Histo Trigger PAW
Taille 447 1140 1539 375 445 2195
(kilooctets)
PROLOG
’ JULIA
ALEPHLIB | ALEPHLIB ALEPHLIB ALEPHLIB | ALEPHLIB
BOS BOS BOS BOS BOS
Bibliothéques
Appellées Gs GKS
GPH-UIS
upPI
PAWLIB
RPC RPC RFC RPC RPC RPC
MOVE-TABLE | MOVE-TABLE | MOVE-TABLE | MOVE-TABLE | MOVE-TABLE

Fig. 28 Liste des biblicthéques appelées dans chaque Processus : RPC et MOVE-TABLE sont les
sections assurant la coopération des processus

Dans le cas présent, I'hétérogénéité concerne :

¢ les différentes versions des bibliothéques : la plupart de programmes
utilisent les bibliotheques ALEPHLIB et BOS, mais pas toujours dans la
méme version, car une nouvelle version peut impliquer la modification
du reste du processus, ce qui ne peut étre fait sans un travail conséquent.

¢ I'incompatibilité des bibliothéques. La représentation d’événements
(processus 4) et 1a représentation des triggers (processus 6) utilisent des
bibliotheques graphiques différentes (GKS, GPH-UIS).

Pour que ces différents composants puissent travailler ensemble, chaque
processus intégre deux parties communes :

* la bibliotheque RPC, qui assure les flux de contrdle entre Client et
Serveurs ’
¢ la subroutine MOVE_TABLE, qui assure les flux de données entre

processus

Il faut mentionner ici que le regroupement des Serveurs est basé sur les
données, c’est-a-dire que les subroutines qui travaillent sur les mémes

82




données intermédiaires sont regroupées dans un Serveur pour réduire les
communications entre Serveurs. Une autre fagon d’organiser les Serveurs
sera expliquée page 103.

4.5 Pilotage du systéeme

Dans le prototype, le pilotage des Serveurs se réalise par les opérations.
Une opération n’est effectuée que lorsque son résultat est nécessaire a une
autre opération.

Voici un exemple simple pour aider & comprendre cette méthode. Le
module Client recoit de 'utilisateur une commande

draw track  (dessiner les traces)

Les analyses sont les suivantes :

analyse 1: draw est 'un des services de Serveur_Graphique;

analyse 2: la représentation de track nécessite 'exécution de la
subroutine rtrack qui est aussi 'un des services du
Serveur_Graphique;

analyse 3: la table track est située originalement dans
Serveur_JULIA.

Apres I'analyse, le module Client soumet aux Serveurs les requétes
suivantes :

e Serveur_JULIA : exporter la table track dans un fichier binaire

e Serveur_Graphique : importer la table track depuis le fichier binaire et
exécuter le code de la subroutine rtrack pour préparer les données

e Serveur_Graphique : exécuter la subroutine draw pour visualiser les
traces.

Avant de soumettre une requéte a 'un des Serveurs (JULIA ou

Graphique), le module Client vérifie d’abord qu'il soit actif. Si ce n’est
pas le cas, on I'active (voir en page 97).

83




La Fig.29 décrit la séquence des opérations concernant deux commandes :

histogram energy of esda
paw

La premiére commande crée et remplit un histogramme de I’énergie des
cellules du calorimétre électromagnétique, la deuxiéme commande
invoque Serveur_PAW (représentation d’histogramme). L'exécution des
commandes concerne 4 processus (1 Client, 3 Serveurs) et crée deux
fichiers (un binaire, un ZEBRA) pour la communication des données.

84




RPC call File Transfer

'

1 'Initialize ECAL
2 Select
4 Export table (ESDA) JULIA 5 Write (ESDA)
SELEC
6 Export table (ESDZ2) ¢ n 7 Write (ESDZ) -
10 Export table (DSEL) 11 Write (DSEL)
8 Import table 9 Read (ESDA, ESD2)
12 1Import table 13 Read (DSEL)

CLIENT l15 Import table HISTO 16 Read (DQUA) BINARY
17 Do histogram FILE
18 Export histogram 19 Write histogram J
20 Paw

PAW
3 Create Qualifier table
14 Write (DQUA)

Séquences des opérations

Initjaliser ECAL

Sélectionner

Créer une table de Qualificateurs

Ordonner 3 JULIA d'exporter la table (ESDA)
Exporter ESDA

Ordonner 38 JULIA d'exporter la table (ESD2)
Exporter ESD2

Ordonner 4 HISTO d'importer les tables
Importer ESDA,ESD2

Ordonner & JULIA d'exporter la table (DSEL}
Exporter DSEL

Ordonner & HISTO d'importer DSEL

Importer DSEL

Exporter la table (DQUA)

Ordonner & HISTO d'importer DQUA

16. Importer DQUA

17. Ordonner a& HISTO de produire un histogramme
18. Ordonner a HISTO d'exporter l‘histogramme
19. Exporter l'histogramme

20. Initialiser Serveur PAW

21. Importer l'histogramme

22, Représenter 1l‘histogramme

B
NH CWL®m-Joule WNK
P

[
[ ™
PN

Fig. 29 Pilotage du systéme :

Ce schéma présente le mécanisme de pilotage du systéme et la synchronisation des Serveurs &
travers un exemple de deux commandes de l'utilisateur : {histogram energy of esda} et {paw}.
L'exécution concerne 1 Client et 3 Serveurs. Les séquences des opérations sont listées en bas du
schéma.

85




4.6 Réalisation

Les éléments nécessaires pour réaliser le systéme sont :

* une base de connaissances pour piloter le systéme

* un outil pour réaliser les interfaces entre le Client et ses Serveurs

* un mécanisme pour passer les messages au niveau du contrdle

e unmécanisme pour le transfert de données entre processus et leur
synchronisation

* unmécanisme pour les démarrages des Serveurs et les redémarrages
apres la réparation d’incident de Serveurs

Base de connhaissances

Le module Client (en PROLOG) pilote les Serveurs & l'aide de sa base de
connaissances. Elle contient les informations nécessaires pour gérer le
systéme :

* Pour chaque service :
La liste des entités nécessaires en entrée et en sortie, et le Serveur auquel
il appartient. Des regles PROLOG adéquates permettent de répondre
aux questions suivantes : étant donnée une entité, quel service doit-on
exécuter pour la produire; quel Serveur doit-on initialiser pour exécuter
ce service.

* Pourla synchronisation du Serveur:
Une séquence d’opérations nécessaires pour transférer les entités d'un
Serveur a un autre. Des régles PROLOG adéquates assurent la
synchronisation entre Serveurs qui accédent les méme données. On active
une opération avec la condition que I'opération précédente sur les méme
données soit terminée.

Les objectifs étant :

* de produire le moins possible de données répondant a la demande;
* d’activer le moins possible de Serveurs suivant le besoin.

86




Technique générale de RPC

Les interfaces Client/Serveur ont été définies et réalisées par RPC.
Celui-ci est un modele de communication (page 71), ainsi qu’ une
technique permettant de construire des applications coopératives. Les
étapes suivantes sont nécessaires pour réaliser une application
distribuée basée sur RPC:

e écrire les modules Client et Serveur comme s’ils allaient étre assemblés
directement

e écrire linterface Client/Serveur en utilisantle Langage de description
d’interface (Interface Description Language)

o compiler I'interface pour produire deux parties du code de V'interface
només “Stub” : I'un pour le Client, I'autre pour le Serveur

e lier le module Client avec son Stub qui remplace le processus Serveur

¢ lier le module Serveur avec son Stub qui remplace le programme Client

Le compilateur du langage de description d'interface s’appelle
Générateur de Stub (Stub generator). Il doit étre compatible avec le
langage utilisé par les modules Client et Serveur. Langage de
description d’interface et Générateur de Stub sont des utilitaires de RPC.

La Fig.30 montre comment on peut appliquer cette méthode pour
fractionner un systéme mono-processus volumineux en un ensemble de
processus plus petits détachés les uns des autres.

_ L’on trouvera Fig.31 le schéma du mécanisme de RPC, les deux Stubs
(client-Stub, serveur-Stub) chargés du codage et décodage d’arguments
des appels RPC. '

87




1. Un processus

cali sub1
call sub2
call sub3

sub1
sub2
sub3

2. Décomposer en deux processus A et B

processus A processus B
call subt sub1t
call sub2 /If/ sub2
sub3 call sub3

3. Ecrire les Interfaces Client-Serveur
pour chaque processus

RPC: Interface A RPC: Interface B

Define Define
subt sub3

sub2

4. Créer un pair de Stubs pour chaque
-interface, I'un pour Emetteur (AE, BE),
I'autre pour Récepteur (AR, BR)

Interface A
stub AE stub AR

Interface B
stub BR stub BE

)

5. Assembler ProcessusA+stubAE+stubBR
Assembler ProcessusB+stubBE+stubAR

processus B

processus A

machine A machine B

call sub1
call sub2

sub3 ¥

machine A machine B

‘Fig. 30 Méthode pour fractionner un systéme mono-processus en une structure répartie en

utilisant RPC

88




Calling machine Networks Called machine
RPC
User User-stub runtime runtime Server-stub Server
' 1
! 1 call packet . !
local pack transmi receive unpack sl call
call : arguments arguments :
' 1
' 1
: wait : work
1 I
i . I
local | , [unpack result packet pack ,
return f@y—{results jJe—ireceive ransmit j@—{results —treturn
[ 1
1 ]
importer : exporter importer : exporter
' '
! '
! '
interface interface

Fig. 31 Remote Procedure Call (RPC) [37] - un modéle de passage de message bidirectionnel.
Le mecanisme de RPC (Stub, RPC runtime) gére la communication entre les procédures appelantes

et appelées, qui résident dans deux processus différents.

Définition des interfaces Client-Serveur

Chaque fabricant d’ordinateurs, par ex. Digital, Apollo, Hewlet-
Packard, fournit désormais son propre logiciel de RPC. A I'époque des
tests, le systeme RPC développé au CERN était le seul disponible pour
réaliser le prototype. Ce logiciel est développé pour les systémes
d’acquisition-de données et aussi pour le contréle d’expériences de
physique des particules. Il s’adapte a plusieurs matériels et protocoles
de communication, ainsi qu'a différents systemes d’exploitation. La
description détaillée de bibliotheque RPC se trouve dans le guide

d’utilisateur [38]. Le logiciel contient :

* un langage (RPC Langage) pour la définition d’interface
* un précompilateur de RPCL qui transforme un fichier de définition ci-

dessus en Stub

¢ une bibliotheque en temps réel qui assure la communication pendant

89




I'exécution du systeme.

A chacune des subroutines du Serveur que le module Client appelle
pehdant I'exécution correspond une procédure, déclarée dans le fichier de
définition. On trouvera Fig.32 l'interface Client/Serveur_Trigger. La
structure d’origine et les appels des deux processus sont donnés dans la
section 1 de cette figure. La section 2 contient leur définition.

1. Les appels dans Client, les subroutines dans Serveur_Trigger

Client Serveur
character*80 cmd,tfile subroutine t56 (cmd)
call t56(cmd) subroutine trig dpl_init
call trig_dpl init soe
s subroutine trigger (tfile)
call trigger(tfile) soe

2. Le fichier de définition pour l'interface CIieni/Serveur_Trigger

PACKAGE rsubt IS

TYPE ch60 1S string(60);
TYPE ch80 IS string(80);

PROCEDURE T56 (

C: IN . ch80);
PROCEDURE TRIG DPL INIT;
PROCEDURE TRIGGER(

C: IN ch60) ;

PRAGMA CONCURRENT (TRIGGER);
PRAGMA TIMEOUT (TRIGGER,400);

END rsubt;

Fig. 32 L'interface Client/Serveur_Trigger.

en haut : les appels et les subroutines situés & I'origine dans Client et Serveur

en bas : le fichier de définition de cette interface écrit en langage RPCL. La premiére
instruction “PRAGMA" déclare que la procédure “TRIGGER" s'exécute en
paraliéle par rapport au reste du programme {voir Fig.36 & page 98). Ce fichier
est compilé en deux stubs montrés Annexe 5.

90




Pour I'ensemble de PIGAL, cinq interfaces entre Client et Serveurs ont été
définies :

Client / Serveur_Graphique
Client / Serveur_JULIA '
Client / Serveur_Histo
Client / Serveur_PAW
Client / Serveur_Trigger

La complication des interfaces varie selon le niveau de couplage des
processus. On trouvera Fig.33 deux exemples. L'un est la définition de
Serveur_Graphique, 'autre est celle de Serveur_PAW. Le premier
fichier est plus compliqué en raison du plus grand nombre de relations
entre le module Client et Serveur_Graphique.

91




1. Le fichier de définition pour Serveur_Graphique

PACKAGE rsubg IS

TYPE inte 1s rpc_long;

TYPE real Is rpc_real32;

TYPE chd Is string(4);

TYPE <ch80 Is string(80);

TYPE <ch500 - Is string(500);

TYPE iarr60 Is array(l..2,1..30) of inte;

TYPE myarray 1s array(l..2,1..50) of inte;

PROCEDURE CALLSUG (

INARG: IN OUT inte;
CHAR: IN OUT ch500;
IDES: IN OUT myarray):

PROCEDURE - IGETEV3;
PROCEDURE WINPIC;
PROCEDURE DRAW;
PROCEDURE GTERMINAL (

CHAR: IN ch80) ;
PROCEDURE SAVETYP (
N: IN inte);
PROCEDURE GCOMMON (
N1: IN iarr60;
N2: IN ch500;
N3: IN inte;
N4: IN inte;
N5: IN chi4;
N6: IN inte);
PROCEDURE PUTFLDG (
R1l: IN real;
R2: IN . real;
R3: IN real;
R4: IN real;
R5: IN real:
R6: IN real);

PRAGMA CONCURRENT (IGETEV3,SAVETYP,GTERMINAL,GCOMMON, PUTFLDG, DRAW) ;

END rsubg;

v

2. Le fichier de définition pour Serveur_PAW

PACKAGE rsubp IS
TYPE ch80 IS  string(80):
PROCEDURE PAW_MODIF;
PROCEDURE PTERMINAL (
CHAR: IN ch80) ;
PROCEDURE KKUWHAG;

PRAGMA CONCURRENT (PAW MODIF,KKUWHAG, PTERMINAL) ;
PRAGMA TIMEOUT (KKUWHAG, 400); )

END rsubp;

Fig. 33 Deux exemples de fichier de définition d'interface Client/Serveur écrits en langage RPCL:
la complexité des interfaces varie selon les couplages Client/Serveur

92




Les 5 fichiers précédents, compilés par RPC, se transforment en 5 paires
de Stubs en langage FORTRAN. Ceux concernant l'interface
Client/Serveur_Trigger sont donnés dans I’ Annexe 5 qui correspond 4 la
Fig.32. Les 10 Stubs sont assemblés avec le Client et Serveurs
respectivement (voir Fig.34), et établiront les liaisons entre eux pendant
I'exécution du systéme. Leur utilisation est transparente et permet
d’écrire I'appel aux subroutines en ignorant que le systéme est réparti.

Serveur_JULIA

S
NN
RRY Serveur_Graphique

Client Serveur_Histo

DENNEC KRN Serveur_Trigger

% Serveur_PAW

Client stubs 1
Serveur stubs

Fig. 34 Les interfaces Client/Serveurs du prototype présentées par 10 Stubs qui
. assurent les communications entre Client et chaque Serveur.

Echange de messages entre Client et Serveur

Chaque Serveur offre & I'extérieur une série de services connus par le
module Client. Quand le Client a besoin d’un service, il envoie un
message & un Serveur qui offre ce service. Ce mécanisme, appelé échange
de message, se déroule comme suit :

¢ Du c6té Client

Comme on I’a vu dans la page 34, la plupart des appels a des subroutines
FORTRAN passent par l'interface PROLOG-FORTRAN développée

93




pour PIGAL. Cette interface regroupe le nom du service et ses arguments
dans un message et 'envoie au Serveur concerné par un appel RPC
spécifique, déclaré dans le Stub de ce Serveur. Par exemple :

CALLSUJ (pour Serveur_JULIA)
CALLSUH (pour Serveur_Histo)
CALLSUG (pour Serveur_Graphique), voir la Fig.33 (page 92).

® Du coté Serveur
une série de subroutines gére le décodage du message en deux parties : le
nom du service d'une part et ses arguments d’autre part. Les procédures
adéquates de la bibliothéque d’exécution assurent le branchement et font
exécuter ce service (page 35).

* L’exécution de RPC
Le systéme d’exécution de RPC assure la transmission de message vers le
Serveur concerné. "

On trouvera Fig.35a I'organisation d’un message, et Fig.35b un exemple
complet d’appel de PROLOG & un Serveur. L’ Annexe 6 décrit une partie
du code de ce mécanisme avec les descriptions de chaque subroutine.

Exemple : call =xgetevj('al$data:p0005011.native’',100,576)

valeur d'argument
ou

position de chaine

de caractére

1 23 24 0 rem-—-
CHAR lalSdata:pOOOSOll.native |xgetevj|

‘[ L

o l-------
<

~ = = =} type d'argument
| 1 entier
bes | 4 J1oo [ 1] s76 J1 | 1] 23+3] 24| 743 2 réel
: >3 longueur de
; : . y chaine de
arg.1 arg2 arg3 arg4 carlactére+3

Fig. 35a Organisation d'un message : IDES est la liste d'arguments. Le premier mot de IDES est le
nombre d'arguments (4 dans cet exemple). Ensuite un mot pour chaque argument: pour les
arguments entiers ou réels, ce mot contient le valeur; pour les arguments de type chaine de
caractére, il contient un descripteur, le valeur de I'argument se trouve dans CHAR.

94




CLIENT SERVEURS

PROLOG Interface PROLOG-FORTRAN

fortran(<draw,graphique>..)};
fortran{<dhist,histo>..);

L_—-_—..call callsu{draw,graphique)

call callsu(dhist,histo)

Serveur_Graphique
subroutine callsug(messagel)
subroutine callsu

!

message
message2

decompose messagel

call draw(listel)

Serveur_Histo

- subroutine callsuh(message2)

call callsug(messagel)
call callsuh{message?2) /
decompose message2

call dhist(liste2)

Fig. 35b Mécanisme de transfert de message.

Le module Client contient deux parties : PROLOG et l'interface PROLOG-FORTRAN ou différents
appels sont transformés en un seul appel de subroutine “callsu”. Celui-ci forme les messages et
fait appel a différents Serveurs. Chaque Serveur contient une procédure (“callsug” pour
Serveur_Graphique, “callsuh” pour Serveur_histo ...) qui décode le message et appelle la
subroutine adéquate pour exécuter le service demandé.

Transfert de données entre processus et leur
synchronisation |

Le transfert de données d’un processus & un autre est contrdlé par le
module Client (voir la Fig.29). Par rapport a un bloc de données, on
distinque un Producteur et un Consommateur qui sont tous les deux
Serveurs. Un processus peut étre le Producteur de certaines données et le
Consommateur d’autres données. Pour cette raison, chaque processus
intégre deux subroutines :

95




XOUTBK - écrit les données dans un fichier binaire en tant que
Producteur;
XIMPORT - lit les données en tant que Consommateur.

La synchronisation entre Producteur et Consommateur est gérée par le
module Client & 'aide de RPC. Les processus distribués basés sur RPC
permettent de travailler en mode séquentiel ou en mode concurrent (voir
la Fig.36). Pour assurer la cohérence des données communes, les deux
appels RPC : “XOUTBK” et “XIMPORT” sont en mode séquentiel, ¢’est-
a-dire que le Client ordonne au Consommateur d’importer les données
uniquement quand il est stir que le Producteur a déja fini de les exporter.

Appel séquentie! Appel concurrent
Client Serveur ‘ Client Serveur
Temps
Exécution Exécution

Fig. 36 Les flux de controle en mode séquentiel et en mode concurrent

Pour piloter le systeme, le module Client a besoin de savoir si le
Producteur et le Consommateur résident dans le méme processeur. Cette
information (les relations entre le noms de processus et le nom de
processeur) est déja stockée dans le processus Client au moment de
Vinitialisation du systeme. Quand le module Client envoie un message a
un Consommateur pour lui ordonner d'importer des données, le message
contient I'information suivante:

¢ si le Producteur est dans une machine différente
¢ sioui, le nom de cette machine

96




Démarrage

Avec ces informations le Consommateur peut utiliser le support de
données le plus adapté : mémoire commune ou fichier sur disque, avec ou
sans adresse de réseau, etc.

et redémarrage de Serveurs

Les utilitaires de RPC sont employés pdui activer les Serveurs ainsi que
pour les réactiver en cas d’incident.

Démarrage de Serveurs

Pendant V'initialisation du systéme, Iutilisateur attribue aux modules
“Serveur” des processeurs physiques. Le systéme garde ces informations,
mais aucun Serveur n’est vraiment activé a ce moment-1a. Pendant
I’exécution, lorsque l'utilisateur demande un service, le systeme vérifie
si ’est la premiére demande concernant ce Serveur. Si oui, le Client
active le Serveur par une commande :

call open_ Xxxxx

oil xxxx est le nom du Stub spécifié dans le fichier de définition de ce
Serveur, par ex. rsubj estle nom du Stub pour Serveur_JULIA, rsubg pour
Serveur_Graphique (voir Fig.33). RPC établit une liaison sur réseau
entre Client et Serveur, et la maintient durant la session. Les Serveurs
inutilisés pendant la session ne sont jamais chargés en mémoire.

Traitement de panne physique ou logique d’un
Serveur

Dans un systéme centralisé, les causes de panne sont limitées aux
problémes de matériels et aux erreurs de logiciels; le systéme s’arréte
dans la plupart des cas. Dans un systéme réparti, les problemes peuvent
avoir une 3€ cause : les pertes de communication.

En général, ces trois problémes pourraient étre résolus grace a une

propriété de systéme réparti : la tolérance aux fautes (page 73). Ici on
utilise quelques facilités du logiciel RPC.

97




Quand un incident survient, le traitement est différent suivant le mode
(séquentiel ou concurrent) dans lequel le Serveur est en train de
travailler.

Mode séquentiel :

Le Client suspend son exécution en attendant le signal du Serveur. Si
I'appel ne peut pas se terminer correctement, RPC retourne un message
d’erreur au Client. Quelle que soit la cause du probléme (panne de
communication, Serveur déficient ...), le module Client interromp la
liaison en utilisant la procédure RPC : '

- rpc_close (...)
et peut alors tenter de ré-établir la liaison apres la réparation en

utilisant la procédure RPC:

rpc_open (...)

Mode concurrent:

Le Client et le Serveur exécutent leurs instructions en méme temps, les
deux sont indépendants. Si le Serveur subit un incident quelconque, aucun
message de retour ne sera renvoyé par RPC. Dans le prototype certaines
procédures sont définies en mode concurrent. On peut les trouver dans la
Fig.32, définies par I'instruction :

pragma concurrent

En cas d’anormalie, le Serveur s’arréte, le Client continue sans le savoir,
jusqu’au moment oil le Client appelle & nouveau une procédure du Serveur
et recoit un message disant que le Serveur n’existe plus. Le Client ferme
la Laison avec

rpc_close (...)
et la rouvre par
rpc_open (...)

Ce mécanisme permet de localiser les incidents de Serveurs et évite de
paralyser totalement le systeme.

98




4.7 Evaluation des performances du prototype

On a vu les avantages liés a I'utilisation d’une architecture répartie.
Son principal inconvénient est un ralentissement général (du moins en
mode mono-processeur) dil 4 1a transmission d’informations sur le réseau
et dans le cas du prototype a la transmission de données par un fichier sur
disque.

Différentes configurations du systéme ont été utilisées pour tester les
performances et mesurer la consommation de temps. Les tests utilisent
une méme série de commandes (Fig.37a) qui composent une boucle pour
représenter 9 événements en graphique 3D. Dans un environnement
distribué, cette macro-commande exécute au total 1440 appels RPC au
niveau du contréle et 216 instructions de transfert de fichier (FORTRAN
read, write) au niveau des données.

!********************************************
! timing test

macro timing

local 1_count

let 1 count =1

loop
exitif 1 count = 9
xgetev
draw tpco
draw/col=red esda
draw/col=red hsda
draw kin2
draw/col=green frft
draw/col=white eslo
draw/col=white hslo
let 1 count = 1 _count + 1

endloop '

endmacro
!********************************************

Fig. 37a Les commandes utilisées pour le test : .

les commandes composent une boucle pour représenter 9 événements en graphique 3D
dans un environnement distribué. La représentation contient les contours de
I'appareillage, les cellules des calorimétres et les traces dans le détecteur TPC.

99




Le test a été fait en 3 étapes (voir la Fig.37b) :

Etape 1 : exécution du systéme en un seul processus pour mesurer le temps
d’initialisation du systéme et le temps d’exécution.

Etape 2 : exécution du systdme en 3 processus qui sont affectés au méme
processeur pour estimer 'augmentation du temps
d’initialisation (dépensée pour établir les liaisons DECNET)
et 'augmentation absolue du temps d’exécution (nombreux
appels RPC et transfert de données sur le réseau).

Etape 3 : exécution du systéme en 3 processus qui sont affectés sur deux

processeurs pour bénéficier de 1'exécution simultanée des
programmes permise par RPC appel concurrent.

100




Etape 1

Commande ;

eprésentation
d‘utilisateur > » Rep

Machine
Etape 2
RPC FT
Commande Serveur Serveur } _L__g, Représentation
d'utilisateur > JULIA Graphique P
RPC
Machine
Etape 3
ey
b o RPC
(concurrent)
RPC “Taf Serveur \_lL, Représentation
Graphique,
Transfert
Serveur \—t—"de fichier
JULIA
Machine B
Machine A

Fig. 37b Les configurations pour tester la performance du prototype :
étape 1 : exécuter PIGAL (mono-processus)
étape 2 : créer 3 processus dans une seule machine
étape 3 : créer 3 processus dans deux machines

101




Les résultats de ces mesures sont montrés sur la Fig.38. On peut noter deux
points intéressants :

le temps de communication est environ 24% du temps total d’exécution
ce temps supplémentaire est compensé par I'exécution concurrente des
processus quand ceux-ci sont répartis sur des machines adéquates

Dans le cas du prototype, Serveur_JULIA et Serveur_Graphique
utilisent chacun une moitié de temps d’exécution total. C'est un bon
équilibre permettant d’obtenir un temps d’exécution moindre que celui
d’un seul processus (841 s contre 950 s).

Dans une application répartie, une partie importante de temps est
consommée lors du transfert de données. On pourrait envisager
I'utilisation d’une mémoire commune mais I'avantage de I'exécution en
concurrence des Serveurs serait perdu parce qu’il implique le déroulement
des Serveurs sur un méme processeur.

Initialisation Temps d'exécution des commandes
Condition T total Temps Termps de
d’'exécution Temps Temps d'exécution de communication | oMM
Total pour établir les de macro- sur 7 Temps
Hialsons du réseau commande Réseau Ethernet exécution
Mono-processus VAX3100 39 . 0 950 0
8Mb Mem.
1 Processeur
VAX3100 71 32 1262 312 79
8Mb Mem. 24.7%
2 Decnet Link
Multiprocessus
2 Processeurs
2 * VAX3100
2* 8Mb Mem. 7 841
2 Decnet Link

Fig. 38 Résultats de I'évaluation des performances du prototype (unité : seconde). Les chiffres
mesurés directement sont indiqués en gras.

102




4.8 Expérience sur la décomposition d’'un
systéme

Cette section résume l'expérience acquise lors de cet essai d’adaptation
d’une architecture distribuée a un systéme d’analyse de données de
physique des particules.

Un programme existant ne peut étre efficacement transformé en systeme
réparti que s'il est fortement modulaire, avec un couplage faible entre
les différents modules, ce qui était le cas de PIGAL dés le départ.

Les régles de la décomposition sont :

* Bien séparer les deux niveaux de couplage contrdle et donnée;
au niveau du contréle : le protocole de messagerie doit étre congu
soigneusement; au niveau des données: la structure de données doit étre
bien définie |

e Le couplage entre processus doit étre le moins serré possible, c’est-a-dire
comporter le minimum possible de trafic de messages de contrdle et de
données.

* Chaque Serveur est constitué d’un ensemble de procédures qui partagent
soit les méme données, soit les mémes ressources logicielles. Avecle
partage des données, chaque activité du systéme est exécutée de bout en
bout dans un processus déterminé sans couplage avec un autre processus, &
I'exception des parametres d’entrée et de sortie. Cette décomposition :
minimise les communications et permet de bonne performance. En
décomposant par ressource de logiciels, les parties utilisant les mémes
bibliothéques sont regroupées. Cette méthode risque de couper une
fonctionnalité en deux et d’augmenter le trafic entre deux processus.

e Il faut aussi tenir compte des ressources matérielles du systeme. Il vaut
mieux regrouper les parties utilisant les mémes matériels.

Sil’on ne suit pas ces régles, le systtme sera compliqué et conduira a un

couplage fort, avec de mauvaise performance. On trouvera Fig.39 trois
décompositions possibles de PIGAL :

103




* Configuration1:
Cette configuration contient le programme PIGAL entier, plus deux
fonctions supplémentaires (représentation de triggers et représentation
d’histogramme). Le temps d’exécution est long parce que le processus
principal est trop grand avec beaucoup de fonctions mélangeées.

* Configuration2:

C’est une décomposition en ressource de logiciels. L’idée est de mettre
ensemble toutes les subroutines utilisant la bibliotheque GKS, et former
un module principal (en haut) avec l'interface utilisateur. Les 4
subroutines de préparation sont restées dans un Serveur (au milieu) avec
les autres subroutines, toutes utilisent les bibliothéques BOS et
ALEPHLIB. Le résultat est que, apres préparation, les données a
transmettre a la couche graphique sont trés nombreuses. Ceci implique
une circulation importante entre processus (passée par appels RPC), ce
qui ralentit le systéme. Dans cette configuration les données sont
transmises par “callback”, un mécanisme de communication (une
procédure appelée par RPC peut faire un appel a une procédure située

"dans le module appelant). Un programme d’application utilisant la
technique “callback” est difficile & mettre au point.

* Configuration3:
C’est une décomposition en données. On a organisé les procédures autour
de données communes. Dans cette décomposition partielle certaines
fonctions ne sont pas encore divisées (dialogue, représentation
d’événement, impression de données, histogramme), mais elle est déja
plus perfectionnée que les autres. En particulier peu de données circulent
entre Serveur de reconstruction (au milieu) et le module principal (en
haut). Le temps d’exécution est court.

La comparaison de ces trois conceptions montre que la décomposition
influence fortement la performance du systéme, notamment en ce qui
concerne le temps d’exécution et de communication. De plus il faut faire
attention a la complexité de l'interface entre processus : plus elle est
compliqué, moins le systéme est fiable. Pour le prototype, les interfaces
Client/Serveurs sont réalisées en sorte que le minimum nécessaire de
procédures soit défini pour chaque Serveur.

104




Configuration 1

Handle dialog
Display Event
Display Data
Select
Reconstruct
Produce Histo

RPC

Display
Trigger

Display
Histogram

Configuration : 1 client - 2 servers
Communication : full RPC

RPC special features : timeout, concurrent
Interface : simple

Running time : slow

Traffic : few

Aleph_Event, ADBS

Configuration 2
Handle dialog
Display Event
Display Data
DATA
(callback)

Prepare display even
prepare display Data
Select
Reconstruct
Produce Histo

Display

Configuration : 2 clients - 3 servers

Communication : fult RPC

RPC special features : timeout, concurrent,
callback

Interface : complexe

Running time : slow

Traffic : many

Display
Trigger

Histogram

Aleph_Event, ADBS

Configuraiion 3

Handle dialog
Display Event
Display Data

Produce Histo

File Transfej
(bank, selector)

Display

Display
Histogram

Trigger

Aleph_Event, ADBS

Configuration : 1 client - 3 servers
Communication : RPC, File transfer

RPC special features : timeout, concurrent
Interface : simple

Running time : fast

Traffic : few (RPC), few (file transfer)

Fig. 39 Differentes configurations pratiquées pendant la décomposition de PIGAL

105




4.9 Améliorations éventuelles du systeme

Le prototype est loin d’étre parfait. L’'on peut envisager trois points a
améliorer:

* Le couplage de contrdle : L'interface Client/Serveur n’est pas idéale, il -
se fait en fonction de I’ancien flux de contrdle de PIGAL. Changer ce flux
de contrdle permettrait d’obtenir une interface beaucoup plus propre, par
ex. les subroutines utilisées dans les initialisations de JULIA, GKS,
BOS, PAW... sont originalement mélangées, changer les ordres de
certains appels permet d’économiser le temps total de I'initialisation du
systeme.

+ Le format de message utilisé est simple. Il transmet un appel a chaque
fois, ce qui augmente la charge du réseau. Il vaut mieux redéfinir le
protocole ainsi chaque message contiendrait plusieur appels qui seraient
considérés comme un seul service. Ce service serait considéré comme
complet seulement quand tous ses appels seraient réussis.

e Dans la version présente, le systéme est béti sur des machines de méme
type (VAX) et sur un méme réseau local. Le module Client a
suffisamment d’informations sur la configuration du systéme pour gérer
le transfert de données (page 96). 1l est possible d’ajouter d’autre
information pour gérer une configuration hétérogene : différents types de
machines et différents réseaux.

4.10 C_onclusion sur la mise en oeuvre d’un
environnement réparti |

Avantage de RPC

RPCL(RPC langage) [38], langage permettant de définir l'interface entre
les sous-systemes, est facile a utiliser (voir Fig.32). Il offre une grande

106




facilité pour changer la configuration d’un logiciel sans toucher au code
d’application.

Avantage de la structure distribuée

Le temps et le travail nécessaires au développement du
systéme sont diminués

o chaque module est relativement petit, ce qui permet de localiser plus
aisément les problémes de logiciels.

e chaque module a une fonction homoggne, ce qui permet de tester les
modules séparément, de les mettre & jour séparément, d’ajouter de
nouveaux modules sans toucher aux autres.

o il est possible d"utiliser un maximum de logiciels déja existants, ce qui
permet d’économiser un énorme temps de développement.

L’extensibilité du systéme est augmentée
La modularité du systéme autorise une extension souple et progressive du
matériel et du logiciel en fonction des besoins.

La performance du systéme est améliorée

On pourrait affecter un processus a un processeur spécifique pour obtenir
une meilleur performance. Par exemple :

e affecter le Serveur_Graphique a une station graphique de haute
performance

e affecter le Serveur_JULIA & un processeur spécialisé en calcul numérique
de grande vitesse pour effectuer le travail de reconstruction et surtout
poin‘ accéder rapidement aux données d’un événement

La fiabilité du systéme est augmentée

Le couplage de données entre processus est un couplage lache. Chaque
processus est autonome. Normalement, la défaillance d"un Serveur
n’affecte pas les autres. Ceci permet d’éviter de paralyser totalement le

107




systéme en cas de panne.

Le temps d’exécution peut étre diminué

Le temps d’exécution dépend du mode d’utilisation du systéme, ainsi que
de la configuration de ce dernier. Quand on place un processus sur un
processeur spécialisé, le temps d’exécution est déja réduit. Si de plus 'on
exécute les processus en mode concurrent, le temps d’exécution diminue
encore. Le temps gagné compense largement les pertes dues aux
communications sur le réseau.

Moyens et outils de test

Pour évaluer les performances d’un systéme distribué, on peut utiliser les
logiciels d’analyse de performance fournis par les fabricants, par
exemple PCA (Performance and Coverage Analyzer) [41] pour VAX. La
méthode a suivre consiste a:

Lier chaque module Serveur avec PCA en mode “DEBUG”

Lancer séparément les Serveurs pour qu’ils puissent travailler en mode
asynchrone «

Lancer le module Client

PCA doit collecter les informations de chaque Serveur permettant alors
d’effectuer les analyses statistiques sur le temps d’exécution, le temps de
communication, etc. L'utilisation de PCA dans un environnement réparti
nécessite certains privileges du systéme, malheureusement
incompatibles avec 1'utilisation partagée de la machine au niveau du
laboratoire. '

Choix de placement de processus

Placer de fagon optimale un processus sur un processeur est un probléme
bien connu dans le domaine de I'informatique. Dans certaines
architectures réparties, 1'affectation d’un processus a un processeur se
réalise au niveau du systéme d’exploitation. C’est par I'utilisation
d’algorithmes bien étudiés que le systéme d’exploitation assure un

meilleur équilibre entre le temps de calcul et le temps de communication.

108




Nous n’avons pas encore abordé ce probléeme avec le prototype, c’est
I'utilisateur qui est le responsable de I'affectation des Serveurs.

1l est possible de faire mieux, par ex. si le module Client pouvait obtenir
certaines informations statiques ou dynamiques sur Iétat de chaque
processeur : mémoire, nombre de processus exécutés & un moment donné, il
pourrait aider l'utilisateur a choisir le processeur qui lui convient, par
ex. le processeur le moint chargé. Certains articles concernant le
problémes de placement sont trouvés dans les références [42,43].

Langage de définition pour interface

Le logiciel RPC utilisé permet de construire des applications en langage
mixte, par exemple Client en FORTRAN et Serveur en PASCAL, a
travers 'utilisation spéciale du précompilateur du langage de
définition RPCL [38]. Cependant pour construire un environnement
hétérogene en tant que langage de programmation, il y a encore beaucoup
a faire. Certains travaux concernant ce probléme sont cités dans les
références [44,45,46]. '

109







Chapitre 5

Changements récents et
développements futurs

L’expérience acquise pendant le développement de PIGAL porte sur trois
points principaux :

e visualisation d’événement en graphique 3D
e utilisation du langage PROLOG dans le domaine de I'analyse phy51que
* possibilité de construire un tel systéme sur une architecture répartie

Dans ce chapitre seront étudiés les évolutions et les développements
futurs sur ces trois aspects, dont certains sont en cours de réalisation.

5.1 Graphique

Le graphique est la partie dont le changement est le plus fréquent dans
PIGAL a cause du développement rapide des stations graphiques et de
leurs logiciels. La modification la plus importante dans PIGAL a été de
remplacer le noyau GKS par X-WINDOW [47] pour obtenir une
représentation d’événements de haute performance tant pour la qualité
graphique que pour la vitesse de représentation. )

Le systéme X-WINDOW a été développé dans le projet Athena, au
Massachusetts Institute of Technology. C’est un environnement logiciel

111




congu pour traiter des applications graphiques sur des stations de
travail. Il fournit aux logiciels d’applications une interface standard
portable et une possibilité de développer des applications distribuées
dans les réseaux locaux. Il contrdle la visualisation du graphique sur
I'écran de la station de travail et I’entrée des données par la souris et le
clavier.

Le systéme X-WINDOW est une bibliotheque de subroutines qui
communiquent & travers un réseau. La bibliothéque se divise en deux
parties : I'une pour les Clients, I'autre pour les Serveurs. Les interfaces
d’application comprennent :

un simulateur de terminal

un gestionnaire de fenétre

des éditeurs de texte

des interfaces pour graphique standard, par ex. GKS

La structure de X-WINDOW est presentée schématiquement dans la
Fig.40.

La bibliothéque contient une série de subroutines graphiques -
élémentaires et de procédures pour manipuler les images en mode point
(bitmap) gérées par les stations de travail. Ceci permet d’obtenir une
représentation d'image a haute vitesse.

Le deuxiéme changement a été de se passer du systéme de gestionnaire de
mémoire BOS au niveau du module graphique en le remplagant par des
appels a la gestion dynamique de mémoire inhérent au langage C. La
combinaison de X-WINDOW et C donne au systéme une taille beaucoup
plus réduite (1500 Kilooctets contre 4000Kilooctets), et une vitesse de
représentation remarquable.

112




l Application |

Application
Simulateur Gestionnaire
Bibliothéque GKS V1100 de fenéire Editeur de texte
Bibliothaque X Bibliotheque X |  |Bibliotheque X Bibliothéque X
Réseau
Serveur X

Bibliothéque de gestion

N

Ecran

ICIavier I ISouris I

Fig. 40 Schéma logique de X-WINDOW :
Le systeme X-WINDOW gére linterface entre I'utilisateur et sa station de travail, il
fournit en outre un environnement standard aux programmes d'applications.

5.2

Prolog

Il manque a la version présente de PIGAL une série de commandes
permettant de modifier les données sur lesquelles on travaille. On
aimerait pouvoir effectuer des opérations du genre :

* ajouter une colonne a une table, lui donner un nom, et spécifier
l'algorithme permettant de calculer les éléments de cette colonne.
L’algorithme peut consister en opérations arithmétiques sur les colonnes
existantes, ou bien faire intervenir des relations avec les autres tables.

* ajouter une nouvelle table a la structure de données présente et spécifier
le mode de calcul de ses éléments.

e spécifier des conditions logiques permettant de sélectionner un

113




événement a visualiser.

Des solutions ont été apportées a ces divers problémes [48]. Il est apparu
qu'un langage de commande permettant d’exprimer de telles requétes
devrait étre trés complexe, donc difficile & analyser, mais également
difficile & appréhender et a utiliser. C’est pourquoi un langage de
programmation a du étre développé. Etant donné qu'il s'agissait

- principalement d’exprimer des conditions logiques, il était normal de
penser a utiliser PROLOG. De plus, pour PROLOG, le langage de
pfogrammation est également langage de commande, ce qui facilite
grandement la mise au point des programmes dutilisateur.

Le résultat est un environnement interactif, constitué de l'interpréteur de
PROLOG et d’un systéme de vérification de contraintes. Quelques
facilités ont été ajoutées pour la manipulation de données tabulaires. Cet
environnement est caractérisé par :

I'accés aux table sous forme de régles PROLOG, par ex.
eclu(i,t,p,e)

donne accés aux lignes de la table eclu, repérées'par i, etdont les
éléments sont identifiés par les variables t,p,e. La signification de ces
variables a été spécifiée auparavant par la régle “define-view”.

la régle “define-view” permettant de définir la partie visible d'une
table, par ex.

define-view(eclu, index, theta,phi, energy)
le backtracking (Annexe 3) implicite sur les lignes d’'une table

des opérateurs permettant de définir des contraintes sur les valeurs des
variables en utilisant des opérations arithmétiques si nécessaire.

la possibih'té de définir de nouvelles tables avec leurs attributs et de les
remplir ligne par ligne.

Pour conserver une vitesse d’exécution satisfaisante les données ne sont
pas transférées dans le monde PROLOG. Au contraire c’est 'ensemble des
régles (qui fait appel aux fonctionnalités décrites ci-dessus) qui sont
exportées sous forme d'un arbre et exécutées par un programme récursif
écrit en langage C. Le compilateur qui permet d’obtenir ce résultat est

114




écrit en PROLOG.

Ces méthodes d’analyse syntaxique et sémantique pourront étre utilisées
dans le contexte de PIGAL a deux niveaux :

* Niveau global :
pilotage de la boucle de lecture des événements, sélection d’événements
selon des criteres logiques, pilotage de.la partie graphique (cette partie
est comme un sous-systéme, le systéme principal construit
automatiquement ses commandes et les transmet & cette partie pour
I'exécution).

e Interne a un événement :
il permet de résoudre le probiéme de macros en leur donnant un véritable
langage de programmation logique, avec accés & 'ensemble des données
d’un événement.

5.3 Architecture logicielle répartie -
généralisation

Les logiciels de “off-line” de la génération du LEP sont remarquables par
leur taille, puisqu’ils comprennent entre 50000 et 100000 lignes de code.
La qualité des logiciels, la durée du développement, le travail de
maintenance sont les trois soucis majeurs des programmeurs. De plus en
plus de stratégies et de techniques nouvelles sont appliquées depuis
quelques années pour résoudre ces problémes, notamment :

e La programmation orientée objets
e L'usage d’outils du type CASE (Computer-Aided Software Engmeermg)
e Le traitement distribué (Distributed Processing)

Cette derniére technique sera le sujet de cette section .

Changer la structure traditionnelle des logiciels de “off-line”

(centralisée) pour une architecture répartie apporte les avantages
discutés page 69 et testés sur le prototype du chapitre 4 (page 107). On

115




peut envisager une telle architecture pour d’autres applications.

Exemple 1 : Le programme de reconstruction devient en particulier
nettement plus facile & mettre au point. Chaque Serveur est un logiciel
de reconstruction entier pour un sous-détecteur, par ex. TPC. Le
programme ne comporte pas de couplage serré entre différents Serveurs,
évite les “common block”, les entités intermédiaires de chaque Serveur
étant exportées via le mécanisme de transfert de données (page 79) et
étant importées par le Serveur suivant.

Exemple 2 : Le programme destiné a effectuer I’analyse statistique
interactive sur un lot d’événements offrira a I'utilisateur les moyens
d’appeler un logiciel d’analyse physique comme ALPHA (page 20), de
regarder de temps en temps les événements particuliers en utilisant
DALI (représentation d’événements en graphique 2D) ou PIGAL
(graphique 3D) et de vérifier si nécessaire les données internes en

" utilisant le logiciel TIP (page 22).

Lintégration de ces nombreux logiciels préexistants dans un
environnement unique pose deux problémes principaux : d'une part
Yincompatibilité des langages de commandes, d’autre part
Vincompatibilité des structures de données internes ainsi que des
systémes de gestion de données utilisés. Ces deux problémes pourraient
étre résolus au niveau de 'architecture du nouveau systéme en
généralisant 'architecture utilisée pour réaliser le prototype du
chapitre 4.

Une telle architecture, décrite dans la Fig.41, se déduit de celle de la
Fig.26 en spécifiant qu’un module peut lui méme étre réparti (par
exemple le cas du sous-systéme PIGAL). Dans ce schéma les deux types
de bus logiques (Bus de commande et Bus de données) représentent
respectivement le flux de contréle (control flow) et le flux de données
(data flow) de chaque niveau. IIs gérent les échanges d’informations
entre modules ou avec le moniteur du méme niveau. Un bus de commande
est défini par le protocole de communication et le format de message, un
bus de données est défini par la structure de données et I’ interface
d’acces standardisée dans un systéme.

116




Bus de commande (niveau 0)

Destination
ction
rguments

Bus de données du module i

(MONITEU% EAODULEJ [P .| MODULE n
Bus de données 1 (niveau 0)
[
[
1
1
| =~ - e e e s s s s scc s E eSSt e I
: : Bus de commande du module | :
1 1
1 ] Destination 1
=l Action 1
Arguments '
1
1
NITEUR | [MODULE i1 ODULE ﬂ EAODULE )
|
[
]
1
1
1
1

A S

Fig. 41 Schéma logique d'une architecture répartie. Un niveau se compose de 4 parties principales:
1. plusieurs modules (Serveurs) effectuant chacun une fonction du systeme

2. un moniteur qui est le programme principal

3. un bus de. commande assurant la communication entre moniteur et module au niveau de contrile
4. un bus de données assurant I'echange de données entre modules (ou avec le moniteur)

Un module peut étre un sous-systéme congu de la méme fagon.

Les points importants dans cette architecture sont :

¢ Les bus de commande internes aux modules ne communiquent pas entre
eux, ni avec le bus de commande externe

* Les bus de données interne aux modules ne communiquent pas avec les bus
des autres niveaux

117




¢ Le moniteur du systéme principal ne transmet de commande qu’a ses
propres Serveurs ou aux moniteurs des sous-systémes, jamais directement
aux Serveurs de niveau différent. Ainsi les commandes sont filtrées au
niveau local, ce qui assure la sécurité. Les différents niveaux restent
complétement autonomes et peuvent ainsi coexister malgrés des systémes
de gestion de données, des bibliothéques et des systémes de commande &
priori incompatibles.

Une idée similaire se trouve dans la référence[49] qui donne une notion de
“software bus” et une description de “self-describing system”. Dans ce
systéme, chaque bloc de données est un “objet”, il contient une description
sur soi-méme et circule dans un “software bus”. Les serveurs du systeme
peuvent accéder a ces objets, lire leurs descriptions, et utiliser les
données. Le projet est basé sur Unix System V. Le “common block” de
langage FORTRAN et la structure de données de langage C sont les deux
types permis par le “software bus”.

118




Chapitre 6

Conclusions

PIGAL est basé originalement sur une architecture modulaire. Les
modules principaux de PIGAL sont :

I'analyseur grammatical de syntaxe

la représentation interactive

la sélection d’objets physiques

la transformation d’objet physique en objet graphique 3D

la manipulation de structures graphiques : représentation, vue, fenétre...

Chaque action est réalisée par des subroutines FORTRAN spéciales et
chaque subroutine n’effectue qu'une opération élémentaire. La séquence
d’appel des subroutines FORTRAN est contr6lée par le programme
principal en PROLOG qui comprend la base de connaissances sur le
systéme.

La fonction la plus marquante dans PIGAL est son graphique interactif.
L’image représentée fournit en fait une deuxiéme interface a PIGAL
(I'autre étant l'interface en langage quasi naturel) a travers laquelle
V'utilisateur peut piloter le systéme par l'intermédiaire de la souris.

Une nouvelle approche est expérimentée sur PIGAL : donner a PIGAL une
architecture distribuée. Les modules élémentaires du systéme sont
repartis dans un réseau d’ordinateur et communiquent a travers RPC et
FT (transfert de fichier). Cette structure donne certains avantages
importants au point de vue génie logiciel, permettant d’améliorer pas a
pas un trés grand systéme, de limiter les modifications, d’isoler les
modules dans différents processus afin d’éviter les incompatibilités de
ressources. La facilité de la reconfiguration dynamique de programme

119




permet d’utiliser le maximum de ressources disponibles a tout moment.
C’est un point extrémement important dans le développement des
systémes d’analyse de données vue la durée de développement et la
rapidité d’évolution du matériel.

La construction de composants logiciels interchangeables et la
réalisation de leur liaison standard sont les deux points critiques pour la
- prochaine génération de systémes de logiciel. La séparation des flux de
commande et flux de données est nécessaire. Un protocole bien congu au
niveau de commande et une structure bien définie au niveau de données
garantissent les liaisons standards de composants logiciels.

Le mécanisme de RPC (Remote Procedure Call) offre un outil puissant et
flexible dans cet environnement.

120




Annexe 1

Exemples de DFD, ERD et DDL

L’on trouvera ici les exemples de DFD, ERD et DDL extraits du document
décrivant la reconstruction des énergies des gerbes dans le Calorimétre
éléctromagnétique [15].

Le diagramme de flux de données

'
\} EcGeom
rack Can-l
Improved \ /

EcE-lropCon-\ Ec€xtrapland fcrip EmShower
\\ @ Energy Param
EcDecd EcGoo-
Channels Canet Echanigned
Clustor

EewireData \\‘ /// EcClustoer

—¢EcStoreyData—

Cchusigned
VirePlane te

EcOb ect Objeci ’ /

CatObject

EeClustaer
Threaha'ld

HeTubeData I! -
\ A Hedssigned
HeStoreyDate HeCluster Cluster —— Ca10rroion
Data -
: N d/ / 4 tf\l. tisd
S EcGesalonsi ° atislics
/ HeGeos HeGooa . , \
Const MeDood TrackInpreved 1cGoos 1“”0:'“
/ Channeis / / \ )
Reconstruct Aleph Event Author Revieuer
Version 18 Comnment
25 FIND CALORIMETER OBJECT Status
Date 6-0CT1-1986{Datle

121




La premier ERD décrit la structure de données entiére de ECAL

(CONTEXT). La seconde décrit la structure de ECALData qui correspond

a la deuxiéme boite de la figure précédente.

I. ECALGeom

3. CalObject

4. HCALGevm

5. HCALData

0

— 755"

a
Calorimeters Authors: M. (. (iceen Reviewers:
& Version: 2 Comment:
. Status: working
0 CONT
EXT Date:  1-Oct.19%6 Date:
F. WireDats F. Wire
Calobject
© E WireData
Cluster
1esemmeaaas -
1 EC} v Centrai '
1 i Tncd-‘" {-oa Detector E ...... P
oese Wl Py T i
' N '
! E Module E Cluster AR R :
o e ' : :
N E Clester ., Calerimeter | '
Object > Objet  fe—
b ' 3 : :
Lo .
4E - '
Fractbon : :
-+~ E Sterey : :
Calobjoct . .
E SioreyDeta : .
\ : '
E Sterey bt - - - - ;
Object E Object :
b Fractiee Rintiubdedeie bbb b °
Authors: .G.C
x Caierimeters ve " ;' G.Green
Status:
2 ECALDsta Working
. l c 1.Oct- 1986

122




! gn

(
(
(

DDL : description formelle du diagramme précédent; la premiere section
décrit les entités, la deuxiéme décrit les relations entre entités, la
troisiéme est la définition des attributs.

-------------- - e e e e m e e e e e e e cm - e - ————-—— ]
ISDA : '"Ecal scorey daca'

= (Row,Column,Stack,Energy);
TcLy : 'Ecal cluscer'

= (Charge,

Fnergy(4),

Radius(é4),Theca(s),Phi(s),
RadErv(4),ThErr(4),Phikrr(s),

Stacklimic(z) = INTE (1,2}

'Innermaost and outermost stacks ',
INTE (0Q,*]

'Processing lavel'):

ProcLavel

oe | oo

IND ESET
DEFINE RSET

£SDA [1,1] =-> (0,*] EMOD): 'EcStorey data belong to a medule’;
ESDA (0,1] =-> (l,*] ECLU): 'Clusters are constructed from Storeys';
spA (1,1] -> (0,1] EPAT): 'Neighbour pattern relation';

END RSET

JEFINE ATTRIBUTE

Row = INTE {1,228]: 'Storey row number';
Column = INTE {1,384]: 'Storey columm number';
Stack = INTE (1,3] : 'Stack number';

IND ATTRIBUTE

123







Annexe 2

Extrait de DFD de PIGAL

L’on trouvera ici un extrait de document DFD représentant la structure de
PIGAL. A partir du premier DFD chaque processus peut étre décrit par

un nouveau DFD plus précis : 1.2,1.2.1, 1.2.2 et ainsi de suite.

Input_Command

Analyse
Command

1.1

Verb,

ADAMO _DDL Quatlitier,
/ Selection_list
Image,
Print,
Histogram
ADAMO_DDL
Table Graphic_Objects
Event Graphic
(BOS) Structure
1. PIGAL

125




Event

(BOS) Varb,
Qualifier
Selection_list < N .
Bos_Tables Bos_Tables
Data Server Selactor
1.2.1
image,
Selection_list Histogram,
Printout

Analyse Graphic_Objects

ADAMO_DDL
Graphic_Objects

Graphic
1.2 Execution . Structure

“a

Selection_list

of Entities

1.2.1.14 Selaction_list

Select

Absent_entities

1.21.3

Reconstruct
Entities

1.21.2

Present_Entities

Bos_Tables

Entity_to_Module Bos_Tables
relation Execute_Moduies
S A—
Jilia Modules Reconstruction Event
Description Status ’ (BOS)

1.2.1 Data Server

Selector

~Na

126




Verb,Qualifier

~

Selector

Complex_Entity

Graphic Action

Graphic_Object \12%

Verb,Qualifier,Selector,

Elementary_Entity
~~h
Bos_Tabies

Elementary_Entities

Event

Graphic Hierarchy {BOS) Printable_Dbject

image

A

Graphic_Object

Histogram

1.2.2.4

Histogram

N

Printout

1.2.2 Action \

Verb,Qualitier

Selector Elementary_Entity

Prepare Entity

Formatted_Table

N

Bins,Axes,Text

Elementary_Entities

/ Elementary_Entity

Produce Histo

1.2.2.2.3

Graphic_Object
(Polyline,text)

Y

Graphic_Object
Geometry_Constants {Polyline,Polymarker,
Text,Surface,Helice)

a;anm- N

1.2.2.2 Prepare Action Database

127







Annexe 3

Présentation simplifiée
du langage PROLOG

PROLOG (PROgrammation en LOGique ) [50] est un langage développé
pour des applications d’intelligence artificielle. Il a été congu et mis au
point au GIA de Marseille (1972), et issu des travaux d'une équipe de
recherche menée par A. Colmerauer a8 Marseille sur la compréhension du
langage naturel [51] et d'une équipe menée par R.A.Kowalski & Londre sur
la programmation en logique[52].

Il y a une grande différence entre PROLOG et les autres langages
conventionnels. On dit souvent : “ Un programme FORTRAN, PASCAL ...
décrit un ALGORITHME, un programme PROLOG énonce des FAITS
(axiomes, relations, proprietes).”

Le programme PROLOG est un ensemble de régles écrites par le .
programmeur. Chaque régle est formée d’une partie gauche (téte de regle)
réduite a un seul terme, et d’une partie droite (queue de régle) formée d'une
suite de n termes. Une fleche “->” sépare les deux parties. La régle termine
par un “;”. Par exemple

start ->initpigal

initgks;
Si la queue d’une régle est vide, la régle s’appele “un fait”, c’est a dire une
formule toujours vraie, par exemple '
verb (draw) ->;

signifie que “draw” est un verbe.

129




Les regles sont groupées en paquets commengant par le méme identificateur,
par exemple

verb (draw) ->;
verb (print) ->;
verb (histogram) ->;

Les termes peuvent contenir des variables qui sont locales & une régle, par
exemple

chemin (a,b,c,d) -> shortpath(a,b,c,d); (1)
chemin (a,b,c,d) -> longpath(a,b,c,d): 2

Ici a,b,c,d sont des variables, elles sont définies pour une seule régle. Donc
les variables a,b,c,d, situées a gauche de la régle (1), désignent les mémes
choses que celles de droite, mais elles n‘ont aucun rapport avec les
variables de la regle (2).

Le mécanisme de PROLOG

Le mécanisme de PROLOG consiste en un effacement de buts représentés par
des termes. Un but est “effacé” lorsque les contraintes lui correspondant
sont vérifiées, par exemple

start ->initpigal
initgks;

signifie que si l'initialisation de PIGAL est réussie et si I'initialisation de
GKS est réussie alors le lancement de PIGAL est réussi.

Le fonctionnement de PROLOG est de chercher & effac_er successivement les
buts, c’est-a-dire pour I'exemple suivant :

go ~> start initfor; (1)
start -> initpigal; )
initpigal ->; 3)

initfor ->; 4)

Soit gole but a effacer : PROLOG cherche a identifier (on dit unifier) goa
la téte de régle 1, ce qui imposera d’effacer les nouveaux buts start et

130




initfor. Le terme initfor sera effacé immédiatement grace a la regle (4). Le
terme start sera identifié par initpigal (régle 2), ainsi de suite jusqu’au
moment tous les termes sont remplacés. Si un terme ne peut étre remplacé,
PROLOG retourne en arriére (remontée ou backtracking) et essaye un autre
chemin pour I'effacer. '

En général il y a plusieurs maniéres d’effacer un but, c’est-a-dire plusieurs
réponses possibles, PROLOG les détermine toutes. Voyons un exemple
trouvé dans PIGAL :

esda (thetaj,1,1) ->; 1
esda (energy,2,4) ->; (2)
esda (eclu,3,9) —->; (3)

On peut alors poser en PROLOG des questions sur cette base:
Quels attributs de I’entité ESDA sont les attributs réel ?

> esda(x,2,y);

PROLOG effectue les identifications suivautes :

’essai d’unification avec la régle (1) posera le systéme d’équations
“x=thetaj, 2=1, y=1" :le systéme est insoluble, echec, PROLOG retourne en
arriere.

I’essai d’unification avec la régle (2) posera le systeme d’équations
“x=energy, 2=2, y=4" : systéme est résolu avec les solutions affichées

X = energy, y = 4

Vessai d’unification avec la régle (3) posera le systéme d’équations
“x=eclu, 2=3, y=9" : pas de solution. '

Est-ce que ESDA a de relations avec d’autres entités ?

> esda(x,3,y);:

Les réponses sont :

X =eclu, y=9

131




Structures de données en PROLOG

PROLOG offre la possibilité de manipulation de variables ou de
constantes. Les types de données sont trés variées :

nombres entiers ou réels
chaines de caractéres
identificateurs
listes et n-uplets, ex.
aa.bb.cc.nil est une liste, “nil” signifiant la fin de la liste
<a/b,c> estunn-uplets
arbres, ex.
a (b (x,y,2),c (t,u)) représent une structure d’arbre

/EN /N

x yzt u

Récursivité
Lexemple suivant présente un type de régle utilisé beaucoup en PROLOG :
la régle récursive.

extraire (™) ->;

extraire(s) -> substring (s,1,4,u)
out (s)

conc-string(u,r,s)

extraire (r):;

Le fonctionnement de cette régle est de tirer d’une chaine de caracteres les
premiers 4 caractéres chaque fois, de les mettre dans le variable s et de les
imprimer. Le reste des caractéres est gardé dans la variable r qui sera
soumise a “extraire”. La fonction se termine quand la chaine devient vide.

132




Application de PROLOG

Une application typique de PROLOG comprend deux parties :

une base de connaissances représentant les faits sur lesquels le systeme
travaillera

un programme qui manipule ces faits et répond aux questions posées par
I'utilisateur o

Dans certains systémes les réponses peuvent étre immédiatement intégrées
comme nouvelle donnée dans la base de connaissances pour une utilisation
ultérieure.

Interface avec les autres langages

PROLOG offre une interface avec les autres langages : FORTRAN, C ...
Dans le cas de FORTRAN, les subroutines FORTRAN sont connues de
PROLOG sous forme de prédicats externes, qui sont invoqués selon la
syntaxe suivante:

subname (x,y, ...) —-> /2300/299;

ol subname est le nom de prédicat; x,y... sont les arguments. Le signe /799
indique qu'il s’agit d’un prédicat externe. Le 300 sera transmis dans la
subroutine user_rule appelée par l'interpréteur PROLOG et qui doit étre
fournie par l'utilisateur si des prédicats externes sont utilisés.

Dans user_rule, un aiguillage genre goto permet de faire le tri entre les
diverses subroutines prévues. Chacune de ces subroutines doit effectuer le
transfert des arguments entre PROLOG et FORTRAN en utilisant une série
de services intégrés a la bibliotheque PROLOG: get_real, get_integer, -
get_string, put_real, put_integer, put_string. Les services get_term et
put_term permettent de transmettre un terme, c’est & dire une variable -
structurée (arbre) en un seul appel.

133







Annexe 4

GKS et graphique

GKS (Graphic Kernel System) a été développé depuis 1976 et a évolué en
un standard international. Il fournit un ensemble de fonctions permettant
la réalisation de représentations graphiques sur différents types de
machine. Il permet & ses applications d'étre trés facilement portable. En
effet GKS constitue un noyau indépendant du systéme graphique de la
machine sur laquelle il est implémenté. :

1l est nécessaire de présenter de maniére générale certains concepts
élémentaires de GKS utilisés dans PIGAL

Les sorties sur écran :

La tache de GKS est d’engendrer des dessins. Ceux-ci sont composés de

primitives (lignes, cercles, cubes ...). Les primitives les plus utilisées sont :
ligne (polyline), marqueur (polymarker), chaine de caractéres (text) et

surface (fill area).

Les systémes de coordonnées et les transformations:

Les primitives de sortie sont créées dans un ou plusieurs systémes de
coordonnées. Un ensemble de transformations définissent le passage
entres différents systémes de coordonnées.

Les stations de travail :
Les appareils graphiques sont divisés en groupes appelés Workstation.
Celles-ci pouvant désigner un écran, une table tracante, etc.

Les vues:

Une vue peut contenir une partie ou un dessin complet. Chaque vue peut
étre transformée indépendamment les unes des autres. De plus une

135




Workstation peut contenir plusieurs vues.

Les segments :

Un dessin complexe est composé d’un ensemble de segments (lignes,

cercles ...) pouvant étre détruits ou cachés indépendamment les uns des
autres. Lorsqu’on dessine un objet amené a rester sur 1’écran, on doit
auparavant ouvrir un segment et le fermer a la fin du dessin de l'objet.
Ainsi, tous les points dessinés entre 'ouverture et la fermeture du segment
posséderont un méme identificateur. Un segment est unique dans I'écran.

L’identificateur de “pick” :

Il s’agit d'un numéro arbitraire associé & un segment de I’écran. On peut
spécifier ce parameétre avant un dessin, il restera jusqu’au prochain
recouvrement (spécification d’un autre identificateur de pick). Il est
indépendant du numéro de segment. La différence essentielle entre ces deux
parametres vient du fait que l'identificateur de pick ne représente pas une
zone connexe dans V'écran. Il est possible que les différents numéros de
segment soient associés & un méme identificateur de pick. L’identificateur
de pick ainsi que le numéro de segment peuvent étre récupérés par un “clic”
sur I'écran, identifiant ainsi complétement I'objet indiqué.

Le méta-fichier :

C’est un moyen de stocker les images dans un but de création d’archive ou
de transfert d’images (en une position différente de I’écran ou dans une
autre station). '

136




Annexe 5

Interface CIient/Sérveur_Trigger

OO0

L’on trouvera ici deux “Stubs” de l'interface Client/Serveur_Trigger, créés
automatiquement par le compilateur RPC pour le fichier de définition
donné Fig.32 (page 90). La premiére section est assemblée avec
Serveur_Trigger, la seconde est liée avec Client. Ces deux “Stubs” assurent
la communication entre deux processus a travers la bibliothéque d’exécution

de RPC.

SERVER STUB routines for package RSUBT

Generated automatically by the RPC Compiler

SUBROUTINE R_TRIGGER (RPC_P_BUF)
INTEGER RPC_P_BUF,RPC_A,RPC_B
CHARACTER*80 C

CALL UPK_VSTRING_FOR(RPC_P_BUF,C, 80)
CALL RPC_INIT_RETURN_FOR(RPC_P_BUF)
CALL RPC_EARLY RETURN(RPC_P_BUF)
CALL TRIGGER(C)

END

SUBROUTINE R_TRIG_DPL_INIT(RPC_P_BUF)
INTEGER RPC_P_BUF

CALL RPC_INIT RETURN_FOR(RPC_P_BUF)
CALL TRIG_DPL_INIT

END

SUBROUTINE R_T56 (RPC_P_BUF)

INTEGER RPC_P_BUF,RPC_A,RPC_B
CHARACTER*80 C

CALL UPK_VSTRING_FOR(RPC_P_BUF,C, 80)
CALL RPC_INIT_RETURN_FOR(RPC_P_BUF)
CALL T56(C)

END

Main stub entry point

137




QOO0

10

20

30

888

SUBROUTINE R_RSUBT (RPC_P_BUF)
INTEGER RPC_P_BUF

INTEGER RPC_REQUEST, STATUS

PARAMETER (RPC_S_UNSUPPORTED_VERSION=139624458)
PARAMETER (RPC_S_BAD PROCEDURE_NUMBER=139624466)

CALL UPK_SHORT_FOR(RPC_P_BUF, RPC_REQUEST)
IF ((RPC_REQUEST.NE.O) .AND. (RPC_REQUEST.NE.4150)) THEN
CALL RPC_SET ERROR(RPC_P_BUF,RPC_S_UNSUPPORTED_VERSION)
ELSE : :
CALL UPK_SHORT_FOR(RPC_P_BUF, RPC_REQUEST)
IF ((RPC_REQUEST.LE.O0) .OR. (RPC_REQUEST.GT.3)) THEN
CALL RPC_SET_ ERROR(RPC_P_BUF,RPC_S_BAD PROCEDURE_NUMBER)
ELSE
GOTO (10,20, 30) ,RPC_REQUEST

CALL R _TRIGGER(RPC_P_ BUF)
GOTO 888

CALL R_TRIG_DPL_INIT(RPC_P_BUF)
GOTO 888

CALL R_T56 (RPC_P_BUF)
GOTO 888
CONTINUE

END IF
END IF
END

«

Call this procedure at initialisation time ***
SUBROUTINE ATTACH_RSUBT
EXTERNAL R_RSUBT
INTEGER STATUS, PROG_NO

CALL RPC_ATTACH_STUB_FOR (STATUS,R_RSUBT,
+'RSUBT ', PROG_NO)
CALL RPC_REPORT_ERROR (STATUS)

END _

CLIENT STUB routines for package RSUBT

Generated automatically by thé RPC Compiler

SUBROUTINE TRIGGER (C)
COMMON /C_RSUBT/ H_RSUBT
INTEGER H_RSUBT
CHARACTER* (*) C

138




+

INTEGER RPC_P_BUF,RPC_A,RPC_B

CALL RPC_BEGIN_CALL_ FOR(RPC_P_BUF, H_RSUBT,82,0,4150,1)
CALL PCK_STRING_FOR(RPC_P_BUF,C)

CALL RPC_CALL(H_RSUBT,RPC_P_BUF, 400)

CALL RPC_END_CALL_FOR(RPC_P_BUF)

RETURN

END

SUBROUTINE TRIG_DPL_INIT

COMMON /C_RSUBT/ H_RSUBT

INTEGER H_RSUBT

INTEGER RPC_P_BUF

CALL RPC_BEGIN CALL FOR(RPC_P_BUF, H_RSUBT,0,0,4150,2)
CALL RPC_CALL(H_RSUBT,RPC_P_BUF,-1)

CALL RPC_END_CALL_FOR(RPC_P_BUF)

RETURN

END

SUBROUTINE T56 (C)

COMMON /C_RSUBT/ H_RSUBT

INTEGER H_RSUBT

CHARACTER* (*) C

INTEGER RPC_P_BUF,RPC_A,RPC_B

CALL RPC_BEGIN_CALL FOR(RPC_P_ BUF, H_RSUBT, 82,0,4150,3)
CALL PCK_STRING_FOR(RPC_P_BUF,C)
CALL RPC_CALL(H_RSUBT,RPC_P_BUF, -1)
CALL RPC_END_CALL_FOR(RPC_P_BUF)
RETURN

END

Call this procedure at initialisation time ***
SUBROUTINE OPEN_ RSUBT

COMMON /C_RSUBT/ H_RSUBT

INTEGER H_RSUBT

INTEGER STATUS

CALL RPC_OPEN_FOR(STATUS,H_RSUBT,

*RSUBT ")
CALL RPC_REPORT_ERROR(STATUS)

END

139







Annexe 6

Mécanisme de transfert de message

Le mécanisme de transfert de message entre Client et Serveur, on prend
Serveur_JULIA comme exemple.

Partie 1 (les subroutines s'exécutant au c6té Client)
INIRPCJ : créer Serveur_JULIA et I'initialiser
USER_RULE: interface PROLOG-FORTRAN

PROUSE : subroutine pour le branchement d'appels venant de PROLOG,
notamment pour l'appel CALLSR

CALLSR : former les messages et les envoyer au Serveur concerné par
I'appel RPC spécifique pour chaque Serveur

MOVPOLINARG,ADDST ADDINADDRE,GETREA,GETINT,
GETSTR : subroutines pour traiter d'arguments

Partie 2 (les subroutines s'executant au c6té Serveur_JULIA)

CALLSUJ : appelée par le systeme d'exécution de RPC. Il récupére le nom
du service demandé et la liste d’arguments, fait appel a ce service

PSBADD,LSUBR : pour trouver l'adresse du service

ICONV,PRLIST : préparer la liste d’arguments codée selon les conventions
du systéme d’exploitation (VMS)

INISUBJ : la liste des services fournis par Serveur_JULIA et connus par le
Client '

141




Partie 1:

SUBROUTINE INIRPCJ

C
C create julia process and initialize julia
character*80 title
call open_rsubj
call attach_lsubj
title = ' JULIA Server Window'
call jterminal(title)
return
end
Cc
SUBROUTINE USER_RULE (NB, ERROR_FOUND, ERROR _NB)
C
C Interface PROLOG-FORTRAN
C
CALL PROUSE (NB, ERROR_FQUND, ERROR NB)
RETURN
END
C
SUBROUTINE PROUSE (NB,ERROR_FOUND, ERROR NB)
C
c Interface prolog program
C A number is associated to each fortran module
C which can be called with a computed GO TO
C —
c ——————————————————————————————————————————————————————————

INTEGER NB, ERROR_NB
LOGICAL ERROR_FOUND
CHARACTER*132 STRING, STRINGI, STRINGO, STRINGP
ERROR_FOUND=.FALSE.
IND=(NB-500)/10
GO TO )
* (999,520,530,540,550,560,570,580,590, 600) IND
520 CALL INARG
GO TO 999
530 CALL GET_STRING(1,L, $ref (STRING) , ERROR_FOUND)
CALL GET_INTEGER(2,LRES,ERROR_FOUND)
CALL CLTOU(STRING(1:L))
CALL ADDST (STRING(1l:L),LRES)
GO TO 999
540 CALL GET_INTEGER(1, IVAL, ERROR_FOUND)
CALL ADDIN (IVAL)
GO TO 999
550 CALL GET REAL(1,VAL,ERROR_FOUND)
CALL ADDRE (VAL)
GO TO 999
560 CALL GET STRING(1,L,%ref (STRING),ERROR_FOUND)
CALL GET_STRING(2,LI, %ref (STRINGI),ERROR_FOUND)
CALL CLTOU({STRING(1:L)) :

142




[@]

QOO0

Q

CALL CLTOU{(STRINGI(1:LI))
CALL CALLSR(STRING(1l:L),STRINGI(1:LI))
GO TO 999
570 CALL GETREA(VALUE)
CALL PUT_REAL(1l, VALUE, ERROR_FOUND)
GO TO 999
580 CALL GETINT (IVAL) i
CALL PUT_INTEGER(1, IVAL, ERROR_FOUND)
GO TO 999
590 CALL GETSTR(STRINGO, LO)
CALL PUT_STRING (1,LO, %ref (STRINGO),ERROR_FOUND)
GO TO 999
600 CALL MOVPOI
GO TO 999
999 CONTINUE
RETURN
END

SUBROUTINE CALLSR(NAMEI,PROCI)
send message to Server

LOGICAL PAW_FIRST/.TRUE./

LOGICAL HISTO_FIRST/.TRUE./
CHARACTER* (*) NAMEI, PROCI
CHARACTER*500 MEMOR, N2

DIMENSION IDESCR(2,50),N3(2,50)
COMMON /ARGLIS/NARG,MEMOR, IDESCR, IPOS

ACTIVATION DE CE PROCESS

LNAM=LEN (NAMEI)
MEMOR (IPOS+1 : IPOS+LNAM) =NAMEI
IDESCR{1,NARG+1)=IPOS+1

IDESCR (2, NARG+1) =LNAM+3
IPROC=1

rpc call
argument from common block to rpc

CALL UCOPY (IDESCR(1,1),N3(1,1),100)
N2 (1:500) = MEMOR(1:500)

N1l = NARG

N4 = IPOS

rpc calls for different Servers

IF (PROCI(1:6).EQ.'DIALOG') CALL CALLSUD(N1,N2,6N3,N4)
IF (PROCI(1:5).EQ.'PIGAL') CALL CALLSUG(N1,6N2,N3,6N4)
IF (PROCI(1:5).EQ.'JULIA'.OR.PROCI(1:6) .EQ.'SELTAB')
+ CALL CALLSUJ (N1,N2,N3,N4)
IF (PROCI(1:5) .EQ.'HISTO') CALL CALLSUH(N1,N2,6N3,6N4)
IF(PROCI(1:3) .EQ. 'PAW') THEN

143




c

IF (PAW_FIRST) THEN
CALL INIRPCP
PAW FIRST = .FALSE.
RETURN
ENDIF
CALL PPAW
ENDIF

C argument from rpc to common block

C

(@]

(@]

Q000

(@]

QOO0

CALL UCOPY(N3(1,1),IDESCR(1,1),100)
MEMOR(1:500) = N2(1:500)

NARG = N1
IPOS = N4
RETURN
END

SUBROUTINE MOVPOI
MOVE THE ARGUMENTS POINTER WITHOUT DOING ANYTHING ELSE

CHARACTER*500 MEMOR

DIMENSION IDESCR(2,50)

COMMON /ARGLIS/NARG,MEMOR, IDESCR, IPOS
NARG=NARG+1

RETURN

END

SUBROUTINE INARG

Initialises the arguments list,
which has to be filled before each subroutine call

CHARACTER*500 MEMOR

DIMENSION IDESCR (2, 50)

COMMON /ARGLIS/NARG,MEMOR, IDESCR, IPOS
NARG=0

IPOS=0

RETURN

END

SUBROUTINE ADDST (STRING, LRES)

Adds a string into the arguments list.
A descriptor is built, and (on vax) its address is inserted
into the 1list

CHARACTER*500 MEMOR
DIMENSION IDESCR(2,50)

COMMON /ARGLIS/NARG,MEMOR, IDESCR, IPOS
CHARACTER* (*) STRING

NARG=NARG+1

LSTR=LEN (STRING)

144




0

OO0

(@]

10

LR=LRES

IF (LR.LT.LSTR) THEN
LR=LSTR

ENDIF

NORG=IPOS+1

IPOS=IPOS+LR

NEND=NORG+LSTR-1

MEMOR (NORG : NEND) =STRING

DO 10 IC=NEND+1,NCHAR

MEMOR (IC:IC)=" '

IDESCR (1, NARG)=NORG

IDESCR (2, NARG) =LR+3

RETURN

END '

SUBROUTINE ADDIN (IVAL)

Adds integer to the arguments list

On vax, insert its address in the args list;
On IBM, fill the descriptor for it

CHARACTER*500 MEMOR

DIMENSION IDESCR(2,50)

COMMON /ARGLIS/NARG,MEMOR, IDESCR, IPOS
NARG=NARG+1

IDESCR(1,NARG)=IVAL

IDESCR(2,NARG)=1

RETURN

END

SUBROUTINE GETREA (VAL)

Get next real number from the args list

CHARACTER*500 MEMOR

DIMENSION IDESCR(2,50)

COMMON /ARGLIS/NARG,MEMOR, IDESCR, IPOS
EQUIVALENCE (RLOC, ILOC)

NARG=NARG+1

ILOC=IDESCR(1,NARG)

VAL=RLOC

RETURN

END

SUBROUTINE GETINT (IVAL)

Get next integer number from the args list

CHARACTER*500 MEMOR

DIMENSION IDESCR(Z2,50)

COMMON /ARGLIS/NARG,MEMOR, IDESCR, IPOS
NARG=NARG+1

IVAL=IDESCR (1, NARG)

145




Q

Qo000 0a0

(@]

QOO0

0O

QOO0

RETURN
END

SUBROUTINE GETSTR(STRING, L)

GET A CHARACTER STRING FROM THE ARGUMENTS LIST.
ON VAX : TRANSMIT THE DESCRIPTOR TO DECONV ROUTINE
ON IBM : EXTRACT THE ADDRESS IN THE GLOBAL STRING (CHARS), AND
LENGTH FROM THE DESCRIPTOR,
THEN, EXTRACT CHARACTERS. THERE IS A CHECK ON VALUES OF
BEGIN AND END

CHARACTER*500 MEMOR
DIMENSION IDESCR(2,50)
COMMON /ARGLIS/NARG,MEMOR, IDESCR, IPOS
CHARACTER* (*) STRING
NARG=NARG+1
NDEB=IDESCR (1, NARG)
L=IDESCR(2,NARG) -3
NEND=NDEB+L-1

STRING (1:1)=MEMOR (NDEB:NEND)
RETURN

END

SUBROUTINE DECONV (STRINGI, STRINGO, L)

RETURN A STRING, GIVEN A STRING.
NECESSARY FOR GETSTR ON VAX.
NOT USED ON IBM

CHARACTER* (*) STRINGI, STRINGO
L=LEN (STRINGI)

STRINGO (1:L)=STRINGI

RETURN

END

SUBROUTINE ADDRE (VAL)

Adds real into the arguments list
On vax, insert its address in the args list;
On IBM, fill the descriptor for it

CHARACTER*500 MEMOR

DIMENSION IDESCR(2,50)

COMMON /ARGLIS/NARG,MEMOR, IDESCR, IPOS
EQUIVALENCE (ILOC,RLOC)

NARG=NARG+1

RLOC=VAL

IDESCR (1, NARG)=ILOC

IDESCR (2, NARG) =2

RETURN

END

146




Partie 2 :

SUBROUTINE CALLSUJ(N1,N2,N3,N4)

calls any subroutine, referred by its name NAME

On vax, the table ILST contains the addresses of the arguments
list, which is the arguments list for the fortran call.

This is passed to 1lib$callg, which will make the call

anaoacaa

CHARACTER*S500 MEMOR, N2
DIMENSION IDESCR(2,50),N3(2,50)
COMMON /ARGLIS/ NARG,MEMOR, IDESCR, IPOS
CHARACTER*32 NAML
CHARACTER*132 AL
PARAMETER (MXSUBR=200)
CHARACTER*32 NAMES (MXSUBR)
COMMON/ SUBROU/NAMES, IADSUB {MXSUBR) , NSUBR
INTEGER ILST(-1:50),IDSC(2,50)
DATA ILST/ZC2E90000,51*0./
C
C argument from rpc to common block
c
CALL UCOPY(N3(1,1),IDESCR(1,1),100)
MEMOR(1:500) = N2(1:500)
NARG = N1
IPOS = N4
NAML({1:32)="' !
IST=IDESCR (1,NARG+1)
IEND=IDESCR (2,NARG+1)+IST~-4
NAML=MEMOR (IST:IEND)
write(6,*)' callsu :namL, IST, IEND=',namL,IST, IEND
CALL PRLIST(ILST, IDSC)
DO 10 IS=1,NSUBR
IF (NAML.EQ.NAMES (IS)) THEN
IF (IADSUB(IS) .EQ.-1)GO TO 41
C
C make the call : ILST is the arguments list; IADSUB(IS) contains the
C address of the entry point of the subroutine to be called
c
CALL LIBSCALLG(ILST(0),%VAL(IADSUB(IS)))
NARG=0
NNUMB=0
GO TO 999
ENDIF
10 CONTINUE
WRITE(6,*)' Gee, I do not know this ',namlL
WRITE (6,*)' will be skipped'
999 CONTINUE
o
C argument from common block to rpc
C

147




Q

CALL UCOPY{IDESCR(1,1),N3(1,1),100)
N2 (1:500) = MEMOR(1:500)

N1 = NARG

N4 = IPOS

RETURN

END

SUBROUTINE PSBADD (NAME, SUBRL)
get the address of one service

CHARACTER* (*) NAME

PARAMETER (MXSUBR=200)

CHARACTER*32 NAMES (MXSUBR)

COMMON/ SUBROU/NAMES, IADSUB (MXSUBR) , NSUBR
DATA N/0/

NSUBR=NSUBR+1

NAMES (NSUBR) =" '
NAMES (NSUBR) =NAME

IADSUB (NSUBR) =LSUBR (SUBRL)

RETURN

END

FUNCTION LSUBR(IX)
FIND THE ADDRESS OF AN EXTERNAL SUBROUTINE, AND RETURN IT
LSUBR=%LOC (IX)
RETURN
END
SUBROUTINE ICONV (IA, IB)

Puts a string descriptor (in IA) into a variable IB

DIMENSION IA(2),IB(2)

IB(1)=IA(1)
IB(2)=IA(2)
RETURN

END

SUBROUTINE PRLIST(ILST, IDSC)
Prepare arguments list for subroutine call

CHARACTER*500 MEMOR

DIMENSION IDESCR(2,50)

COMMON /ARGLIS/ NARG,MEMOR, IDESCR, IPOS
PARAMETER (MXSUBR=200)

CHARACTER*32 NAMES (MXSUBR)

COMMON/ SUBROU/NAMES, TADSUB (MXSUBR) , NSUBR *
INTEGER ILST(-1:50),IDSC(2,*)

148




@]

Q000

ILST (0) =NARG

DO 10 I=1,NARG

IF (IDESCR (2, I) .GT.3) THEN
NDEB=IDESCR(1,I)
1L=IDESCR(2,T)-3
NEND=NDEB+L-1
CALL ICONV (MEMOR (NDEB:NEND), IDSC(1,I))
ILST (I)=%LOC(IDSC(1,1I))

ELSE
ILST(I)=%LOC(IDESCR(1l,I))
ENDIF
10 CONTINUE
RETURN
END

SUBROUTINE INISUBJ

Initialises the addresses and names lists of foreseen
subroutines (service) to be called

PARAMETER (MXSUBR=200)

CHARACTER*32 NAMES (MXSUBR)
COMMON/SUBROU/NAMES, TADSUB (MXSUBR) , NSUBR
EXTERNAL SELTAB

EXTERNAL SELIN

.
EXTERNAL CRLCEB
EXTERNAL XOUTBK
EXTERNAL XIMPORT
CALL PSBADD('SELTAB',SELTAB)
CALL PSBADD('SELIN',SELIN)

CALL PSBADD ('CRLCEB',CRLCEB)
CALL PSBADD ('XOUTBK', XOUTBK)
CALL PSBADD ( 'XIMPORT', XIMPORT)
RETURN

END

149







Bibliographie

10

LEP - DESIGN; Report Cern-Lep, 84-01-Vol 1I
Physics at LEP; Cern 86-02 (1986)
Experiments at CERN in 1989

ALEPH Collaboration, A precise determination of the number of
families with light neutrinos and of the Z boson partial widths; Phys.
Lett. B Volume 235, number 3,4

ALEPH Collaboration, Determination of the leptonic branching ratios
of the Z; Phys. Lett. B Volume 234, number 3 ' '

ALEPH Collaboration, Heavy Flavour Production in Z Decays; CERN-
EP /90-54, 24 April 1990 (Submitted to Physique Letters B)

ALEPH Collaboration, Search for the Neutral Higgs Boson from Z°
Decay in the Higgs Mass Range between 11 and 24 GeV; Phys. Lett. B
Volume 241, number 1

J.V.Allaby, Data acquisition and analysis at LEP; Proceedings of the
1987 CERN School of Computing, CERN Yellow Report, CERN 88-03,
p-240

The ALEPH Collaboration, ALEPH: A Detector for Electron-Positron
Annihilations at LEP; CERN-EP/90-25, 22 February 1990 (submitted to
Nucl. Inst. Meth.)

M.Delfino et al., The ALEPH event reconstruction facility: parallel
processing using workstation; Proceeding of the International Conference
on Computing in High Energy Physics, Oxford England, 10-14 April
1989, p.401

151




11

12

13

14

15

16

17

18

19

20

21

23

24

T.DeMarco, Structured Analysis and System Specification; Yourdon
(1978)

G.Kellner, Software engineering; Proceedings of the 1988 CERN School
of Computing, CERN Yellow Report, CERN 89-06, p.8

S.M.Fisher, The practice of SA-SD; Proceedings of the 1988 CERN
School of Computing, CERN Yellow Report, CERN 89-06, p.34

P.P.Chen, the Entity-Relationship Model - Toward a Unified View of
Data; ACM Transaction on Database Systéme, Vol.1, No 1, March 1976,
pp 9-36

Z.Qian et al., Use of the ADAMO data management system within
ALEPH; Computer Phys. Commun. 45 (1987) p.283

M.G.Green, The ADAMO Data System, an Introduction for Particle
Physicists; Royal Holooway and Bedford New College 89-01 (1989)

S.M.Fisher and P.Palazzi, Using a Data Model from software design to
data analysis: what have we learned? Proceeding of the International

Conference on Computing in High Energy Physics, Oxford England, 10-14
April 1989, p.169

R.Johnson, Particle identification for dE/dx in Aleph; Aleph Note 88-51
(1988)

A.Ealet, Application de I'analyse multidimensionnelle 4 la
reconnaissance de photons dans le calorimetre d’Aleph; thése d’état

J.Knoblock et P.Norton, status of reconstruction algorithms for Aleph;
Aleph Note 88-6 (1988)

J.P.Albanese et al., Aleph Note 84-33 (1984), 85-153 (1985), 86-58 (1986)
V.Blobel, DESY Internal Report; DESY R1-88-01 (January 1988)

H.Albrecht et al., ALPHA User’s Guide; ALEPH 89-151, Softwr89-22,
19 September 1989

R.Brun et al., PAW - Physics Analysis Workstation; CERN program
library Q121, August 1989

152




25

26

27

28

29

30

31

32

33

34

35

36

37

TH.Burnett, IDA: an interactive data analysis environment for high
energy physics; Computer Phys. Commun. 45 (1987)

A.Aimar et al., Table Interaction and Plottjng; TIP user guide, version
1.0, 19 June 1989

C.Grab, DALI - Event Display User’s Guide; ALEPH Note 89-12,
22.11.1989

A.Bonissent and FEtienne, Artificial intelligence steering for the
interactive analysis of a high energy physics experiment; Proceeding of
the International Conference on Computing in High Energy Physics,
Oxford, England, 10-14 April 1989

A.Bonissent and F.Etienne, PIGAL - Prolog interactive and graphics for
Aleph analysis; Pigal user’s guide, vers 2.24, June 1989

S.M.Fisher, EARL: Entity Relationship query language; ALEPH
SOFTWR 88-5 2.5.1988

R.Brun and D.Lienart, HBOOK User Guide; CERN Computer Centre '~
Program Library, Long Write-up, October 28, 1987

A.Bonissent et al., Loosely Coupled Distributed Architecture for
Interactive Event Display and Analysis; Proceedings of the
International workshop on Software Engineering, Artificial Intelligence
and Expert Systems for High Energy and Nuclear Physics; Lyon France,

" March 1990

H.E.Bal et al., Programming Languages for Distributed Computing
Systems; ACM Computing Surveys, Vol. 21, No. 3, September 1989

B.Liskov, Structure of Distributed Programs; Invited talk of 12th
Internationnal Conference on Software Engineering, Nice France, March
26-30 1990

S.Mullender et al., Distributed Systems; ACM Press Frontier Series

B.J.Nelson, Remote Procedure Call; XEROX PARCCSL-81-9, May 1981

A.Birrel and B.Nelson, Implementing Remote Procedure Calls; ACM
Transactions on Computer System, Vol.2, No.1, Jan 1984

153




38
39

40
41
42

43

45

46

47
48
49

50

51

TJ.Berners-Lee, RPC User Manual; Version 2.4.0, Last revised July 1989
TJ.Berners-Lee, RPC Internals; Version 2.3.1, Last revised February 1989

R.Brun and J.Zoll, ZEBRA - Data Structure Management System; CERN
Program Library Q100, 1989

Digital Equipment Corporation, Guide to VAX Performance and
Coverage Analyzer; April 1989

Allocating Modules to processors in a Distributed System; IEEE Trans.
Software Engineering, November 1989

W.W.Chu et al., Task allocation in distributed data processing;
Computer, pp.57, November 1980

R.Hayes and R.D.Schlichting, Facilitating Mixed Language
Programming in Distributed System; IEEE Trans. Software Engineering,
December 1987

B.N.Bershad et al., A Remote Procedure Call Facility for
Interconnecting Heterogeneous Computer Systems; IEEE Trans. Software
Engineering, August 1987 '

J.C.Wileden et al., Specification Level Interoperability; Proceeding of
12th International Conference on Software Engineering, Nice France, 26-

30 March 1990

R.W.Scheifler and J.Gettys, The X Window System; ACM Transaction on
Graphic, Vol.5, No.2, April 1986 :

O.Mathieu, Etude de l'utilisation des méthode de l'intelligence
artificielle en analyse physique; thése d’état

D.E.Hall et al., The software bus: a vision for scientific software
development; Proceeding of the International Conference on Computing
in High Energy Physics, Oxford, England, 10-14 April 1989

F Giannesini et al.,, PROLOG; InterEditions, Paris, 1985

A.Colmerauer et al., PROLOG, bases théoriques et développements
actuels; Techniques et sciences informatiques, numéro 4, 1983

154




52

53

54

W.EClocksin and C.S.Mellish, Programming in PROLOG; Springler-
Verlag 1981

W.Atwood et al., The Reason Project; SLAC-PUB-5242, April 1990

G.Pujoll and M.Schwartz, Réseaux locaux; Ihformatiques, Edition
Eyrolles 1988

155







Glossaire

ADAMO

ALEPH

ALETPHLIB
ALPHA

Appel séquentiel

Appel concurrent

BOS

Callback

CERN

Client/Serveur

Consommateur

(Aleph DAta MOdel)
Un logiciel développé dans ALEPH pour organiser les
données selon le modeéle Entité-Association

L’un de quatre expériences de physique des particules au
LEP

Bibliothéque des utilitaires d’ALEPH

Un logiciel d’analyse physique d’ALEPH
(Sequentiel Call)

Dans un logiciel, Client et Serveur n’exécutent pas en

méme temps

(Concurrent Call)
Dans un logiciel, Client et Serveur exécuten‘t en méme temps

Un logiciel de gestionnaire de mémoire utilisé dans ALEPH
Un mécanisme de communication entre processus, la
procédure appelée fait appel & une subroutine située dans le
programme appelant

Organisation Européenne pour la Recherche Nucléaire

Un modéle de communication utilisé largement dans des
applications réparties, choisi par PIGAL

Consommateur et Producteur sont les deux termes par rapport

aux données partagées. Producteur est un programme qui
exporte les données, tandis que Consommateur les importe.

1567




DALI

DDL

DEC

DFD

EARL

ECAL

Echange de message

ECLU

Entité-Association

ESDA

FALCON

Un systéme interactif graphique 2D utilisé dans ALEPH

(Data Definition Language)
Langage formel de définition de données pour décrire en
détail les structure de données

Digital Equipment Corporation

(Data Flow Diagram)
La représentation graphique de SA (Structured Analysis)

(Entity and Relationship query Language)
Un langage quasi naturel congu pour exprimer les opérations
dans la sélection des données ayant une structure ER

(Electromagnetic CALorimeter)
Le Calorimetre électromagnétique, un type de détecteur de
particules

Voir Passage de message

(Ecal cluster)
Nom de I'entité de clusters du calorimetre
électromagnétique

(Entity-Relationship)
Une stratégie pour définir la structure des données, utilisée

dans ALEPH

(Entity-Relationship)

-Voir Entité-Association

(Entity-Relationship Diagram)
Le diagramme représentant le modele Entité-Association

(Ecal storey data)
Nom de I'entité de cellules du calorimetre
électromagnétique

(Facility for ALeph COmputing and Networking)

Ensemble de matériels (station de travail, réseau, disque),
basé sur une architecture LAVC, pour la reconstruction

158




FASTBUS

Générateur de stub

GKS

HBOOK

HCAL

IDA

ISO

ITC

JULIA

LAVC

LEP

d’événements d’ALEPH en parallele

Un standard international de systéme de contrdle et
d’acquisition de données utilisé dans ALEPH

(Stub generator)
L'un des utilitaires de RPC qui transforme le fichier de
définition d’interface en “stubs”

(Graphic Kernel System)
Un standard graphique international

Logiciel standard de manipulation d’histogramme au
CERN

(Hadron CALorimeter)
Le Calorimetre Hadronique, un type de détecteur de
particules

(Interactive environnement for Data Analysis)
Un Logiciel interactif développé a SLAC

(International Standards Organisation)
Une organisation internationale de normalisation

(Internal Tracking Chamber)
La Chambre a Traces Interne, une partie du détecteur
ALEPH

- Logiciel de reconstruction d’ALEPH

(Kinematic Analysis Language)
Un systéme interactif utilisé dans ARGUS, une expérience
de physique de particules & DESY, Hamburg, RFA

(DEC Local Area VAX Cluster)
Ensemble de stations de travail type VAX, liées par le

réseau local Ethernet avec disques communs

(Large Electron Positron collider)
Un collisionneur de particules au CERN

159




Macroprimitive

OSI

Partage de données
Passage de message

PAW

PCA

PIGAL

POT

Primitive
Producteur

Programmation distribuée

PROLOG

Protocole de communication

REASON

Primitives graphiques utilisées dans PIGAL

(Open System Interconnection)

Un modele en 7 couches recommandé par ISO pour que
différents systémes (matériels, logiciels) puissent
s’interconnecter

Un modele de communication entre plusieur processus

Un modele pour une communication point-a-point

(Physic Analysis Workstation)

Un outil d’analyse statistique et de présentation de données,
développé au CERN

(Performance and Coverage Analyzer)

Un logiciel de DEC pour mesurer la performance des

logiciels

(Prolog Interactivé and Graphic for Aleph analysis)
Un logiciel d’analyse interactive de données pour ALEPH

(Production Output Tape)
Fichier sortie de JULIA, contient les événements reconstruits

Sorties graphiques : ligne, cercles, cubes, etc.
Voir Consommateur

Une méthode de programmation pour réaliser les
applications réparties

(PROgrammtion en LOGique)
Un langage de programmation développé pour des
applications d’intelligence artificielle, utilisé dans PIGAL

Ensemble de régles respectées par tous les composants de
réseau pendant la communication

(Realtime Event Analysis Workstation Project)

Un systéme développé a SLAC (Stanford Linear Accelerator
Center), stanford, California, USA

160




Rendez-vous

Répertoire d’événements

RPC

RPCL

SASD

Sélecteur

Stub

TP

Tolérance aux erreurs

TPC

Transaction atomique

Un mécanisme de communication bidirectionnelle

(Event Directory)
Un fichier contenant les informations (numéro d’événement,

run...) des événements sélectionnnés

{Remote Procedure Call)
Un mécanisme de communication bidirectionnelle, utilisé
dans PIGAL

(RPC Language) .
Langage de description pour 'interface Client/Serveur de
RPC

(Structured Analysis and Structured Design)
Méthodes d’analyse et de conception de logiciel utilisées
dans ALEPH

Une entité spéciale créée par le module de sélection de
PIGAL

(Structured Graphics Routines)
Un logiciel graphique utilisé par les stations VAX

Elément de remplacement utilisé dans un programme,
ensemble de subroutines d'interface produit par le
compilateur de RPC

(Table Interaction and Plotting)
Un logiciel interactif interfagant a ADAMO, basé sur PAW

Un mécanisme pour récupérer le systéme en cas de
défaillance partielle

(Time Projection Chamber)
Chambre & Projection Temporelle, un type de détecteur de

particules

Un mécanisme pour garantier la cohérence de base de
données ou de fichier partagé dans une application répartie

161




UIS

X-WINDOW

ZEBRA

(User Interface Software)
Un logiciel de DEC pour piloter les graphiques et les
opérations de fenétres

Un logiciel standard portable pour contréler la
visualisation du graphique

(Data Structure Management System)
Un gestionnaire de mémoire développé au CERN

Cette these a été composée avec le logiciel MacWrite II (Version 1.1)
pour la texte et le logiciel MacDraft (Version 1.2b) pour les figures,
sur I'ordinateur Macintosh SE de Apple Computers.

Les polices de caracteres choisies sont les suivantes :

Texte

Commandes, Programmes
Tétes de chapitres

Tétes de sections

Tétes de sous-sections
Explications des figures

Palatino 10,5 point
Courier 10 point
Helvetica gras 21 point
Helvetica gras 18 point
Helvetica gras 15,5 point
Geneva 8 point




RESUME

L’analyse de données des expériences de physique des particules dépend largement de

I'informatique. Le travail décrit dans cette thése vise & introduire de nouveaux outils
_informatiques dans les domaines de : logiciel graphique, langage de programmation,

méthodologie de conception, technique de réseau local pour 1’analyse de données.

Un environnement d’analyse basé sur une architecture distribuée est mis en oeuvre. Les

composants du systéme sont répartis sur un réseau local et se synchromsent sousle

contrdle d'un programme principal réalisé en langage PROLOG, ceci afin d’adapter
I'analyse de données aux besoins de I’expérience ALEPH au LEP.

MOTS CLES

Analyse de données, Analyse interactive, Prolog, Graphique, Architecture du log1c1e1,
Systéme réparti, Communication entre processus

ABSTRACT

Data analysis for high energy physics experiments depends widely upon computer
science and technology. The work described in this thesis intends to Bntrodﬁce some
new developments : graphic software, programming language, system design
methodology and local network into the data analysis domain.

An analysis environment based on a distributed architecture is realized. The system
components are connected together by a local network and are synchronized with each
other under the control of a monitor written in PROLOG in order to satisfy the
requirements of data analysis for (LEP) experiments.

KEYWORDS

' Data analysis, Interactive analysis, Prolog, Graphic, Software architecture,
Distributed system, Remote procedure call, Interprocess communication




