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ABSTRACT

It is often argued that 2-dimensional conformal field theory (2D CFT)
is too special to expect that its methods will work in four space-
time dimensions (4D). We shall demonstrate that most objections
can, in fact, be overcome. Using, in particular, the principle of global
conformal invariance (GCI) in Minkowski space one can extend the
notion of a (chiral) vertex algebra to higher dimensions. Although
there are no scalar Lie fields in more than two dimensions, harmonic
bilocal fields, which naturally arise in operator product expansions in
4D GCI models, give rise to infinite dimensional Lie algebras so that
powerful methods of modern representation theory happily apply.

The talk is based on joint work with B. Bakalov, N.M. Nikolov, K.-H.
Rehren (and, at an earlier stage, Ya.S. Stanev).

1. Can 2D CFT methods work in higher dimensions?

A number of reasons are given why 2-dimensional conformal field theory is,
in a way, exceptional so that extending its methods to higher dimensions
appears to be hopeless.

1. The 2D conformal group is infinite dimensional: it is the direct prod-
uct of the diffeomorphism groups of the left and right (compactified) light
rays. (In the euclidean picture it is the group of analytic and antianalytic
conformal mappings.) By contrast, for D > 2, according to the Liouville
theorem, the (quantum mechanical) conformal group in D space-time di-

mensions is finite (in fact, W-) dimensional: it is (a covering of)

the spin group Spin(D, 2).
2. The representation theory of affine Kac-Moody algebras [Kac] and of the

Virasoro algebra [K79] [KR] is playing a crucial role in constructing soluble
2D models of (rational) CFT. There are, on the other hand, no local Lie
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fields in higher dimensions: after an inconclusive attempt by Robinson [R64]
(criticized in [L67]) this was proven for scalar fields by Baumann [B76].

3. The light cone in two dimensions is the direct product of two light rays.
This geometric fact is the basis of splitting 2D variables into right- and left-
movers’ chiral variables. No such splitting seems to be available in higher
dimensions.

4. There are chiral algebras in 2D CFT whose local currents satisfy the
axioms of vertez algebras' and have rational correlation functions. It was
believed for a long time that they have no higher dimensional CFT ana-
logue.

5. Furthermore, the chiral currents in a 2D CFT on a torus have ellip-
tic correlation functions [Zh96], the 1-point function of the stress energy
tensor appearing as a modular form (these can be also interpreted as finite
temperature correlation functions and a thermal energy mean value on the
Riemann sphere). Again, there seemed to be no good reason to expect
higher dimensional analogues of these attractive properties.

We shall argue that each of the listed features of 2D CFT does have, when
properly understood, a higher dimensional counterpart.

1. The presence of a conformal anomaly (a non-zero Virasoro central charge
¢) tells us that the infinite conformal symmetry in 1 + 1 dimension is, in
fact, broken. What is actually used in 2D CFT are the (conformal) operator
product expansions (OPEs) which can be derived for any D and allow to
extend the notion of a primary field (for instance with respect to the stress-
energy tensor).

2. For D = 4, infinite dimensional Lie algebras are generated by bifields
Vij(x1,22) which naturally arise in the OPE of a (finite) set of (say, her-
mitean, scalar) local fields ¢; of dimension d (> 1):

(a12)? Gi(w1) dj(x2) = Nij + 2ty Vij(ar, 22) + O((a,)?)
T12 =1 — T2, 1’2:}(2—(%0)2, Nij:NjiER (11)
where Vj; are defined as (infinite) sums of OPE contributions of (twist two)

conserved local tensor currents (and the real symmetric matrix (1V;;) is

positive definite). We say more on this in what follows (reviewing results
of [NST02, 03], [NRT05, 08], [BNRT07, 08]).

3. We shall exhibit a factorization of higher dimensional intervals by using
the following parametrization of the conformally compactified space-time
([U63], [T86], [NO5], [NT05]):

i | , &, SP-1 x sl
M:{Za:e“fua,a:1,...,D;t,ua€R;u :;uazl}:ﬁ
(1.2)

! As a mathematical subject vertex algebras were anticipated by I. Frenkel and V. Kac
[FK80] and introduced by R. Borcherds [B86]; for reviews and further references see e.g.
K] [FB-Z] [dSK]
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The real interval between two points z; = €t uy, 29 = €2 uy is given by:

23, (22 23)71/% = 2(costyy —cosa) = —dsinty sint_, zp =2z — 2z (1.3)
ti:1/2(t12:|:a), U1 - Uz = COs«, tlgztl—tg. (14)

Thus ¢4 and ¢_ are the compact picture counterparts of “left” and “right”
chiral variables (see [NT05]). The factorization of 2D cross ratios into chiral
parts again has a higher dimensional analogue [DO01]:

2 .2 2 .2
T12 T34 L14 %23
1= g5 = Ug U, t.:$2 = =(1-up)(l—-u"), zj=u;—x;
13 L24 1324

(1.5)
which yields a separation of variables in the d’Alembert equation (cf. Re-

mark 2.1). It would be, in fact, interesting to relate the factorization (1.5)
to (1.3).

4. Tt turns out that the requirement of global conformal invariance (GCI)
in Minkowski space together with the standard Wightman axioms of local
commutativity and energy positivity entails the rationality of correlation
functions in any even number of space-time dimensions [NTO01]. Indeed,
GCI and local commutativity of Bose fields (for space-like separations of the
arguments) imply the Huygens principle and, in fact, the strong (algebraic)
locality condition

(:1:%2)”[@(351), ¢j(z2)] =0 for n sufficiently large, (1.6)

a condition only consistent with the theory of free fields for an even number
of space time dimensions only.It is this Huygens locality condition which
allows the introduction of higher dimensional vertex algebras [N05] [NT05]
[BNO6].

5. Local GCI fields have elliptic thermal correlation functions with respect
to the (differences of ) conformal time variables in any even number of space-
time dimensions; the corresponding energy mean values in a Gibbs (KMS)
?tate (]see e.g. [H]) are expressed as linear combinations of modular forms
NTO5].

The rest of the paper elaborates on the recent developments [BNRT07]
[NRT08] [BNRT08] concerned mostly with the relevant infinite dimensional
Lie algebras and their representations (issue 2). It is organized as follows.
In Sect. 2 we reproduce the general form of the 4-point function of the
bifield V' and the leading term in its conformal partial wave expansion.
The case of a theory of scalar fields of dimension d = 2 is singled out, in
which the bifields (and the unit operator) close a commutator algebra. In
Sect. 3 we classify the arising infinite dimensional Lie algebras £ in terms
of the three real division rings F = R, C,H. In Sect. 4 we formulate the
main result of [BNRT07] and [BNRTO08] on the Fock space representations
of the infinite dimensional Lie algebra L(F) coupled to the (dual, in the
sense of Howe [H85]) compact gauge group U(N,F) where N is the central
charge of L.
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2. Four-point functions and conformal partial
wave expansions

The conformal bifields V' (z1,x2) of dimension (1,1) which arise in the
OPE (1.1) (as sums of integrals of conserved tensor currents) satisfy the
d’Alembert equation in each argument [NST03]; we shall call them har-
monic bifields. Their correlation functions depend on the dimension d of
the local scalar fields ¢. For d = 1 one is actually dealing with the the-
ory of a free massless field. We shall, therefore, assume d > 1. A basis
{fvi, v=0,1,...,d—2, i = 1,2} of invariant amplitudes F'(s, ) such that

1

(0] Vi(wy,22) Va(w3,24) | 0) =
P13 P24

F(s,t),
pij = x?j + iOx?j , x? = — (20)? (2.1)
is given by

v+1 uliJrl

(uy —u_) fur(s,t) = 1 _UZ+)V+1 - (1 —wu_)rt’

(U+ - ’LL,) fVQ(Svt) = (_1)V(ul~/|»+l - uli+1) y, V= 07 17 s 7d - 27 (22)
where uy are the ”chiral variables” (1.5);

1 _1—5—t

f01=z, foe=1; Jfn R fiz=1t—s5—1;
(1—1)2—5(2—1t)+ s> 1 s 1
= wst)=-fnl7, 7 2.3
f21 3 s foa(sit) sl 70 g (2.3)
fui, © = 1,2 corresponding to single pole terms [NRTO08] in the 4-point
correlation functions wy;(z1,...,x4) = fui(s,t)/p13 poa:
1 1
Wo1

= , W2 = 5
P14 P23 P13 P24

_ P13P24 — P14 P23 — P12 P34 Wwyp = P14 P23 — P13 P24 — P12 P34

w11 ) 3
Pl 033 0%3 P34
~ (p13 p2a — p1a p23)? — P12 p3a (2 p13 paa — p14 p2s) + Pia P34
w1 = 3 3 )
P14 P23
(P14 p23 — p13 p24)? — P12 p3a (2 p1a pas — p13 p24) + Pig P34
woo = . (2.4)

P:fg 034
We have wyo = Pyqwyi1(= Prow,1) where Pj; stands for the substitution

of the arguments z; and z;. Clearly, for 21 = x9 (or s = 0, t = 1) only
the amplitudes fo; contribute to the 4-point function (2.1). Indeed, it
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has been demonstrated in [NRT05] that the lowest angular momentum ()
contribution to f,; corresponds to ¢ = v. The corresponding OPE of the
bifield V starts with a local scalar field ¢ of dimension d = 2 for v = 0;
with a conserved current j, (of d = 3) for v = 1; with a conserved tensor
field T, with all properties of the (unique) stress-energy tensor for v = 2.
Indeed, the amplitude f,; admits an expansion in twist two® conformal
partial waves By(s,t) [DMPPT] starting with ¢ = v (for a derivation see
[NRT05], Appendix B).

Guyi(ug) — Gy (u_)

Uy —U—

ﬁu(‘g? t) =

s Gu(u) = w"Fp, p;2p30). (2.5)

Remark 2.1 Egs. (2.2), (2.5) provide examples of solutions of the
d’Alembert equation in any of the arguments x;,i = 1,2,3,4. In fact,
the general conformal covariant (of dimension 1 in each argument) such
solution has the form of the right hand side of (2.1) with

fluy) —f(u,).

Uy —U—

F(s,t) = (2.6)

Remark 2.2 We note that albeit each individual conformal partial wave is
a transcendental function (like (2.5)) the sum of all such twist two contri-
butions is the rational function f,(s,t).

It can be deduced from the analysis of 4-point functions that the commu-
tator algebra of a set of harmonic bifields generated by OPE of scalar fields
of dimension d can only close on the V’s and the unit operator for d = 2.
In this case the bifields V are proven, in addition, to be Huygens bilocal
[NRTO08].

Remark 2.3 In general, irreducible positive energy representations of
the (connected) conformal group are labeled by triples (d;j1,72) includ-
ing the dimension d and the Lorentz weight (j1,72)(25; € N), [M77].
It turns out that for d = 3 there is a spin-tensor bifield of weight
((3/2;1/2,0),(3/2;0,1/2)) whose commutator algebra does close; for d = 4
there is a conformal tensor bifield of weight ((2;1,0),(2;0,1)). These bi-
fields may be termed lefthanded: they are analogues of chiral 2D cur-
rents; a set of bifields invariant under space reflections would also involve
their righthanded counterparts (of weights ((3/2;0,1/2),(3/2;1/2,0)) and
((2;0,1),(2;1,0)), respectively).

2The twist of a symmetric traceless tensor field is defined as the difference between
its conformal dimension and its rank. All conserved symmetric tensors in 4D have twist
two.
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3. Infinite dimensional Lie algebras and real division rings
Our starting point is the following result of [NRT08|.

Proposition 3.1. The harmonic bilocal fields V' arising in the OPEs of
a (finite) set of local hermitean scalar fields of dimension d = 2 can be
labeled by the elements M of an algebra M C Mat(L,R) of real matrices
closed under transposition, M — M, in such a way that the following
commutation relations (CR) hold:

Var, (21, 72), Vg, (23, 74)] = A13Ving, ar, (T2, 24) + D2a Vi, g, (21, 73)

+ A3V vy (71, 24) + A1aVaryar, (23, 72)

+ t’l”(MlMQ) A12734 + tT(tMlMQ) A12743 ; (31)
here A;; is the free field commutator, A;; = A;; — Aﬁ-, and A5 =
Al A;rj Ay A;E where A:rj = At (x; — xj) is the 2-point Wightman func-
tion of a free massless scalar field.

We call the set of bilocal fields closed under the CR (3.1) a Lie system.
The types of a Lie systems are determined by the corresponding t-algebras
- i.e., real associative matrix algebras M closed under transposition. We
first observe that each such M can be equipped with a Frobenius inner
product

< My, My >= t?“tMlMg = Z(Ml)ij(MQ)ija (32)

ij
which is symmetric, positive definite, and has the property <
MMy, M3 >=< My, M3'M, >. This implies that for every right ideal
Z C M its orthogonal complement is again a right ideal while its trans-

posed Z is a left ideal. Therefore, M is a semisimple algebra so that every
module over M is a direct sum of irreducible modules.

Let now M be irreducible. It then follows from the Schur’s lemma (whose
real version [L] is less popular than the complex one) that its commutant
M in Mat(L,R) coincides with one of the three real division rings (or
not necessarily commutative fields): the fields of real and the complex
numbers R and C, and the noncommutative division ring H of quaternions.
In each case the Lie algebra of bilocal fields is a central extension of an
infinite dimensional Lie algebra that admits a discrete series of highest
weight representations?

3Finite dimensional simple Lie groups G with this property have been extensively
studied by mathematicians (for a review and references - see [EHW]); for an extension
to the infinite dimensional case - see [S90]. If Z is the centre of G and K is a closed
maximal subgroup of G such that K/Z is compact then G is characterized by the property
that (G, K) is a hermitean symmetric pair. Such groups give rise to simple space-time
symmetries in the sense of [MRO7] (see also earlier work - in particular by Giinaydin -
cited there).
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It was proven, first in the theory of a single scalar field ¢ (of dimension
two) [NSTO02], and eventually for an arbitrary set of such fields [NRT08],
that the bilocal fields Vjs can be written as linear combinations of normal
products of free massless scalar fields ¢;(x):

Vig(er,22) = > MY 2 gi(1)pj(wa) : . (3.3)
For each of the above types of Lie systems Vs has a canonical form, namely

N
R: V(xi,x9) = Z spi(x1)pi(xe) 1

i=1
N
C: Wz, m0) =Y g(@1)pj(2) 1,
j=1
N
H: Y(z1,22) = Z s (1) om(x2) (3.4)
m=1

where ¢; are real, ¢; are complex, and ¢,, are quaternionic valued fields
(corresponding to (3.2) with L = N, 2N and 4N, respectively). We shall
denote the associated infinite dimensional Lie algebra by L(F), F =R, C
or H.

Remark 3.1 We note that the quaternions (realized as 4 x 4 real matrices)
appear both in the definition of Y - i.e., of the matrix algebra M, and of
its commutant M, the two mutually commuting sets of imaginary quater-
nionic units ¢; and r; corresponding to the splitting of the Lie algebra so(4)
of real skew-symmetric 4 x 4 matrices into a direct sum of “a left and a
right” so(3) Lie subalgebras:

lh=03R¢, lo=ec®1, l3=1_01r=01Re¢,
(gj)aﬂ :5a05jﬁ_6aj50,8_50jaﬁ7 aaﬁ:07172737 ]: 17273;
"M =€Ro3, ro=1R€, r3 =112 =€ 01 (3.5)

where o}, are the Pauli matrices, € = iop and £, is the totally antisym-
metric Levi-Civita tensor normalized by €g123 = 1. We have

Y (z1,22) = Vo(a1, 22)1 4+ Vi(x1, 22)0 + Va(z1, 22)l + V3(21, 22)l3
= Y($2,$1)+ (6:— = _gb [61,7“]] = 0) ;

N
Vi(rr,22) = D 100 (21) (b )aply(v2) 1, Lo=1.  (3.6)

m=1
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In order to determine the Lie algebra corresponding to the CR (3.1) in each
of the three cases (3.5) we choose a discrete basis and specify the topology of
the resulting infinite matrix algebra in such a way that the generators of the
conformal Lie algebra (most importantly, the conformal Hamiltonian H)
belong to it. The basis, say (X,n,) where m, n are multiindices, corresponds
to the expansion [T86] of a free massless scalar field ¢ in creation and
annihilation operators of fixed energy states

oo (£41)2

QD(Z> = Z Z ((22)767190@&,# + prffl,u)héu(z)a (37)

where (hg,(z),pn = 1,...,(¢ + 1)?) form a basis of homogeneous harmonic
polynomials of degree ¢ in the complex 4-vector z (of the parametriza-
tion (1.2) of M). The generators of the conformal Lie algebra su(2,2) are
expressed as infinite sums in X,,, with a finite number of diagonals (i.e.
with bounded |m — n| - cf. Appendix B to [BNRT07]). The requirement
su(2,2) C L thus restricts the topology of £ implying that the last (c-
number) term in (3.1) gives rise to a non-trivial central extension of L.

The analysis of [BNRT07], [BNRT08] yields the following

Proposition 3.2 The Lie algebras L(F), F =R, C,H are 1-parameter cen-
tral extensions of appropriate completions of the following inductive limits
of matrix algebras:

R: sp(oco,R) = lim sp(2n,R)
C: u(oo,00) = lim u(n,n)

H: so*(400) = lim so*(4n). (3.8)

n—oo

In the free field realization (3.4) the suitably normalized central charge co-
incides with the positive integer N.

4. Fock space representation of the dual pair £(F) x U(N,TF)

To summarize the discussion of the last section: there are three infinite
dimensional irreducible Lie algebras, £(F) that are generated in a theory
of GCI scalar fields of dimension d = 2 and correspond to the three real
division rings F (Proposition 3.2). For an integer central charge N they
admit a free field realization of type (3.3) and a Fock space representation
with (compact) gauge group U (N, F):

U(N,R)=O(N), U(N,C)=U(N), U(N,H)=Sp@2N). (4.1)

It is remarkable that this situation is general.
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Theorem 4.1 (i) In any unitary irreducible positive energy representation
(UIPER) of L(IF) the central charge N is a positive integer.

(ii) All UIPERs of L(F) are realized (with multiplicities) in the Fock space
F of NdimgF free hermitean massless scalar fields.

(iii) The ground states of equivalent UIPERs in F form irreducible repre-
sentations of the gauge group U(N,F) (4.1). This establishes a one-to-one
correspondence between UIPERs of L(F) occurring in the Fock space and
the irreducible representations of U(N,TF).

The proof of this theorem for F = R, C is given in [BNRTO07] (the proof
of (i) is already contained in [NST02]); the proof for F = H is given in
[BNRTO0S].

Remark 4.1 Theorem 4.1 is also valid - and its proof becomes technically
simpler - for a 2-dimensional chiral theory (in which the local fields are
functions of a single complex variable). For F = C the representation theory
of the resulting infinite dimensional Lie algebra u (oo, 00) is then essentially
equivalent to that of the vertex algebra Wi, studied in [KR96] (see the
introduction to [BNRT07] for a more precise comparison).

Theorem 4.1 provides a link between two parallel developments, one in the
study of highest weight modules of reductive Lie groups (and of related
dual pairs) [KV78], [J81], [EHW], [S90] (and [H85] [H89]), the other in the
work of Haag-Doplicher-Roberts [H], [DR90] on the theory of (global) gauge
groups and superselection sectors in the operator algebra approach to local
quantum physics (which actually both originated - in the talks of Irving
Segal and Rudolf Haag, respectively - at the same Lille 1957 conference on
mathematical problems in quantum field theory). Albeit the settings are
not equivalent the results match. The observable algebra (in our case, the
commutator algebra generated by the set of bilocal fields V) determines
the (compact) gauge group and the structure of the superselection sectors
of the theory. (For a more careful comparison between the two approaches
- see Sections 1 and 4 of [BNRT07].)

The infinite dimensional Lie algebra L£(FF) and the compact gauge group
U(N,F) appear as a rather special (limit-) case of a dual pair in the sense
of Howe [H85], [H89]. It would be interesting to explore whether other
inequivalent) pairs would appear in the study of commutator algebras of
spin)tensor bifields (discussed in Remark 2.2) and of their supersymmetric
extension (e.g. a limit as m,n — oo of the series of Lie superalgebras
osp(4m*|2n) studied in [GS91]).

Acknowledgments. It is a pleasure to thank my coauthors Bojko Bakalov,
Nikolay M. Nikolov and Karl-Henning Rehren: allresults (reported in Sects.
2-4) of this talk have been obtained in collaboration with them. Remarks
by K.-H. Rehren helped improve the final version of the present text. I
thank the IHES for its hospitality while this work was conceived, and the
organizers of the 5th Mathematical Physics Meeting: Summer School and
Conference on Modern Mathematical Physics (Belgrade, July 2008), in
particular Branko Dragovich, for invitation and support.
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