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Abstract: The unpolarized and the Collins fragmentation functions (FF) quantitatively describe
the hadronization of a polarized quark to unpolarized hadrons. They are needed for mapping the 3D
structure of the nucleon from the semi-inclusive deep inelastic scattering experiments. We present
our recent results in modeling the polarized quark hadronization in sequential hadron emission
picture. Using the spin density matrix formalism, we describe the elementary q → q′ + h process
using the eight leading twist quark-to-quark transverse-momentum-dependent (TMD) elementary
FFs. The unpolarized and the Collins FFs of light quarks to pions are then calculated using
a Monte Carlo (MC) implementation of this model by utilizing the quark-jet framework for the
sequential hadronization. We outline the the distinctive features of the resulting Collins FFs that
reflect the underlying hadronization mechanism, such as the treatment of the intrinsic transverse
momentum of the produced hadrons in the quark-jet framework. These polarized FFs can be
precisely measured at FCC-ee, that would allow us to discriminate between different mechanisms
for hadronisation, that in turn would provide a detailed description of various deep-inelastic hadron
production processes.

Introduction

One of the most challenging topics in high energy physics has been the description of the parton
hadronization process because of its non-perturbative nature. The FFs that quantify the hadroniza-
tion process are universal, in that according to the QCD factorization theorems they enter into the
cross sections of various hard scattering processes with observed final state hadrons [1]. The so-
called transverse-momentum-dependent (TMD) unpolarized FF can be interpreted as a number
density for a quark to produce a hadron that carries a fraction of its light-cone momentum and
a transverse momentum with respect to the momentum of the original quark. The modulations
of this probability density for unpolarized hadrons produced by a transversely polarized quark is
described by the so-called Collins FF [2]. The TMD FFs are needed to extract the TMD parton
distribution functions, that encode the 3D structure of the nucleon in the momentum space, from
semi-inclusive deep inelastic scattering experiments. One of the most widely used approach for
describing hadronization is based on the Lund string model [3] and implemented in the Monte
Carlo event generators PYTHIA [4]. Nevertheless, at present the polarized quark hadronization is
not implemented in any MC event generator, and it is not possible to simulate the Collins effect.

Recently, we developed a self-consistent description of the polarized quark hadronization and a
corresponding MC framework for calculating transversely polarized quark to pion FFs based on
the extended quark-jet model [5],[6]. The quark-jet model describes the hadronization of a quark
as a sequential emission of hadrons that do not interact with each other or re-interact with the
remnant, as schematically depicted in Fig. 1. The quark to hadron fragmentation functions are
then calculated as the corresponding number densities, either using integral equations or Monte
Carlo techniques [7],[8],[9],[10],[11],[12],[13],[14]. Here we highlight the key findings of Refs. [5] and
[6] in the perspective of future precise measurements of polarized FFs in FCC-ee experiment.
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Elementary q → q′ + h process

We consider a quark hadronization mechanism where hadrons are produced one at a time in a
sequential manner q → q1 + h1, q1 → q2 + h2, etc. Thus, to describe this process we need to know
both the probability density for the initial quark q to produce a final quark q1 of a given flavor
and momentum, as well as how the polarization is transferred from q to q1. Let’s denote the spin
density matrices of q and q1 as ρq and ρq1 respectively, that are completely determined by the
corresponding polarization vectors sq and sq1 . The probability density for this transition can be
expressed in terms of the respective density matrices ρq and ρq1 ,

f q→q1 = Tr[ρq1AρqA], (1)

where A is some matrix describing the interaction with the other particles in this process. Then
the probability density f q→q1 should be a linear function in both sq and sq1 ,

f q→q1(sq, sq1) = αq + βq · sq1 , (2)

where both αq and βq are linear functions of sq that also depend on the momenta of the quarks.
We can express these coefficients in terms of the 8 leading-twist quark-to-quark TMD elementary
FFs ( see Refs. [5],[6])

αq ≡D̂(z1, p
2
1⊥) +

(p1⊥ × sT ) · ẑ
z1M

Ĥ⊥(z1, p
2
1⊥), (3)

βq‖ ≡sL ĜL(z1, p
2
1⊥)− (p1⊥ · sT )

z1M
Ĥ⊥L (z1, p

2
1⊥), (4)

βq⊥ ≡
p′1⊥
z1M

D̂⊥T (z1, p
2
1⊥)− p1⊥

z1M
sLĜT (z1, p

2
1⊥) (5)

+ sT ĤT (z1, p
2
1⊥) +

p1⊥(p1⊥ · sT )

z2
1M2

Ĥ⊥T (z1, p
2
1⊥),

where z1 and p1⊥ are the light-cone momentum fraction and the transverse momentum of q1 with
respect to q, while M is the mass of q1. The momentum vector p′1⊥ ≡ (−p1,y, p1,x). The unit
vector ẑ denotes the direction of the 3-momentum of q, which also helps to define sT and sL as
the transverse and longitudinal components of sq = (sT , sL). In this work we use hats on TMD
elementary FFs to distinguish them from the analogous TMD FFs .

Let us not that the quark q1 is unobserved, then its polarization is completely determined by
sq, z1 and p1⊥. It can be expressed as sq1 = βq/αq. The probability to produce quark q1

with light-cone momentum fraction z1 and transverse momentum p1⊥ is determined from Eq. (2),
f̂ q→q1(z1,p1⊥; sq) = αq. The next fragmentation steps q1 → q2 , can be treated in a completely
analogous manner, where the results are expressed via light-cone momentum fraction η2 and trans-
verse momentum p2⊥ of quark q2 relative to q1. Nevertheless, since sq1 itself is determined by sq, we
can infer that sq2 should also be completely determined by sq, as well as the light-cone momentum
fraction z2 and transverse momentum P2⊥ of quark q2 with respect to q. Then, in the quark-jet
framework, the probability of the q → q2 transition is given by

f̂ (2)
q→q2(z2,P2⊥; sq) = f̂ q→q1(z1,p1⊥; sq)⊗ f̂ q1→q2(η2,p2⊥; sq1), (6)

where the convolution ⊗ relates the corresponding relative momenta. We can then iterate this
procedure for the subsequent fragmentation steps in a completely analogous manner.
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MC Implementation and Results

The iterative mechanism for the quark polarization transfer described in the previous section allows
us to readily adapt the extended quark-jet framework for MC simulations of the polarized quark
hadronization process with a finite number of produced hadrons, similar to our previous work in
Refs. [9],[12], and [13]. The basic concept is to adapt the number density implementation of the
FFs, which then can be calculated using Monte Carlo techniques as averages of these densities
taken over a large number of quark hadronization event simulations. In the instance of polarized
quark fragmentation into unpolarized hadrons, the corresponding number density is the following
polarized fragmentation function:

Dh/q↑(z, p
2
⊥, ϕ) = Dh/q(z, p2

⊥)−H⊥h/q(z, p2
⊥)
p⊥sT
zmh

sin(ϕC), (7)

where Dh/q(z, p2
⊥) and H⊥h/q(z, p2

⊥) denote the unpolarized and Collins fragmentation function,
respectively. The variables z and p2

⊥ are the light-cone momentum fraction and the transverse
momentum squared of the produced hadron with respect to the momentum of the initial fragment-
ing quark, and mh denotes its mass. Here, sT is the modulus of the transverse component of the
quark’s polarization. The Collins angle for the hadron ϕC ≡ ϕ− ϕs is defined as the difference of
the azimuthal angles of the produced hadron’s transverse momentum ϕ and the transverse polar-
ization of the initial quark ϕs. We calculate Dh/q↑(z, p

2
⊥, ϕ) by computing the average number of

hadrons h with given momenta produced in the hadronization chain of q. This can be accomplished
by sampling the remnant quark’s momentum according to the elementary quark-to-quark splitting
functions, and calculating the type and the momentum of the produced hadron using flavor and
momentum conservation. Then we calculate the polarization of the remnant quark using its mo-
mentum from the polarization of the fragmenting quark. We can continue the hadronization chain
until we reach some predetermined termination condition, which we choose as a given number of
produced hadrons NL. The hadrons produced at the nth step in the hadronization chain are called
rank-n hadrons.

Figure 1: Schematic depiction of the transverse momentum generation for the extended quark-jet

framework and the Lund model.

Here we point out a distinctive feature of the quark-jet model in describing the intrinsic transverse
momentum of the produced hadrons, which is schematically depicted in the left panel of Fig. 1. In
the i-th hadron emission step, we sample the light cone momentum fraction ηi and the transverse
momentum pi⊥ of the remnant quark qi with respect to the fragmenting quark qi−1. The light-
cone momentum fraction zi of the remnant quark with respect to the initial quark q is given by the
simple relation zi = η1 · ... · ηi = zi−1 · ηi. To obtain the transverse momentum in the initial quark
frame, we need to perform a Lorentz transform that preserves the light-cone momentum fraction.
The resulting expression,

Pi⊥ = ηi pi−1⊥ + pi⊥, (8)

shows that the transverse momentum of the remnant quark (and the emitted hadron via momentum
conservation), gets a contribution from the transverse momenta of the preceding quarks in the
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hadronization chain. The same is true for the produced hadrons, where the transverse momentum
of the hadron emitted at a given step gets a contribution from the recoil of the transverse momenta
of previously emitted hadrons. This is different in Lund model, where the different string breaks,
that create the qq pairs, are causally disconnected. Thus, the direction of the string does not rotate
after each quark pair creation, and only the transverse momenta of the hadrons of neighboring ranks
can be correlated. For example, the transverse momenta of hadrons h1 and h3 in the left panel of
Fig. 1 depicting the quark-jet model are correlated, while those in the right panel, schematically
depicting the Lund model, are not.

The input for the MC calculations of the polarized FFs are the eight TMD elementary quark-to-
quark FFs that describe the one step process and the polarization transfer. These elementary FFs
have been modeled in Ref. [6]. Here we discuss the results for the calculations of the unpolarized
and Collins functions of pions produced by an up quark. The isospin symmetry, assumed to be
exact in the model, then can be used to extract the results for the down quark FFs. The plots in
Figs. 2 show the unpolarized FFs, and the analyzing powers for an up quark fragmenting to pions.
The results for the analyzing power of the Collins effect show the opposite sign for the favored and
unfavored channels, and become equal in size at z ' 0.2. These are in agreement with recent the
results by COMPASS, STAR and BELLE experiments that measured significant asymmetries at
z ' 0.2 of opposite signs for the favored and unfavored FFs. In the future work, we can tune our
results to best fit experimental data by changing the input elementary quark-to-quark FFs, as we
have demonstrated in Ref. [6] a significant dependence of our results on these functions.
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Figure 2: Fitted values of zD (right panel), and 2H⊥(1/2)/D (left panel) as a function of z from

Monte Carlo simulations for u→ π, with NL = 10 emitted hadrons.

Conclusions

The accurate description of the polarized quark hadronization process remains one of the most
challenging aspects in the phenomenological description of deep inelastic scattering processes. For
example, the treatment of the quark polarization and the corresponding correlations are, to date,
not included in any of the well-known event generators, such as PYTHIA [4] . Here we presented a
self-consistent model for polarized quark hadronization in an iterative setting, and the MC imple-
mentation of this model using the extended quark-jet hadronization framework, as first described
in Refs. [5] and [6]. The MC approach was used to calculate the TMD polarized FFs of light quarks
to pions, namely the unpolarized and Collins FFs. The results for the unpolarized FFs and the
ratios of the 1/2 moments of the Collins functions to the unpolarized FFs were presented in Fig. 2.
The analyzing powers demonstrated distinctive features: opposite sign for the large z values for
favored and unfavored channels. The results for the favored channel then fall off in magnitude more
rapidly than the unfavored ones with decreasing z, and they cross the zero at some small z. These
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features reflect the underlying quark-jet hadronization mechanism, including the treatment of the
hadron transverse momentum. It is also interesting to note that the shapes of the analyzing powers
and the zero crossover points for the favored ones drastically depend on the forms of the input
splitting functions [6]. The inclusion of the strange quarks and kaons, as well as the vector meson
production and strong decays, will allow one to precisely describe a large range of phenomena that
involve polarized quark hadronization. The computation of various polarized dihadron FFs will
provide an improved set of predictions compared to our previous work [14] with a simplistic model.
Further work on the model calculations of the input TMD FFs would give more predictive power
to the framework which can be tested by precisely measuring the polarized FFs at FCC-ee in the
future. At the same time, the polarization transfer mechanism used in this work can be readily
adapted into the well-known MC event generators such as PYTHIA [4], with parametric forms for
the input functions that can be tuned to best reproduce various experimental data.
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