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Gravity Data Inversion by Adiabatic Quantum Computing

Giuliana Siddi Moreau,* Lorenzo Pisani, Andrea Mameli, Carlo Podda, Giacomo Cao,
and Enrico Prati

A quantum-enhanced implementation of the binary inversion method for
gravity data acquisition is discussed. The subsurface structure of a single
density anomaly with an assigned density contrast is calculated by using a
D-Wave adiabatic quantum computer. In particular, an iterative heuristic
based on quantum annealing that recovers a sharp shape of the subsurface
anomaly is developed. Such a task is accomplished by collecting partial
images obtained by quantum annealing processes for optimal Lagrange
penalty coefficients. The results are compared with those obtained according
to the same cost function minimized via genetic algorithms by conventional
hardware on a realistic 2D dataset. The outcomes of this work are promising
as the reconstructed model is obtained in tenths of iterations instead of the
hundreds required in conventional methods. Moreover, for the part of the
computation that resides in the quantum processing unit, the computational
cost of the single quantum annealing descent is constant with respect to the
number of degrees of freedom of the subsurface grid. The implemented
method is likely to reveal its full potential on forthcoming quantum annealing
devices, outperforming existing techniques.

1. Introduction

The gravity geophysical method is used to map the subsurface
density distributions starting fromacquiredmeasurements at the

G. Siddi Moreau, L. Pisani, A. Mameli, C. Podda, G. Cao
CRS4
Loc. Piscina Manna Ed 1, Pula I-09050, Italy
E-mail: julie@crs4.it
G. Cao
Dipartimentodi IngegneriaMeccanicaChimica edeiMateriali
Università degli Studi di Cagliari
ViaMarengo2, Cagliari I-09123, Italy
E. Prati
Istituto di Fotonica eNanotecnologie
ConsiglioNazionale delle Ricerche
Piazza LeonardodaVinci 32,Milano I-20133, Italy
E. Prati
Dipartimentodi FisicaAldoPontremoli
Università degli Studi diMilano
ViaCeloria 2,Milano I-20133, Italy

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/qute.202300152

© 2023 The Authors. Advanced Quantum Technologies published by
Wiley-VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution-NonCommercial-NoDerivs License,
which permits use and distribution in any medium, provided the original
work is properly cited, the use is non-commercial and no modifications
or adaptations are made.

DOI: 10.1002/qute.202300152

ground surface. The goal of inverse the-
ory is to determine subsoil model parame-
ters from real scale observations. Although
a solution that satisfies the observed data
can be easily found, its non-uniqueness is
caused by the fact that, since gravity data
are known only at the earth’s surface, in-
version is an ill posed problem in the sense
of Hadamard, as it admits more than one
solution.[1,2] Moreover, the method suffers
from the under-determination of the prob-
lem, as there exist an infinite number of
subsoil density distributions whose gravity
response fits the acquired data in a least-
squares sense.[3] To restrain the space of
candidate solutions, themathematical prob-
lem is represented by minimizing an ob-
jective function that contains a selection of
suitable constraints.
In many cases the computational cost

of available inversion techniques makes
the inversion impractical for real mod-
els, as local minimization techniques, such
as gradient descent, are not optimal for

non-convex objective functions, and global optimization algo-
rithms require a huge number of iterations to reach an acceptable
solution.[3,4] While numerous works have been done on the sub-
ject, there are still many challenges remaining, including scaling
up to large-scale problems and dealing with non-convexity.[5]

In recent years, adiabatic quantum computation has generated
much interest for its potential to solve certain optimization prob-
lems that are difficult for classical computers,[6,7] in particular
providing solutions for non-convex problems.[8] Thus, its appli-
cation might be beneficial for solving a class of problems that
exhibit cost functions featuring many local minima. Adiabatic
quantum computers leverage the adiabatic theorem to perform
minimization of the cost function.[9] They have been applied to
several problems ranging from industrial applications such as
logistics[10] and finance,[11] to quantummachine learning such as
quantum restricted Boltzmannmachines,[12,13] based on their ca-
pability to address quadratic unconstrained binary optimization
(QUBO) problems.
In this work, we start with the binary formulation of Krahen-

buhl and Li[4] that harnesses the linearity of density inversion and
allows us to code density contrast values in the problem. One
of the main advantages of this approach is that the solution ex-
hibits a sharp boundary for the density anomaly in a computa-
tional framework that is characterized by the flexibility of den-
sity inversions. In exchange, the computational complexity in-
creases as aminimization problemwith binary constraints needs
to be solved.
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The difficulty of porting such a binary formulation on an
adiabatic quantum computer lies in the fact that the resulting
quadratic, unconstrained binary formulation gives rise to a com-
plete graph with quadratic terms that vary in a range of differ-
ent orders of magnitude. Because of the sparsity of the connec-
tions between the physical qubits, embedding techniques are re-
quired to supply highly connected virtual qubits. As embedding
strategies on the Chimera and Pegasus layouts of current D-Wave
hardware do not accomplish to find a perfect embedding to rep-
resent the original complete graph, our goal is to design a robust
iterative algorithm that can exploit the performances of an adia-
batic quantum computer to obtain good solutions to optimization
problems. We then show the results obtained for a synthetic test
case of a realistic 2D gravity problem with finite strike length, de-
noted as a 2.5D problem in the following sections. To build the
numerical benchmarks, we use the same cross-section through
the SEG/EAGE 3D salt model[14] considered previously by Kra-
henbuhl and Li.[4]

The results we obtain provide a good sharp subsurface model
from surface data, whose quality is comparable to the refer-
ence work.[4] Despite limitations arising from mapping a com-
plete problem graph on currently available quantumhardware do
not allow it to neatly outperform classical results, the proposed
heuristics reconstructs the subsurface model in less than ten
macro-iterations, compared to the hundreds of generations re-
quired by genetic algorithms in the reference work.[4] Moreover,
the hybrid quantum solution we provide for non-convex bench-
marks in the presence of annihilators seems promising with re-
spect to conventional solvers such as simulated annealing[15] and
hybrid default D-Wave workflows. Moreover, the computational
cost of the single quantum annealing descent in the quantum
processing unit is constant with respect to the number of degrees
of freedom of the subsurface model. In perspective, we expect
that such implementations on the new generation of quantum
annealing devices would outperform existing techniques, mak-
ing the inversion usable for real models.
In Section 2, the inversion method proposed by Krakenbuhl

and Li[4] is introduced and the inversion heuristics leveraging D-
Wave quantum annealer is described. Section 3 gathers the re-
sults obtained for gravity data inversion of 2D realistic models
with constant and variable density contrasts, while in Section 4,
the results are discussed. Finally, Section 5 summarizes themain
conclusions and the perspectives.

2. Method

2.1. Problem Statement

The inverse problem aims at recovering the unknown underly-
ing parameters of a physical system that produce the available
observations/measurements. The inversionmethod proposed by
Krahenbuhl and Li[4] stems from Tikhonov regularization[16] and
follows the data fitting approach that, as outlined in ref. [5], is
based on four elements: the parametric model representation of
the physics of the problem, the forward solver that evaluates a
synthetic observation once the model parameters have been set,
the objective function that expresses themisfit between synthetic
observation and real data acquisition, and an optimization algo-
rithm that evaluates the optimal model, that is, finds the set of

model parameters that minimizes the misfit between synthetic
and observed data. Usually, the above data fitting approach re-
quires an iterative process where the forward problem is solved
at each step.
In gravity data inversion, we consider the gravity anomaly at

the Earth’s surface as the observation for the inverse problem.
The gravity anomaly is defined as the difference between the
observed value of gravity acceleration along the vertical and the
value predicted by a theoretical model that provides corrections
from the effects of the nearby terrain, altitude, tidal effects, and
so on. Some definitions of gravity anomalies can be found in
ref. [17]. The gravity anomaly can reveal the presence of subsur-
face structures of unusual density.
Given a spatially varying density distribution 𝜌 (tot)(x, y, z) in

a domain V , the total gravity field g (tot) is a three-component
vector

g (tot) =

⎡⎢⎢⎢⎢⎣
g
(tot)
x

g
(tot)
y

g
(tot)
z

⎤⎥⎥⎥⎥⎦
(1)

described by the following equations:

∇ ⋅ g (tot) = −4𝜋𝛾𝜌 (tot) (2)

∇ × g (tot) = 0 (3)

where 𝛾 is the gravitational constant. Remark that solving the
above system of equations is equivalent to state that the gravita-
tional potential u (tot)(x, y, z) satisfies in the following Poisson’s
equation inside the domain V

Δu (tot)(x, y, z) = −4𝜋𝛾𝜌 (tot)(x, y, z) (4)

where Δ stands for the Laplace operator and the gravity vec-
tor g(tot) is defined as the gradient of the gravitational potential
u (tot)

g(tot) = ∇u (tot) (5)

Linearity of the Laplacian can be used further to separate the
gravity contribution caused by the density of the planet Earth, to
the best of our knowledge, from unknown density variations on
the subsoil, which are the goal of the present research. By defin-
ing a “density contrast” 𝜌 as

𝜌 (tot)(x, y, z) = 𝜌 (bg)(x, y, z) + 𝜌(x, y, z) (6)

namely the difference between the real density 𝜌 (tot)(x, y, z) and
a presumed background density distribution 𝜌 (bg).
Under an appropriate choice of both the background density

field value 𝜌bg (x, y, z) and the theoretical reference model for the
g(bg) in Equation (7), the gravity can be written as the sum of the
gravity calculated from the value predicted by a theoretical model
g(bg) and a gravity anomaly g, as

g(tot) = g (bg) + g (7)
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where both g(bg) and g abide by the same mathematical laws
as g (tot) in Equations (2) and (3), respectively, with density dis-
tribution 𝜌(bg)(x, y, z) and 𝜌(x, y, z). The same substitution holds
in Equation (4) if we consider the gravitational potential u(x, y, z)
corresponding to the gravity anomaly g and the density contrast
𝜌(x, y, z). Remark that, by definition, 𝜌 can take negative values.
As far as the direct problem is concerned, instead of solving the

gravitational potential equation corresponding to Equation (4) in
the domain with appropriate boundary conditions, we prefer to
use the integral representation of the solution of the above differ-
ential equation in a 3D volume V , namely

u(x′, y′, z′) = 𝛾 ∫ ∫ ∫V

𝜌(x, y, z)dx dy dz√
(x − x′)2 + (y − y′)2 + (z − z′)2

(8)

where the integral is computed on the whole reference volume
V .
The main advantage of this representation is that an expres-

sion for the vertical component of the gravity anomaly g as a func-
tion of the density contrast distribution 𝜌(x, y, z) can be written by
taking the partial derivative along the z-axis of the above equation.
For decades, gravity data surveys have acquired the vertical

component of the gravity field at different equally spaced loca-
tions on a portion of the Earth’s surface in order to provide a
gravity anomaly dataset dobsi , denoting with i = [1 . . N] the in-
dex ranging over the N acquisition stations.
In our study, as in ref. [4], acquired data dobsi refer to the z-

component of the gravity anomaly g defined in Equation (7). The
goal of the inversion method is hence to predict the density con-
trast distribution 𝜌 that produces the observed vertical compo-
nent of the gravity anomaly dobsi measured at N equally spaced
stations at the acquisition plane.
Following the compact gravity inversion formulation, as from

ref. [2] the subsurface region V is discretized as a set of voxel
elements on a spatial Cartesian grid.
We consider a single material of known density contrast 𝜌,

which may depend on the position, as the origin of the gravity
anomaly. The mathematical inversion problem assumes a dis-
crete nature and could be formulated by using binary variables.
In particular, we can write

𝜌j(x, y, z) = 𝜌(x, y, z) 𝜏j (9)

with 𝜌(x, y, z) denoting the known expression for the density con-
trast at a spatial point (x, y, z) and 𝜏j being the corresponding
binary variable defined at each voxel that switches on and off
this contribution.
The predicted gravity response at the acquisition stations dpredi

can be described as a weighted sum of the contributions of the
density contrast of voxel elements on a spatial Cartesian grid,

d
pred
i =

∑
j

𝜌(x, y, z)𝜏jG
(i)
j (10)

where the weights G(i)
j are Green functions that come from the

integration of Equation (8).

Among the choice of possible Green functions, we choose the
simplest expression that corresponds to lumping the jth voxel
mass at its barycenter, see ref. [18] for more details. For a 2D dis-
cretization of voxels in the xz-plane, denoting with xi, zi and xj, zj
the horizontal and vertical coordinates of acquisition station i and
the generic voxel j we have the simple expression

G(i)
j = −2 𝜋a2𝛾

(zi − zj)

(xi − xj)
2 + (zi − zj)

2
(11)

where a is the radius of the lumped mass as an infinite cylinder
in the y-direction.
We can state the objective function for the inversion problem

as from ref. [2], which is a weighted sum of the model objective
function Φm and data misfit Φd, which can be stated as follows:

Minimize Φm

subject to Φd = 0 and 𝜌 = {0, 𝜌(x, y, z)} (12)

where we have as well a suitable set of constraints on the binary
value of voxels’ sets of the subsurface discretization to insert all
information arising from prior knowledge on the value of the
density contrast.
In our study, the data misfit function is defined as

Φd =
N∑
i=1

⎛⎜⎜⎝
dobsi − d

pred
i

𝜎d

⎞⎟⎟⎠
2

(13)

where 𝜎d stands for the standard deviation of the observed distri-

bution at the acquisition surface and d
pred
i terms are obtained as

in Equation (10).
The model function Φm is a generic model objective function

that accounts for the area of the model, favors compact solutions
and can be defined as

Φm =
∑
j

𝜏2j (14)

Differently from the work of Krahenbuhl and Li[4] we drop in
Equation (14) the model function terms that control the flatness
in different spatial directions. The source of this simplification
relies on the empirical observation that on the adiabatic annealer
we have not recorded any noticeable effect in maintaining these
terms even for the extremely high values specified in the ref. [4].
In this way, our objective function can be written as

Φ = Φm + 1
2
𝜆2dΦd (15)

where 𝜆d is an appropriate scalar used to enforce the constraint
as a Lagrange penalty term. In this manner we are restraining
the choice of the 𝜆d term to positive values.
The reason for this choice is that if we constrain the model

objective function by means of a Lagrange penalty term, we
are forced to perform grid search for hyper-parameter tuning.
Simple grid search for the 𝜆d hyper-parameter in our case is
not very effective as the density discontinuity expands its vol-
ume at increasing values of 𝜆d, but when the Lagrangian penalty
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coefficient is lower than the optimal value the adiabatic solver
provides an empty solution where all binary variables are set
to zero. The choice of an optimal value depends on the dataset
and on the hardware beneath. The problem statement as in
Equation (15) allows for an automated selection of the Lagrange
penalty term via gradient descent.
We recast the objective function in order to bind the La-

grangian penalty term to the L2 residual between observed and
modeled data over the acquisition points as reported in what fol-
lows,

𝜆newd = 𝜆d − 𝜂
𝜕Φ
𝜕𝜆d

(16)

keeping into account that

𝜕Φ
𝜕𝜆d

= 𝜆dΦd +
𝜆2d

2
∇𝜆Φd (17)

where the gradient of the L2 residual with respect to 𝜆d in Equa-
tion (17) is evaluated numerically with finite differences as fol-
lows

∇𝜆Φd =
[
Φd

](cur) − [
Φd

](prev)
𝜆
(cur)
d − 𝜆

(prev)
d

(18)

The parameter 𝜂 in Equation (16) is a learning rate for the gra-
dient descent. As in machine learning works, we set 𝜂 to a con-
stant value.
We have also tested in our numerical experiments an empirical

update rule for the 𝜆d parameter that bonds its value to the L1
residual. Its application is valid only for constant density contrast
as only in this case 𝜆d is a monotonic function of L1 norm. Our
empirical relation is

𝜆newd = 𝜆d − 𝜂𝜆d

∑
i

(
d
(obs)
i − d

(pred)
i

)
(19)

and 𝜂 is a constant learning rate.

2.2. Solution of the Optimization Problem on D-Wave Quantum
Annealer

The solution to the inversion problem of the original work of Kra-
henburg and Li[4] was demanded to genetic algorithms, that be-
long to the metaheuristic class that applies to non-convex mini-
mization problems. The quantum annealer approach is concep-
tually closer to another classic metaheuristic algorithm, standard
simulated annealing.
Starting from the objective function obtained from Equa-

tions (13)–(15), we can recast the inversion problem in Equa-
tion (12) as a QUBO problem.
The D-Wave quantum processing unit (QPU) can be viewed

as a heuristic that minimizes QUBO objective functions using a
physically realized version of quantum annealing.[19]

A QUBO problem is defined using an upper-triangular matrix
of real weightsQ and a vector of binary variables 𝜏 asminimizing
the function

f (𝜏) =
∑
i

Qi,i𝜏i +
∑
i<j

Qi,j𝜏i𝜏j (20)

where the diagonal terms Qi,i are the linear coefficients and the
nonzero off-diagonal terms Qi,j are the quadratic coefficients.
In particular, while themodel functionΦm has a simple expres-

sion in terms of the square of the binary coefficients (see Equa-
tion (14)) and it is implemented as a linear term as the square
of a binary variable is the binary variable itself, the data misfit
function Φd can be expressed as

Φd = 1
𝜎2d

∑
i

((
d(obs)i

)2
− 2d(obs)i

∑
j

𝜏j𝜌jG
(i)
j + 𝜏j(𝜌jG

(i)
j )

2

+ 2
∑
j

∑
l<j

𝜏j𝜏l𝜌j𝜌lG
(i)
j G

(i)
l

)
(21)

The difficulty of porting such a binary formulation on an
adiabatic quantum computer lies in the fact that the resulting
quadratic unconstrained binary formulation gives rise to a com-
plete graph, with quadratic terms that vary in a range of different
orders of magnitude. The Green functions appearing in the last
term of Equation (21) induce a full coupling of the degrees of
freedom of the problem, where the value of linear and quadratic
terms varies with depth.
Moreover, Leap’s quantum-classical hybrid solver solutions are

not guaranteed to be optimal.[20]

Ideally, if the quantum annealing devices were capable ofmap-
ping a QUBO raised from a complete graph having coefficients
covering a wide range of magnitude orders, a single annealing
descent process with an optimal Lagrange parameter would be
sufficient to obtain the solution to our inversion problem.
Embedding algorithms[21,22] on the Chimera and Pegasus lay-

outs of current D-Wave hardware are proven to get the objective
function value close to the global minimum value. Even if they
cannot yet provide a full representation of the original complete
graph, the solution they evaluate is locally optimal.
The solution we obtain in a single annealing is affected by two

issues.[20] First, each QPU has an allowed range of values for the
biases and strengths of qubits and couplers. The values defined
in the inversion problem are adjusted to fit the entire available
range.[20] Green function contributions entering in the quadratic
terms that do not fit in this range are cut off. So we have to rede-
fine the binary quadratic model iteratively, working on the misfit
of the residuals between the acquired data and the predicted re-
sponse at the previous iteration, to be sure to account for all mi-
nor contributions. Second, at each annealing descent, a subset of
the variables of the binary quadratic model are considered active
in order to make the problem fit in the available quantum pro-
cessor.
By keeping into account these issues, we adopt a divide-and-

conquer strategy to obtain meaningful solutions for our prob-
lem, in which the number of active qubits in the QUBO is re-
duced, taking into account the response evaluated in previous

Adv. Quantum Technol. 2024, 7, 2300152 2300152 (4 of 13) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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steps. This strategy is feasible as gravity inversion is a linear prob-
lem in which superposition holds,[23] hence the response from
composite structures is equal to the sum of responses from the
individual structures, and there is no interaction among the par-
tial structures.
The details of the algorithm will be given in the follow-

ing pages.
Our concern is hence to design a heuristic that can exploit

the performances of available quantum processing units to find
quickly good solutions to optimization problems arising from in-
version.
Inversion methods undergo the general principle that, in or-

der to get a unique solution, the dimensionality of the data must
match the dimensionality of the physical property one is trying to
recover.[23] The uniqueness statement impacts upon how much
informationmust be supplied by the user to obtain a geologically
meaningful model for interpretation. For example, if theoretical
uniqueness exists, then by acquiring sufficient data, and by im-
posing certain continuity conditions, such as requiring themodel
to be smooth to some extent, then inversion may be able to re-
cover larger scale features of the earth. In our case, the gravity
acquisition provided in ref. [4] is a set of measurements collected
at 41 points equally distributed along the acquisition line, whose
number does not provide sufficient information for a stable inver-
sion. To increase the number of control points for the least-square
minimization and improve the conditioning of the problem ma-
trix, we interpolate the gravity acquisition on a finer grid of 481
points by means of univariate splines that have shown to be a
good choice for noisy data.[24] For finer spatial discretizations the
number of interpolated points for the gravity acquisition was in-
creased keeping the ratio between number of interpolated points
and total qubits to 0.35. Tukey windowing[25] of the acquisition
is also performed before interpolation to avoid deep artifacts in
the image induced by noisy values of first and last samples of
the signal.
Finally, we have to identify a stopping criteria of the inversion

process. For this goal, at each iteration of the partial image com-
putation we evaluate the ratio of the L2 norm of the misfit be-
tween observed and modeled gravity data at the acquisition sur-
face and the L2 norm of the observed data, that has to be less than
a threshold 𝜖 specified by the user as follows

∑
i(d
obs
i − d

pred
i )2∑

i(dobs)2
< 𝜖 (22)

We provide herein a walk-through of the procedure we propose
for the divide-and-conquer heuristics. Themain stage, defined in
AlgorithmA1, consists of two nested loops: the “macro” loop that
iterates to construct partial subsoil images whose sum will form
the shape of the buried density anomaly and the “micro” loop
whose micro-iterations are carried out to find the proper penalty
value 𝜆d that allows to reconstruct the contributions to the cur-
rent partial image in the outer “macro” loop. In this main stage,
we carry out the following steps: i) at each macro-iteration we
feed the inversion process with the observed data at iteration 0
and with the residual between observed data and predicted data
at the previous steps for the next iterations; ii) we start perform-
ing the cycle of micro-iterations in order to find the optimal 𝜆d

Algorithm A1 Main stage of inversion heuristics.

Input: Observed gravity data dobsi at the N acquisition points. Matrix Cz of
dimensions (nz, nx) contains the binary variables corresponding to spatial voxels
set to zero as the constraints of Equation (12) (namely the zero constraint map
as in the bottom panel of Figure 1); 𝜖 threshold value provided by the user for
the L2 ratio stopping criterium in Equation (22); Niter stands for maximum
number of iterations to be performed in this stage (default: 8).

Output: Matrix If of dimensions (nz, nx) contains the binary variables
corresponding to spatial voxels of the subsoil model; list of matrices LIp
contains the partial images for each annealing descent with optimal 𝜆d.

Functions: eval_pred: given an image I of dimensions (nz, nx) that contains the
binary variables corresponding to the partial solution, it evaluates the predicted
gravity response using Equation (10); eval_part_image: given an active set of

zero constraints Cz and the d
obs
i − d

pred
i evaluates the corresponding binary

quadratic model as in Equation (15) and via gradient iteration finds the partial
optimal value 𝜆d; eval_L2_ratio computes the L2 ratio in Equation (22) from the

original acquisition dobsi and from d
pred
i response of the current If image. The

matrix O stands for an image of the same dimensions of Ip having all
zero entries.

1: If ← O

2: C
(cur)
z ← Cz

3: d
(res)
i ← d

(obs)
i

4: Lip ← empty list

5: for m = 0, Niter do

6: Ip = eval_part_image(C
(cur)
z , d

(res)
i )

7: d
(pred,p)
i = eval_pred(Ip)

8: LIp.append(Ip)

9: If ← If + Ip

10: d
(res)
i ← d

(res)
i − d

(pred,p)
i

11: C
(cur)
z ← C

(cur)
z + Ip

12: d
(pred)
i ← d

(pred)
i + d

(pred,p)
i

13: 𝜖(cur) = eval_L2_ratio(d
(obs)
i , d

(pred)
i )

14: if 𝜖(cur) < 𝜖 then

15: exit

16: end if

17: end for

penalty value that minimizes the misfit and get the partial re-
sponse Ip (this is done by carrying out annealer descents in line
6 of Algorithm A1 for different 𝜆d values inside the block labeled
eval_part_image; iii) we evaluate the predicted gravity response
for the partial image Ip in line 7; iv) we freeze the one-valued bi-
nary variables that belong to the partial response Ip for the next
iteration in line 11; v) we accumulate partial structures in the first
image If of the anomaly, in addiction single partial images Ip of
different macro-iterations of the first stage are stored in the list
Li to map contributions of different iterations. The inner micro-
iteration loop on the residual terminates when the solver finds
empty solutions for all 𝜆d values. The outer macro-iteration loop
has an early exit condition that the L2 ratio value (Equation (22),
line 13) drops below the input threshold 𝜖 (line 14). The final
image of the anomaly will gather the partial responses we have
obtained through this stage of macro-iterations.
In this study we mainly employ a standard sampler together

with a cutoff composer applied on an autoembedded one, setting
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Figure 1. The 2.5D density contrast model is displayed in the top panel.
The cross-section, drawn from the converted SEG/EAGE salt model, has a
density contrast of −0.2 g cm−3. At the bottom, a plot of the constrained
region for the model is displayed. The pink-colored area highlights the bi-
nary variables set to zero.

the threshold to 0.75 over 1000 shots. Kerberos andHybrid hybrid
workflows[26] were also used to compare the response.
Moreover, our aim is to design an inversion process whose re-

sults are minimally affected by the topology of the embedding or
by different outcomes of the annealing process, provided that we
cannot obtain a solution that is bitwise the same due to the prob-
abilistic nature of the quantum computation. For this aim, as the
cutoff composer may produce discontinuities in the solution due
to chain breaks, sometimes we had to perform local optimization
on the annealer result using the steepest descent solver as post-
processing.

3. Results

3.1. 2D Gravity Problem with a Constant Density Contrast

As a first application of the binary inversion of gravity data, we
build the same 2.5D test case as,[4] involving a salt body of con-
stant density contrast. This constant density contrast use-case
will be referred to as benchmark 3.1 in the following sections.
We consider the same 2D section utilized in the work of ref.

[4] drawn from the SEG/EAGE salt model,[14] designed as a real-
istic synthetic dataset to provide a benchmark for the geophysi-
cal community.
In the same way, as in the reference work, the geometrical

structure of the salt body is maintained to build a 2D model fea-
turing a uniformdensity contrast to feed the binary inversion pro-
cess.
For the 2.5D problem, the salt body cross-section displayed in

Figure 1 is used to construct a model characterized by a uniform
density contrast of −0.2 g cm–3. This salt shape is embedded in
a uniform half-space. The acquisition layout consists of a finite
strike length of 20 km in and out of the page.
As in the reference work,[4] synthetic gravity data are calculated

via a 2.5D direct gravity problem.

Figure 2. Synthetic acquisition generated for 2.5D density contrast model
from the converted SEG/EAGE salt model: analytic data (line) and noise-
contaminated data (points). Gaussian white noise has a zero mean and a
standard deviation of 0.1 mGal.

In order to simulate observed gravity data, we contaminate the
synthetic gravity data obtained from the above model with uncor-
related Gaussian noise with a zeromean and a standard deviation
of 0.1 mGal (see Figure 2).
To simulate a realistic application of the algorithm and to re-

strain the space of unrealistic solutions, we incorporate the infor-
mation of the known top of salt into each model through a zero
constraint imposed at each corresponding binary variable occur-
ring in the above area, that appears colored in pink in Figure 1
in the bottom panel. The salt top geometry is usually easily avail-
able from some other standard geophysical processing, such as
seismic imaging. The adoption of the constraint raising from the
position of the top of the salt and white noise contamination was
utilized in the reference work.[4] As pointed out in the seminal
work of Li andOldenburg,[2] an inversion process thatminimizes
the data misfit at the surface will generate a density distribution
that is concentrated near the surface. Imposing the upper profile
of the salt top via the zero constraint binary map filters out the
non-physical solutions that feature this unwanted behavior.
The computationalmodel for the binary inversion consists of a

rectangular domain whose depth ranges from the surface to 4200
m, and the horizontal dimension spans from 0 to 13 400 m. We
adopted three different subsurface discretizations to assess the
scalability of the method. As we can see in Table 1 in the coarser
discretization, denoted with A, the model region is divided into
1407 rectangular cells (67 × 21). In the intermediate one, labeled

Table 1. Set of three different spatial discretizations used to assess the
scalability of the method. The first column shows the mesh label, the sec-
ond one displays the number of points of the spatial discretization along
the x- and z-axis, the third column and the fourth column gather the total
number of qubits and the number of active qubits after the imposition of
the constraint that sets binary values to zero.

Label Spatial discretization Total qubits Active qubits

A 67 × 21 1407 825

B 89 × 28 2492 1420

C 133 × 42 5586 3232

Adv. Quantum Technol. 2024, 7, 2300152 2300152 (6 of 13) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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as B, themodel region is divided into 2492 rectangular cells (89 ×
28). In the finer one, labeled as C, the model region is discretized
into 5586 rectangular cells (133 × 42). For each computational
grid every cell is associated to a different qubit, summing up to
a total number of qubits displayed in Table 1. The last column
of Table 1 displays the number of active qubits, that is, the effec-
tive variables in the problem solution after the imposition of the
zero constraint binary map. We use the model objective function
shown in Equation (15).
As we illustrated in the previous section, in the iterative pro-

cess of the main stage we compute partial solutions and we iter-
ate evaluating the misfit between the acquired and modeled data
at the nth step to evaluate the next partial image. Binary variables
that are set to one in the previous partial images are frozen for the
evaluation of the current binary quadratic models. The test was
run on three different QPUs, D-Wave Advantage2 prototype 1.1,
Advantage 4.1 and onDW2000v6, getting the same results from a
qualitative point of view. The threshold for convergence of the L2
norm ratio was set to 0.005. We used the Lagrange parameter to
update the definition based on the L1 norm in Equation (19). The
numerical setup of the inversion process involves up to 12micro-
iterations allowed to find the optimal Lagrange penalty value by
means of gradient descent into the same macro-iteration.
In all benchmarks the fundamental contributions to the image

were provided in the first three macro-iterations providing solu-
tions that were below the relative L2 error threshold of 0.02, hence
if we set this value as error threshold we get a satisfactory image
that is really close to the final one after three macro-iterations. In
the main stage, the first six quadratic models happen to have a
valid value of 𝜆d and a seventh macro-iteration on residual with
empty results terminates the main stage.
The final results for the set of discretizations described above

are displayed in the three top panels of Figure 3 in blue. Figure 4
shows predicted (solid line) and observed (dotted line) gravity ac-
quisitions at the end of the inversion loop for the coarser dis-
cretization (A) in Table 1. Figure 5 shows the relative L2 residual
drop across seven macro-iterations for the set of three numerical
discretizations described in Table 1.
Finally, for the same final results displayed in Figure 3, an over-

lay of the real shape of target is superposed in orange in Figure 6.
Matching voxels between target and imaged density discontinu-
ities appear colored purple. The convergence threshold is low, but
as the inversion problem is ill posed we might have identified a
solution that produces the same gravity imprint within the given
tolerance expressed by the L2 ratio.
As it can be noticed in Figure 6 the quality of the recovered

image needs further work to be improved, mainly due to the at-
tenuation of the Green function weights that were notmagnified.
To assess that the accuracy issue was not induced by the quan-

tum computation, we ran the same benchmarks to solve the
same quadratic unconstrained binary optimization problem by
means of the conventional simulated annealing (SA)[27] imple-
mented in D-Wave software suite following the original approach
by Kirkpatrick.[15] As far as local minima determination is con-
cerned, the interested reader is referred to the work of Koshka[28]

for a characterization of the differences between the solutions ob-
tained via quantum annealing and conventional simulated an-
nealing. In Figure 7, the results of the same benchmarks for
conventional simulated annealing are presented. In this con-

Figure 3. Inversion results obtained on the realistic acquisition contam-
inated by uncorrelated Gaussian noise for 41 stations along the 40-km
survey line, run on D-Wave Advantage 5.1. For the update of the Lagrange
parameter we adopt the L1 ratio. The three panels display the final result
of the inversion process over the three computational grids A, B, and C
described in Table 1.

stant background density contrast use case, the results obtained
via conventional simulated annealing are equivalent to those ob-
tained by a quantum annealer over the three discretizations 6, as
far as the shape of the recovery anomaly is concerned.
A second numerical experiment was run on D-Wave Advan-

tage 5.1 changing the update rule of the Lagrange value in the

Figure 4. Inversion results obtained on the realistic acquisition contam-
inated by uncorrelated Gaussian noise for 41 stations along the 40-km
survey line, run on D-Wave Advantage 5.1. For the update of the Lagrange
parameter we adopt the L1 ratio.Predicted and observed gravity acquisi-
tions for benchmark A, respectively plotted with solid line and dotted line.

Adv. Quantum Technol. 2024, 7, 2300152 2300152 (7 of 13) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 5. Inversion results obtained on the realistic acquisition contami-
nated by uncorrelated Gaussian noise for 41 stations along the 40-km sur-
vey line, run on D-Wave Advantage 5.1. The graph displays the L2 residual
ratio drop across macro-iterations for the set of three discretizations de-
scribed in Table 1.

inner optimization loop. In this numerical simulation, we used
the empirical update of the Lagrange parameter in Equation (16).
The threshold for convergence of the L2 norm ratio was set to
0.005. The numerical setup of the inversion process involves up
to 12 iterations allowed to find the optimal Lagrange penalty value
by means of gradient descent into the same macro iteration; in

Figure 6. Inversion results obtained on the realistic acquisition contam-
inated by uncorrelated Gaussian noise for 41 stations along the 40-km
survey line, run on D-Wave Advantage 5.1. For the update of the Lagrange
parameter we adopt the L1 based definition. The three panels display the
final result of the inversion process over the three computational grids (A,
B, C described in Table 1, from top to bottom), colored in blue, the real
shape of the target is overlaid in orange. Matching voxels are highlighted
in purple.

Figure 7. Inversion results obtained on the realistic acquisition contam-
inated by uncorrelated Gaussian noise for 41 stations along the 40-km
survey line, run on a conventional high performance computing node by
means of simulated annealing. For the update of the Lagrange parameter
we adopt the L1 based definition. The three panels display the final result
of the inversion process over the three computational grids (A, B, C de-
scribed in Table 1, from top to bottom), colored in blue, the real shape of
the target is overlaid in orange. Matching voxels are highlighted in purple.

the main stage, we count seven macro-iterations. The final re-
sults of the model for each one of the three discretizations are
displayed in Figure 8 in blue, and an overlay of the real shape of
the target is superposed in pink. Matching voxels between target
and imaged density discontinuities appear colored in purple. In
Figure 8, the final results of the run on discretizations A, B, and C
are presented. As it might be seen, for this constant background
density contrast use case, the shape of the recovered anomaly is
practically the same as in Figure 6.
As the way of implementing the algorithm makes use of stan-

dard D-Wave workflows without customizing the embedding, we
get the same results on the DW2000v6 Quantum Processor.

3.2. 2D Gravity Problem with a Variable Density Contrast

As in the work of ref. [4], in this test case we inspect the per-
formances of our implementation on a more realistic model that
features density contrast reversal to mimic the presence of an an-
nihilator that is, a nonzero density distribution that produces no
external field for a particular source geometry.[29] The annihilator
quantitatively describes the nonuniqueness of potential field data
because any amount of the annihilator can be added to a possible
solution without affecting the field of the source, therefore, the
corresponding optimization function is non-convex.
In the presence of an annihilator, gravity data contributions

arising from the upper and lower portions of the anomaly have
opposite signs. In the surface gravity data acquisition, a portion

Adv. Quantum Technol. 2024, 7, 2300152 2300152 (8 of 13) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 8. Inversion results obtained on the realistic acquisition contami-
nated by uncorrelated Gaussian noise for 41 stations along the 40-km sur-
vey line, run on D-Wave Advantage 5.1. For the set of discretizations A, B,
and C the panels display the final result of the inversion process, colored
in blue, The real shape of the target is overlaid in orange. Matching vox-
els are highlighted in purple. These results were obtained with the update
formula for the Lagrange parameter in Equation (16).

of the signal is zero: this is a challenging condition for numerical
implementations of continuous variable gravity inversion meth-
ods.
This variable density contrast use-case will be referred to as

benchmark 3.2 in the following sections.
Following the work of ref. [4], we modify the same 2D sec-

tion as in the previous test case in order to provide the density
contrast reversal displayed in Figure 9. The rectangular model
domain has the same extension, spanning from 0 to 4200 m in
depth and from 0 to 13 400 m along the horizontal dimension.
The same discretization is kept as well, resulting in a grid of 1407
rectangular cells (67 × 21). The salt body density contrast value
is set to of +0.2 g cm−3 above the depth of 1800 m, and is −0.2 g
cm−3 below that depth.
As far as the synthetic gravity data acquisition is concerned,

we provide the same layout as in Section 3.1, setting 41 stations
along a 40-km survey line. Observed data are generated by adding
uncorrelated Gaussian noise with a zero mean and a standard
deviation of 0.1 mGal to the synthetic data calculated at the 41
stations, Figure 10. The above observed data clearly display the
effect of density contrast reversal, as the gravity anomaly varies
between −1 and +2 mGal.
As far as the numerical setup was concerned, the threshold for

the convergence of the L2 norm ratio was set to 0.05. The inner
loop for the search of the optimal 𝜆d in 17 was composed of 25
iterations. The benchmark was conducted over discretizations A
and B. Remark that the solution found at first macro-iteration
is obtained via cutoff embedding without any postprocessing, as
for non-convex cases greedy solver postprocessing worsens the

Figure 9. On the top the 2.5D density contrast model is displayed The
geometry is drawn from the converted SEG/EAGE salt model, Above 1800
m the salt body has a density contrast value of +0.2 g cm−3 (displayed
in green), whereas below that depth salt density contrast is −0.2 g cm−3

(colored in blue). At the bottom a plot of the constrained region for the
model is displayed. The pink colored area highlights the binary variables
set to zero.

solution. As the run on the quantum annealer performed only
one macro-iteration and exited without finding any valid solu-
tion at the second macro-iteration, we decided to carry out a hy-
brid approach and solve the second macro-iteration with conven-
tional simulated annealing. Hence, a total amount of two macro-
iterations for partial results computation is performed.
As we can see in Figures 11 and 12, further work is needed

to provide an accurate result for the varying velocity contrast in
the presence of nil zones. Apparently, the quantum solution re-
covers a coarse global shape in the presence of nil zones, and
one single macro-iteration of conventional simulated annealing
improves the solution. This benchmark is particularly tough as

Figure 10. Synthetic acquisition generated for 2.5D density contrast
model with nil zone from the converted SEG/EAGE salt model: Analytic
data (line) and noise-contaminated data (points). Gaussian white noise
has zero mean and standard deviation of 0.1 mGal. The effect of density
contrast reversal is apparent in the data with an anomaly varying between
−1 and +2 mGal.

Adv. Quantum Technol. 2024, 7, 2300152 2300152 (9 of 13) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 11. Inversion results obtained on the realistic acquisition contam-
inated by uncorrelated Gaussian noise for 41 stations along the 40-km
survey line, run on D-Wave Advantage 4.1. over discretization A. The re-
sult of the first macro-iteration of quantum annealing with optimal lambda
value is shown in the top panel. In the above panels the resulting shape is
colored with the corresponding density contrast: Above 1800 m the value
is +0.2 g cm−3 (displayed in green), whereas below that depth the salt
density contrast is −0.2 g cm−3 (colored in blue). Then another macro it-
eration is performed using conventional simulated annealing with optimal
lambda value, whose result is shown in the second panel from top. The
third panel from top displays the final result of the inversion process, col-
ored in blue. The real shape of the target is overlaid in orange. Matching
voxels are highlighted in purple.

the non-convexity of the cost function leads many solvers to so-
lutions that are local minima of the cost functions. Conventional
methods such as simulated annealing, used to solve the same
quadratic unconstrained binary problem with the same heuris-
tics, provide a qualitatively worse solution, as in Figure 13. D-
Wave hybrid workflows such as Kerberos provide a worse solu-
tion as well, as shown in Figure 14.
However, the proposed heuristic manages to build a solution

even in this difficult case, and the results presented for the same
numerical setup in the ref. [4] reflect this trouble.

4. Discussion

Despite the limitations arising when mapping a complete prob-
lem graph on existing quantum hardware do not allow to neatly
outperform classical results in the convex optimization case in
benchmark 3.1, the proposed heuristics make the constrained
gravity data inversion a usable technique that reconstructs the
subsurface model in less than 10 macro-iterations, compared to
the hundreds of generations required by genetic algorithms in
the ref. [4]. Moreover, the hybrid quantum solution we provide
for the non-convex benchmark 3.2 in the presence of annihilators

Figure 12. Inversion results obtained on the realistic acquisition contam-
inated by uncorrelated Gaussian noise for 41 stations along the 40-km
survey line, run on D-Wave Advantage 4.1. over discretization B. The re-
sult of the first macro-iteration of quantum annealing with optimal lambda
value is shown in the top panel. In the above panels the resulting shape is
colored with the corresponding density contrast: Above 1800 m the value
is +0.2 g cm−3 (displayed in green), whereas below that depth the salt
density contrast is −0.2 g cm−3 (colored in blue). Then another macro it-
eration is performed using conventional simulated annealing with optimal
lambda value, whose result is shown in the second panel from top. The
third panel from top displays the final result of the inversion process, col-
ored in blue. The real shape of the target is overlaid in orange. Matching
voxels are highlighted in purple.

Figure 13. Inversion results obtained on the realistic acquisition contam-
inated by uncorrelated Gaussian noise for 41 stations along the 40-km
survey line, run a conventional high performance computing node over
discretizations A and B. The results of seven macro-iterations of conven-
tional simulated annealing (SA) with optimal lambda value are shown for
discretizations A and B, colored in blue, The real shape of the target is
overlaid in orange. Matching voxels are highlighted in purple.

Adv. Quantum Technol. 2024, 7, 2300152 2300152 (10 of 13) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 14. Inversion results obtained on the realistic acquisition contam-
inated by uncorrelated Gaussian noise for 41 stations along the 40-km
survey line, run over discretizations A and B. The results of seven macro-
iterations of a Hybrid D-Wave workflows such as Kerberos (top panel) and
Hybrid (bottompanel) with optimal lambda value are shown for discretiza-
tions A, colored in blue. The real shape of the target is overlaid in orange.
Matching voxels are highlighted in purple.

seems promising with respect to conventional solvers such as
simulated annealing and hybrid default D-Wave workflows. The
results can be considered relevant compared to those obtained in
the ref. [4].
The proposed method has the potential of providing a fast way

of computing inverted images from gravity data, using all the in-
formation we have to reduce the space of admissible solutions to
this ill-posed problem.
As far as computational resources are concerned, finding the

fair terms for the comparison of this heuristics with the genetic
optimization algorithm-based binary inversion by Krahenbuhl[4]

is a complex task. In the reference work, as the minimization of
the cost function was carried out via a genetic optimization algo-
rithm, a reference value denoting the computational cost might
be the number of generations needed to obtain comparable re-
sults. The main parameter that denotes the potential of an inver-
sion implementation on quantum computers is the number of it-
erations performed for eachmodel. Once the boundary quadratic
model is built, all gradient iterations needed to find the opti-
mal Lagrange parameter in Equation (15) can be gathered in a
customized hybrid workflow as in ref. [26]. Hence, the relevant
parameter that defines the computational cost is the number of
macro-iterations performed in the inversion stages, compared to
the number of generations required in the genetic algorithm il-
lustrated in ref. [4]. In Table 2, we gather the numbers that are
relevant to the comparison. Moreover, further reduction of the
number of macro-iterations is foreseeable as far as the progress
in quantum annealers will allow an accurate representation of
complete graphs with quadratic terms of different magnitudes.
As both the result quality and the number of iterations needed

to get a result are affected by a restricted representation of the
complete graph associated with the inversion binary quadratic
model, we are far from claiming any quantum advantage of our
implementation for the case under study.

Table 2. Number of macro-iterations of the proposed heuristics on the
quantum annealer (QA iterations) compared to the number ofmacro itera-
tions of the same algorithm running on conventional simulated annealing
(SA iterations) and to the number of generations of the genetic optimiza-
tion algorithm (CC iterations) employed by ref. [4] on conventional hard-
ware, for the numerical experiments presented in Sections 3.1 and 3.2. For
benchmark 3.2 in the QA case we consider the hybrid approach with one
iteration purely QA and one SA.

Numerical QA iterations SA iterations CC iterations

example

3.1 6 6 300

3.2 2 6 500

Aside from conventional computational costs due to binary
quadratic model coefficient evaluation at each macro-iteration
and to the solution of the direct problem to evaluate the pre-
dicted gravity response for each iteration of the loop, we gather
the quantum processing computational costs for different spatial
discretizations for the same numerical experiment in Table 3.
We considered different spatial discretizations for the numeri-

cal experiment with constant density contrast in Section 3.1. The
numerical experiments were run utilizing a standard sampler
through a cutoff composer with a threshold set to 0.75 over 1000
shots. Basically, if the computed problem fits on the QPU, the
computational cost of the single quantum annealing descent is
constant. Repeating the numerical experiments for different an-
nealing time values in the set {1, 2, 5, 10, and 20 𝜇s}, we obtained
constant QPU access values with respect to the computational
grid, ranging from 160 to 179 ms. As far as the inversion image
quality is concerned, no relevant improvements are noticeable
with a long-lasting annealing time.
In order to compare the performances with a classic solver,

we conducted the same series of numerical experiments for the
same heuristics choosing the conventional simulated annealing
sampler included in the D-Wave distribution. We obtain results
that are qualitatively similar to those evaluated with the cut-
off composer in the QPU, keeping into account that for such
a meta-heuristic algorithm as well, the solution is intrinsically

Table 3. Scalability of themethod: Comparison of annealing computational
time permicro-iteration. The first column displays the discretization labels
as in Table 1, the second column gathers the number of active qubits af-
ter the imposition of the constraint that sets binary values to zero. In the
three following column QPU access time values, intended as in ref. [31],
are listed for Advantage2 prototype 1.1 (A2), Advantage 5.1 (A5.1), and
D2000W devices, setting the annealing time value to 10 𝜇s. Postprocess-
ing (PP) times are indicated in the fifth column for conventional postpro-
cessing of the solution with a greedy gradient solver. Simulated annealing
times (mean value for micro-iteration run) appear in the sixth column. All
computational times on conventional hardware are referred to a Intel(R)
Xeon(R) CPU E5-2683 v3 2.00GHz processor.

Mesh Active QPU QPU QPU PP time SA time

label qubits A2 A5.1 D2000W

[ms] [ms] [ms] [s] [s]

A 825 65 173 400 0.2 1.5

B 1420 65 173 400 0.7 4.5

C 3232 65 173 400 1.7 22
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probabilistic. As far as computational time for the simulated an-
nealing is concerned, we are interested to see how it scales with
respect to the number of qubits of the three different grids de-
fined in Table 1. The results are listed in Table 3, considering
three different QPUs (Advantage2 prototype 1.1, Advantage 5.1,
and DW2000v6) characterized by different embedding layouts
(zephyr, pegasus, and chimera). As far as the computational time
on conventional resources, we provide the mean value of the
micro-iteration computational time. Table 3 suggests that the av-
erage time complexity of simulated annealing might be polyno-
mial, in contrast to the behavior we observed on QPUs. This is
in agreement with Sasaki[30] that indicates for simulated anneal-
ing an average time complexity of O(n4) for a typical graph with
n nodes.
Hence, an investigation on how the computational time scales

with the number of qubits shows computational advantage using
the existing quantum methods to solve an inversion problem.
Further work will be done to provide a more efficient im-

plementation of the inner micro-iteration loop we evaluate to
identify the optimal Lagrange value for a single binary quadratic
model, that is, absorbing the whole set of instructions on a cus-
tomized annealer workflow.

5. Conclusions

In our work, we provide a quantum-enhanced implementation of
a method inspired by the binary inversion method proposed by
Krahembuhl and Li.[4]

Our heuristics were able to reconstruct the discontinuity
anomaly from realistic 2D gravity datasets. The results we ob-
tain provide a good sharp subsurface model from surface data,
whose quality is comparable to the reference work.[4] Despite the
limitations arising when mapping a complete problem graph on
existing quantum hardware do not allow to neatly outperform
classical results, the proposed heuristics makes the constrained
gravity data inversion a usable technique that reconstructs the
subsurface model in less than ten macro-iterations, compared to
the hundreds of generations required by genetic algorithms in
ref. [4]. Moreover, the hybrid quantum solution we provide for
non-convex benchmarks in the presence of annihilators seems
promising with respect to conventional solvers such as simu-
lated annealing and hybrid default D-wave workflows. Further-
more, as far as the part of the computation that resides in the
QPU is concerned, the computational cost of the single quan-
tum annealing descent is constant with respect to the number of
degrees of freedom of the subsurface model. The results make
the generalization of the present heuristics to 3D cases and non-
trivial variable density contrasts closer. Even if a quantum advan-
tage for the inversion application on the currently available hard-
ware has not been demonstrated, thanks to the improvements in
quantum annealing methods and hardware, these fast inversion
methods might become a killer application for QPUs, thus creat-
ing a valuable alternative to quite expensive iterative methods on
conventional hardware. The implemented method is likely to re-
veal its full potential on forthcoming quantum annealing devices
that will provide improved embedding capabilities for complete
graphs, outperforming existing techniques.
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