
Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1989

Exclusive neutral strange particle production from
Double Pomeron Exchange produced by proton-
proton interactions at [square root of s] = 62 GeV
John Donovan Skeens
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Elementary Particles and Fields and String Theory Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Skeens, John Donovan, "Exclusive neutral strange particle production from Double Pomeron Exchange produced by proton-proton
interactions at [square root of s] = 62 GeV " (1989). Retrospective Theses and Dissertations. 9179.
https://lib.dr.iastate.edu/rtd/9179

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/199?utm_source=lib.dr.iastate.edu%2Frtd%2F9179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9179?utm_source=lib.dr.iastate.edu%2Frtd%2F9179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


INFORMATION TO USERS 

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm 
master. UMI films the text directly from the original or 
copy submitted. Thus, some thesis and dissertation copies 
are in typewriter face, while others may be from any type 
of computer printer. 

The quality of this reproduction is dependent upon the 
quality of the copy submitted. Broken or indistinct print, 
colored or poor quality illustrations and photographs, 
print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a 
complete manuscript and there are missing pages, these 
will be noted. Also, if unauthorized copyright material 
had to be removed, a note will indicate the deletion. 

Oversize materials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning at the 
upper left-hand corner and continuing from left to right in 
equal sections with small overlaps. Each original is also 
photographed in one exposure and is included in reduced 
form at the back of the book. These are also available as 
one exposure on a standard 35mm slide or as a 17" x 23" 
black and white photographic print for an additional 
charge. 

Photographs included in the original manuscript have 
been reproduced xerographically in this copy. Higher 
quality 6" x 9" black and white photographic prints are 
available for any photographs or illustrations appearing 
in this copy for an additional charge. Contact UMI directly 
to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600 





Order Ntimber 9014964 

Exclusive neutral strange particle production from double 
Pomeron exchange produced by proton-proton interactions at 
y/s = 62 GeV 

Skeens, John Donovan, Ph.D. 

Iowa State University, 1989 

U M I  
300N.ZeebRd. 
Ann Aii)or, MI 48106 





Exclusive neutral strange particle production 

from Double Pomeron Exchange produced 

by proton-proton interactions 

at ^/s = 62 GeV 

by 

John Donovan Skeens 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Physics 

Major: High Energy Physics 

Approved: 

of Majof Work 

For the Major Department 

College For the 

Iowa State University 

Ames, Iowa 

1989 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



ii 

CONTENTS 

1 INTRODUCTION 1 

1.1 Experimenteil Interest 1 

1.2 Pomeron Exchange Model 2 

1.2.1 Regge theory and its relationship to Pomerons 2 

1.3 Double Pomeron Exchange (DPE) Process 4 

1.4 Possible States (Resonances) 8 

1.5 Glueball Candidates Consistent With DPE 10 

2 EXPERIMENT DESCRIPTION 12 

2.1 Energy and Luminosity of the Intersecting Storage Rings (ISR) 12 

2.2 Split Field Magnet Detector (SFM) 15 

2.3 Trigger Descriptions 20 

2.4 Evidence for Double Pomeron Exchange (DPE) 22 

3 DATA REDUCTION 20 

3.1 Track Reconstruction 26 

3.2 F" Track Reconstruction 27 

3.3 6-prongs 30 

3.4 Interactions To Be Studied 31 

3.4.1 Interactions involving at least one 32 

3.4.2 Interactions involving at least one A®/A® 42 

3.4.3 Conclusions of short study 43 

3.5 Four Constrained Fit of Particle Track Momenta 50 

3.6 Corrections to Track and Beam Parameters 52 



iii 

4 EXCLUSIVE INTERACTIONS INVOLVING 

AT LEAST ONE K® PARTICLE 53 

4.1 K^Kg Central System 53 

4.1.1 OR trigger data 53 

4.1.2 AND trigger data 63 

4.1.3 TOF trigger data 71 

4.1.4 Combination of the three data sets, OR, AND, and TOF 71 

4.1.5 Search for physics biases in the data samples 84 

4.2 Central System 90 

4.2.1 OR trigger data 91 

4.2.2 AND trigger data 102 

4.2.3 TOF trigger data 109 

4.3 Summary of the and K°K^ir^ Systems 116 

5 EXCLUSIVE INTERACTIONS INVOLVING 

AT LEAST ONE A°/À® PARTICLE 118 

5.1 A°À® Central System 118 

5.1.1 OR trigger data 119 

5.1.2 AND trigger data 123 

5.1.3 TOF trigger data 126 

5.2 A®A°* (A°*A® ) Central System 130 

5.2.1 OR trigger data 132 

5.2.2 AND trigger data 135 

5.2.3 TOF trigger data 135 

5.3 Summary of the A" A" and A^A"* Systems 138 



iv 

0 ACCEPTANCES AND CROSS SECTIONS 139 

6.1 Efficiencies and Systematic Effects 139 

6.2 Acceptance Calctdations 143 

6.3 Cross Sections 150 

6.3.1 KgKg system 151 

6.3.2 KgK^ir^ system 152 

6.3.3 and A®A°* systems 153 

7 SUMMARY AND CONCLUSIONS 160 

8 REFERENCES 162 

9 ACKNOWLEDGMENTS 166 



1 

1 INTRODUCTION 

1.1 Experimental Interest 

Considerable attention has been given to the study of single and multiple 

Pomeron exchange [Kaidalow and Ter-Martirosyan 1974, Roy and Roberts 1974], 

The Pomeron is helpful in the calculation of cross sections, and explains many 

features of strong interactions. As a result of this study, bare Pomeron models 

[Low 1975, Nussinov 1975], and a subtractive quark model wliich incorporates the 

Pomeron [Pumplin and Lehman 1981], have been constructed to explain the nature 

of the Pomeron. The study of Double Pomeron Exchange (DPE) is of particular 

importance, as it may be a way of searching for gluonic bound states which are of 

considerable interest in verification of Quantum Chromodynamics (QCD) theory 

[Robson 1977]. QCD theory is a means of explaining the fundamental strong nu­

clear forces in nature [Quigg 1983, Huang 1982]. The mediators of this force are 

called gluons. Gluons are thought to hold matter together on the nucléon level 

(i.e., to hold the quarks in protons together). 

Experiments at the European Laboratory for Particle Physics (CERN) using 

the Intersecting Storage Rings (ISR) have shown that study of DPE is feasible 

(Drijard et al. 1978, Breakstone et al. 1986]. By careful selection of the reaction 

PP —* PP^t where X consists of a central system of particles, using certain trigger 

requirements, it is a relatively straightforward process to obtain a sample of these 

types of events. This chapter will briefly describe the DPE mechanism and possible 

existing states which may be produced. 
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1.2 Pomeron Exchange Model 

Figure 1.1 shows some of the gluon couplings possible in single and multiple 

Pomeron exchange [Nussinov 1975]. In the diagrams, gluons are represented by 

wavy lines, and fermions by smooth lines. Diagram (a) shows the simplest case of 

two gluons forming the Pomeron. Diagrams (b-d) show some of the various stages 

of generating intermediate states from (a). Diagram (e) shows the simplest case 

for forming the DPE particle vertex and (f) shows a possible multi-gluon ladder 

vertex into wliich the particle produced in (e) could be incorporated. It has been 

suggested that (e) and higher order diagrams may produce gluonic bound states 

[Robson 1977]. 

The model of the Pomeron is a mechanism which accounts for approximately 

constant total hadronic cross sections (at high energy 3-300 GeV), zero real parts 

of scattering amplitudes, and limiting fragmentation of particles (i.e., low particle 

multiplicity) in hadron hadron collisions [Low 1975]. This model is useful, in that 

experiment has shown these qualities to exist in hadron collisions and it explains 

these phenomena very well. 

1.2.1 Regge theory and its relationship to Pomerons 

The Pomeron was named for I. la. Pomeranchuk, who first proved a the­

orem which states that at high energies, the elastic cross sections for particles 

and anti-particles should become equal and be isospin independent [Perkins 1982, 

Pomeranchuk 1956, 1958, and Okun and Pomeranchuck 1956]. 

Regge theory treats the angular momentum as a continuous complex variable 

and physical states may take integral or half integral values along the real axis 

called "Regge poles". This variable is denoted by a{E), where a is a function of 
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(a) 

n 

(e) 

Figure 1.1 Some gluon couplings possible in single and multiple Pomeron 

exchange; gluons are represented by wavy lines, fermions 

are represented by smooth lines, and the dashed lines indicate 

any number of possible intermediate states [Nussinov 1975] 
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the energy of the particle. The path in the complex energy plane followed by a as 

the energy, B, increases is called a "Regge trajectory". When the real part of a(£J) 

is equal to the angular momentum, L, (an integer or half-integer) a resonant state 

can occur. Each resonance on a given trajectory must have the same quantum num­

bers except for the angular momentum [Chew et al. 1962, Perkins 1982]. In order 

to obtain conservation of parity, this requires that each successive resonance on a 

Regge trajectory be separated by two units of angular momentum (the parity sign 

is given by P = —1^ for natural states, and P = —1^+^ for unnatural states). For 

a nearly constant total cross section at high energies, a(0) = 1 is needed [Perkins 

1982]. In order to explain all elastic scattering phenomena, this trajectory must 

also have vacuum quantum numbers (i.e., strangeness, charm, isospin, baryon no., 

etc.). Since the vacuum pole exchange dominates the elastic scattering, then the 

elastic cross sections for particles and antiparticles must be equal. This vacuum 

trajectory has been termed the "Pomeranchuk trajectory" and the exchanged par­

ticle is called the "Pomeron". In addition, the Pomeron exchange process may 

account for the characteristics of interactions where one of the two incident parti­

cles is excited slightly, and the other particle is left unchanged except for a small 

amount of momentum transfer. These types of interactions are called quasi-elastic 

or diffractive scattering processes. Extensive work has been done using the Regge 

model to describe correctly several aspects of these types of interactions [Amaldi 

et al. 1976], including multiple Pomeron exchange. 

1.3 Double Pomeron Exchange (DPE) Process 

Double Pomeron Exchange (DPE) is the process in which two Pomerons are 

exchanged. In the center of mass frame of a system, this creates two fast forward 
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outgoing systems which can be made up of quasi-elastically scattered protons, and 

a slower central system, %, consisting of whatever is formed by the interaction of 

the two Pomerons. The resulting Feynman Zf value (i.e., the ratio of a particle's 

longitudinal momentum or the momentum along the incoming beam axes to its 

maximum kinematically allowed momentum, see Equation 2.5) of each proton re­

mains close to unity. All the centrally produced particles in the system, JT, must 

have small Feynman Xf near zero. The cross sections in the DPE process are of 

the order of ten to thirty microbarns (fxb, Ifib = 10~'° cm^). This is only about 

1/2000 of the total proton proton (pp) cross sections at the energies used in this 

experiment. Thus, the process is rare, and requires careful setup of the experiment 

in order to isolate the event sample [Drijard et al. 1978, Breakstone et al. 1986]. 

Figure 1.2 illustrates the normal difFractive processes (a) and (b), which show 

Reggeon-Pomeron exchange for the case pp -4- ppTr'^iT~. In this case the Reggeon 

remains close to one of the proton vertices, i.e., the rapidity (see Equation 2.4) of 

the central system is not well separated from the rapidity of one of the protons. 

This means that the central system travels in the direction of one of the forward 

protons and does not have low enough Feynman XF. Figure 1.2(c) shows the 

Pomeron-Pomeron exchange process with a large gap in rapidity between the two 

central system pions and the forward protons. This is an important property of a 

DPE event which can be used to distinguish it from other interactions [Drijard et 

al. 1978]. 

The double inclusive distribution for the quasi-elastically scattered protons is 

(1.1) 

where the function 7 gives the proton couplings, TJ is the signature factor of the 
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Figure 1.2 Normal difFractive processes wliich show (a-b) Reggeon-Pomeron 

exchange for the case pp —» ppn'^Tr~, and (c) Pomeron-Pomeron 

exchange process for the same reaction, showing the large 

rapidity gap between the two central system pions and the 

forward protons [Drijard et al. 1978] 
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Reggeons, a is the Regge intercept (which is 1.0 for Pomerons and only 0.5 for 

Reggions), pti is the transverse momentum of the protons, is the central system 

mass squared, U is the momentum transfer of each proton, Xi is the Feynman x f 

value of each proton, and erpp is the total Pomeron-Pomeron cross section [Âmaldi 

et al. 1976]. 

In DPE, «f = 1 for t = 1,2 so that Equation 1.1 gives the relation 

da- 1 
dxidx2 (1 — ®i)(l ~ ^2} 

This shows the double pole term near , »2 = 1. It should be noted that one needs 

to be careful to look at the xi and z; values to ensure double pole behavior for 

this experiment, i.e., si,«2 ~ !• If the dominant reaction were single diffraction 

then there would be a loss of events in this double pole region. The cross section 

in the case of single diffraction, 

^ +7-4- (1.3) 
dx\dx2 1 — ®i 1 — X2 

contains only single pole terms [Amaldi et al. 1976]. 

Another requirement of DPE is that the two fast outgoing protons' momenta 

must be uncorrelated. This is evident from the absence of cross terms in the proton 

couplings and signature factors in Equation 1.1. Thus, the azimuthal angles of the 

outgoing protons about the beam axis are uncorrelated. Also, the two momentum 

transfers ti and <2 are not correlated in DPE. In elastic scattering, the behavior 

is well described by the function e"*. For DPE this behavior is expected also with 

the constant, a, equal to one-half of the value for an elastic scattering process with 

the same energy [Drijard et ai. 1978]. 

The remaining characteristic of DPE processes is given by the possible quan­

tum numbers of the central system resulting from the two Pomerons. As mentioned 
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previously, a Pomeron carries the quantum numbers of the vacuum, 

Since two Pomerons are identical bosons, the DPE system must be symmetric in 

the spatial part of its wave function. Therefore, the total orbital angular momen­

tum must be even, i.e., L = {0, 2, 4, ...}. Since the Pomerons have zero spin, 

J = L. The parity, P, must be even and the charge conjugation, C, must be even 

(since C = —1^"^^, and the total strangeness, S = 0). Thus, in DPE only the 

states 2"*"^, ...} are possible in the central system. 

1.4 Possible States (Resonances) 

Using the fact that the reactions in DPE must have the quantum numbers 

{0"^"'", 2'^"^, 4"^+, ...}, and the isospin (I) and G parity, must be J® = 0+, the 

possible resonant states that may be produced can be tabulated from the "Review 

of Particle Properties" [Particle Data Group 1988]. In what follows, only the 

lowest lying states are considered, i.e., O"*"^ and 2"^"^ states. Some of the possible 

DPE states based on the quantum numbers are summarized in Table 1.1. The 

/a(1270) meson has been seen in this experiment via the reaction pp —> pp{ir'^Tr~) 

[Breakstone et al. 1986]. There is some evidence that the /o(975) may have been 

produced also [Breakstone et al. 1989] in this experiment. In addition, the reaction 

pp -+ pp{pp) shows an enhancement near 2000 MeV in the pp mass distribution 

which may be identified with the /a (2010) particle resonance, although so far it has 

only been seen to decay to <j><f> pairs [Breakstone et al. 1989]. The non-established 

resonant states which are consistent with allowed DPE states are listed in Table 

1.2. These states have been seen by only one or two groups, or have discrepancies 

in the measured widths and masses [Particle Data Group 1988]. 
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Table 1.1 Some established resonant states which may be formed in DPE 

Particle fMass MeV) Width rMeVI Decav Modes 

/O(975) 0++ 34 ( ^ ) ,  ( K K )  

/2(1270) 2++ 180 ( T T T T ) ,  { K K ) ,  ( 2 7 r 2 7 r )  

/o(1400) 0++ 150-400 (tttt), {KK), (7777) 

/2(1525) 2++ 76 { K K ) ,  (TTTT), (777/) 

/o(1590) 0++ 175 (7777), (4ir) 

A(1720) 2++ 138 { K K ) ,  (7777), (TTTT) 

/2(2010,2300,2340) 2++ 150-300 (#) 

Table 1.2 Some non-established resonant states which may be formed 

in DPE 

Particle CMass MeV^ Width fMeV) Decav Modes 

/o(1240) 0++ . 140 { K K )  

/2(1430) 2++ 14-150 (TTTT), { K K )  

/o(1525) 0++ 90 { K K )  

/o(1750) 0++ 50-200 { K K ) ,  (7777) 

/2(1810) 2++ 180-390 (TTTT), { K K ) ,  (7777) 

/2(2150) 2++ 250 (TTTT) 
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1.5 Glueball Candidates Consistent With DPE 

Quantum Chromodynamics Theory (QCD) predicts the existence of gluonic 

bound states or "glueballs" and a firm calculation of their masses would shed light 

on their identity. Early attempts at calculation of the glueball mass range were 

made in the early times of lattice gauge theories [Ishikawa et al. 1982, Berg et 

al. 1982]. These early calculations were unreliable in their control of systematic 

and statistical errors and thus, their results were uncertain. 

A qualitative study of glueballs has been performed for the lightest possible 

glueball states using low-dimension, gauge invariant, colorless operators [Jaffe et 

al. 1986]. The results indicate that the possible quantum numbers of the lightest 

glueballs are O""*", 2"*"*", 2""'"...} and the lowest excited state glue-

balls have quantum numbers of = {1"*"^, 3"^"^, ...}. Thus, the lightest three 

glueball states are expected to have = {0^, l"^"*", 2^"^ ...} for possible quan­

tum numbers- For a two gluon system only the O"*"^ and 2'^'^ states are expected 

for the lightest states. 

Theoretical predictions of the 0"*"^ and 2^"^ glueball masses have been made 

using lattice gauge theory. These calculations were carried out using high speed su­

percomputers and large statistics Monte-Carlo simulation techniques. The results 

of these studies have been somewhat successful at computing the masses of these 

two states. The mass ratio of the two states is found to be m(2"''"^)/m(0'*"^) « 1.5 

[Kamenzki and Berg 1986, Berg et al. 1986, and Schierholz 1987, 1988a, 1988b]. 

The computations of the 0"^"^ mass have yielded values in the range 1.2-1.5 GeV 

[Schierholz 1988b, Degrand 1987]. While the 2"^"^ mass has been computed to have 

a range of 1.7-2.2 GeV [Schierholz 1988a, 1988b, Forcrand et al. 1986]. It should be 

noted that the above computations were performed without taking into account the 
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possible mixing effects with qq states. Since glueballs are thought to have widths 

on the order of a few hundred MeV, mixing effects are possible. 

Regarding glueball candidates, it should be noted that no known particle state 

has been unambiguously identified as a glueball. Some of the known states have 

been considered as glueballs, but their identity as possible qq states or exotic states 

(e.g., qqqq) is not ruled out either. In the 0"*"*" (at 1-2 GeV mass) mesonic area, there 

are only three well established resonances consistent with DPE quantum numbers, 

the /o(975), /o(1400), and /o(1590) (see Table 1.1). In order to account for possible 

glueball states, one must consider also the non-established /o resonances, i.e., the 

/o(1240), /o(1525), and /o(1750). Although it is likely that the well established 

0"^"*" states are qq states, the possibility of one of these being a result of glueball 

and qq mixing cannot be ruled out [Particle Data Group 1988]. For the possible 

2"'"+ states, there are four to six established mesonic states to consider, i.e., the 

/2(1270), /2(1525), /2(1720), and ^2(2010 - 2340). The /2(1270) and /2(1525) are 

thought to be predominantly qq states although the /2(1270) has been seen in DPE 

[Breakstone et al. 1986] and in the radiative J/# decays [Augustin et al. 1987] 

which is a gluon rich decay channel. The /2(1720) (formerly called the ^(1690) 

resonance) is one of the leading glueball candidates [Ward 1986]. In addition, the 

three /2(2010 — 2340) resonances are all glueball candidates. Other 2"*"^ objects 

that are not well established are the /2(1430), /2(1810), and /2(2150) states any 

of which may be glueballs or gluonium and qq mixtures. 
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2 EXPERIMENT DESCRIPTION 

This experiment was conducted using facilities at the European Laboratory 

for Particle Physics (CERN) in Geneva, Switzerland. The CERN Laboratory, as 

its name indicates, is a collaboration of European countries for research in particle 

physics. It supports accelerator programs in different areas of particle physics 

research and is an excellent example of international collaboration in basic science 

research. The accelerator facility used for this experiment was the Intersecting 

Storage Rings (ISR), and the detector utilized was the Split Field Magnet. 

2.1 Energy and Luminosity of the Intersecting Storage Rings (ISR) 

A schematic view of the Intersecting Storage Rings (ISR) is shown in Figure 

2.1. The beam starts in a duoplasmatron ion source which supplies positive hy­

drogen ions to a Cockcroft-Walton accelerator. The source gives several pulses in 

sequence and the protons are accelerated to 750 keV [Michaelis 1981]. The beam 

pulses are then injected into a linear accelerator (Linac) and accelerated to 50 MeV. 

Next, the beam is injected into a booster synchrotron and its energy increased to 

800 MeV. The pulses are stored and collected until bunches containing roughly 10^^ 

protons are obtained. These bunches are injected into the Proton Synchrotron (PS) 

which in turn injects the beam into the ISR. The beam lines of the ISR are filled 

with a few hundred injections from the PS. 

The ISR consisted of two interleaved rings, approximately 300 meters in di­

ameter, which intersect at eight points [Keil 1972]. Each ring or beam line, is an 

evacuated pipe in which protons circulate. The two rings are filled with counter-

rotating beams of protons, which collide at the eight intersection points. The 
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Figure 2.1 Layout of the ISR showing the relative location of the 

LINAC, Booster, and Proton Synchrotron 
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horizontal beam crossing angle at each intersection is approximately 14.8 degrees 

and the pressure in the pipes is 10"^^ torr. The beam profile in its final state is in 

the form of a thin slab 1 cm high and 6 cm wide. The current for each beam in the 

experiment was 30 amps. This is the normal current used at the highest available 

ISR energy. The energy at which the PS injected proton bunches to the ISR was 

26.5 GeV for the experiment under study. The final momentum of the protons 

in each of the beams was 31.46 GeV and the final acceleration from 26.5 GeV 

to 31.46 GeV was performed in the ISR itself [Henrichsen et al. 1974, Fischer et 

al. 1979]. The total center of mass energy available in the ISR for this experiment 

was therefore y/s = 62 GeV. 

The luminosity of the machine is a parameter of importance for the experiment. 

The luminosity, is defined as the counting rate for an interaction per unit cross 

section for that particular interaction. It is expressed by the equation -

M 

where <r is the cross section for an interaction and d N / d t  is the counting rate. An 

expression for the counting rate is given by 

W flfj 
dt ce' fc(on(f) ' ' 

where I i  and I 2  are the currents of the beams, h  is the beam height, a  is the beam 

crossing angle, c is the speed of light, and e is the charge of an electron [Hubner 

1977]. Using this equation, one finds a luminosity of Z = 9.0 x 10®^s~^cm~^ for 

the two intersecting proton beams in the ISR. The luminosity in this experiment is 

actually slightly different due to the effect of the Split Field Magnet on the crossing 

angle as will be discussed in the next section. 
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2.2 Split Field Magnet Detector (SFM) 

The experiment was performed at the intersection region 14 of the ISR. The 

Split Field Magnet detector (SFM) was used to analyze the proton proton interac­

tions. A schematic diagram of the SFM is shown in Figure 2.2. The magnet has 

a length of 10.3 meters, a width of 2.0 to 3.5 meters and a height of 7.2 meters. 

The distance between pole pieces is 1.1 meters and there is an effective magnetic 

volume of 28 cubic meters. The magnet has a total weight of about 880 tons and 

a maximum field strength of 1.14 tesla [Heiden 1982]. In using storage beams for 

an experiment, one has to ensure that the net deflection of the beams is zero, i.e., 

^ B • dl = 0. The SFM has a vertical field and is arranged so that the field points 

up on one side of the detector and down on the other side. Tliis arrangement gives 

a net integral of the flux seen by the proton beams of f B • dl 0. In order to 

yield a total net beam deflection of exactly zero within experimental errors, there 

are two large compensator magnets located at the two outgoing beam pipes. These 

magnets compensate for small net deflections of the beams caused by the SFM 

detector. 

With the magnetic field of the SFM one can measure the momenta of charged 

particles from the curvature of their trajectories in the field. The magnetic field was 

set to 1.0 tesla for this experiment. Together with beam momenta of 31.46 GeV 

for each proton beam, this resulted in a total beam crossing angle of a = 17.477 

degrees [Bryant 1973]. The center of mass motion in the laboratory frame then 

becomes /3em = sinj fiheam = 0.15 /?fceam towards the center of the ISR. The 

adjusted luminosity using this value for a is Z = 7.6 x 10^^s~^cm~^. 

The volume between the pole pieces of the SFM is filled with Multi-Wire Pro­

portional Chambers (MWPCs). These are more commonly called SFM chambers 
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in the experiment. Their purpose is to measure the trajectories of the charged 

particles emerging from the interaction. The set-up of the chambers is shown in 

the diagrams of Figures 2.3 and 2.4. The chambers have been described in various 

papers [Bouclier et al. 1974, 1975, Brand et al. 1975, Bell et al. 1975, 1978]. The 

SFM chambers have a self supporting design for the wire planes with sandwiched 

polyurethane foam sheets layered with silver to provide cathodes for the wires. 

The design increases the amount of solid angle coverage of the detector, but also 

increases the amount of material the detected particles had to pass through. This 

extra material causes energy losses for the particles passing through the chambers, 

and these losses must be corrected for in the analysis of the data. From the figures, 

one can see that the SFM separates into three groups of MWPCs. Each describes 

a particular region of the detector. One group of MWPCs defines the central 

region and measures the tracks of particles produced at large angles with respect 

to the incident proton beam directions. The other two groups define two forward 

regions, one on each side of the detector in the directions respectively. Table 2.1 

shows the number of planes and wire spacings for each of the SFM chambers in 

the experiment. V, H, and I stand for vertical, horizontal, and inclined planes. 

The first number in each of the planes indicates which group the chamber is in. 

The chambers numbered in the range 100 and 200 define the central region, the 

chambers numbered in the range 300 define the forward telescope in the negative 

y direction and the chambers in the 400 range define the forward telescope in the 

positive y direction. 

The remaining part of the detector of importance for this experiment is the 

Time of Flight (TOF) system. It is an array of scintillation detectors set around the 

SFM (see Figure 2.4) and is used for particle identification. There are 67 counters 
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Table 2.1 Parameters of the MWPCs in the SFM detector 

Chamber index Number of Planes 
V H I 

Wire soacins 
(cm) 

100,200 4 4 2 0.4 

101, 102, 201, 202 1 1 1 0.4 

109, 209 3 1 0 0.4 

350, 360, 450, 460 2 2 1 0.4 

500, 600 5 4 2 0.4 

310, 314, 320, 410, 414, 420 3 3 2 0.4 

311-313, 321-324, 411-413, 421-424 1 1 0 0.4 

315-317, 325-327, 415-417, 425-427 1 1 0 0.2 

300-303, 400-403 2 2 2 0.4 

arranged in modules of seven counters each and one with 11 counters for a total of 

nine modules. The size of a single scintillator is 225 cm high by 40 cm wide by 2 cm 

thick. The arrangement of the counters yields a coverage of about 10 percent of 

the solid angle. Each scintillator is viewed by photomultiplier tubes situated at its 

two ends [Heiden 1982]. A TOF counter measures the time of flight for a particle's 

trajectory from the vertex to the counter. One can thus estimate the velocity of 

the particle and use the momentum measured by the SFM chambers to identify 
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the mass of the particle from the equation 

~ (2-3) 

where i  is the measured time of flight, / is the length of the trajectory, p  is the 

particle momentum, m is the particle mass and c is the speed of light. 

2.3 Trigger Descriptions 

Of particular importance to this experiment are the central chambers shown in 

Figure 2.4. The chambers 1.00-102, 200-202, 109, and 209 are the central MWPCs 

which play an important role in defining central system particles in the trigger. 

Chambers 301, 302, 312, 313, 322, 323, 401, 402, 412, 413, 422, and 423 were used 

in veto for the trigger to screen out events not containing central tracks. The TOF 

counters help to provide time of flight information giving mass information on some 

of the central, particles to aid in particle identification. Finally, there are two TOF 

stands and forward telescopes in the outgoing beam directions to define the two 

fast outgoing protons in the trigger. 

The data taken in the experiment have three distinct sets defined by three 

different trigger setups. The three triggers are termed OR, AND, and TOF. All 

triggers required two fast protons, one in each outgoing beam pipe, which was 

accomplished via the TOF stands near the large compensator magnets. In addition 

all three sets of data required at least one central particle. The triggers were not 

completely efficient in selecting the fast forward protons. Therefore, prior to full 

event reconstruction, the raw data were first run through a filter program in order 

to select only those events which had one fast proton in each forward direction. 

This program only reconstructed forward tracks in the SFM. The events with only 
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one positively charged particle in each forward telescope, and momentum greater 

than 18 GeV were passed on for full reconstruction. 

The OR trigger required the detection of one central particle in the positive-® 

side of the detector or one particle in the negative-a; side. The data rate was the 

greatest for OR data at 52 Hz with a total event count of 1.6 million. Of these 

1.6 million events, 500,000 passed the filter stage. 490,000 of these events were 

successfully reconstructed and written out to a Data Summary Tape (DST). These 

data were taken in December of 1981 during one ISR run period. 

The AND trigger required two central particle tracks to be produced in the 

detector; one in the positive-® side and one in the negative-® side. It was thus more 

restrictive than the OR trigger and had a much slower data rate of only 17 Hz with 

a total event count of 1.4 million events. 420,000 of these events passed the filter 

stages A total of 406,000 of these filtered events were successfully reconstructed 

and written put to a DST. These data were taken during December of 1981 and 

May of 1982 during two ISR run periods. 

The TOP trigger required at least one detected particle in the central region 

and had the additional constraint of hitting a 700 TOF stand with a delay of at 

least 32 ns. The TOF trigger was the most restrictive with a data rate of 1 Hz and 

a total of 2.3 million events recorded. Of the 2.3 million events, 400,000 passed 

the filter stage. Of these filtered events, 390,000 were successfully reconstructed 

and written to a DST. These data were taken during a period from March through 

May of 1983 in 13 ISR runs. The TOF trigger was unique in that it enhanced 

the average number of kaons and protons produced in an interaction. The total 

number of kaons and protons for the TOF trigger was roughly equal to the number 

of pions, i.e., ~ njc ~ Up in the central region. 
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Figure 2.5 Two possible DPE interactions (a) pp —» pp(A'°iir°), 

and (b) pp -+ j)p(7r+7r~) 

2.4 Evidence for Double Pomeron Exchange (DPE) 

Each of these data sets favors Double Pomeron Exchange (DPE). Figure 2.5 

shows possible scenarios where two pomerons form a bound state which then decays 

into two neutral kaons in the interaction pp pp {K^K^) or two charged pions 

i n  t h e  i n t e r a c t i o n  p p  p p  

Figure 2.6 shows the rapidity distribution of charged particles produced in the 

interaction pp —* pp (tt'^'tt") [Breakstone et al. 1986]. The rapidity of a particle is 

defined by: 

' " (B-w)  (2  4 )  

where E  and pf, are the energy and longitudinal momentum component of a given 

particle. The larger the momentum in the beam or longitudinal direction of the 

particle, the larger the rapidity. The two peaks at y = ±4 rapidity are the two 



23 

outgoing fast protous, and the peak between y = —2 and y = +2 are the two 

pions which make up the central system. Thus, one sees a good separation of 

central particles from the fast protons. As mentioned in Chapter 1, this separation 

is needed in order to isolate a sample of DPE events. The rapidity plot for the 

interaction pp —> pp is similar. Figure 2.7 shows a correlation plot 

[Isenhower 1986] of the Feynman x / variable of each of the fast outgoing protons 

where 

Xf = % % (2.5) 
PLmax •C' 

It is seen that most of the momentum is in the longitudinal beam direction. Thus, 

it is apparent that these events are good candidates for DPE events. 
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Figure 2.6 Rapidity distributions of charged particles produced in 

the reaction pp —* pp(7r"'"7r~) [Breakstone et al. 1986] 
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Figure 2.7 Correlation plot of the Feynman x/ variable of each of the 

fast outgoing protons in the reaction pp —+ pp(7r"^7r~); 

Py corresponds to the y momentum direction [Isenhower 1986] 
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3 DATA REDUCTION 

3.1 T^ack Reconstruction 

The track reconstruction in the SFM is based on algorithms produced by 

H. Wind [Wind 1974, 1978, Aubert and Broil 1974]. The track candidates are 

found by routines called "WTRAs". The WTRAs determine what combinations 

of chamber hits may form a valid track. In effect, it defines a road through the 

SFM detector which a charged particle might take. Each region of the SFM is 

covered by one or more of these WTRAs. After a valid track candidate is found, 

it is passed through a routine called SPLINE. The SPLINE routine performs a 

quintic spline fit to the measured points of the particle track [Drijard 1976]. It 

effectively refines the measurements of position, momentum, and the directions of 

each valid track candidate. After the spline fit, the tracks are extrapolated back to 

the interaction region in order to fit them to a common vertex, called the primary 

vertex. This primary vertex fitting procedure is accomplished by a Runge-Kutta 

integration method. 

Once an approximate position of the primary vertex is found, it is used as an 

additional space point to search for other track candidates. Thus, a second track 

finding step is performed in order to find short tracks and also tracks crossing 

chambers in dififerent regions (i.e., central and forward regions) which were poorly 

defined without the vertex. The primary vertex fit is then repeated using all the 

tracks in order to refine the vertex position measurement. If the chi-square value 

of this fit is too large, the tracks with largest contributions to the chi-square are 

dropped, and the fit is retried. The process continues until an acceptable vertex is 

found. 
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After the vertex fitting is complete, all individual tracks are checked for com-

patability with the vertex. Those tracks found to be too far away from the pri­

mary vertex (i.e., three times the error on the distance of closest approach from 

the track to the vertex) and also those tracks with an uncertainty in momentum 

of Ap/p > 30%, are candidates for tracks not associated with the primary vertex. 

These non-vertex-associated tracks are called secondary tracks. When the entire 

process is complete, the primary vertex position, a list of vertex and non-vertex as­

sociated tracks, the momenta, charges, and all other detector information, such as 

TOP and energy loss information are stored on a Data Summary ï%ipe (DST) to be 

used for further analysis. In addition, in order to deal with non-vertex associated 

tracks, a F" fitting program was developed. 

3.2 V® Track Reconstruction 

The SFM is capable of detecting and measuring 90% of all charged tracks 

produced in high energy proton proton interactions [Minten 1972, Bell et al. 1975]. 

Thus, it is often called an electronic bubble chamber. However, as far as recon­

struction of neutral charged particle decays is concerned, there is a major difference 

between an electronic detector such as the SFM and a bubble chamber. In a bub­

ble chamber a decay may be easily identified by the direct observation of a 

secondary vertex which is well separated from the primary vertex or interaction 

point. Both the primary and the secondary vertex are usually reconstructed with 

acceptable accuracy. In addition, the momentum vectors of both F" decay parti­

cles may be measured directly at the decay vertex. Thus, a three constrained fit 

(3-C fit) hypothesis of a neutral particle decaying into two charged particles can 

be performed using momentum conservation at the decay vertex. 
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As seen in Section 3.1, it is not possible to observe directly the vertices of 

an interaction in the SFM. Instead one has to reconstruct tracks with computer 

code from the MWPC information and the magnetic field. A special fit procedure 

has been designed to determine the geometrical and kinematical variables of a V® 

decay in the SFM [Raschnabel 1981]. In order to find neutral particle decays, two 

oppositely charged particle trajectories which have similar vertices (i.e., starting 

points) and which do not point back to the primary vertex are searched for (see 

Figure 3.1 Diagram of a V" particle showing both the primary (F) and 

secondary (S) vertices, the distance of closest approach 

S^, and the momentum vector 

The process of looking for secondary vertices is used to locate three neutral 

strange particles in the SFM. They are if", A°, and A" which decay via the following 

detectable modes: 

Figure 3.1). 

primary secondary 
vertex vertex 

(3.1) 

a" —+ TT p (3.2) 
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À°-^7r+p (3.3) 

Other neutral particles cannot be searched for by using this method because they 

either decay too quickly (e.g., tt", t/, p, etc.) or they do not decay quickly enough 

(e.g., Kf, n) to be seen with a secondary vertex in the SFM detector. 

The search for secondary vertices begins with the secondary tracks' original 

parameter information found prior to the primary vertex fit and proceeds from 

there. This is because the secondary tracks often had a primary vertex fit performed 

which yielded a low probability of fit value (i.e., a high chi-square value) and 

therefore the original track parameters are a more accurate place to start. For all 

pairs of oppositely charged secondary tracks, the invariant mass is calculated for 

the three mass assignments: tt+tt", ir~p, and ir'^p. If any of the combinations 

gives a mass value close to the A'° mass (497 ± 100 MeV) or to the A^/A" mass 

(1115 ± 125 MeV), a secondary vertex fit is tried. The mass limits are increased by 

a factor of 1.5 for tracks missing the vertex completely, i.e., for those tracks which 

did not have a primary vertex fit tried at all. This is done to take into account 

the poorer determination of track direction for these tracks. As in the primary 

vertex fitting procedure, a Runge-Kutta integration technique is used for fitting to 

a secondary vertex which consists of two tracks. In the secondary vertex fit, the 

point of closest approach (point "5"' in Figure 3.1) of two particle trajectories is 

calculated. Once the secondary decay vertex is found, the kinematical quantities 

of the two tracks are allowed to vary, i.e., the momenta of the tracks are varied 

according to their error matrices. The following constraints are imposed on the fit: 

1. Both tracks must originate from the secondary decay vertex. 

2. The sum of the momentum vectors of the charged particles constituting 

the must point back to the primary vertex. 
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3. For a given mass hypothesis the momenta and angles of the two 

V® tracks are no longer independent variables, but are coupled by 

decay kinematics; specifically, the invariant mass of the pair is 

required to be consistent with the mass hypothesis for the . 

The fitting process is continued iteratively until an acceptable F" candidate is 

found. If there are no acceptable secondary vertices found for a particular event, 

the fitting procedure is abandoned for that event. The details of the F" fitting 

are described by Rauschnabel [Rauschnabel 1981]. 

3.3 6-prongs 

The type of interaction studied consists of two incoming colliding protons and 

some number n of outgoing charged particles. Two of the n particles are fast 

outgoing beam protons, n/, as mentioned in Section 2.3. The rest of the outgoing 

particles, nc, are in the central region of the detector. Therefore, the total number 

of charged particles detected in an event is given by 

n = Uf Uc (3.4) 

The events are called n-prongs signifying the n charged particle tracks detected 

by the SFM detector. This work is restricted to a subset of the n-prong events, 

i.e., those events having exactly six charged particles. In addition, the four central 

particles in any particular 6-prong event are required to be of zero net charge. 

Earlier work studying DPE in the SFM have shown that the majority of the 

charged particles produced in the central region are relatively long-lived charged 

mesons. Tliis includes pions and kaons with pions comprising the largest number 

of particles (about 83%) and kaons the second largest (about 12%) [Breakstone et 
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ai. 1989]. In addition, protons and anti-protons are occasionally produced in the 

central region (about 5% of the time). 

3.4 Interactions To Be Studied 

Results of the V® fitting procedure are used as a starting point to look for the 

following interactions; 

pp -.pp(A'»A'») (3.5) 

pp -^pp(ii:°ii:^7r=F) (3.6) 

pp Pp(A°A'') (3.7) 

pp —> PP(A°A''*) (3.8a) 

pp ^ pp(A°*'À®) (3.86) 

Each candidate event is required to have at least one identified F" particle. In 

the case where an event had TOP information for a charged particle, the meiss 

assignments are checked for consistency with the mass predicted by its time of 

flight trajectory using Equation 2.3. This helps screen out a fraction of about 

five to ten percent of the events that are not properly identified. In the case of 

reaction 3.5, the two central region charged particles not associated with the F" are 

assigned pion masses. In reaction 3.6, the two central region charged particles not 

associated with the F" are assigned first if"'" and ir~ masses, and then ir'^ and K~ 

masses for each event. This introduces a rather large combinatorial background 

which is partially reduced with TOP information when available. In the case of 

reaction 3.7, the other two central particles are assigned pion and proton masses 

appropriate to their charge and the type of F" fit, i.e., either A° or A°. In the case 

of reaction 3.8, a A"* or A®* resonance is searched for by assigning the appropriate 
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proton and kaon masses to the two charged central particles not associated with 

the particle. In Sections 3.4.1 and 3.4.2 the results of the F" routines will be 

considered for each of the interactions with no additional constraints applied to the 

6-prong data. 

S.4-1 Interaction» involving at least one Kg 

The decay length distributions of jRT® tracks for 6-prong events having at least 

one Kg track found are shown in Figure 3.2. The decay length shown is the 

distance in the laboratory frame from the primary vertex to the secondary vertex. 

The figure at the top shows the distribution in the decay length for the OR trigger 

data. The decay length distribution peaks at approximately two centimeters with a 

large tail. The average calculated error in the decay length from the F" fit routine 

is 20-30% of the decay length. The AND trigger data (center) and TOF trigger 

data (bottom) are very similar. The sharp cut-off in the decay length at 1.0 cm is 

due to the constraint placed on the allowed decay length by the F® fitting program. 

The decay plane orientation angle of the K^ is shown in Figure 3.3 for each 

of the three triggers. The decay plane orientation angle is calculated from the F" 

direction, w, and the direction of the positive track, u, in a frame of reference 

defined by w and the beam direction, y. The three axes are given by iv, ej, and 

62. The axes êj and eg are computed by the cross products 

y xw 
(3.9) 

and the angle <j) is found from the unit vectors, u, to, e"i, and 

u - w  —  c o s ( O ^ )  (3.10a) 

u-Ci = sin{d+)cos(<f>) (3.106) 
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Figure 3.2 Decay length of the jRT" particle for the OR (top), 

AND (center), and TOF (bottom) triggers 
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Figure 3.3 Decay plane orientation angle (in radians) of the ff" particle 

for the OR (top), AND (center), and TOF (bottom) triggers 
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tt-ej = 3m(^+)5m(^) (3.10c) 

where is the angle between the positive decay product and the F" particle in the 

laboratory frame. The phi decay angle appears to be fairly uniformly distributed 

except for a loss of acceptance in the regions of 0 and ±7r radians. These cases 

correspond to the particles emerging in the beam direction where there is a 

forward veto for the central particles. Therefore, the losses are likely due to trigger 

acceptance. 

The distribution in cosine of theta for the if", where theta is the angle between 

the jRT" and its positive decay particle in the rest frame, are shown for each of 

the three data triggers in Figure 3.4. The OR and AND triggers show fairly uniform 

distributions, while the TOP trigger is somewhat biased toward cos{6) = ±1. This 

shows the loss of acceptance in the TOF trigger due to the requirement of at least 

one particle passing through a TOF stand which covers only part of the full solid 

angle in this experiment. 

The jftT" mass distribution for each event containing at least one A'° particle 

is shown in Figure 3.5 for each of tte three triggers. All distributions feature a 

peak at the true particle mass with a rather large width of about 100 MeV. 

The TOF trigger also has a small peak in the region of the A° mass. These events 

had an ambiguity in the fits that resulted in both a A'® fit and a A" fit being 

successful. Since the TOF trigger favors heavy charged particles such as protons, 

more events will have a A® particle produced. Since the fit is not perfect, some of 

the A® particles get through the A'® fits as well. 

The invariant mass distributions of the pair not associated with the A'® 

vertex for reaction 3.5 are shown for each of the three triggers in Figure 3.6. All 

three triggers feature enhancements near 500 MeV close to the A'® mass. But, 
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Figure 3.7 Mass of the K^ir^ pair for the OR (top), AND (center), and 

TOF (bottom) triggers 
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it is not easy to distinguish the signals from the backgrounds. For this reason, 

the study of the Kg Kg central system using this method is pursued no further. 

The invariant mass distributions for the K^ir^ pairs in reaction 3.6 are shown in 

Figure 3.7. There is a slight peak near the iï''*(890) mass for the AND trigger 

data, but the OR and TOF data do not exhibit the enhancement. The invariant 

mass distributions for the K^ir^ pairs in reaction 3.6 are shown in Figure 3.8. 

Again there is a slight enhancement near the iif*(890) mass and in this case it is 

exhibited for all three triggers, however, it is not easy to distinguish the signal from 

the background. The invariant mass distributions of the K^K^ pairs are shown in 

Figure 3.9, and no enhancements are observed. Since no clear enhancements are 

observed from reaction 3.6, the study of the K^K^ir^ system using this method 

is pursued no further. 

3.4'2 Interactions involving at least one A°/A° 

The decay length distributions of A" and A" tracks for 6-prong events having 

at least one A® or A° track found are shown in Figure 3.10. The figure at the top 

shows the distribution in the decay length for the OR trigger data. The decay 

length distribution peaks at approximately 2.5 cm with a large tail. The average 

calculated error in the decay length from the fit routine is typically of the order 

of 20-30% of the decay length for each event. The AND trigger data (center) and 

TOF trigger data (bottom) are similar. The cut-off in the decay length at 1.0 cm is 

due to the constraint placed on the allowed decay length by the V° fitting program. 

The decay plane orientation angle <f> of the A^/A" is shown in Figure 3.11 for 

each of the three triggers. The decay angle appears to be uniformly distributed 

except for a loss of acceptance in the regions of 0 and ±7r radians. As mentioned 
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previously in the /f® case, this is due to trigger acceptance. 

The distribution in cosine of theta for the A^/Â", where theta is the angle 

between the A®/A® and its positive decay particle, are shown for each of the three 

data triggers in Figure 3.12. All three triggers exhibit sharp spikes near co3(â) = 

±1. These events most likely correspond to 7 conversions into e+e~ pairs leaking 

through the fit routines [Rauschnabel 1981]. 

The A®/A° mass distribution for each event containing at least one A"/A" 

particle is shown in Figure 3.13 for each of the three triggers. All distributions 

feature a peak at the true A^/À® mass with a width of about 50 MeV. 

The invariant mass distributions of the pair not associated with the 

Lambda vertex for reaction 3.7 are shown for each of the three triggers in Figure 

3.14. No obvious enhancements are observed. For this reason, study of reaction 3.7 

using this method is pursued no further. The invariant mass distributions of the 

pair not associated with the Lambda vertex for reaction 3.8 are shown for 

each of the three triggers in Figure 3.15. No obvious enhancements are observed. 

For this reason, study of reaction 3.8 using this method is pursued no further. 

3.4-3 Conclusions of short study 

It is clear from the widths of the mass distributions of these reactions that more 

work is needed on the events to improve the mass determination of the F" events 

and also to screen out those events in which energy and momentum are apparently 

not conserved by the detected particles. For this reason, a four constrained fit 

(4-C fit) will be used on the events to improve the momentum determination of 

each of the charged particles not associated with the F® and also the momentum 

determination of the F® particle. 
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Figure 3.10 Decay length of the A° particle in the laboratory frame for the 

OR (top), AND (center), and TOF (bottom) triggers 
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Figure 3.13 Mass of the from the F" fit for the OR (top), AND (center), and 

TOF (bottom) triggers 
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Figure 3.14 Mass of the p^ir^ pair not associated with the A" particle for the 
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Figure 3.15 Mass of the pair for the OR (top), AND (center), and 

TOF (bottom) triggers 
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3.5 Four Constrained Fit of Particle Track Momenta 

The 4-C fit adjusts the measured parameters of all the detected tracks in an 

event, according to their measured errors with the aim of satisfying conservation 

of energy and momentum in the interaction. The result of the fit is a set of new 

improved parameters and a chi square (x^) value which shows how well the fit 

functioned for each event. Kinematical fitting of measured track parameters is a 

streiight forward procedure and has already been developed and used successfully 

for this experiment [Isenhower 1986]. 

The fit is based on techniques described by Frodesen, Skeggestad, and Tofte 

[Frodesen, Skeggestad, and Tofte 1979]. The 4-C fit uses a minimization tech­

nique with Lagrange multipliers. The constraint equations are written as a C-row 

column matrix F{X) with Lagrange multipliers A. The resulting equation to be 

minimized is 

X ^ = { x -  X ' ^ f v - ^ X  -  +  2 X ' ^ F { X )  (3.11) 

where is the chi-square, % is a C-component column matrix containing the 

adjusted track parameters, X'^ is a C-component column matrix of the measured 

values of the track parameters, and V is the C x C covariance matrix (related to 

an error matrix) of the measured track parameters. 

The equations to be solved are obtained by setting the partial derivatives of 

with respect to the track parameters, X, and Lagrange multipliers, A, equal to 

zero, i.e., 

^=2V- ' ( j r - J f " ' )+25 | f f lA=0  (3 .12)  

^  =  2 F { X )  =  0 (3.13) 

The x^ minimum is found by an iterative procedure. At the end of each iteration a 
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value is calculated and compared to the previous value. The process is continued 

until the following convergence criteria are met, 

1 I < .0005 n (3.14) 
XÎ+1 

where the subscript refers to the iteration order and n is the number of outgoing 

tracks in Equation 3.4. If the convergence criteria are not satisfied within a given 

number of iterations, the fit is abandoned. 

Each iteration in the fit required several matrix multiplication operations in­

cluding calculation of the inverse of the covajiance matrix. Therefore, high precision 

calculations were required on a computer. The various matrix operations required 

for the fitting were performed on a VAX-11/785 computer using 15-digit extended 

precision variables. 

The variables used to parametrize the kinematical fitting measurements for 

this experiment were 1/p, 0, and of each charged particle. The magnitude of the 

measured momentum is given by p, 9 is the angle out of the horizontal x-y plane 

of the SFM, and <j) is the angle from the z-axis of the SFM detector (see Figure 

2.4). The momentum and angle errors for each particle track are stored on the 

DST as momentum and direction cosines. The errors are transformed according to 

the appropriate fit variables. Complete details of the 4-C fit are given by Isenhower 

[Isenhower 1986]. The output from the fit contains new track parameters consistent 

with energy and momentum conservation, the errors on the new parameters, the 

value, and the pull quantities for each track, i.e., the difference between the 

original measured parameter and the final fitted parameter necessary to obtain 

convergence divided by the calculated error in the fitted quantity. 
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3.0 Corrections to Track and Beam Parameters 

The errors in the track parameters are available on the DST for all measured 

charged particle tracks for each event. In addition, the F" fitting routines give error 

estimates for the V° track momenta. Therefore, these errors can be passed to the 

4-C fit routine following any needed corrections. The only additional corrections 

required to all the outgoing particles' momenta and angles from an interaction were 

those due to energy losses and scattering. These have been described in detail by 

Isenhower [Isenhower 1986] and are briefly summarized below. 

The corrections to the fast outgoing protons involved correcting the errors on 

the 6 angle. This was needed due to multiple scattering in the beam pipe. The 

errors on the two parameters p and <j> were adjusted using the pull quantities from 

the 4-C fit. This was done with great caution. All pull quantities were required 

to be adjusted consistently and only after a successful fit with low was already 

completed. The corrections made for the outgoing central particles were simply 

due to energy losses in traversing the SFM chambers. These corrections apply only 

for low momentum tracks and account for the average loss in energy of a particle 

of a particular mass in traversing the central region of the detector. 

The beam parameters were used as input to the kinematic fit routine as the 

beam momenta are not measured directly in this experiment on an event by event 

basis. Only the average momenta of the two incoming proton beams is available on 

the DST. The ISR beams actually had a momentum spread of ±3%. However, it 

was discovered that one can use the known correlation between the beam momenta 

and horizontal position of the beam particles to determine the beam momenta to 

an accuracy of 0.2% on an event by event basis. These small errors allow excellent 

determination of longitudinal momentum conservation. 
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4 EXCLUSIVE INTERACTIONS INVOLVING 

AT LEAST ONE K? PARTICLE 

4.1 KjKj Central System 

All of the 6-prong events containing at least one identified Kg particle given 

from the F" program were further processed using the 4-C fit routine discussed 

in Section 3.5. The masses of the particles for the reaction 3.5 were assigned as 

discussed in Section 3.4 and are listed in Table 4.1. These masses were required 

to be consistent with any available time of flight information on the DST. The 

momenta and angles as described in Section 3.5 for each of the particles were input 

to the 4-C fit routine. 

Table 4.1 Summary of particles whose four momenta are input to the 

4-C fit in the central system hypothesis 

Particlefs) Mass fMeV) Description 

P,P 938.2796 Two ingoing beam protons 

7r+,7r- 139.5685 Two oppositely charged central pions 

K'g 497.72 One F" Central particle 

938.2796 Two fast outgoing protons 

4.1.1 OR trigger data 

The chi-square (x^) distribution from the 4-C fit is shown in Figure 4.1 for the 

OR trigger. This value is shown transformed into a probability for a successful 

fit for each event in Figure 4.2. This probability is a measure of the goodness of fit 
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for each event based on the value and the four degrees of freedom in the fit. The 

probability of fit distribution is then used to make a final cut on the data to exclude 

events that do not satisfy energy and momentum conservation. The procedure 

is to search for a point in the distribution where it becomes approximately flat. 

Therefore, the cut decided on from this distribution was set at 0.02. A total of 

1565 events were fitted and of these, 245 passed the criterion for the probability of 

fit. The distribution of cosine theta between the and its positive decay particle, 

and the plii angle decay plane orientation of the if® are shown for the Kg for the 

fitted events that passed the probability cut in Figure 4.3. Aside from the lower 

statistics, these distributions are similar to those in Figures 3.3 and 3.4 for the OR 

trigger. 

The invariant mass of the tt"^ tt" pair not associated with the Kg is shown in 

Figure 4.4 for both the fitted and unfitted variables. Both reveal an enhancement 

in the region of the Kg mass, but the distribution using the fitted variables shows 

a much enhanced peak. Tliis is a strong indication that a second A'" is produced 

which can be isolated from the background in this event sample. Therefore, a cut 

on the fitted invariant mass of the tt"*" tt" pair is made on the range 0.44 GeV 

< m < 0.56 GeV, where m is the mass of this pair, in order to further analyze 

these events. The 7r+ ir~ pair mass distribution is shown in Figure 4.5 after the 

mass cut with a gaussian fit for both unfitted and fitted momentum variables. The 

gaussian fit yields a central value of 474 ± 9.6 MeV and a width of 62 ± 7.0 MeV 

for the unfitted momentum variables. The gaussian fit gives a central value of 

498 ± 4 MeV and a width of 31 ± 3.6 MeV for the fitted variables. Thus, the 

mass resolution is improved considerably by the 4-C fit and the fitted distribution 

correctly reproduces the known Kg mass. 
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Figure 4.3 distribution of coa(û) (top), and of the decay plane 

orientation angle, for the OR trigger data 
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The number of events remaining in the sample after this final mass 

cut is 62 events. The distribution of the invariant mass of the K^Kg central 

system particles, is shown in Figure 4.6 for 80 and 100 MeV bin sizes. The first 

histogram with 80 MeV bins indicates a concentration of events around 1200 MeV 

which is more clear in the second histogram with 100 MeV bins. There is also 

a concentration of events around 1500-1800 MeV. The lower peak is centered at 

about 1200 MeV while the upper is at about 1600 MeV. The peak at 1600 is fairly 

broad and could be evidence of the /" meson (mass = 1590 MeV, width = 180 

MeV) with = 0^^ [Particle Data Group 1988]. The peak at 1200 is not near 

any established meson mass resonances with quantum numbers consistent with 

a decay into (i.e., even spin and positive parity) so it may be some new 

resonant state, a threshold effect due to the /o(975) particle, or a combination of 

both. There is a /o(1240) resonance (see Table 1.2) seen by one group to decay to 

KK [Etkin et al. 1982]. 

The background for this interaction can be estimated from the mass 

distribution. From Figure 4.4 the background is estimated to be 30%. The shape 

of the background in the mass distribution may be estimated with the events 

from Section 3.4 using the unfitted mass distribution. This distribution 

is shown superimposed on the data (dashed line) in Figure 4.7, normalized to the 

observed number of events in the region M > 1.5 GeV, with each bin multiplied by 

0.30, and the 62 fitted events subtracted out of the sample. From the distributions 

it is evident that the enhancements are not due to background in the data sample. 

The distribution in cosine theta, where theta is the angle in the Pomeron-

Pomeron rest frame between the ivT® particle and one of the Pomerons, is shown in 

Figure 4.8 for the events. From the relatively flat shape of the distribution 
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it appears that the central system is probably in a spin 0 state, i.e., the decay of 

the Kg Kg system is mostly s-wave. However, in order to verify this conclusion, it 

is necessary to correct the data for geometric and trigger acceptances of the SFM 

detector. This will be discussed in Chapter 6. 

4.1.2 AND trigger data 

The treatment of the data was carried out using the same method as in the 

OR data. The equivalent Figures to 4.2-4.8 are shown for the AND trigger data in 

Figures 4.9-4.15. A probability cut of 0.02 was decided upon for this trigger also. 

The distributions in the decay angle cosine theta and the phi angle are similar to 

those in Figures 3.3 and 3.4 for the AND trigger. 

From Figures 4.11 and 4.12 it is clear that the AND data also feature a second 

Kg in the event sample. The gaussian fits yield a central value of 480 ± 10 MeV 

with a width of 48 ± 7.0 MeV for the unfitted momentum variables and a central 

value of 496 ± 6 MeV with a width of 37 ± 6.0 MeV for the fitted variables. Thus, 

the mass resolution is improved considerably by the 4-C fit. 

The number of events in the KgKg sample is 46 events. The distribution of 

the invariant mass of the KgKg central system particles is shown in Figure 4.13 

for 80 MeV and 100 MeV bin sizes. Unlike the OR trigger data, neither of these 

distributions shows any enhancements in the region of 1200 Mev, but there is a 

slight enhancement at 1500 MeV. However, the statistics are poor. From Figure 

4.11 the background is estimated to be 30%. With the shape of the background 

in the KgKg mass distribution of Figure 4.14, it is evident that the enhancement 

is not due to background in the data sample. In Figure 4.15 it appears that the 

system is probably in a spin 0 state and is dominated by s-wave decay. 
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4.1-3 TOF trigger data 

The treatment of the data was carried out using the same method as in the 

OR and AND trigger data. The equivalent Figures to 4.2-4.8 are shown in Figures 

4.16-4.22. A probability cut of 0.02 was used for this trigger also. The distributions 

in the decay angle cosine theta and the phi angle are similar to those in Figures 

3.3 and 3.4 for the TOF trigger. 

It is evident from Figures 4.18 and 4.19, that the TOF trigger data also contain 

a second particle. The gaussian fits yield a central value of 478 ±25 MeV with a 

width of 91 ± 24 MeV for the unfitted variables and a central value of 499 ± 6 MeV 

with a width of 31 ± 5.1 MeV for the fitted variables. 

The number of events in the sample is 30 events. The distribution of 

the invariant mass of the central system is shown in Figure 4.20 for 80 MeV 

and 100 MeV bin sizes. The two histograms show a strong peak at about 1200 

MeV. This is similar to the OR trigger data in Figure 4.6. As mentioned in Section 

4.1.1, the peak at 1200 is not near any well known meson mass resonances with even 

spin and positive parity. From Figure 4.18 the background is estimated to be 30%. 

With the shape of the background in the mass distribution of Figure 4.21 

it is evident that the enhancement is not due to background in the data sample. 

4'1'4 Combination of the three data seta, OR, AND, and TOF 

In order to improve the statistics available for studying the central system 

mass combinations, data from the three trigger samples were combined. Since the 

AND trigger data show a different distribution in the mass of the whole system, it 

was decided to look at the sum of all three distributions and also to combine the 

OR and TOF samples without the AND trigger data. Because of the requirement 
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of charged particles on both sides of the detector in the central region, the AND 

trigger samples a different region of phase space from the OR and TOF triggers. 

Specifically, the AND data sample contains a bias towards higher mass events in 

the central system. This bias is due to the requirement in the trigger of one hit 

on the positive x side and also one on the negative x side of the detector. Since 

there is a center of mass motion in the negative x direction, the momentum of the 

particle at the positive side for each event will be biased to higher momenta on 

average than will the OR or TOF triggers which only require a hit on one side of 

the detector in the central region. 

The mass distribution for the central system is shown in Figure 4.23 

for the three data sets combined with the background superimposed. The peak at 

1200 MeV remains. The cosine of theta distribution in the Pomeron-Pomeron rest 

frame of the angle between the K, particle and one of the Pomerons is shown in 

Figure 4.24 for the three data sets combined. 

The mass distribution for the K^Kg central system is shown in Figure 4.25 

for the OR and TOF data sets combined with the background superimposed. The 

peak at 1200 MeV is enhanced. This gives more weight to the argument that 

there is probably some sort of resonant state in this mass region. The cosine 

theta distribution in the Pomeron-Pomeron rest frame of the angle between the 

particle and one of the Pomerons is shown in Figure 4.26 for the OR and TOF 

data sets combined. It appears that the central system decays largely via s-wave. 

In order to verify this statement, the data have to be corrected for geometric and 

trigger acceptances. As indicated earlier, this is discussed in Chapter 6. 
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4'1'5 Search for physics biases in the data samples 

Scatter-plots of the 7r"^7r~ mass versus the mass in the central system 

are shown in Figure 4.27 for each of the three triggers. There seem to be no 

obvious correlations in the figures. The same scatter-plot with all three triggers on 

the same graph is shown in Figure 4.28 and again shows no obvious correlations or 

differences in the data apart from the enhancements already discussed in Section 

4.1.4. 

Scatter-plots of the central system mass versus the probability of fit is 

shown for the three triggers in Figure 4.29 and show no obvious biases apart from 

slightly higher statistics in the low probability region which is to be expected from 

the way the probability of fit cuts were made in each of the data sets. 

In Figure 4.30 a scatter plot of the mass of the central system versus 

cosine theta in the Pomeron-Pomeron rest frame is shown. There appears to be 

a slight bias towards higher mass values for low cosine theta. This bias could be 

explained by the forward veto in the three triggers. Since the Pomeron momenta 

tend to favor the forward proton directions, larger central system momenta will be 

excluded by the veto in the forward direction. Acceptance corrections eliminate 

this effect in cosine theta as will be shown in Chapter 6. In Figure 4.31 a scatter 

plot of the mass versus the cosine of theta in the Pomeron-Pomeron rest 

frame reveals no new information. 
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4.2 K®K=^7r^ Central System 

All of the 6-prong events containing at least one identified Kg particle given 

from the F® program were further processed using the 4-C fit routine discussed 

in Section 3.5. The masses of the particles for the reaction 3.6 were assigned as 

discussed in Section 3.4 and are listed in Table 4.2. These masses were required 

to be consistent with any available time of flight information on the DST. The 

momenta and angles as described in Section 3.5 for each of the particles were input 

to the 4-C fit routine. The probability of fit distribution is shown in Figure 4,32 

for the OR trigger data. The probability distributions for the AND and TOF 

data are similar. In each of the three data sets the probability of fit cut was set 

at 0.02. Although a higher cut could be justified, it was found from background 

studies based on TOF mass information that higher probability cuts only reduced 

backgrounds by about 3-5%. 

Table 4.2 Summary of particles whose four momenta are input to the 

4-C fit in the central system hypothesis 

Particlefs^ Mass (MeV^ Description 

P,P 938.2796 Two ingoing beam protons 

493.646 One central kaon (charged opposite to TT^) 

139.5685 One central pion (charged opposite to A'^) 

A'« 497.72 One V" Central particle 

938.2796 Two fast outgoing protons 
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4.S.I OR trigger data 

A total of 1565 events were fitted and of these, 246 events were fitted success­

fully by the 4-C fit routine for at least one mass combination. Of the 246 events, 

136 were fitted successfully with both charged mass combinations. Figure 

4.33(a) shows the mass distribution with a broad peak at 825 MeV. This 

is two low to be a neutral K* (mass 892 MeV) particle. Figure 4.33(b) shows the 

Kgir^ mass distribution, and there is an enhancement at the charged K* mass of 

896 MeV. The mass distribution is shown in Figure 4.33(c) and shows a 

peak at 1250 MeV. 

OR Trigger 
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Further study of these events compared with the central system events, 

shows that a large portion of the events also pass the 4-C fit in this K^K^ir^ 

system. Therefore, these events were removed from the distributions and Figures 

4.34(a-c) show the resulting mass distributions. In the K^ir^ mass distribution, 

the peak at 825 MeV disappears, while most of the events that were at 875-900 MeV 

remain. The K^tr^ mass distribution also retains the peak at the charged K* mass 

wliile the 775 MeV mass peak becomes smaller. The KgK^ mass distribution shows 

the same shape as previously, with the 1250 MeV peak even more pronounced. 

Since it is possible to have a three body decay into this K^K^ir^ 

central system mass distribution is shown in Figure 4.35 for 40 MeV and 80 MeV 

bin sizes. There is the possibility of an enhancement at 1450 MeV, but it is not 

significant enough at this stage to claim a resonance state. The enhancement brings 

to mind 77 interactions in e'^e~ experiments [CELLO Collaboration 1989, Baglin 

et al. 1987, Mark II Collaboration 1986]. The /j(1420), = 1++, has been seen 

to decay to K^K^ir^ (i.e., K*K) via 77 interactions. However, in this experiment, 

only even spin states may be produced for the entire central system (see Chapter 

1). Thus, any resonant state at this mass would have to be a different particle. 

The possibility of the 7/(1440) being produced exists, but it has been identified as a 

negative parity particle [Particle Data Group 1988] whereas DPE states must have 

positive parity. 

In an attempt to estimate the background in these plots, the events containing 

TOF information for the charged kaon particles were studied. The event samples 

before and after the 4-C fit, but prior to the requirement of TOF mass consistency 

were analyzed. The ratio of identified if's to TT'S was calculated. The results show 

that prior to the 4-C fit, the K/n ratio is 85/787, or 0.11. After the 4-C fit and 
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prior to the TOF consistency check, the K/ir ratio is 15/80, or 0.19. Thus, the 

background after the fit decreases, but remains high (80%). 

The consistency check for the K using the TOF data effectively removes the 

mass combinations with misidentified iiT's, but it does not necessarily show whether 

the other combination is correct. The removal of the events helps to reduce 

the background in this case. This additional cut of the K^Kg events leaves a 

total of 186 events, with 95 of these events containing both mass combinations. 

Therefore, the background at this stage of the analysis is estimated to be 70% for 

the events and about 30% of the background is attributable to combinatorials. 

In an attempt to enhance any possible K* signals, a plot of the invariant 

mass versus the K^ir^ is shown in Figure 4.36. The bands are centered around the 

neutral K* (892 MeV) and charged K* (896 MeV) masses. The K* has a width of 

50 MeV and the study of the system in Section 4.1 gives a mass resolution 

of about 30 MeV. Therefore, the widths of the bands were taken to be 160 MeV. 

A considerable fraction of the events are within these bands (shown as solid circles 

in Figure 4.36) and these events are candidates for K*K events. The invariant 

mass distribution is shown for events that are inside the bands in Figure 

4.37(a). The enhancement at 1450 MeV remains, and is more pronounced than 

in Figure 4.35. There is the possibility of some sort of threshold effect occuring 

rather than a genuine resonance. As a check on the 4-C fit probability, the events 

were subjected to a higher cut of 0.20 to see the effect on the distribution. This 

is shown in Figure 4.37(b). The peak at 1450 MeV becomes more significant, and 

therefore, it is possible that something is happening at this mass region. However, 

since the statistics are low and the background is known to be high, it is hard to 

draw a conclusion. 
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In an effort to reduce the combinatorial background further, only the best 

K* candidate will be considered for events with two successful fits. Effectively, 

this is accomplished by calculating the invariant masses of the and 

combinations and selecting the combination which has a mass closest to the K*. A 

scatter plot of the invariant mass versus the K^ir^ mass is shown in Figure 

4.38 after making this selection. The triangles represent events with the best mass 

combination. A projection of these events onto the K^ir^ axis with the exclusion of 

the events in the band, is shown in Figure 4.39(a). The alternate projection 

of the events onto the axis is shown in Figure 4.39(b) with events in the 

band excluded. Both projections reveal an enhancement near the true A* 

masses. However, one must keep in mind that the data have now been biased 

towards these masses by excluding the other combinatorial from the plots. The 

invariant K^K^ir^ distribution is shown in Figure 4.40. The distribution remains 

roughly the same. The cos{9) distribution is shown in Figure 4.41 of the angle 

between the best K* candidate and one of the Pomerons in the Pomeron-Pomeron 

rest frame. This distribution is relatively flat, showing no preferred spin direction. 

4-2.2 AND trigger data 

The method of treatment used in the AND trigger data is similar to that 

used in the OR trigger data. A total of 1236 events were fitted and of these, 

177 events were fitted successfully by the 4-C fit routine for at least one mass 

combination. Of the 177 events, 69 were fitted successfully with both charged 

a'^TT^ mass combinations. 

As in the OR data, some of these events were A°A° events that also passed 

the 4-C fit in this A® A'^TT^ system. Therefore, these events were removed from the 
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sample. Tills additional cut of the A'® if" events leaves a total of 132 events with 50 

of these events containing both mass combinations. Figure 4.42(a) shows the 

mass distribution for the events after the removal of the events. There is 

a very slight concentration of events near the K* mass. Figure 4.42(b) shows the 

Kgir^ mass distribution which also shows some evidence for a K* signal. Figure 

4.42(c) shows the mass distribution and there is a broad enhancement at 

1250 MeV. The mass distribution is shown in Figure 4.43 for 40 MeV 

and 80 MeV bin sizes. Unlike the OR trigger data, there is no enhancement at the 

1450 MeV mass region. 

The background in these plots has been estimated using the same method as 

in the OR trigger data. Prior to the 4-C fit, the at/TT ratio is 90/874, or 0.10. After 

the 4-C fit and prior to the TOF consistency check, the K/ir ratio is 17/91, or 

0.19. Thus, the background after the fit decreases, but remains high (80%). The 

background after the TOF consistency check, and removal of the ATfA'f events is 

estimated to be 70% with about 30% attributable to combinatorial background. 

The equivalent plot to Figure 4.36 is shown in Figure 4.44 for the AND trigger 

data. The square symbols represent events that were only fitted successfully for one 

mass combination. The triangles represent the best mass combination consistent 

with a K* for events that were fitted for both mass combinations, and the circles 

represent the worst mass combination. Unlike the OR trigger data there does not 

appear to be a significant concentration of events witliin these bands. A projection 

of these events onto the axis with the exclusion of the a'TT^ band, is 

shown in Figure 4.45(a). The alternate projection of the events onto the a'^TT^ 

axis is shown in Figure 4.45(b) with the a'^TT^ band excluded. Both projections 

show slight enhancements near the K* mass, but the background is high. The 
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equivalent distributions to Figures 4.40 and 4.41 are shown in Figure 4.46. No 

significant structure is seen. 

4.2.3 TOF trigger data 

A total of 111 events were fitted successfully by the 4-C fit routine for at 

least one mass combination. Of the 111 events, 54 were fitted successfully with 

both charged K^TT^ mass combinations. As in the OR and AND data, some 

of these events were Kg Kg events that also passed the 4-C fit in this K^K^tr^ 

system. Therefore, these events were removed from the sample. Figures 4.47(a-c) 

and 4.48(a-c) show the invariant mass distributions for the three possible mass 

combinations both before and after removing the K^Kg events. The low mass 

enhancements in the K^ir^ and K^ir^ distributions of Figure 4.47 disappear after 

removal and there are enhancements near the K* masses in Figure 4.48. However, 

the statistics are low. The K^K^ir^ mass distributions are shown in Figure 4.49 

for 40 MeV and 80 MeV bin sizes. Aside from lower statistics, they are similar to 

the OR data. 

The background in these plots has been estimated using the same method as 

in the OR and AND trigger. Prior to the 4-C fit, the K/ir ratio is 158/490, or 0.32. 

After the 4-C fit and prior to the TOF consistency check, the A'/TT ratio is 26/34, 

or 0.77. The background after the TOF consistency check, and removal of the 

Kg Kg events is estimated to be 40% with about 30% attributable to combinatorial 

background. Thus, the background is significantly lower for the TOF data. This 

is expected because the TOF trigger was designed to enhance kaons and protons 

produced in the central region. A plot equivalent to Figure 4.44, of the K^ir^ 

mass versus the Kgir^ mass, is shown in Figure 4.50. There is a concentration of 
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events in the K* bands. A projection of these events onto the axis with the 

exclusion of the Kgir^ band, is shown in Figure 4.51(a). The alternate projection 

of the events onto the axis is shown in Figure 4.51(b) with the K^ir^ band 

excluded. Both projections show enhancements near the K* mass, but the K^rr^ 

projection shows all the events in one bin slightly below the K* mass at about 

860 Mev. The equivalent distributions to the Figures 4.40 and 4.41 are shown 

in Figure 4.52. The mass distribution is similar to the OR data except the low 

mass enhancement is only one bin wide. It is consistent with a kinematic threshold 

effect. 

4.3 Summary of the KjK° and Systems 

In the A'® A'® system, all three data sets feature a good sample of AT" AT® events. 

The OR and TOF trigger data indicate an enhancement near 1200 MeV in the 

Kg Kg mass distribution. The AND trigger data do not exhibit this enhancement, 

but it could be due to trigger acceptance problems in this mass region. The cosine 

theta distributions, where theta is the angle between a AT" particle and one of the 

Pomerons, indicate a predominantly s-wave spin state for the three data sets with 

a falloff in statistics at large values of cosine theta. As mentioned in Section 4.1.5, 

this reduction of statistics is likely due to acceptance of the trigger. Estimates of 

the DPE cross sections for this A® A'® system will be made upon calculation of 

geometrical and trigger acceptance in Chapter 6. 

In the KgK^n^ system, the data seem to indicate poor rejection of events 

not consistent with the A® A'^tt^ mass hypothesis. This makes subsequent analysis 

subject to justifiable criticism, however, the K* studies indicate some evidence for 

the A'®A^7r^ events being produced via KK* . Complete understanding of this 



117 

system appears unlikely due to low statistics and high background in the data 

samples. Thus, only rough estimates of the cross sections appear feasible upon 

calculation of detector acceptance. This will be considered in Chapter 6. 
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5 EXCLUSIVE INTERACTIONS INVOLVING 

AT LEAST ONE A°/Â" PARTICLE 

5.1 A®A® Central System 

All of the 6-prong events containing at least one identified A° or A" particle 

given from the V"® program were further processed using the 4-C fit routine dis­

cussed in Section 3.5. Only the best A'/A" fit was used from the program 

(i.e., lowest value) in the event processing. The masses of the particles for the 

reaction 3.7 were assigned as discussed in Section 3.4 and are listed in Table 5.1 

for the case of a A° or a A" shown in parenthesis. Due to low statistics the two 

cases were combined in the analysis. These masses (for the charged particles) were 

required to be consistent with any available time of flight information on the DST 

for each event. The momenta and angles as described in Section 3.5 for each of the 

Table 5.1 Summary of particles whose four momenta are input 

to the 4-C fit in the A® A" central system 

hypothesis 

ParticleCs') Mass fMeV) Description 

P>P 938.2796 Two ingoing beam protons 

ir~(ir+) 139.5685 one central pion 

PiP) 938.2796 one central proton 

A® (A® ) 1115.63 One F® Central particle 

P,P 938.2796 Two fast outgoing protons 
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particles were input to the 4-C fit routine. The probability of fit distributions for 

each of the three data sets are shown in Figure 5.1. A probability cut of .02 was 

used in subsequent analysis of the data. 

5.1.1 OR trigger data 

In the OR trigger data, a total of 1116 events were fitted, and of these, 134 

events passed the criterion for the probability of fit. Figure 5.2(a) shows the dis­

tribution in co3{d) of the angle between the A®/A° and its positive decay particle. 

This distribution is strikingly different from those in Figure 3.12. The events at 

±1 were screened out of the event sample since they were contaminated by 7 con­

versions into e'^e~ pairs and therefore, these events did not conserve momentum. 

Figure 5.2(b) shows the decay plane orientation angle <f> of the A'/A" particle. 

Aside from the lower statistics, tliis distribution is similar to Figure 3.11 for the 

OR trigger data. 

In order to estimate the background in these plots, the events containing TOF 

information for at least one charged track were studied. The event samples before 

and after the 4-C fit, but prior to the requirement of TOF mass consistency were 

analyzed. The ratio of TOF identified p's to TT'S was calculated for the central 

system particles assigned proton masses. The results show that prior to the 4-

C fit the p/tr ratio is 40/823 or 0.049. After the 4-C fit and prior to the TOF 

consistency check, the p/ir ratio is 6/80 or 0.075. Thus, the background for this 

data is extremely high 93%). 

The invariant mass of the p^ir^ pairs not associated with the A"/A" particle 

is shown in Figure 5.3 for 25 MeV and 40 MeV bin sizes. There appears to be no 

evidence for a second A"/A" particle (mass 1115 MeV). There is an enhancement 
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near 1250 MeV, but it is too high to be a A°/A® particle. It is likely that these 

events are from some other momentum conserving interaction. 

The absence of a A°/À® signal is not surprising in this trigger, since two 

charged p's (one proton and one anti-proton) are required to be produced in the 

central system per event. The proton production is known to be low compared 

to pions for this trigger. In addition, there is a problem of inefficiency in the 

reconstruction for decays within one centimeter of the vertex. Also, the long 

decay length (cr = 7.89 cm) will cause more A^A" events to be missed by the 

reconstruction code (i.e., the vertex will not be defined as well). 

5.1.2 AND trigger data 

In the AND trigger data, a total of 587 events were fitted and of these, 53 

events passed the criterion for the probability of fit. Figure 5.4(a) shows the cos(û) 

distribution for the A'/Â" particle and its positive decay particle. As in the OR 

trigger, the cos(û) distribution no longer exhibits the spikes at ±1. Figure 5.4(b) 

shows the 0 decay plane orientation angle for the A°/À° particle. Aside from the 

lower statistics, this distribution is similar to Figure 3.11 for the AND trigger. 

As in the OR trigger, the background has been estimated using the available 

TOF information. Prior to the 4-C fit the p/tt ratio is 65/886 or 0.07. After the 

4-C fit and prior to the TOF consistency check, the p/n ratio is 7/68 or 0.10. Thus, 

the background for this data is very high (% 91%). 

The invariant mass of the p^w^ pairs not associated with the A^/A" particle is 

shown in Figure 5.5 for 25 MeV and 40 MeV bin sizes. As in the OR trigger, there 

is little evidence for a second A'/A" particle produced. There is an enhancement 

at 1250 MeV which is too high to be a A^/A" . 
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5.1.3 TOF trigger data 

In the TOF trigger data, a total of 618 events were fitted, and of these, 76 

events passed the criterion for the probability of fit. Figure 5.6(a) shows the distri­

bution in cos{9) of the angle between the A°/Â° and its positive decay particle. As 

in the OR and AND triggers, the spikes at ±1 are missing from the distribution. 

Figure 5.6(b) shows the <f> decay plane orientation angle of the A°/A° particle. 

Aside from the lower statistics, this distribution is similar to Figure 3.11 for the 

TOF trigger data. 

As in the OR and AND triggers, the background has been estimated using the 

available TOF information. Prior to the 4-C fit the P/TT ratio is 282/627 or 0.45. 

After the 4-C fit and prior to the TOF consistency check, the P/TT ratio is 38/46 

or 0.83. Thus, the background for this data is much lower than the OR and AND 

triggers (« 55%). 

The invariant mass of the pairs not associated with the A^/A" particle 

is shown in Figure 5.7 for 25 MeV and 40 MeV bin sizes. There appears to be 

some evidence for a second A^/A® particle (mass 1115 MeV). There are thirteen 

events near 1115 MeV. In order to separate out a A"A" signal, a cut was made on 

the mass in the range of ±80 MeV around the A^/A" mass. The resulting 

A°A® invariant mass distribution is shown in Figure 5.8 for 40 MeV and 80 MeV 

bin sizes. There is a concentration of events at 2.5 GeV, but the statistics are very 

low. 
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5.2 A®A®* (A®*À") Central System 

All of the 6-prong events containing at least one identified A® or A' particle 

given from the V° program were further processed using the 4-C fit routine dis­

cussed in Section 3.5. Only the best A°/Â° fit was used from the F® program 

(i.e., lowest value) in the event processing. The masses of the particles for the 

reaction 3.8 were assigned as discussed in Section 3.4 and are listed in Table 5.2 

for the case of a A® or a A® shown in parentheses. Due to low statistics, the two 

cases were combined in the analysis. These masses (for the charged particles) were 

required to be consistent with any available time of flight information on the DST 

for each event. The momenta and angles as described in Section 3.5 for each of 

the particles were input to the 4-C fit routine. The probability of fit distributions 

are shown for each of the three triggers in Figure 5.9. A probability cut of .02 was 

used in subsequent data analysis. 

Table 5.2 Summary of particles whose four momenta are input 

to the 4-C fit in the A°A°* (A^'A" ) central system 

hypothesis 

Parti clefs) Mass fMeV) Description 

938.2796 Two ingoing beam protons 

K - { K + )  139.5685 one central pion 

P i P )  938.2796 one central proton 

A» (A» ) 1115.63 One F" Central particle 

938.2796 Two fast outgoing protons 
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5.2.1 OR trigger data 

A total of 859 events were fitted, and of these, 109 events passed the criterion 

for the probability of fit. The distribution in cos{0) of the angle between the A^/A" 

and its positive decay particle is similar to the distribution for Section 5.1.1. 

In order to estimate the background in these plots, the events containing TOP 

information for at least one charged track were studied. The event samples before 

and after the 4-C fit, but prior to the requirement of TOF mass consistency were 

analyzed. The ratio of the number of TOF identified p's and A''s to the number 

of TT'S was calculated for the central system particles assigned proton and kaon 

masses. The results show that prior to the 4-C fit the (p + A')/7r ratio is 80/1423 

or 0.056. After the 4-C fit and prior to the TOF consistency check, the (p + K)/TC 

ratio is 14/151 or 0.093. Thus, the background for this data is high, (% 92%) as in 

the A°A° system hypothesis. 

The invariant mass of the pairs not associated with the A'/A" particle 

is shown in Figure 5.10 for 25 MeV and 40 MeV bin sizes. There appears to be 

slight evidence for a second A* particle (mass 1520 MeV). There is an enhancement 

near 1500 MeV, but it is very broad and the statistics are low. Tliis makes the 

identification of the enhancement at 1520 MeV as a bonafide A* resonance subject 

to criticism. Although it is possible that this would be more easily identified in 

the data than a second A®/A® because there is no inefficiency to consider for 

each event. The A* would decay at the primary vertex reducing the inefficiency 

problem to one F" and giving a more clearly defined primary vertex. 
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5.2.2 AND trigger data 

In the AND trigger data, a total of 404 events were fitted and of these, 42 

events passed the criterion for the probability of fit. The distributions in cos{S) 

and <j> of the A^/À" are similar to those in Section 5.1.2. 

As in the OR trigger, the background has been estimated using the available 

TOP information. Prior to the 4-C fit the (p + K)/ir ratio is 112/1354 or 0.083. 

After the 4-C fit and prior to the TOP consistency check, the (p 4- K)ITT ratio is 

12/98 or 0.12. Thus, the background for this data is very high 89%). 

The invariant mass of the pairs not associated with the A^/A" particle 

is shown in Pigure 5.11 for 25 MeV and 40 MeV bin sizes. As in the OR trigger, 

there is slight evidence for a A* (1520) particle produced. There is an enhancement 

at 1520 MeV wliich could be a A* particle, but the statistics are low. 

5.2.3 TOF trigger data 

In the TOP trigger data, a total of 564 events were fitted, and of these, 72 

events passed the criterion for the probability of fit. The distribution in co3{0) 

of the angle between the A"/A" and its positive decay particle is similar to the 

distribution for Section 5.1.3. 

As in the OR and AND triggers, the background has been estimated using 

the available TOF information. Prior to the 4-C fit the {p + K)/ir ratio is 389/792 

or 0.49. After the 4-C fit and prior to the TOP consistency check, the (p + K)/ir 

ratio is 50/83 or 0.60. Thus, the background for this data is much lower than the 

OR and AND data, (% 62%) as in the A^A" system hypothesis. 

The invariant mass of the pairs not associated with the A^/A" particle 
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is shown in Figure 5.12 for 25 MeV and 40 MeV bin sizes. There appears to be evi­

dence for a second A* particle (mass 1520 MeV). There is a significant enhancement 

near 1500 MeV. This enhancement is probably a A* (1520) resonance. Figure 5.13 

shows the distribution of the A°A°* central system mass containing only events 

within a band of ±80 MeV around the A* mass of 1520 MeV for the mass 

of Figure 5.12. Most of the events are concentrated near the threshold at about 

2700 MeV. There are no known neutral resonances at 2700 MeV with even spin 

and positive parity. 

5.3 Summary of the A®Â® and A® A®* Systems 

In the A°A° system, the OR and AND triggers do not exhibit any clear A^/A® 

signals in the p^ir^ mass distributions. The absence of a signal in these two 

triggers is not surprising due to high background, low statistics, the long A°/A" 

decay length, and presence of central protons required of the decay products. The 

TOF trigger data are somewhat more promising since the background was found 

to be only 55% and this trigger enhances kaon and proton production. It is evident 

that there is a small A^/A" signal in the p^ir^ mass distributions. 

In the A" A"* system, the OR and AND triggers exhibit small enhancements 

at the A* mass, but the high background and low statistics in these two samples 

makes signal extraction unlikely. The TOF trigger data exhibit a clear, sharp signal 

at the A* mass of 1520 MeV and this is evidence for A°A®* being produced. The 

mass of the A®A°* system yields a significant concentration of events near 2700 

MeV which could be evidence of a new resonant state. 

Since the TOF trigger data show signals in both the A"A" and A^A"* central 

systems, calculations of cross sections are feasible. 
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0 ACCEPTANCES AND CROSS SECTIONS 

6.1 Efficiencies and Systematic Effects 

The V® program contains inefficiencies in the track finding algorithms. One 

can estimate the efficiencies for finding a F® and use this in the final acceptances. 

A direct estimate of the event fraction lost due to the decay length of the A'° or 

A^/A" can be made from the decay length distributions of the particles in their 

respective rest &ames. This is accomplished by transforming the measured decay 

length in the lab frame into the rest frame of the F" particle using the measured 

lab momentum and the mass. The desired expression is 

Where ®r is the transformed decay length lifetime in centimeters, is the lifetime 

in the F" rest frame in seconds, m is the F° mass, di is the measured decay length, 

c is the speed of light, and p is the measured momentum of the F" particle. 

Figure 6.1 shows the transformed decay length distribution of the A'" particles 

after transforming into the A® rest frame for each event containing at least one A'® 

particle for each of the three data sets. All three triggers show the same distribution 

shape. A fit to the data has been performed using an exponential decay distribution 

of the form 

where ®r = ctr is the lifetime (<r) multiplied by the speed of light (c) for a particular 

AT® particle, A is the time at which a fraction e~^ of the particles decay, NQ is the 

amplitude, and N is the observed number of A® decays at a particular distance x. 

These curves indicate a loss of events at shorter decay lengths. A subtraction of 

p  
(6.1) 

N { x )  =  A T o e " ' ' / - *  (6.2) 
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the events from the curve yields an efficiency of .66 for the A"® found by the 

program. For the second Kg in reaction 3.5, the efficiency will be 1 .66, yielding 

.34 for the second if® particle. The remaining inefficiency comes from the F® 

track finding algorithm's ability to recognize a F® decay that is in the higher decay 

length region and to define the primary and secondary vertices properly. This 

overall efficiency is estimated to be 0.5 [Raschnabel 1981]. 

Figure 6.2 shows the transformed decay length of the A®/A® particles for each 

of the three data sets. A fit to the data using equation 6.2 yields the curves 

superimposed over the data. A subtraction from the fit of the events gives .68 for 

the A®/A® found by the V"® program. The second A®/Â® in reaction 3.7 will have 

an efficiency of .32. The remaining inefficiencies for the A®/A® come from the F® 

track finding algorithms. This efficiency is estimated to be about the same as in the 

Kg case, i.e., 0.5. In addition, there is an ambiguity in some of the F® fits between 

a A and a A particle. This efficiency due to the A®/A® ambiguity is estimated at 

0.8. 

The systematic effects have been estimated to be 1.5 for this experiment 

[Breakstone et al. 1989]. These are due to uncertainties in overall acceptance and 

luminosity calibrations. There is a further systematic effect due to the F® track 

finding efficiencies computed from the lifetime distributions. Table 6.1 shows the 

fitted values of A for the if" and A®/A® particles for each trigger. It is clear that 

there are event losses in the distributions since the decay lengths are slightly dif­

ferent from the known decay lengths. The known decay length is cr = 2.7 cm for 

the A'® and cr = 7.9 cm for the A®/A® . In the A® case there are losses at shorter 

lifetimes. These losses are probably due to secondary vertices not being seen since 

they are too close to the primary vertex. In the A®/A® case there are event losses 
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Table 6.1 fitted decay length lifetimes for the K, 

and A'/A® particles for each trigger 

Particle ÛS AND TOF 

3.6 ± .2 cm 3.7 ± .2 cm 3.8 ± .1 cm 

AVÂ» 6.6 ± .2 cm 6.5 ± .2 cm 6.6 ± .2 cm 

at larger lifetimes. These losses are probably due to particles escaping the detector 

and not being seen by the reconstruction code. These losses must be considered 

as a systematic effect in the calculation of efficiencies. This effect is estimated to 

be about 1.15. This will give an overall total systematic uncertainty in the cross 

sections of 1.7. 

6.2 Acceptance Calculations 

The SFM detector acceptances for the K^Kg , , A^A" , and A"A"* 

central systems have been calculated. This was necessary to obtain absolute cross 

sections for these interactions. The acceptances were computed using a two step 

Monte-Carlo technique. This technique is similar to the one that has been used in 

Breakstone et al. [1989]. 

In the first step, single particles were generated for all momenta and angles that 

could envelop the trigger chambers. The particle trajectories were tracked through 

the magnetic field, the detector chambers, and the TOF stands [Messerli]. Energy 

losses, scattering, and particle decays were taken into account. The measured TOF 
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masses for K^s and p's were also included when applicable. "Trigger-tables" were 

constructed from this tracking information for quantized regions of the polar angle 

0, azimuth <f>, and momentum p of a particle. This was done for all possible particle 

trajectories which satisfied the trigger requirement. 

In the second step, events were generated for the central systems 

and ppiT^ir~ using a double peripheral model [James 1967]. Production of the 

fast outgoing protons was performed using a matrix element squared of the form 

g-6txg-6f2^ where <i,<2 are the momentum transfers for each of the protons. For 

the reaction 3.5, an isotropic decay was used. For the reactions 3.6-3.8, a damped 

decay distribution was used in the transverse momenta, pr, where pr is defined with 

respect to the Pomeron direction in the system X. The matrix element squared 

was used with A  f n  2  giving a good fit to the data, stands for the particle 

mass, and n is four. An estimate of systematic errors resulting from model de­

pendences was obtained from comparison to acceptances resulting from isotropic 

decay in the central system. The differences in acceptance were found to be small 

so that the p^-damped model is acceptable for these reactions since the statistics in 

the real data are too low to do extensive studies of the angular distributions. The 

acceptance for each of the triggers was obtained by examining each track in the 

event against "trigger-tables" to determine if the trigger requirements were satis­

fied. To obtain an acceptance, the SFM and trigger acceptances were combined for 

the complete event. The overall efficiencies discussed in Section 6.1 were included 

in the final acceptances. 

For the JK", A'° central system, the acceptances have been calculated from the 

Monte-Carlo events with an additional cut around each tt+tt" pair 

A(ET)i (6.3) 
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mass of 497 ± 50 MeV. The acceptance values and errors are shown in Figure 

6.3 for the OR and AND triggers. The actual acceptances are approximated by 

polynomial fits of the form 

 ̂= Pi + (6.4) 

where m is the central system mass, pi are the fit coefficients, and A is the accep­

tance. These fits are shown by the curves in Figure 6.3. In this Kg Kg system, 

the TOF acceptance is very similar to the OR acceptance since four TT'S are pro­

duced. Thus, the OR acceptance was used for the TOF data also. The cos{0) of 

the angle between a A"® and one of the Pomerons in the Pomeron-Pomeron rest 

frame is shown in Figure 6.4 for the OR trigger at a central system mass of 1200 

MeV. Notice that the same falloff in the data for large values of cos(O) is seen as 

in Chapter 4 for this K^K^ system. 

The acceptances for the K^K^ir^ system were calculated starting with the 

ir'^w~ir'^n~ events. A cut on one pair mass of ±50 MeV was made around 

the Kg mass. One charged w from the other pair was converted to a AT particle 

by changing the ir mass in the central system rest frame to a K mass and Lorentz 

transforming the momentum and energy of this particle back into the laboratory 

frame. The events were then subjected to the analysis of SFM and trigger require­

ments and complete acceptances calculated using the px-damped decay method. 

For the KgK^ir^ system the TOF trigger acceptance was calculated also. The 

shape of the acceptances of the OR and TOF triggers were similar, but not identi­

cal in this system. The computed acceptances are shown in Figure 6.5 for the OR, 

AND, and TOF triggers. 

The calculation of acceptances in the A"A" system was attempted using the 

pp7r"^îr~ Monte-Carlo events. A cut on each pff" pair was made around the A^/A® 
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mass of ±100 MeV. The acceptance was found to have very large errors, as the 

Monte-Carlo statistics were too low to give reliable values. Thus, it was decided 

to compute the acceptances using all of the ppir'^Tr~ Monte-Carlo events. This has 

been done and the acceptance is shown in Figure 6.6. 

In the A" A®* system a technique similar to the acceptance procedure 

yielded very large errors. Therefore, the ppir'^ir~ data were used assuming the same 

overall factor behavior as between the and the systems. This gives 

the curve shown in Figure 6.6. The phase space difference was accounted for by 

shifting the A°Â° curve to account for the difference in mass threshold. 

0.3 Cross Sections 

Table 6.2 shows the estimated total cross sections for reactions 3.5-3.8. The 

OR trigger data were used in the calculation of the total cross sections for the 

reactions involving K, particles (since this trigger has the best acceptance). These 

were computed using the sum of the acceptance corrected central system mass 

distributions of figures 6.8 and 6.10 for the OR trigger. The errors are simply the 

sum of the statistical errors of each bin in the observed number of events for each 

interaction. The background estimate used for the system was the same 

as the estimate in Section 4.1 of 30%. In the K^K^ir^ system the background 

estimate is reduced considerably by using Figure 4.39. From these distributions 

one obtains 48%. This is consistent with the higher background before the mass 

cut so that the KK* system is the major contributor to the total cross section in 

this analysis. 

The TOF trigger data were used in the total cross section for the reactions 

involving A°/Â" particles (since only this trigger contained a signal). In addition 
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Table 6.2 Total cross sections for reactions 3.5-3.8; the quoted errors 

do not include an overall systematic error of 1.7 which results 

from an uncertainty in acceptance and luminosity calibrations 

Reaction 
Raw 
Events Background 

Real 
Events Cross Section (ub) 

62 30% 43 1.3 ±.64 

PP PPiKgK'^ir' f ' )  94 48% 49 .44 ± .14 

pp pp(A®A°) 13 54% 7 .20:1.14 

PP — >  pp (A °A® ' ' )  30 50% 15 .13 ± .06 

there is an overall systematic uncertainty of 1.7 as discussed in Section 6.2. Figures 

5.8 and 5.13 were used in the A®A° and systems to estimate the background 

percentages and the results were similar to the TOF information estimates from 

Chapter 5. 

6.3.1 Kg Kg system 

The cos{6) distributions, where 9 is the angle between a A'° particle and one of 

the Pomerons in the Pomeron-Pomeron rest frame, is shown in Figure 6.7 for each 

of the three triggers. These distributions have been corrected for acceptance of the 

detector and the fallofF at large cos{d) values is no longer observed. Therefore, since 

these distributions are now flat, it is likely that the K°K° events are predominantly 

s-wave, i.e., they have no preferred spin dirertion. 

The Cross sections as a function of-the A " A ® invariant mass are shown for each 
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of the three triggers in Figure 6.8 for 100 MeV bin sizes. The errors are statistical 

errors for the observed number of events in each bin. The distributions are similar 

to the raw event mass distributions in Chapter 4. 

The cross sections for the OR and TOF data added and for the OR, AND, and 

TOF data added are shown in Figure 6.9. Both distributions feature an enhance­

ment at 1.1-1.2 GeV. It is possible that the effect could be due to two resonances, 

the /o{975) and the /o(1240). The /o(975) is at threshold for A'®if" production and 

the /o(1240) has been seen to decay to [Etkin et al. 1982]. Since the statistics 

in these data are low, these two resonances could account for the distributions. 

6.3.2 system 

The cross sections as a function of the K^K^ir^ invariant mass for events 

consistent with containing a K* particle, are shown in Figure 6.10 for each of 

the three data sets. The OR data show a clear enhancement at 1400-1500 MeV. 

The AND and TOF data contain lower statistics, and show enhancements at this 

mass range also. The cross sections for the OR and TOF data added and for 

the OR, AND, and TOF data added are shown in Figure 6.11. Both feature the 

enhancement at 1400 MeV. A possible resonance at this mass is the /o(1400) which 

decays to KK, but it is not clear why it is not visible in the system. This 

could be due to the threshold enhancement at the lower mass of % 1200 MeV 

dominating in that case. 
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6.3.3 A°A° and A'A"* systems 

Figure 6.12 shows the cross sections as a function of mass for the A°A° and 

the A'A"* central systems. The lack of event statistics has caused large error bars, 

so that it is difficult to make conclusions. There is a low mass enhancement at 

threshold as discussed in Chapter 5 for both reactions. 
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7 SUMMARY AND CONCLUSIONS 

The isolation and analysis of the Kg Kg system has yielded a total cross section 

estimate of 1.3 ± 0.6 jib. Since the particle is 50% Kg and 50% Kf (likewise 

for the K^), one can estimate the K^K^ cross section to be 5.2 ± 2 A fib. This is 

consistent with the K'^K~ cross section estimate of 6.5 db 1.7 fib for this experiment 

[Breakstone et al. 1989]. The low mass enhancement near 1200 MeV is also seen in 

the K'^K~ mass distributions and could be due to a resonant state. The resonance 

is likely to have the quantum numbers of = 0++. A phase amplitude analysis 

in irp reactions has yielded a similar resonance termed the /o(1240) [Particle Data 

Group 1988]. 77 interactions have yielded strikingly different distributions in this 

KgKg system [CELLO Collaboration 1988]. However, the /(1525) production seen 

in 77 interactions cannot be ruled out of the mass distributions for DPE in this 

experiment. 

The Kg K^ir^ system analysis has proved interesting, but not as reliable due 

to the larger backgrounds involved. It has nevertheless yielded an estimate of the 

KK* cross section of .44 ± .l^fib. There is the possible identification of the 1400 

MeV enhancement as the /o(1400) particle, but low statistics and K* ambiguities 

render a detailed study of the cos{6) distributions inconclusive. In 77 interactions, 

the KgK^ir^ system has produced a resonance at the same mass with spin one, 

i.e., the /i(1420) particle [CELLO Collaboration 1989]. 

The results have been much harder to obtain, showing a signal in only 

the TOF trigger data. The statistics are very low, and the TOF trigger acceptance 

is poor. An estimate of the total cross section of .20 ± .14 fib has been obtained. 

The A"A"* system has been more encouraging with a clear enhancement seen at 
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the A(1520) resonance. A cross section estimate of .13 ± .06 fib has been obtained 

for this system. These cross sections are a factor of 2 smaller than the total 

pp and ppir'^iT~ cross sections for this experiment [Breakstone et al. 1989]. The 

existence of a possible signal, though small, is significant, since it has not 

been seen in other interactions such as rrp or 77. However, the J/$ has been seen 

to decay to A°A® [Particle Data Group 1988]. 

The analysis presented here on neutral strange particle production in exclusive 

reactions has been interesting. These data represent the only known experimental 

information for exclusive neutral strange particle reactions in the DPE mechanism. 

In order to study these systems further, more information is needed on DPE re­

actions (i.e., pp —> ppX), which may only be obtained by taking more data with 

higher statistics. With the dismantling of the ISR in 1984, this will prove diffi­

cult to do. Experiments utilizing fixed targets have isolated some fraction of DPE 

events [Armstrong et al. 1989], but the obtainable rapidity gap is not of the same 

quality as at the ISR. 
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