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Demonstration of qubit operations below a rigorous
fault tolerance threshold with gate set tomography

Robin Blume-Kohout', John King Gamble!, Erik Nielsen?, Kenneth Rudinger1, Jonathan Mizrahi?, Kevin Fortier?
& Peter Maunz?

Quantum information processors promise fast algorithms for problems inaccessible to
classical computers. But since qubits are noisy and error-prone, they will depend on
fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error
correction can protect against general noise if—and only if—the error in each physical qubit
operation is smaller than a certain threshold. The threshold for general errors is quantified
by their diamond norm. Until now, qubits have been assessed primarily by randomized
benchmarking, which reports a different error rate that is not sensitive to all errors, and
cannot be compared directly to diamond norm thresholds. Here we use gate set tomography
to completely characterize operations on a trapped-Yb ™ -ion qubit and demonstrate with
greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm
<6.7x10~ %),
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he field of quantum information processing has seen great

growth over the past 30 years, driven by exciting quantum

algorithms inaccessible to classical computers. Small
quantum information processors have been demonstrated
experimentally using superconducting circuits' =3, electrons in
semiconductors*~®, trapped atoms and ions’~® and photons!?-12,
Trapped ions are among the most reliable qubits available today;
up to 14 qubits have been addressed in a single trap!?, a 5-qubit
quantum information processor has been realized!%, and single-
qubit gates have demonstrated randomized benchmarking (RB)
infidelities as low as 10 ~© (refs 15-17).

Unlike classical bits, qubits are intrinsically noisy and error-
prone, and will rec&uire active, fault-tolerant quantum error
correction (FTQEC!®) to operate reliably. To function, FTQEC
requires physical qubit operations to be high quality, with errors
below a specific threshold. Fault tolerance (FT) thresholds for
quantum computing have been proven against various noise
models, and generally require per-gate failure rates between 10 ~©
and 10~ 2 (refs 19-22). However, the particular metric of ‘error
rate’ depends on the noise model. Against realistic general errors,
including small unitary errors, thresholds are stated in terms of
the gates’ diamond norm error, ||G; — Gl(-ldeal) Il (refs 20,23,24).

RB*>?%, the most commonly used method for qubit
characterization, measures a single error rate (egp) that closely
approximates the gates’ average process infidelity. Because RB is
relatively insensitive to unitary errors?’ that dominate diamond
norm error?® and have unpredictable consequences for FTQEC?’,
it cannot efficiently measure diamond norm error to high
precision. This makes it nearly impossible to demonstrate
suitability for FT using RB alone, unless errors are assumed to
be strictly incoherent. There are variants of RB that characterize
and report additional parameters, but none of them are well
suited for diamond norm characterization or comparison to FT
thresholds?*-31.

We wuse a characterization method called gate set
tomography (GST)>?73* to systematically debug and improve a
1-qubit trapped-YbT-ion quantum information processor,
and—finally—to demonstrate with very high confidence that all
three of its quantum logic operations surpass a proven threshold
for FTQEC. GST provides a full and extremely accurate
tomographic description of every gate, complete with statistical
confidence bounds. We use this information to iteratively
improve our single-qubit operations and to place tight bounds
on the diamond norm error of the final gates, producing the first
single-qubit gates whose errors are demonstrably below a
rigorous threshold for fault-tolerant error correction.

This is not a demonstration of FTQEC, which requires not
just single-qubit gates, but also high-fidelity two-qubit gates,
repeatable measurements and (of course) more qubits. However,
the GST methods that we use here to demonstrate 1-qubit gate
errors below the threshold do generalize to 2-qubit gates, to the
characterization of repeatable measurements, and to important
properties of multiqubit systems such as crosstalk. So, while
pushing single-qubit gate errors below the threshold is only one
step toward achieving FTQEC, it is an important one.

Results

Gate set tomography. Our goals are (1) to implement quantum
operations satisfying a FTQEC threshold and (2) to ‘prove’—that
is, demonstrate conclusively—that we have done so. Genuine
proofs are the domain of mathematics. In experimental science,
the highest achievable standard is to provide experimental data
(or summary statistics) that (1) are consistent with the desired
outcome; and (2) are inconsistent with any other plausible theory,
and thus rule out all alternatives to some high level of confidence.
Our intent is not to provide an exclusive protocol for such
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demonstrations, but rather to establish that GST is sufficient
to do so.

While RB and quantum process tomography can be used
in this fashion, they each face nontrivial obstacles. RB’s
insensitivity to unitary errors makes it a poor tool for bounding
worst-case error rates (diamond norms). In process
tomography>>8, small calibration errors in the gates used to
implement different measurements propagate to the final results,
invalidating them. GST is a self-calibrating tomography protocol
that solves both of these problems. GST protocols based on short
quantum circuits were developed at IBM®® and Sandia®2. The
long-sequence GST protocol demonstrated here is orders of
magnitude more precise.

GST relies on two assumptions: (a) the system being character-
ized is a qubit with a 2-dimensional Hilbert space; (b) each gate
operation is stationary and Markovian. It treats the qubit as a black
box with operation buttons (one for initialization, one for
measurement and the rest for gate operations) as shown in
Fig. 1a, and self-consistently determines all operations up to a choice
of basis (a gauge; see ‘Methods’ section). It can also detect and
quantify violations of these assumptions (see next subsection).

In GST, the real (noisy) gates are modelled as trace-preserving
linear maps on density matrices (TP maps). Such maps must be
completely positive to be physical, and thus are usually referred to
as ‘CPTP maps’; for technical reasons, we do not always impose
the CP constraint in GST, but otherwise these maps are
functionally the same as CPTP maps.

The qubit’s quantum state p is a four-element vector |p)) in the
vector space of 2x2 Hermitian matrices (Hilbert-Schmidt
space)’?, and each gate is a 4 x 4 matrix G that acts on |p)) by
left multiplication (that is, |p)) — |p,)) = Glp))). Measurement
is represented by a two-outcome positive operator-valued
measure (POVM) {E, 1 —E}. Our target state preparation and
measurement (SPAM) are p(i4¢2) = |0)(0| and EU4e) = |1)(1].

Data for GST come from gate sequences (quantum circuits),
each comprising: (1) initialization, (2) a series of gates and (3)
measurement. Each sequence is repeated N times, and the
frequency of 0/1 counts is recorded. In the experiments reported
here, we implemented and used the set of gates {G}, Gx, Gy}, but
GST can analyse any gate set rich enough to prepare an
informationally complete set of probe states and measurements.

GST analysis proceeds as shown in Fig. 1b. First, a specific set
of short sequences is analysed by linear inversion (see ‘Methods’
section) to get a rough estimate of the gates and SPAM
operations. This estimate has an unavoidable gauge freedom;
every observable probability is invariant under

Gy — MGyM ! (1)

35-37

lp)) = Mlp)), ((E| — ((EIM~", (2)

for any invertible matrix M. We choose a gauge that makes the
estimated gates as similar to the target gates as possible (see
‘Methods’ section). If the rough estimate is not already completely
positive, we truncate each gate to the nearest CP map, to ensure
physically valid probabilities in the next step. Next, using the
rough estimate as a starting point, we iteratively add more data.
In the mth iteration, we add data from gate sequences of length
20m=1) into the pool, then numerically adjust the estimate to
minimize the y? divergence between the observed frequencies and
estimated probabilities. This ‘min-y?" estimate is then used as the
seed for a numerical maximization of the likelihood function
L(G)="Pr (data|G). Finally, we perform another gauge optimiza-
tion to maximize similarity to targets.

The GST gate sequences (see Fig. 1d) are chosen to
(collectively) amplify every physical parameter in the gate set.
Short sequences called germs are repeated many times, and these
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Figure 1| Gate set tomography is a robust procedure to characterize as-built qubits. (a) GST models the qubit (a single Yb™ ion localized in a linear
surface electrode ion trap) as a ‘black box’ with a classical interface, and is agnostic to its physical details. (b) Flow chart of GST analysis. Its core is an
iterative #2 minimization, over data from increasingly long gate sequences, seeded with a linear inversion estimate. The final step, likelihood maximization,

produces an accurate and unbiased estimate of the gate set. (¢) A subset

of the nearly 5,000 data points taken: observed ‘bright’ counts (black) for

sequences of the form Gf and the GST estimate’s prediction (red; see Fig. 3). Deviations from ideal gates appear only at k >1,000. (d) GST achieves high
precision from periodic sequences based on short ‘germs’. Here the 11 germs used for this experiment are shown (coloured boxes), as is the ‘fiducial

sandwich’ form of a general GST sequence.

‘germ power’ sequences are pre- and post-fixed by each of six
fiducial sequences. In this work, we use six fiducial sequences,
{0, Gx, Gy, GxGxGx, GyGyGy, GxGx}, where () denotes the null
sequence, and Gx (G,) are noisy n/2 rotations about x (y). These
fiducials map p and E to (approximately) the six Pauli eigenstates,
defining an informationally complete experimental reference
frame. For further details on sequence design and a complete list
of all experiments performed, see ‘Methods’ section.

Experiment. Our qubit is a single !”'Yb™ ion in a state-of-the-
art linear surface ion trap (Fig. la). Ions are trapped by photo-
ionizing neutral ytterbium vapour that reaches the trapping
volume through a slot from the back of the surface trap chip. The
qubit is encoded in the hyperfine clock states of the 2S,,, ground
state of 171YbT: |0) = |F = 0,mp = 0), |1) = |[F = 1,mp = 0).
Standard laser cooling techniques are applied to Doppler cool the
ion and prepare it in the |0) state>®. Standard fluorescence state
detection®® is used to measure in the {|0),[1)} basis.

Three logic gates—G; (the idle or identity gate), Gx (a /2
X rotation) and Gy (a m/2 Y rotation)—are realized by using
a microwave horn to apply pulses near-resonant with the
12.6428 MHz separation of the qubit levels. Broadband composite
pulses (BB1)*®*1 are employed to minimize sensitivity to
amplitude fluctuations in the microwave signal.

Using characterization procedures to debug and improve
qubits has a long history. A Ramsey fringe or Rabi oscillation
experiment is a kind of limited tomography, combined with
physical intuition, which is used to improve the quality of the
quantum logic operations. In typical tune-up procedures,
different types of these experiments are iterated, until the qubit
gates are deemed good enough to proceed.

Various improvements to this generic tuning-up scheme
outlined above have been offered, including augmentinzg
oscillation experiments to detect microwave pulse distortions*?,
designing  small sequences for error amplification??,
supplementing sequence experiments with RB to do detailed
noise spectroscopy** or replacing them with iterative RB to guide
the system toward higher RB fidelity operations*>. All of these

techniques, and other experiments combined with physical
intuition, can be and have been used to produce qubits with
very high-fidelity operations. In comparison, GST has the distinct
advantage in that it includes all experiments necessary for full
and loophole-free qubit characterization. It can be though of as
systematic statistical inference on a provably sufficient set of
Rabi/Ramsey experiments.

We used GST to analyse systematically and improve our
trapped-ion qubit operations over the course of five experimental
runs from 17 April 2014-30 March 2015. Experiments #1-2 used
the Sandia Thunderbird trap®®, and Experiments #3-5 used
Sandia’s high-optical-access (HOA-2) trap. Figure 2a summarizes
the gates’ steady improvement over this period by tracking their
process infidelities?’, which corresponds to the RB error rate?®.

Experiment #1 detected severely non-Markovian behaviour.
We sought to address this by stabilizing the microwave amplifier’s
temperature, and stabilizing microwave rm-times using active
feedback (drift control), as described in ‘Methods’ section.
Experiment #2 showed improved fidelity in the Gx and Gy gates,
but no reduction in non-Markovianity. We then moved our qubit
to the HOA-2 trap, and improved trap stability. In Experiment
#3, GST showed significant improvements in fidelity and
Markovianity, and that G; remained worse than the other gates.
To improve it, we changed G; from ‘do nothing for one clock
cycle’ to the dynamical decoupling pulse sequence X, W1 55,(X) _ »
Wi.2sm where X and Y, denote 7 rotations around X and Y,
respectively, and W ,5, means ‘wait for the duration of a 1.257-
pulse’. We also applied active drift control of the qubit frequency,
and improved the calibration of the BB1 pulse sequences.
Experiment #4 showed reduction of coherent errors in Gx and
Gy, but persistent non-Markovian errors in G;. After we upgraded
G to the second-order dynamical decoupling sequence X, Y, X, Y,
(ref. 49), Experiment #5 demonstrated uniformly excellent gates.
Subsequent analysis indicates that the improved performance of
G; stemmed largely from the constant duty cycle of the
microwave system, rather than from the intrinsic properties of
the decoupling sequence used. This emphasizes that GST can
identify specific errors, but not necessarily their cause. The
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Figure 2 | Progressive improvement of quantum operations. Over the
course of ~1 year, we used GST to improve our qubit, ending with clearly
sub-threshold error rates. All metrics are computed using GST estimates
based on data taken at the given time, but analysed using best available
algorithms at publication time. (@) Process infidelities of the three gates
versus wall time. (b) Diamond norm distance from estimated gates to
targets versus wall time. Experiments from March 2015 surpass the
best-known diamond norm threshold of 6.7 x 10~ 4 with 95% confidence,
satisfying the threshold for fault tolerance established in ref. 22.

(¢) Violation of Markovian model (in s.d.'s N,) versus wall time (see the
section ‘Quantifying non-Markovianity’ for details). Non-Markovian noise
was progressively eliminated (for example, by adding drift control and
dynamical correction; see main text), guided by GST.

estimated process matrices for the gates are shown in Fig. 3a.
Figure 3b shows the error generators, defined as E= In(G, 'G),
where G is the estimate and G is the target.

Demonstrating suitability for FT. Useful quantum computation
is expected to require fault-tolerant error correction. The most
important milestone for a quantum operation is, therefore,
‘Is it suitable for use in FTQEC? Operations that induce too
much error will cause FTQEC protocols to fail. Demonstrating
conclusively that gates are suitable for FT requires: (1) estab-
lishing a sufficient condition for the gates to not induce failure;
and (2) showing that the gates satisfy that condition, with high
confidence, by means of experimental data that are inconsistent
with all gates that do not satisfy the condition.

Demonstrating suitability for FT using infidelity alone is hard.
Threshold theorems against general errors (arbitrary CP maps)

4

are stated in terms of the diamond norm distance between the
real and ideal gates?*>0,

1G = Gollo= Sl;Pll(G @ 1a)lp] — (Go @ Ta)lp]ll;,  (3)

where d is the system’s Hilbert space dimension, ||-||; is the trace
norm and the supremum is over density matrices p with
dimension d? (ref. 51). Because the diamond norm error can be as
large as \/egp (refs 27,28), even a spectacular RB result like
egp = 10 ~° (ref. 15) only establishes an upper bound of 10 =3 on
the diamond norm. The best-known proof of FT against general
noise?” derived a threshold of 2.3 x 10 ~ ° against stochastic noise,
and generalized it to a diamond norm threshold of ~10~°
against general (coherent) noise. This was subsequently improved
to 1.94 x 10 ~* (ref. 21) and finally to 6.7 x 10 ~* (ref. 22), the
highest (currently) proven threshold against general noise.

Unlike RB, GST enables direct computation of the diamond
norm between the estimated and target gates (we use a
semidefinite program>2). Figure 2b shows the diamond norm
error of our gates over time, culminating on 30 March 2015 in
diamond norm error rates (with 95% confidence intervals)
of (1.58+0.15)x 10~ %, (1.39£0.22) x 10~ * and (1.62%0.27)
x 10 ~* for G;, Gx and Gy respectively. All three gates surpass
the threshold with 95% confidence. (In point of fact, they surpass
even the older 1.94 x 10 ~ 4 threshold with 95% confidence.)

We note that, although we only demonstrated Clifford
operations, and non-Clifford operations are needed for universal
control, FTQEC is possible only using Cliffords. Furthermore,
we can still extrapolate the performance of non-Clifford gates
(for example, a T gate) in our system. A pessimistic estimate of
the error on an X m/4 rotation, for example, would simply be the
same as the error on the X /2 gate that we characterized. This is
because implementing the X m/4 gate in practice is equivalent to
running the X 7/2 gate for a shorter duration.

Quantifying non-Markovianity. In real experimental systems,
repeated quantum operations are never actually identical. For
example, experimental imperfections in the stability of the system
may cause quantum operations to drift over time. Collectively, we
refer to all such non-repeatability as non-Markovianity. It
represents a significant potential problem for FT, as proofs of
FT thresholds are typically carried out using Markovian error
models. So, to be confident that a gate set is suitable for FTQEC
(that is, achieves a FT threshold), we would like to demonstrate
that non-Markovian behaviour is absent. This is not feasible,
for two reasons. First, all physical systems (including qubits) are
at least a tiny bit non-Markovian. Second, ‘non-Markovian noise’
is so general that there is always some conceivable mechanism
that would elude detection by any protocol (not just GST). Our
goal is to reduce detectable non-Markovian behaviour to the
point where its visible effects are consistent with the FT threshold.

We use GST results to debug non-Markovian effects and
achieve this goal, as illustrated in Fig. 2c. Doing this is nontrivial,
because neither GST nor process tomography is actually designed
to characterize non-Markovianity. In GST’s underlying model,
the qubit is Markovian: its state at time #+41 is determined
completely by (1) its state at time ¢ and (2) the operation applied
at time £. This assumption is far reaching. It implies that noise in
the logic gates is stationary, uncorrelated in time, memoryless and
independent of context (for example, what gates were recently
applied). It implies that the gate operations can (for a single
qubit) be represented as static 4 X 4 superoperators, and that state
preparation and measurements may each be represented as static
four-dimensional vectors and dual vectors (respectively), in
Hilbert-Schmidt space.
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Figure 3 | Process matrices and error generators for the final gates implemented 30 March 2015. (a) GST estimates of the G, G, and G, gates, shown as

superoperators in the basis of Pauli matrices, and based on data from gate sequences out to length 8192. For each estimate G}', we also show G/-SB and

;8193
i

to emphasize errors. Bar height shows absolute value of matrix elements. White bars are fixed by the TP (trace-preserving) constraint, red ones should
(ideally) be +1, blue ones should be — 1 and beige/teal ones should equal O but are positive/negative, respectively. Wireframes indicate the ideal (target)

gates for comparison. (b) Error generators for each gate, using the same colours as a. We define these as E= In(GO’WG), where G is the estimate and Gg is

the target.

As indicated above, the Markovian assumption is not strictly
true for any experimental system. In addition to slow drift, there
may be correlations between errors in consecutive gates, and the
‘qubit’ may not even be a two-level system (for example, due to
leakage levels). These are all examples of non-Markovianity, and
lie outside the GST model.

In principle, all guarantees about GST are void in the presence of
non-Markovian noise, as there are no process matrices to measure
or report. However, for many typical non-Markovian behaviours,
GST degrades in a quantifiable way. These kinds of non-Markovian
noise cause data that are consistent with no Markovian gate set,
and this failure to fit the data can be quantified. Since data
generated by any Markovian model could be fit with predictable
accuracy, significant badness-of-fit can be interpreted as violation
of the model and therefore as non-Markovianity, though the
particular type cannot be easily identified. As long as the data
appear sufficiently Markovian, the GST estimate will be fairly
reliable and have significant predictive power.

To quantify non-Markovianity, we consider the log-likelihood
(equation (13))

log£ =N (flog(p:) + (1 —f)log(1—py)),  (4)

where f,=nJ/N. The best conceivable fit to a data set would be
one where p, = f; for every sequence s. Thus, the entropy of a data
set is an upper bound on log £,

log £ < NH({£}) = N Y (£ log(f) + (1~ f)log(1—£)). (s)

We define the quantity Alog £ = NH({f;}) — log Lumax-

Standard properties of maximume-likelihood estimation

theory™ imply that if

1. The data were in fact generated by some gate set,
2. There are N, free parameters in the gate set, and
3. The data set contains N,> N, distinct gate sequences

then as N— o, 2Alog £ is a random variable with a y?
distribution, where k=N;— N,. This means that its expected
value is (y7) = k, and its RMS variance is = v/2k. Thus, if the fit
is ‘good’, then 2Alog £ should lie roughly within the interval
[k — /2k, k + \/2k]. Hence, by comparing the difference 2Alog
L — k to \/2k, we can determine how well the Markovian model
was able to fit the data.

We quantify goodness-of-fit by N, the number of s.d.’s from
the expected mean the expected mean the log-likelihood score is:

2Alogl — k
= T 6
T (6)

We can also calculate 2Alog £ for individual experiments or
subsets of gate sequences. Figure 4 illustrates this, where 2Alog £
is shown for every individual experiment associated with each
power of each germ (for a total 36 experiments per collection,
due to six preparation fiducials and six measurement fiducials).
This analysis makes it possible to see whether non-Markovianity
increases with sequence length (it usually does, because longer
sequences amplify slowly varying noise), and which sequences are
particularly inconsistent with the best Markovian fit.

Figure 4 compares 2Alog L scores for a simulated (perfectly
Markovian) data set to those for two experimental data sets, one
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Figure 4 | log L box plots for GST fits for three data sets. In each individual box, 2A log £ is summed over a set of 36 different gate strings. If the
underlying system is Markovian, 2A log £ is (approximately) a y3¢ random variable. The box colour indicates the 2A log £ score for that collection of
sequences. Grey indicates score values that are expected due to statistical fluctuations, while red indicates significant model violation at 95% confidence.
That is, if the gates are Markovian, the probability of observing even one red square is at most 5%. Note that certain germs are too long to appear at
L=1, 2, 4. (a) log L box plot for simulated Markovian data. (b) log £ box plot for experimental data from 2 March 2015, with indications of strong
non-Markovianity. (¢€) log £ box plot experimental data from 30 March 2015, with vastly decreased non-Markovianity.

from 2 March 2015, and the other from 30 March 2015. The
March 2 experimental data set is highly non-Markovian, while
the March 30 data set looks very similar to the simulated data set.
These data demonstrate the degree to which we are able to
stabilize our qubit and reduce non-Markovian effects. In the final
run on March 30, Markovianity is violated only at the 40 level.
While this is statistically significant—it implies with high
confidence that the gates are not perfectly Markovian—it is not
practically significant. To see this, recall that this is an
extraordinary sensitive experiment, as witnessed by the fact that
the error bars on the diamond norm are *2x 10~>. This
sensitivity extends to non-Markovian behaviour as well. Reducing
the sensitivity of the experiment by a factor of 4 (either by
reducing maximum L by a factor of 4, or by reducing N by a
factor of 16) would render the non-Markovianity undetectable,
at the cost of increasing the error bars by a factor of 4 to
+8 x 10 ~°. This implies that the observed non-Markovianity is
effectively equivalent to less than 10 ~* additional diamond norm
error, which is comfortably below the threshold.

Comparison to randomized benchmarking. As of this writing,
RB is the de facto standard in qubit characterization. As a
consistency check, we perform RB simultaneously with the final
GST experiment (by interleaving the GST and RB sequences
over the entire period of experimentation), to see whether GST
correctly predicted the results of RB. We follow the experimental
and analysis procedure of ref. 54, and use RB sequences ranging
in length from two gates to 1,970 gates.

Strictly speaking, RB measures the error rate per Clifford
operation. Our Clifford operations are, as is usual, compiled into
elementary {G;, G, G,} gates, with an average of 3.125 elementary
gates per Clifford. Analysis of the data in strict accordance with
the literature (that is, plotting survival probability versus # of
Cliffords in the sequence) yielded an experimental error rate of
(1.65+0.03) x 10 ~* per Clifford operation. Dividing this by
3.125 (a questionable but common practice) suggests a per-gate
error rate of about egg = (5.28 £ 0.10) x 10~ °.

However, our main goal is to compare the RB data with GST’s
predictions for it. For this purpose, we find it more informative
to fit (and plot; see Fig. 5) the observed probabilities versus
the number of elementary gates in the sequence. All the rest
of the analysis in this section is based on this analysis method,
which yields a per-elementary gate RB error rate of

6

erp = (5.31£0.16) x 10 ~°. Error bars are 95% confidence
intervals. The experimental error bars are calculated via
non-parametric bootstrap (by resampling the experimental data
with replacement). We then simulate those RB experiments using
the GST estimates. The GST results predict an RB error rate of
erg = (4.53£0.25) x 10> (see Fig. 5a,b). The simulated error
bars are calculated via parametric bootstrap. (The GST estimate is
used to generate many sets of simulated GST experiments, each of
which in turn yields a new GST gate set estimate. This ensemble
of estimates then generates an ensemble of simulated RB decay
rates, from which the simulated error bars are derived).

While these decay rates are nearly identical, there is a
statistically significant discrepancy. The most obvious explanation
is a flaw in the GST analysis, but we find that extensive
simulations with known Markovian gates rule this possibility out.
We believe that the discrepancy stems from physical causes—that
is, from non-Markovian noise. The most common form of
non-Markovian errors is low-frequency drift, which manifests in
both RB and GST as coherent errors that remain nearly fixed over
the course of any one sequence, but change from sequence to
sequence (and between repetitions of a single sequence). In the
presence of such effects, GST typically overestimates the RB
decay rate, because GST amplifies coherent errors to which
RB sequences are relatively insensitive (Markovian or not).
Thus, GST typically reports a higher rate of Markovian noise
in a quixotic attempt to fit its data, while RB simply does not see
the noise.

But in this experiment, we observe the opposite effect. Instead
of over estimating the RB error rate, GST under estimates it.
While the exact cause remains uncertain, we observe that this
behaviour is completely consistent with anti-correlated noise
(each gate flips between under- and over-rotation at each
application) induced by dynamically corrected gates (DCG)*°.

Here is a concrete model that reproduces this behaviour:
Consider a unitary error that varies in time—but instead of
varying slowly, it oscillates at the system’s Nyquist frequency
(that is, flips sign every clock cycle). For simple gates
implemented with a single pulse, this would be highly
implausible. In this experiment, however, we implement DCG.
The simplest DCG is a dynamically corrected idle gate (our Gj).
This is nothing but dynamical decoupling—periodic X, pulses
that echo away small Z rotations. Such sequences create a
‘toggling frame’ for the qubit that flips sign twice per clock cycle.
Any timing or amplitude errors in the pulses can leave a residual
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Figure 5 | Randomized benchmarking results. Coloured dots are
experimental or simulated data points; lines are exponential decay fits to
the data. (a) Experimental RB data. (b) RB data simulated using the gate set
Go derived from experimental GST results. (¢) RB data simulated using the
non-Markovian gate set Geomp. Here Geomp is generated using the composite
Nyquist-limited noisy gate set model proposed in the section ‘Comparison
to Randomized Benchmarking." This model toggles between slightly over-
and under-rotated gates with every gate application, which is a reasonable
scenario for our qubit due to our use of DCG. The experimental RB decay
rate is (5.31+0.16) x 10 ~°, which is indistinguishable from Geomp's RB
decay rate of (5.38+0.17) x 10 ~>, but distinct from Go's RB decay rate of
(4.53+0.25) x 10 ~ 2, demonstrating the plausibility of our non-Markovian
model in explaining the apparent discrepancy between experimental RB
and GST.

error that flips sign every clock cycle, making a plausible noise
model for a DCG.

We model this effect by augmenting the qubit state space with
a classical binary variable ge { — 1, + 1}. We define a composite
gate set Geomp, based on a standard gate set Gy, which consists of
two single-qubit gate sets G, and G_ that act conditionally on
the value of the classical bit g, which flips every time a gate is

applied. These gate sets are identical to Gy, except that the Gy and
Gy elements of G have a fixed, slight over rotation by an angle 0,
while the Gy and Gy elements of G_ have a fixed, slight under
rotation by 0. At the beginning of each simulated experiment,
q is chosen randomly.

Geomp acts on an eight-dimensional state space, and data
generated from it is not fully consistent with any Markovian
single-qubit gate set. But GST can be applied to that data, and will
find the Markovian single-qubit gate set that fits it best. (Indeed,
as no experimental system is perfectly Markovian, this is in
essence what GST always does).

We generate simulated data, with finite-sample error, for all the
GST and RB experiments performed on 30 March 2015. For this
simulation, Geomp is defined by setting Gy equal to the GST
estimate from 30 March 2015, and setting 6 = 1.25 x 10 2,

Analysing the GST data generated by G.omp yields an estimated
gate set almost identical to that obtained from experimental data
(Go). All but two of the 36 free gate matrix elements are within
the 95% confidence intervals assigned to G, and the three
remaining elements are at most 0.050 outside them. Every gate is
within 4.4 x 10 ™2 (in diamond norm) from the corresponding
gate in Gp. We conclude that GST, as performed, cannot
distinguish the composite model (gwmp) from G,.

The RB data simulated with Geomp also matches the
experimental RB data almost perfectly, yielding an RB error
rate of (5.38+0.17) x 10 ~° that is statistically indistinguishable
from the experimentally observed RB decay rate of
(531+£0.16) x 10~ °. Both data sets (experimental and
simulated-by-Geomp) are shown in Fig. 5, along with RB data
simulated from Gy. We conclude that RB observes significantly
different error rates for Gy and Geomp.

This does not imply that our qubit really is described by Gomp,
but it demonstrate a plausible non-Markovian model that is fully
consistent with our data. There might be many other (different)
non-Markovian models equally consistent with it. And while
certain kinds of non-Markovian noise can be detected by RB>>
and GST, neither GST nor RB are designed to function reliably in
the presence of any non-Markovian noise, so neither of them is
explicitly ‘right’ or ‘wrong’ for this case.

The relative power of RB and GST. RB and GST share the
common framework of data from gate sequences (circuits) that
are (1) diverse, (2) repeated and (3) long. But they are dis-
tinguished by the kind of sequences performed. RB sequences are
random, for the specific purpose of ‘twirling’ the noise. GST
sequences are structured and periodic, for the specific purpose of
amplifying errors.

This difference is fundamental. It makes RB intrinsically
insensitive to coherent errors, which dominate the diamond
norm error metric2”?8, For example, suppose that one logic gate
over-rotates by a small angle 0, while the others are perfect.
In random sequences containing L applications of this gate, it will
(by construction) be interleaved with other gates chosen
randomly. The rotations by 0 will add up incoherently,
producing (on average) a total rotation of 0+v/L, and therefore
an error probability of LO%. Thus, a coherent error by 0 appears
(in RB) as an incoherent error of probability 62,

But circuits of practical interest are not random. Since not all
‘useful’ circuits are known at this time, it is wise to consider how
errors affect arbitrary circuits in the worst (most fragile) case. For
the example given above, the worst case is a periodic sequence in
which the imperfect gate appears L consecutive times. Rotations
add up coherently, the final angle is L0 and the final error
probability is L?62. So, for example, a 10 ~ 2 rotation can cause a
1% failure rate after just L =100 gates. In randomized circuits, the
same failure rate would require L= 10* gates.

| 8:14485 | DOI: 10.1038/ncomms14485 | www.nature.com/naturecommunications 7


http://www.nature.com/naturecommunications

ARTICLE

The diamond norm metric is a strict upper bound on the rate
at which failure probabilities can grow, and so it takes account
(by construction) of the worst-case behaviour given above. The
diamond norm error for a small coherent error by angle 0 is O(0).
Process infidelity (closely related to the RB error rate) does not
account for worst-case behaviour, and the process infidelity for a
small coherent error by angle 0 is O(6?).

GST intentionally implements a wide variety of periodic
sequences, to ensure that at least one of them is approximately
‘worst case’ for every possible coherent error. This allows GST
to detect coherent errors of size 6 using sequences of length
L=0(1/0), repeated O(1) times. Detecting the same error with
randomized sequences requires much long sequences of length
L= 0(1/6?), or else a much higher number of repetitions (both of
which correspond to orders of magnitude more time and effort).

Periodic sequences might be incorporated into RB, to make it
more sensitive. Doing so, however, would eliminate its char-
acteristic feature. Such a protocol would no longer be RB. On the
other hand, there are several interesting variations of RB that
retain its randomized nature, most notably interleaved bench-
marking?®’, RB tomography®® and unitarity benchmarking®!.
While interesting in their own right, they are all subject to the
same trouble: random gate sequences are much less sensitive to
coherent errors than periodic ones, and therefore every form of
RB is necessarily inefficient at detecting coherent errors.

Unitarity benchmarking is particularly interesting, since
(unlike other forms of RB) it can separate coherent and
incoherent errors, and therefore provide good information about
diamond norm error rates. Unfortunately, it is (compared with
GST) extremely inefficient at doing so.

Wallman et al3! defined a quantity u (unitarity), which
measures the rate of purity decay. They gave an RB-like protocol
for measuring it, and pointed out that u and r together could be
used to bound the diamond norm error. If

_ d Y
U= Upp = (1— ﬁr>, (7)

then the noise is purely incoherent, and the diamond norm error

is O(r). If u— uy;, is sufficiently small, then the errors are

primarily incoherent, and the diamond norm error remains O(r).
However, the actual bounds (see ref. 56) are of the form

H'Hoz O(V/tt — Unin)- (8)

We have demonstrated that our gates’ diamond norm error is
O(r) using GST. Doing the same thing using unitarity requires
showing that U—Upin=O(). But 1 —u is itself an RB-type
quantity, meaning that it appears as an error rate (in experiments
that measure purity), and is measured using RB. As a result,
showing that u — up;, = O(r?) is equivalent to:

1. Performing standard RB to measure r, the decay rate of
sequence fidelity.

2. Performing a different RB-like experiment to measure ¥ =1 — u.

3. Demonstrating (based on those experiments) that r — ' = o@?).

For r=10"* (the regime we access experimentally), this
requires measuring both r and 7 to 10 % precision. This is
extraordinarily hard. The most efficient way to do it is using
sequences of length L~ 10% These would vyield survival
probabilities around p;~1/e. Achieving the necessary precision
would require estimating p; to *10~ 4, which would require
approximately N=10® repetitions (because the uncertainty is
O(1/+/N)). This is at least 10° times more repetitions than would
be required for standard RB, or for GST, and is completely
impractical.

8

Validating 10~ accuracy with simulations. We have claimed
uncertainties (error bars/confidence regions—see ‘Methods’
section) of about 10 ~> for diamond norms and process matrix
elements. This is remarkable, and demands supporting evidence.
To confirm this behaviour, we simulate GST experiments using
(known) gate sets with unitary errors. The results (Fig. 6) confirm
Heisenberg scaling: diamond norm distance between estimated
and true gates decreases with the maximum sequence length (L)
as 1/L. This scaling holds up to L= 1/¢, where ¢ is the stochastic
error rate. This is consistent with the *+ ~ 10> observed error
bars on diamond norm errors in our final experiment, for which
L=8,192.

Discussion
GST allows us to achieve high-quality gates in a trapped-Yb * -ion
qubit, and to characterize it to unprecedented precision. Although
lower-RB error rates have been reported in trapped-ion
qubits'>1®, our gates are the first to demonstrably surpass a
rigorous FT threshold against general noise. GST is the first
protocol that can efficiently demonstrate this important milestone
and provide reliable feedback to debug and improve those gates.
Low-error single-qubit gates are just one of several
critical achievements required to enable fault-tolerant quantum
computing. Thus, this is only a first step. But GST—which can be
generalized to 2-qubit gates and measurements—does answer one
key and pressing question: ‘Once suitable operations have been
achieved, how can their performance be verified for a critical,
objective observer? RB can provide reliable information about
process fidelity (which unambiguously captures stochastic or
incoherent errors), but as of this writing, process fidelity is not
known to be the relevant metric for FT. An exciting recent
development in this area is the introduction of randomized
compiling®’, which has the potential to provably reduce the
importance of coherent errors. But until and unless such
techniques lead to a FT proof that is insensitive to them, and
are confirmed to be practical in the context of FTQEC, coherent
errors remain a point of concern. GST provides an efficient way
to diagnose and bound all Markovian errors in gates.

Methods
Experimental details. In Sandia’s Thunderbird trap, ions were trapped 80 um
above the trap surface. Typical trap frequencies were 0.5, 1.8 and 2.3 MHz, for the
axial and two radial modes, respectively. In the HOA-2 trap, ions were trapped
68 um above the trap surface and trap frequencies of 0.5, 2.2 and 2.8 MHz were
achieved. Typical trapping times were several hours for the Thunderbird trap and
up to 100h for the HOA-2 trap. Coherence times were measured to be ~1s in
both traps, and were most likely clock-limited.

The microwave radiation used for qubit manipulation was generated by
single-side band modulating the output of a 12.600 GHz dielectric resonator
oscillator with the output of a direct digital synthesizer (DDS) near 42.812 MHz.
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Figure 6 | Confirmation of error scaling in GST. Here we show diamond
norm difference between true and estimated gates in simulated GST with
small unitary errors. Mean diamond norms are shown, averaged over

100 trials. Estimation error scales as 1/L, where L is the maximum sequence
length in the data. Each trial uses N=50 samples per experiment.
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The master clock for the dielectric resonator oscillator and DDS was generated by a
rubidium frequency standard. The output of the single-side band modulator was
amplified and directed parallel to the trap surface using a microwave horn. The
microwave frequency and phase was controlled via the DDS and approximately
square pulses were generated by switching the output of the DDS using a
high-isolation rf switch. An offset was added to the constituent pulses of the BB1
pulse sequence to compensate for switching imperfections.

Drift control of the microwave n-time was realized by interleaving experiments
in which the ion was initialized, exposed to a 10.5n microwave pulse, and
measured. The mt-time was adjusted after state detection; upon seeing |1), m-time
was decreased by 0.625 ns, while upon seeing |0), -time was increased by 0.625 ns.
For the next experiment, the n-time was then truncated to the time resolution of
the experimental control (5ns). Similarly, drift control of the qubit frequency was
implemented by interleaving a Ramsey experiment in which the ion, after state
initialization, is subject to: (1) a Gx gate, (2) a 25ms wait time and (3) a Gy gate.
Upon state detection, the qubit frequency was adjusted by + 8 mHz for a |1) result,
and by —8mHz for a |0) result.

Linear GST. Linear-inversion GST (LGST) is a highly reliable but low-accuracy
way to obtain an initial estimate of the gate set that serves as a seed for further
refinement by long-sequence GST (see next subsection). LGST is essentially
simultaneous ‘uncalibrated’ process and state tomography. By performing process
tomography-like experiments on a set of gates, as well as the null operation (that is,
the ‘do nothing for no time’ operation), LGST can provide rough estimates of all
the gates involved, as well as the state preparation and measurement operations.
LGST requires minimal assumptions about the various operations (unlike standard
tomography), and computes its estimates using only basic linear algebra (the
most complicated step is matrix inversion). A detailed explanation of the LGST
procedure is provided in ref. 32; LGST is also described in ref. 33.

Analysing long sequences in GST. GST incorporates data from long sequences in
two stages. The first stage consists of several iterations, each of which performs a
minimum-y? estimation. Each iteration takes the result of the previous iteration as
a seed, and includes successively more of the long-sequence data. The second stage
is a maximum-likelihood estimation, which is seeded from the first stage and uses
all of the data. This procedure consistently avoids local minima in the objective
function. In this section, we give the details of this algorithm (outlined in Fig. 1).

The iterative fitting procedure starts by fitting only data from the shortest gate
sequences (which are easy to fit and insensitive to most non-Markovian noise),
then successively adds longer and longer sequences (with base sequence length
L<1,2,4,8, ...). Since we get an estimate at each intermediate L, it is possible to
quantify not just the goodness of the best fit, but how the goodness-of-fit behaves
as longer and longer sequences are added in, which is useful for debugging.

At each step in the iterative process, we vary the gate set to minimize Pearson’s
#2 test statistic, which measures the discrepancy between a predicted probability (p)
and an observed frequency (f). It is defined as

2
7 =nCI ©)
p

where N is the number of samples taken. In this analysis, y? is used to compare the
set of probabilities predicted by a gate set (p;) and the frequencies obtained from a
data set (f,). Each experiment (that is, gate sequence) s is associated to two
probabilities: ‘plus” has probability p, and ‘minus’ has probability 1 — p,. The %2 of a
single gate string s is

o= £) (= f) N —f)’
=N Ps N 1-p. — p(1—-pJ)

where N is the number of times the experiment s was performed, p; is the
probability of a ‘plus’ outcome as predicted by the gate set and f; is the observed
frequency of ‘plus’. The total 5 for a data set S is just the sum

=Y 1

se§

; (10)

(11)

To estimate our gate set parameters, we minimize z% at each iteration using the
Levenberg-Marquardt algorithim implemented in SciPy>®.

The final stage in long-sequence GST analysis is a maximum-likelihood
estimation (MLE), based on numerical optimization of the log-likelihood function
log L. The log-likelihood for an n-outcome system with predicted probabilities p;
and observed frequencies f; (i=1 ... n) is given by:

log £ =) Nfilog(py)- (12)

where N is the total number of counts. Like the y statistic, log £ is used to
compare the set of probabilities predicted by a gate set (p;) to the frequencies
obtained from a data set (f;). Each experiment (that is, gate sequence) s is associated
to two probabilities: ‘plus” has probability p; and ‘minus’ has probability 1 — p,. The
log L contribution of a single gate string s is

log £ = N, log(p:) + N(1 — £)log(1 — py), (13)

where N is the number of times the experiment s was performed, p; is the
probability of a ‘plus’ outcome as predicted by the gate set and f; is the observed
frequency of ‘plus’. The total log-likelihood for an entire data set is just the sum

logLs = Zlogﬁs.
seS

(14)

We find the maximum of this quantity using the same Levenberg-Marquardt
algorithm as above, in order to compute the final (modulo gauge optimization)
estimate of the gates.

LGST would be a perfect estimator in the absence of finite-sample error.
However, it is inefficient with respect to accuracy. Like process tomography, its
inaccuracy scales as O(1/v/N), which means that achieving 10~ error bars on all
parameters would require around N =100 repetitions of each experiment. Long
sequences amplify errors proportional to L, enabling inaccuracy of O(1/Lv/N) for
all parameters. (This scaling breaks down for L>1/¢, where ¢ is the rate of
stochastic decoherence. In our experiments, € <10 ~ %, and we perform experiments
as long as L =8192~10%).

We use a hybrid algorithm (involving both min-y? and MLE) because each of
its components have certain weaknesses. Empirically, we find that MLE is
statistically well-motivated and avoids any bias, whereas y? optimization is
numerically more stable and faster computationally but yields biased estimators,
especially for the SPAM parameters. Our hybrid method combines both virtues, by
using the more efficient and reliable min-y? algorithm to get a very good seed for
the final (unbiased) MLE.

On a modern laptop, single-qubit GST with maximum L = 1,024 can run in
under 1 min; the analysis for maximum L = 8,192 takes about 40 min.

Selecting gate sequences for GST. The data that GST use to reconstruct a
gate set come from performing gate sequences (that is, quantum circuits).
Every gate sequence necessarily comprises (i) initialization, (ii) some gates and
(iii) measurement (which yields a count that is recorded in the data set). The
sequences used for GST have an additional structure:

1. Each GST sequence begins with a preparation fiducial sequence, and ends with a
measurement fiducial sequence, with an ‘operation of interest’ sandwiched in
the middle.

2. The ‘operation of interest’, which could in principle be any gate sequence,
is chosen to be a germ power sequence—that is, a short ‘germ’ sequence,
repeated an integer number of times.

Thus, every GST sequence is of the form F,g} F;, where F; and F; are preparation
and measurement fiducials (respectively), gi is a germ and L is an integer. F; and F;
range exhaustively over a set of six fiducial sequences, while g, ranges exhaustively
over a set of 11 germs. In this section, we explain how the fiducials and germs are
chosen.

The purpose of the fiducials is to prepare a sufficiently diverse set of input states
and measurements to completely probe the operation of interest. This is achieved
if (and only if) the input states {p;} = {Fi|p))} and the measurement effects
{E;j} = {{(E|F;} are both informationally complete (IC). A set of matrices is IC if
and only if it spans the vector space B(H) of matrices. This requires at least d?
linearly independent elements.

In general, any randomly chosen set of d? states or effects will be IC. So, for
single-qubit GST, we could choose d? =4 random fiducial sequences. However,
while the resulting {p;} and {E;} will almost certainly be linearly independent, they
may be close to linearly dependent. This property is quantified by the spectrum of
the Gram matrix 1, defined by

1~]j.i = <<Ej‘/’i>>- (15)

If either set fails to be IC, the Gram matrix will fail to have d? non-zero (to machine
precision) singular values. As any one of the d? largest singular values becomes
small, inverting the Gram matrix on its support (as is required for LGST) becomes
ill-conditioned, and finite-sample fluctuations in GST get amplified, causing poor
accuracy.

We would like both preparation and measurement fiducials to be uniformly IC,
meaning that they span B(H) as uniformly as possible, and the smallest singular
value of the Gram matrix is as large as possible. There exists a single-qubit
uniformly IC set with only four elements (the SIC-POVM), but it cannot be
generated with Clifford operations and stabilizer states. The smallest convenient
uniformly IC set is the six-element set of stabilizer states (the eigenstates of X,

Y and Z). We choose six fiducial sequences so that, if the gates are ideal, they will
prepare the stabilizer states exactly. They are

0. s, Gy. GiGy, GeGiGy, G,G,G, (16)
where ) indicates the null sequence (no gates).

Slightly imperfect gates will prepare states (and effects) that are close to the
stabilizer states—and therefore close to uniformly IC, and almost as effective in
probing the operation of interest. If the gates are sufficiently far from the targets,
it can be detected by computing the singular values of the empirical Gram matrix,
and then new fiducials can be chosen.
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Once the fiducials are defined, we need to define ‘operations of interest’ for
them to probe. By sandwiching any such operation between an exhaustive set of
36 fiducial pairs, we are essentially doing process tomography on the operation
(although the algorithm for incorporating these data into the GST fit is more
complex than simple process tomography).

The obvious operations of interest are the gates themselves (G,, G, and G;). By
probing each gate tomographically, and repeating each sequence N times, GST can
estimate the gates to with =+ o/v/N accuracy (for some constant ). To achieve
higher accuracy, we do tomography on powers of the gates, by designating, for
example, G1?® or G? as an operation of interest. (Powers of 2 are chosen merely for
convenience; any logarithmically spaced sequence of integer powers would work).

Repeating a gate L times—that is, performing sequences of the form
F;GLF;/—amplifies errors in the gate itself. So, for example, if G, is actually a
rotation by 0 = /2 +¢, then G2 is a rotation by 32¢. GST can now characterize
that rotation to within =+ a/+/N, which equates to estimating 0 to within
o/ (32\/ﬁ ). Raising gates to the Lth power amplifies deviations by L, which in turn
reduces estimation error by a factor of L.

However, simple repetition of G, does not amplify every error. For example,
suppose that G, is in fact a 71/2 rotation, but around the wrong axis, corresponding
to the unitary map

U= e—i(n/4)(cos[X+sin(Y)’ (17)
as opposed to the target unitary e ~{*4X (X and Y indicate the Pauli operators o,
and a,).

ThlS is a tilt error, and it is not amplified by GL. It’s easy to see this by observing
that G} =1, so the error cancels itself out after )ust four repetitions.

More sophisticated sequences are needed to amplify tilt errors. For this
example, it is sufficient to probe G,G,. Assuming (for now) that G, is a perfect 7/2
rotation around y, G,G, is a rotatlon by 21/3+¢/+/3. Therefore, performlng
(GG ) amplifies the devlatlon € by a factor of L, and setting it as an operation of
interest allows GST to estimate ¢ to within v/3x/ (Lf ). The short sequence GG,
is a germ, and repeating it L times yields a germ power sequence that can be
sandwiched between fiducials to equip GST with high sensitivity to the parameter c.

The general situation gets rapidly complicated—for example, if G, is not perfect,
then G,G, alone cannot distinguish between Y tilt in G, and X tilt in G,. Each germ
is sensitive to some nontrivial linear combination of gate set parameters. To choose
a set of germs, we list the possible germs (that is, all reasonably short sequences),
and for each germ g we identify what linear combination of parameters it amplifies.
We do this by computing a Jacobian,

(18)

G=Clarger

where o(g) is the gate sequence product for germ g (obtained by just multiplying
together the process matrices), and G is a vector containing all the parameters of
the gate set (for example, the elements of all the process matrices).

In the single-qubit case, o(g) is a 4 x 4 matrix, and G is 48-dimensional because
it contains the elements of three 4 x 4 gate matrices. Constraining all gates to be
trace-preserving reduces the number of free parameters to 12 and 36 (respectively),
80 V, is a 12 x 36 matrix. Its 12 right singular vectors indicate linear combinations
of gate set parameters that ¢(g) amplifies (when repeated L times), and the
corresponding singular values quantify how much they are amplified. A zero
singular value indicates a parameter that is not amplified at all (like the tilt error
discussed above). A set of germs {g; ... gn} is, collectively, described by a Jacobian

vg 1
£

= E (19)
vgN

Our goal is to choose germs that provide high sensitivity at ‘large’ values of L. In
practice, it is not useful to make L larger than 1/¢, where ¢ is the rate of stochastic
or depolarizing noise. To select germs, however, we ignore this effect and make the
simplifying assumption that the gates (and therefore o(g)) are reversible (a good
approximation when ¢ is small). Under this assumption, it is possible to define the
L— oo limit of the Jacobian in equation (18). Usmg the product rule, and assuming

that all the gates are unitary (and therefore a(g) ~ ' = a(g)"),
154 da(g) i
w _ 1 n90(& L—1-n
v =13 o ) (20)
_ lLi " () | ()~ E= D 21
= |1 2. 0"V (a(g))" |alg) (21)
n=0

As L— o0, the average over all powers 7 of a(g) twirls Vg By Schur’s lemma, the
effect of twirling is to project Vg onto the commutant of (g)—that is, onto the
subspace of matrlces that commute with ¢(g). Furthermore, multiplication by the
unitary a(g) ~ ¢ =1 is merely a change of basis, and has no effect on the right

10

singular vectors or the singular values of Vg. So, up to an irrelevant change of basis:

lim V

L—oo

g [57], o)
where I, is the projection onto the commutant of a(g).

This framework defines a notion of informational completeness for germs.

A set of germs {g;} is amplificationally complete (AC) if and only if the right
singular rank of its Jacobian equals the total number of physically accessible
(gauge-invariant) parameters in the gate set. For a general set of three single-qubit
trace-preserving gates, a gauge transformation is Gy — TGT~ ! where T is an
invertible trace-preserving superoperator, so there are 12 gauge parameters and
36 — 12 =24 gauge-invariant parameters. To build an AC set of germs, it is
sufficient to add germs to the set until its Jacobian has rank 24. By constructing a
complete set of infinitesimal gauge transformations, we can actually construct the
projectorIT, _; onto the (local) space of gauge-invariant perturbations to the
gate set G.

We then optimize this set numerically, by adding and removing germs (taken
from an exhaustive list of all short sequences), and only keeping a modification if it
lowers a certain score function. (For single-qubit GST, we find it convenient to
search over all germs of length <6. However, this set of candidates need not be
exhaustive. (A larger gate set, for example, would generate a prohibitively large
exhaustive candidate set). We have used randomly chosen subsets as candidate sets
and gotten similar results). The score function is

o]

fa - &b = P (23)

This score estimates the mean squared error of estimation if a fixed number of
counts are spread over the k distinct germs. Running this algorithm until it cannot
improve the germ set any further produces the following set of 11 germs used in
the final (March 2015) GST runs (see Fig. 7):

Gx-, G),, G,‘, GxGy7

GxGyGh GxGiGy-, GxGiGh GyGiGh

G:G:GiG), G:G,G,G;, G:G:G,G,G,G,.

(24)

The GST gauge, and how to set it. A gate set comprises: an initial density matrix
p (represented as a Hilbert-Schmidt vector), a measurement effect E (represented
as a Hilbert-Schmidt dual vector) and one or more gates G; (represented as
superoperators). But not every parameter in this representation is physically
observable. A gate set has intrinsic ‘gauge’ degrees of freedom, because two distinct
gate sets (or an entire manifold of them) can yield identical probabilities for all
possible experiments. Gauge transformations alter a gate set’s elements without
changing any observable probability. They take the form

((E] = ((E|]M ™!

[p)) — Mlp))
G — MGM™ !,

(25)

where M is any invertible superoperator. If (as usual) we consider only
trace-preserving (TP) gate sets, then the corresponding necessary and sufficient
condition for a gauge transformation to preserve this constraint is that M be itself
TP (that is, its first row should be (1, 0, 0,...).

This gauge freedom makes it difficult to compare two gate sets, since two
apparently distinct gate sets may actually be equivalent. Most of the metrics used to
measure distance between two gates are not gauge-invariant (for example, fidelity,
trace-norm distance and diamond norm distance are all gauge-variant). So, while it
would be ideal to work only with gauge-invariant metrics, we have very few metrics
(and developing them and championing their adoption to the scientific community
is beyond the scope of this work). Instead, to generate meaningful metrics,
we gauge optimize gate sets to make them as ‘close’ as possible before computing
metrics.

Given a gate set G and a target G, we transform G by M (as above) where
M is chosen to optimize some criterion of ‘closeness’ between G and g.

This is ‘gauge optimization’. The final output of GST is thus the gate set that
is most similar to the target, according to some gauge-variant quantity, among
a class of gauge-equivalent gate sets. In the work reported here, we minimize
(for convenience) a weighted Frobenius distance:

§(9.90) =w, > [|Gi =G> +we(llo— o' + [E=E). (26)

where ||-|| denotes the Frobenius norm, G; ranges over all gates in the set, and w,
and w; are weighting factors. The weight ratio w/w, allows us to fine-tune the
relative contributions of discrepancies in logic gates and in SPAM. This is
important because their respective natural uncertainties are usually quite different;
gates can be probed far more accurately than SPAM. Thus, typically, ws/wg < 1;
we weight the gate matrix elements more highly because they are known more
precisely. We use an iterative numerical method to find an M that minimizes this
quantity.
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Figure 7 | Sensitivity analysis for germ selection. Here we show the
sorted singular values of the Jacobian matrix for different germ sets for the
standard {Gy, Gy, G,;} gate set. Each singular value of the Jacobian
corresponds to a gate set parameter; a large singular value indicates that
the chosen germ set provides GST with sensitivity to that parameter. Given
that there are always experimentally inaccessible gauge parameters, it is
impossible to be sensitive to all parameters. The dashed red line indicates
the number of gauge parameters for this gate set (14). The blue triangles
are singular values for a Jacobian with the amplificationally complete
T-germ set used for the March 2015 GST runs; all singular values
corresponding to non-gauge parameters are large. The purple triangles are
singular values for the three-germ set containing just the bare gates G, G,
and G;. It is amplificationally incomplete, as indicated by the presence of
near-zero singular values that correspond to non-gauge parameters.

Each gate set is gauge-optimized as a whole; we report all metrics using gates in
a single gauge. It would be incorrect to separately optimize the gauge for different
reported quantities (for example, gauge-optimizing for the fidelity of a single gate
and reporting each such best-fidelity separately). Finally, we note that the process
of gauge optimization against a reference gate set is sufficient to solve gauge
ambiguity issues. That is, any quantity of interest that is not inherently gauge-
invariant (for example, diamond norm) becomes so when this gauge optimization
is performed. This numerical optimization process is not physically elegant, but is
adequate for the practical applications we consider here.

Error bars. In interpreting the GST analyses (and in particular confirming the
claim that we have demonstrated FT), it is necessary to assign error bars to gate set
estimates (and derived quantities thereof). For most GST-derived quantities, we use
Hessian-based likelihood ratio (LR) confidence regions, while for RB-related
quantities, we use parametric and non-parametric bootstrapping. We also use
parametric bootstrapped error bars as a sanity check on our Hessian-based LR
confidence regions, and find them to be in good agreement. Unless otherwise
stated, all error bars indicate ~95% (20) confidence intervals.

We employ two flavours of bootstrapping: parametric and non-parametric.
Both derive statistical quantities of interest from ensembles of simulated data sets,
but these data sets are generated in different ways.

For the parametric bootstrap, ensembles of data sets are generated by first
computing the GST estimate of the experimental data set in question, and then
using this estimate to generate an ensemble of new data sets, each of which has the
same experiments and number of shots per experiment as the actual experimental
data set.

For the non-parametric bootstrap, ensembles of data sets are generated by
simply resampling the experimental data set with replacement. In both parametric
and non-parametric bootstraps, we typically generate an ensemble of 100 data sets,
to ensure good statistics.

GST is used to map each resampled data set to a gate set estimate. Each gate set
is gauge-optimized to match the experimental GST estimate as closely as possible.
Then, from this ensemble of gauge-optimized gate sets, any statistical quantity of
interest (such as s.d.) may be calculated for process matrix elements or for derived
quantities such as diamond norm.

We use bootstrapped error bars for two purposes. First, they serve as a sanity
check on the more rigorous (but tricky to implement) LR confidence regions
described in the following subsection. In Fig. 8, we compare the performance of
parametric bootstrapping to the LR method, and see good agreement. Second,
we use bootstrapping to put error bars on experimental RB decay rates. These are
model-free and therefore not amenable to LR confidence regions. Error bars on
experimental RB decay rate error bars were calculated via non-parametric
bootstrapping, while error bars on simulated RB decay rates were calculated via
parametric bootstrapping on the underlying GST estimate used to generate the
RB data.

Bootstrapping is a very general method for generating error bars, but it is
(1) not always reliable, (2) subject to small-sample errors unless very many Monte
Carlo samples are generated and (3) quite time-consuming (up to 24 h of computer
time were required to generate the 100 samples used for this paper). Likelihood
ratio (LR) confidence regions® are preferable in most ways, and we use them as
our primary source for ‘error bars’.
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Figure 8 | Comparison of error bar generation techniques. \When
computing error bars on GST estimates in this manuscript, we typically use
LR confidence regions, computed using the Hessian of the log-likelihood
function. However, another common approach is through parametric
bootstrapping. Here we show a log-log scatter plot of error bars on gate
elements from GST estimate of our data from 30 March 2015. The x axis
corresponds to error bars calculated via parametric bootstrapping, whereas
the y axis corresponds to likelihood ratio (LR) confidence regions computed
using the Hessian of the log-likelihood function. The dotted line corresponds
to y =x. Both methods are described in the methods section ‘Error Bars'. The
strong correlation shown here demonstrates the consistency between
parametric bootstrapping techniques and LR confidence regions.

The basic theory for LR confidence regions, as applied to quantum tomography,
can be found in ref. 59. Confidence regions have a solid (if often misunderstood)
statistical meaning: if an estimator generates confidence regions with a confidence
level of 1 — a, then with probability at least 1 — o (taken over the ensemble of all
possible data sets), the confidence region assigned by the estimator will contain the
true parameter value. This does not mean ‘Given particular error bars, the
probability that they contain the truth is 1 — o, as there is no random variable to
take a probability with respect to once the estimate has been assigned.

As implemented here, GST has two convenient properties. First, it yields a
likelihood function that is well approximated by a Gaussian (because the total
number of samples is quite large). Second, it involves no explicit constraints,
meaning that the MLE is never squashed against a boundary (as it often is in
standard state and process tomography, where the positivity constraint is critical to
ensuring a physically valid estimate). These properties mean that we can
approximate the log-likelihood function by a quadratic function, whose shape is
given by the Hessian (matrix of second derivatives) of log £ at the MLE. This
Hessian defines a covariance tensor in gate set space, which (when scaled by an
appropriate factor) defines an ellipsoid that is a valid 1 — « confidence region.

Writing down this ellipsoid explicitly (as a covariance tensor) is possible, but
not useful in practice. Instead, we use it to define error bars (confidence intervals)
for all relevant scalar quantities (including fidelities, diamond norms, gate matrix
elements and so on).

Let f(G) be a scalar function of a gate set. We define a 95% confidence interval
around the best-estimate value of f* = f(Gpest) by computing

of =/ (V) - Py /) vy

where P(H) is the Hessian projected onto the (local) space of non-gauge gate set
parameters, and we have linearized f(G) ~ fy + Vf - (G — Gest). C is a scalar
constant which satisfies CDF;(C;) = 0.95, where CDF,; is the cumulative density
function of the 2 probability distribution. With Jf so defined, f* + Jf specifies the
95% confidence interval for f. Within the linear approximation to f, which is valid
for small df, this interval corresponds to minimizing and maximizing the value of f
over the contour of the log-likelihood corresponding to a 95% confidence interval if
the log-likelihood had a single parameter.

We empbhasize that this does not construct a 95% confidence region. There are
roughly 34 gauge-invariant parameters in a gate set; the threshold used here implies
95% confidence intervals for each of them. The resulting region contains the truth
only if every one of the intervals contains its parameter, which occurs with
probability at least 0.95%*x17%.

We believe this is a more meaningful way to report ‘error bars’ than to report a
95% confidence region for the entire gate set. For one thing, it is consistent with the
error bars reported by the bootstrap (which yields standard errors for each
parameter independently, and would have to be expanded significantly to represent
a joint confidence region). Empirically, we find that definition 27 correlates closely
with the 20 error bars on gate elements computed by parametric bootstrapping (see
Fig. 8). Furthermore, we use the confidence region primarily to report uncertainties
on single quantities (for example, diamond norms), independent of the others.

(27)

Data availability. The GST and RB analysis in this paper was performed using
the open-source software pyGSTi (python GST implementation)®’, which was
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developed for this work. All data sets and analysis scripts necessary to reproduce
the results presented here are available online as supplemental information at
https://doi.org/10.5281/zenodo.231329.
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