
DATA ACQUISITION AND SUPERVISION FOR THE HL-LHC QUENCH
PROTECTION SYSTEM - PART II THE SOFTWARE STACK∗

M.-A. Galilée†, M. Christensen, G. M. Garcia, J. C. Garnier, M. M. Moya, T. Podzorny,
L. R. Ropero, and E. Thaller, European Organization for Nuclear Research, Geneva, Switzerland

Abstract

The Quench Protection System (QPS) of the LHC is cru-
cial for ensuring the integrity of the superconducting magnet
circuit elements. It also plays an important role in the ac-
quisition of data from these elements during the magnet
qualification, equipment commissioning and accelerator op-
eration. The new superconducting circuits for the HL-LHC
era, which will be assembled and operated in the first place in
the IT String facility, require finer and more comprehensive
measurements during all of these steps than the currently
operated magnets of the LHC. The required data throughput
of such measurements cannot be achieved with the current
QPS data acquisition technology. Therefore, a new data
acquisition stack called EDAQ has been developed to ad-
dress this issue and provide further improvements, including
microsecond precision timing synchronisation down to the
individual field agents. This contribution presents the tech-
nologies chosen for this new stack, their additional benefits,
their assembly into a robust and high-performance prototype,
its integration into the existing controls environment and the
ongoing validation in successive steps towards the HL-LHC
installation.

QPS FOR HL-LHC MAGNETS,
REQUIREMENTS

Hardware is the main factor driving the technological
choices for the software solution and in particular the data
acquisition stack. The hardware baseline for HL-LHC is the
Universal Quench Detection System (UQDS), which is an
FPGA board based, versatile digital platform. The UQDS
system is detailed in [1]. Four key aspects of the UQDS are
particularly relevant to the adequate design of its acquisition
stack: the amount of data it can provide, the radiation levels
in the location where it will be deployed, the computational
capacity of the embedded communication controller, and
the ultimate timing accuracy.

UQDS is able to provide high-definition data, up to
11 Mbps per unit, which is of high interest in the context
of the new Nb3Sn magnets development, qualification and
commissioning phases. It will be installed in radiation free
testbenches and underground areas of the LHC machine.
Lastly, the Micro Controller Unit (MCU) used comes with
very little memory (up to 256 kB).

∗ Research supported by the HL-LHC project
† mgalilee@cern.ch

A NEW STACK FROM THE GROUND UP
The current QPS data acquisition stack is not able to ful-

fill these requirements; based on the WorldFIP [2] technol-
ogy, it provides only up to 1 Mbps of data throughput for
a whole acquisition segment, which accommodates up to
50 field agents (functionally equivalent to the new UQDS
agents). The WorldFIP technology is obsolete, with spare
parts and maintenance not provided anymore by industry.
Furthermore, the existing data acquisition stack grew organ-
ically with the extension of QPS in the LHC, which spread
over more than 15 years from design to current exploitation
through numerous renovations. This makes it a complex
software system, with significant costs for maintenance and
evolution. These circumstances prompted the design of a
new acquisition stack from the ground up, addressing the
future requirements for quench protection in the LHC, and fa-
cilitating the QPS evolution in the longer term. Nonetheless,
a new data acquisition must fit into the same controls envi-
ronment as the current one, in particular the set of existing
expert and operation tools. This implies further constraints
on the outward communication interfaces and control proce-
dures.

In order to enable modularity of the stack components
and reduce eventual evolution costs, the new stack has to
be compliant with the Open Systems Interconnection model
(OSI) [3] model. In the first place, Ethernet was chosen
for the Physical and Data link layers, IP and UDP for the
Network and Transport layers, with a dedicated protocol im-
plementing the Session and Presentation layers. Although
the use of Ethernet and IP enables the integration of the
network elements into an existing network, e.g. CERN’s
Technical Network (TN) [4], in the interest of simpler con-
figuration and security, the initial network topology is that
of a private network, on which reside only a local subset of
all the UQDS devices relevant to the protection of the mag-
net circuits. So several of these private networks compose
the overall acquisition stack, each connected to the TN via
a gateway computer. Similarly, a plain star topology was
chosen, with an Ethernet router linking the gateway and the
UQDS agents.

EDAQ: NETWORK AND APPLICATION
PROTOCOL

This new dedicated protocol is called EDAQ and is built
on top of UDP/IP, as visible in Fig. 1. It is described in its
own engineering specification. Due to the limited amount
of computational resources of the MCU, and the interest
in enabling real-time emission, UDP was chosen over TCP
as the basis for EDAQ, at the cost of specifying and im-



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPA122

MC6.T33: Online Modelling and Software Tools

4247

THPA: Thursday Poster Session: THPA

THPA122

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Figure 1: EDAQ in the OSI model.

plementing cherry picked features of TCP, adapted to the
requirements of our use-cases. These include on-demand re-
liability, buffering and ordering of the transmitted messages.
EDAQ defines three network traffic modes:

• Unreliable; virtually bare UDP.
• Buffered unreliable; the receiver can request data re-

transmission.
• Reliable; reliability ensured by an ACK/NACK mecha-

nism.
These modes are non exclusive, so a field agent and a

gateway can in principle communicate simultaneously over
all three modes, selecting either mode for a given piece of
data to transmit, depending on the expected load it puts on
the infrastructure and its criticality. Examples are: data
transmitted in nominal circuit conditions, detailed record of
a magnet circuit event, commands.

While its design is driven by the QPS use case, EDAQ
remains effectively application agnostic. EDAQ payloads
are left to the Application layer to specify and handle, as
seen in Fig. 1 and Fig. 2 where different application payloads
are showcased.

Figure 2: EDAQ encapsulation model.

SAFETY AND PERFORMANCE WITH
RUST

With regard to the implementation of the protocol, sev-
eral programming languages were considered and reviewed:
C++17/20, Go [5] and Rust [6]. The main evaluation criteria
were:

• Safety,
• Performance,
• Long term community/industry support,
• Tooling quality,
• Attractiveness to young professionals.
While C++ benefits from decades of extensive industry us-

age and will likely stay around for many more decades, even
its more modern revisions carry the complexity burden of a
very extensive language and of the backward compatibility
requirement, increasing the difficulty to audit the code and
ensure the actual safety of the program. Go fares reasonably
well in all aspects, but loses to Rust with regard to perfor-
mance and safety, according to the scientific press review we
carried out at the project start, in early 2021. Notably, Rust
boasts safe and efficient concurrent programming as one of
its major goals, using the motto ’fearless concurrency’ [7].
It as well benefits from an outstanding appreciation in the
software developers community [8]. Consequently, we se-
lected Rust, to be further evaluated as part of the prototyping
of the protocol and the gateway application embedding it.

The design of the gateway application is as follows:

1. Field I/O leveraging Tokio [9], using a dedicated UDP
socket for each field agent;

2. An internal, elastic, concurrent queues system for track-
ing, ordering and buffering messages;

3. A gRPC [10] interface for higher level (controls)
clients.

After several iterations, and witnessing the reliability of
Rust and its tooling, the code quality they enable, the perfor-
mance achieved, the Rust implementation became the canon-
ical implementation of the protocol and gateway application.
Performance measurements include the stress testing of the
application with four simulated field agents emitting data at
up to 20 kHz, for a total throughput of 1 Gbps with overall
CPU usage well below 50 % on a common modern com-
puter. Figure 3 highlights the throughput and transmission
reliability scaling using the actual hardware infrastructure
and agents.

During the exploratory phase, we experimented with shar-
ing the Rust code base across the network boundary, re-using
the protocol software implementation in the micro-controller
firmware, with the intent of reducing the maintenance costs
from having two parallel implementations and benefiting
from Rust’s safety model. While the effort delivered promis-
ing results, we decided against this firmware solution due to
the initial development overhead, the perceived low adoption
of Rust in the embedded world, and the concerns it raises
about longer term support.



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPA122

4248

MC6.T33: Online Modelling and Software Tools

THPA122

THPA: Thursday Poster Session: THPA

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Figure 3: Data throughput and scaling. Data and visualization courtesy of M. Murillo Moya.

TIMING SYNCHRONIZATION
Timing synchronization is achieved with the Precision

Time Protocol (PTP), for which traffic runs along that of the
data acquisition on the same private network. The master
time is acquired from the gateway computer, already syn-
chronized to the CERN global timing, and set on a dedicated
Network Interface Card (NIC), a Syn1588 from Oregano
Systems, which is then synchronized via a Pulse Per Sec-
ond signal (PPS) to the CERN timing infrastructure. A
QFX5110-48S network switch from Juniper Networks is
used and set up to handle PTP traffic transparently. This
topic is detailed further in another contribution to this con-
ference [1], as well as in [11].

CONTROLS INTEGRATION AND
DEPLOYMENTS

The EDAQ gateway application is domain agnostic, and so
its outward gRPC interface does not describe domain level
data, in particular that of the QPS. A set of QPS specific
client libraries instead provides the means to interpret EDAQ
payloads as QPS data and reciprocally. These libraries are
also written in Rust but are packaged as C++ and Python
libraries as well, respectively via the Rust CXX [12] and Rust
PyO3 [13] bindings. This enables their integration with the
usual technologies and tools of CERN accelerator controls.

The full acquisition stack has now been deployed in vari-
ous facilities (lab, hardware testbed) and been integrated and
tested against different field agents (pure software simula-
tion, mock hardware, actual hardware), with positive results.
The next stage in the validation of the stack is its opera-
tional use at CERN’s magnet test facility, used for the initial
qualification of HL-LHC magnets [14], and in the IT String
facility [15], to validate the integration of the new HL-LHC

cryo-assemblies and superconducting link cold powering
system [16]. The former is imminent, the latter will occur
in 2024.

CONCLUSION
Building an entirely new data acquisition stack from the

grounds up is an extensive endeavor, which encompasses
many different domains and requires to apprehend their re-
spective technologies in order to compose them into a cohe-
sive, functional structure. Careful choice of the technologies
has a major impact on the development and maintenance
costs of a project, and on the performance of the solution.
In the case of the EDAQ stack, the choice of Rust as the
foundation for its software layers enabled us to achieve early
on high reliability and performance of the critical gateway
application, with a level of trust in the software we built
much higher than what we are used to achieve with other
technologies.

The EDAQ stack development also benefited from the
close coordination between the hardware and software ex-
perts of the domain, and the collaborative establishing of
specifications for the network protocol and field agent behav-
ior. This enabled clear, short feedback loops and efficient
reactivity from both parts.

Actual field validation with the operation of the HL-LHC
magnets testing facilities is a key milestone for this new stack,
and will provide key insights on its longer term maintenance,
and possible evolution and scaling to more use-cases and
application domains.

REFERENCES
[1] T. Podzorny, A. Hollos, M. Christensen, M. A. Galilée, G. M.

Garcia, J. Spasic, J. Steckert, M. M. Moya, R. Denz, T. Pridii,



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPA122

MC6.T33: Online Modelling and Software Tools

4249

THPA: Thursday Poster Session: THPA

THPA122

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



A. Skoczen, "Data acquisition and supervision systems for
the HL-LHC quench protection system", in these proceedings

[2] WorldFIP, https://ohwr.org/project/cern-fip/wik
is/worldfip

[3] OSI model, http://www.itu.int/rec/dologin_pub.
asp?lang=e&id=T-REC-X.200-199407-I!!PDF-E&t
ype=items

[4] U. Epting, "Computing and Network Infrastructure for Con-
trols CNIC", ICALEPCS’2005, https://accelconf.web.
cern.ch/ica05/proceedings/pdf/O2_009.pdf

[5] The Go Programming Language, https://go.dev/

[6] The Rust Programming Language, https://www.rust-l
ang.org/

[7] The Rust Programming Language book - Fearless concur-
rency, https://doc.rust-lang.org/book/ch16-00-c
oncurrency.html

[8] Stack Overflow Developer Survey 2022, https://survey
.stackoverflow.co/2022/#programming-scripting
-and-markup-languages

[9] Tokio - An asynchronous Rust runtime, https://tokio.
rs/

[10] gRPC Remote Procedure Calls, https://grpc.io/

[11] Magnus B.B. Christensen, "Packet Based Time Synchroni-
sation", Master Thesis, Aalborg University., Aalborg, 2021,
https://projekter.aau.dk/projekter/en/studen
tthesis/packet-based-time-synchronisation(39
025748-0b2b-4c6c-bbe9-6317870edc97).html

[12] CXX - safe interop between Rust and C++, https://cxx.
rs/

[13] PyO3 - Rust bindings for Python, https://github.com/P
yO3/pyo3

[14] The SM18 test facility in the HL-LHC era, https://home
.cern/news/news/engineering/sm18-test-facilit
y-hl-lhc-era

[15] M. Bajko, S. Bertolasi, C. Bertone, S. Blanchard, D. Bozzini,
O. Brüning, P. Cruikshank, D. De Luca, N. Dos Santos, F.
Dragoni, N. H. Garcia, A. Herty, A. Kosmicki, W. Maan, A.
M. Selles, P. M. Urios, S. Le Naour, P. Orlandi, A. Perin,
M. Pojer, F. R. Mateos, G. Rolando, L. Rossi, H. Thiesen, E.
Todesco, E. Vergara, D. Wollmann, S. Yammine, J. Zawilin-
ski, M. Zerlauth, "The Inner Triplet String Facility for HL-
LHC: design and planning", IPAC2021 https://accelc
onf.web.cern.ch/ipac2021/papers/wepab376.pdf

[16] I. Béjar Alonso, O. Brüning, P. Fessia, L. Rossi, L. Tavian,
M. Zerlauth, "High-Luminosity Large Hadron Collider (HL-
LHC): Technical design report", Geneva, CERN, 2020, ht
tps://cds.cern.ch/record/2749422



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPA122

4250

MC6.T33: Online Modelling and Software Tools

THPA122

THPA: Thursday Poster Session: THPA

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.




