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Abstract

One dimensional SU(n) chains with the same irreducible representation R at each site are considered. 
We determine which R admit low-energy mappings to a SU(n)/[U(1)]n−1 flag manifold sigma model, and 
calculate the topological angles for such theories. Generically, these models will have fields with both linear 
and quadratic dispersion relations; for each R, we determine how many fields of each dispersion type there 
are. Finally, for purely linearly-dispersing theories, we list the irreps that also possess a Zn symmetry that 
acts transitively on the SU(n)/[U(1)]n−1 fields. Such SU(n) chains have an ’t Hooft anomaly in certain 
cases, allowing for a generalisation of Haldane’s conjecture to these novel representations. In particular, 
for even n and for representations whose Young tableaux have two rows, of lengths p1 and p2 satisfying 
p1 �= p2, we predict a gapless ground state when p1 +p2 is coprime with n. Otherwise, we predict a gapped 
ground state that necessarily has spontaneously broken symmetry if p1 + p2 is not a multiple of n.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In 2017, Haldane’s conjecture was generalised to SU(3) chains with a rank-p symmetric rep-
resentation on each site [1]. It was found that if p is a multiple of 3, a finite energy gap exists 
above the ground state, while for all other values of p, gapless excitations exist. Since these 
rank−p representations correspond to spin- p

2 in SU(2), this result is a quite natural extension of 
Haldane’s original claim [2,3]. For an extensive historical review of this subject, see [1].
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In deriving the SU(3) result, the familiar correspondence between spin-s antiferromagnet and 
O(3) sigma model with topological angle θ = 2πs was necessarily generalised. This was first 
done by Bykov [4,5], and then repeated in [1,6]. Now, the low energy physics of the SU(3) chain 
is captured by a SU(3)/[U(1)]2 flag manifold sigma model, with topological angles θ1 = 2πp

3

and θ2 = 4πp
3 . And just as the original mapping to the O(3) model garnered interested from 

the larger theoretical physics community, so too has this SU(3) generalisation: In the works 
[7] and [8], SU(n)/[U(1)]n−1 flag manifold models with additional discrete symmetries were 
analysed in great detail. Of particular interest to those authors were the presence of ’t Hooft 
anomalies in these theories, which indicate the presence of nontrivial physics at low energies: 
namely, spontaneous symmetry breaking or gapless excitations.

After the appearance of these two thoughtful papers on flag manifold sigma models and their 
anomalies, two further extensions of Haldane’s conjecture followed. First, SU(3) chains with a 
self-conjugate representation at each site were shown to be described by the same SU(3)/[U(1)]2

sigma model, but without Lorentz-invariance, and with different topological angles [9]. In this 
case, a finite energy gap above the ground state was predicted in all cases, with spontaneously 
broken parity when p is odd. The second extension considered again the rank−p symmetric 
representations, but this time for generic SU(n) chains. While these chains were already shown by 
Bykov to correspond to the (Lorentz-invariant) flag manifold sigma models considered by [7] and 
[8] for a fine-tuned set of coupling constants, in [6], the renormalisation group was used to show 
that this occurs in general, at low enough energies. By applying the ’t Hooft anomaly conditions 
of these sigma models, as well as the results of [10], the following SU(n) Haldane conjecture 
was put forward: when p and n have no common divisor, gapless excitations are present above 
the ground state; otherwise, a finite energy gap exists. Recently, this result was also obtained in 
a different way, by considering how fractional instantons in the SU(n)/[U(1)]n−1 sigma model 
generate a mass gap [11]. When p and n are coprime, the fractional instantons destructively 
interfere, and the mass generating mechanism breaks down.

Based on this fruitful back-and-forth between SU(n) chains and flag manifold sigma models, 
a more complete understanding of this correspondence is called for. What this entails is address-
ing the following question: What representations of SU(n) chains give rise to SU(n)/[U(1)]n−1

flag manifold sigma models? Once this has been answered, we should then further ask: What rep-
resentations of SU(n) chains give rise to those flag manifold sigma models that posses ’t Hooft 
anomalies, and lend themselves to a Haldane-like prediction of gapless excitations in certain 
cases.

In this paper, we answer these two questions, ultimately classifying all SU(n) chains that ad-
mit such a flag manifold sigma model mapping. In Section 2, we introduce flag manifold sigma 
models, and discuss their various symmetry properties. In Section 3, we review the represen-
tation theory of SU(n) that is required for our analysis. In Section 4, we introduce the SU(n) 
chain Hamiltonian, and present the classification of its classical ground states and symmetries. 
Next, in Section 5, we classify the topological angles and dispersion relations for generic SU(n) 
chains. We will show that generically, both quadratic and linear dispersing modes are present 
in the corresponding field theories, which is a manifestation of the ferro- and antiferromagnetic 
order parameters that are jointly possible in these models. In a later work [12], we will examine 
this intriguing phenomenon in greater detail, and explain how it may give rise to a fascinating 
hierarchy of flag manifold sigma models with novel ’t Hooft anomalies. Finally, in Section 6, 
we summarise our calculations and present a new family of SU(n) representations that give rise 
to linearly dispersing SU(n)/[U(1)]n−1 sigma models with ’t Hooft anomalies, leading to a new 
generalisation of Haldane’s conjecture to SU(n) chains.
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2. Flag manifold sigma models

It is well known that the low energy physics of the SU(2) spin chain is described by the O(3) 
nonlinear sigma model [2,3]. By sigma model, we mean a quantum field theory whose fields 
define a map from (Euclidean) space time to some curved manifold. In fact, the name O(3) 
sigma model is actually a misnomer, since in this case the field theory consists of a vector �n ∈ R3

that is constrained to live on the 2-sphere, which is not quite the Lie group O(3). Indeed, the 
relation that does hold is

S2 = O(3)/O(2) (1)

so that a more apt name would be the S2 sigma model, or the O(3)/O(2) coset sigma model
[13]. To complicate the story further, one often introduces the complex field �φ ∈ C2 through the 
relation

�n = φ∗
α �σαβφβ, (2)

which allows for a reformulation of the O(3) sigma model in terms of a normalised �φ. Due to 
the presence of both �φ and �φ∗ in the definition (2), this procedure also introduce a U(1) gauge 
symmetry, so that the underlying manifold that �φ lives on is

SU(2)/U(1) = CP1. (3)

This establishes an equivalent field theory description of the antiferromagnet: the CP1 sigma 
model. While these technical subtleties may seem unnecessarily mathematical when analysing
an ordinary spin chain, they prove to be essential when promoting the symmetry group of the 
chain to SU(n). This is because for n > 2, the manifolds CPn−1 and Sn are no longer equivalent, 
and so it begs the question: what is the appropriate generalisation of the spin-chain/sigma model 
correspondence beyond SU(2)?

The answer to this question is not so simple, as was first realised by Affleck in [14], as it 
depends on the chosen representation of SU(n) that occurs on each site of the chain. This fact 
will be explained in further detail in the following section. Instead, it is better to ask a slightly 
different question: for a specified sigma model, what is the appropriate generalisation of the 
SU(2) spin chain? Over the years, this question has been partially answered for both CPn−1

models, and their Grassmann generalisation, with symmetry group U(n)/[U(m) × U(n − m)]
(the case m = 1 corresponds to CPn−1) [15–17]. In this paper, we instead focus on a class of 
sigma models whose fields live on the flag manifold SU(n)/[U(1)]n−1, which is yet another 
generalisation of the SU(2) case according to (3). We seek to find the complete set of SU(n) 
chains that admit a mapping to these flag manifold sigma models (FMSMs). As mentioned in the 
introduction, these theories have attracted significant interest in recent years, culminating in a 
classification of their ’t Hooft anomalies with various discrete symmetry groups [7,8]. And while 
some mappings have already been identified [1,4–6,9], an exhaustive list will provide a much 
larger testing ground for these theories, as well as serve to generalise the Haldane conjecture to 
a larger class of SU(n) chains.

For concreteness, let us write down the Lagrangian for these flag manifold sigma models. 
It consists of n orthonormalised fields �φα ∈ Cn, which are each invariant under a U(1) gauge 
symmetry

�φα �→ eiθ �φα. (4)
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If we denote by gαβ the (symmetric) metric on the flag manifold, and bαβ the (antisymmetric) 
torsion, then the Lagrangian is [8]

L =
n∑

α,β=1

[
gαβδμν + bαβεμν

]
( �φα · ∂μ

�φβ,∗)( �φβ · ∂ν
�φα,∗) +Ltop (5)

where Ltop is the topological term

Ltop =
n∑

α=1

θα

2π
εμν∂μ

�φα · ∂ν
�φα,∗. (6)

Only n −1 of the angles θα are independent, since the theory is invariant under shifting all angles 
by the same amount. This reflects the fact that

H2(SU(n)/[U(1)]n−1) = ⊗n−1
k=1Z. (7)

In fact, all of the topological angles may be removed using the combined shifts

θα → θα + 2πbα + bαβ �→ bαβ − bα − bβ (8)

but this hides the 2π periodicity of the θα . Finally, the shift gαβ → gαβ − cα − cβ introduces the 
familiar CPn−1 kinetic terms into the Lagrangian:

L →
n∑

α=1

cα

[
|∂μ

�φα|2 − | �φα · ∂μ
�φα|2

]
. (9)

Based on this fact, it is useful to use think of the embedding SU(n)/[U(1)]n−1 ↪→ ⊗n
k=1CPn−1

and visualise the field content as a set of orthogonal CPn−1 fields, coupled through the metric 
and torsion terms.

In most cases, the tensors gαβ and bαβ will admit additional, discrete symmetries. For exam-
ple, a sigma model that arises from an SU(n) chain with a d-site unit cell in its classical ground 
state will posses a Zd symmetry as a manifestation of the translation symmetry on the chain.

However, what is also true is that in most cases, the SU(n) chain will not directly map to the 
above Lorentz-invariant sigma model. There are two reasons for this. The first is that the fields �φα

are not guaranteed to propagate with the same velocity. Indeed, for the symmetric representation 
SU(n) chains, it was shown that only for a fine-tuned choice of SU(n) chain coupling constants 
do these velocities become equal [6]. However, in the same paper, it was established that at low 
enough energies, all of the velocity differences flow to zero in the renormalisation group sense. 
In this article, we will assume that this mechanism holds more generally, so that we may identify 
the various velocities of the CPn−1 fields.

The second reason for Lorentz-non-invariance is more of a hinderance. It follows from a 
mismatch of terms arising from the coherent state path integral construction, ultimately lead-
ing to some of the �φα having quadratic dispersion. In a later work [12], we will discuss the 
consequences of this: in short, since Coleman’s theorem does not apply in 1+1 dimensions to 
modes with quadratic dispersion, these quadratic modes may spontaneously order, resulting in 
true Goldstone modes with quadratic dispersion [18–21]. These Goldstone bosons will couple 
to the remaining linear modes, which themselves form a SU(n′)/[U(1)]n′−1 flag manifold sigma 
model with n′ < n. If a subgroup of the translation symmetry acts transitively on the n′ linear 
fields, then it becomes possible for a novel ’t Hooft anomaly (mixed with the Zn′ subgroup) 
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to exist in such SU(n) chains. Details of this mechanism will appear in [12]. In this paper, we 
avoid these complications by focusing only on theories with purely linearly-dispersing modes. 
To begin, we must first review the subject of SU(n) representation theory.

3. SU(n) representation theory

Keeping in theme with the previous section, we begin with a review of SU(2) representation 
theory, and then outline how this generalises to larger groups. A natural starting point is the three 
generators �Si of spin, which are used to write the nearest-neighbour Heisenberg interaction, 
�S(i) · �S(i + 1). These generators obey the su(2) Lie algebra

[Si, Sj ] = iεijkS
k, (10)

and their associated SU(2) representation is completely specified by a single positive integer p1, 
which can be found from the identity

�S(i) · �S(i) = p1

4
(p1 + 2)I. (11)

For physicists, we prefer the notation s = 1
2p1, and use the name spin-s to refer to this repre-

sentation. This relation (11) is a so-called Casimir constraint. In SU(2) it is the only one, but 
more generally there are n − 1 such constraints, and together they ultimately dictate the target 
space manifold of our sigma models. Already in SU(2) this is apparent: in the limit of large rep-
resentation (an assumption that we will always make), the commutator (10), together with the 
uncertainty relation


Si
Sj ∼ |〈[Si, Sj ]〉|, (12)

allows for the operator �S to be replace with a classical vector �n ∈ R3. The Casimir constraint 
(11) then restricts �n to lie on the manifold S2, leading to the “O(3) sigma model” description of 
the antiferromagnetic spin chain.

While this is the most familiar way of writing a spin chain, it will prove very useful to replace 
the vector �S with a traceless matrix of operators, Sαβ . This follows from the fact that the number 
of generators of SU(n) grows like n2. Explicitly in SU(2), we define

S =
(

Sz 1
2 (Sx − iSy)

1
2 (Sx + iSy) −Sz

)
. (13)

For all values of n, these matrices obey the commutation relations

[Sαβ,Sμν] = δαμδβν − δανδβμ. (14)

It is easily shown that the Heisenberg interaction can be rewritten in matrix form according to

�S(i) · �S(j) = 1

2
tr[S(i)S(i + 1)] (15)

and indeed this will be our starting point for constructing SU(n) Hamiltonians in the next section. 
In the limit of large representation, the 2 × 2 matrix in (13) becomes a classical matrix, whose 
eigenvalues are entirely determined by the Casimir constraint (11):

S = U†diag(λ,−λ)U λ2 = p1
(p1 + 2) (16)
4
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Fig. 1. Examples of Young tableaux in SU(n). A diagram with k nonzero rows corresponds to a representation in SU(n) 
with n ≥ k + 1.

The matrix S now plays the role of �n, and since its eigenvalues are fixed, its target manifold is 
U(2)/[U(1)]2 = SU(2)/U(1). A convenient parametrisation of this space is in terms of the two 
orthonormal rows of U , each of which is invariant under a local U(1) rotation. This demonstrates 
the equivalent CP1 sigma model description of the antiferromagnet.

Now we repeat these steps for general n. We define a traceless n ×n matrix Sαβ whose entries 
correspond to the n2 − 1 su(n) generators. Unlike SU(2), we must now specify more than one 
non-negative integer in order to label the representation. These integers are conveniently defined 
in terms of row lengths of a standard Young tableau. Indeed, the most general representation 
[p1, p2, · · · , pn−1] of SU(n) corresponds to a unique diagram of boxes arranged in n − 1 rows, 
of lengths p1, p2, · · · , pn−1 respectively. The row lengths must satisfy p1 ≥ p2 · · · ≥ pn−1 ≥ 0. 
See Fig. 1 for some examples. In the limit p1 → ∞, the matrix of operators is again replaced 
with a classical matrix S.1 Its eigenvalues are again completely determined, this time by n − 1
distinct Casimir constraints

tr[Sm] = CmI m = 2,3, · · · , n. (17)

In terms of the row lengths pi , the eigenvalues of S are [15]

λi = pi − p p := 1

n

n∑
i=1

pi (18)

where we’ve defined pn := 0. Now, it becomes apparent how different representations of SU(n) 
may lead to different types of sigma model. Indeed, the matrix S is constrained to live on the 
manifold U(n)/H , where

H = U(m1) × U(m2) × · · · × U(mk) (19)

is a product of k unitary groups, one for each distinct value of λi , and mi is the degeneracy 
of each λi . Thus, it is possible to fix the target manifold of the matrices S by choosing the 
appropriate representation of SU(n) on each site. At this point, one might conclude that the 
only method to achieving our desired SU(n)/[U(1)]n−1 flag manifold sigma model is to ensure 
all the eigenvalues of S are distinct. This amounts to considering representations whose Young 
tableaux have n − 1 nonzero rows, each of a different length (see Fig. 2). However, this is not 
the whole story, since multiple lattice sites must always be considered when deriving a sigma 
model description of an antiferromagnetic chain. As we will show in the following section, it 
is possible to work with representations that restrict S to smaller manifolds, such as CPn−1, 
and then combine these degrees of freedom over consecutive sites of the chain to reproduce the 
larger flag manifold sigma model. This will also lead to additional discrete symmetries, as the 

1 Since the quadratic Casimir tr[S2] → ∞ when p1 → ∞, it is sufficient to take this limit to obtain the classical limit; 
it is not necessary to also require pi → ∞ for i > 1.
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Fig. 2. Examples of Young tableaux that restrict S to live in the SU(n)/[U(1)]n−1 flag manifold sigma model.

translational invariance on the chain becomes a Zd symmetry in the field theory, where d is the 
size of the unit cell. This was the procedure used in [1] and [6]. It is worth emphasising the 
difference in this approach from the original SU(n) chains considered in [14]. In that paper, and 
the related ones that followed [15–17], a desired sigma model was generated by identifying the 
representation R that directly restricts S to the sigma model’s full manifold, and then placing R
and its conjugate R on even and odd sites of the chain, respectively. In this work, we insist on 
having the same representation on each site; however, when our procedure is used to generate the 
flag manifold sigma models using a two-site unit cell, it will reduce to the older method for self-
conjugate representations. This is precisely what occurred for the self-conjugate SU(3) chains 
considered in [9].

4. SU(n) chain Hamiltonians

In the previous section, we introduced the traceless matrices Sαβ that contain the n2 − 1 gen-
erators of SU(n). These objects allow for us to write down the generalised Heisenberg interaction 
in terms of a trace:

tr[S(i)S(j)]. (20)

In the limit of large representation, we replace S with U†diag(λ1, · · · , λn)U , so that this interac-
tion becomes

tr[S(i)S(j)] →
∑

α,β,γ,δ

λαλβ | �φα,∗(i) · �φβ(j)|2, (21)

where we’ve defined

Uαβ(i) = φα
β (i). (22)

Since the �φα are rows of a unitary matrix, they must be mutually orthonormal on the same site. 
Implicit in this expression is our assumption that the same representation occurs at each site of 
the chain. Since λα = pα −p for the representation with Young tableau row lengths pα, we opt to 
shift S by pI to simplify our calculations (this shifts the interaction term by an overall constant). 
Having done this, the simplest SU(n) chain Hamiltonian, namely the nearest-neighbour model, 
becomes

H = J
∑

i

n−1∑
α,β=1

pαpβ | �φα,∗(i) · �φβ(i + 1)|2, J > 0. (23)

Note that the sums over α and β stop at n −1, since pn = 0 by definition. This nearest-neighbour 
model is the logical starting point for any SU(n) generalisation of the antiferromagnetic spin 
chain. However, in most cases, we will be required to consider Hamiltonians with longer range 
interactions if we hope to map to the SU(n)/[U(1)]n−1 flag manifold sigma model. As explained 
above, the manifold on which S lies is dictated by the fixed representation on each site. Except 
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in the special case when all of the row lengths pα are distinct and nonzero, S will be restricted 
to some subspace of the SU(n)/[U(1)]n−1 manifold. In order to reconstruct the complete flag 
manifold, we must couple the S matrices from neighbouring sites together. In Section 4.2, we 
review how this works for the case of the symmetric representations, which were considered in 
detail in [6]. In that case, only a single row p1 �= 0, so that the corresponding manifold of S is 
CPn−1. Since the complete SU(n)/[U(1)]n−1 flag manifold consists of n orthogonally coupled 
such fields, one must add up to (n − 1)-neighbour interactions in order to couple n of these fields 
together. Instead, if one couples less than n sites of the chain together, there will be leftover 
degrees of freedom, which manifest as local zero modes, ultimately prohibiting any field theory 
mapping.

In the following subsections, we explain how this construction generalises as we increase the 
number of nonzero pα . Loosely speaking, the number of nonzero rows k in the representation 
will correspond to the number of fields �φ that exist at each site of the chain. We will then take 
λ := n

k
consecutive sites together to produce a mapping to the complete flag manifold. However, 

this isn’t the whole story, since the k fields on each site can still be locally rotated amongst one 
another. This is resolved by adding a λ-neighbour interaction that freezes out these additional 
degrees of freedom, which is essentially mimicking what happens when a representation R is 
coupled to its conjugate representation R.

Before proceeding, we must also mention what occurs when two rows pα and pβ have the 
same length. While this produces a factor of U(2) in the quotient group H just as would having 
a row of zero length, the result is fundamentally different. In both cases, there are spurious local 
degrees of freedom on each site (corresponding to rotating the �φ fields into each other); however, 
the trick of adding a λ-range interaction does not freeze this additional symmetry in the case of 
pα = pβ �= 0. This should become apparent below. As a result, for the most general represen-
tation of SU(n), we do not expect that a mapping to the complete flag manifold sigma model 
exists, and so henceforth we restrict to the representations that satisfy pα �= pβ for all nonzero 
row lengths. Of course, other types of flag manifold sigma models can easily be constructed 
using such representations, but this is beyond the scope of this paper.

4.1. Pictorial representation for classical ground states

In this subsection, we introduce some graphical notation that will aid in our classification 
of SU(n) spin chains. According to (21), to each site of the chain we should assign a set of 
orthonormalised vectors �φα . We will make use of the standard orthonormal basis { �eα} of Cn, 
with

eα
β = δαβ. (24)

We may use the same basis on each site of the chain, since any local change of basis transforma-
tion leaves the Hamiltonian invariant (and fortunately, no superpositions of states arise). Further, 
we will use coloured circles to represent the first few elements of this basis, in an effort to vi-
sually aid the reader. Our colour dictionary, for the first eight basis elements, can be found in 
Fig. 3.

When drawing a classical ground state, we will arrange the same-site vectors into a single 
column, and use a white space to separate neighbouring chain sites. For example, the Néel state 
of the SU(2) antiferromagnet is given in Fig. 4 left, while a classical ground state of the adjoint 
SU(3) chain is given in Fig. 4 right. This will be demonstrated below. The self-conjugate ground 
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Fig. 3. Colour dictionary for the first eight basis elements in Cn . These coloured circles will be used to pictorially 
represent ground state states throughout. (For interpretation of the colours in the figure(s), the reader is referred to the 
web version of this article.)

Fig. 4. Left: Néel state of the SU(2) antiferromagnet. Right: Classical ground state of the adjoint SU(3) chain, with 
p1 = 2 and p2 = 1.

Fig. 5. Left: Imaginary bonds between two sets of vectors �φα and �φβ at sites i and j on the chain. Right: The energy cost 
of each bond is pα0pβ0 whenever two nodes have the same colour; α0 and β0 are the column positions of these nodes.

state is slightly different than the ones discussed in [9], where a different convention for the 
matrices S was chosen.

The benefit of these ground state pictures is that it makes it easy to read off the energy cost of 
a term tr[S(i)S(j)]. Indeed, since each colour corresponds to a standard unit vector �eα , we have 
according to (23),

tr[S(i)S(j)] =
∑
α,β

pαpβ | �φα,∗(i) · �φβ(j)|2. (25)

The right hand side of this expression vanishes unless one of the complex unit vectors (i.e. one 
of the colours) at site i equals one of the complex unit vectors at site j . In this case, the RHS 
equals pα0pβ0 , where α0 and β0 are the respective positions of the unit vector/colour in column i
and column j . To visualise this, it is useful to imagine bonds between all of the circles of the two 
columns, as in Fig. 5. These bonds are inactive (meaning zero energy cost), unless two nodes are 
the same colour. For example, the Néel state in (4, left) has an energy cost of zero per site (recall 
we have shifted the Sαβ matrices by a constant), while the classical ground state of the adjoint 
chain (4, right) has energy cost of p2

2 per site.
With this notation in place, we can now begin our classification of SU(n) chains with repre-

sentations that have pα �= pβ for all nonzero row lengths pα . Over the next few subsections, we 
subdivide this task into various cases according to how many nonzero rows are present in the 
representation. Throughout, we use the letter k to refer to this number, and also define λ = �n�.
k
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4.2. Case 1: k = 1

As a warm-up to the more complicated representations below, we begin with reviewing what 
occurs for the symmetric representations of SU(n), with Young tableaux that have a single row 
of length p1. This case is discussed in more detail in [1] for SU(3), and in [6] for general n.

We start by considering a nearest-neighbour SU(n) Heisenberg Hamiltonian, and list its clas-
sical ground states. According to (28), any configuration that has no energy cost per bond will be 
a classical ground state. Since k = 1, and only a single node is present at each site, the Néel state 
(4, left) is such an example. However, for n > 2, the basis at each site is larger than 2 (i.e. there 
are other colours available), and this leads to an infinite number of other ground states. Indeed, 
the ground state

, (26)

which exists for n > 2, is related by a zero-energy transformation to the Néel state. This local de-
gree of freedom is an example of a zero-energy mode, and destabilises any candidate ground state 
above which we would like to derive a quantum field theory. As a result, the nearest-neighbour 
Hamiltonian must be modified if we would like to proceed. Since it is believed that longer-
range interactions may be dynamically generated from the nearest-neighbour model [22], we 
add further-neighbour interactions to realise a stable ground state. Since there are n possible 
colours, we require up to (n − 1)-neighbour interactions, all of which are taken to be antiferro-
magnetic, in order to remove the zero modes. For example, in SU(5), with interactions up to 4th 
neighbour, one such ground state is

. (27)

While this large number of interaction terms may seem contrived, there is second reason why 
one should consider adding them. Arguably, it is the simplest way to restrict to classical ground 
states that have a Zn symmetry, which is to be expected for the symmetric chains, since this is a 
feature of the integrable SU(n) chains, that correspond to p = 1.

In [6], it was shown in great detail how the SU(n)/[U(1)]n−1 sigma model arises as the 
low energy description of this longer-range Hamiltonians. While the on-site matrix S lies in
CPn−1 (as was explained in Section 2), by coupling n neighbouring sites together, our underly-
ing degrees of freedom are actually n orthogonally coupled CPn−1 fields, which is equivalent to 
SU(n)/[U(1)]n−1. In the more general representations below, we will see a similar pattern: col-
lections of CPn−1 fields from neighbouring sites will become orthogonally coupled, ultimately 
leading to the flag manifold sigma model that we desire.

4.3. Case 2: k = n − 1

We now graduate to the second class of representations, which have Young tableaux with 
n − 1 nonzero rows, and are arguably simpler than the symmetric representations considered 
above. Since the on-site representation of the S matrix already corresponds to the manifold 
SU(n)/[U(1)]n−1, a nearest-neighbour Heisenberg interaction is sufficient to derive the asso-
ciated sigma model. Let us first demonstrate this in SU(3). The interaction term

tr[S(i)S(i + 1)] =
2∑

pαpβ | �φα,∗(i) · �φβ(i + 1)|2 (28)

α,β=1
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is never zero for two adjacent sites, which requires choosing the colour for four nodes. Since 
p1 > p2, the minimum is p2

2, which is achieved when the two same-colour nodes are in the 
second position of the column. Thus, a typical ground state in SU(3) looks like

(29)

which is precisely what we drew above for the adjoint SU(3) chain (which corresponds to the 
case p1 = 2, p2 = 1). Note that no local transformations exist that cost zero energy: all of the p2
nodes must stay the same colour in order to minimise the tr[S(i)S(i +1)] term, and the remaining 
two colours behave just like the Néel state of SU(2).

In SU(4), the tr[S(i)S(i + 1)] requires the introduction of six coloured nodes. Using the in-
equality p2

2 + p2
3 ≥ 2p2p3, we see that the ground states have the following form:

(30)

This pattern extends to general n: the first row of nodes establishes a Néel-like state, while the 
remaining n − 2 rows have a “reverse-ordered” pattern: the colour ordering along a column 
switches direction between even and odd sites. In Appendix A, we prove that these states indeed 
minimise the Hamiltonian. Here is an example ground state in SU(5):

(31)

For these representations, the unit cell is always 2 sites in length, which leads to a Z2 translation 
symmetry in the sigma model.

4.4. Case 3: n = λk

In this case, the matrix S at each site of the chain lies neither in CPn−1 nor SU(n)/[U(1)]n−1. 
While it would be straightforward to derive other families of flag manifold sigma models from 
these representations, we are only interested in SU(n)/[U(1)]n−1. Thus, some care must be taken 
in order to realise the appropriate degrees of freedom.

As before, we begin with an example, this time with k = 2 in SU(4). This requires choosing 
four colours for four nodes in order to minimise the tr[S(i)S(i + 1)] term, which is easily done. 
For example:

(32)

However, such a configuration does not lead to the manifold SU(n)/[U(1)]n−1, because the four 
colours do not behave like four orthogonal CP3 fields. Indeed, at each site, we may additionally 
rotate the two colours into each other at no energy cost, which corresponds to another type of 
zero mode. In order to achieve the correct flag manifold, we “freeze out” these additional degrees 
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of freedom by adding a weaker second-neighbour interaction, tr[S(i)S(i + 2)]. The effect of this 
term is to invoke a “reverse ordering” pattern between sites and their second neighbours: the new 
ground state is

(33)

The fact that this ground state minimises the combined J1tr[S(i)S(i +1)] +J2tr[S(i +1)S(i +2)

term (for antiferromagnetic couplings J1 � J2) follows from the identity p2
1 + p2

2 ≥ 2p1p2. 
In a sense, this second-neighbour interaction generates the same behaviour that we saw in the 
previous case of k = n − 1: The nearest-neighbour term partitions the colours into subsets, and 
the second-neighbour term reverse-orders these subsets, effectively breaking the additional on-
site rotation symmetry between colours. In the k = n − 1 case, both of these steps are achieved 
by the same interaction term: first the colours are partitioned into 3 sets: e.g. { }, { }, { , , }, 
and then each set is reverse ordered compared to the previous time it occurred. It will turn out 
that this reverse ordering is a generic feature of all the representations that we consider.

As a next step, we extend from 4 to general even n, and consider k = n
2 . A nearest-neighbour 

interaction will again serve to partition the colours into two sets, leaving a local rotation symme-
try among the k colours on each site. In order to freeze out these degrees of freedom, we again 
add a second-neighbour interaction, which reverse orders each set. For example, in SU(6), we 
have

(34)

Clearly, the ground state will always have a 4-site unit cell for k = n
2 .

Now, when k < n
2 , the full set of colours is no longer used up when the nodes on two neigh-

bouring sites are filled. As a result, additional zero modes are present that cannot be removed by 
reverse ordering the colours within a set. To resolve this, we first add up to (λ − 1)-neighbour 
interactions (always with antiferromagnetic couplings), to properly partition the full set of n
colours into λ sets of k elements (λ := n

k
). Then, we add a weaker λ-neighbour interaction which 

serves to reverse order within each set of the partition. For example, in SU(6) with k = 2, the 
Hamiltonian we should consider is

H =
∑

i

(
J1tr[S(i)S(i + 1)] + J2tr[S(i)S(i + 2)] + J3tr[S(i)S(i + 3)]

)
(35)

with J1 > J2 � J3 > 0, which has, for example, the following ground state

(36)

The J1 and J2 terms serve to partition the colours into three sets: { , }, { , }, { , }, and the 
J3 terms serve to reverse order within each of these three sets. Based off of this example, we can 
see that the unit-cell has size 2λ for these representations.
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4.5. Case 4: n = λk + c

Finally, we consider all remaining values of k. Let c = n mod k, so that n = λk + c for some 
λ ∈ Z. As in the previous case of n = kλ, local zero modes will be present unless sufficiently long 
range interactions are included to use up all of the available colours. We add up to λ-neighbour 
terms, which partitions the colours into λ sets of k elements, and one set of c elements. Briefly, 
we return to the notation �eα for the basis vectors instead of coloured nodes. Then, a possible 
partitioning of the colours is:

{e1, e2, · · · , ek}, {ek+1, ek+2, · · · , e2k}, · · · , {e(λ−1)k+1, e(λ−1)k+2, · · · , eλk},
{eλk+1, · · · , eλk+c}. (37)

Now, in order to minimise the interaction term tr[S(i)S(i + λ)], the remaining nodes on the 
(λ + 1)th site will be the reverse ordered set {ek, ek−1, · · · , ec+1}. For example, in SU(7) with 
k = 3, three consecutive sites may look like

(38)

The nodes of the next site (which is a (λ + 1)th neighbour), will then begin to be filled with the 
remaining {e1, · · · , ec} colours from the first site. In our present SU(7) example, this looks like:

(39)

Since c = 1 in this example, the drawn ground state is stable. However for c > 1, there will still 
be zero modes associated with rotating among the set {e1, · · · , ek}. Thus, an additional (λ + 1)-
neighbour interaction must also be added! The following ground state for SU(5) with k = 3
demonstrates this:

(40)

Thus, we are led to the following conclusion for this class of representations: If c = 1, our 
Hamiltonians should contain up to λ-neighbour interactions, and if c > 1, we should also add an 
additional (λ + 1)-neighbour interaction term.

Using the emerging patterns in the previous examples as a guide, we may now determine the 
unit-cell size for the most general representation. This quantity is very important, as it determines 
the translation group symmetry that is present in the flag manifold sigma model. Note that in both 
(39) and (40), there are two competing types of order among the coloured nodes. The first c rows 
exhibit one type of order, which has periodicity λ + 1 when c = 1, and 2(λ + 1) otherwise. 
Meanwhile, the remaining k − c rows have a periodicity 2λ for all c except c = k − 1, in which 
case the periodicity is λ. In order to determine the overall unit-cell length, we must find the least 
common multiple of these two periodicities. For example, in our SU(7) example, we see that the 
unit cell will have length 12, leading to a Z12 symmetry in the field theory. See Fig. 6.
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Fig. 6. Potential ground state of an SU(7) chain. Since the first row has 3-site periodicity, and the remaining rows have 
4-site periodicity, the unit cell is 12 sites in length.

Table 1
Classification results of all SU(n) representations satisfying pα �= pβ for all nonzero pα . 
We use the notation lcm[a, b] to denote the least common multiple of a and b.

Representation Longest interaction Translation group order

k = 1 Jn−1tr[S(i)S(i + n − 1)] n

k = n − 1 J1tr[S(i)S(i + 1)] 2
k = n

λ , λ < n Jλtr[S(i)S(i + λ)] 2λ

n = 2λ + 1, k = 2 Jλtr[S(i)S(i + λ)] λ(λ + 1)

n = kλ + 1, λ > 1, k > 2 Jλtr[S(i)S(i + λ)] lcm[2λ, (λ + 1)]
n = kλ + c, c �= 1, k − 1 Jλ+1tr[S(i)S(i + λ + 1)] 2λ(λ + 1)

n = kλ + (k − 1) Jλ+1tr[S(i)S(i + λ + 1)] lcm[λ,2(λ + 1)]

4.6. Summary of classification

In Table 1, we summarise our results from the previous subsections. In the first column, we 
specify the number of nonzero rows in the Young tableau, k, and the integer c := n mod k. In 
the second column, we write down the longest-range interaction that must be included in the 
Hamiltonian in order to eliminate any local zero modes. As always, it is understood that each 
interaction term is Jαtr[S(i)S(i + α)] for some coupling Jα > 0, and that Jα > Jβ for α < β . 
Finally, in the third column, we specify the order d of the translation group Zd that acts on 
the corresponding flag manifold sigma model. This order equals the size of the unit-cell in the 
classical ground states of the Hamiltonian.

In the final column of the table, the following identities are useful:

lcm[2λ, (λ + 1)] =
{

λ(λ + 1) λ is odd

2λ(λ + 1) λ is even
(41)

lcm[λ,2(λ + 1)] =
{

2λ(λ + 1) λ is odd

λ(λ + 1) λ is even
(42)

In the following section, we build on this classification, and determine the dispersion relations 
and topological angles in each class of representation.

5. Dispersion relations and topological angles

Now that we’ve determined the appropriate Hamiltonians of the most general SU(n) chains 
admitting a SU(n)/[U(1)]n−1 sigma model description, we now turn to the field theory mapping 
itself. Of course, a detailed derivation for each Hamiltonian would be a very tedious undertaking, 
and we do not pursue this here. Instead, we focus on particular features, namely the topological 
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angles and possible dispersion relations that exist in these theories, and refrain from determining 
the precise coupling constants and velocities as a function of the interaction strengths {Jα}. In 
the following section, we will explain how these pieces of information, combined with a set of 
reasonable assumptions, will allow us to make predictions about the ground state behaviour of 
certain SU(n) chains.

5.1. Review of the coherent state path integral construction

In order to construct a mapping from Hamiltonian to sigma model, we use coherent states to 
generate a path integral of the ground state fluctuations. These coherent states are constructed 
as follows. For a representation with nonzero Young tableau rows p1, · · · , pk , we introduce k
orthonormal fields �φα ∈Cn, and k n-component creation operators �aα,†. We then define [23,24]

|�〉 :=
k∑

α=1

[ �φα · �aα]pα |0〉. (43)

These are the coherent states of SU(n), and in order to construct a path integral, we insert them 
between thin time slices of the partition function:

〈�(τi)|e−Hδτ |�(τi + δτ)〉 = 〈�(τi)|�(τi + δτ)〉e−Hδτ . (44)

The right hand side can be approximated using

〈�(τi)|�(τi + δτ)〉 ≈
k∑

α=1

[
1 + �φα,∗ · ∂τ

�φα
]pα

, (45)

which follows from

〈�(τ)|�(τ ′)〉 =
k∑

α=1

( �φα,∗(τ ) · �φα(τ ′))pα . (46)

By taking the product over all time slices τi , we can then reexponentiate according to∏
i

〈�(τi)|�(τi +δτ)〉 = exp
∑

i

log〈�(τi)|�(τi +δτ)〉 ≈ exp
∑

i

∑
α

pα
�φα,∗ ·∂τ

�φα. (47)

The so-called “Berry phase contribution” to the path integral is obtained adding up this contribu-
tion over each site of the unit cell:

LBerry = − 1

d

d∑
j=1

k∑
α=1

pα
�φα,∗(j) · ∂τ

�φα(j). (48)

Here d is the size of the unit cell, and �φα(j) is the field �φα evaluate at site j . Since we are 
deriving a field theory about a classical ground state, to lowest order �φα(j) is the colour of node 
α at site j .

To obtain the complete quantum field theory, one must add to LBerry a gradient expansion of 
the SU(n) lattice Hamiltonian, and this is where the lengthy calculations lie. However, if one is 
interested only in time-derivatives, it suffices to restrict attention to LBerry, since the Hamiltonian 
is time independent. The lowest-order expansion of LBerry, which amounts to replacing the �φα(j)

with their corresponding colour basis vectors �eβ (where β depends on α and j ), will indicate how 
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many of the sigma model’s modes have linear dispersion. The next-order expansion, which takes 
into account the spatial fluctuations of the �φα across the unit cell, will provide the topological 
angle content of the theory.

5.2. Dispersion relations

For each family of representations in Table 1, we determine the lowest order contribution 
to LBerry. For each field �φα that is present, this indicates the presence of (n − 1) quadratically 
dispersing modes. Only in the case of a vanishing LBerry at this order does linear dispersion occur 
for each mode of the theory. However, even in this case, Lorentz invariance is not automatic since 
the fields �φα will generically propagate with different velocities.

Let us demonstrate how this works for the symmetric SU(n) representations (corresponding 
to k = 1). The ground states are very simple in this case: one row of n nodes, with each colour 
occurring once. See for example (27). Therefore, we have

LBerry = −p1

n

n∑
j=1

�φα,∗(j) · ∂τ
�φα(j) + H.O. (49)

where H.O. includes higher order terms. Since each colour occurs once in the sum on the RHS, 
the sum equals tr[U†∂τU ] for a unitary matrix U . In Appendix B of [6], it is shown that this trace 
equals zero, so that all modes have linear dispersion in the representations with k = 1.

For the remaining representations, we have compiled our results in Table 2 and Table 3. Each 
row corresponds to a family of SU(n) representations. The ‘Min #’ column counts the mini-
mum number of Cn fields �φα that have linear dispersion in the corresponding SU(n)/[U(1)]n−1

sigma model. The larger, right-hand column lists the conditions that the representation param-
eters pα must satisfy in order for additional fields to acquire linear dispersion. Each condition 
is accompanied by a number in parenthesis: this dictates how many fields �φα become linearly 
dispersing when this condition is satisfied. For example, the second row of Table 2 corresponds 
to representations with n − 1 rows in their Young tableaux. These representations will always 
have at least two linearly dispersing fields in their sigma model. In order to have more lin-
early dispersing fields, we must start to satisfy conditions. When n is even, these conditions 
are pα + pn−α+1 = p1, for α = 2, · · · , n2 . Each satisfied condition adds 2 more linearly dispers-
ing fields to the sigma model. It is amusing to note that when all of these conditions are satisfied, 
we obtain the set of self-conjugate representations of SU(n) (that don’t have two rows of the 
same length).

For the detailed calculations that support the results in these tables, we refer the reader to 
Appendix B. It is important to note that there is some ambiguity in the number of linear vs. 
quadratic modes, which follows from the trace identity tr[U†∂τU ] = 0. This expression allows 
us to rewrite a partial sum 

∑
α

�φα · ∂τ
�φα in terms of the �φβ that do not occur in the sum:

∑
α∈A

�φα · ∂τ
�φα = −

∑
β /∈A

�φβ · ∂τ
�φβ. (50)

To be consistent, we will always choose to write the Berry phase contribution in terms of the 
least number of fields possible. However, of primary interest to us in this paper are theories that 
only have linearly-dispersing modes; in this case, the counting becomes uniquely defined.
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Table 2
Classification of dispersion relations in SU(n)/[U(1)]n−1 sigma models, Part I.
Representation Min # Conditions

k = 1 n none

k = n − 1 2
pα + pn−α+1 = p1 (2) n even; α = 2, · · · , n

2

pα + pn−α+1 = p1 (2)

2p n+1
2

= p1 (1)
n odd; α = 2, · · · , n−1

2

n = kλ 2λ
pα + pk+1−α = p1 + pk (2λ) k even; α = 2, · · · , k

2

pα + pk+1−α = p1 + pk (2λ)

2p k+1
2

= p1 + pk (λ)
k odd; α = 2, · · · , k−1

2

n = 2λ + 1, k = 2 λ + 1 λp1 = (λ + 1)p2 (λ)

n = kλ + 1 2λ

pα + pk+2−α = p2 + pk (2λ)

(λ + 1)(p2 + pk) = 2λp1 (λ + 1)
k odd; α = 3, · · · , k+1

2

λ = even, k > 2

pα + pk+2−α = p2 + pk (2λ)

2p k+2
2

= p2 + pk (λ)

(λ + 1)(p2 + pk) = 2λp1 (λ + 1)

k even; α = 3, · · · , k
2

n = kλ + 1 2λ

pα + pk+2−α = p2 + pk (2λ)

(λ + 1)(p2 + pk) = 2λp1 (λ + 1)
k odd; α = 3, · · · , k+1

2

λ = odd, k > 2

pα + pk+2−α = p2 + pk (2λ)

2p k+2
2

= p2 + pk (λ)

(λ + 1)(p2 + pk) = λp1 (λ + 1)

k even; α = 3, · · · , k
2

5.3. Topological angles

The next piece of information we can extract from the Berry phase contribution to the sigma 
model is the set of topological angles for each representation of SU(n). This requires taking into 
account the spatial variation of the fields �φα in each of the terms found in the previous section.

As we have already seen, each field is associated with some condition on the Young tableaux 
parameters pα . When determining the set of topological angles, it will be important to keep 
track of these conditions; ultimately, this will lead to a list of angles for each of the conditions 
appearing in Table 2 and Table 3. Our motivation for this bookkeeping will become apparent in 
the follow-up paper [12] when we introduce the flag manifold hierarchy that arises from mixed 
ferro- and antiferromagnetic order parameters: By ‘turning on’ a subset of the pα conditions, 
we will able to effectively reduce the symmetry of our sigma model from SU(n)/[U(1)]n−1 to 
SU(n′)/[U(1)]n′−1, for some n′ < n. It will be essential to keep track of which topological angles 
survive in the smaller theory.



18 K. Wamer, I. Affleck / Nuclear Physics B 959 (2020) 115156
Table 3
Classification of dispersion relations in SU(n)/[U(1)]n−1 sigma models, Part II.
Representation Min # Conditions

n = kλ + c

c = even

c �= k − 1

k > 1

2(λ + 1)

pα + pc+1−α = p1 + pc (2(λ + 1))

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc) (2λ)

2(λ + 1)p k+c+1
2

= λ(p1 + pc) (λ)

k odd

α = 2, · · · ,
c

2

β − c = 1, · · · ,
k − c − 1

2

pα + pc+1−α = p1 + pc (2(λ + 1))

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc) (2λ)

k even;α = 2, · · · ,
c

2

β = c + 1, · · · , c + k − c

2

n = kλ + c

c = odd

c �= k − 1

k > 1

2(λ + 1)

pα + pc+1−α = p1 + pc (2(λ + 1))

2p c+1
2

= p1 + pc (λ + 1)

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc) (2λ)

2(λ + 1)p k+c+1
2

= λ(p1 + pc) (λ)

k even

α = 2, · · · ,
c − 1

2

β − c = 1, · · · ,
k − c − 1

2

pα + pc+1−α = p1 + pc (2(λ + 1))

2p c+1
2

= p1 + pc (λ + 1)

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc) (2λ)

k odd;α = 2, · · · ,
c − 1

2

β = c + 1, · · · , c + k − c

2

n = λk + (k − 1) 2(λ + 1)

pα + pk−α = p1 + pk−1 (2(λ + 1))

(λ + 1)pk = λ(p1 + pk−1) (λ)
k odd;α = 2, · · · , k−1

2

λ even

pα + pk−α = p1 + pk−1 (2(λ + 1))

(λ + 1)pk = λ(p1 + pk−1) (λ)

2p k
2

= p1 + pk−1 (λ + 1)

k even;α = 2, · · · , k−2
2

n = λk + (k − 1) 2(λ + 1)

pα + pk−α = p1 + pk−1 (2(λ + 1))

(λ + 1)pk = λ(p1 + pk−1) (λ)
k odd;α = 2, · · · , k−1

2

λ odd

pα + pk−α = p1 + pk−1 (2(λ + 1))

2(λ + 1)pk = λ(p1 + pk−1) (λ)

2p k
2

= p1 + pk−1 (λ + 1)

k even;α = 2, · · · , k−2
2

To begin, we recall (48):

LBerry = − 1

d

d∑ k∑
pα

�φα,∗(j) · ∂τ
�φα(j) (51)
j=1 α=1
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where d is the unit-cell length. The spatially constant terms were analysed in the previous section. 
Now, we take into account spatial fluctuations of the �φα . In this case, we may write the leading-
order correction as

LBerry = · · · + εμν

1

d

d∑
j=1

(j − 1)

k∑
α=1

pα∂μ
�φx(α,j),∗ · ∂ν

�φx(α,j) + H.O. (52)

where all of the terms are evaluated at the same lattice site, and · · · hides the terms from the 
previous section. The notation x(α, j) reminds us that for each field in the sum, we must consult 
the ground state structure (found in Section 4), and use both the row (α) and column (j ) to 
determine the index x. Using this, we may rewrite this contribution from the Berry phase term as

LBerry = 1

2πi

n∑
α=1

θαqα, (53)

where

qα := εμν∂μ
�φα,∗ · ∂ν

�φα (54)

is a total derivative. From here, we are able to read off the topological angles, θα . We will carry 
out this procedure for a few examples, and then refer the reader to Appendix C for the remaining 
calculations.

• Case 1: k = 1
In this case, the Berry phase term reduces to

LBerry = εμν

p1

n

n∑
j=1

(j − 1)∂μ
�φα,∗ · ∂ν

�φα (55)

so that

θα = 2πp1

n
(α − 1). (56)

Since there are no quadratically dispersing fields when k = 1, these angles do not correspond 
to a nontrivial condition on the pα .

• Case 2: k = n − 1
Starting from (52), it is clear that we only have to focus on a single column in the coloured 
ground state diagram:

LBerry = · · · + 1

2
εμν

n−1∑
α=1

pα∂μ
�φα,∗ · ∂ν

�φα (57)

The topological angles are then

θα = πpα. (58)

According to the conditions in Table 2, two fields are always linearly dispersing, correspond-
ing to θ1 = p1π and θn = 0. The remaining n −2 angles correspond to fields that must satisfy 
conditions on the pα . The exact relationship between angle and nontrivial condition is given 
below, making use of (58):
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Subcase Condition Angles

n even pα + pn−α+1 = p1 θα, θn−α+1 α = 2, · · · , n
2

n odd
pα + pn−α+1 = p1

2p n+1
2

= p1

θα, θn−α+1

θ n+1
2

α = 2, · · · , n−1
2

Table 4
Possible topological angles for various representations of SU(n) chains. The index j runs from 1 to λ and the index t runs 
from 1 to λ + 1. These angles can often be simplified by using the freedom of shifting each angle by the same constant.

Representation Topological angles

k = 1 θα = 2πp1
n (α − 1) α = 1,2, · · · , n

k = n − 1 θα = πpα α = 1,2, · · · , n

k = n
λ θα,j = π(pα+pk+1−α)

λ (j − 1) + πpk+1−α α = 1, · · · , k

n = 2λ + 1, k = 2
θt = 2πp1

λ + 1
(t − 1) + πp1(λ − 1)

θ̃j = 2πp2

λ
(j − 1) + πp2λ

n = kλ + 1, k > 2

λ = even, λ > 1

θα,j = π(pα + pk+2−α)

λ
(j − 1) + πpα

θt = 2πp1

λ + 1
(t − 1) + πp1

α = 2, · · · , k

n = kλ + 1, k > 2

λ = odd, λ > 1

θα,j = π(pα + pk+2−α)

λ
(j − 1) + πpα + π(pα + pk+2−α)

2
(λ − 1)

θt = 2πp1

λ + 1
(t − 1)

α = 2, · · · , k

n = kλ + c, c �= 1, k − 1

θα,t = π(pα + pc−α+1)

λ + 1
(t − 1) + πλpc−α+1 + π(λ − 1)pα

θ̃β,j = π(pβ + pk−β+c+1)

λ
(j − 1) + π(λ + 1)pk−β+c+1 + πλpβ

α = 1, · · · , c

β = c + 1, · · · , k

n = kλ + (k − 1)

λ = odd

θα,t = π(pα + pk−α)

λ + 1
(t − 1) + πpk−α

θj = 2πpk

λ
(j − 1) + pkπ

α = 1, · · · , k − 1

n = kλ + (k − 1)

λ = even

θα,t = π(pα + pk−α)

λ + 1
(t − 1) + πpk−α + π(pα + pk−α)

2
(λ − 2)

θj = 2πpk

λ
(j − 1)

α = 1, · · · , k − 1

In Appendix C, we carry out this procedure for the remaining representations of SU(n). In 
Table 4, we collect those results and record all possible topological angles for each case. The re-
lationships between angle and conditions on the pα can be found in various tables in Appendix C.
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6. A new generalisation of Haldane’s conjecture

The lengthy analysis of the previous section makes clear the fact that most representations 
of SU(n) chains do not lead to linearly-dispersing sigma models, as is the case for the sym-
metric SU(n) chains [1,6]. This already occurs in SU(3), for any representation that is neither 
self-conjugate nor completely symmetric: in this case, at least one (and at most two) of the CP2

fields �φα has quadratic dispersion. In order to achieve a purely linearly-dispersing theory, a se-
ries of constraints on the Young tableaux parameters pα must be satisfied. In the special case 
of representations with all pα nonzero and distinct, these constraints lead to the self-conjugate 
representations of SU(n).

In a follow-up paper [12] we will consider in great detail these sigma models with both linear 
and quadratic dispersion relations. For now, we restrict to representations of SU(n) that satisfy 
the various constraints listed in Table 2 and Table 3.

Before proceeding further, we must reflect on what we are hoping to achieve with this classifi-
cation. Ultimately, we are interested in the possible gapless phases in SU(n) chains, and how one 
might extend Haldane’s conjecture to novel representations. Based on our understanding of the 
symmetric models, we know that this task can be recast in terms of ’t Hooft anomaly matching. 
The recipe is as follows:

• Step 1: Map an SU(n) chain to a (linear-dispersing) flag manifold sigma model at low ener-
gies.

• Step 2: Identify the ’t Hooft anomalies of the sigma model. When such an anomaly is present, 
we may conclude that the ground state either exhibits spontaneously broken symmetry, or 
gapless excitations.

In [7] and [8], it was shown that an ’t Hooft anomaly occurs in the SU(n)/[U(1)]n−1 sigma model 
when an additional Zn discrete symmetry is present. This symmetry acts on the n complex fields 
transitively according to

Zn : �φα �→ �φα+1. (59)

In [11], this gapless property of SU(n) chains with ’t Hooft anomalies was reinterpreted in terms 
of fractional instantons. Indeed, it was shown that in the SU(n)/[U(1)]n−1 sigma model, topo-
logical excitations exist that generate a finite energy gap above the ground state, much in the 
same way that vortices drive the familiar Kosterlitz-Thouless transition [25]. For a certain set of 
topological angles {θ∗

α}, these excitations destructively interfere with each other and the mass-
generating mechanism breaks down, thus leading to a gapless ground state. It turns out that when 
the ’t Hooft anomaly is present, the topological angle content in the sigma model is precisely 
{θ∗

α }. Ultimately, this follows from the form of the action (59). Therefore, in addition to con-
cerning ourselves with linear dispersion, we also restrict focus to SU(n) representations whose 
translational symmetry group Zd = Zn, and acts transitively on the fields �φα .

Of course, it is important to acknowledge this is by no means an exhaustive classification of 
gapless phases in SU(n) chains. We do not attempt to classify all possible ’t Hooft anomalies 
in these models, and so we are limited to the current list of known anomalies, and apply this 
knowledge to our theories. Moreover, we must also remember that the absence of an anomaly 
teaches us nothing: we are unable to predict any ground state properties when this is the case. 
However, we do have the Lieb-Shultz-Mattis-Affleck (LSMA) theorem [26,27], which predicts 
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either a gapless ground state or spontaneously broken symmetry for an SU(n) chain whenever 
the sum p := ∑

α pα is not a multiple of n.
Having made these remarks, we are now in a position to seek out representations of SU(n) that 

may be amenable to a generalised Haldane conjecture. We assume that all of the constraints on 
the Young tableaux parameters pα have been satisfied, so that all of the n fields �φα are linearly 
dispersing. For each class of representation occurring in Table 1, we record when it is possible 
for the translation group to equal Zn, and act transitively on the set of fields.

• Case 1: k = 1.
Since Zd = Zn, this is possible for all n.

• Case 2: k = n − 1.
Since Zd = Z2, this is possible only in SU(2) (which reduces to Case 1).

• Case 3: k = n
λ
, λ < n.

Since d = 2λ, and λ ≤ n
2 , this is possible only when k = 2. See the ground state in (33) to 

understand how this comes about. In other words, when n is even, Young tableaux with two 
rows (of differing lengths) give rise to flag manifold sigma models with an additional Zn

symmetry. According to Table 2, such representations are always linearly dispersing, so no 
other assumption on the row lengths pα is required. Note that the angles in this case are (see 
Table 4)

θα = 2π

n
(p1 + p2)(α − 1) α = 1,2, · · · , n, (60)

where we have shifted each angle by the constant πp1.
• Case 4: n = 2λ + 1, k = 2.

Since n cannot equal d = λ(λ + 1), no such representations give rise to a Zn symmetry.
• Case 5: n = kλ + 1, k > 2, λ > 1.

In this case, the Zd symmetry does not act transitively on the set of n fields: Some of the 
fields lie in an orbit of order λ + 1, while the remaining fields lie in orbits of size 2λ.

• Case 6: n = kλ + c, c �= 1, k − 1.
Similar to case 5, the fields do not lie in a single orbit under the action of Zd . So while 
it is possible for Zd = Zn, the fields do not transform under the necessary action (59). The 
simplest example of this is SU(12) with k = 5 rows in a Young diagram. Under the Zn action, 
the fields partition into three orbits of size 6,4 and 2, and the current anomaly classification 
is no longer applicable.

• Case 7: n = kλ + (k − 1).
Similar to the previous two cases: the fields do not lie in a single orbit under the action of 
Zd .

In summary, we find only one new family of SU(n) representations that give rise to a linearly-
dispersing SU(n)/[U(1)]n−1 flag manifold sigma model with the Zn symmetry (59). It is the set 
of representations with two rows (of different lengths) in their Young tableaux, when n is even. 
The corresponding topological angles in this theory are

θα = 2π

n
(p1 + p2)α α = 1,2, · · · , n (61)

so that p1 + p2 plays the role of p1 in the symmetric models. According to the results in [6], 
we may conclude that an ’t Hooft anomaly is present whenever p1 + p2 is not a multiple of 
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Fig. 7. AKLT state for an SU(4) chain with p1 = 3 and p2 = 1. Singlets are formed from three consecutive sites, using 
two fundamentals (single circles), and one antisymmetric doublet (double circle).

n. This is also consistent with the LSMA theorem, mentioned above [26,27]. Moreover, based 
on the classification of SU(n) WZW flows in [10], we may further conclude that only when 
(p1 + p2) is coprime with n is a stable gapless phase possible. Otherwise, if p1 + p2 shares 
a nontrivial common divisor with n, then the theory is necessarily gapped with spontaneously 
broken symmetry.

On the other hand, when p1 + p2 is a multiple of n (and the LSMA theorem does not apply), 
it should be possible to have a unique, translationally invariant ground state with a finite energy 
gap. This statement is supported by the fact that when p1 + p2 = n, it is straightforward to write 
down a translationally invariant AKLT state [27,28]. Indeed, we may construct a singlet over p1
consecutive sites using (p1 − p2) fundamentals and p2 antisymmetric doublets. Since each site 
has p1 representations (either fundamentals or doublets), we may shift the singlet by one site as 
we move down the rows of the valence bond solid.

As an example, let us explain this construction in greater detail for the case of SU(4), with 
p1 = 3 and p2 = 1. We denote by αa

i a fundamental representation of SU(4) at site i. Then on 
each site of the chain, we have the representation

|α1
i , α

2
i , α

3
i ;α4

i 〉, (62)

which is symmetric under permutations of the first three entries, and antisymmetric under ex-
changes with the fourth entry. For instance,

|α1
i , α

2
i , α

3
i ;α4

i 〉 = |α2
i , α

1
i , α

3
i ;α4

i 〉 = |α2
i , α

3
i , α

1
i ;α4

i 〉,
|α1

i , α
2
i , α

4
i ;α3

i 〉 = −|α1
i , α

2
i , α

3
i ;α4

i 〉 = −|α1
i , α

4
i , α

3
i ;α2

i 〉
Using two fundamental representations αa

i , and one antisymmetric doublet representation 
|αa

i ; αb
i 〉 = −|αb

i ; αa
i 〉, we may contract indices to form a singlet across three sites according 

to

εα1
i α2

i+1α
3
i+1α

4
i+2

|αa
i , α1

i , α
b
i ;αc

i 〉|αd
i+1, α

e
i+1, α

2
i+1;α3

i+1〉|α4
i+2, α

f

i+2, α
g

i+2;αh
i+2〉. (63)

Here ε1234 is the antisymmetric tensor. The remaining free representations αa
i , · · · , αh

i+2 are then 
contracted into different singlet bonds, over different sets of three sites. By using the pattern 
shown in Fig. 7, a translationally invariant valence bond solid can be constructed, that is also 
parity symmetric. In fact, for general even n, we may always choose a p1-site singlet bond that 
is symmetric under parity, leading to a parity-symmetric AKLT state. See Fig. 8 and Fig. 9 for 
two additional examples in SU(6).

7. Conclusions

In this work, we have attempted to classify all SU(n) chains that may admit a mapping to 
the SU(n)/[U(1)]n−1 flag manifold sigma model at low energies. Unless two rows of the Young 
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Fig. 8. AKLT state for an SU(6) chain with p1 = 5 and p2 = 1. Singlets are formed from five consecutive sites, using 
four fundamentals (single circles), and one antisymmetric doublet (double circle).

Fig. 9. AKLT state for an SU(6) chain with p1 = 4 and p2 = 2. Singlets are formed from four consecutive sites, using 
two fundamentals (single circles), and two antisymmetric doublet (double circle).

tableaux have the same length, it seems possible to realise such a mapping for any irreducible 
representation. However, in most cases the corresponding sigma model will have complex fields 
�φα ∈ Cn with both quadratic and linear dispersion relations. One consequence of this is that 
Lorentz invariance can never emerge at low energies, as it does for the symmetric SU(n) chains 
that posses only linearly dispersing fields. In a follow-up paper [12], we will introduce a mecha-
nism around this, which provides a new path to Lorentz invariance and also reveals a hierarchy 
of flag manifold sigma models for each value of n. For now, we have classified which representa-
tions lead to only linearly dispersing models, and have determined the topological angles in each 
case. Moreover, within this subset of representations, we have further classified which chains 
also admit a Zn symmetry that acts transitively on the SU(n) fields. This property is of interest, 
as it leads to the presence of an ’t Hooft anomaly, and the possibility of generalising Haldane’s 
conjecture to new representations of SU(n). In the end, we have found that only the SU(n) irreps 
with even n and two rows in their Young tableaux, with lengths p1 �= p2, satisfy all of these 
properties (in addition to the symmetric irreps considered previously). As a result, we have made 
the following modest extension of the SU(n) generalisation of Haldane’s conjecture for even n: 
when p1 +p2 is coprime with n, a gapless ground state is predicted; otherwise, a gapped ground 
state is expected, with spontaneously broken symmetry if p1 + p2 is not a multiple of n.
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Appendix A. Ground state calculations

In this appendix, we prove that the coloured diagrams presented in Section 4.3 do indeed 
minimise the classical Hamiltonian. The proofs for the remaining subsections of Section 4 are 
similar, and we omit them here.

Our task is to minimise

tr[S(i)S(i + 1)] =
n−1∑

α,β=1

pαpβ | �φα,∗(i) · �φβ(i + 1)|2. (A.1)

Using the orthonormal basis �eα , this expression reduces to

tr[S(i)S(i + 1)] =
n∑

α,β=1

pαpβ |φβ
α (i + 1)|, (A.2)

where we’ve defined pn := 0. Since �φβ(i+1) = �eα′
for some α′ (and all of the α′ are distinct), we 

may introduce a permutation operator on the set of n elements, σ : {1, 2, · · · , n} → {1, 2, · · · , n}
that obeys

�φβ(i + 1) = �eσ(β)

and rewrite (A.2) as

tr[S(i)S(i + 1)] =
n∑

α=1

pαpσ(α). (A.3)

Thus, our task amounts to finding the permutation σ that minimises (A.3). By defining a vector 
�x := (p1, p2, · · · , pn), we can think of σ as specifying a second vector �y; (A.3) is then their dot 
product. Since the entries of both �x and �y are nonnegative and nondegenerate, it is clear how to 
choose σ so that �y is as orthogonal to �x as possible:

• Since p1 is the largest component of �x, we assign to σ(1) the smallest possible component 
of �y, which is pn.

• Next, assign to σ(2) the second smallest possible component of �y, which is pn−1.
• Repeating this procedure, we see that indeed the classical Hamiltonian is minimised by the 

reverse-ordered ground state, corresponding to a permutation operator

σ : i �→ k + 1 − i

The basis states at site i + 1 are �φβ(i + 1) = �eσ(β). �

Appendix B. Dispersion relation calculations

In this appendix, we derive the results found in Tables 2 and 3. In each expression for LBerry, 
we refrain from writing “+ higher order terms” each time. The symmetric representations were 
already considered in the main text, so we begin with the k = n − 1 representations. Systemati-
cally, we will consider all representations that appear in Table 1, and record our results in Table 2
and Table 3.
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Fig. B.10. Young diagram of self-conjugate representations in SU(3).

• Case 1: k = n − 1
According to the pattern of ground states (see (31) for example), two of the colours occur 
once (in the first position of the column), and the remaining n − 2 colours occur twice, with 
reverse ordering. Therefore we have, according to (49),

LBerry = −p1

2
( �φ1,∗ · ∂τ

�φ1 + �φ2,∗ · ∂τ
�φ2) − 1

2

n∑
α=3

(pα−1 + pn−α+2) �φα,∗(j) · ∂τ
�φα(j).

(B.1)

We have chosen to keep the �φα notation, instead of the colour basis �eα , to remind ourselves 
that we are deriving terms in the field theory of fluctuations about the ground state. Using 
tr[U†∂τU ] = 0, this can be rewritten as

LBerry = −1

2

n∑
α=3

(pα−1 + pn−α+2 − p1) �φα,∗(j) · ∂τ
�φα(j). (B.2)

Now we have up to (n − 2) fields with quadratic dispersion. The exact number will depend 
on how many of the conditions pα−1 + pn−α+2 − p1 = 0 are satisfied. Each constraint cor-
responds to two fields �φα , except for the constraint 2p(n+1)/2 = p1 when n is odd, which 
corresponds to a single field. The representations that satisfy every constraint, and thus give 
rise to sigma models with purely linear dispersion, correspond to the so-called self-conjugate 
representations of SU(n) (that don’t have equal row lengths in their tableaux). Indeed, in 
SU(3), the condition is 2p2 = p1, corresponding to Young diagrams which were previously 
considered in [9] (see Fig. B.10). Similarly, in SU(4), the condition for linear dispersion is 
p2 + p3 = p1, which is equivalent to the self-conjugate condition p1 − p2 = p3.

• Case 2: k = n
λ

In this case, the ground states have order of length 2λ, with each colour occurring twice. Let 
us adopt the notation

Aα := �φα,∗ · ∂τ
�φα. (B.3)

Following the patterns (34) and (35) as a guide, we find that

LBerry = − 1

2λ

k∑
α=1

λ∑
j=1

(pα + pk+1−α)Aα+(j−1)k), (B.4)

which can be rewritten using tr[U†∂τU ] = 0 to yield

LBerry = − 1

2λ

k−1∑ λ∑
(pα + pk+1−α − p1 − pk)A

α+(j−1)k. (B.5)

α=2 j=1
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Fig. B.11. This diagram satisfies the linear dispersion constraint p1 + p4 = p2 + p3.

This suggests that there can be up to (k − 2)λ fields with quadratic dispersion. In order to 
remove all of these modes, the representation must satisfy certain constraints. When k is 
even, they are

pα + pk+1−α = p1 + pk α = 2, · · · ,
k

2
(B.6)

and when k is odd, they are

pα + pk+1−α = p1 + pk α = 2, · · · ,
k − 1

2
(B.7)

2pk+1
2

= p1 + pk (B.8)

Each of the constraints (B.6), (B.7) corresponds to the dispersion of 2λ fields, and the con-
straint (B.8) corresponds to dispersion relation of λ fields. In the special case of k = 2, which 
corresponds to Young tableaux with two rows, we have automatically that LBerry = 0 for all 
values of p1 and p2. The simplest representation for larger k is shown in Fig. B.11, for 
SU(8).

• Case 3: n = 2λ + 1, k = 2
In this case the ground states have unit-cells of length λ(λ + 1). For example, in SU(5) with 
k = 2, a candidate ground state is

(B.9)

For all of these representations, the first row will have periodicity λ + 1, and the second row 
will have periodicity λ. The Berry phase term is then

LBerry = − p1

(λ + 1)

λ+1∑
α=1

Aα − p2

λ

λ∑
β=1

Aβ, (B.10)

which can be rewritten to give

LBerry = − 1

λ(λ + 1)
[p2(λ + 1) − p1λ]

λ∑
β=1

Aβ. (B.11)

For most values of p1 and p2, the corresponding sigma model will have λ fields with 
quadratic dispersion, and λ + 1 fields with linear dispersion.2 However, for the special rep-
resentation satisfying

2 As mentioned below (50), we can rewrite LBerry to have λ + 1 fields with quadratic dispersion, and λ fields with 
linear dispersion.
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λp1 = (λ + 1)p2 (B.12)

a theory with purely linearly dispersing modes is achieved.
• Case 4: n = kλ + 1, with k > 2 and λ > 1

According to Table 1, we must further specify the parity of λ:
• λ = even

The ground state unit-cell has length 2λ(λ + 1) in this case. The first row has (λ + 1)-
site order, while the remaining k − 1 rows have 2λ-site order, with the coloured nodes 
exhibiting reverse ordering. Therefore, the Berry phase term is

LBerry = − p1

(λ + 1)

λ+1∑
α=1

Aα − 1

2λ

k∑
β=2

λ∑
j=1

(pβ + pk+2−β)Aβ+j (k−1). (B.13)

While simpler to rewrite in terms of the Aα with α > λ + 1, we will always choose to 
rewrite the Berry phase in terms of the least number of fields possible. This leads to

LBerry = − 1

2λ(λ + 1)

λ+1∑
α=1

[2λp1 − (λ + 1)(p2 + pk)]A
α

− 1

2λ

k−1∑
β=3

λ∑
j=1

(pβ + pk+2−β − p2 − pk)A
β+j (k−1). (B.14)

• λ = odd
In this case, the result found in (B.15) is slightly modified to

LBerry = − 1

λ(λ + 1)

λ+1∑
α=1

[λp1 − (λ + 1)(p2 + pk)]A
α

− 1

λ

k−1∑
β=3

λ∑
j=1

(pβ + pk+2−β − p2 − pk)A
β+j (k−1). (B.15)

• Case 5: n = kλ + c with c �= 1, k − 1
The ground states in the case have unit-cell order of length 2λ(λ + 1). The Berry phase 
contribution is

LBerry = − 1

2(λ + 1)

c∑
α=1

λ+1∑
j=1

[
pα + pc+1−α

]
Aα+(j−1)c

− 1

2λ

k∑
β=c+1

λ∑
j=1

[
pβ + pk−β+c+1

]
Ac(λ+1)+(β−c)+(j−1)(k−c). (B.16)

Using the tr[U†∂U ] = 0 identity, we can only remove 2(λ + 1) fields. We are left with:

LBerry = − 1

2(λ + 1)

c−1∑
α=2

λ+1∑
j=1

[
pα + pc+1−α − (p1 + pc)

]
Aα+(j−1)c (B.17)

− 1

2λ(λ + 1)

k∑ λ∑[
(λ+1)(pβ +pk−β+c+1)−λ(p1 +pc)

]
Ac(λ+1)+(β−c)+(j−1)(k−c).
β=c+1 j=1
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The number of independent constraints that must be satisfied in order to achieve a sigma 
model with purely linear dispersion is � c

2� + � k−c
2 �.

• Case 6: n = kλ + (k − 1)

In this final case, we must again split into two cases, based on the parity of λ:
• λ = even

According to Table 1, the ground state has λ(λ + 1)-site order. The first c − 1 rows of the 
ground state has period 2(λ + 1), while the last row has period λ. The Berry phase term is

LBerry = − 1

(λ + 1)

k−1∑
α=1

λ+1∑
j=1

[pα + pk−α]Aα+(j−1)(k−1) − 1

λ

λ∑
β=1

pkA
(k−1)(λ+1)+β

(B.18)

= − 1

(λ + 1)

k−2∑
α=2

λ+1∑
j=1

[pα + pk−α − p1 − pk−1]Aα+(j−1)(k−1)

− 1

λ(λ + 1)

λ∑
β=1

[(λ + 1)pk − λ(p1 + pk−1)]A(k−1)(λ+1)+β .

• λ = odd
Now the ground state has 2λ(λ + 1) order, which changes the result in (B.18) to

= − 1

2(λ + 1)

k−2∑
α=2

λ+1∑
j=1

[pα + pk−α − p1 − pk−1]Aα+(j−1)(k−1) (B.19)

− 1

2λ(λ + 1)

λ∑
β=1

[2(λ + 1)pk − λ(p1 + pk−1)]A(k−1)(λ+1)+β .

Appendix C. Topological angle calculations

In this appendix, we continue the topological angle calculations that were started in Sec-
tion 5.3.

• Case 3: k = n
λ

In this case, the correction to LBerry is

LBerry = 1

2λ
εμν

k∑
α=1

λ∑
j=1

[
(j − 1)pα + (λ + j − 1)pk+1−α

]
∂μ

�φα,j,∗ · ∂ν
�φα,j (C.1)

so that the topological angles are

θα,j = π

λ
(pα + pk+1−α)(j − 1) + πpk+1−α α = 1, · · · , k; j = 1, · · · , λ (C.2)

Here we use two indices to enumerate the fields. Since 2λ of the fields always have linear 
dispersion, the angles θ1,j and θk,j are always present. Meanwhile, the remaining (k − 2)λ

angles are associated to certain conditions, according to Table C.5.
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Table C.5
Topological angles for representations with k = n

λ
rows in their Young tableaux.

Subcase Condition Angles

k even pα + pk+1−α = p1 + pk θα,j , θk−α+1,j α = 2, · · · , k
2 ; j = 1, · · · , λ

k odd
pα + pk−α+1 = p1 + pk

2p k+1
2

= p1 + pk

θα,j , θk−α+1,j

θ k+1
2 ,j

α = 2, · · · , k−1
2 , j = 1, · · · , λ

• Case 4: n = 2λ + 1 with k = 2
We again refer to Table 2. From

LBerry = εμν

p1

λ(λ + 1)

λ∑
j=1

λ+1∑
t=1

(t − 1 + (j − 1)(λ + 1))∂μ
�φt,∗ · ∂ν

�φt (C.3)

+εμν

p2

λ(λ + 1)

λ∑
j=1

λ+1∑
t=1

(j − 1 + (t − 1)λ)∂μ
�φj+λ+1,∗ · ∂ν

�φj+λ+1,

we see that there are two families of angles:

θt = 2πp1

(λ + 1)
(t − 1) + πp1(λ − 1) t = 1, · · · , λ + 1 (C.4)

and

θ̃j = 2πp2

λ
(j − 1) + πp2λ j = 1, · · · , λ (C.5)

The θt angles correspond to fields that are always linearly dispersing. The remaining angles 
are associated to the single condition λp1 = (λ + 1)p2.

• Case 5a: n = kλ + 1 with k > 2 and λ even
Since the first row of the ground state has (λ + 1)-site order, and the unit cell order is 2λ(λ +
1), we may write as two parts LBerry = L1

Berry +L2
Berry. The first part is

L1
Berry = εμν

p1

2λ(λ + 1)

λ+1∑
t=1

2λ∑
j=1

(t − 1 + (j − 1)(λ + 1))∂μ
�φt,∗ · ∂ν

�φt , (C.6)

which gives rise to the following topological angles:

θt = πp1

λ(λ + 1)

2λ∑
j=1

(t − 1 + (j − 1)(λ + 1)) t = 1,2, · · · , λ + 1. (C.7)

These angles can be further simplified to

θt = 2πp1

(λ + 1)
(t − 1) + πp1 t = 1,2, · · · , λ + 1. (C.8)

The second part of the Berry phase corresponds to the lower k − 1 rows of the classical 
ground state. It reads
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Table C.6
Topological angles for representations in SU(n), with n = kλ + 1, with k > 2 and λ > 1 with λ
odd.

Subcase Condition Angles

k even
pα + pk+2−α = p2 + pk

(λ + 1)(p2 + pk) = 2λp1

θα,j ,θk+2−α,j

θt

α = 3, · · · ,
k + 1

2
;

j = 1, · · · , λ; t = 1, · · · , λ + 1

k odd

pα + pk+2−α = p2 + pk

2p k+2
2

= p2 + pk

(λ + 1)(p2 + pk) = 2λp1

θα,j ,θk+2−α,j

θ k+2
2 ,j

θt

α = 3, · · · ,
k

2
;

j = 1, · · · , λ

t = 1, · · · , λ + 1

L2
Berry = εμν

2λ(λ + 1)

k∑
α=2

λ∑
j=1

λ+1∑
t=1

[
pα(j − 1 + (t − 1)2λ)

+ pk+2−α(j − 1 + λ + (t − 1)2λ)
]
∂μ

�φα,j,∗ · ∂ν
�φα,j . (C.9)

The associated topological angles are

θα,j = π

λ(λ + 1)

λ+1∑
t=1

[
pα(j − 1 + 2λ(t − 1)) + pk+2−α(j − 1 + λ + (t − 1)2λ)

]
(C.10)

for α = 2, · · · , k and j = 1, · · · , λ. Again, the angles simplify to

θα,j = π

λ
(pα + pk+2−α)(j − 1) + πpα α = 2, · · · , k; j = 1, · · · , λ (C.11)

where we used the fact that λπpα ≡ 0 since λ is even. The correspondence between angle 
and condition on the pα is provided in Table C.6.

• Case 5b: n = kλ + 1 with k > 2 and λ > 1 with λ odd
Now that λ is odd, the order of the unit cell has changed to λ(λ + 1). The two parts of LBerry
from Case 5a are modified to

L1
Berry → εμν

p1

λ(λ + 1)

λ+1∑
t=1

λ∑
j=1

(t − 1 + (j − 1)(λ + 1))∂μ
�φt,∗ · ∂ν

�φt (C.12)

and

L2
Berry → εμν

λ(λ + 1)

k∑
α=2

λ∑
j=1

λ+1
2∑

t=1

[
pα(j − 1 + (t − 1)2λ)

+ pk+2−α(j − 1 + λ + (t − 1)2λ)
]
∂μ

�φα,j,∗ · ∂ν
�φα,j (C.13)

The angles are then

θt = 2πp1

(λ + 1)
(t − 1) t = 1,2, · · · , λ + 1 (C.14)
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and

θα,j = π

λ
(pα + pk+2−α)

(
j − 1 + λ(λ − 1)

2

)
+ πpα α = 2, · · · , k; j = 1, · · · , λ

(C.15)

The same correspondence between condition and angle found in Case 5a applies here as 
well, so long as the slightly modified conditions for λ odd are used (which can be found in 
Table 2).

• Case 6: n = kλ + c with c �= 1, k − 1
In this case, the ground state order is 2λ(λ + 1). Again, we split the Berry phase contribution 
into two pieces. The first c rows contribute the following term:

L1
Berry = εμν

2λ(λ + 1)

λ∑
j=1

λ+1∑
t=1

c∑
α=1

[
pα(t − 1 + (j − 1)2(λ + 1))

+ pc−α+1(t − 1 + λ + 1 + (j − 1)2(λ + 1))
]
∂μ

�φt,α,∗ · ∂ν
�φt,α (C.16)

which gives the topological angles

θt,α = π(pα + pc−α+1)

(λ + 1)
(t − 1) + πλpc−α+1 + π(λ − 1)pα

α = 1, · · · , c; t = 1, · · · , λ + 1 (C.17)

Meanwhile, the remaining k − c rows contribute the term

L2
Berry = εμν

2λ(λ + 1)

λ∑
j=1

λ+1∑
t=1

k∑
β=c+1

[
pβ(j − 1 + (t − 1)2λ)

+ pk−β+c+1(j − 1 + (t − 1)2λ + λ)
]
∂μ

�̃
φj,β,∗ · ∂ν

�̃
φj,β (C.18)

which gives the topological angles

θ̃j,β = π(pβ + pk−β+c+1)

λ
(j − 1) + π(λ + 1)pk−β+c+1 + πλpβ

β = c + 1, · · · , k; j = 1, · · · , λ. (C.19)

Here, θ̃ and �̃φ have been used in order to differentiate the two families of fields and topolog-
ical angles, so as to simplify our notation. The relationships between topological angle and 
condition on the pα topological angles are given in Table C.7.

• Case 7a: n = kλ + (k − 1) with λ odd
The ground state has 2λ(λ + 1)-site order. The first k − 1 rows have the following Berry 
phase contribution:

L1
Berry = εμν

2λ(λ + 1)

k−1∑
α=1

λ∑
j=1

λ+1∑
t=1

[
pα(t − 1 + (j − 1)2(λ + 1))

+ pk−α(t − 1 + λ + 1 + (j − 1)2(λ + 1))
]
∂μ

�φα,t,∗ · ∂ν
�φα,t (C.20)

The corresponding topological angles are
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Table C.7
Topological angles for representations in SU(n) with n = kλ + c, with c �= 1, k − 1.

Subcase Condition Angles

k, c even
pα + pc+1−α = p1 + pc

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc)

θt,α, θt,c−α+1

θ̃j,β , θ̃j,k−β+c+1

α = 2, · · · ,
c

2
; t = 1, · · · , λ + 1

β − c = 1, · · · ,
k − c

2
; j = 1, · · · , λ

k odd

c even

pα + pc+1−α = p1 + pc

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc)

2(λ + 1)p k+c+1
2

= λ(p1 + pc)

θt,α, θt,c−α+1

θ̃j,β , θ̃j,k−β+c+1

θ̃
j, k+c+1

2

α = 2, · · · ,
c

2
; t = 1, · · · , λ + 1

β − c = 1, · · · ,
k − c − 1

2
j = 1, · · · , λ

k, c odd

pα + pc+1−α = p1 + pc

2p c+1
2

= p1 + pc

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc)

θt,α, θt,c−α+1

θ
t, c+1

2

θ̃j,β , θ̃j,k−β+c+1

α = 2, · · · ,
c − 1

2
; t = 1, · · · , λ + 1

β − c = 1, · · · ,
k − c − 1

2
j = 1, · · · , λ

c odd

k even

pα + pc+1−α = p1 + pc

2p c+1
2

= p1 + pc

(λ + 1)(pβ + pk−β+c+1) = λ(p1 + pc)

2(λ + 1)p k+c+1
2

= λ(p1 + pc)

θt,α, θt,c−α+1

θ
t, c+1

2

θ̃j,β , θ̃j,k−β+c+1

θ̃
j, k+c+1

2

α = 2, · · · ,
c − 1

2
; t = 1, · · · , λ + 1

β − c = 1, · · · ,
k − c − 1

2
j = 1, · · · , λ

θt,α = π(pα + pk−α)

(λ + 1)
(t − 1) + πpk−α (C.21)

Meanwhile, the last row of the ground state contributes the term

L2
Berry = εμν

2λ(λ + 1)
pk

λ∑
j=1

2(λ+1)∑
t=1

[(j − 1) + (t − 1)λ] ∂μ
�φj,∗ · ∂ν

�φj (C.22)

giving rise to the angles

θj = 2πpk

λ
(j − 1) + pkπ. (C.23)

The correspondence between condition on the pα and topological angle can be found in 
Table C.8.

• Case 7b: n = kλ + (k − 1) with λ even
This is the final case. Now that λ is even, the order of the unit cell has changed to λ(λ + 1). 
The two parts of LBerry are modified to

L1
Berry → εμν

λ(λ + 1)

k−1∑
α=1

λ
2∑

j=1

λ+1∑
t=1

[
pα(t − 1 + (j − 1)2(λ + 1))

+ pk−α−2(t − 1 + λ + 1 + (j − 1)2(λ + 1))
]
∂μ

�φα,t,∗ · ∂ν
�φα,t (C.24)
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Table C.8
Topological angles in SU(n) with n = kλ + (k − 1), with λ odd.

Subcase Condition Angles

k odd
pα + pk−α = p1 + pk−1

(λ + 1)pk = λ(p1 + pk−1)

θα,t ,θk−α,t

θj

α = 2, · · · ,
k − 1

2
;

j = 1, · · · , λ; t = 1, · · · , λ + 1

k even

pα + pk−α = p1 + pk−1

2p k
2

= p1 + pk−1

(λ + 1)pk = λ(p1 + pk−1)

θα,t ,θk−α,t

θ k
2 ,t

θj

α = 2, · · · ,
k − 2

2
;

t = 1, · · · , λ + 1

j = 1, · · · , λ

and

L2
Berry → εμν

λ(λ + 1)
pk

λ∑
j=1

(λ+1)∑
t=1

[(j − 1) + (t − 1)λ] ∂μ
�φj,∗ · ∂ν

�φj (C.25)

and the angles are modified to

θα,t → π(pα + pk−α)

(λ + 1)
(t − 1) + πpk−α + π(pα + pk−α)

2
(λ − 2) (C.26)

and

θj → 2πpk

λ
(j − 1). (C.27)

The correspondence between angles and conditions follows the same pattern as the previous 
case (7a), with a slight modification of the conditions themselves, according to Table 3.
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