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Abstract

One dimensional SU(n) chains with the same irreducible representation R at each site are considered.
We determine which R admit low-energy mappings to a SU(n)/ [yt flag manifold sigma model, and
calculate the topological angles for such theories. Generically, these models will have fields with both linear
and quadratic dispersion relations; for each R, we determine how many fields of each dispersion type there
are. Finally, for purely linearly-dispersing theories, we list the irreps that also possess a Z, symmetry that
acts transitively on the SU(n)/[U(])]"_l fields. Such SU(n) chains have an 't Hooft anomaly in certain
cases, allowing for a generalisation of Haldane’s conjecture to these novel representations. In particular,
for even n and for representations whose Young tableaux have two rows, of lengths p; and p; satisfying
p1 # p2, we predict a gapless ground state when p + p; is coprime with n. Otherwise, we predict a gapped
ground state that necessarily has spontaneously broken symmetry if p; + p, is not a multiple of n.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In 2017, Haldane’s conjecture was generalised to SU(3) chains with a rank-p symmetric rep-
resentation on each site [1]. It was found that if p is a multiple of 3, a finite energy gap exists
above the ground state, while for all other values of p, gapless excitations exist. Since these
rank— p representations correspond to spin-% in SU(2), this result is a quite natural extension of
Haldane’s original claim [2,3]. For an extensive historical review of this subject, see [1].
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In deriving the SU(3) result, the familiar correspondence between spin-s antiferromagnet and
0(3) sigma model with topological angle 8 = 27s was necessarily generalised. This was first
done by Bykov [4,5], and then repeated in [1,6]. Now, the low energy physics of the SU(3) chain
is captured by a SU(3)/[U(1)]?> flag manifold sigma model, with topological angles 6; = QJTTP
and 6, = 4%. And just as the original mapping to the O(3) model garnered interested from
the larger theoretical physics community, so too has this SU(3) generalisation: In the works
[7] and [8], SUn)/[UD)]*! flag manifold models with additional discrete symmetries were
analysed in great detail. Of particular interest to those authors were the presence of 't Hooft
anomalies in these theories, which indicate the presence of nontrivial physics at low energies:
namely, spontaneous symmetry breaking or gapless excitations.

After the appearance of these two thoughtful papers on flag manifold sigma models and their
anomalies, two further extensions of Haldane’s conjecture followed. First, SU(3) chains with a
self-conjugate representation at each site were shown to be described by the same SU(3)/[U(1)]>
sigma model, but without Lorentz-invariance, and with different topological angles [9]. In this
case, a finite energy gap above the ground state was predicted in all cases, with spontaneously
broken parity when p is odd. The second extension considered again the rank—p symmetric
representations, but this time for generic SU(n) chains. While these chains were already shown by
Bykov to correspond to the (Lorentz-invariant) flag manifold sigma models considered by [7] and
[8] for a fine-tuned set of coupling constants, in [6], the renormalisation group was used to show
that this occurs in general, at low enough energies. By applying the ’t Hooft anomaly conditions
of these sigma models, as well as the results of [10], the following SU(n) Haldane conjecture
was put forward: when p and n have no common divisor, gapless excitations are present above
the ground state; otherwise, a finite energy gap exists. Recently, this result was also obtained in
a different way, by considering how fractional instantons in the SU(n)/[U(1)]"~! sigma model
generate a mass gap [11]. When p and n are coprime, the fractional instantons destructively
interfere, and the mass generating mechanism breaks down.

Based on this fruitful back-and-forth between SU(#) chains and flag manifold sigma models,
a more complete understanding of this correspondence is called for. What this entails is address-
ing the following question: What representations of SU(n) chains give rise to SU(n)/ oyt
flag manifold sigma models? Once this has been answered, we should then further ask: What rep-
resentations of SU(n) chains give rise to those flag manifold sigma models that posses 't Hooft
anomalies, and lend themselves to a Haldane-like prediction of gapless excitations in certain
cases.

In this paper, we answer these two questions, ultimately classifying all SU(n) chains that ad-
mit such a flag manifold sigma model mapping. In Section 2, we introduce flag manifold sigma
models, and discuss their various symmetry properties. In Section 3, we review the represen-
tation theory of SU(n) that is required for our analysis. In Section 4, we introduce the SU(n)
chain Hamiltonian, and present the classification of its classical ground states and symmetries.
Next, in Section 5, we classify the topological angles and dispersion relations for generic SU(n)
chains. We will show that generically, both quadratic and linear dispersing modes are present
in the corresponding field theories, which is a manifestation of the ferro- and antiferromagnetic
order parameters that are jointly possible in these models. In a later work [12], we will examine
this intriguing phenomenon in greater detail, and explain how it may give rise to a fascinating
hierarchy of flag manifold sigma models with novel 't Hooft anomalies. Finally, in Section 6,
we summarise our calculations and present a new family of SU(#n) representations that give rise
to linearly dispersing SU(n)/[U(1)]"~! sigma models with ’t Hooft anomalies, leading to a new
generalisation of Haldane’s conjecture to SU(n) chains.
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2. Flag manifold sigma models

It is well known that the low energy physics of the SU(2) spin chain is described by the O(3)
nonlinear sigma model [2,3]. By sigma model, we mean a quantum field theory whose fields
define a map from (Euclidean) space time to some curved manifold. In fact, the name O(3)
sigma model is actually a misnomer, since in this case the field theory consists of a vector 71 € R>
that is constrained to live on the 2-sphere, which is not quite the Lie group O(3). Indeed, the
relation that does hold is

=0(3)/0(2) (1)

so that a more apt name would be the S? sigma model, or the O(3)/0(2) coset sigma model
[13]. To complicate the story further, one often introduces the complex field c/) € C? through the
relation

n=¢yGapdp, (2)

which allows for a reﬁormulgtion of the O(3) sigma model in terms of a normalised <Z Due to
the presence of both ¢ and ¢* in the definition (2), this procedure also introduce a U(1) gauge
symmetry, so that the underlying manifold that ¢ lives on is

SU(2)/U(1) = CP". 3)

This establishes an equivalent field theory description of the antiferromagnet: the CP! sigma
model. While these technical subtleties may seem unnecessarily mathematical when analysing
an ordinary spin chain, they prove to be essential when promoting the symmetry group of the
chain to SU(n). This is because for n > 2, the manifolds CP"~! and S" are no longer equivalent,
and so it begs the question: what is the appropriate generalisation of the spin-chain/sigma model
correspondence beyond SU(2)?

The answer to this question is not so simple, as was first realised by Affleck in [14], as it
depends on the chosen representation of SU(n) that occurs on each site of the chain. This fact
will be explained in further detail in the following section. Instead, it is better to ask a slightly
different question: for a specified sigma model, what is the appropriate generalisation of the
SU(2) spin chain? Over the years, this question has been partially answered for both CP"~!
models, and their Grassmann generalisation, with symmetry group U(n)/[U(m) x U(n — m)]
(the case m = 1 corresponds to CP"~1) [15-17]. In this paper, we instead focus on a class of
sigma models whose fields live on the flag manifold SU(n)/[U(1)]"~!, which is yet another
generalisation of the SU(2) case according to (3). We seek to find the complete set of SU(n)
chains that admit a mapping to these flag manifold sigma models (FMSMs). As mentioned in the
introduction, these theories have attracted significant interest in recent years, culminating in a
classification of their 't Hooft anomalies with various discrete symmetry groups [7,8]. And while
some mappings have already been identified [1,4—06,9], an exhaustive list will provide a much
larger testing ground for these theories, as well as serve to generalise the Haldane conjecture to
a larger class of SU(n) chains.

For concreteness, let us write down the Lagrangian for these flag manifold sigma models.
It consists of n orthonormalised fields ¢* € C”, which are each invariant under a U(1) gauge
symmetry

P > 9% @
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If we denote by gup the (symmetric) metric on the flag manifold, and byg the (antisymmetric)
torsion, then the Lagrangian is [8]

L= [gapd"" +bape ] (@* - 9,6 (bp - 0,6”) + Liop (5)
o,f=1

where Ly, is the topological term

n
Ou e
Etop = Z Eeﬂuaﬂ(ﬁa . 3v¢°‘**, (6)
a=1
Only n — 1 of the angles 0,, are independent, since the theory is invariant under shifting all angles
by the same amount. This reflects the fact that

Hy(SUm)/[UMI"™") = &}, Z. ()
In fact, all of the topological angles may be removed using the combined shifts
Oy — Oy + 27 by + bag > bap — by — bg ()

but this hides the 27 periodicity of the 6. Finally, the shift gy — gop — c4 — g introduces the
familiar CP"~! kinetic terms into the Lagrangian:

£ Y e [10,877 — 167 - 0,677 ©
a=1

Based on this fact, it is useful to use think of the embedding SU(n)/[U(1)]"~! — (XJZZI(CP”’1
and visualise the field content as a set of orthogonal CP"~! fields, coupled through the metric
and torsion terms.

In most cases, the tensors gyg and byg will admit additional, discrete symmetries. For exam-
ple, a sigma model that arises from an SU(n) chain with a d-site unit cell in its classical ground
state will posses a Z4 symmetry as a manifestation of the translation symmetry on the chain.

However, what is also true is that in most cases, the SU(n) chain will not directly map to the
above Lorentz-invariant sigma model. There are two reasons for this. The first is that the fields (1;“
are not guaranteed to propagate with the same velocity. Indeed, for the symmetric representation
SU(n) chains, it was shown that only for a fine-tuned choice of SU(n) chain coupling constants
do these velocities become equal [6]. However, in the same paper, it was established that at low
enough energies, all of the velocity differences flow to zero in the renormalisation group sense.
In this article, we will assume that this mechanism holds more generally, so that we may identify
the various velocities of the CP"~! fields.

The second reason for Lorentz-non-invariance is more of a hinderance. It follows from a
mismatch of terms arising from the coherent state path integral construction, ultimately lead-
ing to some of the <7>“ having quadratic dispersion. In a later work [12], we will discuss the
consequences of this: in short, since Coleman’s theorem does not apply in 1+1 dimensions to
modes with quadratic dispersion, these quadratic modes may spontaneously order, resulting in
true Goldstone modes with quadratic dispersion [18-21]. These Goldstone bosons will couple
to the remaining linear modes, which themselves form a SU(n")/ [U(l)]"/_1 flag manifold sigma
model with n’ < n. If a subgroup of the translation symmetry acts transitively on the n’ linear
fields, then it becomes possible for a novel 't Hooft anomaly (mixed with the Z,  subgroup)
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to exist in such SU(n) chains. Details of this mechanism will appear in [12]. In this paper, we
avoid these complications by focusing only on theories with purely linearly-dispersing modes.
To begin, we must first review the subject of SU(n) representation theory.

3. SU(n) representation theory

Keeping in theme with the previous section, we begin with a review of SU(2) representation
theory, and then outline how this generalises to larger groups. A natural starting point is the three
generators S of spin, which are used to write the nearest-neighbour Heisenberg interaction,
S(@) - S(i 4+ 1). These generators obey the su(2) Lie algebra

(', 871 = i€ SK, (10)

and their associated SU(2) representation is completely specified by a single positive integer pj,
which can be found from the identity

5G) - S3i) = %(Pl )1 (a1

For physicists, we prefer the notation s = % p1, and use the name spin-s to refer to this repre-
sentation. This relation (11) is a so-called Casimir constraint. In SU(2) it is the only one, but
more generally there are n — 1 such constraints, and together they ultimately dictate the target
space manifold of our sigma models. Already in SU(2) this is apparent: in the limit of large rep-
resentation (an assumption that we will always make), the commutator (10), together with the
uncertainty relation

ASTAST ~ (IS, S7])], (12)

allows for the operator S to be replace with a classical vector 7 € R3. The Casimir constraint
(11) then restricts 7 to lie on the manifold $2, leading to the “O(3) sigma model” description of
the antiferromagnetic spin chain.

While this is the most familiar way of writing a spin chain, it will prove very useful to replace
the vector S with a traceless matrix of operators, Syg. This follows from the fact that the number
of generators of SU(n) grows like n?. Explicitly in SU(2), we define

_ 57 $(S¥ —is)
= (%(Sx vish) | —sF ) (13)

For all values of n, these matrices obey the commutation relations
[SOC/S7 S;w] = (Sap,(sﬂv - 8av8ﬂu- (14)

It is easily shown that the Heisenberg interaction can be rewritten in matrix form according to

L 1
S@)-S() = Etr[S(i)S(i +1)] (15)

and indeed this will be our starting point for constructing SU(n) Hamiltonians in the next section.
In the limit of large representation, the 2 x 2 matrix in (13) becomes a classical matrix, whose
eigenvalues are entirely determined by the Casimir constraint (11):

S = Utdiag(nh, —)U 22 = %(p1 ) (16)
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Fig. 1. Examples of Young tableaux in SU(n). A diagram with k nonzero rows corresponds to a representation in SU(#)
withn >k + 1.

The matrix S now plays the role of 7, and since its eigenvalues are fixed, its target manifold is
U(2)/[U(1)]> = SU(2)/U(1). A convenient parametrisation of this space is in terms of the two
orthonormal rows of U, each of which is invariant under a local U(1) rotation. This demonstrates
the equivalent CP' sigma model description of the antiferromagnet.

Now we repeat these steps for general n. We define a traceless n x n matrix Syg whose entries
correspond to the n> — 1 su(n) generators. Unlike SU(2), we must now specify more than one
non-negative integer in order to label the representation. These integers are conveniently defined
in terms of row lengths of a standard Young tableau. Indeed, the most general representation
[p1, P2, -+, pn—1] of SU(n) corresponds to a unique diagram of boxes arranged in n — 1 rows,
of lengths pi, p2, -+, pun—1 respectively. The row lengths must satisfy p; > p>--- > p,_1 > 0.
See Fig. 1 for some examples. In the limit p; — 0o, the matrix of operators is again replaced
with a classical matrix S.' Its eigenvalues are again completely determined, this time by n — 1
distinct Casimir constraints

e[S =Cpl m=2,3,---,n. a7

In terms of the row lengths p;, the eigenvalues of S are [15]

1 n
Ai=pi—p P::;Z;Pi (18)
=
where we’ve defined p, := 0. Now, it becomes apparent how different representations of SU(n)
may lead to different types of sigma model. Indeed, the matrix S is constrained to live on the
manifold U(n)/H, where

H=U@m;) x U@my) x --- x U(my) (19)

is a product of k unitary groups, one for each distinct value of A;, and m; is the degeneracy
of each A;. Thus, it is possible to fix the target manifold of the matrices S by choosing the
appropriate representation of SU(n) on each site. At this point, one might conclude that the
only method to achieving our desired SU(n)/[U(1)]"~! flag manifold sigma model is to ensure
all the eigenvalues of S are distinct. This amounts to considering representations whose Young
tableaux have n — 1 nonzero rows, each of a different length (see Fig. 2). However, this is not
the whole story, since multiple lattice sites must always be considered when deriving a sigma
model description of an antiferromagnetic chain. As we will show in the following section, it
is possible to work with representations that restrict S to smaller manifolds, such as cpl,
and then combine these degrees of freedom over consecutive sites of the chain to reproduce the
larger flag manifold sigma model. This will also lead to additional discrete symmetries, as the

1 Since the quadratic Casimir tr[S 2] — oo when p1 — 00, it is sufficient to take this limit to obtain the classical limit;
it is not necessary to also require p; — oo fori > 1.



K. Wamer, 1. Affleck / Nuclear Physics B 959 (2020) 115156 7

Fig. 2. Examples of Young tableaux that restrict S to live in the SU(n)/[U(l)]”_1 flag manifold sigma model.

translational invariance on the chain becomes a Z,; symmetry in the field theory, where d is the
size of the unit cell. This was the procedure used in [1] and [6]. It is worth emphasising the
difference in this approach from the original SU(n) chains considered in [14]. In that paper, and
the related ones that followed [15—17], a desired sigma model was generated by identifying the
representation R that directly restricts S to the sigma model’s full manifold, and then placing R
and its conjugate R on even and odd sites of the chain, respectively. In this work, we insist on
having the same representation on each site; however, when our procedure is used to generate the
flag manifold sigma models using a two-site unit cell, it will reduce to the older method for self-
conjugate representations. This is precisely what occurred for the self-conjugate SU(3) chains
considered in [9].

4. SU(n) chain Hamiltonians
In the previous section, we introduced the traceless matrices Syg that contain the n* — 1 gen-

erators of SU(n). These objects allow for us to write down the generalised Heisenberg interaction
in terms of a trace:

tr[SE)S(J)]. (20)
In the limit of large representation, we replace S with U Tdiag(kl, -+, AU, so that this interac-
tion becomes
L NONOIE W S ORI 1)
o, B,y,8

where we’ve defined
Uap (i) = ¢g (i). (22)

Since the q;"‘ are rows of a unitary matrix, they must be mutually orthonormal on the same site.
Implicit in this expression is our assumption that the same representation occurs at each site of
the chain. Since A, = py — p for the representation with Young tableau row lengths p,, we opt to
shift S by pI to simplify our calculations (this shifts the interaction term by an overall constant).
Having done this, the simplest SU(n) chain Hamiltonian, namely the nearest-neighbour model,
becomes

n—1
H=JY %" papplé®*@) -6’ +DP, J>0. (23)

i «ap=1

Note that the sums over o and B stop at n — 1, since p, = 0 by definition. This nearest-neighbour
model is the logical starting point for any SU(n) generalisation of the antiferromagnetic spin
chain. However, in most cases, we will be required to consider Hamiltonians with longer range
interactions if we hope to map to the SU(n)/[U(1)]"~! flag manifold sigma model. As explained
above, the manifold on which S lies is dictated by the fixed representation on each site. Except
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in the special case when all of the row lengths p, are distinct and nonzero, S will be restricted
to some subspace of the SU(n)/ [U(1)]"~! manifold. In order to reconstruct the complete flag
manifold, we must couple the S matrices from neighbouring sites together. In Section 4.2, we
review how this works for the case of the symmetric representations, which were considered in
detail in [6]. In that case, only a single row p; # 0, so that the corresponding manifold of S is
CP"~!. Since the complete SU(n)/[U(1)]"~! flag manifold consists of n orthogonally coupled
such fields, one must add up to (n — 1)-neighbour interactions in order to couple n of these fields
together. Instead, if one couples less than n sites of the chain together, there will be leftover
degrees of freedom, which manifest as local zero modes, ultimately prohibiting any field theory
mapping.

In the following subsections, we explain how this construction generalises as we increase the
number of nonzero py. Loosely speaking, the number of nonzero rows k in the representation
will correspond to the number of fields ¢ that exist at each site of the chain. We will then take
A := 7 consecutive sites together to produce a mapping to the complete flag manifold. However,
this isn’t the whole story, since the k fields on each site can still be locally rotated amongst one
another. This is resolved by adding a A-neighbour interaction that freezes out these additional
degrees of freedom, which is essentially mimicking what happens when a representation R is
coupled to its conjugate representation .

Before proceeding, we must also mention what occurs when two rows p, and pg have the
same length. While this produces a factor of U(2) in the quotient group H just as would having
a row of zero length, the result is fundamentally different. In both cases, there are spurious local
degrees of freedom on each site (corresponding to rotating the 43 fields into each other); however,
the trick of adding a A-range interaction does not freeze this additional symmetry in the case of
Pa = pg 7 0. This should become apparent below. As a result, for the most general represen-
tation of SU(n), we do not expect that a mapping to the complete flag manifold sigma model
exists, and so henceforth we restrict to the representations that satisfy py # pg for all nonzero
row lengths. Of course, other types of flag manifold sigma models can easily be constructed
using such representations, but this is beyond the scope of this paper.

4.1. Pictorial representation for classical ground states

In this subsection, we introduce some graphical notation that will aid in our classification
of SU(n) spin chains. According to (21), to each site of the chain we should assign a set of
orthonormalised vectors ¢. We will make use of the standard orthonormal basis {e*} of C",
with

e%‘ =8up- 24)

We may use the same basis on each site of the chain, since any local change of basis transforma-
tion leaves the Hamiltonian invariant (and fortunately, no superpositions of states arise). Further,
we will use coloured circles to represent the first few elements of this basis, in an effort to vi-
sually aid the reader. Our colour dictionary, for the first eight basis elements, can be found in
Fig. 3.

When drawing a classical ground state, we will arrange the same-site vectors into a single
column, and use a white space to separate neighbouring chain sites. For example, the Néel state
of the SU(2) antiferromagnet is given in Fig. 4 left, while a classical ground state of the adjoint
SU(3) chain is given in Fig. 4 right. This will be demonstrated below. The self-conjugate ground
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Fig. 3. Colour dictionary for the first eight basis elements in C”. These coloured circles will be used to pictorially
represent ground state states throughout. (For interpretation of the colours in the figure(s), the reader is referred to the

web version of this article.)

e 6 ¢ ¢ ¢ o o o o o ©6 ©6 6 ©6 ©6 © © ©

Fig. 4. Left: Néel state of the SU(2) antiferromagnet. Right: Classical ground state of the adjoint SU(3) chain, with
pr=2and pp=1.
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Fig. 5. Left: Imaginary bonds between two sets of vectors E)"‘ and ¢;ﬁ at sites i and j on the chain. Right: The energy cost
of each bond is pa, pg, whenever two nodes have the same colour; e and fy are the column positions of these nodes.

state is slightly different than the ones discussed in [9], where a different convention for the
matrices S was chosen.

The benefit of these ground state pictures is that it makes it easy to read off the energy cost of
a term tr[S(i)S(j)]. Indeed, since each colour corresponds to a standard unit vector €%, we have
according to (23),

a[SOSGH= Y pappld™* @) - 6P (I (25)
o.fp

The right hand side of this expression vanishes unless one of the complex unit vectors (i.e. one
of the colours) at site i equals one of the complex unit vectors at site j. In this case, the RHS
equals pg, pg,. where ag and B are the respective positions of the unit vector/colour in column i
and column j. To visualise this, it is useful to imagine bonds between all of the circles of the two
columns, as in Fig. 5. These bonds are inactive (meaning zero energy cost), unless two nodes are
the same colour. For example, the Néel state in (4, left) has an energy cost of zero per site (recall
we have shifted the S,g matrices by a constant), while the classical ground state of the adjoint
chain (4, right) has energy cost of p% per site.

With this notation in place, we can now begin our classification of SU(n) chains with repre-
sentations that have py # pg for all nonzero row lengths p,. Over the next few subsections, we
subdivide this task into various cases according to how many nonzero rows are present in the
representation. Throughout, we use the letter k to refer to this number, and also define A = [ 7 ].
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4.2 Casel: k=1

As a warm-up to the more complicated representations below, we begin with reviewing what
occurs for the symmetric representations of SU(n), with Young tableaux that have a single row
of length p;. This case is discussed in more detail in [1] for SU(3), and in [6] for general n.

We start by considering a nearest-neighbour SU(n) Heisenberg Hamiltonian, and list its clas-
sical ground states. According to (28), any configuration that has no energy cost per bond will be
a classical ground state. Since k = 1, and only a single node is present at each site, the Néel state
(4, left) is such an example. However, for n > 2, the basis at each site is larger than 2 (i.e. there
are other colours available), and this leads to an infinite number of other ground states. Indeed,
the ground state

e ©¢ @ 0 ¢ o o (26)

which exists for n > 2, is related by a zero-energy transformation to the Néel state. This local de-
gree of freedom is an example of a zero-energy mode, and destabilises any candidate ground state
above which we would like to derive a quantum field theory. As a result, the nearest-neighbour
Hamiltonian must be modified if we would like to proceed. Since it is believed that longer-
range interactions may be dynamically generated from the nearest-neighbour model [22], we
add further-neighbour interactions to realise a stable ground state. Since there are n possible
colours, we require up to (n — 1)-neighbour interactions, all of which are taken to be antiferro-
magnetic, in order to remove the zero modes. For example, in SU(5), with interactions up to 4th
neighbour, one such ground state is

® ¢ @ O 0 @ @ © O O . (27)

While this large number of interaction terms may seem contrived, there is second reason why
one should consider adding them. Arguably, it is the simplest way to restrict to classical ground
states that have a Z, symmetry, which is to be expected for the symmetric chains, since this is a
feature of the integrable SU(n) chains, that correspond to p = 1.

In [6], it was shown in great detail how the SU(n)/[U( 15 ant sigma model arises as the
low energy description of this longer-range Hamiltonians. While the on-site matrix S lies in
CP"~! (as was explained in Section 2), by coupling n neighbouring sites together, our underly-
ing degrees of freedom are actually n orthogonally coupled CP"~! fields, which is equivalent to
SU(n)/[U(1)]"~". In the more general representations below, we will see a similar pattern: col-
lections of CP"~! fields from neighbouring sites will become orthogonally coupled, ultimately
leading to the flag manifold sigma model that we desire.

4.3. Case2:k=n—1

We now graduate to the second class of representations, which have Young tableaux with
n — 1 nonzero rows, and are arguably simpler than the symmetric representations considered
above. Since the on-site representation of the § matrix already corresponds to the manifold
SU(n)/ [umr-= a nearest-neighbour Heisenberg interaction is sufficient to derive the asso-
ciated sigma model. Let us first demonstrate this in SU(3). The interaction term

2
a[S@SG+DI= Y papplé®*@)- ¢ (i + DI (28)
o, =1
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is never zero for two adjacent sites, which requires choosing the colour for four nodes. Since
p1 > p2, the minimum is pg, which is achieved when the two same-colour nodes are in the
second position of the column. Thus, a typical ground state in SU(3) looks like
e © @ o © o o (29)
© 6 06 6 o6 o o

which is precisely what we drew above for the adjoint SU(3) chain (which corresponds to the
case p1 =2, pp = 1). Note that no local transformations exist that cost zero energy: all of the p»
nodes must stay the same colour in order to minimise the tr[S(i)S(i + 1)] term, and the remaining
two colours behave just like the Néel state of SU(2).
In SU(4), the tr[S(i)S(i + 1)] requires the introduction of six coloured nodes. Using the in-

equality p% + p% > 2p2 p3, we see that the ground states have the following form:

e o @ o o o o (30)

© 0 6 O 06 O o

O 6 0 6 O o O

This pattern extends to general n: the first row of nodes establishes a Néel-like state, while the
remaining n — 2 rows have a “reverse-ordered” pattern: the colour ordering along a column
switches direction between even and odd sites. In Appendix A, we prove that these states indeed
minimise the Hamiltonian. Here is an example ground state in SU(5):
@ 6 & o o
© O 6 O o
O 0 o0 o O
O 6 O 6 O 0 O

€29

O O e
© 0 @

For these representations, the unit cell is always 2 sites in length, which leads to a Z, translation
symmetry in the sigma model.

4.4. Case 3: n =21k

In this case, the matrix S at each site of the chain lies neither in CP"~! nor SU(n) /UM,
While it would be straightforward to derive other families of flag manifold sigma models from
these representations, we are only interested in SU(n)/ [U(D)]*~!. Thus, some care must be taken
in order to realise the appropriate degrees of freedom.

As before, we begin with an example, this time with k = 2 in SU(4). This requires choosing
four colours for four nodes in order to minimise the tr[S(i)S(i + 1)] term, which is easily done.
For example:

e o ©¢ o 0 o © (32)
@ 0O @ O @ 0O @

However, such a configuration does not lead to the manifold SU(n)/ [U(D)]*!, because the four
colours do not behave like four orthogonal CP? fields. Indeed, at each site, we may additionally
rotate the two colours into each other at no energy cost, which corresponds to another type of
zero mode. In order to achieve the correct flag manifold, we “freeze out” these additional degrees
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of freedom by adding a weaker second-neighbour interaction, tr[S(i) S (i 4 2)]. The effect of this
term is to invoke a “reverse ordering” pattern between sites and their second neighbours: the new
ground state is

® ¢ © O @@ o o (33)
@ O @ @ @ O @

The fact that this ground state minimises the combined J1tr[S(i) S + 1)1+ Jote[SE 4+ 1)SG +2)
term (for antiferromagnetic couplings Ji >> J>) follows from the identity p% + p% > 2p1pa.
In a sense, this second-neighbour interaction generates the same behaviour that we saw in the
previous case of k =n — 1: The nearest-neighbour term partitions the colours into subsets, and
the second-neighbour term reverse-orders these subsets, effectively breaking the additional on-
site rotation symmetry between colours. In the k = n — 1 case, both of these steps are achieved
by the same interaction term: first the colours are partitioned into 3 sets: e.g. {®}, {@®}, {®, O, O},
and then each set is reverse ordered compared to the previous time it occurred. It will turn out
that this reverse ordering is a generic feature of all the representations that we consider.

As a next step, we extend from 4 to general even n, and consider k = 7. A nearest-neighbour
interaction will again serve to partition the colours into two sets, leaving a local rotation symme-
try among the k colours on each site. In order to freeze out these degrees of freedom, we again
add a second-neighbour interaction, which reverse orders each set. For example, in SU(6), we
have

®e O 06 0 e O o o (34)
® O e O e O e O
© 0 e O © o0 e O

Clearly, the ground state will always have a 4-site unit cell for k = 7.

Now, when k < 7, the full set of colours is no longer used up when the nodes on two neigh-
bouring sites are filled. As a result, additional zero modes are present that cannot be removed by
reverse ordering the colours within a set. To resolve this, we first add up to (A — 1)-neighbour
interactions (always with antiferromagnetic couplings), to properly partition the full set of n
colours into A sets of k elements (A := %). Then, we add a weaker A-neighbour interaction which
serves to reverse order within each set of the partition. For example, in SU(6) with k = 2, the
Hamiltonian we should consider is

H =Y (NISOSG + DI+ LulSSG +2)]+ J5te(S@)SG +3)]) (35)

with J1 > J> > J3 > 0, which has, for example, the following ground state

e @ 0 ¢ O ©0 ®© @ O (36)
e O 0 @ @ 0 ®© O O

The J; and J, terms serve to partition the colours into three sets: {@, @}, {®, O}, {O, O}, and the
J3 terms serve to reverse order within each of these three sets. Based off of this example, we can
see that the unit-cell has size 2 for these representations.
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4.5. Case4: n=Ak+c

Finally, we consider all remaining values of k. Let ¢ = n mod k, so that n = Ak + ¢ for some
A € Z. As in the previous case of n = kA, local zero modes will be present unless sufficiently long
range interactions are included to use up all of the available colours. We add up to A-neighbour
terms, which partitions the colours into A sets of k elements, and one set of ¢ elements. Briefly,
we return to the notation % for the basis vectors instead of coloured nodes. Then, a possible
partitioning of the colours is:

{61,82, e ek}’ {€k+1,€k+2, . €2k}, e {e()u—l)k+l’e()»—l)k+2’ .

{e)uk-i-l’ e e}nk-i—L‘}' (37)

, ey

’

Now, in order to minimise the interaction term tr[S(i)S(i + A)], the remaining nodes on the
(. 4 Dth site will be the reverse ordered set {e¥, e¥—1, .- e“t1}. For example, in SU(7) with
k = 3, three consecutive sites may look like

e O o (38)
® O O
© O e
The nodes of the next site (which is a (A + 1)th neighbour), will then begin to be filled with the
remaining {e!, .-, e} colours from the first site. In our present SU(7) example, this looks like:
@ O e @ O e 39)

® O 06 O e O
© 0 e O o O

Since ¢ = 1 in this example, the drawn ground state is stable. However for ¢ > 1, there will still
be zero modes associated with rotating among the set {e!, - , ¢k}. Thus, an additional (A + 1)-
neighbour interaction must also be added! The following ground state for SU(5) with k =3
demonstrates this:

@ O e O (40)
e O @ O
@ © @ ©

Thus, we are led to the following conclusion for this class of representations: If ¢ = 1, our
Hamiltonians should contain up to A-neighbour interactions, and if ¢ > 1, we should also add an
additional (A + 1)-neighbour interaction term.

Using the emerging patterns in the previous examples as a guide, we may now determine the
unit-cell size for the most general representation. This quantity is very important, as it determines
the translation group symmetry that is present in the flag manifold sigma model. Note that in both
(39) and (40), there are two competing types of order among the coloured nodes. The first ¢ rows
exhibit one type of order, which has periodicity A + 1 when ¢ = 1, and 2(A + 1) otherwise.
Meanwhile, the remaining k — ¢ rows have a periodicity 2A for all ¢ except c =k — 1, in which
case the periodicity is A. In order to determine the overall unit-cell length, we must find the least
common multiple of these two periodicities. For example, in our SU(7) example, we see that the
unit cell will have length 12, leading to a Z 1, symmetry in the field theory. See Fig. 6.
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eriod 3
—_
@ O e @ O o
® O 06 O e O
© O e O o O
per?gd4

Fig. 6. Potential ground state of an SU(7) chain. Since the first row has 3-site periodicity, and the remaining rows have
4-site periodicity, the unit cell is 12 sites in length.

Table 1
Classification results of all SU(n) representations satisfying py # pg for all nonzero pg .
We use the notation Icm[a, b] to denote the least common multiple of a and b.

Representation Longest interaction Translation group order
k=1 J—1te[SE)SE +n —1)] n

k=n—1 Jite[SESGE + 1] 2

k=1, A<n Ltr[SESE 4+ )] 2\

n=21+1, k=2 Lt[SESGE + )] AL+

n=kr+1, A>1,k>2 L[ SESGE + )] lem[2X, (A + 1)]
n=ki+c, c#lLk—1 1 tr[SESE + A+ D] 2A(A+1)
n=kir+(k—-1) I tr[SESE + A+ 1)] lem[A,2(2 + 1)]

4.6. Summary of classification

In Table 1, we summarise our results from the previous subsections. In the first column, we
specify the number of nonzero rows in the Young tableau, k, and the integer ¢ := n mod k. In
the second column, we write down the longest-range interaction that must be included in the
Hamiltonian in order to eliminate any local zero modes. As always, it is understood that each
interaction term is Jotr[S(i)S(i + o)] for some coupling J, > 0, and that J, > Jg for a < B.
Finally, in the third column, we specify the order d of the translation group Z, that acts on
the corresponding flag manifold sigma model. This order equals the size of the unit-cell in the
classical ground states of the Hamiltonian.

In the final column of the table, the following identities are useful:

AA+1)  Aisodd
lem[2. (4 1] = { AT Aiso (41)
20M(A+1) Aiseven

20(A+1) Aisodd
lem[x, 20 + 1] = | ¢ D Aiso (42)
AA4+1) Aliseven
In the following section, we build on this classification, and determine the dispersion relations
and topological angles in each class of representation.

5. Dispersion relations and topological angles

Now that we’ve determined the appropriate Hamiltonians of the most general SU(n) chains
admitting a SU(n)/[U(1)]"~! sigma model description, we now turn to the field theory mapping
itself. Of course, a detailed derivation for each Hamiltonian would be a very tedious undertaking,
and we do not pursue this here. Instead, we focus on particular features, namely the topological
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angles and possible dispersion relations that exist in these theories, and refrain from determining
the precise coupling constants and velocities as a function of the interaction strengths {Jy}. In
the following section, we will explain how these pieces of information, combined with a set of
reasonable assumptions, will allow us to make predictions about the ground state behaviour of
certain SU(n) chains.

5.1. Review of the coherent state path integral construction

In order to construct a mapping from Hamiltonian to sigma model, we use coherent states to
generate a path integral of the ground state fluctuations. These coherent states are constructed
as follows. For a representation with nonzero Young tableau rows P1, - Dks We introduce k
orthonormal fields ¢* € C", and k n-component creation operators a%". We then define [23,24]

k
@) ==Y [¢" -@*]7|0). (43)

a=1

These are the coherent states of SU(#), and in order to construct a path integral, we insert them
between thin time slices of the partition function:

(D(m)]e 7D (1 + 87)) = (P(1)|D(7; + 81))e 7. (44)

The right hand side can be approximated using

k
(@) 0 +50) ~ Y [14+6°* - 9:6°] ", (45)
a=1
which follows from
k
(@@OID(T)) =Y (@ (1) - (). (46)

a=1

By taking the product over all time slices 7;, we can then reexponentiate according to

[[(@@)I @ +67)) =exp Y log(®(z)| (i +87)) X exp Y Y pad™*-d:6%. (47)

1 l

The so-called “Berry phase contribution” to the path integral is obtained adding up this contribu-
tion over each site of the unit cell:

d k

1 N N
Loery === D Pad™™ () 967 ())- (48)

j=la=1

Here d is the size of the unit cell, and qga (j) is the field &" evaluate at site j. Since we are
deriving a field theory about a classical ground state, to lowest order (Z“ (j) is the colour of node
o at site j.

To obtain the complete quantum field theory, one must add to Lperry a gradient expansion of
the SU(n) lattice Hamiltonian, and this is where the lengthy calculations lie. However, if one is
interested only in time-derivatives, it suffices to restrict attention to Lgerry, since the Hamiltonian
is time independent. The lowest-order expansion of Lgerry, which amounts to replacing the &5"‘ @)
with their corresponding colour basis vectors ¢? (where 8 depends on « and ), will indicate how
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many of the sigma model’s modes have linear dispersion. The next-order expansion, which takes
into account the spatial fluctuations of the ¢* across the unit cell, will provide the topological
angle content of the theory.

5.2. Dispersion relations

For each family of representations in Table 1, we determine the lowest order contribution
to LBerry. For each field J)"‘ that is present, this indicates the presence of (n — 1) quadratically
dispersing modes. Only in the case of a vanishing Lgey at this order does linear dispersion occur
for each mode of the theory. However, even in this case, Lorentz invariance is not automatic since
the fields q;“ will generically propagate with different velocities.

Let us demonstrate how this works for the symmetric SU(n) representations (corresponding
to k = 1). The ground states are very simple in this case: one row of n nodes, with each colour
occurring once. See for example (27). Therefore, we have

Lhemy = =2 367 (i) - 8:6°())  +HO. (49)
j=1

where H.O. includes higher order terms. Since each colour occurs once in the sum on the RHS,
the sum equals tr[U 79, U] for a unitary matrix U. In Appendix B of [6], it is shown that this trace
equals zero, so that all modes have linear dispersion in the representations with k = 1.

For the remaining representations, we have compiled our results in Table 2 and Table 3. Each
row corresponds to a family of SU(n) representations. The ‘Min # column counts the mini-
mum number of C” fields 5"‘ that have linear dispersion in the corresponding SU(n)/[U(1)]"~!
sigma model. The larger, right-hand column lists the conditions that the representation param-
eters p, must satisfy in order for additional fields to acquire linear dispersion. Each condition
is accompanied by a number in parenthesis: this dictates how many fields qza become linearly
dispersing when this condition is satisfied. For example, the second row of Table 2 corresponds
to representations with n — 1 rows in their Young tableaux. These representations will always
have at least two linearly dispersing fields in their sigma model. In order to have more lin-
early dispersing fields, we must start to satisfy conditions. When # is even, these conditions
are py + pn—g+1 = p1, fora =2, ---, 2. Each satisfied condition adds 2 more linearly dispers-
ing fields to the sigma model. It is amusing to note that when all of these conditions are satisfied,
we obtain the set of self-conjugate representations of SU(n) (that don’t have two rows of the
same length).

For the detailed calculations that support the results in these tables, we refer the reader to
Appendix B. It is important to note that there is some ambiguity in the number of linear vs.
quadratic modes, which follows from the trace identity tr[U T8, U] = 0. This expression allows
us to rewrite a partial sum ), 43“ . ar¢3°’ in terms of the JSﬂ that do not occur in the sum:

D 6" 0" == ¢" 04", (50)
acA BEA

To be consistent, we will always choose to write the Berry phase contribution in terms of the
least number of fields possible. However, of primary interest to us in this paper are theories that
only have linearly-dispersing modes; in this case, the counting becomes uniquely defined.
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Table 2
Classification of dispersion relations in SU(n)/ [U(l)]"*1 sigma models, Part I.
Representation Min # Conditions
k=1 n none
ben—1 ) Pa+Pr—ar1=p1 () neven;a=2,---,75
Pa+tPn—at1=p1 (2 |
nodd;a=2,---, 4%+
217% =p1 @D 2
— o k
n— ki 2 Pot Pkyl—a =P1+ Pk (21 kevenia=2,---,3
Pa + Pk+1—-a =P1+ Pk (2A) .
kodd,a=2,---,
217% =pi+p )
n=21+1,k=2 r+1 =0+ 1Dpy (A)
Pa + Pk42—a = P2+ Pk (24) .
kodd;a=3,..- AL
n=ki+1 2h A+ D(p2+p)=20p1  G+1)
Pa + Pk42-a = P2+ Pk (21)
A= even, k >2 2P%=P2+Pk ) keven;a=3,~~-,§
A+ D(p2+ pr) =24p; *+1
Pa + Pkt2—a = P2+ Pk (21) ol
kodd;a=3,... &1
n=Fk\+1 2 G+ D(p2+p)=22p1  G+1D
Pa+ Pk+2—a =P2+ Pk (22)
A= odd, k>2 igp=ptp 3 kevenyor =3, &

A+Dp2+p)=4p1  (A+1)

5.3. Topological angles

The next piece of information we can extract from the Berry phase contribution to the sigma
model is the set of topological angles for each representation of SU(n). This requires taking into
account the spatial variation of the fields <5°‘ in each of the terms found in the previous section.

As we have already seen, each field is associated with some condition on the Young tableaux
parameters p,. When determining the set of topological angles, it will be important to keep
track of these conditions; ultimately, this will lead to a list of angles for each of the conditions
appearing in Table 2 and Table 3. Our motivation for this bookkeeping will become apparent in
the follow-up paper [12] when we introduce the flag manifold hierarchy that arises from mixed
ferro- and antiferromagnetic order parameters: By ‘turning on’ a subset of the p, conditions,
we will able to effectively reduce the symmetry of our sigma model from SU(n)/[U(1)]"~! to
Su@’)/ [U(l)]",_l, for some n’ < n. It will be essential to keep track of which topological angles
survive in the smaller theory.
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Table 3
Classification of dispersion relations in SU(n)/ [U(l)]"*1 sigma models, Part II.
Representation Min # Conditions
Pa+ Petrl—a=pP1+pc (C2A+1) k odd
C
A+ D(pp + pi— D=rpi+p) (21 =2, =
n=k.+c 2004 1) s Bret ¢ 2
200+ Dpigert =rMpr+po) () focmt,.. kool
¢ = even 2 =1, ) )

— . C
i PatPeri-a=pi+pe QG+ kevenja=2,+, >
k>1 _

z A+ D(Pp + PrepresD) =A(p1+pe)  (24) Boctl otk _ ¢
PatPetrl—a=P1+tpc  (2A+1)
k even
2per1 =p1+pe (A+1) c—1
2 =2,
n=ki+c 20+ 1) A+ D(pp+pr—pres) =rAp1+ped) 21 . 21
—e—
c= odd 2004 Dprsgnt =2(p1+p0) () poe=l—5
c#k—1
k>1 PatPerl—a=r1+pc  Q2A+D) kodd;a=2,~~,czl
2p%=p1+pc A+1) ~.
= 1,---
O+ V(P + Prprcr) =2(p1+p) (1) p=ctlet—

n=xik+k—-1 20+1)

Pa + Pk—a = P1 + Pk—1 2+ 1)
A+ Dpr=rp1+pi-1) @)

Pa + Pk—a = P1 + Pk—1 2+ 1)
A even G +Dpe=rp1+p-1) Q) kevenja =2, k52
21’% =p1+pr-1 @G+
Pa + Pk—a = P1 + Pk—1 2+ 1)

n=»xr+ k-1 20+1)

A+ Dpr=rp1+pi-1) @)

kodd; =2, .- K1

N’

Pa+ Pk—a=P1+Pk—1  Q2AH+1D)
A odd 2004+ Dpr=Mpr+pe-) ) kevenja =2, k52
ZP% =pi1+prk-1  (+1D
To begin, we recall (48):
14k
Loery === > > pad™* () 36 () (51)

j=la=1
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where d is the unit-cell length. The spatially constant terms were analysed in the previous section.
Now, we take into account spatial fluctuations of the ¢“. In this case, we may write the leading-
order correction as

d k
1 . o S i
Loerry =+ €= > (F= 1Y padud™ - 9,¢*) +HO. (52)
j=1 a=1

where all of the terms are evaluated at the same lattice site, and - -- hides the terms from the
previous section. The notation x (¢, j) reminds us that for each field in the sum, we must consult
the ground state structure (found in Section 4), and use both the row («) and column (j) to
determine the index x. Using this, we may rewrite this contribution from the Berry phase term as

1 &
ACBerry = i ZGaCIa, (53)
a=1

where

o = €40, ™ - 3,0% (54)

is a total derivative. From here, we are able to read off the topological angles, 6,,. We will carry
out this procedure for a few examples, and then refer the reader to Appendix C for the remaining
calculations.

e Case 1: k=1
In this case, the Berry phase term reduces to
Pi X
£Berry = Euv7 Z(] - l)au¢a’* : av¢a (55)
j=1
so that
2
Oy = Pl —1). (56)
n

Since there are no quadratically dispersing fields when k = 1, these angles do not correspond
to a nontrivial condition on the p,,.

e Case 2: k=n—1
Starting from (52), it is clear that we only have to focus on a single column in the coloured
ground state diagram:

n—1

1 > -
EBerry =---+ Efuv Z Pa aﬂ¢a,* - 0,0" (57)

a=1

The topological angles are then
Oy =T Pq. (58)

According to the conditions in Table 2, two fields are always linearly dispersing, correspond-
ing to 8; = pm and 6,, = 0. The remaining n — 2 angles correspond to fields that must satisfy
conditions on the p,. The exact relationship between angle and nontrivial condition is given
below, making use of (58):
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Subcase Condition Angles
neven DPa + Pn—a+1 = D1 O On—q+1 a=2, %

Pa + Pp—a+1 =PIl O, Op—grt1 .
n odd o =2, L)
2pnsl =p1 Ont1 2
2 2
Table 4

Possible topological angles for various representations of SU(n) chains. The index j runs from 1 to A and the index ¢ runs
from 1 to A + 1. These angles can often be simplified by using the freedom of shifting each angle by the same constant.

Representation Topological angles
k=1 b = TP (@ — 1) =12, .n
k=n—1 Oy =TT pa a=1,2,---,n
+Pktl—a) | ;
k=% O, j = “PeEPit1=0) (j 1) fpyg g a=1,-- .k
21 py
9t=m(1—1)+ﬂp1(k—1)
n=271+1,k=2
5 2npy .
Oj=——0—-D+mprr
7(Pa + Pk+2—c) .
n=kit1,k>2 ba,j= = = D)+ e
A= even, A > 1 9;=27Tp1(t71)+np1 =2,k
A+1
T(pa + Pk+2—a) , . T (Pa + Pk+2—a)
n=ki+1k>2 Ga,j:%(1*1)+ﬂpa+%(k*l)
— 2711)1 a=2---,k
A= odd, A >1 0 = t—=1)
A1
7T (P + Pe—a+1)
O = == = D+ Thpegy + 70— Dpa a=1,-.c
n=kr+c,c#1,k—1 7(pp + pi D | .
5 —p+c+ . =
eﬂ,jZ%(]—l)-Fﬂ(K-‘r])pk_ﬂﬂ-ﬂ+7T)»p,3 B=c+1,---,
7(Pa + Pk—a)
n=k.+k—1) Ga.t:%(t—l)-i-npk_a
21 a=1,--- k-1
A= odd 6j="=0~D+pn
7(Pa + Pk—a) 7(Pa + Pk—a)
n=ki+ k-1 bt = —— 7 (=D +appg+ === =D)
2pn a=1,--- k-1
A= even 0; = . G-1

In Appendix C, we carry out this procedure for the remaining representations of SU(#n). In
Table 4, we collect those results and record all possible topological angles for each case. The re-
lationships between angle and conditions on the p, can be found in various tables in Appendix C.
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6. A new generalisation of Haldane’s conjecture

The lengthy analysis of the previous section makes clear the fact that most representations
of SU(n) chains do not lead to linearly-dispersing sigma models, as is the case for the sym-
metric SU(n) chains [1,6]. This already occurs in SU(3), for any representation that is neither
self-conjugate nor completely symmetric: in this case, at least one (and at most two) of the CP?
fields <5"‘ has quadratic dispersion. In order to achieve a purely linearly-dispersing theory, a se-
ries of constraints on the Young tableaux parameters p, must be satisfied. In the special case
of representations with all p, nonzero and distinct, these constraints lead to the self-conjugate
representations of SU(n).

In a follow-up paper [12] we will consider in great detail these sigma models with both linear
and quadratic dispersion relations. For now, we restrict to representations of SU(n) that satisfy
the various constraints listed in Table 2 and Table 3.

Before proceeding further, we must reflect on what we are hoping to achieve with this classifi-
cation. Ultimately, we are interested in the possible gapless phases in SU(n) chains, and how one
might extend Haldane’s conjecture to novel representations. Based on our understanding of the
symmetric models, we know that this task can be recast in terms of 't Hooft anomaly matching.
The recipe is as follows:

e Step 1: Map an SU(n) chain to a (linear-dispersing) flag manifold sigma model at low ener-
gies.

e Step 2: Identify the "t Hooft anomalies of the sigma model. When such an anomaly is present,
we may conclude that the ground state either exhibits spontaneously broken symmetry, or
gapless excitations.

In [7] and [8], it was shown that an "t Hooft anomaly occurs in the SU(n) / [U(l)]"’1 sigma model
when an additional Z,, discrete symmetry is present. This symmetry acts on the n complex fields
transitively according to

T : % > o1 (59)

In [11], this gapless property of SU(n) chains with "t Hooft anomalies was reinterpreted in terms
of fractional instantons. Indeed, it was shown that in the SU(n)/ (o sigma model, topo-
logical excitations exist that generate a finite energy gap above the ground state, much in the
same way that vortices drive the familiar Kosterlitz-Thouless transition [25]. For a certain set of
topological angles {6}}, these excitations destructively interfere with each other and the mass-
generating mechanism breaks down, thus leading to a gapless ground state. It turns out that when
the ’t Hooft anomaly is present, the topological angle content in the sigma model is precisely
{0} Ultimately, this follows from the form of the action (59). Therefore, in addition to con-
cerning ourselves with linear dispersion, we also restrict focus to SU(n) representations whose
translational symmetry group Z, = Z,, and acts transitively on the fields <;3"‘.

Of course, it is important to acknowledge this is by no means an exhaustive classification of
gapless phases in SU(n) chains. We do not attempt to classify all possible 't Hooft anomalies
in these models, and so we are limited to the current list of known anomalies, and apply this
knowledge to our theories. Moreover, we must also remember that the absence of an anomaly
teaches us nothing: we are unable to predict any ground state properties when this is the case.
However, we do have the Lieb-Shultz-Mattis-Affleck (LSMA) theorem [26,27], which predicts
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either a gapless ground state or spontaneously broken symmetry for an SU(n) chain whenever
the sum p := )", py is not a multiple of n.

Having made these remarks, we are now in a position to seek out representations of SU(n) that
may be amenable to a generalised Haldane conjecture. We assume that all of the constraints on
the Young tableaux parameters p, have been satisfied, so that all of the n fields é“ are linearly
dispersing. For each class of representation occurring in Table 1, we record when it is possible
for the translation group to equal Z,,, and act transitively on the set of fields.

e Case l: k=1.
Since Z g4 = Zy, this is possible for all n.

e Case 2: k=n—1.
Since Z 4 = Z, this is possible only in SU(2) (which reduces to Case 1).

e Case3: k= ’Xl’)‘ <n.
Since d = 2A, and A < % this is possible only when k£ = 2. See the ground state in (33) to
understand how this comes about. In other words, when n is even, Young tableaux with two
rows (of differing lengths) give rise to flag manifold sigma models with an additional Z,
symmetry. According to Table 2, such representations are always linearly dispersing, so no
other assumption on the row lengths p is required. Note that the angles in this case are (see
Table 4)

2

9a=7(p1+p2)(a—1) a=1,27"'7n7 (60)

where we have shifted each angle by the constant 7 p;.

e Cased:n=2A+1,k=2.
Since n cannot equal d = A(A + 1), no such representations give rise to a Z, symmetry.

e CaseS:n=kA+1,k>2,A>1.
In this case, the Z; symmetry does not act transitively on the set of n fields: Some of the
fields lie in an orbit of order A + 1, while the remaining fields lie in orbits of size 2.

e Case6:n=kr+c,c#1,k—1.
Similar to case 5, the fields do not lie in a single orbit under the action of Z;. So while
it is possible for Z; = Z,, the fields do not transform under the necessary action (59). The
simplest example of this is SU(12) with k = 5 rows in a Young diagram. Under the Z,, action,
the fields partition into three orbits of size 6,4 and 2, and the current anomaly classification
is no longer applicable.

e Case 7:n=kA+ (k —1).
Similar to the previous two cases: the fields do not lie in a single orbit under the action of
Zq.

In summary, we find only one new family of SU(n) representations that give rise to a linearly-
dispersing SU(n)/[U(1)]"~! flag manifold sigma model with the Z, symmetry (59). It is the set
of representations with two rows (of different lengths) in their Young tableaux, when n is even.
The corresponding topological angles in this theory are

2

T
O = n(p1+pz)oz a=1,2,---,n (61)

so that p; 4+ p; plays the role of p; in the symmetric models. According to the results in [6],
we may conclude that an 't Hooft anomaly is present whenever p; + p; is not a multiple of
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Fig. 7. AKLT state for an SU(4) chain with p; =3 and p, = 1. Singlets are formed from three consecutive sites, using
two fundamentals (single circles), and one antisymmetric doublet (double circle).

n. This is also consistent with the LSMA theorem, mentioned above [26,27]. Moreover, based
on the classification of SU(n) WZW flows in [10], we may further conclude that only when
(p1 + p2) is coprime with n is a stable gapless phase possible. Otherwise, if p; + p» shares
a nontrivial common divisor with #, then the theory is necessarily gapped with spontaneously
broken symmetry.

On the other hand, when p;| + p» is a multiple of n (and the LSMA theorem does not apply),
it should be possible to have a unique, translationally invariant ground state with a finite energy
gap. This statement is supported by the fact that when p; + p> = n, it is straightforward to write
down a translationally invariant AKLT state [27,28]. Indeed, we may construct a singlet over p;
consecutive sites using (p; — p»2) fundamentals and p, antisymmetric doublets. Since each site
has p; representations (either fundamentals or doublets), we may shift the singlet by one site as
we move down the rows of the valence bond solid.

As an example, let us explain this construction in greater detail for the case of SU(4), with
p1 =3 and py = 1. We denote by «;' a fundamental representation of SU(4) at site i. Then on
each site of the chain, we have the representation

12 3. 4
lo; , o, s @), (62)

which is symmetric under permutations of the first three entries, and antisymmetric under ex-
changes with the fourth entry. For instance,

2 3.0 42 1 3.
|ai1ai7ai7a[>_|a[!aiaaiv

1 2 4. 3 1 2 3. 4 1 4 3.2
log o, o s 07) = =l o, o o) = —log o, o s o)

4 2 3 1. 4
al>:|al$a11alaal>7

Using two fundamental representations «f, and one antisymmetric doublet representation

by = —|ozf’ ;af'), we may contract indices to form a singlet across three sites according

a.
|05i N

to

Ctar, o, bl el adlaf ot e o e el e ral).(63)
Here €]234 is the antisymmetric tensor. The remaining free representations o, - - - , afl '\ are then
contracted into different singlet bonds, over different sets of three sites. By using the pattern
shown in Fig. 7, a translationally invariant valence bond solid can be constructed, that is also
parity symmetric. In fact, for general even n, we may always choose a pj-site singlet bond that
is symmetric under parity, leading to a parity-symmetric AKLT state. See Fig. 8 and Fig. 9 for
two additional examples in SU(6).

7. Conclusions

In this work, we have attempted to classify all SU(n) chains that may admit a mapping to
the SU(n)/[U(1)]"~! flag manifold sigma model at low energies. Unless two rows of the Young
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Fig. 8. AKLT state for an SU(6) chain with p; =5 and pp = 1. Singlets are formed from five consecutive sites, using
four fundamentals (single circles), and one antisymmetric doublet (double circle).

OO+ -----00------O O ===-00- === 00- === O O
O-----00----00-O O 0000 -0
O O ===-00- === 00- === O O ====-00-===--00

e O 0000 -0 O------00

Fig. 9. AKLT state for an SU(6) chain with p; =4 and p, = 2. Singlets are formed from four consecutive sites, using
two fundamentals (single circles), and two antisymmetric doublet (double circle).

tableaux have the same length, it seems possible to realise such a mapping for any irreducible
representation. However, in most cases the corresponding sigma model will have complex fields
5"‘ € C" with both quadratic and linear dispersion relations. One consequence of this is that
Lorentz invariance can never emerge at low energies, as it does for the symmetric SU(n) chains
that posses only linearly dispersing fields. In a follow-up paper [12], we will introduce a mecha-
nism around this, which provides a new path to Lorentz invariance and also reveals a hierarchy
of flag manifold sigma models for each value of n. For now, we have classified which representa-
tions lead to only linearly dispersing models, and have determined the topological angles in each
case. Moreover, within this subset of representations, we have further classified which chains
also admit a Z, symmetry that acts transitively on the SU(n) fields. This property is of interest,
as it leads to the presence of an ’t Hooft anomaly, and the possibility of generalising Haldane’s
conjecture to new representations of SU(#n). In the end, we have found that only the SU(n) irreps
with even n and two rows in their Young tableaux, with lengths p; # p», satisfy all of these
properties (in addition to the symmetric irreps considered previously). As a result, we have made
the following modest extension of the SU(n) generalisation of Haldane’s conjecture for even n:
when p1 + p» is coprime with n, a gapless ground state is predicted; otherwise, a gapped ground
state is expected, with spontaneously broken symmetry if p; + p» is not a multiple of .
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Appendix A. Ground state calculations

In this appendix, we prove that the coloured diagrams presented in Section 4.3 do indeed
minimise the classical Hamiltonian. The proofs for the remaining subsections of Section 4 are
similar, and we omit them here.

Our task is to minimise

n—1

alS@SG+DI= Y pappld®™*@)- ¢ + DI (A1)

a,p=1

Using the orthonormal basis %, this expression reduces to

n
alS@SGE+DI= Y pappldh i + 1), (A2)
o, =1
where we’ve defined p, := 0. Since 5’3 (i+1)= &% for some o/ (and all of the o’ are distinct), we
may introduce a permutation operator on the set of n elements, o : {1,2,--- ,n} - {1,2,--- ,n}
that obeys

PPi+1)=e"®

and rewrite (A.2) as

tr[S@SGE + D= PaPo@:- (A3)
a=1

Thus, our task amounts to finding the permutation o that minimises (A.3). By defining a vector
X:=(p1, p2,---, pn), we can think of o as specifying a second vector y; (A.3) is then their dot
product. Since the entries of both X and y are nonnegative and nondegenerate, it is clear how to
choose o so that ¥ is as orthogonal to X as possible:

e Since p; is the largest component of X, we assign to o (1) the smallest possible component
of y, which is pj,.

o Next, assign to o (2) the second smallest possible component of ¥, which is p,_1.

e Repeating this procedure, we see that indeed the classical Hamiltonian is minimised by the
reverse-ordered ground state, corresponding to a permutation operator

oii>k+1—1i

The basis states at site i + 1 are q;ﬁ i+ DhH=e®, O
Appendix B. Dispersion relation calculations

In this appendix, we derive the results found in Tables 2 and 3. In each expression for Lgerry,
we refrain from writing “+ higher order terms” each time. The symmetric representations were
already considered in the main text, so we begin with the k = n — 1 representations. Systemati-
cally, we will consider all representations that appear in Table 1, and record our results in Table 2
and Table 3.
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2p

Fig. B.10. Young diagram of self-conjugate representations in SU(3).

e Case l: k=n—1

According to the pattern of ground states (see (31) for example), two of the colours occur
once (in the first position of the column), and the remaining n — 2 colours occur twice, with
reverse ordering. Therefore we have, according to (49),

. oo . 1< . .
LBerry = —%(W 0@ + 67 087 = 5 3 (Pat + Prar2)$() - 3:67 ().

a=3

(B.1)

We have chosen to keep the (75“ notation, instead of the colour basis €%, to remind ourselves
that we are deriving terms in the field theory of fluctuations about the ground state. Using
tr[UT9, U] = 0, this can be rewritten as

1 o - -
EBerry = _E Z(pafl + Pn—a+2 — Pl)(ba’*(j) - 0:0%()). (B.2)

a=3

Now we have up to (n — 2) fields with quadratic dispersion. The exact number will depend
on how many of the conditions py—_1 + pn—a+2 — p1 = 0 are satisfied. Each constraint cor-
responds to two fields qBO,, except for the constraint 2p,11)/2 = p1 when n is odd, which
corresponds to a single field. The representations that satisfy every constraint, and thus give
rise to sigma models with purely linear dispersion, correspond to the so-called self-conjugate
representations of SU(n) (that don’t have equal row lengths in their tableaux). Indeed, in
SU(3), the condition is 2py = pi, corresponding to Young diagrams which were previously
considered in [9] (see Fig. B.10). Similarly, in SU(4), the condition for linear dispersion is
p2 + p3 = p1, which is equivalent to the self-conjugate condition p; — p2 = p3.

Case 2: k=17

In this case, the ground states have order of length 2A, with each colour occurring twice. Let
us adopt the notation

A% = %* . 3%, (B.3)
Following the patterns (34) and (35) as a guide, we find that

kA

1 -
Loery = =52, ) (Pa+ Pry1-a) ATTI7D0, (B.4)
a=1 j=1

which can be rewritten using tr[U 9, U1=0to yield

k=1 A

Loerry= =52 D (Pa+ Pryia — p1 = pATTITE, (B.5)
a=2 j=1
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Fig. B.11. This diagram satisfies the linear dispersion constraint p; + pg = p> + p3.

This suggests that there can be up to (k — 2)A fields with quadratic dispersion. In order to
remove all of these modes, the representation must satisfy certain constraints. When k is
even, they are

Pa + Pk+l-a = P1 + Dk a=2,--~,§ (B.6)

and when £ is odd, they are
DPa + Pk+1—-a = P1 + Pk a=2,---,kz;l (B.7)
2pist = p1 + px (B.8)

2
Each of the constraints (B.6), (B.7) corresponds to the dispersion of 2A fields, and the con-
straint (B.8) corresponds to dispersion relation of A fields. In the special case of k = 2, which
corresponds to Young tableaux with two rows, we have automatically that Lperry = 0 for all
values of p; and p». The simplest representation for larger k is shown in Fig. B.11, for
SU(8).
e Case3:n=21+1,k=2

In this case the ground states have unit-cells of length A(A 4 1). For example, in SU(5) with
k = 2, a candidate ground state is

® ¢ 0 @ o O (B.9)
@ 0O @ 0 @ O

For all of these representations, the first row will have periodicity A + 1, and the second row
will have periodicity A. The Berry phase term is then

A+l A
EBW:_(AZIU ZA“—%ZAﬁ, (B.10)
a=1 B=1
which can be rewritten to give
1 A
cBmy=—m[pz(x+1)—p1x]ﬂz_leﬂ. (B.11)

For most values of p; and p», the corresponding sigma model will have A fields with
quadratic dispersion, and A + 1 fields with linear dispersion.” However, for the special rep-
resentation satisfying

2 As mentioned below (50), we can rewrite LBerry to have A + 1 fields with quadratic dispersion, and A fields with
linear dispersion.
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1= 0+ Dp2 (B.12)

a theory with purely linearly dispersing modes is achieved.

Cased:n=kr+1,withk>2and A > 1

According to Table 1, we must further specify the parity of A:

e )= even
The ground state unit-cell has length 2A(X + 1) in this case. The first row has (A 4 1)-
site order, while the remaining k — 1 rows have 2X-site order, with the coloured nodes
exhibiting reverse ordering. Therefore, the Berry phase term is

A1 kX
_ P1 «_ 1 B+jk—1)
ACBerry—_()L_"_l) EIA _ﬁ;z E 1(P;3+Pk+2—ﬂ)A i (B.13)
o= =2 ]=

While simpler to rewrite in terms of the A% with ¢ > A + 1, we will always choose to
rewrite the Berry phase in terms of the least number of fields possible. This leads to

A1

1
L =—— 2ap1 — (A +1 A
Berry 2)\(/\+1)0;[ pi— O+ D(p2+ pi)l

1 k—1 X
=55 2 D s+ prvap — p2— poAPHETD, (B.14)
p=3 j=1
e A= odd

In this case, the result found in (B.15) is slightly modified to

A1
LBerry = —mg[xm — (4 D(p2+ Pl A

k—1 2
1 i (k—
=5 2.2 (Pp+ pisap — pa— pAFHIED, (B.15)
B=3 j=1
CaseS:n=kr+cwithc#1,k—1
The ground states in the case have unit-cell order of length 2A(A + 1). The Berry phase
contribution is

c A+l

1 .
LBemy = 20+ ; ; [Pa + Peti—o] A*TUTDE

k A
_ % Z Z [Pﬂ 4 Pk—ﬂ+c+1] ACGAHD+(B=)+(—Dk—c) (B.16)

Using the tr{U 73U = 0 identity, we can only remove 2(% + 1) fields. We are left with:

1 c—1 A+1 "y
-__ _ +(j—De
LBerry = 200+ 1) Zz]; [pa + peti—a — (P1 +Pc)] A ¢ (B.17)
koA
A1 B —_a ]Ac(x+1)+(ﬁ—c>+(j—1)(k—c)_
zm+1> > [0+ DWp+ prpresn) =2 o1+ p)

B=c+1 j=1
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The number of independent constraints that must be satisfied in order to achieve a sigma
model with purely linear dispersion is [ 5] + LI%CJ.
o Case6:n=kA+ (k—1)
In this final case, we must again split into two cases, based on the parity of A:
e )= even
According to Table 1, the ground state has A (A + 1)-site order. The first ¢ — 1 rows of the
ground state has period 2(A + 1), while the last row has period A. The Berry phase term is

k—1A+1 A
! at(i—Dk-1 _ 1 k=D OAD B
EBerry:_mZZ[pa+pk_a]A — XZPkA
a=1j=1 B=1
(B.18)
| k2l
= o — o 1A FG=DE=1)
Gt ZZ[pa + Pk—a — P1 — Pr—-1]
a=2j=1
)\ +1 —A + pr_ A(k—l)()n-‘rl)‘i‘ﬂ_
A(A—}— D ; ( )Pk — A(p1 + pr-1)]
e A= odd
Now the ground state has 2A (A + 1) order, which changes the result in (B.18) to
| k=2 2+1
T 200+ D) DD [Pat pr—a = p1 = pro] ATFUTDEED (B.19)
a=2 j=1
1 A
- - 200 +1 - B A(k*l)()ri’l)‘l’ﬁ'
505D ,;[ (k+ Dk = Mp1 + pe-1)]

Appendix C. Topological angle calculations

In this appendix, we continue the topological angle calculations that were started in Sec-
tion 5.3.

o Case3: k=7

In this case, the correction to Lerry is

A
Lpery = e,w ZZ[ J = Dpa+ Gt j = Dpirioa |9 d™ 0,6 €)

so that the topological angles are

T . .
Ou,j = x(pa + Pr+1-a)(J — 1) + Tprt1—a a=1,---,k;j=1,---,14 (C2)

Here we use two indices to enumerate the fields. Since 2A of the fields always have linear
dispersion, the angles 6 ; and 6y ; are always present. Meanwhile, the remaining (k — 2)A
angles are associated to certain conditions, according to Table C.5.
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Table C.5
Topological angles for representations with k = % rows in their Young tableaux.
Subcase  Condition Angles
keven  pg+ pkt1-o =P1+ Pk Ou,js Ok—at1,j 0t=2,---,§;j=1 A
Po + Pk—a+1=P1+ Pk Oa,js Ok—a+1, )
k odd azz,...,%,jzl’...,k
2ppst =p1+pr Oks1
2 2
e Case4:n=21+1withk=2
We again refer to Table 2. From
A A+l
it 1t
LBemy = ewm ) DY =14+ G = DOA1)3,6"" - 0,0 (€3)

=1t=1

A A+l

te —14+@E-=DMN0 ZJEAL .9 j+)»+1
,WMH)X;;(J (t — 1)1, v

we see that there are two families of angles:

27 pi
,=(}L+1)(t—1)+7rp1(k—1) t=1,---,A+1 (C.4)
and
~  2mp .
9j_—( — 1) +nmprA j=1,-,x (C.5)

The 6; angles correspond to fields that are always linearly dispersing. The remaining angles
are associated to the single condition Ap; = (A + 1) p>.

Case 5a: n = kA + 1 with k > 2 and A even

Since the first row of the ground state has (A + 1)-site order, and the unit cell order is 2A (A +

1), we may write as two parts Lgerry = EBeHy + £Berry The first part is
» A1 22
1 _ _Pr . - Ttk o Tt
Lheny = w3541y 2 2~ 1+ U = DO+ 1)3,6"" - 09", (C0)

t=1 j=1
which gives rise to the following topological angles:

2
LN o
et_k(k+1) ;(I I+(G =D& +D) t=1,2,--- A+ 1 (C.7)

These angles can be further simplified to

27Tp1
0; = t—D+m r=1,2,--- ,A+1. C38
t O+ 1)( ) pP1 (C.3)
The second part of the Berry phase corresponds to the lower k — 1 rows of the classical
ground state. It reads
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Table C.6
Topological angles for representations in SU(n), with n = kA 4+ 1, with k > 2 and A > 1 with A
odd.
Subcase Condition Angles
Po + Pk42—a = P2 + Dk O, jOk+2—a, =3, Kl
k even 2
A+ D (p2 + pr) =2rp1 0 j=1 0 =1 ,041
Po + Pk42—a = P2 + Dk Oc, j-Ok+2—a, j a:3,-~~,§;
k odd 2pks2 = p2+ Pk Oks2 j=1,
2 2 )
A+ 1) (p2 + pr) =2Apy 0 r=1,--,A41
. A A+
Sy
Lhery = 35004 1) ZZZ[pa j =14 =120)
=2 j=11t=1
+ Perzalj = 12 (1= D2 [0,6%77 - 9,67, (C9)
The associated topological angles are
A+l
Ouj =~ [PulG = 120 = D) + prsaali = 1+ + (0 = D20)]
o, j A0+ 1) ot PalJ Pk+2—alJ
(C.10)
fora =2,---,kand j=1,---,A. Again, the angles simplify to
T .
ea,j:x(poc'i'Pk-Q—Z—a)(]_1)+7Tpa a=2 ki j=1,- (C.1D)

where we used the fact that Az p, = 0 since X is even. The correspondence between angle
and condition on the p,, is provided in Table C.6.
Case Sb: n =kA + 1 withk > 2 and A > 1 with A odd
Now that A is odd, the order of the unit cell has changed to A(A 4 1). The two parts of Lgerry
from Case 5a are modified to

AL A

P1 . 1% e
Lherry = “wGT D ;;o — 14+ (= DO+ 1)3,0" - 0,6" (C.12)

and

)»Jrl
€nv
Gl = 3647 2 ZZZ [pali =14+ @ = D22)

=11t=1
+ pri2a (= 1414 - 1)2A>]au¢“~f’* By (C.13)

The angles are then

g = TP f=1,2,-  A+1 (C.14)
T+ T '
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and

T . A —1) :
Ouj =5 Pat Prr-a) | J =1+ = J+7pa @ =2 ki j =10
(C.15)

The same correspondence between condition and angle found in Case 5a applies here as
well, so long as the slightly modified conditions for A odd are used (which can be found in
Table 2).

Case6:n =kl +cwithc#1,k—1

In this case, the ground state order is 2A (A + 1). Again, we split the Berry phase contribution
into two pieces. The first ¢ rows contribute the following term:

A A+l ¢
€
Ll ey w(t — 1 — 120 +1
Berry — 2)\()»4—1)21;;[]) +(] )2(A + 1))
 Peart (6= T2+ 14 (= D26+ 1) [0, - 8,8 (C.16)

which gives the topological angles

(P + Pe—a+1)
Opg=——"—"@t—D+alpe—g+1 +7(A —1
tao O+ 1D ( ) Pc—a+1 ( ) Pex
a=1,---,cit=1,---,A+1 (C.17)
Meanwhile, the remaining k — ¢ rows contribute the term

A A+l

€
L3 — — 14 —1)2x
Bery = 20 (A + 1) 2;ﬂ§1 [pﬂ(f (=121
+ Phprer1( — L+ (1 — D22+ x)]a,,,zifﬂ’* -0,¢F (C.18)

which gives the topological angles

5 w(pg + pr— 1)
0j.p= £ . frect (J—D+aA+ D)pr—ptc+1 +7TApg

B=c+1,--- kij=1,--- A (C.19)

Here, 6 and ¢ have been used in order to differentiate the two families of fields and topolog-
ical angles, so as to simplify our notation. The relationships between topological angle and
condition on the p, topological angles are given in Table C.7.

Case 7a: n = kA + (k — 1) with A odd

The ground state has 2A(A + 1)-site order. The first k — 1 rows have the following Berry
phase contribution:

k=1 1 A+1
€
L} i ot — 1 — D20+ 1
bery = 2““1)21121;[[) (t =14 = D20.+ 1)
S preat =T+ A+14( = D20+ 1))]6)#55"‘*”* 0B (C.20)

The corresponding topological angles are
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Table C.7
Topological angles for representations in SU(n) withn = kA +c¢, withc# 1,k — 1.
Subcase Condition Angles
2, Sir=1 41
Pa + Petl1—a = P1 + Pe Ot 01, c—a+1 =2, ’E’t_ At
k, c even - - k—c
A+ D(pg + pk—p+c+1) =2(p1 + pc) 0j,8:0jk—pt+c+1  B—c=1,---, 5= 1o, A
C
Pa + Pe+1—a = P1 + Pc Or.0 01 c—at 1 (¥=2,"',§§f=1, LA+
k odd - -
A+ D(pp + Pk—p+c+1) =2 (p1 + Pc) 850 k—Btctl e k—c—1
c even - poc=1--, 2
20+ Dprsett = A(p1+ pe) 0 ktctl L
2 )77 j=1,-,x
c—1
Pa + Petl1—a = P1 + Pe Or.05 0t c—at1 a=2--, 5 st=1,---,A+1
k, c odd 2pegt = pitpe O ext 57021,...,k_;_1
A+ D(pg + pk—p+c+1) =2 (p1+ Pc) éj,ﬂséj,k—ﬂ+c+l j=1,- A
Pa + Pet1—a = P1 + Pe Ot,01 0 c—art1 c—1
a=2 -, t=1 S A+ 1
¢ odd 2pep1 =p1+pe b, cx1 2
2 o k—c—1
k even A+ D(pp + Pk—p+c+1) = A(p1 + pe) 0580 k—ptc+1 B—c=1,-, )
20:+ Dpiez = 2(p1 + po) ézl"*%“ Jj=1-2
7(Pa + Pk—a)
Opg=—"—"""—@t— 1) +nmpi— (C21)
o G+ 1) Pk—a
Meanwhile, the last row of the ground state contributes the term
€ A 200+1)
2 _ _ o J
Cheny = 3700+ 1)ka D IG =D+ = DA - 3,6 (C22)
j=1 =1
giving rise to the angles
27 pi
0j=——U =D+ per. (C.23)

The correspondence between condition on the p, and topological angle can be found in
Table C.8.

e Case 7b: n = kA + (k — 1) with A even
This is the final case. Now that X is even, the order of the unit cell has changed to A(A + 1).
The two parts of Lperry are modified to

k=1 5 a4l

1 €pv .
‘C’Berry_) m;gg[pa(t_l‘f‘(] — D2+ 1))

 Plmamalt = 12 14+ (= D200+ 1)]9,6% 0,6 (C24)
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Table C.8
Topological angles in SU(n) with n = kA + (k — 1), with A odd.
Subcase  Condition Angles
Pa + Ph—a = P1 + Pi—1 Ot bhai  w=2.... KL
k odd 2
A+ Dpr=r(p1 + pr—1) 0; j=1, 0 =1, A+1
Pa + Pk—a = P1 + Pk—1 Oct, 1,0k —a,t a=2,--- ,g;
k even 2P%=P1+Pk—1 9%’, t=1,---,A+1
A+ Dpr=r(p1 + pr—1) 0; j=1,
and
c A (A1)
2 Ky P _ bi* .9 B
Lhemy = 001y P ]Zl ; [ =D+ = DA, 7" - 0,6 (C.25)
and the angles are modified to
7(Pa + Pr—a) 7(Pa + Pr—a)
Opt —> ——————(t—D+apyq+ ——KA—-2 C.26
ot ) ( ) + 7T Pk—a 2 ( ) (C.26)
and
2npk .
0; — (G-—D. (C.27)

The correspondence between angles and conditions follows the same pattern as the previous
case (7a), with a slight modification of the conditions themselves, according to Table 3.
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