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ABSTRACT

As imaging surveys progress in exploring the large-scale structure of the Universe through the use of weak gravitational lensing,
achieving sub-per cent accuracy in estimating shape distortions caused by lensing, or shear, is imperative for precision cosmology.
In this paper, we extend the Fourier power function shapelets (FPFS) shear estimator using fourth-order shapelet moments and
combine it with the original second-order shear estimator to reduce galaxy shape noise. We calibrate this novel shear estimator
analytically to a sub-per cent level-accuracy using the AnaCal framework. This higher order shear estimator is tested with
realistic image simulations, and after analytical correction for the detection/selection bias and noise bias, the multiplicative shear
bias |m| is below 3 x 1073 (99.7 per cent confidence interval) for both isolated and blended galaxies. Once combined with the
second-order FPFS shear estimator, the shape noise is reduced by ~ 35 per cent for isolated galaxies in simulations with Hyper
Suprime-Cam and Vera C. Rubin Observatory Legacy Survey of Space and Time observational conditions. However, for blended
galaxies, the effective number density does not significantly improve with the combination of the two estimators. Based on these
results, we recommend exploration of how this framework can further reduce the systematic uncertainties in shear due to point
spread function leakage and modelling error, and potentially provide improved precision in shear inference in high-resolution

space-based images.
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1 INTRODUCTION

Weak gravitational lensing refers to the small but coherent distortions
of distant galaxies’ light profiles due to intervening massive fore-
ground matter between the source galaxies and observers. Analysing
the statistics of this distortion can reveal the distribution of matter and
the large-scale structure, yielding deep insights into the fundamental
physics of the Universe and its evolution (see Kilbinger 2015 for a re-
view of weak lensing). Measuring the coherent pattern of distortions,
or shear, in the observed image is one of the most effective ways to
constrain the fundamental physics of the Universe. Upcoming Stage
IV imaging surveys like the Vera C. Rubin Observatory Legacy
Survey of Space and Time (LSST; LSST Science Collaboration 2009;
Ivezi¢ et al. 2019), Euclid (Laureijs et al. 2011), and Nancy Grace
Roman Space Telescop e High Latitude Imaging Survey (Akeson
et al. 2019) will cover a large sky area and observe more than billion
source galaxies, allowing us to make unprecedented per cent-level
cosmic shear measurements.

However, the magnitude of this tiny distortion, which
causes percent-level changes in the ellipticities of the observed
galaxy images, is, on average, ~10 per cent of the root mean square
(RMS) of intrinsic galaxy shapes. Hence, an accurate measurement of
weak-lensing shear is complex and needs to calibrate several sources
of systematic effects that complicate the process of characterizing
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galaxy shapes, including the point spread function (PSF) from
atmospheric effects and telescope optics (e.g. Liaudat, Starck &
Kilbinger 2023); noise bias from image noise due to the non-linearity
in shear estimator (e.g. Refregier et al. 2012); model bias due to
unrealistic assumptions about galaxy morphology (e.g. Bernstein
2010); selection bias due to sample selection (Kaiser, Squires &
Broadhurst 1995) and detection (Sheldon et al. 2020); and biases
from blending and deblending of galaxy light profiles (Li et al. 2018).
To achieve per cent-level bias in cosmological parameters despite
systematics (see Mandelbaum 2018, for a review of systematics
in weak lensing), the upcoming surveys require that the residual
systematics after all corrections should be well below the statistical
uncertainty. This requires that residual systematic uncertainties in
shear measurements be below one part per thousand (The LSST
Dark Energy Science Collaboration 2018).

Several recent shear measurement techniques have been devel-
oped that aim to reduce the reliance on calibration using external
simulations. This is desirable because the simulations may not
be sufficiently realistic to achieve the level of precision needed
for cosmological inference. These methods that aim for unbiased
shear inference include METADETECTION (Sheldon et al. 2023),
a numerical self-calibration method; and BFD (Bernstein et al.
2016), a Bayesian approach to shear estimation. There has been
significant efforts to develop purely analytical shear estimators (Li
etal. 2018, 2024b; Li, Li & Massey 2022b; Li & Mandelbaum 2023;
Li, Mandelbaum & The LSST Dark Energy Science Collaboration
2024a) in order to achieve sub-per cent accuracy without relying on
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any calibration from external image simulations. The Fourier power
function shapelets method (FPFS hereinafter) can achieve a sub-
per cent accuracy by correcting for noise bias, selection and detection
bias. In short, FPFS uses set of shapelet modes (Bernstein & Jarvis
2002; Refregier 2003; Massey & Refregier 2005), detection modes
and other linear observables after PSF deconvolution to carry out
the detection, selection, and measurement of the galaxy ellipticity
and response to shear. It uses the first-order derivatives (Jacobian) of
the ellipticity with respect to these linear observables and the shear
responses of shapelet to obtain the shear response of the ellipticity.
To correct for the noise bias, one can use the second-order derivative
(Hessian matrix) of the ellipticity and the covariance matrix of the
measurement error on the observables (Li et al. 2024b), or add
pure image noise to the galaxy image with a carefully chosen noise
correlation function to derive an analytical noise bias correction (Li
et al. 2024a). This innovative analytical calibration technique for
shear estimation, designated AnaCal (Li & Mandelbaum 2023; Li
et al. 2024b) is more than a hundred times faster than the current
benchmark METADETECTION algorithm, documented in Sheldon
et al. (2023).

Lensing shear causes the estimates of the ellipticities of distant
galaxies to change. This effect is quantified statistically by observing
the characteristics of a galaxy that undergoes simple transformations
under shear. One way to parameterize the shape is based on
second-order moments of the galaxy image, which captures the
orientation and elongation of the object. These moments have been
widely adopted in weak-lensing studies due to their robustness and
relative insensitivity to image noise. However, higher order moments,
while more sensitive to image noise and harder to model, offer
the potential to capture additional information about the galaxy’s
response to shear. They probe finer structural details that are not
accessible through second moments alone, suggesting they may
contain complementary information about the shear. The original
FPFS implementation primarily focused on second-order shapelet
moments to construct the ellipticity of galaxies, and achieves a shear
estimation bias below 0.3 per cent in the presence of blending. In this
work, we extend the FPFS framework by incorporating fourth-order
shapelet moments to define the ellipticity. We use image simulations
to test the accuracy of our new shear estimator after analytically
correcting for detection and selection bias. We then take two FPFS
shear estimators, second- and fourth-order, and combine them to
maximize the shear signal and reduce the overall shape noise. Our
goal is to quantify how much additional information is provided by
the fourth-order moments; the fourth-order shear estimator, which
is independent of the second-order, can also be used to cross-
comparison and improve the systematic control.

This paper is organized as follows. In Section 2, we give a
brief overview of the FPFS shear estimator within the AnaCal
framework, the fourth-order shear estimator, and introduce a method
to combine two different shear estimators. In Section 3, we present
galaxy image simulations that we used to test the accuracy of our
new fourth-order shear estimator. In Section 4, we show the result of
our analysis and quantify the reduction of shape noise by combining
two shear estimators. Finally, in Section 5, we summarize our results
and future outlook.

2 METHOD

In this section, we briefly review the FPFS shear estimator developed
in Li et al. (2018, 2022b) and calibrated with the AnaCal framework
implemented in Li & Mandelbaum (2023) and Li et al. (2024b). We
then extend FPFS to a higher order shear estimator.
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The distortion of galaxy shapes, or shear, caused by foreground
inhomogeneous mass distribution can be described by a locally linear
transformation (or the Jacobian matrix) as

L=y —n

= (50 o
where the component y; quantifies the amount of stretching of the
image along the horizontal direction and y, quantifies the stretching
of the image in the direction at an angle of 45° with the horizontal
direction. We use a complex spinor to represent shear as y = y; +
iy, where i is the imaginary number unit. In this paper, we set the
lensing convergence to zero to simplify the notation. The shear is
typically estimated by measuring the galaxy’s ellipticity, a spin-2
observable, which negates under a 90° rotation (see appendix B of
Li & Mandelbaum 2023 for more details). In the weak-lensing limit,
shear is on the order of a few per cent or less (|y| < 0.02), making
the shear signal much smaller than the shape noise due to galaxy
intrinsic shapes, so that a large ensemble of galaxies is needed to
infer shear.

2.1 Galaxy detection

Before measuring shear, detection, and selection of galaxies can
introduce biases that affect the shear estimation, hence it is essential
to derive their shear response for an accurate shear estimation.
Galaxy detection from images in FPFS uses four detection modes
(vi, where i = 0...3) for each pixel in the image to characterize
the difference in the value of the pixels with respect to the nearby
pixels in four directions. These nearby pixel detection modes are
then used to identify peaks that are served as ‘peak candidates’.
The corresponding selection bias from carrying out the detection
process using these peak modes is analytically corrected using the
shear responses of the pixel values (Li et al. 2024a, 2022b). For a
galaxy profile f(x), with x denoting image in real space, we define
the detection modes for every pixel i as

[y £
y = //dkwi B @

where f7(k)is the observed (PSF-convolved, noisy) image in Fourier
space and p(k) is the PSF image in Fourier space, and the coordinate
centre is set to the centre of this pixel. The detection kernels v (k)
for wave number vector k = (ki, k») are defined in Fourier space as

1

—|k[20? ik-x;
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lﬁ,-* (k) =
where x; = (x;, y;) = (cos(i7t/2), sin(i7t/2) are position vectors to
nearby pixels with lengths equal to the image pixel side length and
orientations pointing towards the four directions separated by 7t/2.
The shear response of these detection modes is given by
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where the subscript ‘; &’ denotes the partial derivative with respect to
one component of the shear, y,. The shear response of each detection
kernel can be written as a combination of shapelet basis and is given
by

v = yr 1 e‘k|26,‘2/2(k12 — )02 (1 — eithnithan)
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2.2 FPFS shapelet modes

FPFS uses polar shapelet modes (Massey & Refregier 2005) to
construct various galaxy properties, including flux, size, and shape.
These polar shapelet modes are constructed by projecting the
observed noisy galaxy image after PSF deconvolution on to a set
of Gaussian-weighted orthogonal functions (Li et al. 2018). The
FPFS complex polar shapelet modes are defined as

. frk)
My, = [Pk 55 (k) ——2, 7
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where ¥,, is the Fourier transform of the polar shapelet basis
function characterized by a radial quantum number ‘»’ and an angular
quantum number, or spin number, ‘m’. Polar shapelet basis functions
Xnm are defined as

B [(n — [m)/211
- —(—1 (n=fmpy2 ) 27 T
Xom(x [ 04) = (1) {[(n+|m|>/2l!}
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where L' i are the Laguerre polynomials and oy, is the smoothing

(®)

m|
n

scale of shapelets and the detection kernel. n can be any non-negative
integer and m is an integer between —n and #n in steps of two.
Under a Fourier transform, the shapelet basis changes as

Xom(X10n) = Fom(K) = i" Yom(K|1/07,), (C))

so the amplitude of the shapelet basis in Fourier space is the same as
in real space but the scale is the inverse of that in real space (Refregier
2003). Typically, o, is set so that it is greater than the scale radius
of the PSF in configuration space so that the deconvolution does not
amplify the noise on small scales, or large |k|. In this work, we do
not adapt oy, to the size of the galaxy light profile. However, in real
observations, we can split the survey into smaller patches and have
a different smoothing scale o, for each patch.

When a galaxy image is distorted under the influence of shear, a
finite number of independent shapelet modes are coupled (separated
by |An| = 2 and |Am| = 2). This causes the sheared shapelet modes
to be a linear combination of a finite number of other shapelet modes.
Since the FPFS shapelet modes are computed after deconvolving the
galaxy with the PSF model, the PSFs do not bias shear estimation as
long as we have a good PSF model at the positions of the galaxies.

2.2.1 Galaxy flux and galaxy size

The zeroth-order shapelet mode, My, is the value of the central peak
of the smoothed image with the smoothing scale of o;,. We follow
Li & Mandelbaum (2023) to use My to quantify the brightness of
galaxies, and FPFS flux is defined as

P Moo ,
/fizk|)?00(k)|2/|ﬁ(k)|2

where the denominator is the square of the L? norm of the resmooth-
ing kernel. We can use the flux and convert it to FPFS magnitude

10)
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defined as
ME = Myero — 2.510g(F), (11)

where M, is the zero point of the survey. The value of mi,e, is 27
for Hyper Suprime-Cam (HSC) coadded images (Bosch et al. 2018)
and 30 for LSST coadded images (Ivezi¢ et al. 2019).

The galaxy size is conventionally measured using second-order
Gaussian weighted moments (see e.g. Hirata & Seljak 2003).
Following Li & Mandelbaum (2023), we use the combination of
spin-0 shapelet moments to define the size as

2
/fizxf (Zﬂ) e I/ = Moo + Mo, 12)
h

and define the FPF'S resolution as
_ Moo+ My

My

Note that this definition of resolution given by Li & Mandelbaum
(2023) is conceptually similar to the resolution defined in Hirata &
Seljak (2003). Under a shear distortion, the shapelet moments M,
and M, change from their intrinsic values Moy and My as

Moy = Moo + ~2(y1 M + y2 M),

My = My + 6(1 Maze + 2 Masy), (14)
where we use My, and M, to denote the real and imaginary part of
the complex shapelet mode M,,,,. We use their linear shear response

to derive the shear response of the galaxy detection/selection and to
correct for the detection/selection bias in Section 2.3.

R, 13)

2.3 Detection and selection weights

We use the weight functions introduced in Li & Mandelbaum (2023)
for galaxy detection and selection. For the galaxy detection process,
we apply cuts on peak modes, and for the galaxy selection process,
we apply cuts on magnitude and resolution. The analytical shear
responses of the hard cuts are noisy and unstable, especially when
applying multiple cuts to the galaxy properties, as a hard selection
weight is discontinuous and not differentiable at the selection
boundary. For this work, instead of applying hard cuts on observables,
we use truncated sine functions (see equation 45 of Li & Mandelbaum
2023) since these are differentiable and are more stable. The selection
weight used to select the galaxy sample is given by

3
w(v) = Ty (Moo) T3 (Moo + M) | [ T (wi), (15)
i=0

where 73 is used to select bright galaxies with high-signal-to-noise

ratio (SNR), T is used to select well-resolved large galaxies, and
Tt is used to define the cut on peak modes. Since we have calculated
the shear response of the detection modes (Section 2.1) and the
shapelet modes used to quantify the flux and size (Section 2.2), we
can calculate the derivative of the detection and selection weight
function to shear.

2.4 Fourth-order shear estimator

Li & Mandelbaum (2023) use shapelet modes My, M2y, and My,
(hereafter second-order moments) and their shear responses to
compute the galaxy flux, size, and shape (ellipticity). In this work,
use the same detection and selection defined in Li & Mandelbaum
(2023) and Li et al. (2024a) and extend the second-order shapes
adopted by Li & Mandelbaum (2023) to fourth-order shapes.

MNRAS 537, 507-519 (2025)
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Figure 1. The real and imaginary components of the spin-2 second-order
and fourth-order shapelet basis. The fourth-order shapelets are sensitive to
scales larger and smaller than that of the second moments, as referenced by
the dashed lines. The colour scale assigned to each basis function spans the
interval [—A, A], with A representing the maximum absolute value of the
corresponding basis function.

In Fig. 1, we show the spin-2 second-moment and fourth-moment
basis functions. The fourth-moment basis is more sensitive to pixels
with radius both larger and smaller than that of the second moment.
Within the same polar angle, the sensitivities of fourth moments to
smaller and larger radii have opposite signs, making Mu; sensitive to
the difference in spin-2 behaviour between pixels with small and large
radii. Quantitatively, a shapelet model contains information mainly
between the minimum and maximum scales (Massey & Refregier
2005) defined as

Op
Omin = ——
min /;n-l—l

where o, is the shapelets smoothing scale and n is the shapelets
order. We refer readers to Appendix A for a detailed analysis of the
shapelet moments of a Gaussian profile and their sensitivity to shear.

Using the shear responses of shapelet modes defined in Massey &
Refregier (2005), the shapelet modes are given by

and  Opax = opvn + 1, (16)

My =M. +\/6 (M3 — Meo)
42¢c = Mapc ) Y1 20 60 (17)

— V51 Mgse — yav/5 Mgy

_ V6
Mo, = My + =y, (Myy — M,
) 45 + 5 v2 (Ma 60) (18)

+ V51 Mese — iV 5Mesy,

where M, represents the sheared shapelet modes and Mo rep-
resents the intrinsic shapelet modes in the absence of shear. As
described in Li et al. (2018), shear can be inferred from equations (17)
and (18) by taking the expectation values on both sides. Assuming
that there is no preferential direction of the randomly selected galaxy
ensemble, the expectation values of the intrinsic spin-2 and spin-4
shapelet modes on the right-hand side of the equations reduce to
zero, i.e. (My) = (Mgs) = 0. It is the population variance of these
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spin-2 and spin-4 shapelet modes that causes the shape noise of the
shear estimator.

Li et al. (2018) introduced a normalizing scheme to re-weight the
shapelet modes dominated by bright galaxies and reduce the shape
noise of the shear estimation. The dimensionless FPFS fourth-order
ellipticity is defined as

My,
My + C®’

In Li & Mandelbaum (2023), they use My, in the numerator of
equation (19) to define the spin-2 ellipticity. In this work, we use
M, to define the fourth-order spin-2 ellipticity. The FPFS weighting
parameter C® adjusts the relative weight for galaxies with different
brightness. Note that the optimal value of the weighting parameter
C™ is different for each order of the estimator, as different shapelet
moments are sensitive to different scales.

(4] +i€2 = (19)

2.5 Analytical shear calibration

In this subsection, we outline how to correct for the noise bias in
shear due to the pixel noise in the images. The previous generation
of AnaCal corrected the noise bias by computing the second- and
higher order derivatives of the non-linear observables (Li et al.
2024b). This required taking derivatives of smoothstep functions
with smoothness parameters, which led to significant fluctuations
in higher order derivatives Li et al. (2024a). Sheldon & Huff
(2017) proposed a numerical recipe to correct for noise bias by
adding additional noise to the already-noisy image. Li et al. (2024a)
analytically prove the method is free of noise bias and adopts
the analytical version within the AnaCal framework. This paper
follows Li et al. (2024a) to analytically correct for noise bias in
shear estimation. Following Sheldon & Huff (2017), we introduce an
additional layer of noise to the image that shares the same statistical
properties after being rotated counterclockwise by 90°, with the
rotation defined in the space prior to PSF convolution. The addition
of this noise layer effectively cancels out the spin-2 anisotropies
present in the original noise image after deconvolution. Note that
Sheldon & Huff (2017) is a ‘finite-difference’ version of the noise
bias correction which is not the same as the ‘analytical’ version in Li
et al. (2024a). This paper uses the ‘analytical’ version, not the ‘finite
difference’ version. The shear response of the renoized ellipticity can
be measured after adding the simulated noise as (adopting Einstein
notation)

(Ra) = <a(aaf“) (i — 251}1.’;0[)> , (20)

where the subscript o denotes each component of the shear and §v; is
the measurement error of the i th linear observable from the additional
noise. We use a double tilde (1::) to denote linear observables with
doubled image noise. The shear estimator is then

o= 88 0 (9, @1

(k)
where & is the ellipticity observed after adding the additional image
noise. This shear estimator is free from noise bias and is accurate to
second order of shear. It is worth noting that the renoizing approach
does not require any computation of noisy second- and high-order
derivatives, and does not include higher order terms from image
noise which are present in the original version of FPFS. However, a
limitation of this method is that we need to double the image noise
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before running detection and source measurement. In this work, we
used this renoizing approach to analytically correct for the noise bias.

2.6 Combining shear estimators

Given the second- and fourth-order shear estimators, we combine
these estimators to maximize the SNR of the shear estimator and
minimize the noise in the shear estimation, including intrinsic shape
noise and measurement error from image noise. The combined shear
estimate is defined as

)//\oz,t = :U“i/\ot,Z + (1 - /-L)J//\QA, (22)
where « is the component of the shear and the subscripts 2 and 4
are the order of the shear estimator. The statistical uncertainty in the
combined shear estimation is then

Var(Ve,) = plo, , + (11—’

Ya.2

+2u(1 — ) CoV(Var 2, V) (23)

where o,, are the standard deviation of each estimator, and p,, is the
correlation between the two estimators. The shear estimator weight 1
is defined so that it minimizes the variance of the combined estimate
as

n = arg min Va-r(]//\a,t)
14

2

6Va.4 - COV(?&.L )//\01,4)

Ulgotl + U)gotA - ZCOV()//\(Y,Zy )//\Dt,4)

2 _
_ O-Va,4 puUVa.Z UVaA (24)
T 42 2 _ :
% T s 2040y, 07,4

In the case of no correlation between the two estimators, p, = 0
and the weight p is equivalent to inverse variance weighting. If both
estimators give an unbiased shear estimate, i.e. (Vy2) = (Vud) = Vu
when averaged over an ensemble of galaxies, then the combined
estimator also gives an unbiased shear estimate.

3 SIMULATIONS AND TESTS

In this section, we describe mock astronomical images that we
produce with known input shears to test the performance of our
fourth-order shear estimator and compare it against the second-order
shear estimator developed in Li & Mandelbaum (2023). We corrected
for noise bias, selection bias, and detection bias using methods
developed in Section 2. The estimated shear, y,, is related to the
input shear, y,, as

7701 = (1 + ma)yot + Cq, (25)

where the subscript o denotes each component of the shear and
m, (multiplicative bias) and ¢, (additive bias) are used to test the
accuracy of the shear estimator (Heymans et al. 2006; Huterer et al.
2006). We also combine second- and fourth-order shear estimators as
derived in equation (22) and study the reduction in the shape noise.

3.1 Simulation setup

We use the same simulation setup as used in Li & Mandelbaum
(2023). In summary, we generate two sets of data: image simulations
with isolated galaxies, where each realization contains multiple
postage stamps that each have one galaxy, and blended galaxy image
simulations, where galaxies are randomly distributed. We vary the
seeing, pixel scale, and image noise level to match those of the HSC
and LSST surveys.

A high-order FPFS shear estimator 511

Table 1. Table for simulation setups. The noise variance for each simulation
is set to the mean noise variance in the 3-yr HSC data and the 10-yr LSST
observation, respectively.

Variable HSC LSST
Pixel scale 0.168 arcsec 0.20 arcsec
Seeing 0.60 arcsec 0.80 arcsec
Moffat profile exponent 3.5 2.5
Magnitude zero point 27.0 mag 30.0 mag
Noise variance 3.6 x 1072 3.5x 107!

PSF ellipticity (e =0.02, e; = —0.02)

The pixel scale is set to 0.168 arcsec (0.2 arcsec) for HSC (LSST)
like simulation. The PSF for these simulations is modelled with a
Moftat (1969) profile,

2 —n

l+c¢ (m) ] , (26)
p

where ¢ and r, are set such that the full width half-maximum
(FWHM) of the Moffat PSF is 0.60 arcsec (0.80 arcsec) matching the
median seeing of actual HSC i-band (expected LSST i-band) images.
The exponent 7 is 3.5 for HSC simulations (Li et al. 2022a) and 2.5
for LSST simulations (Sheldon et al. 2023). Table 1 summarizes the
values used for each survey setup. To introduce an anisotropic PSF,
we shear the PSF so that it has ellipticity (e; = 0.02, e; = —0.02).
We show a small region of one simulated image for both isolated and
blended simulations in Fig. 2.

When testing the accuracy of our fourth-order shear estimator,
we use the same simulation used in Li & Mandelbaum (2023): for
each type of simulation, we have two sets of galaxy images with the
same realization of image noise generated; one distorted with (y; =
0.02, y, = 0) and the other with (y; = —0.02, y, = 0) as introduced
in Pujol et al. (2019). We used the ring test setup (Massey et al. 2007)
by having our galaxy sample contain orthogonal galaxies with the
same morphology and brightness but with the intrinsic major axes
rotated by 90°. This allows us to cancel out the intrinsic shape noise
in our simulation.

Pm(x) =

3.2 Isolated image simulations

We test the performance of fourth-order shear estimator relative to
the second-order estimator using isolated galaxy image simulations.
The goal of this is to understand how the estimator performs when
blending effects are absent, focusing on the impact of shear, PSF
size, and image noise. For isolated galaxy image simulations, galaxy
images are generated using the publicly available software GalSim
(Rowe, Jarvis & Mandelbaum 2014) and use the COSMOS HST
parametric galaxy catalogue (Mandelbaum et al. 2019) with limiting
magnitude F814W = 25.2 as the input galaxy catalogue (see section
3.1 of Li & Mandelbaum 2023, for more details). Note that at this
limiting magnitude for the input catalogue, some of the lower SNR
galaxies that are expected in the isolated simulations may be missing
from the analysis. Galaxies are rendered in 64 x 64 pix postage stamp
images after the shear distortion and PSF convolution. Each realiza-
tion (subfield) of the simulated image contains 100 x 100 postage
stamps, and after including orthogonal galaxy pairs as described in
Section 3.1, each subfield contains 5 x 103 orthogonal galaxy pairs.
Each orthogonal galaxy is placed adjacent to its unrotated galaxy
in the same simulation. We simulate 4000 subfields with different
realizations for the noise image, the galaxy sample, and random
galaxy rotation.

MNRAS 537, 507-519 (2025)
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Figure 2. The left panel shows a 128 x 128 pix? (equivalent to 0.36 x 0.36 arcmin?®) stamp image of the isolated galaxy image simulation with HSC seeing,
where the dotted black lines show the boundaries of the 64 x 64 pix? stamps. The right panel shows a random cut-out coadded image of 240 x 240 pixel®
(equivalent to 0.8 x 0.8 arcmin?) of griz bands of the LSST-like blended galaxy image simulation (Sheldon et al. 2023). Both images were produced before

adding noise.

3.3 Blended image simulations

Blended galaxy simulations are essential for understanding the
estimator’s performance in realistic observational conditions, where
the blending of multiple objects occurs. We also tested our fourth-
order estimator on blended galaxy image simulations and compared
it against the second-order estimator. For blended galaxy image
simulations, we use the open-source package descwl-shear-
sims! (Sheldon et al. 2023), which includes the survey parameters
for the simulation, such as noise and PSF. The package uses the input
galaxy catalogue from WeakLensingDeblending.? The output
of the package is a calibrated image with a subtracted background and
estimated noise variance of the image. The simulated galaxies include
bulge, disc, and active galactic nucleus (AGN) components. The
bulge and the disc have varying fluxes and the AGN is represented
as a point source located at the galaxy centre. To include some of
the complexity of realistic galaxy light profiles, the isophotes of
these simulated galaxies are not strictly elliptical. Galaxy positions
are randomly distributed across the image, without accounting for
spatial clustering.

Each simulated image contains about 10° input galaxies and covers
0.12 deg?, corresponding to a galaxy number density of about 230
per square arcmin. However, not all of these galaxies are detectable
at the depths achieved by HSC and LSST. When testing the accuracy
of each shear estimator on blended galaxies, we also adopted the
ring test to cancel out shape noise. For these blended simulations,
the rotated galaxy is stored in a different realization. The blended
galaxy image simulations are simulated with descwl-shear-
sims (Sheldon et al. 2023), and the setup is the same as Li et al.
(2024b).

Uhttps://github.com/LSSTDESC/descwl-shear-sims
Zhttps://github.com/LSSTDESC/WeakLensingDeblending
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For LSST-like simulations, we use griz bands with the same
galaxy profile and PSFs in each band without dithering. The noise
variance level matches the expectations for a coadded image based
on LSST 10-yr observations, and each band has a different noise vari-
ance. The image is coadded in these four bands with inverse variance
weighting based on the sky background noise. The multiband coadds,
then, have a well-defined PSF (Mandelbaum et al. 2023) since each
band has a spatially constant weight across the images. These four
bands were chosen as it is likely that LSST cosmic shear analysis
will use observations in griz bands. For the HSC-like setup, we used
the image noise variance in the HSC i band. HSC primarily uses the
i-band for cosmic shear due to its better seeing conditions compared
to other bands.

4 RESULTS

In this section, we present the results of testing the precision and
accuracy of our fourth-order FPFS shear estimator with isolated
galaxies (Section 4.1) and blended galaxies (Section 4.2) as described
in Section 3. We also compare the results against the second-order
FPFS shear estimator and combine the two shear estimators to
quantify the reduction in shape noise.

4.1 Isolated galaxies

In this subsection, we focus on isolated galaxies simulated within
postage stamps as described in Section 3.2.

4.1.1 Precision test

We first tested the performance of our fourth-order estimator and
compared the uncertainty on this new estimator to that of the
second-order estimator. We then computed how much information
is gained, or how much uncertainty is reduced, by combining the
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two estimators. When analysing the uncertainty of each estimator,
we use 100 out of 4000 subfields to save computational time. For
each subfield, we include the intrinsic shape noise in our analysis
by excluding a single randomly chosen galaxy from each orthogonal
pair when both are detected. In addition, we deliberately positioned
the centre of each galaxy at the centre of the postage stamp. We
forced the pipeline to do measurements based on the known centre
without running any detection and selection process during the image
processing. This is equivalent to setting the selection weight function,
w in equation (15), to 1 for all galaxies. We use the results from this
process to set the FPFS weighting parameter C™ in the denominator
of the spin-2 ellipticity estimator in equation (19).

For each subfield i, the estimated shear is computed as
NON Ejei wi‘i) e((:} 27

! S R™
Jjei “ta,j

where n € {2, 4} is of the order of the shear estimator, « is the
component of the shear, and the summation is over all galaxies
J in subfield i. Note that the weight is also order-dependent as
the weight parameter C™ is different for each order. Forcing the
measurements at the known centres and not applying any selection
criteria is equivalent to setting the effective weight in the shear
estimator ﬁ);") =1.

We calculate the statistical uncertainty in the shear estimation from
a population of subfields of galaxies as

() = <% <(?f’”)2 + (;75’”)2) > N, (28)

where N is the number of galaxies in each subfield. With each
subfield having 100 x 100 postage stamps, but with one galaxy in
each orthogonal pair excluded, N = 5 x 10°. The total uncertainty is
a combination of uncertainty due to galaxies’ intrinsic shape noise,
Yams and uncertainty due to noise in the galaxy images, 0. We
assume that they add in quadrature, such that

(o1)" = () + (07)° @)

To obtain the galaxies’ intrinsic shape noise, yé’,ﬁfs, we use
simulated galaxies with zero image noise and the same weighing
parameter value C™ for each estimator to measure the FPFS
ellipticity. To save computational time, we only measure the first
component of the ellipticity and calculate the RMS across our
sample of subfields. To obtain the measurement uncertainty, o™,
we measure the total uncertainty using a noisy realization of the
galaxy image, again using only the first component of the ellipticity.
We then subtract egws in quadrature following equation (29) to get
the measurement uncertainty for each shear estimator.

The statistical uncertainty of FPFS also depends on the FPFS
weighting parameter, C™, in equation (19) (Li & Mandelbaum
2023). Here, we assume image noise fields that are homogeneous
but that have pixel-to-pixel correlations. This is a reasonable approx-
imation for faint, small galaxies observed in ground-based surveys,
where noise is primarily due to sky background fluctuations and
where measurements may be made on a coadd with pixel-to-pixel
noise correlations. However, this assumption may not fully capture
the noise properties in upcoming Stage IV imaging surveys. Further
testing is required to evaluate the robustness of this assumption
to achieve the precision needed for percent-level cosmology. In
Fig. 3, we show each source of uncertainty as a function of C™
for the second-order (blue) and fourth-order (orange) estimators on
simulated isolated galaxies.
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Figure 3. The lo statistical uncertainty on a single component of the
estimated shear P; for individual isolated galaxies (solid lines) as a function
of the weighting parameter, C™, in equation (19). For each second and
fourth order estimator, the total uncertainty has contributions due to image
noise (dotted lines) and intrinsic shape noise (dash—dotted lines). The vertical
dashed lines show the values of C™ used for each estimator throughout the

paper.

The galaxies’ intrinsic shape noise (dashed) for both estimators
increases as a function of C™, whereas the measurement uncertainty
(dash—dotted) for both decreases as a function of C™ since a larger
value of C™ adds more weight to the limited number of bright
galaxies with higher SNR. The measurement uncertainty for the
fourth-order estimator is larger than that of the second-order for
our simulation setup as the fourth-order shapelet basis amplifies the
noise. From this result, we set C® = 7 for the second-order shear
estimator and C® = 10 for the fourth-order shear estimator for the
rest of the paper.

Once we fixed the value of C™ for each shear estimator, we
relaxed the forced measurement and allowed the pipeline to carry
out detection and selection during the image processing. For the
rest of this section, during the image production step and before
running the FPFS detection process, we shift the galaxy centroid
with random sub-pixel offsets. Following Li & Mandelbaum (2023),
we run the FPFS peak detection algorithm and use the detected
peaks as the centroid. Using the detected peaks to measure the galaxy
properties, we then apply flux- and resolution-based selection criteria
in equation (15) to assign selection weights to the detected galaxy
sample. After analytically correcting for noise bias, selection bias,
and detection bias, we show the shape measurement uncertainty
from the second-order (blue) and fourth-order (orange) estimator on
isolated galaxies in Fig. 4. This figure shows that for isolated galaxy
samples, combining the two shear estimators reduces the statistical
uncertainty in shear inference by ~30 per cent. This result suggests
that for isolated galaxies, we can get significantly more information
if we estimate the shear using second and fourth-order moments
and combine them using equation (23). A 30 per cent reduction in
shape noise is equivalent to the increase in sample size that would
be achieved by expanding the survey area by 70 per cent.

4.1.2 Adaptive versus non-adaptive moments

We next compare each FPFS shear estimator against the widely
used reGauss shear estimator method (Hirata & Seljak 2003). This
comparison is motivated by the differences in how these methods
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Figure 4. The lo statistical uncertainty on shear measurement | for indi-
vidual isolated galaxies as a function of the upper limit of FPFS magnitude
(m ) for the galaxies included in the measurement. The uncertainty for each
second and fourth order estimator includes contributions due to image noise
and intrinsic shape noise. Equation (22) is used to combine the two shear
measurements.

use moments of the galaxy profiles to measure ellipticity. One key
distinction between the two is the use of adaptive versus non-adaptive
approaches. In the non-adaptive method, as implemented in FPFS,
a fixed kernel (or weight function) is applied uniformly across all
galaxies, regardless of their morphology. The adaptive method used
by reGauss optimizes the weight function for each galaxy based on
its specific shape and size. This optimization improves the precision
of the shear estimation by effectively accounting for variations in
galaxy morphology to match the weight functions to the galaxy
images. We use the GALSIM implementation of reGauss to correct
for the PSF when estimating galaxy shapes. An important output of
the reGauss estimator is the components of the spin-2 ellipticity
of each galaxy:

1 — (b/a)?
1+ (b/ay
where b/a is the axis ratio and ¢ is the position angle of the major

axis with respect to sky coordinates. Another important output of
reGauss is the resolution factor R;:

(e1,e) = (cos2¢, sin 2¢), (30)

R,=1 Ton 3D
where Tpsr is the trace of the second moment matrix of the PSF and
Ty is the trace of the second moment matrix of the observed PSF-
convolved galaxy image. The resolution factor quantifies how well
the galaxy image is resolved relative to the PSF; R, ~ 1 for well-
resolved objects and R, ~ 0 for poorly resolved images. In general,
the positively and negatively sheared galaxy images have different
resolution factors (RS # R}).

We select well-resolved galaxies to avoid a large multiplicative
bias correction at a low-resolution factor for reGauss (Li et al.
2022a). To ensure a consistent sample between FPFS and reGauss,
we apply the following criteria for each subfield: only keep galaxies
that satisty R§+'_) > 0.3 and |e* 7| < 2. Applying the resolution
factor and the ellipticity criterion reduces the sample to ~4 x 10
galaxies out of 5 x 10% galaxies in each subfield. When comparing
the two shear estimation methods, we only retain galaxies that were
detected in both methods, ensuring the same sample population for
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Figure 5. The 1o statistical uncertainty on shear measurement of individual
galaxies from each estimator; second and fourth order, combining the two
FPFS estimators, and from reGauss method. The uncertainty values of
reGauss are drawn in dotted horizontal lines to simplify comparison. For
each estimator, the left bar (deep) only has contributions from the intrinsic
shape noise and the right bar (shallow) has contributions from intrinsic shape
noise and image noise.

both FPFS and reGauss. This helps isolate differences in precision
between the methods without introducing sample bias.

For an isotropically oriented galaxy ensemble distorted by some
known constant shear, the shear responsivity can be estimated:

— + — =
(e e
2y
where the superscript ‘4’ (‘=") refers to measurements of galaxies
with positive (negative) shear y applied, R denotes quantities

estimated using reGauss method, and w® is the inverse variance
weight defined as

R® = : (32

1
w® = —(R) 5 s 55 33)
()’RMS) + (UV )
Using the reGauss method, the shear is then estimated as
(R) (R)
SR e W Cuj 34)
wi = RE® ’
o, j

To obtain yéﬁé, we use the noise-free isolated galaxy image simula-
tion and set the weights w = 1. We use equation (34) to estimate
the shear and take the variance across multiple subfields to get
the uncertainty. This process gives yéﬁé = 0.26, the typically used
value for intrinsic shape noise. To obtain the total uncertainty
including intrinsic shape noise and measurement error, we use noisy
realizations of the images. We set 5% = 0.26 and use the value of
returned from GalSim.

In Fig. 5, we compare the 1o statistical uncertainty on the shear
measurement of individual galaxies from different shear estimation
methods for 100 subfields. For each shear estimation method, we
present the intrinsic shape noise (shaded) and the total uncertainty
(no shade), which includes intrinsic shape noise and measurement
error. We use C® = 7and C® = 10 for the second-order and fourth-
order AnaCal estimator, respectively, which optimizes the total
uncertainty in Fig. 3. Equation (22) is used to combine the two
AnaCal estimators and equation (23) to quantify the uncertainty of
the combined estimator. The dashed horizontal lines are drawn to
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Figure 6. The lo statistical uncertainty per galaxy on shear measurement p; for isolated galaxies as a function of the PSF size using different image noise levels
and shear estimators. The uncertainty for each second and fourth order estimator includes contributions due to image noise and intrinsic shape noise. Equation
(22) is used to combine the two shear measurements. Left panel shows the 1o error on P; using the combined shear estimator. Right panel shows the ratio of
statistical uncertainty from the second-order and fourth-order estimators compared to the combined estimator. The noise variance for HSC is approximately
twice that of the LSST noise variance. The results indicate that the combined shear estimator consistently provides lower statistical uncertainty relative to

individual shear estimators across varying seeing size and image noise levels.

indicate the values for reGauss. In general, reGauss performs
better than individual FPFS estimators, or in other words the
adaptive moments method has lower uncertainty than the non-
adaptive moments method. However, when combining the second-
and fourth-order FPFS estimators, we get ~ 30 per cent reduction
in the shape noise compared to that of reGauss.

4.1.3 Varying seeing and image noise

In the previous subsections, we used the HSC PSF size (0.60 arcsec)
and the average noise in the i band for isolated image simulations,
and found an ~ 30 per cent reduction in shape noise when including
the fourth moment-based shear estimator along with the second
moment-based estimator. In this subsection, we vary the PSF size
and image noise to see test the dependence of this finding on the
observational conditions. In Fig. 6, we show the uncertainty in each
shear estimator and combined for four different PSF seeing sizes and
image noise levels. ‘1.5 x HSC’ corresponds to an image noise level
with a noise variance that is 1.5 times the average noise variance
of HSC in i-band coadds, and ‘2/3 x LSST’ corresponds to the
noise variance that is 2/3 of the expected noise variance from 10 yr
of LSST coadds. The reduction in shape noise is consistent for all
different seeing sizes and image noise levels. The curve for ‘2/3x
LSST’ is basically flat because for a low image noise level, we
can perfectly deconvolve the image with a PSF without amplifying
noise on small scales. As illustrated in the right panel of Fig. 6,
the ratio of uncertainty from second/fourth-order shear estimators to
that of combined is roughly independent of PSF size and image noise
level, and the fourth-order estimator exhibits a greater susceptibility
to image noise than the second-order estimator. This suggests that
for isolated galaxies, combining the two independent FPFS shear
estimators consistently reduces statistical uncertainty, making it the
preferred approach.

4.1.4 Accuracy test

In this subsection, we test how accurate our fourth-order estimator
is compared to the second-order estimator. The multiplicative and
additive biases in our shear estimation in equation (25) are measured

as introduced in Sheldon et al. (2020) as

(weg " — wey )

mg=———"F"~+—1, (35)
0.02 <Ra+ ey >

and
/\+ ——

) = (we, ™ + wey ) (36)

T ==\
(R +R)
where 0.02 is the value of constant shear applied to each galaxy image
and we; and R, are the first components of the weighted ellipticity
and its shear responsivity after noise bias correction, respectively.
When quantifying the multiplicative and additive biases, we test y;
and y, separately; when testing y; we set y, = 0 and vice versa. The
quantities with superscript ‘+’ are estimated from images distorted
by positive shear, (y; = 0.02 and y, = 0) or (y; = 0 and y, = 0.02)
and superscript ‘—’ are estimated from images distorted by negative
shear, (y; = —0.02 and y, = 0) or (y; =0 and y, = —0.02). It is
worth noting that galaxies in each orthogonal galaxy pair and galaxies
with different applied shears (positive and negative ;) are selected
and weighted independently. We then apply the shear estimator to
this selected sample to evaluate our corrections for detection and

selection biases.

For the accuracy test, we used the HSC seeing size and image
noise level and used 4000 subfields with galaxy orthogonal pairs to
approximately cancel out the intrinsic shape noise. The amplitudes
of the multiplicative (additive) biases for each FPFS estimator are
shown in the top (bottom panel) panel of Fig. 7. We found that the
multiplicative biases for both estimators are well within the LSST
10-yr requirements, and we do not find a significant additive bias.

4.2 Blended galaxies

In this subsection, we discuss the results of the precision test (as
shown for isolated galaxies in Section 4.2.1) and the accuracy test
(Section 4.2.2) by applying the second- and fourth-order AnaCal
shear estimators on the blended simulated galaxy images as described
in Section 3.3. In Li et al. (2024b), they demonstrated that the
second-order AnaCal shear estimator yields unbiased results for
the accuracy test. The results presented here confirm that the second-
order shear estimator tested in this section is consistent with these
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Figure 7. The multiplicative bias (upper panel) and additive bias (lower panel) of the AnaCal shear estimator on isolated galaxies using an HSC-like
configuration for each order of the shear estimator. The error bars show the 1o and 30 uncertainties, respectively, and the grey-shaded region is the LSST
10-yr requirement on the multiplicative shear bias (The LSST Dark Energy Science Collaboration 2018). In both panels, the blue points are slightly shifted to
differentiate the error bars. Both estimators give unbiased shear estimation for each shear component.

previous performance tests of the AnaCal second-order shear
estimator.

4.2.1 Precision test

When quantifying the uncertainty on each estimator for noisy
simulated blended galaxy images, we use 100 subfields. We measure
shear from each image using both the second- and fourth-order FPFS
shear estimators and use the scatter in these 100 shear measurements
to derive the statistical error. We obtain the per-component statistical
uncertainty o, as defined in equation (28) on shear estimation for
a region of one square arcmin by normalizing the statistical error
according to the area of each simulated image. We follow Li et al.
(2024b) to derive the n.g from blended galaxy image simulations as

<0.26> : -
Nef = | —— ) [arcmin™~], 37
Oy
where 0.26 is the per component RMS of intrinsic shape noise using
the widely used reGauss shear estimation method (see Fig. 5).
We choose to use 0.26 for the shape noise RMS so that we can
compare our estimation of the effective number density with other
methods that use reGauss. Typically, the galaxy number density
is estimated by counting the galaxy number (with weights) after
detecting galaxies from images (Chang et al. 2013; The LSST
Dark Energy Science Collaboration 2018). Doing so assumes that
the statistical uncertainty in shear estimation for each galaxy is
uncorrelated. Effectively we compute the equivalent galaxy number
density for the shear if it were to be estimated with reGauss.
Motivated by the result of Fig. 6, we show the n¢g as a function
of SNR cut for each shear estimator for two different survey setups,
HSC and LSST, in Fig. 8. Each survey setup follows the respective
PSF size and image noise level. The neg ~ 15 arcmin~? for HSC
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setup is 35 percent smaller than the n; ~ 20 arcmin~2 for a PSF
size of 0.6 arcsec from HSC-Y3 (Li et al. 2022a). The value may
be smaller because we did not optimize the smoothness parameter
for detection. Optimizing this parameter will improve the n.g. The
value of neg ~ 39 arcmin~? for LSST seeing size and image noise
level is 5 per cent higher than n.¢ estimated from Chang et al. (2013).
They reported ny ~ 37 arcmin~2 for the expected distributions of
observing parameters and all lensing data (r and i bands) before
considering blending and masking. The value is estimated in this
work 1is slightly higher due to the use of different selection cuts
and different numbers of bands to compute the value; Chang et al.
(2013) combined r- and i-bands, whereas we used griz-band coadded
images.

We find that for the fourth-order FPFS shear estimator, the effec-
tive number density is relatively constant for every SNR lower limit,
as the fourth-order amplifies measurement error caused by image
noise. This shows that the fourth-order FPFS shear estimator is more
sensitive to blending. By combining second- and fourth-order, we
find that there is ~ 2 per cent improvement in the effective number
density. When estimating shear using blended galaxy samples, the
fourth-order shear estimator adds minimal information to the second-
order estimator. The sensitivity of the fourth-order estimator to
noise and blending highlights its limitations in current ground-based
surveys. Space-based images, and deep-field images with higher
SNR, offer the potential for improving the effective number density
using the second- and fourth-order shear estimators together. We
defer this work to future studies.

4.2.2 Accuracy test

We also tested the accuracy of the fourth-order shear estimator
on blended galaxies. We used equations (35) and (36) to measure
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Figure 8. The effective galaxy number density as a function of SNR cut for each AnaCal estimator and for each simulation setup (PSF seeing size and image
noise level) using 100 subfields with blended galaxies. The statistical uncertainties that go into this effective number density include intrinsic shape noise, image
noise, and noise from blending. The vertical dashed line represents the default SNR cut used in this paper.

multiplicative and additive biases in our shear estimator. We include
the orthogonal galaxy pairs to approximately cancel out the intrinsic
shape noise and use all 5000 subfields to tightly constrain the shear
biases. To save computational time, we only test the noise bias
correction for the estimation of 7; and remove the subscript (m = m;
and ¢ = ¢y); the multiplicative and additive biases of 3, should be
comparable to those of 7. Fig. 9 shows the multiplicative and additive
biases for each AnaCal estimator with the LSST 10-yr requirement.
The result shows that the fourth-order shear estimator satisfies the
LSST 10-yr requirement even in the presence of blending.

5 CONCLUSION

In this work, we extended the perturbation-based shear estimator
FPFS, which is part of the new suite of analytic shear estimation
algorithms AnacCal, and developed a higher order FPFS shear
estimator. We compared its performance against the second-order
shear estimator developed in Li & Mandelbaum (2023). The AnaCal
framework analytically corrects for the detection and selection bias
in shear estimation by deriving the shear response of image pixels.
It also uses the renoizing approach (Li et al. 2024a) to correct for the
noise bias by adding an additional layer of noise to the image. This
method does not require any computation of derivatives of noisy non-
linear observables. This work focuses on evaluating the accuracy and
precision of our new shear estimator on constant-shear simulations, in
which all galaxies in isolated and blended image simulations undergo
the same shear. The application of this work with redshift-dependent
shear will be explored in future research.

Typically, the shear estimation uses the lowest order (specifically,
second order) to define spin-2 observables. We used fourth-order
FPFS shapelet moments to define our spin-2 observables (e.g.
ellipticity) and incorporated the fourth-order shear estimator into
the FPFS framework. We tested the precision and accuracy of our
new shear estimator with HSC-like and LSST-like simulations on
both isolated and blended galaxy image simulations. We find that
for both sets of image simulations, the multiplicative shear bias |m|
for the fourth-order shear estimator is consistently less than 3 x 1073

1.0 - .

—}— 2nd order
—}— 4th order

0.0F i | [

m[1072]

c[107%]

270 20 30 20
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Figure 9. The multiplicative bias (upper panel) and additive bias (lower
panel) of the AnaCal shear estimator on blended galaxies using an LSST-
like configuration for each order of the shear estimator. The error bars show
the 1o and 30 uncertainties, respectively, and the shaded grey region is the
LSST 10-yr requirement on the shear multiplicative bias. The vertical dashed
line indicates our default selection SNR > 12.
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(LSST 10-yr requirement on the control of multiplicative bias) within
the 30 uncertainties.

When the fourth-order shear estimator is combined with the
second-order shear estimator, we found that the shape noise is
reduced by ~ 35 per cent for isolated galaxy image simulations
compared to using the second-order estimator alone. For isolated
galaxies, the fourth-order shear estimator detects information that is
not probed by the second moment, and we found that the shear
estimators are complementary. We also found that the effective
number density is improved by ~ 2 per cent for blended galaxy
image simulation. When blending is introduced, the fourth-order
estimator treats the blended galaxies as noise and amplifies their
signals causing them to behave like noise. We recommend combining
both the second- and fourth-order FPFS shear estimators when
estimating shear for high SNR and isolated galaxy ensembles. While
this approach shows promise, further testing is required for its
application to deblended samples and is left for future work.

An important target for future work is testing this method on
spaced-based image simulations, as there may be less blending of
the galaxies. In that regime, it would be worth evaluating the improve-
ment in 7. from combining the two orders of shear estimators. This
paper focused on evaluating and testing the new shear estimator using
constant-shear simulations, in which all isolated and blended galaxies
within a single image were subject to uniform shear distortions.
MacCrann et al. (2022) showed and tested the performance of
METACALIBRATION using simulations with redshift-dependent shear
by dividing galaxies into four redshift bins and applying different
shear values to each bin. Their findings indicate that the blending of
galaxies at different redshifts changes the effective number density
distribution as a function of redshift. The implications of redshift-
dependent shear within this framework are left for future work.

Another potential extension of this framework involves integrating
it with the approach outlined in Zhang et al. (2023), which can detect
PSF leakage and modelling errors from all spin-2 quantities con-
tributed by the PSF second- and higher order moments. Combining
the second and fourth-order shear estimators with this framework
should give more information on the impact of PSF systematics
on cosmic shear analyses and how to mitigate their impact on
cosmological analysis. A detailed exploration is deferred to future
work.
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APPENDIX A: SHAPELET MOMENTS OF
GAUSSIAN PROFILES

In this appendix, we provide intuition into the additional information
captured by non-adaptive fourth-order moment measurements of a
Gaussian profile under shear and compare it against the second-order
moment measurement.
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Let f(x,o,) be a Gaussian profile with scale radius o,, which
corresponds to the shapelet basis xo(x|o,). Under shear, the profile
transforms as

Xoo(X[0g) = Xoo(xX|og) = Xoo(x|oy)
. ﬁyl

2
ﬁyz

2
where X is the intrinsic shapelet basis in the absence of shear. The
corresponding shapelet moments M,,,, of the Gaussian profile can be
estimated by projecting the profile to shapelet bases using equation

(.

The generalized Laguerre polynomials are orthogonal over [0, oo]

with a weighting function x*e~":

Fn+a+1)
n!

(x2.—2(xlog) + x2.2(x|0y))

+

(x2.2(x]0y) — x22(x]0y)) , (A1)

o0
/ x%e VL@ () LY (x)dx = Sums (A2)
0
where 6§, ,, is the Kronecker delta function. Using the orthogonality
relation in equation (A2), if the scale of shapelets and Gaussian is
the same (0;, = 0,), only the shapelet moments Moy, M> _», and M»,
are non-zero and fourth-order moments are zero, i.e. Myy = My, =
0. However, in most cases, 0, # 0, or My, # 0, so shear can be
estimated using fourth-order moments. In Fig. A1, we show the spin-
2 component of the second- and fourth-order shapelet moments and
show that the fourth-order moment is O when the scale of the shapelet
kernel and Gaussian is the same. For shapelet kernel scale that is
smaller than half of the scale of the Gaussian profile (i.e. ratio smaller
than 0.5), by comparing the magnitude of each shapelet moment, we
find that the fourth-order moments have more information than the

© 2025 The Author(s).
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second moment as they can probe smaller radii than the second
moment. It is also worth noting that by comparing the magnitude of
the shapelet moment, the fourth-order moment has more information
on small scales compared to large scales.

0.005} :
1
1

0.004

0.0 0.5 1.0 1.5 2.0
Og/0n

Figure Al. Spin-2 component of the second and fourth-order shapelet
moments of a Gaussian profile with input shear y; = 0.02 as a function
of the ratio between the scale of the Gaussian profile to the shapelet kernel.
The vertical dashed line indicates when the two scales are identical.
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