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A B S T R A C T 

As imaging surv e ys progress in exploring the large-scale structure of the Universe through the use of weak gravitational lensing, 
achieving sub-per cent accuracy in estimating shape distortions caused by lensing, or shear, is imperative for precision cosmology. 
In this paper, we extend the Fourier power function shapelets ( FPFS ) shear estimator using fourth-order shapelet moments and 

combine it with the original second-order shear estimator to reduce galaxy shape noise. We calibrate this no v el shear estimator 
analytically to a sub-per cent lev el-accurac y using the AnaCal framework. This higher order shear estimator is tested with 

realistic image simulations, and after analytical correction for the detection/selection bias and noise bias, the multiplicative shear 
bias | m | is below 3 × 10 

−3 (99.7 per cent confidence interval) for both isolated and blended galaxies. Once combined with the 
second-order FPFS shear estimator, the shape noise is reduced by ∼ 35 per cent for isolated galaxies in simulations with Hyper 
Suprime-Cam and Vera C. Rubin Observatory Le gac y Surv e y of Space and Time observ ational conditions. Ho we ver, for blended 

galaxies, the ef fecti ve number density does not significantly impro v e with the combination of the two estimators. Based on these 
results, we recommend exploration of how this framework can further reduce the systematic uncertainties in shear due to point 
spread function leakage and modelling error, and potentially provide improved precision in shear inference in high-resolution 

space-based images. 

Key words: gravitational lensing: weak – techniques: image processing – cosmology: observations. 
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 I N T RO D U C T I O N  

eak gravitational lensing refers to the small but coherent distortions 
f distant galaxies’ light profiles due to intervening massive fore- 
round matter between the source galaxies and observers. Analysing 
he statistics of this distortion can reveal the distribution of matter and
he large-scale structure, yielding deep insights into the fundamental 
hysics of the Universe and its evolution (see Kilbinger 2015 for a re-
iew of weak lensing). Measuring the coherent pattern of distortions, 
r shear, in the observed image is one of the most ef fecti ve ways to
onstrain the fundamental physics of the Universe. Upcoming Stage 
V imaging surv e ys like the Vera C. Rubin Observatory Le gac y
urv e y of Space and Time (LSST; LSST Science Collaboration 2009 ;
vezi ́c et al. 2019 ), Euclid (Laureijs et al. 2011 ), and Nancy Grace
oman Space Telescop e High Latitude Imaging Surv e y (Akeson 
t al. 2019 ) will co v er a large sky area and observe more than billion
ource galaxies, allowing us to make unprecedented per cent-level 
osmic shear measurements. 

Ho we ver, the magnitude of this tiny distortion, which 
auses per cent-level changes in the ellipticities of the observed 
alaxy images, is, on average, ∼10 per cent of the root mean square
RMS) of intrinsic galaxy shapes. Hence, an accurate measurement of 
eak-lensing shear is complex and needs to calibrate several sources 
f systematic effects that complicate the process of characterizing 
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alaxy shapes, including the point spread function (PSF) from 

tmospheric effects and telescope optics (e.g. Liaudat, Starck & 

ilbinger 2023 ); noise bias from image noise due to the non-linearity
n shear estimator (e.g. Refregier et al. 2012 ); model bias due to
nrealistic assumptions about galaxy morphology (e.g. Bernstein 
010 ); selection bias due to sample selection (Kaiser, Squires &
roadhurst 1995 ) and detection (Sheldon et al. 2020 ); and biases

rom blending and deblending of galaxy light profiles (Li et al. 2018 ).
o achie ve per cent-le vel bias in cosmological parameters despite
ystematics (see Mandelbaum 2018 , for a re vie w of systematics
n weak lensing), the upcoming surv e ys require that the residual
ystematics after all corrections should be well below the statistical 
ncertainty. This requires that residual systematic uncertainties in 
hear measurements be below one part per thousand (The LSST 

ark Energy Science Collaboration 2018 ). 
Several recent shear measurement techniques have been devel- 

ped that aim to reduce the reliance on calibration using external
imulations. This is desirable because the simulations may not 
e sufficiently realistic to achieve the level of precision needed 
or cosmological inference. These methods that aim for unbiased 
hear inference include METADETECTION (Sheldon et al. 2023 ), 
 numerical self-calibration method; and BFD (Bernstein et al. 
016 ), a Bayesian approach to shear estimation. There has been
ignificant efforts to develop purely analytical shear estimators (Li 
t al. 2018 , 2024b ; Li, Li & Massey 2022b ; Li & Mandelbaum 2023 ;
i, Mandelbaum & The LSST Dark Energy Science Collaboration 
024a ) in order to achieve sub-per cent accuracy without relying on
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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ny calibration from external image simulations. The Fourier power
unction shapelets method ( FPFS hereinafter) can achieve a sub-
er cent accuracy by correcting for noise bias, selection and detection
ias. In short, FPFS uses set of shapelet modes (Bernstein & Jarvis
002 ; Refregier 2003 ; Massey & Refregier 2005 ), detection modes
nd other linear observables after PSF deconvolution to carry out
he detection, selection, and measurement of the galaxy ellipticity
nd response to shear. It uses the first-order deri v ati ves (Jacobian) of
he ellipticity with respect to these linear observables and the shear
esponses of shapelet to obtain the shear response of the ellipticity.
o correct for the noise bias, one can use the second-order deri v ati ve
Hessian matrix) of the ellipticity and the covariance matrix of the
easurement error on the observables (Li et al. 2024b ), or add

ure image noise to the galaxy image with a carefully chosen noise
orrelation function to derive an analytical noise bias correction (Li
t al. 2024a ). This innov ati ve analytical calibration technique for
hear estimation, designated AnaCal (Li & Mandelbaum 2023 ; Li
t al. 2024b ) is more than a hundred times faster than the current
enchmark METADETECTION algorithm, documented in Sheldon
t al. ( 2023 ). 

Lensing shear causes the estimates of the ellipticities of distant
alaxies to change. This effect is quantified statistically by observing
he characteristics of a galaxy that undergoes simple transformations
nder shear. One way to parameterize the shape is based on
econd-order moments of the galaxy image, which captures the
rientation and elongation of the object. These moments have been
idely adopted in weak-lensing studies due to their robustness and

elati ve insensiti vity to image noise. Ho we ver, higher order moments,
hile more sensitive to image noise and harder to model, offer

he potential to capture additional information about the galaxy’s
esponse to shear. They probe finer structural details that are not
ccessible through second moments alone, suggesting they may
ontain complementary information about the shear. The original
PFS implementation primarily focused on second-order shapelet
oments to construct the ellipticity of galaxies, and achieves a shear

stimation bias below 0.3 per cent in the presence of blending. In this
ork, we extend the FPFS framework by incorporating fourth-order

hapelet moments to define the ellipticity. We use image simulations
o test the accuracy of our new shear estimator after analytically
orrecting for detection and selection bias. We then tak e tw o FPFS
hear estimators, second- and fourth-order, and combine them to
aximize the shear signal and reduce the o v erall shape noise. Our

oal is to quantify how much additional information is provided by
he fourth-order moments; the fourth-order shear estimator, which
s independent of the second-order, can also be used to cross-
omparison and impro v e the systematic control. 

This paper is organized as follows. In Section 2 , we give a
rief o v erview of the FPFS shear estimator within the AnaCal
ramework, the fourth-order shear estimator, and introduce a method
o combine two different shear estimators. In Section 3 , we present
alaxy image simulations that we used to test the accuracy of our
ew fourth-order shear estimator. In Section 4 , we show the result of
ur analysis and quantify the reduction of shape noise by combining
wo shear estimators. Finally, in Section 5 , we summarize our results
nd future outlook. 

 M E T H O D  

n this section, we briefly re vie w the FPFS shear estimator developed
n Li et al. ( 2018 , 2022b ) and calibrated with the AnaCal framework
mplemented in Li & Mandelbaum ( 2023 ) and Li et al. ( 2024b ). We
hen extend FPFS to a higher order shear estimator. 
NRAS 537, 507–519 (2025) 
The distortion of galaxy shapes, or shear, caused by foreground
nhomogeneous mass distribution can be described by a locally linear
ransformation (or the Jacobian matrix) as 

 = 

(
1 − γ1 −γ2 

−γ2 1 + γ1 

)
, (1) 

here the component γ1 quantifies the amount of stretching of the
mage along the horizontal direction and γ2 quantifies the stretching
f the image in the direction at an angle of 45 o with the horizontal
irection. We use a complex spinor to represent shear as γ = γ1 +
 γ2 , where i is the imaginary number unit. In this paper, we set the
ensing convergence to zero to simplify the notation. The shear is
ypically estimated by measuring the galaxy’s ellipticity, a spin-2
bservable, which negates under a 90 o rotation (see appendix B of
i & Mandelbaum 2023 for more details). In the weak-lensing limit,
hear is on the order of a few per cent or less ( | γ | � 0 . 02), making
he shear signal much smaller than the shape noise due to galaxy
ntrinsic shapes, so that a large ensemble of galaxies is needed to
nfer shear. 

.1 Galaxy detection 

efore measuring shear, detection, and selection of galaxies can
ntroduce biases that affect the shear estimation, hence it is essential
o derive their shear response for an accurate shear estimation.
alaxy detection from images in FPFS uses four detection modes

 νi , where i = 0 . . . 3) for each pixel in the image to characterize
he difference in the value of the pixels with respect to the nearby
ixels in four directions. These nearby pixel detection modes are
hen used to identify peaks that are served as ‘peak candidates’.
he corresponding selection bias from carrying out the detection
rocess using these peak modes is analytically corrected using the
hear responses of the pixel values (Li et al. 2024a , 2022b ). For a
alaxy profile f ( x ), with x denoting image in real space, we define
he detection modes for every pixel i as 

i = 

“
d 2 k ψ 

∗
i ( k ) 

f p ( k ) 
p( k ) 

, (2) 

here f p ( k ) is the observed (PSF-convolved, noisy) image in Fourier
pace and p( k ) is the PSF image in Fourier space, and the coordinate
entre is set to the centre of this pixel. The detection kernels ψ 

∗
i ( k )

or wave number vector k = ( k 1 , k 2 ) are defined in Fourier space as 

 

∗
i ( k ) = 

1 

(2 π) 2 
e −| k | 2 σ 2 

h 
/ 2 (1 − e i k ·x i ) , (3) 

here x i = ( x i , y i ) = ( cos ( i π/ 2) , sin ( i π/ 2) are position vectors to
earby pixels with lengths equal to the image pixel side length and
rientations pointing towards the four directions separated by π/ 2.
he shear response of these detection modes is given by 

i; α = 

“
d 2 k ψ 

∗
i; α

f p ( k ) 
p( k ) 

, (4) 

here the subscript ‘; α’ denotes the partial deri v ati ve with respect to
ne component of the shear, γα . The shear response of each detection
ernel can be written as a combination of shapelet basis and is given
y 

ψ 

∗
i;1 ≡

∂ ψ 

∗
i 

∂ γ1 
= 

1 

(2 π) 2 
e | k | 

2 σ 2 
h 
/ 2 ( k 2 1 − k 2 2 ) σ

2 
h 

(
1 − e i( k 1 x i + k 2 y i ) 

)
− 1 

(2 π) 2 
e | k | 

2 σ 2 
h 
/ 2 (i x i k 1 − i y i k 2 )e 

i( k 1 x i + k 2 y i ) , 

(5) 
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ψ 

∗
i;2 ≡

∂ ψ 

∗
i 

∂ γ2 
= 

1 

(2 π) 2 
e | k | 

2 σ 2 
h 
/ 2 (2 k 1 k 2 ) σ

2 
h 

(
1 − e i( k 1 x i + k 2 y i ) 

)
− 1 

(2 π) 2 
e | k | 

2 σ 2 
h 
/ 2 (i y i k 1 + i x i k 2 )e 

i( k 1 x i + k 2 y i ) . 

(6) 

.2 FPFS shapelet modes 

PFS uses polar shapelet modes (Massey & Refregier 2005 ) to 
onstruct various galaxy properties, including flux, size, and shape. 
hese polar shapelet modes are constructed by projecting the 
bserved noisy galaxy image after PSF deconvolution on to a set
f Gaussian-weighted orthogonal functions (Li et al. 2018 ). The 
PFS complex polar shapelet modes are defined as 

 nm 

≡
“

d 2 k ˜ χ∗
nm 

( k ) 
f p ( k ) 
p( k ) 

, (7) 

here ˜ χnm 

is the Fourier transform of the polar shapelet basis 
unction characterized by a radial quantum number ‘ n ’ and an angular
uantum number, or spin number, ‘ m ’. Polar shapelet basis functions
nm 

are defined as 

χnm 

( x | σh ) = ( −1) ( n −| m | ) / 2 
{

[( n − | m | ) / 2]! 

[( n + | m | ) / 2]! 

}1 / 2 

×
( | x | 

σh 

)| m | 
L 

| m | 
n −| m | 

2 

( | x | 2 
σ 2 

h 

)
e −| x | 2 / 2 σ 2 

h e −imθ , 

(8) 

here L 

| m | 
n −| m | 

2 
are the Laguerre polynomials and σh is the smoothing 

cale of shapelets and the detection kernel. n can be any non-negative
nteger and m is an integer between −n and n in steps of two. 

Under a Fourier transform, the shapelet basis changes as 

nm 

( x | σh ) → ˜ χnm 

( k ) = i n χnm 

( k | 1 /σh ) , (9) 

o the amplitude of the shapelet basis in Fourier space is the same as
n real space but the scale is the inverse of that in real space (Refregier
003 ). Typically, σh is set so that it is greater than the scale radius
f the PSF in configuration space so that the deconvolution does not
mplify the noise on small scales, or large | k| . In this work, we do
ot adapt σh to the size of the galaxy light profile. Ho we ver, in real
bservations, we can split the surv e y into smaller patches and have
 different smoothing scale σh for each patch. 

When a galaxy image is distorted under the influence of shear, a
nite number of independent shapelet modes are coupled (separated 
y | 
n | = 2 and | 
m | = 2). This causes the sheared shapelet modes
o be a linear combination of a finite number of other shapelet modes.
ince the FPFS shapelet modes are computed after deconvolving the 
alaxy with the PSF model, the PSFs do not bias shear estimation as
ong as we have a good PSF model at the positions of the galaxies. 

.2.1 Galaxy flux and galaxy size 

he zeroth-order shapelet mode, M 00 , is the value of the central peak
f the smoothed image with the smoothing scale of σh . We follow
i & Mandelbaum ( 2023 ) to use M 00 to quantify the brightness of
alaxies, and FPFS flux is defined as 

 = 

M 00 “
d 2 k| ̃  χ00 ( k ) | 2 / | p( k ) | 2 

, (10) 

here the denominator is the square of the L 

2 norm of the resmooth-
ng kernel. We can use the flux and convert it to FPFS magnitude
efined as 

 F = m zero − 2 . 5 log ( F ) , (11) 

here m zero is the zero point of the surv e y. The value of m zero is 27
or Hyper Suprime-Cam (HSC) coadded images (Bosch et al. 2018 )
nd 30 for LSST coadded images (Ivezi ́c et al. 2019 ). 

The galaxy size is conventionally measured using second-order 
aussian weighted moments (see e.g. Hirata & Seljak 2003 ). 
ollowing Li & Mandelbaum ( 2023 ), we use the combination of
pin-0 shapelet moments to define the size as 

d 2 xf 

( | x | 
σh 

)2 

e −| x | 2 / 2 σ 2 
h = M 00 + M 20 , (12) 

nd define the FPFS resolution as 

 2 = 

M 00 + M 20 

M 00 
. (13) 

ote that this definition of resolution given by Li & Mandelbaum
 2023 ) is conceptually similar to the resolution defined in Hirata &
eljak ( 2003 ). Under a shear distortion, the shapelet moments M 00 

nd M 20 change from their intrinsic values M̄ 00 and M̄ 20 as 

 00 = M̄ 00 + 

√ 

2 ( γ1 M̄ 22 c + γ2 M̄ 22 s ) , 

 20 = M̄ 20 + 

√ 

6 ( γ1 M̄ 42 c + γ2 M̄ 42 s ) , (14) 

here we use M nmc and M nms to denote the real and imaginary part of
he complex shapelet mode M nm 

. We use their linear shear response
o derive the shear response of the galaxy detection/selection and to
orrect for the detection/selection bias in Section 2.3 . 

.3 Detection and selection weights 

e use the weight functions introduced in Li & Mandelbaum ( 2023 )
or galaxy detection and selection. For the galaxy detection process, 
e apply cuts on peak modes, and for the galaxy selection process,
e apply cuts on magnitude and resolution. The analytical shear 

esponses of the hard cuts are noisy and unstable, especially when
pplying multiple cuts to the galaxy properties, as a hard selection
eight is discontinuous and not differentiable at the selection 
oundary. For this work, instead of applying hard cuts on observables, 
e use truncated sine functions (see equation 45 of Li & Mandelbaum 

023 ) since these are differentiable and are more stable. The selection
eight used to select the galaxy sample is given by 

( ν) = T sel 
0 ( M 00 ) T 

sel 
2 ( M 00 + M 20 ) 

3 ∏ 

i= 0 

T det ( νi ) , (15) 

here T sel 
0 is used to select bright galaxies with high-signal-to-noise 

atio (SNR), T sel 
2 is used to select well-resolved large galaxies, and

 

det is used to define the cut on peak modes. Since we have calculated
he shear response of the detection modes (Section 2.1 ) and the
hapelet modes used to quantify the flux and size (Section 2.2 ), we
an calculate the deri v ati ve of the detection and selection weight
unction to shear. 

.4 Fourth-order shear estimator 

i & Mandelbaum ( 2023 ) use shapelet modes M 00 , M 20 , and M 22 

hereafter second-order moments) and their shear responses to 
ompute the galaxy flux, size, and shape (ellipticity). In this work,
se the same detection and selection defined in Li & Mandelbaum
 2023 ) and Li et al. ( 2024a ) and extend the second-order shapes
dopted by Li & Mandelbaum ( 2023 ) to fourth-order shapes. 
MNRAS 537, 507–519 (2025) 
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M

Figure 1. The real and imaginary components of the spin-2 second-order 
and fourth-order shapelet basis. The fourth-order shapelets are sensitive to 
scales larger and smaller than that of the second moments, as referenced by 
the dashed lines. The colour scale assigned to each basis function spans the 
interval [ −A, A ], with A representing the maximum absolute value of the 
corresponding basis function. 
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In Fig. 1 , we show the spin-2 second-moment and fourth-moment
asis functions. The fourth-moment basis is more sensitive to pixels
ith radius both larger and smaller than that of the second moment.
ithin the same polar angle, the sensitivities of fourth moments to

maller and larger radii have opposite signs, making M 42 sensitive to
he difference in spin-2 behaviour between pixels with small and large
adii. Quantitatively, a shapelet model contains information mainly
etween the minimum and maximum scales (Massey & Refregier
005 ) defined as 

min = 

σh √ 

n + 1 
and θmax = σh 

√ 

n + 1 , (16) 

here σh is the shapelets smoothing scale and n is the shapelets
rder. We refer readers to Appendix A for a detailed analysis of the
hapelet moments of a Gaussian profile and their sensitivity to shear.

Using the shear responses of shapelet modes defined in Massey &
efregier ( 2005 ), the shapelet modes are given by 

M 42 c = M̄ 42 c + 

√ 

6 

2 
γ1 ( M 20 − M 60 ) 

−
√ 

5 γ1 M 64 c − γ2 

√ 

5 M 64 s 

(17) 

M 42 s = M̄ 42 s + 

√ 

6 

2 
γ2 ( M 20 − M 60 ) 

+ 

√ 

5 γ2 M 64 c − γ1 

√ 

5 M 64 s , 

(18) 

here M nm 

represents the sheared shapelet modes and M̄ nm 

rep-
esents the intrinsic shapelet modes in the absence of shear. As
escribed in Li et al. ( 2018 ), shear can be inferred from equations ( 17 )
nd ( 18 ) by taking the expectation values on both sides. Assuming
hat there is no preferential direction of the randomly selected galaxy
nsemble, the expectation values of the intrinsic spin-2 and spin-4
hapelet modes on the right-hand side of the equations reduce to
ero, i.e. 〈 M̄ 42 〉 = 〈 M 64 〉 = 0. It is the population variance of these
NRAS 537, 507–519 (2025) 
pin-2 and spin-4 shapelet modes that causes the shape noise of the
hear estimator. 

Li et al. ( 2018 ) introduced a normalizing scheme to re-weight the
hapelet modes dominated by bright galaxies and reduce the shape
oise of the shear estimation. The dimensionless FPFS fourth-order
llipticity is defined as 

 1 + i e 2 = 

M 42 

M 00 + C 

(4) 
, (19) 

n Li & Mandelbaum ( 2023 ), they use M 22 in the numerator of
quation ( 19 ) to define the spin-2 ellipticity. In this work, we use
 42 to define the fourth-order spin-2 ellipticity. The FPFS weighting

arameter C 

(4) adjusts the relative weight for galaxies with different
rightness. Note that the optimal value of the weighting parameter
 

( n ) is different for each order of the estimator, as different shapelet
oments are sensitive to different scales. 

.5 Analytical shear calibration 

n this subsection, we outline how to correct for the noise bias in
hear due to the pixel noise in the images. The previous generation
f AnaCal corrected the noise bias by computing the second- and
igher order deri v ati ves of the non-linear observables (Li et al.
024b ). This required taking deri v ati ves of smoothstep functions
ith smoothness parameters, which led to significant fluctuations

n higher order deri v ati ves Li et al. ( 2024a ). Sheldon & Huff
 2017 ) proposed a numerical recipe to correct for noise bias by
dding additional noise to the already-noisy image. Li et al. ( 2024a )
nalytically pro v e the method is free of noise bias and adopts
he analytical version within the AnaCal framework. This paper
ollows Li et al. ( 2024a ) to analytically correct for noise bias in
hear estimation. Following Sheldon & Huff ( 2017 ), we introduce an
dditional layer of noise to the image that shares the same statistical
roperties after being rotated counterclockwise by 90 ◦, with the
otation defined in the space prior to PSF convolution. The addition
f this noise layer ef fecti vely cancels out the spin-2 anisotropies
resent in the original noise image after deconvolution. Note that
heldon & Huff ( 2017 ) is a ‘finite-difference’ version of the noise
ias correction which is not the same as the ‘analytical’ version in Li
t al. ( 2024a ). This paper uses the ‘analytical’ version, not the ‘finite
ifference’ version. The shear response of the renoized ellipticity can
e measured after adding the simulated noise as (adopting Einstein
otation) 〈 

˜ ˜ R α

〉 

= 

〈 

∂ 
(

˜ ˜ w ̃

 ˜ e α
)

∂ ̃ ˜ νi 

(
˜ ˜ νi; α − 2 δν ′ 

i; α

)〉 

, (20) 

here the subscript α denotes each component of the shear and δν ′ 
i is

he measurement error of the ith linear observable from the additional
oise. We use a double tilde ( ̃ ˜ ν) to denote linear observables with
oubled image noise. The shear estimator is then 

ˆ α = 

〈
˜ ˜ w ̃

 ˜ e α
〉〈 

˜ ˜ R α

〉 + O 

(
γ 3 

)
, (21) 

here ˜ ˜ e is the ellipticity observed after adding the additional image
oise. This shear estimator is free from noise bias and is accurate to
econd order of shear. It is worth noting that the renoizing approach
oes not require any computation of noisy second- and high-order
eri v ati ves, and does not include higher order terms from image
oise which are present in the original version of FPFS . Ho we ver, a
imitation of this method is that we need to double the image noise
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Table 1. Table for simulation setups. The noise variance for each simulation 
is set to the mean noise variance in the 3-yr HSC data and the 10-yr LSST 

observ ation, respecti vely. 

Variable HSC LSST 

Pixel scale 0 . 168 arcsec 0 . 20 arcsec 
Seeing 0 . 60 arcsec 0 . 80 arcsec 
Moffat profile exponent 3.5 2.5 
Magnitude zero point 27.0 mag 30.0 mag 
Noise variance 3 . 6 × 10 −2 3 . 5 × 10 −1 

PSF ellipticity ( e 1 = 0 . 02 , e 2 = −0 . 02) 
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efore running detection and source measurement. In this work, we 
sed this renoizing approach to analytically correct for the noise bias. 

.6 Combining shear estimators 

iven the second- and fourth-order shear estimators, we combine 
hese estimators to maximize the SNR of the shear estimator and 
inimize the noise in the shear estimation, including intrinsic shape 

oise and measurement error from image noise. The combined shear 
stimate is defined as ̂ α,t = μ̂ γα, 2 + (1 − μ) ̂  γα, 4 , (22) 

here α is the component of the shear and the subscripts 2 and 4
re the order of the shear estimator. The statistical uncertainty in the
ombined shear estimation is then 

Var ( ̂  γα,t ) = μ2 σ 2 
γα, 2 

+ (1 − μ) 2 σ 2 
γα, 4 

+ 2 μ(1 − μ) Cov ( ̂  γα, 2 , ̂  γα, 4 ) , (23) 

here σγα
are the standard deviation of each estimator, and ρα is the 

orrelation between the two estimators. The shear estimator weight μ
s defined so that it minimizes the variance of the combined estimate
s 

= arg min 
μ

Var ( ̂  γα,t ) 

= 

σ 2 
γα, 4 

− Cov ( ̂  γα, 2 , ̂  γα, 4 ) 

σ 2 
γα, 2 

+ σ 2 
γα, 4 

− 2 Cov ( ̂  γα, 2 , ̂  γα, 4 ) 

= 

σ 2 
γα, 4 

− ρασγα, 2 σγα, 4 

σ 2 
γα, 2 

+ σ 2 
γα, 4 

− 2 ρασγα, 2 σγα, 4 

. (24) 

n the case of no correlation between the two estimators, ρα = 0
nd the weight μ is equi v alent to inverse v ariance weighting. If both
stimators give an unbiased shear estimate, i.e. 〈 ̂  γα, 2 〉 = 〈 ̂  γα, 4 〉 = γα

hen av eraged o v er an ensemble of galaxies, then the combined
stimator also gives an unbiased shear estimate. 

 SIMULATION S  A N D  TESTS  

n this section, we describe mock astronomical images that we 
roduce with known input shears to test the performance of our 
ourth-order shear estimator and compare it against the second-order 
hear estimator developed in Li & Mandelbaum ( 2023 ). We corrected
or noise bias, selection bias, and detection bias using methods 
eveloped in Section 2 . The estimated shear, ˆ γα , is related to the
nput shear, γα , as 

ˆ α = (1 + m α) γα + c α, (25) 

here the subscript α denotes each component of the shear and 
 α (multiplicative bias) and c α (additive bias) are used to test the

ccuracy of the shear estimator (Heymans et al. 2006 ; Huterer et al.
006 ). We also combine second- and fourth-order shear estimators as
erived in equation ( 22 ) and study the reduction in the shape noise. 

.1 Simulation setup 

e use the same simulation setup as used in Li & Mandelbaum
 2023 ). In summary, we generate two sets of data: image simulations
ith isolated galaxies, where each realization contains multiple 
ostage stamps that each have one galaxy, and blended galaxy image 
imulations, where galaxies are randomly distributed. We vary the 
eeing, pixel scale, and image noise level to match those of the HSC
nd LSST surv e ys. 
The pixel scale is set to 0 . 168 arcsec (0 . 2 arcsec ) for HSC (LSST)
ike simulation. The PSF for these simulations is modelled with a

offat ( 1969 ) profile, 

 m 

( x ) = 

[ 

1 + c 

( | x | 
r p 

)2 
] −n 

, (26) 

here c and r p are set such that the full width half-maximum
FWHM) of the Moffat PSF is 0 . 60 arcsec (0 . 80 arcsec ) matching the
edian seeing of actual HSC i-band (expected LSST i-band) images. 
he exponent n is 3.5 for HSC simulations (Li et al. 2022a ) and 2.5

or LSST simulations (Sheldon et al. 2023 ). Table 1 summarizes the
alues used for each surv e y setup. To introduce an anisotropic PSF,
e shear the PSF so that it has ellipticity ( e 1 = 0 . 02 , e 2 = −0 . 02).
e show a small region of one simulated image for both isolated and

lended simulations in Fig. 2 . 
When testing the accuracy of our fourth-order shear estimator, 

e use the same simulation used in Li & Mandelbaum ( 2023 ): for
ach type of simulation, we have two sets of galaxy images with the
ame realization of image noise generated; one distorted with ( γ1 =
 . 02 , γ2 = 0) and the other with ( γ1 = −0 . 02 , γ2 = 0) as introduced
n Pujol et al. ( 2019 ). We used the ring test setup (Massey et al. 2007 )
y having our galaxy sample contain orthogonal galaxies with the 
ame morphology and brightness but with the intrinsic major axes 
otated by 90 o . This allows us to cancel out the intrinsic shape noise
n our simulation. 

.2 Isolated image simulations 

e test the performance of fourth-order shear estimator relative to 
he second-order estimator using isolated galaxy image simulations. 
he goal of this is to understand how the estimator performs when
lending effects are absent, focusing on the impact of shear, PSF
ize, and image noise. For isolated galaxy image simulations, galaxy 
mages are generated using the publicly available software GalSim 
Rowe, Jarvis & Mandelbaum 2014 ) and use the COSMOS HST
arametric galaxy catalogue (Mandelbaum et al. 2019 ) with limiting 
agnitude F 814 W = 25 . 2 as the input galaxy catalogue (see section

.1 of Li & Mandelbaum 2023 , for more details). Note that at this
imiting magnitude for the input catalogue, some of the lower SNR
alaxies that are expected in the isolated simulations may be missing
rom the analysis. Galaxies are rendered in 64 ×64 pix postage stamp
mages after the shear distortion and PSF convolution. Each realiza- 
ion (subfield) of the simulated image contains 100 × 100 postage 
tamps, and after including orthogonal galaxy pairs as described in 
ection 3.1 , each subfield contains 5 × 10 3 orthogonal galaxy pairs.
ach orthogonal galaxy is placed adjacent to its unrotated galaxy 

n the same simulation. We simulate 4000 subfields with different 
ealizations for the noise image, the galaxy sample, and random 

alaxy rotation. 
MNRAS 537, 507–519 (2025) 
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Figure 2. The left panel shows a 128 × 128 pix 2 (equivalent to 0 . 36 × 0 . 36 arcmin 2 ) stamp image of the isolated galaxy image simulation with HSC seeing, 
where the dotted black lines show the boundaries of the 64 × 64 pix 2 stamps. The right panel shows a random cut-out coadded image of 240 × 240 pixel 2 

(equi v alent to 0 . 8 × 0 . 8 arcmin 2 ) of griz bands of the LSST-like blended galaxy image simulation (Sheldon et al. 2023 ). Both images were produced before 
adding noise. 
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.3 Blended image simulations 

lended galaxy simulations are essential for understanding the
stimator’s performance in realistic observational conditions, where
he blending of multiple objects occurs. We also tested our fourth-
rder estimator on blended galaxy image simulations and compared
t against the second-order estimator. For blended galaxy image
imulations, we use the open-source package descwl-shear-
ims 1 (Sheldon et al. 2023 ), which includes the surv e y parameters

or the simulation, such as noise and PSF. The package uses the input
alaxy catalogue from WeakLensingDeblending . 2 The output
f the package is a calibrated image with a subtracted background and
stimated noise variance of the image. The simulated galaxies include
ulge, disc, and active galactic nucleus (AGN) components. The
ulge and the disc have varying fluxes and the AGN is represented
s a point source located at the galaxy centre. To include some of
he complexity of realistic galaxy light profiles, the isophotes of
hese simulated galaxies are not strictly elliptical. Galaxy positions
re randomly distributed across the image, without accounting for
patial clustering. 

Each simulated image contains about 10 5 input galaxies and co v ers
.12 deg 2 , corresponding to a galaxy number density of about 230
er square arcmin. Ho we ver, not all of these galaxies are detectable
t the depths achieved by HSC and LSST. When testing the accuracy
f each shear estimator on blended galaxies, we also adopted the
ing test to cancel out shape noise. For these blended simulations,
he rotated galaxy is stored in a different realization. The blended
alaxy image simulations are simulated with descwl-shear-
ims (Sheldon et al. 2023 ), and the setup is the same as Li et al.
 2024b ). 
NRAS 537, 507–519 (2025) 

 https:// github.com/ LSSTDESC/ descwl- shear- sims 
 https:// github.com/ LSSTDESC/ WeakLensingDeblending 
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s  

i  
For LSST-like simulations, we use griz bands with the same
alaxy profile and PSFs in each band without dithering. The noise
 ariance le v el matches the e xpectations for a coadded image based
n LSST 10-yr observations, and each band has a different noise vari-
nce. The image is coadded in these four bands with inverse variance
eighting based on the sky background noise. The multiband coadds,

hen, have a well-defined PSF (Mandelbaum et al. 2023 ) since each
and has a spatially constant weight across the images. These four
ands were chosen as it is likely that LSST cosmic shear analysis
ill use observations in griz bands. For the HSC-like setup, we used

he image noise variance in the HSC i band. HSC primarily uses the
-band for cosmic shear due to its better seeing conditions compared
o other bands. 

 RESULTS  

n this section, we present the results of testing the precision and
ccuracy of our fourth-order FPFS shear estimator with isolated
alaxies (Section 4.1 ) and blended galaxies (Section 4.2 ) as described
n Section 3 . We also compare the results against the second-order
PFS shear estimator and combine the two shear estimators to
uantify the reduction in shape noise. 

.1 Isolated galaxies 

n this subsection, we focus on isolated galaxies simulated within
ostage stamps as described in Section 3.2 . 

.1.1 Precision test 

e first tested the performance of our fourth-order estimator and
ompared the uncertainty on this new estimator to that of the
econd-order estimator. We then computed how much information
s gained, or how much uncertainty is reduced, by combining the

https://github.com/LSSTDESC/descwl-shear-sims
https://github.com/LSSTDESC/WeakLensingDeblending
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Figure 3. The 1 σ statistical uncertainty on a single component of the 
estimated shear ˆ γ1 for individual isolated galaxies (solid lines) as a function 
of the weighting parameter, C 

( n ) , in equation ( 19 ). For each second and 
fourth order estimator, the total uncertainty has contributions due to image 
noise (dotted lines) and intrinsic shape noise (dash–dotted lines). The vertical 
dashed lines show the values of C 

( n ) used for each estimator throughout the 
paper. 
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wo estimators. When analysing the uncertainty of each estimator, 
e use 100 out of 4000 subfields to save computational time. For

ach subfield, we include the intrinsic shape noise in our analysis 
y excluding a single randomly chosen galaxy from each orthogonal 
air when both are detected. In addition, we deliberately positioned 
he centre of each galaxy at the centre of the postage stamp. We
orced the pipeline to do measurements based on the known centre 
ithout running any detection and selection process during the image 
rocessing. This is equi v alent to setting the selection weight function,
 in equation ( 15 ), to 1 for all galaxies. We use the results from this
rocess to set the FPFS weighting parameter C 

( n ) in the denominator 
f the spin-2 ellipticity estimator in equation ( 19 ). 
For each subfield i, the estimated shear is computed as 

ˆ ( n ) α,i = 

∑ 

j∈ i ˜ ˜ w 

( n ) 
j 

˜ ˜ e ( n ) α,j ∑ 

j∈ i 
˜ ˜ R 

( n ) 
α,j 

, (27) 

here n ∈ { 2 , 4 } is of the order of the shear estimator, α is the
omponent of the shear, and the summation is o v er all galaxies
 in subfield i. Note that the weight is also order-dependent as
he weight parameter C 

( n ) is different for each order. Forcing the 
easurements at the known centres and not applying any selection 

riteria is equi v alent to setting the ef fecti ve weight in the shear
stimator ˜ ˜ w 

( n ) 
j = 1. 

We calculate the statistical uncertainty in the shear estimation from 

 population of subfields of galaxies as (
σ ( n ) 

γ

)2 = 

〈
1 

2 

((
ˆ γ

( n ) 
1 

)2 
+ 

(
ˆ γ

( n ) 
2 

)2 
)〉

N, (28) 

here N is the number of galaxies in each subfield. With each
ubfield having 100 × 100 postage stamps, but with one galaxy in 
ach orthogonal pair excluded, N = 5 × 10 3 . The total uncertainty is
 combination of uncertainty due to galaxies’ intrinsic shape noise, 
( n ) 
RMS , and uncertainty due to noise in the galaxy images, σ ( n ) 

e . We
ssume that they add in quadrature, such that (
σ ( n ) 

γ

)2 = 

(
γ ( n ) 
RMS 

)2 + 

(
σ ( n ) 

e 

)2 
. (29) 

To obtain the galaxies’ intrinsic shape noise, γ
( n ) 
RMS , we use 

imulated galaxies with zero image noise and the same weighing 
arameter value C 

( n ) for each estimator to measure the FPFS 
llipticity. To save computational time, we only measure the first 
omponent of the ellipticity and calculate the RMS across our 
ample of subfields. To obtain the measurement uncertainty, σ ( n ) 

e , 
e measure the total uncertainty using a noisy realization of the 
 alaxy image, ag ain using only the first component of the ellipticity.
e then subtract e RMS in quadrature following equation ( 29 ) to get

he measurement uncertainty for each shear estimator. 
The statistical uncertainty of FPFS also depends on the FPFS 

eighting parameter, C 

( n ) , in equation ( 19 ) (Li & Mandelbaum
023 ). Here, we assume image noise fields that are homogeneous 
 ut that ha v e pix el-to-pix el correlations. This is a reasonable approx-
mation for faint, small galaxies observed in ground-based surveys, 
here noise is primarily due to sky background fluctuations and 
here measurements may be made on a coadd with pix el-to-pix el
oise correlations. Ho we ver, this assumption may not fully capture 
he noise properties in upcoming Stage IV imaging surv e ys. Further
esting is required to e v aluate the robustness of this assumption
o achieve the precision needed for per cent-level cosmology. In 
ig. 3 , we show each source of uncertainty as a function of C 

( n ) 

or the second-order (blue) and fourth-order (orange) estimators on 
imulated isolated galaxies. 
The galaxies’ intrinsic shape noise (dashed) for both estimators 
ncreases as a function of C 

( n ) , whereas the measurement uncertainty
dash–dotted) for both decreases as a function of C 

( n ) since a larger
alue of C 

( n ) adds more weight to the limited number of bright
alaxies with higher SNR. The measurement uncertainty for the 
ourth-order estimator is larger than that of the second-order for 
ur simulation setup as the fourth-order shapelet basis amplifies the 
oise. From this result, we set C 

(2) = 7 for the second-order shear
stimator and C 

(4) = 10 for the fourth-order shear estimator for the
est of the paper. 

Once we fixed the value of C 

( n ) for each shear estimator, we
elaxed the forced measurement and allowed the pipeline to carry 
ut detection and selection during the image processing. For the 
est of this section, during the image production step and before
unning the FPFS detection process, we shift the galaxy centroid 
ith random sub-pix el offsets. F ollowing Li & Mandelbaum ( 2023 ),
e run the FPFS peak detection algorithm and use the detected
eaks as the centroid. Using the detected peaks to measure the galaxy
roperties, we then apply flux- and resolution-based selection criteria 
n equation ( 15 ) to assign selection weights to the detected galaxy
ample. After analytically correcting for noise bias, selection bias, 
nd detection bias, we show the shape measurement uncertainty 
rom the second-order (blue) and fourth-order (orange) estimator on 
solated galaxies in Fig. 4 . This figure shows that for isolated galaxy
amples, combining the two shear estimators reduces the statistical 
ncertainty in shear inference by ∼30 per cent. This result suggests
hat for isolated galaxies, we can get significantly more information 
f we estimate the shear using second and fourth-order moments 
nd combine them using equation ( 23 ). A 30 per cent reduction in
hape noise is equi v alent to the increase in sample size that would
e achieved by expanding the survey area by 70 per cent. 

.1.2 Adaptive versus non-adaptive moments 

e next compare each FPFS shear estimator against the widely 
sed reGauss shear estimator method (Hirata & Seljak 2003 ). This
omparison is moti v ated by the dif ferences in ho w these methods
MNRAS 537, 507–519 (2025) 
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Figure 4. The 1 σ statistical uncertainty on shear measurement ˆ γ1 for indi- 
vidual isolated galaxies as a function of the upper limit of FPFS magnitude 
( m F ) for the galaxies included in the measurement. The uncertainty for each 
second and fourth order estimator includes contributions due to image noise 
and intrinsic shape noise. Equation ( 22 ) is used to combine the two shear 
measurements. 
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noise and image noise. 
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se moments of the galaxy profiles to measure ellipticity. One key
istinction between the two is the use of adaptive versus non-adaptive
pproaches. In the non-adaptive method, as implemented in FPFS ,
 fixed kernel (or weight function) is applied uniformly across all
 alaxies, reg ardless of their morphology. The adaptive method used
y reGauss optimizes the weight function for each galaxy based on
ts specific shape and size. This optimization impro v es the precision
f the shear estimation by ef fecti vely accounting for variations in
alaxy morphology to match the weight functions to the galaxy
mages. We use the GALSIM implementation of reGauss to correct
or the PSF when estimating galaxy shapes. An important output of
he reGauss estimator is the components of the spin-2 ellipticity
f each galaxy: 

 e 1 , e 2 ) = 

1 − ( b/a) 2 

1 + ( b/a) 2 
( cos 2 φ, sin 2 φ) , (30) 

here b/a is the axis ratio and φ is the position angle of the major
xis with respect to sky coordinates. Another important output of
eGauss is the resolution factor R 2 : 

 2 = 1 − T PSF 

T gal 
, (31) 

here T PSF is the trace of the second moment matrix of the PSF and
 gal is the trace of the second moment matrix of the observed PSF-
onvolved galaxy image. The resolution factor quantifies how well
he galaxy image is resolved relative to the PSF; R 2 ∼ 1 for well-
esolved objects and R 2 ∼ 0 for poorly resolved images. In general,
he positively and negatively sheared galaxy images have different
esolution factors ( R 

+ 

2 �= R 

−
2 ). 

We select well-resolved galaxies to a v oid a large multiplicative
ias correction at a low-resolution factor for reGauss (Li et al.
022a ). To ensure a consistent sample between FPFS and reGauss ,
e apply the following criteria for each subfield: only keep galaxies

hat satisfy R 

( + , −) 
2 > 0 . 3 and | e ( + , −) | < 2. Applying the resolution

actor and the ellipticity criterion reduces the sample to ∼4 × 10 3 

alaxies out of 5 × 10 3 galaxies in each subfield. When comparing
he two shear estimation methods, we only retain galaxies that were
etected in both methods, ensuring the same sample population for
NRAS 537, 507–519 (2025) 
oth FPFS and reGauss . This helps isolate differences in precision
etween the methods without introducing sample bias. 

For an isotropically oriented galaxy ensemble distorted by some
nown constant shear, the shear responsivity can be estimated: 

ˆ 
 

( R) = 

〈
̂ 

w 

( R) e 
( R) 
1 

+ 

− ̂ 

w 

( R) e 
( R) 
1 

−〉
2 γ

, (32) 

here the superscript ‘ + ’ (‘–’) refers to measurements of galaxies
ith positiv e (ne gativ e) shear γ applied, R denotes quantities

stimated using reGauss method, and w 

( R) is the inverse variance
eight defined as 

 

( R) = 

1 (
γ

( R) 
RMS 

)2 
+ 

(
σ

( R) 
γ

)2 , (33) 

sing the reGauss method, the shear is then estimated as 

ˆ ( R) 
α,i = 

∑ 

j∈ i w 

( R) 
j e 

( R) 
α,j 

R 

( R) 
α,j 

, (34) 

o obtain γ ( R) 
RMS , we use the noise-free isolated galaxy image simula-

ion and set the weights w = 1. We use equation ( 34 ) to estimate
he shear and take the variance across multiple subfields to get
he uncertainty. This process gives γ ( R) 

RMS = 0 . 26, the typically used
alue for intrinsic shape noise. To obtain the total uncertainty
ncluding intrinsic shape noise and measurement error, we use noisy
ealizations of the images. We set γ ( R) 

RMS = 0 . 26 and use the value σ ( R) 
γ

eturned from GalSim . 
In Fig. 5 , we compare the 1 σ statistical uncertainty on the shear
easurement of individual galaxies from different shear estimation
ethods for 100 subfields. For each shear estimation method, we

resent the intrinsic shape noise (shaded) and the total uncertainty
no shade), which includes intrinsic shape noise and measurement
rror. We use C 

(2) = 7 and C 

(4) = 10 for the second-order and fourth-
rder AnaCal estimator, respectively, which optimizes the total
ncertainty in Fig. 3 . Equation ( 22 ) is used to combine the two
naCal estimators and equation ( 23 ) to quantify the uncertainty of

he combined estimator. The dashed horizontal lines are drawn to
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Figure 6. The 1 σ statistical uncertainty per galaxy on shear measurement ˆ γ1 for isolated galaxies as a function of the PSF size using different image noise levels 
and shear estimators. The uncertainty for each second and fourth order estimator includes contributions due to image noise and intrinsic shape noise. Equation 
( 22 ) is used to combine the two shear measurements. Left panel shows the 1 σ error on ˆ γ1 using the combined shear estimator. Right panel shows the ratio of 
statistical uncertainty from the second-order and fourth-order estimators compared to the combined estimator. The noise variance for HSC is approximately 
twice that of the LSST noise variance. The results indicate that the combined shear estimator consistently provides lower statistical uncertainty relative to 
individual shear estimators across varying seeing size and image noise levels. 
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ndicate the values for reGauss . In general, reGauss performs 
etter than individual FPFS estimators, or in other words the 
daptive moments method has lower uncertainty than the non- 
daptive moments method. However, when combining the second- 
nd fourth-order FPFS estimators, we get ∼ 30 per cent reduction 
n the shape noise compared to that of reGauss . 

.1.3 Varying seeing and ima g e noise 

n the previous subsections, we used the HSC PSF size (0 . 60 arcsec )
nd the average noise in the i band for isolated image simulations,
nd found an ∼ 30 per cent reduction in shape noise when including 
he fourth moment-based shear estimator along with the second 

oment-based estimator. In this subsection, we vary the PSF size 
nd image noise to see test the dependence of this finding on the
bservational conditions. In Fig. 6 , we show the uncertainty in each
hear estimator and combined for four different PSF seeing sizes and 
mage noise levels. ‘1 . 5 × HSC’ corresponds to an image noise level
ith a noise variance that is 1.5 times the average noise variance
f HSC in i -band coadds, and ‘2 / 3 × LSST’ corresponds to the
oise variance that is 2 / 3 of the expected noise variance from 10 yr
f LSST coadds. The reduction in shape noise is consistent for all
ifferent seeing sizes and image noise levels. The curve for ‘2 / 3 ×
SST’ is basically flat because for a low image noise level, we
an perfectly deconvolve the image with a PSF without amplifying 
oise on small scales. As illustrated in the right panel of Fig. 6 ,
he ratio of uncertainty from second/fourth-order shear estimators to 
hat of combined is roughly independent of PSF size and image noise
evel, and the fourth-order estimator exhibits a greater susceptibility 
o image noise than the second-order estimator. This suggests that 
or isolated galaxies, combining the two independent FPFS shear 
stimators consistently reduces statistical uncertainty, making it the 
referred approach. 

.1.4 Accuracy test 

n this subsection, we test how accurate our fourth-order estimator 
s compared to the second-order estimator. The multiplicative and 
dditive biases in our shear estimation in equation ( 25 ) are measured
s introduced in Sheldon et al. ( 2020 ) as 

 α = 

〈 ̂  we α
+ − ̂ we α

−〉 
0 . 02 

〈 ̂ R α

+ + ̂

 R α

−〉 − 1 , (35) 

nd 

 α = 

〈 ̂  we α
+ + 

̂ we α
−〉 〈 ̂ R α

+ + ̂

 R α

−〉 , (36) 

here 0.02 is the value of constant shear applied to each galaxy image 
nd ̂ we 1 and ̂ R 1 are the first components of the weighted ellipticity 
nd its shear responsivity after noise bias correction, respectively. 
hen quantifying the multiplicative and additive biases, we test γ1 

nd γ2 separately; when testing γ1 we set γ2 = 0 and vice versa. The
uantities with superscript ‘ + ’ are estimated from images distorted
y positive shear, ( γ1 = 0 . 02 and γ2 = 0) or ( γ1 = 0 and γ2 = 0 . 02)
nd superscript ‘ −’ are estimated from images distorted by ne gativ e
hear, ( γ1 = −0 . 02 and γ2 = 0) or ( γ1 = 0 and γ2 = −0 . 02). It is
orth noting that galaxies in each orthogonal galaxy pair and galaxies 
ith different applied shears (positive and negative γ1 ) are selected 

nd weighted independently. We then apply the shear estimator to 
his selected sample to e v aluate our corrections for detection and
election biases. 

F or the accurac y test, we used the HSC seeing size and image
oise level and used 4000 subfields with galaxy orthogonal pairs to
pproximately cancel out the intrinsic shape noise. The amplitudes 
f the multiplicative (additive) biases for each FPFS estimator are 
hown in the top (bottom panel) panel of Fig. 7 . We found that the
ultiplicative biases for both estimators are well within the LSST 

0-yr requirements, and we do not find a significant additive bias. 

.2 Blended galaxies 

n this subsection, we discuss the results of the precision test (as
hown for isolated galaxies in Section 4.2.1 ) and the accuracy test
Section 4.2.2 ) by applying the second- and fourth-order AnaCal
hear estimators on the blended simulated galaxy images as described 
n Section 3.3 . In Li et al. ( 2024b ), they demonstrated that the
econd-order AnaCal shear estimator yields unbiased results for 
he accuracy test. The results presented here confirm that the second-
rder shear estimator tested in this section is consistent with these
MNRAS 537, 507–519 (2025) 
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M

Figure 7. The multiplicative bias (upper panel) and additive bias (lower panel) of the AnaCal shear estimator on isolated galaxies using an HSC-like 
configuration for each order of the shear estimator. The error bars show the 1 σ and 3 σ uncertainties, respectively, and the grey-shaded region is the LSST 

10-yr requirement on the multiplicative shear bias (The LSST Dark Energy Science Collaboration 2018 ). In both panels, the blue points are slightly shifted to 
differentiate the error bars. Both estimators give unbiased shear estimation for each shear component. 
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revious performance tests of the AnaCal second-order shear
stimator. 

.2.1 Precision test 

hen quantifying the uncertainty on each estimator for noisy
imulated blended galaxy images, we use 100 subfields. We measure
hear from each image using both the second- and fourth-order FPFS
hear estimators and use the scatter in these 100 shear measurements
o derive the statistical error. We obtain the per-component statistical
ncertainty σγ as defined in equation ( 28 ) on shear estimation for
 region of one square arcmin by normalizing the statistical error
ccording to the area of each simulated image. We follow Li et al.
 2024b ) to derive the n eff from blended galaxy image simulations as 

 eff = 

(
0 . 26 

σγ

)2 

[ arcmin −2 ] , (37) 

here 0.26 is the per component RMS of intrinsic shape noise using
he widely used reGauss shear estimation method (see Fig. 5 ).

e choose to use 0.26 for the shape noise RMS so that we can
ompare our estimation of the ef fecti ve number density with other
ethods that use reGauss . Typically, the galaxy number density

s estimated by counting the galaxy number (with weights) after
etecting galaxies from images (Chang et al. 2013 ; The LSST
ark Energy Science Collaboration 2018 ). Doing so assumes that

he statistical uncertainty in shear estimation for each galaxy is
ncorrelated. Ef fecti vely we compute the equi v alent galaxy number
ensity for the shear if it were to be estimated with reGauss . 
Moti v ated by the result of Fig. 6 , we show the n eff as a function

f SNR cut for each shear estimator for two different surv e y setups,
SC and LSST, in Fig. 8 . Each surv e y setup follows the respective
SF size and image noise level. The n eff ∼ 15 arcmin −2 for HSC
NRAS 537, 507–519 (2025) 
etup is 35 per cent smaller than the n eff ∼ 20 arcmin −2 for a PSF
ize of 0.6 arcsec from HSC-Y3 (Li et al. 2022a ). The value may
e smaller because we did not optimize the smoothness parameter
or detection. Optimizing this parameter will impro v e the n eff . The
alue of n eff ∼ 39 arcmin −2 for LSST seeing size and image noise
evel is 5 per cent higher than n eff estimated from Chang et al. ( 2013 ).
hey reported n neff ∼ 37 arcmin −2 for the expected distributions of
bserving parameters and all lensing data ( r and i bands) before
onsidering blending and masking. The value is estimated in this
ork is slightly higher due to the use of different selection cuts

nd different numbers of bands to compute the value; Chang et al.
 2013 ) combined r- and i-bands, whereas we used griz -band coadded
mages. 

We find that for the fourth-order FPFS shear estimator, the effec-
ive number density is relatively constant for every SNR lower limit,
s the fourth-order amplifies measurement error caused by image
oise. This shows that the fourth-order FPFS shear estimator is more
ensitive to blending. By combining second- and fourth-order, we
nd that there is ∼ 2 per cent impro v ement in the ef fecti ve number
ensity. When estimating shear using blended galaxy samples, the
ourth-order shear estimator adds minimal information to the second-
rder estimator. The sensitivity of the fourth-order estimator to
oise and blending highlights its limitations in current ground-based
urv e ys. Space-based images, and deep-field images with higher
NR, offer the potential for improving the ef fecti ve number density
sing the second- and fourth-order shear estimators together. We
efer this work to future studies. 

.2.2 Accuracy test 

e also tested the accuracy of the fourth-order shear estimator
n blended galaxies. We used equations ( 35 ) and ( 36 ) to measure
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Figure 8. The ef fecti ve galaxy number density as a function of SNR cut for each AnaCal estimator and for each simulation setup (PSF seeing size and image 
noise level) using 100 subfields with blended galaxies. The statistical uncertainties that go into this ef fecti ve number density include intrinsic shape noise, image 
noise, and noise from blending. The vertical dashed line represents the default SNR cut used in this paper. 
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Figure 9. The multiplicative bias (upper panel) and additive bias (lower 
panel) of the AnaCal shear estimator on blended galaxies using an LSST- 
like configuration for each order of the shear estimator. The error bars show 

the 1 σ and 3 σ uncertainties, respectively, and the shaded grey region is the 
LSST 10-yr requirement on the shear multiplicativ e bias. The v ertical dashed 
line indicates our default selection SNR > 12. 
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ultiplicative and additive biases in our shear estimator. We include 
he orthogonal galaxy pairs to approximately cancel out the intrinsic 
hape noise and use all 5000 subfields to tightly constrain the shear
iases. To save computational time, we only test the noise bias 
orrection for the estimation of ̂  γ1 and remo v e the subscript ( m ≡ m 1 

nd c ≡ c 1 ); the multiplicative and additive biases of ̂ γ2 should be
omparable to those of ̂  γ1 . Fig. 9 shows the multiplicative and additive
iases for each AnaCal estimator with the LSST 10-yr requirement. 
he result shows that the fourth-order shear estimator satisfies the 
SST 10-yr requirement even in the presence of blending. 

 C O N C L U S I O N  

n this work, we extended the perturbation-based shear estimator 
PFS , which is part of the new suite of analytic shear estimation
lgorithms AnaCal , and developed a higher order FPFS shear 
stimator. We compared its performance against the second-order 
hear estimator developed in Li & Mandelbaum ( 2023 ). The AnaCal
ramework analytically corrects for the detection and selection bias 
n shear estimation by deriving the shear response of image pixels. 
t also uses the renoizing approach (Li et al. 2024a ) to correct for the
oise bias by adding an additional layer of noise to the image. This
ethod does not require any computation of deri v ati ves of noisy non-

inear observables. This work focuses on evaluating the accuracy and 
recision of our new shear estimator on constant-shear simulations, in 
hich all galaxies in isolated and blended image simulations undergo 

he same shear. The application of this work with redshift-dependent 
hear will be explored in future research. 

Typically, the shear estimation uses the lowest order (specifically, 
econd order) to define spin-2 observables. We used fourth-order 
PFS shapelet moments to define our spin-2 observables (e.g. 
llipticity) and incorporated the fourth-order shear estimator into 
he FPFS framework. We tested the precision and accuracy of our 
ew shear estimator with HSC-like and LSST-like simulations on 
oth isolated and blended galaxy image simulations. We find that 
or both sets of image simulations, the multiplicative shear bias | m |
or the fourth-order shear estimator is consistently less than 3 × 10 −3 
MNRAS 537, 507–519 (2025) 
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LSST 10-yr requirement on the control of multiplicative bias) within
he 3 σ uncertainties. 

When the fourth-order shear estimator is combined with the
econd-order shear estimator, we found that the shape noise is
educed by ∼ 35 per cent for isolated galaxy image simulations
ompared to using the second-order estimator alone. For isolated
alaxies, the fourth-order shear estimator detects information that is
ot probed by the second moment, and we found that the shear
stimators are complementary. We also found that the ef fecti ve
umber density is impro v ed by ∼ 2 per cent for blended galaxy
mage simulation. When blending is introduced, the fourth-order
stimator treats the blended galaxies as noise and amplifies their
ignals causing them to behave like noise. We recommend combining
oth the second- and fourth-order FPFS shear estimators when
stimating shear for high SNR and isolated galaxy ensembles. While
his approach shows promise, further testing is required for its
pplication to deblended samples and is left for future work. 

An important target for future work is testing this method on
paced-based image simulations, as there may be less blending of
he galaxies. In that regime, it would be worth e v aluating the impro v e-
ent in n eff from combining the two orders of shear estimators. This

aper focused on e v aluating and testing the new shear estimator using
onstant-shear simulations, in which all isolated and blended galaxies
ithin a single image were subject to uniform shear distortions.
acCrann et al. ( 2022 ) showed and tested the performance of
ETACALIBRATION using simulations with redshift-dependent shear

y dividing galaxies into four redshift bins and applying different
hear values to each bin. Their findings indicate that the blending of
alaxies at different redshifts changes the effective number density
istribution as a function of redshift. The implications of redshift-
ependent shear within this framework are left for future work. 
Another potential extension of this framework involves integrating

t with the approach outlined in Zhang et al. ( 2023 ), which can detect
SF leakage and modelling errors from all spin-2 quantities con-

ributed by the PSF second- and higher order moments. Combining
he second and fourth-order shear estimators with this framework
hould give more information on the impact of PSF systematics
n cosmic shear analyses and how to mitigate their impact on
osmological analysis. A detailed exploration is deferred to future
ork. 
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n this appendix, we provide intuition into the additional information
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aussian profile under shear and compare it against the second-order
oment measurement. 
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Let f ( x , σg ) be a Gaussian profile with scale radius σg , which
orresponds to the shapelet basis χ00 ( x | σg ). Under shear, the profile
ransforms as 

00 ( x | σg ) → χ00 ( x | σg ) = χ̄00 ( x | σg ) 

−
√ 

2 γ1 

2 

(
χ2 , −2 ( x | σg ) + χ2 , 2 ( x | σg ) 

)
+ 

√ 

2 γ2 

2 

(
χ2 , −2 ( x | σg ) − χ2 , 2 ( x | σg ) 

)
, (A1) 

here χ̄00 is the intrinsic shapelet basis in the absence of shear. The
orresponding shapelet moments M nm 

of the Gaussian profile can be 
stimated by projecting the profile to shapelet bases using equation 
 7 ). 

The generalized Laguerre polynomials are orthogonal o v er [0 , ∞ ]
ith a weighting function x αe −x : ∫ ∞ 

0 
x αe −x L 

( α) 
n ( x) L 

( α) 
m 

( x)d x = 

�( n + α + 1) 

n ! 
δn,m 

, (A2) 

here δn,m 

is the Kronecker delta function. Using the orthogonality 
elation in equation ( A2 ), if the scale of shapelets and Gaussian is
he same ( σh = σg ), only the shapelet moments M 00 , M 2 , −2 , and M 22 

re non-zero and fourth-order moments are zero, i.e. M 40 = M 42 =
. Ho we ver, in most cases, σh �= σg or M 42 �= 0, so shear can be
stimated using fourth-order moments. In Fig. A1 , we show the spin-
 component of the second- and fourth-order shapelet moments and 
how that the fourth-order moment is 0 when the scale of the shapelet
ernel and Gaussian is the same. For shapelet kernel scale that is
maller than half of the scale of the Gaussian profile (i.e. ratio smaller
han 0.5), by comparing the magnitude of each shapelet moment, we 
nd that the fourth-order moments have more information than the 
2025 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
econd moment as they can probe smaller radii than the second
oment. It is also worth noting that by comparing the magnitude of

he shapelet moment, the fourth-order moment has more information 
n small scales compared to large scales. 

igure A1. Spin-2 component of the second and fourth-order shapelet 
oments of a Gaussian profile with input shear γ1 = 0 . 02 as a function

f the ratio between the scale of the Gaussian profile to the shapelet kernel.
he vertical dashed line indicates when the two scales are identical. 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
MNRAS 537, 507–519 (2025) 

 Access article distributed under the terms of the Creative Commons Attribution License 
roduction in any medium, provided the original work is properly cited. 
D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/

rticle/537/1/507/7953339 by guest on 08 M

arch 2025

https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 METHOD
	3 SIMULATIONS AND TESTS
	4 RESULTS
	5 CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: SHAPELET MOMENTS OF GAUSSIAN PROFILES

