
2.92.592

Article

Development of Evolutionary
Systems Based on Quantum Petri
Nets

Tiberiu Stefan Letia , Elenita Maria Durla-Pasca, Dahlia Al-Janabi and Octavian Petru Cuibus

Special Issue
Information Theory Applied in Scientific Computing

Edited by

Prof. Dr. Tiberiu Letia and Prof. Dr. Alexandru Onea

https://doi.org/10.3390/math10234404

https://www.mdpi.com/journal/mathematics
https://www.scopus.com/sourceid/21100830702
https://www.mdpi.com/journal/mathematics/stats
https://www.mdpi.com/journal/mathematics/special_issues/Information_Theory_Applied_in_Scientific_Computing
https://www.mdpi.com
https://doi.org/10.3390/math10234404

����������
�������

Citation: Letia, T.S.; Durla-Pasca,

E.M.; Al-Janabi, D.; Cuibus, O.P.

Development of Evolutionary

Systems Based on Quantum

Petri Nets. Mathematics 2022, 10, 4404.

https://doi.org/10.3390/math

10234404

Academic Editor: Jan Sładkowski

Received: 17 August 2022

Accepted: 16 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Development of Evolutionary Systems Based on Quantum
Petri Nets

Tiberiu Stefan Letia *, Elenita Maria Durla-Pasca, Dahlia Al-Janabi and Octavian Petru Cuibus

Department of Automation, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania

* Correspondence: tiberiu.letia@aut.utcluj.ro

Abstract: Evolutionary systems (ES) include software applications that solve problems using heuristic

methods instead of the deterministic ones. The classical computing used for ES development involves

random methods to improve different kinds of genomes. The mappings of these genomes lead to

individuals that correspond to the searched solutions. The individual evaluations by simulations serve

for the improvement of their genotypes. Quantum computations, unlike the classical computations,

can describe and simulate a large set of individuals simultaneously. This feature is used to diminish

the time for finding the solutions. Quantum Petri Nets (QPNs) can model dynamical systems with

probabilistic features that make them appropriate for the development of ES. Some examples of ES

applications using the QPNs are given to show the benefits of the current approach. The current

research solves quantum evolutionary problems using quantum genetic algorithms conceived and

improved based on QPN. They were tested on a dynamic system using a Quantum Discrete Controlled

Walker (QDCW).

Keywords: quantum computing; genetic algorithms; Petri nets; quantum Petri nets; software devel-

opment, analysis and verification

MSC: 68Q12

1. Introduction

The current research concerns applications, such as urban vehicle traffic, airplane
traffic, weather, markets, electric power networks, fluids networks, telecommunications
and data transmission, etc., that have stochastic behaviors. There are some entities that
have to be controlled or managed to behave according to the required specifications.

Quantum computers have different capabilities compared to classical computers and
their use should cover the domains where these differences would lead to significant
benefits. The authors of [1] review the quantum algorithms that have been discovered and
reveal their features that outperform classical algorithms.

According to [2], tools are needed to create and debug quantum computers and their
programs. These tools can help to elucidate hidden issues and drive towards design with
the best chance for overall success.

The current approach developed methods that can sustain the heuristic search of
evaluated solutions that exceed specified thresholds. The previously conceived ES methods
are modified according to the features provided by the quantum algorithms.

The general objective in simulating a quantum system is to determine its structure or
behavior, given knowledge of its components and the environment in which it exists.

In [2] the quantum computers are partitioned in three categories:

• Analogue quantum computers that directly manipulate the interactions between
qubits without breaking the operations in logic gates.

• Digital noisy intermediate-scale quantum computers that use primitive gate operations
on physical qubits.

Mathematics 2022, 10, 4404. https://doi.org/10.3390/math10234404 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10234404
https://doi.org/10.3390/math10234404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1956-7272
https://orcid.org/0000-0002-6318-9651
https://doi.org/10.3390/math10234404
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10234404?type=check_update&version=3

Mathematics 2022, 10, 4404 2 of 34

• Fully error-corrected quantum computers that enable noisy physical qubits to emulate
stable logical qubits.

The QPNs (Quantum Petri Nets) can be used to model the quantum software appli-
cations, to analyze their structure and to verify their behaviors [3]. After the simulations
of the QPN models, the implementation of the quantum applications is expected to be
achieved (compiled) without difficulties.

This article shows the links between quantum algorithms and their corresponding
QPN models. These can sustain the quantum processor configuration and quantum pro-
gram conception, verification and debugging.

The two directions for solving the problems concern the contraption of methods that
use quantum computation methods implemented on classical computers and to create new
concepts that allow the finding of the ES solutions using the quantum computers.

1.1. Current Research State of the Field

1.1.1. Quantum Algorithms

Quantum Computing (QC) is recommended to be used in applications where it
outperforms the classical computation. Some reviews ([4,5]) present as main QC directions:
breaking cryptosystems [6], unstructured search problems, finding accurate approximate
solutions to optimization problems, finding the minimum of an unsorted list of integers,
determining a graph connectivity, solving linear equations, quantum annealing, etc.

The search in an unstructured database is obtained in [7] using a function F(x), x ∈
X = {0, 1, . . . , (n− 1)}, with F(x) = 0, for ∀x ∈ X, x 6= j where F(j) = 1. The problem
consists of finding j. The exponential speedup of the search compared to the classical
computation is an undoubted benefit.

Shor’s algorithm solves the factorization problem [8]. It is given F(x) = axmodN with
a ∈ R, 1 < a < N. The request is the finding of the smallest integer r such that armodN = 1.
Again, the algorithm’s exponential search determines its use in many applications, such as
the use of QC in cryptography [6,9] .

The inverse transform of a matrix introduced in [10] is used for solving linear equations
of the form A · x = b, where A is a Hermitean N × N matrix and b a given unit vector. QC
solves such problems that appear in many practical applications with exponential speedup.

Hybrid methods involving quantum and classical computers can be used as Variational
Quantum Eigensolver [11,12]. The eigenvalues and eigenvectors of a Hamiltonian are used
to transform a system iteratively to a desired specified one.

Quantum annealing is an optimization method for combinatorial problems where the
superposition is used for avoiding the focalization in local minimums [13].

Quantum walk opens ways for algorithm construction that solves search problems on
a graph [14].

According to [15], the classical random walk concept has been used as a computa-
tional framework for designing classical algorithms for complex problems, while quantum
variants provide a speed-up in computational power for various algorithms with distinct
elements in spatial search or graph connectivity. A quantum walker following a unitary
operation for evolution is named a unitary quantum walker, while one that does not meet
this condition is a non-unitary quantum walker. The non-unitary evolution of a quantum
system is implemented/defined by adding some qubits to the quantum system followed
by a unitary transformation. The result is obtained by discarding the extra qubits. Both
kinds of walker have benefits in practical applications.

An example is the optimization of a search based on random walks that require the
reduction of the number of necessary repetitions [16,17].

Some quantum walker approaches tackle the Quantum Discrete Random Walkers
(QDRWs) in an infinite space or finite space [18]. Other researchers studied the quantum
continuous random walkers (in an infinite space) [19,20]. They are widely used in practical
applications [5]. An application of quantum discrete walker ranking in grid nodes is given
in [21].

Mathematics 2022, 10, 4404 3 of 34

The reference [22] contains some variants of Quantum Discrete Walker (QRW) ap-
proaches and different variants of generalized coin tossing. In [23], two entangled coins
were used to control the walker’s move in a one-dimension space.

One goal in walker problems is the reducing of the hitting time and the diminishing
of mixing time [24].

Quantum walk can be used for search of element distinctness (e.g., find two equal
elements) [25].

The comprehensive review [26] divides the quantum walker approaches as Schrodinger
and combinatorial. To be noted is the decoherence definition as a physical phenomenon
that typically arises from the interaction of quantum systems and their environment. This
interaction can be used for quantum process control as it will be seen further for controlling
the walker moves.

Quantum Approximate Optimization Algorithm (QAOA) uses the mapping of the
objective function to Hamiltonian that brings the problem into Hilbert space [27–29]. The ex-
pectation value of the Hamiltonian is improved by using quantum mechanical techniques
in the Hilbert space. QAOA can be extended by adding constraints. A relevant problem is
the so called MaxCut where a graph G = (V, E) with V vertices and E edges has to be cut
in such a manner that it maximizes the number of edges crossing the cut.

In conclusion, the main quantum walk research directions and their practical appli-
cations focus on the hitting times, the quantum amplification control and the marked element
detection.

1.1.2. Evolutionary Systems

Evolutionary Algorithms (EAs) are applied to problems where pure stochastic algo-
rithms fail or find it difficult to solve due to the high number of dimensions or function
complexities [30]. Their main utilizations cover the domains of variable optimization,
new structural design and improvement. EAs include: evolutionary strategies, genetic
algorithms, genetic programming, genetic improvement, grammatical evolution, linear
genetic programming, Cartesian genetic programming, differential evolution and gene
expression evolution.

The evolutionary systems implemented on classical computers are often used for
solving problems concerning:

• Combinatorial requirements,
• Optimization of system parameters,
• Dynamic behavior optimizations,
• Algorithm synthesis such as for controlling plants or for reacting to events produced

by their environments.

Related to the use of QC in EA, some questions arise: What are the benefits of using
QC in EA? What are the modifications required for application of QC in EA? Where and
how can Quantum Evolutionary Algorithms (QEAs) be applied in practical applications?
References [31,32] offer some answers to these.

The use of QC in EAs led to three main development directions: quantum inspired
evolutionary algorithms ([33–46]), quantum evolutionary algorithms ([47–53]) and hybrid
quantum-classic evolutionary algorithms ([54–56]).

Successfully detailed implementations at the Quantum Logic Circuit (QLC) level are
developed and deeply analyzed in [57,58].

Some QEA used animal behaviors for searching the solutions [39,59,60]. Remarkable
are the characteristics of the systems that can be approached: they could have various com-
plexities, including non-linear, non-convex, multi-modality, non-differentiable functions
and large-scale dimensionality.

Quantum control based on machine learning in an open quantum system is another
direction of QC application development [61].

Closest to the view point of quantum state superposition, created by QC, is the Particle
Swarm Optimization (PSO) method [62].

Mathematics 2022, 10, 4404 4 of 34

Analyzing the QEAs, it can be concluded that the genotypes are coded based on the
quantum superposition fulfilling the Hilbert condition. The genotypes are initialized to
meet some diversity requirements and covering the search domain. The individual (i.e.,
genotypes) are improved using unitary transformation matrix. The individual improve-
ments can be based on a single (usually the best) individual or combining features from
two individuals (i.e., crossover). Some evolution methods need genotype (or individual)
repair mechanisms. There are improvements consisting of the search step adaptations,
usually related to the generation iterations. It is difficult to prove the benefits of using the
quantum vector representation instead of classical ones. There would be clear benefits
if it can be proved that the number of searches and evaluations is smaller in the case of
quantum description. The comparisons based on experiments of different QEA methods
for solving particular problems can be supposed to be biased to particular characteristics.

The approaches of discrete oriented quantum random walker problems were used to
show the benefits of the QPN models.

As our main contributions should be mentioned: the manner of QPN definition, their
properties, analysis and verification methods. The Quantum Genetic Algorithms (QGAs)
were adapted using the QPNs. They were experimented and tested on a dynamic system. A
new kind of quantum discrete random walker model, based on QPN, was used for testing
the QGAs. A new quantum fitness method was conceived for this purpose.

2. Materials and Methods

2.1. Quantum State versus Classical State

The classical bits take values in the domain {0, 1}. They are used to compose the
digital information. A number of r bits can cover a domain of 2r values.

The quantum replacement of the classical bit is the qubit denoted here |bk〉: |bk〉 =
αk|0〉+ βk|1〉 where the complex numbers αk and βk satisfy the relation |αk|2 + |βk|2 = 1
and |0〉, |1〉 represent their quantum state.

The qubit can be represented on Bloch sphere (Figure 1). It can be described using the
angles by the relation:

|ψ〉 = α|0〉+ β|1〉 = cos
θ

2
|0〉+ sin

θ

2
ejφ|1〉, (1)

with θ ∈ [0, π] and φ ∈ [0, 2π].

Figure 1. Qubit representation on Bloch sphere.

Joining a number of g qubits leads to a quantum register modeled by qubit vectors of
the form:

V = [(α0, β0), (α1, β1), . . . , (αg−1, βg−1)]. (2)

The initialization and measurement (i.e., collapse) in quantum computers are per-
formed on qubits. These refer to the V vectors.

The qubits (similar to the bits) can be coded at the computational level by state vectors.
The content of a register composed of g (length) qubits can store information using 2g

state vectors from the set Q = {|q0〉, |q1〉, . . . , |qr−1〉} with r = 2g. These vectors compose a
system of axes used for representing the data in quantum computation.

Mathematics 2022, 10, 4404 5 of 34

A quantum register content can be described by the superposed state vector |ψ〉 in a
Hilbert space (H) at the computational base:

|ψ〉 =
r−1

∑
k=0

ck|qk〉, (3)

with ck; i = 0, . . . , r− 1 complex numbers from the setC fulfilling the relation: ∑
r−1
k=0 |ck|2 = 1.

These coefficients are named amplitudes and they represent the probability distribution
of the quantum state. The value |ck|2 provides the probability of the quantum process to
be in the quantum state |qk〉. This conception of storing the quantum information based
on the quantum state amplitudes (i.e., the coefficients ci) can sustain the opposite behavior
manners named quantum interference.

In conclusion, the Hilbert space Hq has the base |qi〉 : i = 0, 1, . . . , r− 1 spanning in
Hq = span{|qi〉 : i = 0, 1, . . . , r− 1}.

Let |ψ1〉 = ∑
r−1
i=0 c1

i |qi〉 and |ψ2〉 be two vectors in Hilbert space. Then:

|ψ2〉 = A|ψ1〉 = A
r−1

∑
i=0

c1
i |qi〉 =

r−1

∑
i=0

c1
i A|qi〉. (4)

A is a matrix that generates transformation of superposed quantum state. AA† =
A† A = I, where A† is the conjugate transpose of A. A is a so-called unitary matrix. This
property of A grants that the transformation CT

2 = A ·CT
1 with Ci = [ci

0, ci
1, . . . , ci

r], (i = 1, 2)
is a valid one.

While |ψ〉 requires 2g complex coefficients, V involves only 2g complex coefficients.
These coefficients are linked by the relations:

|q0〉 = |00 . . . 00〉; c0 = α0α1 . . . αg−1,

|q1〉 = |00 . . . 01〉; c1 = β0α1 . . . αg−1,

· · · · · ·
|qr−1〉 = |11 . . . 11〉; cr−1 = β0β1 . . . βg−1.

(5)

The conversion of V to Ψ can always be performed, while the reversal (i.e., from Ψ to
V) can be done only for some particular (pure) states.

2.2. Quantum Systems versus Classic Dynamic Systems

Let |ψx〉 = ∑
r−1
k=0 cx

k |qk〉 be a quantum vector and x = [x0, x1, . . . , xr−1]
T a vector with

real number elements in the classic system theory. The relation between the quantum vector
and the classic vector is set in the current approach by |cx

k |2 = xk for all k = 0, 1, . . . , r− 1.
As it can be seen, the values xk (k = 0, 1, . . . , r− 1) correspond to the system probabilities
to be in the quantum states |qk〉 (k = 0, 1, . . . , r− 1).

Denoting with X(τ) = [cx
0 , cx

1 , . . . , cx
7]

T the vector provided by |ψx〉 at a discrete time τ,
a classic dynamic system can be described by X(τ + 1) = U · X(τ). If U is a unitary matrix,
the walker’s position, provided by X, remains in Hilbert space (i.e., on the circle domain).

If |ψo〉 = ∑
1
k=0 co

k|qk〉 is a Hilbert vector, then |ψo
x〉 = |ψo〉

⊗ |ψx〉 is a Hilbert vector as
well that extends the position with the entity orientation.

A quantum system |ψx(τ + 1)〉 = A · |ψx(τ)〉 can model an un-oriented walker,
while ψo

x(τ + 1) = Ao · ψo
x(τ) can model an oriented one. The un-oriented walker has

the state |ψx〉 equivalent to X, while the oriented walker has the state |ψo
x〉 equivalent to

(co
0, co

1, X). The matrices A and Ao have to be unitary for the walker system to remain in the
Hilbert space.

2.3. Quantum Computation

Unlike the classical computation that uses logical gates, the processing of quantum
information is performed by quantum processors composed of quantum logical gates. A

Mathematics 2022, 10, 4404 6 of 34

quantum logic gate acting on a qubit is a 2 x 2 matrix. For example, the Hadamard (or
diffusion) matrix:

H =
1√
2

[

1 1
1 −1

]

, (6)

acting on the qubit |b〉 = α|0〉+ β|1〉, provides |b′〉 = 1√
2
(α + β)|0〉+ 1√

2
(α− β)|1〉 that

verifies the quantum coefficients (i.e., Hilbert) condition.
A single quantum logic gate acts on a qubit, while multiple quantum gates, composing

a quantum logic circuit act on a register (vector) of qubits, performing an operation of the
form |ψ′〉 = A|ψ〉. Any such transformation of information has to fulfill the quantum
coefficient condition that is met if the corresponding matrix A is unitary.

According to [63], a single qubit quantum gate can be applied to a register of r qubits
on a single qubit of a quantum vector. If the qubit is in the k position, the full quantum gate
matrix His described by:

Ak =
r−1
⊗

j=0

{

H, if j = k

I, otherwise
, (7)

where I is the identity matrix.
For g = 3 qubits (|b0〉, |b1〉, |b2〉), the application of H on the middle qubit leads to the

matrix A1 = I
⊗

H
⊗

I which is a matrix of 8 x 8 size.
Figure 2 represents a quantum logic circuit that acts on a vector, composed of 3 qubits,

performing an increment operation detailed by the AND and exclusive OR operations.

Figure 2. Representation of a quantum vector and quantum operations.

2.4. Quantum Petri Nets

A quantum program involves modifications of the information stored in a set of
quantum registers by the quantum gate circuits that link them. This can be modeled by
Quantum Petri Nets (QPNs) [3]. Figure 3 shows an example of a QPN model that is used for
their definition.

Other QPN formal definitions and modeling methods can be found in [64,65]. These
show the connections between Petri nets, quantum physics and category theory. The monoidal
categories are used for constructing a net theory. In [65], the definitions of QPNs were
enriched with formal construction of the reachability graphs.

Figure 3. Quantum Petri net model.

Figure 4 shows a QPN modeling a quantum logic circuit that sequentially applies the
mappings (i.e., gate operations) A1, A2, A3 to the qubits |b0〉, |b1〉 and |b2〉, respectively,
performing the operations |ψ4〉 = A3 · |ψ3〉 = A3 · A2 · |ψ2〉 = A3 · A2 · A1 · |ψ1〉.

Mathematics 2022, 10, 4404 7 of 34

Figure 4. Quantum Petri net model of Figure 2 representation.

For the QPNs (see Figure 4), the following notations and concepts are used:

• N = (P, T, F) is a net with two kinds of disjoint node sets,
• a finite place set P = {p0, p1, ..., pm−1}, (m ≥ 0),
• a finite transition set T = {t0, t1, ..., tn−1}, (n ≥ 0),
• F ⊆ P× T ∪ T × P is the flow relation,
• ◦t = {p ∈ P|(p, t) ∈ F} describes the transition t input place set,
• t◦ = {p ∈ P|(t, p) ∈ F} describes the transition t output place set.

QPN model shown in Figure 4 corresponds to QLC represented in Figure 2 if the
following relations are added.

The Toffoli (CCNOT) gate that is applied to the 3 qubits has the correspondent ma-
trix operator:

A1 =

























0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























. (8)

The matrix operator for CNOT gate applied to the two qubits is:

A′2 =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









. (9)

The NOT (Pauli-X) gate matrix operator, applied to last one qubit is:

A′3 =

[

0 1
1 0

]

. (10)

The last two matrices are transformed, using the relation (7), resulting the mappings
assigned to transitions:

A2 =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























(11)

Mathematics 2022, 10, 4404 8 of 34

and

A3 =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

























. (12)

There are two referential systems denoted by V and Ψ that store in parallel the informa-
tion in the QPN places. The quantum logic circuits (i.e., the mappings mapV) act on the V level
(i.e., qubit registers) modifying the coefficient values V = [(α0, β0), (α1, β1), . . . , (αg−1, βg−1)],
while the mappings mapΨ act at the Ψ (computational) level modifying the amplitudes
[c0, c1, · · · , cr−1]. For each value V there is the transformation (5) denoted by T that converts
the V vector in |ψ〉 = T (V) vector. For some pure states of |ψ〉 the transformation and the
revers transformation (conversion) V = T −1(|ψ〉) can be performed.

Some quantum algorithms use and have defined mapping mapΨ, even if at the low
level they are implemented by mappings on quantum logic circuits (QLC). This requires
the synthesis of QLCs that perform the mappings mapΨ. Other quantum algorithms have
defined operations only at the qubit level. The conversion from V to Ψ is always defined
by the transformation of the type T .

Related to QPN states, the following are specified:

• Any place ps ∈ P has assigned a pair of natural numbers (gs, rs), with rs = 2gs

specifying the dimensions of the tokens (i.e., vectors) |ψs〉 and Vs, respectively,
• Q = {|q0〉, |q1〉, . . . , |qr−1〉} is the place quantum state set,

• |ψs〉 = ∑
r−1
l=0 cs

l |ql〉 is the first part of the token that can be set in a place ps;

• Vs = [(αs
0, βs

0), (α
s
1, βs

1), . . . , (αs
g−1, βs

g−1)] is the second part of the token set in the

place ps,
• The marking of a place ps is QM(ps) = [|ψs〉, Vs],
• When the token is missing in a place p, the place marking is QM(p) = φ (i.e., the

empty set meaning nothing or the lack of information);
• The system quantum superposed state QS is

QS = [QM(p0), QM(p1), . . . , QM(pm−1)] (13)

and it is given by
QS = [|ψ0〉, |ψ1〉, . . . , |ψm−1〉], (14)

or
QS = [V0, V1, . . . , Vm−1]. (15)

2.5. Transition Admissibility and Execution

The QPN places can store two kinds of tokens (V token and Ψ token) and its transitions
can execute two kinds of mappings (mapV and mapΨ) depending on the available tokens
in their input places.

Any output arc (tk, pv) ∈ F of a transition tk has assigned a mapping denoted
mapΨv

k(. . . , |ψj〉, . . .), and a mapping mapVv
k (. . . , Vj, . . .) with |ψj〉 and Vj tokens in QM(pj),

pj ∈◦ tk that transforms the information stored in its input places (i.e., Hilbert and V vectors)
and sets the new token (i.e., |ψ〉 and V vectors) in its output place pv ∈ tk

◦ according to:

|ψv〉 = mapΨv
k(|ψi〉, |ψj〉); pi, pj ∈◦ tk (16)

or its counterpart
Vv = mapVv

k (Vi, Vj). (17)

When one of them is missing, the Equation (5) is used for transformation.

Mathematics 2022, 10, 4404 9 of 34

A transition is enabled for the execution of its assigned mapV and/or mapΨ mappings
if and only if it has in its input places the corresponding V/Ψ tokens, respectively.

The execution of an enabled transition mapping involves the atomic logical extraction of
the tokens from its input places and the injection of the tokens in its output places. When
a mapV mapping is executed, it is followed by the conversion and set of the |ψ〉 = T (V)
tokens in the output places if the mapΨ mapping is not available or allowed.

An enabled transition tk is executed at a moment in the time interval (0, dk) with 0 and
dk real numbers; where dk is a very short estimated (specified) moment in time.

The start and the end of a quantum program involve:

• init, a method that initializes the places with quantum vectors with amplitudes from

the matrix CS0

QS0 = init(CS0), (18)

with CS0 an environment matrix of QS size and complex elements fulfilling the Hilbert
space condition;

• end, a method that stops the quantum process by collapsing the current QS, extracts

the information from places (i.e., the final state QS f) and sets it to an environment
matrix CS f

CS f = end(QS f), (19)

where CS f is a matrix of g ·m size with the elements in {0, 1}.

2.6. Definition of QPNs

The definition of QPN is:

QPN = (N, D, G, Map, QM0, init, end, QM f), (20)

where:

• N = (P, T, F) is a net;
• D = [d0, d1, . . . , dn−1] is a vector containing the maximum estimated delays assigned

to transitions;
• G = [g0, g1, . . . , gm−1] is a vector containing the sizes of the vectors (Vi, i = 0, 1, . . . ,

m− 1) set in the corresponding places;
• Map is the set of mappings (i.e., pair (mapΨv

k(), mapVv
k ())) assigned to arcs linking

the transitions with places; when one of them is missing, it is denoted by null,
• QM0 is a matrix with initialized values (i.e., the initial quantum superposed states);
• init is the initialization method;
• end is the stop method;

• QM f is a matrix storing the values of the final quantum superposed state (i.e., the
result matrix).

There are some differences concerning the QPNs related to classical PNs:

• The same token set in a place can be used for enabling and execution of more than
one transition.

• There are non-reversible transitions (that correspond to non-reversible quantum logic
circuit) and reversible transitions that correspond to reversible quantum logic gates.

• Once a non-reversible transition is executed (it extracts the tokens from its input place
set), no further transition can be enabled with the extracted tokens.

• The transition assessment is performed in iterations that have no duration.
• When some transitions are enabled, they are executed even if the tokens from their

input place sets have already disappeared.
• If more than one transition set tokens concurrently (simultaneously) in a place, this

situation leads to conflict and has to be avoided.

Mathematics 2022, 10, 4404 10 of 34

2.7. Analysis and Verification of QPN Models

The need of the analysis and the verification of the quantum programs behaviors is
obviously in the development process, as it is known from many procedures. Petri nets can
sustain these by some popular methods. In the current approach, Petri nets-based language
and the reachability graphs are used.

2.7.1. Petri Net Based Language

Using the notations: ‘*’ for sequence, ‘+’ for alternative, ‘&’ for concurrence and ‘#’ for
closing a loop, the behavior of a PN can be described. For example:

• t1 ∗ t2 describes the sequential execution of the transitions t1 and t2;
• t1 + t2 describes the alternative for execution of the transition t1 or t2;
• t1&t2 = t1 ∗ t2 + t2 ∗ t1 describes the concurrent execution;
• (t1 ∗ t2)#t3 describes a loop σ = (t1 ∗ t2 ∗ t3) ∗ σ.

Details of their use are provided in [3].

2.7.2. Reachability Graphs

In [3] were used the reachabilty graphs that include the states and the transitions
that lead to them. Some transitions are concurrently executed, changing the system states
simultaneously. Some examples of their use are provided further.

2.8. QPN Model Examples

2.8.1. Reversible Transitions and Entangled Places

Figure 5 displays a QPN model that could execute a sequence σ = t1 ∗ t2 of two
reversible transitions. A reversible transition should be accepted to become initially enabled
even if the token in one of its input places is missing (denoted here by φ).

The transition t1 concurrently executes the relations:

|ψ2〉 = A1|ψ1〉,

|ψ1〉 =
{

|ψ1〉, if QM(p2) = φ,

A−1
1 |ψ2〉, otherwise

,

where the unitary matrices A1 and A−1
1 fulfill the relation A1 · A−1

1 = I.

Figure 5. QPN model of a sequence of reversible transitions.

After t1, the transition t2 concurrently executes the relations:

|ψ3〉 = A2|ψ2〉,

|ψ2〉 =
{

|ψ2〉, if QM(p3) = φ,

A−1
2 |ψ3〉, otherwise

,

where the unitary matrices A2 and A−1
2 fulfill the relation A2 · A−1

2 = I.
The places p1 and p3 are entangled, if the transitions t1 and t2 are assigned with d1 = 0

and d2 = 0 (i.e., zero delays). These lead to instantaneous maintenance of the relations
|ψ3〉 = A2 · A1|ψ1〉 and |ψ1〉 = A−1

1 · A−1
2 |ψ3〉.

Mathematics 2022, 10, 4404 11 of 34

2.8.2. Qubit Rotations and While Loops

The QPN shown in Figure 6 describes the rotation of the qubit |q0〉 stored in the place
p0 by the mapping assigned to t0. The rotation with an angle θ can be determined using
the circle representation displayed on Figure 7. Supposing that the rotation angle is given
by a qubit |q〉 = α|0〉+ β|1〉, the angle θ is given by θ = arcsin(β) = arccos(α). Performing
this calculus offline, the mapping assigned to t0 that achieves the rotation is:

A1(θ) =

[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

. (21)

Figure 6. QPN model of a while loop.

Figure 7. Polar plot for representation of qubit.

The repetition of the loop until a specified state is achieved, is a more difficult task.
In the current proposal the method introduced by [66] is considered to be used. As
a consequence, it is supposed that a loop can be admittedly executed with a specified
robustness. The measurement performed at each iteration, for predicate condition of
exiting the loop, diminishes the qubits state with a value smaller than a specified and
accepted one.

The QPN model displayed in Figure 6 executes the sequence:

σ = t0 ∗ (t1&t2) ∗ σ. (22)

The while loop is determined by t1 that executes:

t1 : IF QM(p1) > ǫ THEN |ψ0〉 = A1|ψ1〉 END. (23)

This involves the weak measurement of |ψ1〉 (see details in [66]) that ends the loop
execution when the condition is not met.

The QPN example displayed in Figure 8 corresponds to a mapping that rotates the
qubit |qo〉 = αo|0〉+ βo|1〉 stored in the place p0 with an angle given by the control qubit
|qc〉 = αc|0〉+ βc|1〉 stored in the place p1, resulting the qubit |qr〉 = αr|0〉+ βr|1〉 injected in
the place p2. This requires the synthesis of a QLC that performs the unitary transformation
(αr, βr) = map((α0, β0), (αc, βc)).

Mathematics 2022, 10, 4404 12 of 34

Figure 8. QPN model of a qubit rotation depending on another one.

Let be the above map(., .) given by A1(θ) defined in (21) with θ = arctan(βc
αc
). This

sets in p2 the result of the rotation of |q0〉 according to the amplitudes of |qc〉.
Another possibility to implement the model displayed in Figure 8 is to assign the

vectors |ψ0〉, |ψ1〉 and |ψ2〉 to the QPN places. If the mapping assigned to transition t0 is
|ψ2〉 = |ψ0〉

⊗ |ψ1〉, this manner of multiplication leads to increasing the dimension of the
vector set in p2 to 2g2 = 2g0 · 2g1 .

If g1 = 1, then the mapping can be correctly defined by |ψ2〉 = M+ · (A1(θ)
⊗

I · |ψ0〉),
where I is the corresponding identity matrix. M+ can be defined to perform an increment
circular shift:

M+ =

























0 1 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
0 0 0 1 · · · 0 0 0
· · · · · · · · · ·
· · · · · · · · · ·
0 0 0 0 · · · 0 1 0
0 0 0 0 · · · 0 0 1
1 0 0 0 . . . 0 0 0

























. (24)

Similarly, a matrix M− can be defined, which performs a decrement circular shift.
The problem can be extended for the case when g1 = 2 and the previous places model

vectors of qubits. If A1(θ0) and A1(θ1)) perform the rotations of two independent qubits,
the matrix:

A2(θ0, θ1) =

[

A1(θ0) 0

0 A1(θ1)

]

, (25)

achieves the rotation of a quantum vector (i.e., register) of two qubits.

2.8.3. Quantum Discrete Random Walker on a Circle

The chosen examples concern the Quantum Discrete Random Walker (QDRW) that
moves on a circle or on a sphere (see Figure 9). They can be oriented or un-oriented.
The specified 8 discrete positions on the circle can be coded with three qubits composing
a vector V = [(α0, β0), (α1, β1), (α2, β2)] or by referring to the quantum states for each
position |ψX〉 = ∑

7
k=0 cx

k |qk〉.
The walker random moves are decided by throwing a coin that can be modeled by

Hadamard matrix (Equation (6)).

Figure 9. QDRW movement space.

Mathematics 2022, 10, 4404 13 of 34

The QDRW model on a circle can be described in the Hilbert space H = H8
X by

the equation:
|ψx(τ + 1)〉 = SH(H

⊗

I · |ψx(τ)〉) (26)

where SH(...) denotes the shift operator applied to its argument and τ is the clock tick. SH
moves the walker to the right if the decision operator (i.e., the coin) provides “+” and to the
left if the result is negative. SH is implemented by a permutation matrix (that has only one
‘1’ on each column or line) that performs the walker evolution. SH+ achieves a positive
move (i.e., increase the position), while SH− determines a negative move (decrease the
position value).

Denoting by ̺ = 1√
2

, the application of H to a qubit provides:

H · |q0〉 = ̺|0〉+ ̺|1〉
H · |q1〉 = ̺|0〉 − ̺|1〉

Denoting with X = [cx
0 , cx

1 , . . . , cx
7]

T , the probability of the QDRW to be in the position
x = k, (0 ≤ k ≤ 7) at a moment τ is πk(τ) = |ck(τ)|2.

The probability that QDRW follows a trajectory described by the sequence σ = i ∗ j ∗ k
is Πσ = πi(τ) ∗ πj(τ + 1) ∗ πk(τ + 2) .

The probability that QDRW hits a target x = k during a discrete time interval θ = [a, b]
is given by Πx=k;θ = ∑

b
τ=a |ck(τ)|2.

The oriented Quantum Discrete Random Walker (QDRW) QPN model is represented
in Figure 10. Its state W = (O, X) is described in the Hilbert space H = HO

⊗H8
X by

the equation:

|ψw(τ)〉 = (α(τ)|0〉+ β(τ)|1〉)
⊗

7

∑
k=0

ck(τ)|qk〉 (27)

with α(τ) and β(τ) the complex coefficients needed for orientation fulfilling the Hilbert
condition, and ck, i = 0, . . . , r complex numbers from the set C fulfilling the relation:

∑
r−1
k=0(|α(τ)ck(τ)|2 + |β(τ)ck(τ)|2) = 1 in any moment τ.

The place p2 models the QDRW oriented toward increasing the position (i.e., state X0,
while the place p5 corresponds to its orientation toward decreasing the position (i.e., X1).
Throwing the coin (i.e., applying the operator H) determines the change of orientations
that affect the moves performed by shift operators. The QDRW dynamics is achieved by
the mappings assigned to transitions.

Figure 10. QPN of oriented QDRW on a circle.

The model executes the sequence: σ = ((t1&t2) ∗ (t3&t4))k. The implementation
requires three qubits for the walker’s position and one for the orientation.

The mappings assigned to transitions are:

• t1_3 : X′0(τ + 1) = ̺ · X0(τ)

• t1_4 : X′1(τ + 1) = ̺ · X0(τ)

• t2_6 : X”1(τ + 1) = −̺ · X1(τ)

• t2_7 : X”0(τ + 1) = ̺ · X1(τ)

• t3 : X0(τ + 1) = SH+(X′0(τ + 1) + X”0(τ + 1))

• t4 : X1(τ + 1) = SH−(X′1(τ + 1) + X”1(τ + 1))

Mathematics 2022, 10, 4404 14 of 34

The probability that QDRW be in a specified position xk at a time moment is given by
the sum of the probabilities given by values stored in the places p2 and p5:

πk(τ) = |c0
k |2 + |c1

k |2, (28)

where c0
k and c1

k are the elements of the vectors X0 and X1, respectively. These probabilities
are displayed in Figure 11.

Figure 11. Probabilities of oriented QDRW on a circle.

For the QPN analysis of oriented QDRW on a circle its reachability graph is constructed
as can be seen in Table 1. Instead of the quantum state, QRS is used here.

Table 1. Reachability graph of QPN from Figure 10.

p1 p2 p3 p4 p5 p6 p7 Transition

∗ X0 φ φ φ φ φ t1

φ φ X′0 X′1 φ φ φ t3&t4

∗ X0 φ φ X1 φ φ t1&t2

φ φ X′0 X′1 φ X”1 X”0 t3&t4

· ·

2.8.4. Quantum Random Walker on a Sphere

Figure 9 represents the sphere (like the Earth globe) used for the walker’s move and
Figure 12 shows its surface displayed on two dimensions. The walker initial position is
(x0, y0).

Mathematics 2022, 10, 4404 15 of 34

Figure 12. Sphere surface deployment on two dimensions.

The system composed of oriented QDRW moving on a sphere is described in the Hilbert space:

H = H4
O

⊗

H8
X

⊗

H8
Y (29)

with the vectors |ψX〉 = ∑
7
k=0 cx

k · |qk〉 and |ψY〉 = ∑
7
k=0 c

y
k · |qk〉 describing the position on

axes X and Y, respectively. The walker state is extended with its orientation on the both
axes: |ψO

X〉 = (α0|0〉+ β0|1〉)
⊗

∑
7
k=0 cx

k · |qk〉 and |ψO
Y 〉 = (α1|0〉+ β1|1〉)

⊗

∑
7
k=0 c

y
k · |qk〉.

The action of the coin vector |ψK〉 = ∑
3
k=0 cC

k · |qk〉 that modifies the walker orientation
is given by the matrix G (according to [67]):

G =
1

2









−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1









. (30)

The oriented QDRW movements are given by the formula:

[|ψO
X(τ + 1)〉, |ψO

Y (τ + 1)〉]T = SH(G · [|ψO
X(τ)〉, |ψO

Y (τ)〉]T), (31)

where the square brackets are used for describing the construction of vectors.
For this problem is conceived the QPN model displayed in Figure 13. The places p0,

p1, p2 and p3 model walkers states ((X0, Y0), (X1, Y1), (X2, Y2), (X3, Y3)) oriented to the
right, left, up and down, respectively.

Figure 13. QPN model of oriented QDRW on a sphere.

The place meanings are displayed in Table 2. The initial state is: X0 = Y0 =
[(̺, ̺), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0)].

Table 2. Place meanings of QPN from Figure 13.

p0 p1 p2 p3 Place Array p4

(X0, Y0) (X1, Y1) (X2, Y2) (X3, Y3) (X00, Y00).(X01, Y01), · · · , (X33, Y33)

The model executes the sequence: σ = t0 ∗ ((t′0&t′1&t′2&t′3) ∗ (t0&t1&t2&t3))
k. The im-

plementation requires three qubits for X walker’s position, another three qubits Y and two
qubits for the walker orientations on X and Y.

Mathematics 2022, 10, 4404 16 of 34

The mappings assigned to the transitions are:

• t0 : X00 = − 1
2 X0; Y00 = − 1

2 Y0; X01 = 1
2 X0; Y01 = 1

2 Y0; · · · ; X03 = 1
2 X0; Y03 = 1

2 Y0;

• t1 : X10 = 1
2 X1; Y10 = 1

2 Y1; X11 = − 1
2 X1; Y11 = − 1

2 Y1; · · · ; X13 = 1
2 X1; Y13 = 1

2 Y0;

• t2 : X20 = 1
2 X2; Y20 = 1

2 Y2; X21 = 1
2 X2; Y21 = 1

2 Y2; · · · ; X23 = 1
2 X2; Y23 = 1

2 Y2;

• t3 : X30 = 1
2 X3; Y30 = 1

2 Y3; X31 = 1
2 X3; Y31 = 1

2 Y3; · · · ; X33 = − 1
2 X3; Y33 = − 1

2 Y3;

• t′0 : X0 = SH+(X00 + X10 + X20 + X30); Y0 = SH+(Y00 + Y10 + Y20 + Y30);

• t′1 : X1 = SH−(X01 + X11 + X21 + X31); Y1 = SH+(Y01 + Y11 + Y21 + Y31);

• t′2 : X2 = SH+(X02 + X12 + X22 + X32); Y2 = SH−(Y02 + Y12 + Y22 + Y32);

• t′3 : X3 = SH−(X03 + X13 + X23 + X33); Y3 = SH−(Y03 + Y13 + Y23 + Y33);

For the QPN analysis of oriented QDRW on a sphere, its reachability graph is displayed
in Table 3.

Table 3. Reachability graph of QPN from Figure 13.

p0 p1 p2 p3 p4 Transition

(X0, Y0) φ φ φ φ t0
φ φ φ φ (X00, Y00) · · · (X03, Y03) t′0&t′1&t′2&t′3

(X0, Y0) (X1, Y1) (X2, Y2) (X3, Y3) φ t0&t1&t2&t3

φ φ φ φ (X00, Y00) · · · (X33, Y33) t′0&t′1&t′2&t′3
· · · · · · · · · · · · · · · · · ·

The probability of the oriented QDRW to be at the moment τ in the position X = xi

and Y = yj is given by the coefficients of the vectors |ψX(τ)〉 and |ψY(τ)〉 at the moment τ:

πX(τ; i) = |cX0

i (τ)|2 + |cX1

i (τ)|2 + |cX2

i (τ)|2 + |cX3

i (τ)|2, (32)

πY(τ; j) = |cY0

j (τ)|2 + |cY1

j (τ)|2 + |cY2

j (τ)|2 + |cY3

j (τ)|2, (33)

πXY(τ; i, j) = πX(τ; i) · πY(τ; j). (34)

The needed information required for these calculations is stored in the places p0, p1,
p2 and p3. The results of simulation can be seen in Figure 14.

2.9. Quantum Discrete Controlled Walker (QDCW)

The previous oriented walker’s randomness (given by the generalized coin) is re-
placed by a matrix denoted by Γ that influences its move directions. The QDCW move
equation becomes:

[|ψO
X(τ + 1)〉, |ψO

Y (τ + 1)〉] = SH(G · Γ(τ)[|ψO
X(τ)〉, |ψO

Y (τ)〉]) (35)

with
Γ(τ) = A(θ1, θ2) (36)

and G the previous diffusion matrix. The angles θ1 and θ2 determine the move directions.
Again, the shift operator SH determines the QDCW moves toward these angles.

The control problem consists of the application of Γ that leads the QDCW from a given
initial state (i.e., position and orientation) to some specified target points or region.

Mathematics 2022, 10, 4404 17 of 34

Figure 14. Probability representation of oriented QDRW moves on a sphere.

2.10. Classic and Quantum Computers Connection

The quantum algorithms are not executed independently, but in collaboration with
classic implemented algorithms.

Figure 15 shows a composition of an Object Enhanced Time Petri Net (OETPN, see [68])
model that interacts with a QPN model. OETPN receives demands from operator through
the classic place cp2 and interacts with QPN through the interface (classic-quantum place)
cqp. This provides the information used for the first steps of the quantum program.
OETPN receives the quantum computation results through the interface (quantum-classic
place) qcp.

Mathematics 2022, 10, 4404 18 of 34

Figure 15. Classic-quantum application structure.

According to [32] a qubit |x〉 = α|0〉 + β|1〉 observation or measurement can be
modeled by the wave function collapse as:

{

x = 0, if |α|2 ≤ pr(x′),

x = 1, if |α|2 > pr(x′),
(37)

where pr(x′) is a random number in the range [0, 1) used for the assessing of x.
QPN is initialized by the transition qt1 in the pure state |00 . . . 0〉 that is switched by

qt2 in the desired initial state V or |ψ〉 state in qp3 using the information provided by cqp.
The mapping(s) of qt3 applies the QLC operations. If the exit condition is not fulfilled, the
quantum calculations are repeated after the reaching of the qp3 inserted by the transition
qt4. When the exit condition is reached, the transition qt5 sets the measured value of qp4 by
collapsing on specified axis.

Approximately 1/ǫ2 measurements are required to get the results with the precision ǫ.
This means to repeat the quantum process with the same initialization values. OETPN can
request to repeat the QPN execution by reloading the initial condition, until the expected
statistical results are obtained.

The QPN places do not necessarily independently represent the quantum processor
qubits that are described by the entire QPN marking. The QPN places describe the quantum
program state. All the transitions’ mappings are implemented at the lower level by QLCs.

2.11. Quantum Evolutionary Systems (QES)

The extension of classical ES to Quantum Evolutionary Systems (QES) concerns the
replacing of the genes of classical genomes with qubits. This makes the description of an
infinite number of individuals in the same instantiation of the model possible. The classical
genetic operators have to be adapted to the new form of information encryption.

The individual evaluation, which in the classical computation requires the separate
simulation of each of them, can be performed simultaneously. The reading of evaluations
performed with different parameters can extract the information for individual selection
and further on for their improvement.

Quantum control is an effective tool to drive the quantum system to a given target
state and thus manipulate the dynamics of a quantum system [61]. The main goal is to
control a multilevel system from an initial state to a given target state. This can solve
problems related to quantum control strategies based on supervised machine learning to
suppress the quantum noise in an open quantum system.

Quantum approach can be used in GA by:

• Quantum Inspired Genetic Algorithms (QIGA) where the simulation and improve-
ment are implemented on classical computers;

• Hybrid Classic Quantum GA (HCQGA) where the simulations are performed by QC,
but the improvements are determined by tasks implemented on classical computers;

• CQGA (Complete Quantum Genetic Algorithm) where the individual simulations
and improvements are performed by tasks implemented completely on QC.

Mathematics 2022, 10, 4404 19 of 34

2.12. Quantum Genetic Algorithms

Genetic Algorithms contain:

• The genome specification that is used for construction of the genotypes,
• The individual evaluation that consists of modeling the individual behaviors and

assessing their performances,
• The individual selection for reproduction,
• The individual improvements that are performed randomly based on the previous

generation performance and the use of some genetic operators,
• The stopping criteria that uses either a number of tested generations reaching a

performances over a desired threshold, or just the execution is exceeding a specified
duration or a specified number of generations without relevant improvements.

Figure 16 shows the evolutionary process performed by a GA. It executes the se-
quence σ = t0 ∗ (((t1 ∗ t2)&t4)#(t3 ∗ t5))

K ∗ t6 where K represents the number of iterations
performed until the result is obtained.

Generally, the ESs need to properly solve the evaluations of individuals and their
improvement. Both of them should be adapted to the problems, otherwise the targets are
not reached. Due to the problem complexities, there are no clear and proven rules for the
general construction of fitness functions and individual evolution operators. There are two
main approaches for individual evolution (i.e., improvements) of QGAs: one uses only
the mutation and the other uses the crossover before performing the mutation. The first
approach uses the best individual from the previous generation as a target for random
genotype improvement, while the second selects the individuals for evolution according to
their performances and randomly interchanges the two individual genotypes.

For achieving the solution, in [69], the authors propose a QGA implementation that
does not need the crossover involving two individuals. The justification is that all the
individuals are simulated simultaneously. More recently, [57] includes and justifies the use
of crossover.

Figure 16. OETPN model of an evolutionary process.

The current approach concerns the control of the Quantum Discrete Walker with the
model shown in Figure 13. The individuals of GA determine the mappings assigned to
transitions t0, t1, t2, t3, t′0, t′1, t′2, and t′3. The Classic GA (CGA) problem usually involves the
finding in each intersection (node and/or time) of the walker directions such that it reaches
the targets avoiding the traps. Due to the fact that the walker can start from different initial
points, the search should be repeated from all of them.

For the Quantum Discrete Controlled Walker (QDCW), the problem can be defined
in two manners: one solves only the change of direction and the other performs the move
length (i.e., 0, 1, 2, . . .) in the chosen direction.

The efficiency of QGA is significantly better than the conventional genetic algo-
rithm [49]. The classic Genetic Algorithm (CGA) has to execute (simulate) many individuals
for their assessment one by one. QC (quantum computing) has the advantage that it can
simulate simultaneously a large number of individuals. QC uses quantum variables that
can cover by superposition the entire search domain. QGAs (Quantum Genetic Algorithms)

Mathematics 2022, 10, 4404 20 of 34

have to represent the individuals by quantum vectors. The individual modifications fulfill
the Hilbert condition by using mappings involving unitary matrices.

The transition t0 of the model shown in Figure 16 creates in the place p1 the genotypes
pool using the initial information stored in the place p0. The genotype V is used for the
construction of the individual ψ. For the walker control problem, the solution is obtained
by replacing the previous G matrix (Equation (30)) with G · Γ, where Γ is a unitary matrix
(Γ = [γj,k]j,k=0,1,2,3) that has the role to diminish the randomness and to lead the walker
toward the targets. The genes are |γ0〉 = α0|q0〉+ β0|q1〉 and |γ1〉 = α1|q0〉+ β1|q1〉 that,

for implementation reasons, are changed in the vector Vj = [(α
j
0, β

j
0), (α

j
1, β

j
1)] describing

the quantum individual genotype.
The execution of the mapping assigned to transition t2 evaluates the individuals using

the model displayed in Figure 13. The walkers described by [ψ− o, ψx, ψ− y] are equally
initialized Vw

0 = [(̺, ̺) · · · (̺, ̺)] to occupy the entire walker’s space:

H = H4
O

⊗

H8
X

⊗

H8
Y (38)

The individual performances are set in the place p3. The transition t3 selects the indi-
viduals for evolution setting them in p4, linking their genotypes with the performances. For
improvement, the best individuals from the previous generation are stored in p5. The tran-
sition t5 performs the individual improvement (i.e., population evolution). The evolution
continues until a stop condition is fulfilled, and then the transition t6 is executed, providing
the final results in the place p8.

In conclusion, all the possible initial states of the controlled system are evaluated
simultaneously based on the walker’s superposition. The transitions t1, t2, t3 and t5 can
perform their activities in parallel for the current population.

Problems of optimal control of the QDCW can be defined in two manners. One consists
of the application of control signals at each tick for direction modification, and the other
one involves the syntheses of an environment that leads to a kind of deflectors set in each
intersection. The deflectors direct the QDCW towards the desired targets avoiding the
undesired traps. The current approach concerns the first manner.

The QPN model of the QDCW that solves the first approach is shown in Figure 17. As
can be seen, the parallel simulations of QDCW, the controller (replacing in each moment of
time the former Γ) and the individual evaluation (i.e., fitness) is governed by the Clepsydra
ticks that will stop the execution when the experiment duration expires.

Figure 17. Quantum individual evaluation.

QDCW can discretely move on a sphere with the above presented structure. It has
to reach some target points Tg = {(xa

g, ya
g), (xb

g, yb
g), . . . } avoiding some trap points Tp =

{(xa
p, ya

p), (xb
p, yb

p), . . . }.
Figure 18 shows the QDCW problem with initial walker state (1, 1), Tg = {(5, 5)} and

Tp = {(2, 4), (3, 3), (4, 2)}. The sequence 0 ∗ 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ 6 ∗ 7 represents an obtained
(by CGA) optimal trajectory.

Mathematics 2022, 10, 4404 21 of 34

Figure 18. Representation of the targets and traps of the QDCW problem solved by a classic GA.

The walker state is described by superposition of the composed vectors:

[|ψo(τ)〉, |ψx(τ)〉, |ψy(τ)〉]T . (39)

QDCW movement for 8 clock ticks is represented by the sequence:

M = [|ψo(0)〉, |ψx(0)〉, |ψy(0)〉]T ∗ [|ψo(1)〉, |ψx(1)〉, |ψy(1)〉]T ∗ · · ·
∗[|ψo(8)〉, |ψx(8)〉, |ψy(8)〉]T . (40)

2.12.1. Fitness Functions

For the classic GA, an efficient fitness function is constructed based on assessing the
trajectory cost on each point. When QDCW reaches a point (i, j) with the probability πij,
the cost to be in that position is:

Cost(i, j, τ) =











20 · πij, if (i, j) ∈ Tg,

−20 · πij, if (i, j) ∈ Tp,

πij, otherwise.

(41)

The cost of the QDCW at a moment of time τ is:

Cost(|ψx(τ)〉, |ψy(τ), τ)〉) = ∑
0≤i≤7

∑
0≤j≤7

Cost(i, j, τ) (42)

The move performance is assessed with the formula:

Jp =
∃τ615;[|qX

k 〉,|qY
k 〉]∈Tg ;|cX

k (τ)|2≥η;|cY
k (τ)|2≥η;

∑
∀[|ψo(τ)〉,|ψx(τ)〉,|ψy(τ)〉]∈σ

Cost(|ψx(τ)〉, |ψy(τ), τ)〉) (43)

with η a specified real value considered acceptable for the walker to be in a target point.
As a consequence, if the sequence σ includes points [|ψx(τi)〉, |ψy(τi)〉] ∈ Tg and

[|ψx(τi)〉, |ψy(τj)〉] ∈ Tp such that τi < τj (i.e., τi is precedent to τj), then

Cost([|ψx(τi)〉, |ψy(τi)〉]) = 0. (44)

Mathematics 2022, 10, 4404 22 of 34

Moreover, when the walker hits a target point with a probability greater than η, its
move is not assessed further.

For a quantum approach of QGA, the current research used the following quantum
fitness function. Let ψxy = |ψx〉

⊗ |ψy〉 be the composed vector providing the information
related to the walker’s position (i.e., the amplitude to be there) and Ψxy = |ψxy〉〈ψxy| its
density matrix. The diagonal elements of this matrix Ψxy[k, k] = cx

i (τ)
2c

y
j (τ)

2; k = 0, . . . , 15;

i = 0, . . . , 7; i = 0, . . . , 7; provide the probability of the walker to be in the position (i, j).
The set Tn is used to denote the positions when the walker is not on Tg or Tp, while

Td (meaning degenerated) denotes the case when the positions are simultaneously target
and trap.

Let the values Ψn(τ), Ψg(τ), Ψp(τ) and Ψd(τ) be calculated by the formulas:

Ψn(τ) = ∑
(i,j)∈Tn

Ψxy[i, j] (45)

Ψg(τ) = ∑
(i,j)∈Tg

Ψxy[i, j] (46)

Ψp(τ) = ∑
(i,j)∈Tp

Ψxy[i, j] (47)

Ψd(τ) = ∑
(i,j)∈Td

Ψxy[i, j] (48)

They will be used to assess the probabilities of QDCW to be in the mentioned partition.
Obviously Ψn(τ) + Ψg(τ) + Ψp(τ) + Ψd(τ) = 1 evaluates the probability of QDCW to be
in the current moment of time in the mentioned partition, but the individual evaluation
needs the assessment of its entire trajectory. The evaluation is given by a dynamic quantum
fitness function Φ composed of two parts (Φ0, Φ1) moving toward positive and negative
(respectively) depending on the superposition of QDCW. Φ has orientation (stored by one
qubit) and position (stored by 16 qubits).

The orientation is given by:

|OΦ(τ + 1)〉 = A1(θ) · H · |OΦ(τ)〉 (49)

where A1(θ) is given by the formula (21) with the angle θ = arcsin(Ψg −Ψp), and H is the
Hadamard matrix.

Denoting by a0 = ρ(cos(θ)− sin(θ)) and a1 = ρ(cos(θ) + sin(θ)), the quantum fitness
function is calculated by:

Φ0(τ + 1) = SH+(a0 ·Φ0(τ) + a1 ·Φ1(τ)) (50)

Φ1(τ + 1) = SH−(a1 ·Φ0(τ)− a0 ·Φ1(τ)) (51)

It can be seen that:

• If Ψg = Ψp , Φ moves equally toward positive and negative,
• If Ψg

> Ψp , Φ moves more toward positive than negative,
• If Ψg

< Ψp , Φ moves more toward negative than positive.

The performance is given by:

|Φ0(15)〉 =
15

∑
k=0

cΦ0

k · |qk〉

Jp = [cΦ0

0 , cΦ0

1 , . . . , cΦ0

15] (52)

with cΦ0

k (k = 0, 1, · · · , 15) the amplitudes of Φ0.

Mathematics 2022, 10, 4404 23 of 34

All the individuals and their assessments are simulated simultaneously during the
specified time horizon (see the model represented in Figure 17). It continues with Grover’s
algorithm that provides the best individual and its fitness.

2.12.2. Controller Genome

Regarding Figure 17, the first manner has to find the value of Γ(0) and the unitary
matrix U that modify the control signals according to the formula:

Γ(τ + 1) = U · Γ(τ) (53)

The matrix U = A2(θ
u
0 , θu

1) is constructed based on the relation (25).
The controller’s genome is: [|qbu

0 〉, |qbu
1 〉, |qb

γ
0 〉, |qb

γ
1 〉] where the vectors |qb

γ
0 〉 and |qb

γ
1 〉

correspond to the value of Γ(0).
Γ changes the QDCW orientation according to the relation:

|ψo(τ + 1)〉 = G · Γ(τ) · |ψo(τ)〉 (54)

In conclusion, the GA has the task of finding the angles θ
γ
0 , θ

γ
1 , θu

0 , θu
1 that lead to

maximum performance. For the current problem, an individual genome Vi is denoted by

Vi = (θγ
0 , θ

γ
1 , θu

0 , θu
1)i (55)

The population Pw of the generation w is:

Pw = [Vi]i=0,1,...,pd−1 (56)

where pd is the population dimension. The individual implementation requires 2+ 2 qubits,
allowing the simultaneous simulation of the entire population. Another 8 qubits are needed
for implementing the QDCW.

2.12.3. Genetic Operators

The individual (genotype) improvement introduced in [49] is used for the purpose of
avoiding the premature convergence problem that leads to loss of individual diversity in
early generations. For the gene improvement the direction (i.e., positive or negative) and the
amplitude should be found. The direction can be chosen by comparing the best performance
from the previous generation with the current individual performance. The amplitude of
the search in [49] is dynamically adapted by diminishing it at each new generation.

The rotation direction is chosen based on a determinant Ak =

∣

∣

∣

∣

∣

αb
k α

j
k

βb
k β

j
k

∣

∣

∣

∣

∣

, where

the elements are provided by a qubit from the previous generation best individual qbb
k =

(αb
k, βb

k) and the current individual that has to be improved qb
j
k = (α

j
k, β

j
k) The direction

of the rotation angle for improvement toward the best individual is given by −sign(Ak).
The direction is not determined if Ak = 0.

Let Vb be the best individual from the previous generation and Vj an individual of the

current generation. If their fitness functions are Jpb and Jpj, respectively, the improvement
of Vj consists of applying the rotation improvement vector Θ = [θ0, θ1, . . . , θg−1]. Let θmax

and θmin be the maximum and minimum accepted rotation angle, respectively.
If an adaptation of the rotation angle in the generation w of the maximum z generations

is used, the function for an individual improvement becomes as in Algorithm 1.

Mathematics 2022, 10, 4404 24 of 34

Algorithm 1 Function Improve(Vj, Jpj, Vb, Jpb, θmax, θmin, z, w, v)

Require: Vj, Jpj, Vb, Jpb, θmax, θmin, z, w, v
Ensure: Vj is improved

∆θw ← θmax − θmax−θmin
z · w · v

for all qbk ∈ Vj do

if (Jpb
> Jpj) ∧ (Ak =

∣

∣

∣

∣

∣

αb
k α

j
k

βb
k β

j
k

∣

∣

∣

∣

∣

6= 0) then

θ
j
k ← −sign(Ak) · ∆θw

else
θ

j
k ← (0.5− random()) · ∆θw

end if
qb

j
k ← A(θ

j
k) · qb

j
k

end for
return Vj

The coefficient v was added for convergence adjustment.
The quantum crossover operator introduced in [57] was developed and applied in the

current research. It works simultaneously on the entire population Pw of dimension pd
(assumed even) at the generation w. It is split into two equal parts, Pw

0 and Pw
1 . After

ordering Pw according to the chosen fitness function, it is randomly copied in Pw
0 and

Pw
1 . The crossover operator (consisting of swapping the second parts of two individuals’

genotypes) is applied simultaneously to all the individuals, and so the population Pw+1 is
given by Algorithm 2.

Algorithm 2 Function Crossover(Pw, pd)

Require: Pw, pd
Ensure: Pw+1 is genetically improved

* parallel Jpw ← simulate(Pw)
sort(Pw)
* randomly (Pw

0 ,Pw
1)← Pw

for all Vj ∈ Pw do
* swap the last halves of Vj and Vpd−1−j

end for
return Pw+1 ← Pw

0

⋃Pw
1

The classical mutation operator acts on a genotype, randomly choosing a gene and
randomly switching its value. The quantum mutation operator acts on the entire population,
simultaneously rotating all the qubits with random angles.

2.12.4. Quantum Inspired Genetic Algorithms

QIGA needs a different kind of genome [48] that can be stored in the vector V according
to Equation (4). Usually, all the individuals j; j = 0, 1, · · · , pd− 1 have the initial genotypes:

V0
j = [(̺, ̺), (̺, ̺), · · · , (̺, ̺)]T (57)

The individual genotype modification is performed by a unitary transformation A1(θ)
(given by (21)) with θ = random() · 2π, where random() ∈ (0, 1) is a function that generates
random values. The transformation A1(θ) in an iteration k acts on a qubit qbi of V:

qb
j
i = A1(θk) · qb

j−1
i . (58)

The individual’s qubits can be rotated with the same θ or using different rotation
angles for each qubit. The individual is obtained by a transformation Γj = T (Vj).

Mathematics 2022, 10, 4404 25 of 34

The individual assessment is performed by the simulation of the QPN model. Their
selection for reproduction is performed by the classical roulette wheel.

Based on Figure 16, the QIGA is constructed by detailing the mappings (as in Algorithm 3).
The following notations are used:

• z is the maximum accepted number of generation/iterations,
• w is the current iteration,
• pd the population dimension,
• Pw is the population in the generation w,

• Vb, Jpb are the best individual of the previous generation and its fitness function.

Algorithm 3 QIGA

Require: pd, z, θmax, θmin, v, V0, Jp0 the initial best individual and its performance
Ensure: Vb, Jpb the best individual of the last population and its performance
P0 ← [V0

j]j=0,1,...,pd−1

Vb ← V0

Jpb ← Jp0

w← 0
while (w 6 z) do

for all Vj ∈ Pw do
Jpw

j ← simulate(QPN, Vw
j) (Figure 17)

end for
for all Vw

j ∈ Pw do

Vw+1
j ← Improve(Vw

j , Jpw
j , Vb, Jpb, θmax, θmin, z, w, v)

end for
Find (Vb, Jpb)← max

Jpi ;V
w
i ∈Pw

{(Vw
j , Jpw

j)}
w← w + 1

end while
return Vb, Jpb

The crossover operation can lead the GA search to conserve a part of the path if and
where some individuals perform better [59]. This involves the modification of the previous
algorithm by replacing Improvement with Crossover and Mutation.

2.12.5. Hybrid Classic Quantum Genetic Algorithms (HCQGAs)

HCQGAs perform the individual improvement implemented in CC and the individual
evaluations in QC using an architecture similar to those presented in Figure 15.

The algorithm implemented on CC constructs the population and sends it for the
evaluation on QC. QC parallelly and simultaneously evaluates all the individuals and
provides the best individual with its score.

The individuals evaluation is performed by partitioning the QDCW positions related
to the partitions: Tn, Tg, Tp and Td corresponding to the case when the positions (i, j) are
neutral (i.e., neither on target or trap) zone, on target zone, on trap zone and on degenerated
zone if it is on a target and a trap (simultaneously) zone, respectively. The inclusions in
these four sets can be coded by two qubits, and the degree of walker inclusion is proposed
to be assessed by three qubits. The QDCW simulation, its control (i.e., Γ) and assessment
(i.e., Φ) are run simultaneously.

The quantum system evolves in the Hilbert space:

H = H4
Γ

⊗

H4
O

⊗

H8
X

⊗

H8
Y

⊗

H2
J

⊗

H12
Φ (59)

whereH2
J provides the information related to the performance given by the current QDCW

position. Similar to the walker state (i.e., orientation and position on X and Y), the indi-

Mathematics 2022, 10, 4404 26 of 34

vidual assessment is given by the position inclusion in an assessment partition and the
corresponding degrees.

The HCQGA is composed of two parts: Classic Component of GA and Quantum
Component of GA. The algorithms they execute are presented in Algorithms 4 and 5.

Algorithm 4 Classic Component of GA

Require: pd, z, θmax, w, θmin, v
Ensure: Vb, Φb the best individual of population and its performance
P0 ← [V0

j]j=0,1,...,pd−1

w← 0
while (w 6 z) do

set(Pw ← [Vw
j]j=0,1,...,pd−1)

get(Φw, Vb, Φb)
w← w + 1
if w<z then

for all Vj ∈ Pw do

Vw
j ← Improve(Vw−1

j , Φw−1
j , Vb, Φb, θmax, θmin, z, w, v)

end for
end if

end while
return Vb, Φb

Algorithm 5 Quantum Component of GA

Require: o(0), x(0), y(0), w, z and QDCW model
Ensure: Φw, Vb, Φb the best individual of population and its performance

w← 0
while (w 6 z) do
Pw ← get(Pw)
for all Vj ∈ Pw do

Φw
j ← simulate(QDCW, Vj)

end for
Find (Vb, Φb)← bubble_Sorting(Vj, Φj)

set(Φw ← [Φj]j=0,1,...,pd−1, Vb, Φb)
w← w + 1

end while

The methods set and get were used for the description of communication between
classic and quantum computers.

For QDCW simulation, another 3 qubits are required for the clepsydra.
The QLC has to be endowed with the necessary quantum gates for the mappings

implementation.
The use of the quantum genetic operators Crossover and Mutation would lead to

complete quantum genetic algorithm.

2.12.6. Complete Quantum Genetic Algorithm (CQGA)

This is implemented completely on a quantum computer that executes Algorithm 6.

Mathematics 2022, 10, 4404 27 of 34

Algorithm 6 CQGA

Require: pd, z
Ensure: V0 is the best found solution
P0 ← [V0

j]j=0,1,...,pd−1;

w← 0
while (w 6 z) do

parallel Jpw ← simulate(QPN) (Figure 17)
sort(Pw)
Pw+1 ← Crossover(Pw, pd)
Pw+1 ← Mutation(Pw+1, pd)
w← w + 1

end while
return measure V0

3. Results

The QDRW models were tested on a software company simulator, but all the genetic
algorithms were tested by simulation using Java language. For QPN, a framework can be
found at “https://github.com/dahliajanabi/QPN”.

For experimentation of the proposed methods, the previously presented QDRW was
modified to the move control of a Quantum Discrete Controlled Walker (QDCW).

3.1. Classic GA Solution of Walker Move Control

The quantum QDCW model is similar to the QPN displayed in Figure 13. The classic
walker model has the same graph (Figure 13), but the guards and mappings have to be
modified according to Object Enhanced Time Petri Nets (see reference [68] for details). For
this case, the transitions t0, t1, t2 and t3 perform the rotations and the transitions t′0, t′1, t′2
and t′3 perform the move to the next positions. Unlike the quantum case, the classic walker
can be in only one place p0, p1, p2 or p3, because the superposition is not used in the
classic computation.

The classic computation deterministic walker has the model:

[

ox(τ + 1)
oy(τ + 1)

]

=

[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

·
[

ox(τ)
oy(τ)

]

(60)

[

x(τ + 1)
y(τ + 1)

]

=

[

x(τ)
y(τ)

]

+

[

ox(τ + 1)
oy(τ + 1)

]

(61)

with ox(τ) and oy(τ) describing the orientation on axes X and Y, respectively. The initial
condition is [ox(0), oy(0), x(0), y(0)]T . The control matrix has the argument θ = γ(τ) · π/2
with γ(τ) ∈ {0, 1, 2, 3}.

The GA genome Γ is a vector of rotations γ(τ) for 0 ≤ τ < 15.
The usual mutation and crossover genetic operations were performed and the ob-

tained results are presented in Figure 18 for the initial state [1, 1], with orientation [0, 0],
TargetPoint = {(5, 5)} and TrapPoints = {(2, 4), (3, 3), (4, 2)}. The best individual geno-
type is Γ = [2, 0, 0, 0, 1, 0, 0, 0, 0, 0,−,−,−,−,−], and the resulting best trajectory is: (1, 1) ∗
(2, 1) ∗ (3, 1) ∗ (4, 1) ∗ (5, 1) ∗ (5, 2) ∗ (5, 3) ∗ (5, 4) ∗ (5, 5).

3.2. Application of QIGA for QDCW

For QDCW model, the mappings assigned to transitions t0, t1, t2 and t3 (that corre-
spond to generalized coin throw) in the QDRW model have to be replaced with control
values applied to qubit registers. The qubit register is composed of two qubits for orienta-
tion, three qubits for X and another three qubits for Y.

The probabilities of the best individual obtained by QIGA are represented in Figure 19.
The evolution of the solution search is given in Table 4. The maximum values Ψg and

Ψp were obtained at different moments on time.

https://github.com/dahliajanabi/QPN

Mathematics 2022, 10, 4404 28 of 34

Table 4. Search evolution of QIGA.

w Jp θ
γ
0 θ

γ
1 θu

0 θu
1 Ψ

g
Ψ

p

1 5.184191 1.970711 0.172057 5.517499 3.816113 0.327686 0.252499
20 6.151463 5.105799 2.803489 4.184666 5.264229 0.5896 0.173016
50 25.99559 0.098936 0.117976 5.426092 3.997787 0.73656 0.261046

100 26.98992 1.604711 0.136218 5.446864 3.971793 0.883818 0.094816
200 30.26643 1.622495 1.675234 0.00887 1.554262 0.948257 0.296517
400 30.40533 1.50628 1.515821 6.277452 1.575274 0.971144 0.26478

Figure 19. The representation of the probabilities of the best individual for QIGA.

Mathematics 2022, 10, 4404 29 of 34

3.3. Application HQCGA for QDCW Control

The values provided by the quantum fitness function where transformed into classic
values using the formula:

Jp = (Φ10 − 216) · 10−4 (62)

where Φ10 represents the conversion in the base 10 of Φ.
The probabilities of the best individual obtained by HCQGA are represented in Figure 20.

Figure 20. The representation of the probabilities of the best individual for HCQGA.

The evolution of the solution search is given in Table 5.

Mathematics 2022, 10, 4404 30 of 34

Table 5. Search evolution of HCQGA.

w Jp θ
γ
0 θ

γ
1 θu

0 θu
1 Ψ

g
Ψ

p

1 −0.2591 4.327966 4.355129 4.691925 5.285935 0.32319 0.249785
20 0.9694 4.69221 0.926491 1.752213 4.315906 0.48180 0.201644
50 1.0063 5.785132 3.212869 3.069224 1.579819 0.59034 0.172353
100 1.1924 2.841270 4.073705 1.163401 2.024726 0.71703 0.205691
200 1.3248 1.533609 1.703517 4.7155721 0.047902 0.91005 0.2772
400 1.3426 1.533609 1.545308 4.715572 6.279499 0.9891 0.261999

3.4. Complete Implemented QGA for QDCW Control

The probabilities of the best individual obtained by CQGA are represented in Figure 21.

Figure 21. The representation of the probabilities of the best individual for CQGA.

The evolution of the solution search is given in Table 6.

Mathematics 2022, 10, 4404 31 of 34

Table 6. Search evolution of CQGA.

w Jp θ
γ
0 θ

γ
1 θu

0 θu
1 Ψ

g
Ψ

p

1 −0.2169 4.718726 1.826285 0.868892 5.209561 0.372534 0.149553
20 1.0427 6.133167 1.175452 4.349668 5.18827 0.560429 0.1686
50 1.2230 6.133167 0.1.142914 4.247011 5.18827 0.749876 0.178494

100 1.2408 6.133167 1.456658 0.868892 2.269625 0.859324 0.18782
200 1.2631 6.133167 1.456658 0.868892 2.25455 0.888608 0.198289
400 1.3220 6.231308 1.515613 0.855429 2.266428 0.930239 0.197465

4. Discussion

Modeling with QPNs can sustain all the phases of quantum software development.
They help the understanding of the quantum complex problems and their use facilitate the
quantum software conception. QPN can be used for description at the qubit level, or at a
higher-level modeling complex mappings. The Petri net-based language can be used for
analysis of classic programs as well as quantum programs. Because quantum programs are
expected to be used in tandem with classic programs, the Petri nets are useful for construct-
ing a bridge between quantum computers and classic computers, successfully showing their
concurrent cooperation. The reachability graph can be used for the classic program and for
the quantum program as well. The development based on QPN provides the mappings
that lead to the QLC structure required for quantum program implementation. The QPN
places show the necessary quantum registers and their dimensions. The transitions have
assigned matrices that have to be implemented by QLCs.

The current approach concerns the control of dynamic systems where statistic features
are relevant. This kind of applications require fitness functions assessing the temporal
behaviors as they were introduced here.

The classic discrete walker has a deterministic behavior, so its optimal control leads
to a deterministic solution. QDCW has a stochastic behavior described by superposition
and so its optimal control is described by superposition too. Both walkers are controlled by
changing their orientations.

The classic controller genome is a time variable vector Θ, while the quantum con-
troller genome is composed of the initial orientation function Γ(0) and a matrix U for this
function correction.

QIGA and HCQGA use similar individual evolution algorithms (genotypes improve-
ment). Their results are close to each other. CQGA uses quantum crossover and mutation
and these lead to a different solution, slightly with lower performance than the previ-
ous GAs.

Author Contributions: Conceptualisation, T.S.L.; Experiments design, O.P.C.; Test and verification,

E.M.D.-P.; Implementation, D.A.-J. All authors have read and agreed to the published version of

the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Mathematics 2022, 10, 4404 32 of 34

QC Quantum Computation or Computer

CC Classic Computation or Computer

PN Petri Net

OETPN Object Enhanced Time Petri Net

QPN Quantum Petri Net

QDRW Quantum Discrete Random Walker

ME Mobile Entity

EA Evolutinary Algorithm

QEA Quantum Evolutionary Algorithm

PSO Particle Swarm Optimization

QME Quantum Mobile Entity

GA Genetic Algorithm

CGA Classic Genetic Algorithm

QGA Quantum Genetic Algorithm

QIGA Quantum Inspired Genetic Algorithm

HCQGA Hybrid Classic Quantum Genetic Algorithm

CQGA Complete Quantum Genetic Algorithm

QAOA Quantum Approximate Optimization Algorithm

ES Evolutionary System

QES Quantum Evolutionary System

References

1. Bacon, D.; van Dam, W. Recent Progress in Quantum Algorithms. Commun. ACM 2010, 53, 84–93. [CrossRef]

2. Grumbling, E.; Horowitz, M. (Eds.) Quantum Computing. Progress and Prospects. A Consensus Study Report of The National Academies

of Sciences, Engineering, and Medicine; The National Academies Press: Washington, DC, USA, 2019. [CrossRef]

3. Letia, T.S.; Durla Pasca, E.M.; Al-Janabi, D.M. Quantum Petri Nets. In Proceedings of the 25th International Conference on System

Theory, Control and Computing (ICSTCC), Iasi, Romania, 20–23 October 2021. [CrossRef]

4. Cho, C.-H; Chen, C.-Y.; Chen, K.-C.; Huang, T.-W.; Hsu, M.-C.; Cao, N.-P.; Zeng, B.; Tan, S.-G.; Chang, C.-R. Quantum computation:

Algorithms and Applications. Chin. J. Phys. 2021, 72, 248–269. [CrossRef]

5. Montanaro, A. Quantum algorithms: An overview. npj Quantum Inf. 2015, 2, 15023. [CrossRef]

6. Mavroeidis, V.; Vishi, K.; Zych, M.D.; Jøsang, A. The Impact of Quantum Computing on Present Cryptography. Int. J. Adv.

Comput. Sci. Appl. 2018, 9, 3. [CrossRef]

7. Grover, L.K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 1997, 79, 325–328. [CrossRef]

8. Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J.

Comput. 1997, 26, 1484–1509. [CrossRef]

9. Rossi, M.; Asproni, L.; Caputo, D.; Rossi, S.; Cusinato, A.; Marini, R.; Agosti, A.; Magagnini, M. Using Shor’s algorithm on near

term Quantum computers: A reduced version. arXiv 2021, arXiv:2112.12647v1.

10. Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 2009, 103, 150502.

[CrossRef] [PubMed]

11. McClean, J.R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. arXiv

2015, arXiv:1509.04279v1. [CrossRef]

12. Jethwani, D.; Le Gall, F.; Singh, S.K. Quantum-Inspired Classical Algorithms for Singular Value Transformation. arXiv 2012,

arXiv:1910.05699. [CrossRef]

13. Titiloye, O.; Crispin, A. Quantum annealing of the graph coloring problem. Discret. Optim. 2011, 8, 376–384. [CrossRef]

14. Apers, S.; Gilyén, A.; Jeffery, S. A Unified Framework of Quantum Walk Search. arXiv 2019, arXiv:1912.04233v1. [CrossRef]

15. Kadian, K.; Garhwal, S.; Kumar, A. Quantum walk and its application domains: A systematic review. Comput. Sci. Rev. 2021, 41,

100419. [CrossRef]

16. Shenvi, N.; Julia Kempe, J.; Whaley, K.B. Quantum random-walk search algorithm. Phys. Rev. A 2003, 67, 052307. [CrossRef]

17. Potocek, V.; Gabris, A.T.; Kiss, T.; Jex, I. Optimized quantum random-walk search algorithms on the hypercube. Phys. Rev. A 2008,

79, 012325. [CrossRef]

18. Godsil, C.; Zhan, H. Discrete-time quantum walks and graph structures. J. Comb. Theory Ser. A 2019, 167, 181–212. [CrossRef]

19. Portugal, R. Quantum Walks and Search Algorithms; Springer: Berlin/Heidelberg, Germany, 2013. [CrossRef]

20. Kendon, V. How to Compute Using Quantum Walks. In Proceedings of the QSQW 2020, EPTCS 315, Marseille, France, 20–24

January 2020; pp. 1–17. [CrossRef]

21. Chawla, P.; Roopesh Mangal, R.; Chandrashekar, C.M. Discrete-time quantum walk algorithm for ranking nodes on a network.

Quantum Inf. Process. 2020, 19, 158. [CrossRef]

22. Li, M.; Liu, C.; Li, K.; Liao, X.; Li, K. Multi-task allocation with an optimized quantum particle swarm method. Appl. Soft Comput.

J. 2020, 96, 106603. [CrossRef]

http://doi.org/10.1145/1646353.1646375
http://dx.doi.org/10.17226/25196
http://dx.doi.org/10.1109/ICSTCC52150.2021.9607302
http://dx.doi.org/10.1016/j.cjph.2021.05.001
http://dx.doi.org/10.1038/npjqi.2015.23
http://dx.doi.org/10.14569/IJACSA.2018.090354
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://www.ncbi.nlm.nih.gov/pubmed/19905613
https://doi.org/10.48550/arXiv.1509.04279
https://doi.org/10.4230/LIPIcs.MFCS.2020.53
http://dx.doi.org/10.1016/j.disopt.2010.12.001
https://doi.org/10.48550/arXiv.1912.04233
http://dx.doi.org/10.1016/j.cosrev.2021.100419
http://dx.doi.org/10.1103/PhysRevA.67.052307
http://dx.doi.org/10.1103/PhysRevA.79.012325
http://dx.doi.org/10.1016/j.jcta.2019.05.003
http://dx.doi.org/10.1007/978-1-4614-6336-8
http://dx.doi.org/10.4204/EPTCS.315.1
http://dx.doi.org/10.1007/s11128-020-02650-4
http://dx.doi.org/10.1016/j.asoc.2020.106603

Mathematics 2022, 10, 4404 33 of 34

23. Panahiyan, S.; Fritzsc, S. One-dimensional quantum walks driven by two-entangled-qubit coins. Phys. Lett. A 2020, 384, 126673.

[CrossRef]

24. Zhou, W. Review on Quantum Walk Algorithm. J. Phys. Conf. Ser. 2021, 1748, 032022. [CrossRef]

25. Ambainis, A. Quantum walk algorithm for element distinctness. SIAM J. Comput. 2007, 37, 210–239. [CrossRef]

26. Venegas-Andraca, S.E. Quantum walks: A comprehensive review. Quantum Inf. Process. 2012, 11, 1015–1106. [CrossRef]

27. Choi, J.; Kim, J. A Tutorial on Quantum Approximate Optimization Algorithm (QAOA): Fundamentals and Applications. In

Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island,

Korea, 19–21 October 2019. [CrossRef]

28. Dong, Y.; Meng, X.; Lin, L.; Kosut, R.; Whaley, K.B. Robust Control Optimization for Quantum Approximate Optimization

Algorithms. IFAC PapersOnLine 2020, 53, 242–249. [CrossRef]

29. Bengtsson, A.; Vikstål, P.; Warren, C.; Svensson, M.; Gu, X.; Kockum, A.F.; Krantz, P.; Križan, C.; Shiri, D.; Svensson, I.M.; et al.

Improved success probability with greater circuit depth for the quantum approximate optimization algorithm. Phys. Rev. Appl.

2020, 14, 034010. [CrossRef]

30. Sloss, A.N.; Gustafson, S. 2019 Evolutionary Algorithms Review, Neural and Evolutionary Computing (cs.NE). arXiv 2019,

arxiv:1906.0887. [CrossRef]

31. Sofge, D.A. Prospective algorithms for quantum evolutionary computation. In Proceedings of the Second Quantum Interaction

Symposium (QI-2008), Saarbrcken, Germany, 22–30 November 2008. [CrossRef]

32. Lahoz-Beltra, R. Quantum Genetic Algorithms for Computer Scientists. Computers 2016, 5, 24. [CrossRef]

33. Han, K.-H.; Kim, J.-W. Quantum-Inspired Evolutionary Algorithm for a Class of Combinatorial Optimization. IEEE Trans. Evol.

Comput. 2002, 6, 6. [CrossRef]

34. Patvardhan, C.; Bansal, S.; Srivastav, A. Quantum-Inspired Evolutionary Algorithm for difficult knapsack Problems. Memetic

Comp. 2015, 7, 135–155. [CrossRef]

35. Zhang, R.; Wang, Z.; Zhang, H. Quantum-Inspired Evolutionary Algorithm for Continuous Space Optimization Based on Multiple

Chains Encoding Method of Quantum Bits, Hindawi. Math. Probl. Eng. 2014, 2014, 620325. [CrossRef]

36. Kuo, S.-Y.; Chou, Y.-H. Entanglement-Enhanced Quantum-Inspired Tabu Search Algorithm for Function Optimization; IEEE: Piscataway,

NJ, USA, 2017. [CrossRef]

37. Konara, D.; Sharma, K.; Sarogi, V.; Bhattacharyya, S. A Multi-Objective Quantum-Inspired Genetic Algorithm (Mo-QIGA) for Real-Time

Tasks Scheduling in Multiprocessor Environment; Elsevier: Amsterdam, The Netherlands, 2018.

38. Agrawal, R.K.; Kaur, B.; Agarwal, P. Quantum inspired Particle Swarm Optimization with guided exploration for function

optimization. Appl. Soft Comput. J. 2021, 102, 107122. [CrossRef]

39. Zamani, H.; Nadimi-Shahraki, M. H.; Gandomi, A.H. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl.

Artif. Intell. 2021, 104, 104314. [CrossRef]

40. Vaze, R.; Deshmukh, N.; Kumar, R.; Saxena, A. Development and application of Quantum Entanglement inspired Particle Swarm

Optimization. Knowl.-Based Syst. 2021, 219, 106859. [CrossRef]

41. Zouache, D.; Abdelaziz, F.B. A cooperative swarm intelligence algorithm based on quantum-inspired and rough sets for feature

selection. Comput. Ind. Eng. 2017, 115, 26–36. [CrossRef]

42. Ganesan, V.; Sobhana, M.; Anuradha , G.; Yellamma, P.; Devi, O.R.; Prakash, K.B.; Naren, J. Quantum inspired meta-heuristic

approach for optimization of genetic algorithm. Comput. Electr. Eng. 2021, 94, 107356. [CrossRef]

43. Dey, S.; Siddhartha Bhattacharyya, S.; Maulik, U. Quantum inspired genetic algorithm and particle swarm optimization using

chaotic map model based interference for gray level image thresholding. Swarm Evol. Comput. 2014, 15, 38–57. [CrossRef]

44. Nezamabadi-pour, H. A quantum-inspired gravitational search algorithm for binary encoded optimization problems. Eng. Appl.

Artif. Intell. 2015, 40, 62–75. [CrossRef]

45. Cao, B.; Fan, S. Zhao, J.; Yangd, P.; Muhammade, K.; Tanveer, T. Quantum-enhanced multiobjective large-scale optimization via

parallelism. Swarm Evol. Comput. 2020, 57, 100697. [CrossRef]

46. Bhatia, M.; Sood, S.K.; Kaurc, S. Quantum-based predictive fog scheduler for IoT applications. Comput. Ind. 2019, 111, 51–67.

[CrossRef]

47. Li, M.; Shang, Y. Generalized exceptional quantum walk search. New J. Phys. 2020, 22, 123030. [CrossRef]

48. Han, K.-H.; Kim, J.-H. Genetic quantum algorithm and its application to combinatorial optimization problem. In Proceedings of

the Congress on Evolutionary Computation, Kraków, Poland, 16–19 July 2000; pp. 1354–1360.

49. Wang, H.; Liu, J.; Zhi, J.; Fu, C. The Improvement of Quantum Genetic Algorithm and Its Application on Function Optimization.

Math. Probl. Eng. 2013, 2013, 730749. [CrossRef]

50. Haipeng, K.; Ni, L.; Yuzhong, S. Adaptive double chain quantum genetic algorithm for constrained optimization problems. Chin.

J. Aeronaut. 2015, 28, 214–228. [CrossRef]

51. Rizk, Y.; Awad, M. A quantum genetic algorithm for pickup and delivery problems with coalition formation. Procedia Comput. Sci.

2019, 159, 261–270. [CrossRef]

52. Ajagekar, A.; You, F. Quantum computing for energy systems optimization: Challenges and opportunities. Energy 2019, 179,

76–89. [CrossRef]

53. Hilali-Jaghdam, I.; Ishak, A.B.; Abdel-Khalek, S.; Jamal, A. Quantum and classical genetic algorithms for multilevel segmentation

of medical images: A comparative study. Comput. Commun. 2020, 162, 83–93. [CrossRef]

http://dx.doi.org/10.1016/j.physleta.2020.126673
http://dx.doi.org/10.1088/1742-6596/1748/3/032022
http://dx.doi.org/10.1137/S0097539705447311
http://dx.doi.org/10.1007/s11128-012-0432-5
http://dx.doi.org/10.1109/ICTC46691.2019.8939749
http://dx.doi.org/10.1016/j.ifacol.2020.12.130
http://dx.doi.org/10.1103/PhysRevApplied.14.034010
http://dx.doi.org/10.48550/arXiv.1906.0887
http://dx.doi.org/10.48550/arXiv.0804.1133
http://dx.doi.org/10.3390/computers5040024
http://dx.doi.org/10.1109/TEVC.2002.804320
http://dx.doi.org/10.1007/s12293-015-0162-1
http://dx.doi.org/10.1155/2014/620325
http://dx.doi.org/10.1109/ACCESS.2017.2723538.
http://dx.doi.org/10.1016/j.asoc.2021.107122
http://dx.doi.org/10.1016/j.engappai.2021.104314
http://dx.doi.org/10.1016/j.knosys.2021.106859
http://dx.doi.org/10.1016/j.cie.2017.10.025
http://dx.doi.org/10.1016/j.compeleceng.2021.107356
http://dx.doi.org/10.1016/j.swevo.2013.11.002
http://dx.doi.org/10.1016/j.engappai.2015.01.002
http://dx.doi.org/10.1016/j.swevo.2020.100697
http://dx.doi.org/10.1016/j.compind.2019.06.002
http://dx.doi.org/10.1088/1367-2630/abca5d
http://dx.doi.org/10.1155/2013/730749
http://dx.doi.org/10.1016/j.cja.2014.12.010
http://dx.doi.org/10.1016/j.procs.2019.09.181
http://dx.doi.org/10.1016/j.energy.2019.04.186
http://dx.doi.org/10.1016/j.comcom.2020.08.010

Mathematics 2022, 10, 4404 34 of 34

54. Kaveh, M.; Kamalinejad, H.; Arzani, H. Quantum evolutionary algorithm hybridized with Enhanced colliding bodies for

optimization. Structures 2020, 28, 1479–1501. [CrossRef]

55. Ajagekar, A.; Humble, T.; You, F. Quantum computing based hybrid solution strategies for large-scale discrete-continuous

optimization problems. Comput. Chem. Eng. 2020, 132, 106630. [CrossRef]

56. Wang, L.; Tang, F.; Wu, H. Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter

estimation. Appl. Math. Comput. 2005, 171, 1141–1156. [CrossRef]

57. Ibarrondo, R.; Gatti, G.; Sanz, M. Quantum Algorithm with Individuals in Multiple Registers. arXiv 2022, arXiv:2203.15039v1.

58. Ardelean, S.M.; Udrescu, M. Graph coloring using the reduced quantum genetic algorithm. PeerJ Comput. Sci. 2022, 8, e836.

[CrossRef]

59. Zhang, J.; Kang, M.; Li, X.; Liu, G. Bio-Inspired Genetic Algorithms with Formalized Crossover Operators for Robotic Applications.

Front. Neurorobot. 2017, 11, 56. [CrossRef] [PubMed]

60. Ghosh, M.; Dey, N.; Mitra, D.; Chakrabarti, A. A Novel Quantum Algorithm for Ant Colony Optimization. IET Res. J. 2021, 3,

13–29. [CrossRef]

61. Zeng, Y.X.; Shen, J.; Hou, S.C.; Gebremariam, T.; Li, C. Quantum control based on machine learning in an open quantum system.

Phys. Lett. A 2020, 384, 126886. [CrossRef]

62. Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft. Comput. 2017, 22, 387–408. [CrossRef]

63. Kelly, A. Simulating Quantum Computers Using OpenCL. arXiv 2018, arXiv:1805.00988.

64. Abramsky, S. Petri Nets, Discrete Physics, and Distributed Quantum Computation. In Concurrency, Graphs and Models; Lecture

Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5065. [CrossRef]

65. Schmidt, H.W. How to Bake Quantum into Your Pet Petri Nets and Have Your Net Theory Too, Computer Science > Software

Engineering. arXiv 2021, arxiv:2106.03539.

66. Anres-Martinez, P.; Heunen, C. Weakly measured while loops: Peeking at quantum states. Quantum Sci. Technol. 2022, 7, 025007.

[CrossRef]

67. Kempe, J. Quantum random walks—An introduction overview. arXiv 2003, arxiv:quant-ph/0303081v1.

68. Letia, T.S.; Al- Janabi, D. Object Enhanced Time Petri net models. In Proceedings of the 2018 IEEE International Conference on

Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 24–26 May 2018. [CrossRef]

69. Udrescu, M.; Prodan, L.; Vladutiu, M. Implementing Quantum Genetic Algorithms: A Solution Based on Grover’s Algorithm. In

Proceedings of the 3rd Conference on Computing Frontiers, Ischia, Italy, 3–5 May 2006; pp. 71–82.

http://dx.doi.org/10.1016/j.istruc.2020.09.079
http://dx.doi.org/10.1016/j.compchemeng.2019.106630
http://dx.doi.org/10.1016/j.amc.2005.01.115
http://dx.doi.org/10.7717/peerj-cs.836
http://dx.doi.org/10.3389/fnbot.2017.00056
http://www.ncbi.nlm.nih.gov/pubmed/29114217
http://dx.doi.org/10.1049/qtc2.12023
http://dx.doi.org/10.1016/j.physleta.2020.126886
http://dx.doi.org/10.1007/s00500-016-2474-6
http://dx.doi.org/10.1007/978-3-540-68679-8-33
http://dx.doi.org/10.1088/2058-9565/ac47f1
http://dx.doi.org/10.1109/AQTR. 2018.8402743

	Introduction
	Current Research State of the Field
	Quantum Algorithms
	Evolutionary Systems

	Materials and Methods
	Quantum State versus Classical State
	Quantum Systems versus Classic Dynamic Systems
	Quantum Computation
	Quantum Petri Nets
	Transition Admissibility and Execution
	Definition of QPNs
	Analysis and Verification of QPN Models
	Petri Net Based Language
	Reachability Graphs

	QPN Model Examples
	Reversible Transitions and Entangled Places
	Qubit Rotations and While Loops
	Quantum Discrete Random Walker on a Circle
	Quantum Random Walker on a Sphere

	Quantum Discrete Controlled Walker (QDCW)
	Classic and Quantum Computers Connection
	Quantum Evolutionary Systems (QES)
	Quantum Genetic Algorithms
	Fitness Functions
	Controller Genome
	Genetic Operators
	Quantum Inspired Genetic Algorithms
	Hybrid Classic Quantum Genetic Algorithms (HCQGAs)
	Complete Quantum Genetic Algorithm (CQGA)

	Results
	Classic GA Solution of Walker Move Control
	Application of QIGA for QDCW
	Application HQCGA for QDCW Control
	Complete Implemented QGA for QDCW Control

	Discussion
	References

