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Abstract
We develop the first model for extreme mass-ratio inspirals (EMRIs) into a
rotating massive black hole driven by the gravitational self-force (GSF). Our
model is based on an action angle formulation of the method of osculating
geodesics for eccentric, equatorial (i.e., spin-aligned) motion in Kerr space-
time. The forcing terms are provided by an efficient spectral interpolation of the
first-order GSF in the outgoing radiation gauge. We apply a near-identity (aver-
aging) transformation to eliminate all dependence of the orbital phases from
the equations of motion, while maintaining all secular effects of the first-order
GSF at post-adiabatic order. This implies that the model can be evolved without
having to resolve all O(10°) orbit cycles of an EMRI, yielding an inspiral model
that can be evaluated in less than a second for any mass-ratio. In the case of a
non-rotating central black hole, we compare inspirals evolved using self-force
data computed in the Lorenz and radiation gauges. We find that the two gauges
generally produce differing inspirals with a deviation of comparable magnitude
to the conservative self-force correction. This emphasizes the need for includ-
ing the (currently unknown) dissipative second order self-force to obtain gauge
independent, post-adiabatic waveforms.
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1. Introduction

The detection of the first gravitational wave signal [1] ushered in a new era of astronomy, with
ground-based observatories having now observed just over a hundred signals [2—4]. The next
generation of space-based detectors, such as the laser interferometer space antenna (LISA), will
probe the previously inaccessible millihertz band of the gravitational wave spectrum, allow-
ing for the detection of hitherto unseen gravitational wave sources. Among these sources are
extreme mass-ratio inspirals (EMRIs), which consist of a stellar mass compact object (such
as a black hole or neutron star) spiralling into a supermassive black hole. These systems are
characterised by their extremely small mass ratio, typically between 10~* and 10~ Unlike the
signals detected by ground-based detectors, EMRIs will radiate in the LISA frequency band
for up to hundreds of thousands of orbital cycles [5]. They are also expected to be eccentric and
precessing, potentially resulting in multi-year long waveforms with rich and complex morphol-
ogy [6]. These signals encode the spacetimes of supermassive black holes, promising exquisite
parameter estimation and some of the most sensitive probes for new physics beyond general
relativity [7].

The majority of EMRIs will have a very low instantaneous signal-to-noise ratio (SNR),
and so the data must be processed with matched filtering techniques which will allow for the
build up of the SNR over time [8]. Such techniques require the development of theoretical
waveform templates to compare against the data. To achieve LISA’s science objectives, these
templates need their phase to be accurate to within a fraction of a radian, even after hundreds of
thousands of orbital cycles. They also need to be extensive across the large parameter space of
possible EMRI configurations. Moreover, since many template evaluations would be needed,
they should also be fast to compute, ideally in less than a second.

To meet this challenge, several so-called ‘kludge’ models have been developed, which are
both extensive and quick to compute [9—12]. However, they also make use of non-relativistic
approximations which cause them to fall short of the accuracy requirement, though they may
still be sufficient for the detection of loud EMRI signals [ 13]. Despite their shortcomings, these
models are invaluable for testing data analysis techniques for LISA through the mock data chal-
lenges [14—16]. In order to detect more EMRI signals, relativistic, ‘adiabatic’ waveforms are
required. The adiabatic trajectory can be calculated by balancing the fluxes of energy and angu-
lar momentum through null infinity the event horizon with the energy and angular momentum
lost by the secondary throughout the inspiral. This has been implemented in a practical frame-
work for non-spinning, eccentric EMRIs [17, 18]. While this represents a significant accuracy
improvement over the kludge models, work remains to be done to extend this framework to
generic inspirals into rotating black holes.

To detect all EMRI signals and enable precision parameter estimation, requires ‘post-
adiabatic’ waveforms. Producing such waveforms requires calculating the local force expe-
rienced by the secondary due to the presence of its own gravitational field, known as the
gravitational self-force (GSF). This can be calculated perturbatively by expanding the field
equations in powers of the small mass ratio of the binary, which makes this approach ideally
suited to EMRIs. Post-adiabatic EMRI waveforms will require not only full knowledge of the
first-order self-force, but also the orbit averaged contribution of the second-order self-force
[19, 20].

At each instant, the self-force is a functional of the past history of the secondary which can
make it challenging to compute. One approach is to couple the field equations and the equations
of motion and self-consistently solve both in a time-domain simulation. While this has been

2



Class. Quantum Grav. 39 (2022) 145004 P Lynch et al

implemented for a toy model of a particle carrying a scalar charge orbiting a Schwarzschild
black hole [21], numerical stability issues have so far stifled similar attempts for the grav-
itational case [22]. Moreover, this approach is computationally very expensive, making it
impractical for generating large numbers of templates. However, it does promise waveforms
against which more efficient schemes should be tested.

An alternative method is to compute the self-force for a body moving along fixed geodesics
of the background spacetime and then use that force to move to another geodesic at a later
timestep. The periodic nature of these geodesic orbits allows for calculations in frequency
domain leading to many efficient calculations of the first-order self-force in both Schwarzschild
[23-26] and Kerr [27, 28] spacetimes. Second-order calculations are also emerging, though
at present these are restricted to quasi-circular inspirals into non-rotating black holes [29,
30]. These calculations can be repeated across the parameter space of bound geodesics and
then interpolated in a preprocessing step, as has been done for eccentric inspirals into a
Schwarzschild black hole [31, 32]. One of the goals of this work is to compute self-forced
inspirals into rotating (Kerr) black holes.

With an interpolated model of the geodesic self-force in hand, one can restate the EMRI
equations of motion in a more convenient form for numerical integration using the method
of ‘osculating orbital elements’ (or ‘osculating geodesics’ when applied to the relativistic
context). In this approach, the inspiral is described as a smooth evolution through neighbour-
ing geodesics that are instantaneously tangent to the true inspiral. Formally, one identifies a
set of constants of motion which uniquely identify a geodesic, known as ‘orbital elements’.
These constants are then promoted to functions of time which are governed by a set cou-
pled ordinary differential equations that are derived from the ‘osculating conditions’. These
new equations of motion are then solved numerically to obtain the inspiral trajectory of the
secondary. There are a number of equivalent formulations for these ODEs which have been
derived for both Schwarzschild [33] and Kerr [34, 35] inspirals. In this work, we make use
of a formulation based on action angles of the geodesic motion that was sketched out in
reference [34].

However, for all of these formulations, the resulting equations of motion depend on the
orbital phases. This means that the numerical integrator will have to resolve features on the
orbital timescale, requiring the use of many small time steps. Since a typical EMRI undergoes
~10% — 10° orbital cycles during a radiation reaction timescale, this results in computational
times of minutes to hours for a single inspiral, depending on the orbital configuration.

Following reference [36] (hereafter paper I), we overcome this problem by applying a near-
identity (averaging) transformation (NIT) [37] to the self-forced equations of motion. These
transformed equations have two important properties: (i) they no longer depend on the orbital
phase, and (ii) they capture the long-term secular evolution of the original inspiral to the same
order of approximation in the mass ratio as the original equations of motion. The first property
means the transformed equation of motion can be numerically solved for any mass ratio in
less than a second as the numerical integrator no longer needs to resolve the thousands of
oscillations on the orbital timescale.

This approach has been applied to the case of eccentric inspirals into non-rotating black
holes [36, 38]. In this work we apply the NITs to orbital motion in the Kerr spacetime. Com-
bined with an interpolated model of first-order GSF data, these averaged equations of motion
allow us to efficiently compute inspirals around a Kerr black hole which, for the first time,
include all first order in the mass ratio effects. Since these inspirals are fast to compute, this
approach can provide EMRI waveforms useful for practical data analysis when coupled to a
fast waveform generation scheme, e.g., [17].
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At this point, we emphasize that the inspirals we present do not reach the sub-radian
accuracy required for EMRI data analysis as there are not yet any second order self-force
calculations in this domain. To stress the importance of the second order contribution we exam-
ine the effects of driving the inspirals using first-order self-forces computed in two different
gauges and demonstrate explicitly that without the inclusion of the second-order self-force
the inspiral phase is not gauge invariant. Nonetheless, the framework we present can readily
incorporate new self-force results as they become available.

This paper is laid out as follows. In section 2, we review geodesic motion and introduce our
action angle formulation of the osculating geodesic equations for generic Kerr orbits. We end
this section by specialising to equatorial (i.e., spin aligned) orbits for the rest of this work. Using
these equations, along with a model for the GSF, allows us to calculate eccentric, self-forced,
inspirals in Kerr spacetime for the first time. However, these inspirals, henceforth referred to
as ‘osculating geodesic’ (OG) inspirals, are slow to compute, taking on the order of hours or
days.

This motivates us to apply a near identity transformation, as developed in paper I, which we
summarize in section 3.1. In section 3.2 we explicitly derive the averaged equations of motion
for the case of eccentric Kerr inspirals. Inspirals calculated with these equations of motion can
be evaluated in less than a second, and are henceforth referred to as ‘NIT’ inspirals.

For both OG and NIT inspirals, we require a model for the GSF. To this end, we review the
calculation of the GSF in the radiation gauge in section 4.1 before outlining a procedure used
to interpolate this data in section 4.2. Using this interpolated self force model we describe our
numerical implementation for calculating the various terms in the NIT equations of motion in
section 5.

We then present the results of this implementation in section 6. We start with a consistency
check with energy and angular momentum fluxes and an interpretation of the various terms
in the NIT equations of motion in section 6.1. We then compare OG and NIT inspirals to
check that they agree at the appropriate order in the mass-ratio and assess the speed up the NIT
provides. We then explore some post-adiabatic effects of the first-order self force by comparing
NIT and adiabatic inspirals in section 6.3. To round off our results, in section 6.4 we make
comparisons between inspiral trajectories around a Schwarzschild black hole calculated using
two different first order self-force models: one calculated using outgoing radiation gauge self-
force data and the other using Lorenz gauge self-force data. These comparisons indicate that
trajectories calculated using only first order self-force data are gauge dependent. We end with
some concluding remarks in section 7.

Throughout this paper we work in geometric units such that the gravitational constant and
the speed of light are both equal to one (i.e., G = c = 1).

2. Forced motion near a rotating black hole

In this section we describe the motion of a non-spinning compact object of mass ;¢ moving
in the Kerr spacetime under the influence of some arbitrary force. Later in this work, we
will take this to be the self-force experienced by the secondary due to its interaction with
its own metric perturbation. We denote the mass of the primary by M and parameterize its
spin by a = |J|/M where J is the angular momentum of the black hole. The Kerr metric
can then be written inmodified Boyer—Lindquist coordinates, x* = {z,r,z = cos 0, ¢}, as
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2M 2 by
ds’> = — (1 - r> P + =dr* + dz?

> A 1—22
1 2 AMar(1 2 W
n _EZ Qd*r(1 — ) + Sw)de? — %dm,
where
AWr) =1’ +a* — 2Mr, Y(r,z):=r* + d*2%, w(r) =+\r?+ a?.
(2a-c)

If a force acts upon the secondary its motion can be described by the forced geodesic equation
u’Vau® = a®, 3)

where u® = dx®/dr is the secondary’s four-velocity, V 4 is the covariant derivative with respect
to the Kerr metric, and a® is the secondary’s four-acceleration. We seek to recast equation (3)
into a form useful for applying the near-identity transformations. Before considering the forced
equation it is useful to first examine the geodesic limit.

2.1. Geodesic motion and orbital parameterization
In the absence of any perturbing force, the secondary will follow a geodesic, i.e.,
u’Vu® = 0. 4)

The symmetries of the Kerr spacetime allow for the identification of integrals of motion P =
{&€, L, K} given by

E = —u,, L = ugy, K= lC‘“guau‘g, (5a-¢)

where K7 is the Killing tensor, & is the orbital energy per unit rest mass p, £ is the z-
component of the angular momentum divided by p and K is the Carter constant divided by
,u2 [39]. This definition of the Carter constant is related to another common definition of the
Carter constant, Q, by

Q=K — (L —a&)*. (6)

The geodesic equation can be written explicitly in terms of these integrals of motion [40]:

(2—02 — (Ex® —aL)’ — A (P +K)

(7a)
= (1= &)1 = n(r = r)(r = r3)(r—ra) =V,
<g>2 _ Q _22 (a2(1 _ 52)(1 _22) +£2 + Q)
A ' ' (7b)
=@ -2) (@0 -7 —7,) =V,
2
;1_;\ = WK (Ew® —aLl) —a’&(1 — ) +al =5, (7¢)
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d¢ a ) L )
a = Z (Ew — Cl[,) + 1_722 —a€ =S¢, (7d)
where r; > r, > ry > ry are the roots of the radial potential V,, z, > z_ are the roots of the
polar potential V,, and A is Mino(—Carter) time that decouples the radial and polar equations

[41]. This time is related to the proper time of the particle, 7, by
dr = Zd\. ®)

The two largest roots of V, correspond to the apoapsis and periapsis of the orbit, respectively.
Explicit expressions for the other roots are derived in reference [42] and given for completeness
in appendix A. Rather than parameterize an orbit by the set {&, £, K} it is useful to instead use
more geometric, quasi-Keplerian constants P = {p, e, x}. Here pis the semi-latus rectum, e is
the orbital eccentricity and x measures the orbital inclination. These are related to the radial
and polar roots via

M M
ry = P , ry = P , = =V1—x2% (9a-c)
1—e 1+e

The explicit relation between the integrals of motion {&, £, K} and {ry, r2, z_} can be found in,
e.g., appendix B of reference [43]. We note that one advantage of using x over other common
choices for inclination is that x smoothly parameterizes orbits between prograde equatorial
motion with x = 1 to retrograde equatorial motion with x = —1 orbits. Not all values of
{p, e, x} correspond to bound geodesics and we denote the value of p at the last stable orbit by
Prsola, e, x) [44, 45].

In order to later apply the near-identity transformations it will be useful to employ action-
angle formulation to parameterize the orbital motion [42, 43, 46]. In this description the orbital
phases ¢ = {q,,q.} are such that the geodesic equations can written in the form

P;=0 and ¢ = YiP), (10a-b)

where an overdot denotes derivative with respect to Mino time and the T; are the Mino time
fundamental frequencies [42]. Note that the right-hand side of the ¢; equation depends only on
P and not also on the orbital phases. Semi-analytic solutions to equation (7) in terms of g can
be found in references [42, 46] and we present the key equations in appendix A.

At this point we note that it is also common in the literature [47, 48] to express the radial
and polar motion in terms of quasi-Keplerian angles, % and , via

pM

rW) = 1 + e cos(v))

and  z(x) = z_cos(x). (11a-b)

With this parameterization the evolution equations for ¢/ and x depend on both P and §.
This makes them inconvenient for deriving averaging transformations, though it is not an
insurmountable challenge [35]. For this reason we prefer the action-angle formulation.

2.2. Osculating geodesics

We now wish to describe the forced motion of a body obeying equation (3). To do so, we make
use of the method of osculating orbital elements, or OGs when applied to the relativistic context
[33, 34]. We first identify a set of orbital elements that uniquely identify a given geodesic, such
as the integrals of motion P along with the initial values of the orbital phases of the geodesic
orbit g and designate them as a set of ‘orbital elements’ = {13, Go}. For accelerated orbits,

6



Class. Quantum Grav. 39 (2022) 145004 P Lynch et al

these orbital elements are promoted from constants to functions of Mino time. Note that now
the orbital elements go(\) are different quantities from the values of ¢ evaluated at A = 0,
i.e., ¢(0). We assume that the worldline and four-velocity of the secondary at each instant
can be described as the worldline and four-velocity of a test body on a tangent geodesic, i.e.,
x*(\) = xg(IA(A), A) and u®(\) = ug(IA(A), ). From these assumptions, one can derive the
OG equations [33, 34]:
Oxg . ouS
alfj =0 and S
From these, evolution equations for each of the orbital elements can be calculated, which we
have done in appendices B and C. This was first done for generic Kerr orbits in reference [34]
which lays out four different formulations of the equations. Three of these formulations use
the quasi-Keplerian angles v) and x as the orbital phases, and two of these were numerically
implemented and shown to agree with each other. We make use of the final formulation where
one instead uses the geodesic actions angels g, and g, as the orbital phases.

We first find the evolution equations for the integrals of motion P. We do so by finding
evolution equations for P and relating these to evolution equations for the roots ry, r, and z_.
We derive these relations in appendix B. From here, one can invert equations (9) to find

" =Ya,. (12a-b)

dp 2 2dr1 2d7‘2
P_ 2 (g8 ) g 13
AN~ M@+ r)? <r2 a n dA) » (132)
de 2 dr, dr
- = — _— _ = Fe’ 13b
A\ (n +n)? (” a ! dA) (13b)
dx z_dz_
& =% e 1
v x dA (13¢)

The orbital phases ¢ still evolve with their respective Mino-time frequencies, but now pick
up a correction due to the evolution of the initial values, i.e.,

dgio
dx -’

dg;

— =17 14

Y + (14)
To find the evolution equations for the initial values for the orbital phases, we can re-arrange
the first osculating condition (12a) and exploit the fact that the evolution of r is independent of

q., and the evolution z is independent of ¢,, to get

dgio 1 IxgdP;\
dA N 8x6/8q,~ (an dA '_fi ’ (15)

where x5 is the geodesic expression for r or z given by equations (A3) and (A4) respectively.
Unfortunately, this expression is difficult to evaluate numerically at the orbital turning points
where both dx;/dq; and the term in the parentheses go to zero. However, one can derive an
alternative expression for this quantity that is regular at the turning points [34]:

dgio 27, 20 (9% 5\ _ 0
d\  0V;/oxi (Z . <8PjP’ =1 (1o

See appendix C for details on the derivation. This expression instead has a singularity whenever
dV;/0x5 = 0. Thus, for our numerical implementation, we use equation (15) for the majority
of the orbital cycle and switch to equation (16) in the vicinity of turning points.

7
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Finally, we also require evolution equations for ‘extrinsic quantities’ that do not show up
on the right-hand side of the equations of motion, but are necessary to compute the trajectory
and the waveform. These are the time and azimuthal coordinates of the secondary which, as a
set, we denote by S= {t, ¢}. Their evolution is given by the geodesic equations for ¢ and ¢,
i.e., equations (7c) and (7d). Putting it all together, the equations of motion take the form:

P;=F(P,J), (17a)
G = Ti(P) + f(P,§), (17b)
Sk = su(P, ). (17¢)

These equations of motion are valid for generic inspirals under the influence of an unspecified
perturbing force. We find that the action angle implementation produces inspiral trajecto-
ries that are identical to inspirals calculated using the ‘null tetrad’ formulation described in
reference [34]. We have implemented both the action angle and null tetrad osculating ele-
ment equations into a Mathematica package that will be publicly available on the Black Hole
Perturbation Toolkit [49]. We find numerically that the null tetrad formulation is more com-
putationally efficient as it does not have any singular equations that necessitate switching
between different formulations twice during each orbital period. As such, for direct compar-
isons between OG and NIT inspirals and waveforms we make use of the null tetrad formulation,
but use the action angle formulation as the starting point for our averaging procedure.

2.3. Specialising to equatorial motion

For the rest of this work, we specialize to the case of eccentric inspirals in the equatorial plane
(i.e., spin aligned) under the influence of the first-order ratio gravitational self force (GSF).
This corresponds to setting x = =1 for prograde and retrograde orbits, respectively. Due to
symmetry, motion in the equatorial plane will stay in the equatorial plane, and thus x = 0. As
such, we only need to track the evolution of P = {p,e}. Similarly, the equations of motion
no longer depend on the polar phase ¢, and so we only need to evolve the radial phase § =
{g,}. The GSF scales with the small mass ratio € = ;1/M, meaning that the secondary’s four-
acceleration can be expressed as a® = eagqg. Factoring out this scaling, the equations of motion
for equatorial inspirals become

j—i = eFy(a, p,e,q,), (18a)
j—i =eF(a,p,e, q,), (18b)
Cclg\r =T,(a, p,e)+ ef(a, p,e,q,), (18¢)
c%t\ = s/(a, p,e,q,), (18d)
% = sy¢(a,p, e, qy). (18e)

3. Near-identity transformations

Near identity (averaging) transformations. (NITs) are well known technique in applied mathe-
matics and celestial mechanics [37]. This technique involves making small transformations to

8
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the equations of motion, such that the short timescale physics is averaged out, while retaining
information about the long term evolution of a system. This is well suited to modelling EMRIs,
where we do not require perfect knowledge of the trajectory on the orbital timescale, so long
as we can accurately track its evolution on the radiation reaction timescale. We note that there
can be a relationship between gauge transformations and NITs, as explored in reference [50],
the NITs we perform in this work are distinct from the choice of gauge [51]. In paper I [36],
these transformations were derived for EMRIs in general and then applied to the OG equations
of motion around a Schwarzschild black hole. We briefly review the work of paper I for a gen-
eral EMRI before applying these transformations to the specific case of eccentric self-forced
inspirals in Kerr.

3.1. Near identity averaging transformations for generic EMRI systems

The NIT variables, P j» qi and S’k, are related to the OG variables P;, g; and Sy via

Pj=P;+eV\"(P.) + EYP(P.G) + O, (19a)
G = qi + XOP,P + EXDP, ) + O, (19b)
Sy = Si + ZV(P, §) + 2V (P, §) + O(EY). (19¢)

Here, the transformation functions YE"), Xf"), and Z,E") are required to be smooth, periodic func-
tions of the orbital phases g. At leading order, equation (19) are identity transformations for
P; and g; but not for S; due to the presence of a zeroth order transformation term Z,((O). The
inverse transformations can be found for P; and ¢g; by requiring that their composition with
the transformations in equation (19) must give the identity transformation. Expanding order
by order in e, this gives us

2.
Pj=P;—eY'(P,g)

oY “>( P,q)

Y(l)(P q) — X(l)(P ) (20a)

z 5 OV (”( P9
—& | Y2 g — —L 27
e |Y7(P.g — 0P,

+0(e),

gi =G — X"(P,q)

< = al‘((l)(j 5) 2 = a '(1)(j g) 2 2
2 (2 ~ i P, (1) ~ Xz P, (1) ~
X“(P, —L Y (P, —L =X (P, 20b
e(,(q) 9P, 7 (P.q) S (P (20b)

+0O(eH).

To proceed it is useful to decompose various functions into Fourier series where we use the
convention:

AP,G) = Y Ax(P)e™, 1)

ReZN

where N is the number of orbital phases. Based on this, we can split the function into an
averaged piece

. o 1 o
(A) (P) = As(P) = anr / . -/qA(P, Qdqi . . .dqy, (22)

9
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and an oscillating piece

A(P,§) = A(P,§) — (A) (P) = Y _Ax(P)e™ 7. (23)

Using the above transformations along with the equations of motion, and working order by
order in ¢, we can chose values for the transformation functions Y;l), Y;z),Xfl),sz),Z,(co) and
Z,El) such that the resulting equations of motion for P j»qi and Sy take the following form

Py= 0+ V() + CFP(P) + O, (242)
Gi = TiB) + FOP) + EFDP) + OE), (24b)
S = 50P) + 5(P) + O, (24¢)

Crucially, these equations of motion are now independent of the orbital phases ¢. Deriving the
relationship between the transformed forcing functions (F §1\z)’ }5‘\2) and 55(0\1)) to the original
forcing functions is quite an involved process with several freedoms and choices, each with
their own merits and drawbacks. This is discussed at length in [36], so for brevity we will
summarize the results and the particular choices we have made in this work.

The transformed forcing functions are related to the original functions by

() _ (1)
FP = (FP), (25a)
= ). o
50 — <s,((0)> , (25¢)

~ oyt . B A

(2) _ (2) J (1 J (1)
FO - <Fj >+ <aq,- )+ ) (25d)
f? =0, and (25¢)

~(1 1 1 1
= () - () - (). @sn

In deriving these equations of motion, we have constrained the oscillating pieces of the NIT
transformation functions to be

S _ L) irg

VP =) —gFie™ 26)
70

g 1 1 97, .

X0 = ( O NI ’F@,) e, 27)

' Z r{-rf”“ (R-Y)2 0P, "
R#0

and Zf(o) is found by solving

oz

5/((0)+a_5;~fi: ) (28)

10
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This equation is satisfied by the oscillating pieces for the analytic solutions for the geodesic
motion of # and ¢ in equation (A2), i.e.,

20 = —8i,(q,) — Skz(qo)- (29)

We have chosen the averaged pieces such that <Y;l)> = <Y;2)> = <X§2)> = <Z,E°)> =

<Z,((l)> = 0 but have used Xlw to cancel out the contributions of ]}52). In order to gener-

ate waveforms, one only needs to know the transformations in equation (19) to zeroth order in
the mass ratio, i.e.,

P, =P+ O), (30a)
qi = i + O(e), (30b)
St = Se — Z0P.3) + OCe). (30¢)

Furthermore, to be able to directly compare between OG and NIT inspirals, we will need to
match their initial conditions to sufficient accuracy. To maintain an overall phase difference
of O(e) in the course of an inspiral, this requires known the transformation of the P;’s (19a)
to linear order in €, while it is sufficient to know the rest of equation (19) to zeroth order. In

particular, we will never need an explicit expression for <Xi(1)>, which would require solving
a PDE to obtain.

3.2. Averaged equations of motion for eccentric equatorial Kerr inspirals

‘We now apply the near identity averaging transformation procedure to the equations of motion
for equatorial Kerr inspirals to obtain:

dp

o~ Fr@pe+eF e po, (31a)
e _ 2, 55 4 2FO(g 5. 5

a = EFg (aa yz €) + € Fg (aa z e)a (31b)
dg, S O

o = THa.p.e)+ef (@ p.e), (lc)
o, - s RO

a =8 (Cl, 2 6) + €Sy (Cl, )2 6), (31d)
R VR

g =30, p,0) + &5 (a, p, &), (3le)

The leading order terms in each equation of motion are simply the original function averaged
over a single geodesic orbit, i.e.,

FV=(F), FV=(F), JV=(). (32)

550) _ <S;> — Tta 515?) — <s¢> = T¢, (33)

where T, and T4 are the Mino-time ¢ and ¢ fundamental frequencies. The remaining terms are
more complicated and require Fourier decomposing the original functions and their derivatives
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with respect to the orbital elements (p, e). To express the result, we define the operator

-1 i (0A, 0A,
N(A) - hZ#O Tr |:A/‘ufrn - E (%FP’H + gFe,fn

A, [0Y, oY,
— Tr (a—i)FP,—I{, + WFL’,—K,>>} . (34)

With this in hand, the remaining terms in the equations of motion are found to be

FO =N(F,). FP=NF), 5=N@). 5 =Ny (35)

4. Gravitational self-force for eccentric Kerr inspirals

In order to drive the inspiral we need to rapidly evaluate the GSF given any values of (p, e, g,).
Codes that compute the GSF generally take minutes to hours to compute the force along a
geodesic for a given (p, ) value and so it is not practical to directly couple the equations of
motion to a GSF code. Instead, it is common practice to calculate the GSF on a discrete set of
points across the parameter space and then build an interpolation or fitted model that smoothly
connects the GSF data. The following subsections describe our approach.

4.1. Gravitational self-force

The GSF approach is reviewed extensively elsewhere [52, 53] and so we just give a brief
overview of the calculations that we employ. The GSF approach starts by expanding the metric
of the binary around the metric of the primary, i.e., g, = g + €h)) + €h2) + ... where g,

pv pv

is the Kerr metric and the 4™ are the nth order perturbations to the spacetime due to the pres-
ence of the secondary. The interaction between these metric perturbations and the motion of the
secondary can be derived through a matched asymptotic expansion analysis [53]. In this work
we use only first-order (in the mass ratio) results, as second order results are still emerging [30].
The first order metric perturbation generated by a compact object can be found by solving the
linearized Einstein field equations with a point particle source moving on a geodesic of g,,,.
The matched asymptotic expansion analysis identifies a regular part of this (divergent) metric
perturbation that is responsible for the backreaction on the compact object [S3—56]. The result
is a (self-)force that appears on the right-hand side of equation (3) computed from derivatives
of the regular metric perturbation [53].

Solving the perturbation equations requires picking a gauge, and the resulting self-force
is gauge dependent [57]. The self-force was first computed in the Lorenz gauge where the
procedure for obtaining the regular part was best understood. Numerical calculations of the
Lorenz gauge self-force have been made in both the frequency—[25, 26, 58] and time-domains
[22-24]. All these results have been for motion in Schwarzschild spacetime, with one exception
in Kerr [59].

Calculating perturbations of the Kerr spacetime is hampered by the lack of separability of
the linearized Einstein field equations on this background. This difficulty can be circumvented
by using the Teukolsky formalism for describing perturbations to the Weyl scalars [60], which
is fully separable in the frequency domain. From the Weyl scalars, the metric perturbation
can be reconstructed in a radiation gauge [61-63]. There has also been recent progress under-
standing how to reconstruct the metric in the Lorenz gauge [64]. Regularization of the metric
perturbation in radiation gauges is more subtle [65], but self-force calculations in the radiation
gauge are now routine [27, 28, 66, 67].

12
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In this work we primarily use the self-force computed using the code of references [27, 28,
67]. This code uses the Mano—Suzuki—Takasugi methods [68—71] to compute the perturba-
tions to the Weyl scalars in the frequency domain. The metric is then reconstructed into an
outgoing radiation gauge (including mass and angular momentum perturbations [72, 73] and
gauge completion contributions [74]). The metric perturbation is then projected onto a basis
of spherical harmonics before regularization is carried out using the mode-sum approach [65,
75]. Depending on the eccentricity of the orbit the code must compute the metric perturbation
by summing over thousands to tens of thousands of Fourier harmonic modes. With the current
Mathematica implementation, the self-force for an, e.g., a = 0.9M, p = 3.375,e = 0.5 orbit
takes approximately 90 CPU hours to compute.

The self-force can be split into dissipative (time anti-symmetric) and conservative (time-
symmetric) contributions [76].

The dissipative pieces causes the orbit to shrink until the secondary plunges into the primary.
It also generally causes the orbit to circularize, with the exception being just before the transi-
tion to plunge where the orbit gains eccentricity [44, 77—79]. To produce adiabatic waveforms,
we only require knowledge of the orbit averaged dissipative pieces of the first-order self-force.
These can be related, via balance laws, to the fluxes of GWs to infinity and down the event
horizon. Since calculating fluxes avoids regularization of the metric perturbation, adiabatic
inspirals are typically calculated via flux balance laws [44, 78—83]. The conservative pieces
have more subtle effects on the inspiral, such as altering the rate of periapsis advance and the
location of the innermost stable circular orbit (ISCO) [50, 84—89].

To compute post-adiabatic inspirals requires knowledge of both the dissipative and con-
servatives pieces of the first-order self-force and the orbit average piece of the second-order
self-force [19]. There are as yet no calculations of the latter so we will make do with just the
first-order self-force information in this work. This will allow us to explore some of the effects
of the conservative self-force on equatorial Kerr inspirals for the first time.

4.2. Interpolation method

In order to drive inspirals, we need the self-force to be rapidly computed across the EMRI
parameter space. To achieve this we tile the parameter space with GSF data which we can
then interpolate. This approach has been implemented for eccentric Schwarzschild inspirals
[31, 32]. In these works the data was interpolated using standard cubic spline methods, which
required computing the self-force at tens of thousands of points in the parameter space. While
this might not pose much of a problem for the 2D parameter space of eccentric, Schwarzschild
inspirals, these approaches would not scale well to the 4D parameter space for generic Kerr
inspirals. Motivated by this, as well as the computational expense of the eccentric Kerr self-
force code, we build an interpolation model based on Chebyshev polynomials that is accurate
to percent level across a 2D slice of the EMRI parameter space using only a few hundred
points.

We start by fixing the value of the spin parameter of the primary, which we choose tobe a =
0.9M for Kerr inspirals or a = 0 for Schwarzschild inspirals and set the inclination x to be either
1 or —1 for prograde orbits or retrograde orbits respectively. This reduces our parameter space
to two parameters; the semilatus rectum p and the eccentricity e. We then define a parameter y
using the p and the position of the last stable orbit p; g,. For Kerr orbits, we chose y to be

/ (a,e,x)
YKerr = PLS.+ (36)
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With this parameterization we found that the accuracy of the Chebysheyv interpolation is limited
by the appearance of cusps at the LSO in the data. To ameliorate their impact we instead used
a parameter y given by

(37

_ Pso(0se, X)) /3
V4

YSchwarz = 1 - (1

for later runs in Schwarzschild spacetime. In either case, tiling the parameter space in y instead
of p will concentrate more points near the separatrix where the self force varies the most.
We let yrange fromy,;, = 0(0.01 for Schwarzschild) toy, ., = 1 and e range from ey, = 0
to emax = 0.5 for Kerr and e, = 0 to eax = 0.3 for Schwarzschild. We define parameters u
and v which cover this parameter space as they range from (—1, 1)
U= Y= Ymin + ymax)/2 and  ©= e — (emin + emax)/z.
(ymin - ymax)/2 (emin - emax)/z

(38a-b)

This parameterization is convenient when using Chebyshev polynomials of the first kind, where
the order n polynomial is defined by 7, (cos ¢) := cos(ny). The Chebyshev nodes are the roots
these polynomials, and the location of the kth root of nth polynomial is given by

2k — 1
N = cos ( k 7r> . (39)
2n

We then calculate the GSF on a 15 x 7 grid of Chebyshev nodes, with the u values given by
the roots of the 15th order polynomial and the v values given by the roots of the 7th order
polynomial. At each point on our grid, we Fourier decompose each component of the force
with respect to the radial action angle g,. We then multiply the data for each Fourier coefficient
by a factor of (1 — y)/(1 — ¢?), as we find that this smooths the behaviour of the force near the
separatrix and improves the accuracy of our interpolation. Next, we use Chebyshev polynomi-
als to interpolate each Fourier coefficient across the (u, v) grid. We then resum the modes to
reconstruct our interpolated GSF model:

s 15

=15 D ALy, e) cos(rg,) + BL(y. €) sin(kg;), (40)
k=0

_l—e

ag
where

14 6
Ay.e)=>_ Y AWT, (u)T;(v) and

i=0 j=0

14 6
Bi(y.o)=>_ > BT, w)T;). (41)

i=0 j=0

Using this procedure forces each component to become singular at the last stable orbit. While
the GSF changes rapidly as one approaches the last stable orbit, we do not expect the com-
ponents of the self force to diverge at the LSO. Understanding the analytic structure of the
self-force in this region would likely improve future interpolation models.

We note that the GSF should satisfy the orthogonality condition with the geodesic four-
velocity, i.e., a,u® = 0. Interpolation will bring with it a certain amount of error which can

14
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cause this condition to be violated. We find empirically that we can reduce this interpolation
error by projecting the force so that this condition is always satisfied, i.e.,

a(f =a, + a‘guﬁu”. 42)

This procedure allows us to create a smooth, continuous model for the GSF with relative
errors less than 5 x 1073 in the strong field—see figure 1. The variation in the accuracy of
the model is primarily a by-product of how close a given test point (green cross) is to the data
points (white dots) used to create the model. We note that this level of precision would not be
sufficient for production grade waveforms for LISA, as we would need the relative error of the
orbit averaged dissipative self-force to be less than ~1 /¢, whereas the oscillatory pieces of the
self-force only need to be interpolated to an accuracy of a fraction of a percent [32]. Our present
interpolation model already likely reaches the latter criteria and a future hybrid method that
combines flux and self-force data, similar to the one constructed in reference [32], can likely
reach the overall accuracy goal. Nonetheless, our present model is more than sufficient to test
our averaging procedure and to explore the effects of the GSF for eccentric Kerr inspirals. This
will now be treated as the underlying forcing model for both the OG and NIT inspirals.

5. Implementation

Combining the above model with our action angle formulation of the OG equations provides
us with everything required to calculate the NIT equations of motion. We first evaluate and
interpolate the various terms in the NIT equations of motion across the parameter space. This
offline process is costly but it only needs to be completed once. By contrast, the online steps
are computationally cheap, which allows us to rapidly compute eccentric self-forced inspirals
into a Kerr black hole.

5.1. Offline steps
To make the offline calculation we complete the following steps.

(a) We start by selecting a grid to evaluate the NIT functions upon. We chose y values between
0.2 and 0.998 in 320 equally spaced steps and e values from 0.001 to 0.5 in 500 equally
spaced steps (160000 points) in the case of Kerr, or use the same spacing in y but only
grid in e from 0.001 to 0.3 in 300 equally spaced steps (96 000 points) in Schwarzschild.?

(b) For each point in the parameter space (a, y, ¢) we evaluate the functions F,,, f, and s,
along with their derivatives with respect to p and e for 30 equally spaced values of g, from
0 to 2.

(c) We then perform a fast Fourier transform on the output data to obtain the Fourier
coefficients of the forcing functions and their derivatives.

(d) With these, we then use equations (32)—(35) to construct F (pl\\ez), F and sx; for that point
in the parameter space.

(e) We also use equations (26) and (27) to construct the Fourier coefficients of the first order
transformation functions Y,(;l\)e and XV,

3 Evaluating the NIT functions is computationally cheap so using a dense grid does not significantly increase the com-
putational burden. Using a dense grid also allows us to use Mathematica’s default Hermite polynomial interpolation
method for convenience of implementation. The grid spacing is chosen to be sufficiently dense that interpolation error
is a negligible source of error for our comparisons between the OG and NIT inspirals, though a less dense grid may
also achieve this.
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Figure 1. The relative error of the components of the interpolated gravitational self force
model for prograde equatorial orbits with @ = 0.9M. The white dots represent the data
points that were interpolated. The green crosses represent the data set that the model was
tested against. The black dashed line represents the location of the last stable orbit. The
relative error was calculated using the normalised L? error over a single orbital cycle.

(f) We then repeat this procedure across the parameter space for each point in our grid.

(g) Finally we interpolate the values for F ;1\\:), O and 55{; along with the coefficients of YI(JI)

\e

and X'V across this grid using Hermite interpolation and store the interpolants for future

use.

We implemented the above algorithm in Mathematica 12.2 and find, parallelized across 20
CPU cores takes, the calculation takes about one day to complete. This is a small price to pay,

since these offline steps need only be completed once.
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5.2. Online steps

The online steps are required for every inspiral calculation, but are comparatively inexpensive.
The online steps for computing an NIT inspiral are as follows.

(a) We load in the interpolants for F' ;1\\3) and £V and 5%, define the NIT equations of motion.
(b) In order to make comparisons between NIT and OG inspirals, we also load interpolants

of the Fourier coefficients of ' (pl/)e and XV and equation (19) to construct first order near-
identity transformations.*

(c) We state the initial conditions of the inspiral (py, o, ¢, o) and use the NIT to leading order
in the mass ratio to transform these into initial conditions for the NIT equations of motion,
i.e., (o, €0, 410)-

(d) We then evolve the NIT equations of motion using an ODE solver (in this case
Mathematica’s NDSolve).

As with the offline steps we implement the online steps in Mathematica. Note that
steps (b) and (c) are only necessary because we want to make direct comparisons
between NIT and OG inspirals with the same initial conditions. In general, the differ-
ence between the NIT and OG variables will always be O(e), and so performing the
NIT transformation or inverse transformation to greater than zeroth order in mass ratio
will not be necessary when producing waveforms to post adiabatic order, i.e. with phases
accurate to O(e).

6. Results

In this section we present the results from the NIT equations of motion. We first perform some
consistency checks in section 6.1. We then show that our NIT and OG inspirals agree to the
relevant order in the mass ratio in section 6.2. Here we also compute, for the first time, self-
forced inspirals in Kerr spacetime. With our fast NIT model we then explore the impact of the
conservative effects of the first-order GSF as calculated in radiation gauge for Kerr inspirals
in section 6.3. Finally, in section 6.4, we compare Schwarzschild inspirals calculated using a
radiation gauge GSF model and a Lorenz gauge GSF model.

6.1. Consistency checks

Before computing inspirals, we perform a series of consistency checks on the NIT equations
of motion. A useful feature of the NIT is how it separates adiabatic and post-adiabatic effects
of the GSF. At first order in the mass ratio, this corresponds to the dissipative and conservative

pieces respectively. We note that when we substitute a® — a§,.., we find that F° ;2\)6, M and EE{?)
D

are numerically consistent with zero, while F ;\e remains unchanged. Similarly, when we substi-
F ;1\)6 and F ;}2\)8 become consistent with zero, while " and Exl remain the same
as before. The functions F ;2)8 only becomes non-zero when both dissipative and conservative
effects of the first order self-force are present.

From F (l)e, one can calculate the average rate of change of energy and angular momentum
via the following relation:

tute a“ — a

cons?

4 Note that while including 5(‘,” in the transformation is not strictly necessary, we do so anyway to further reduce the
initial difference between the two inspirals.
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d& o€ - o€ -

< dt > - ;t <8PF§)1) * Oe Fgl)) 3
dc oL - oL -

< dr > - ;t (aPF;U + Oe Fil)) . (430)

We compared these to the energy and angular momentum fluxes at infinity tabulated in the
Black Hole Perturbation Toolkit [49] and generated with a variant of the Gremlin code
[80, 81] and found that the balance laws were upheld up to relative errors <1073 throughout
the parameter space which is consistent with the interpolation error of our self-force model.
From all of this, we can infer the significance of each of the terms in equation (31): Y,
Y, and Y, capture the background geodesic motion, F{}’ and F{" capture the adiabatic effects

due to the first order dissipative self-force, ff.l), 5V, and EE}) capture the post-adiabatic effects

due to the first order conservative self-force, and F{?, F'? capture the interplay between the
first order dissipative and conservative self-force, as well as the effect of the orbit averaged
contribution from the second order self-force.

6.2. Comparison between OG and NIT inspirals

In order to test the accuracy of our implementation, we compare inspirals calculated using the
OG equations of motion found in reference [34] to those calculated using the near-identity
transformed equations of motion. To demonstrate these results, we choose a binary with a
primary of mass M = 10°M_, and a secondary of mass jt = 10M_, for a typical EMRI mass ratio
of € = 107>. To push our procedure to the limit, we chose the initial conditions of our prograde
inspiral to be deep in the strong field and highly eccentric with p, = 7.1 and ¢y = 0.48 such that
the resulting inspiral would take approximately 1 year to plunge. We also set g, = th = ¢y =0
for simplicity.

Figure 2 shows the evolution of p and e over time. The trajectories calculated with the
OG equations of motion have order € oscillations on the orbital timescale which requires the
numerical integrator to take small time steps to accurately resolve. The NIT trajectory does not
have these oscillations so the numerical integrator can take much larger steps and still faithfully
track the averaged trajectory throughout the entire inspiral. The inverse NIT given in equation
(20a) through O(e) can be used to add the oscillations back on to the NIT trajectory. We find
that while this is unnecessary for computing accurate waveforms, it demonstrates that the NIT
trajectory remains in phase with the OG trajectory—see the insets of figure 2.

The accuracy of our NIT model is further demonstrated by figure 3 which shows the abso-
lute difference in the orbital phase ¢, and the extrinsic quantities ¢ and ¢ between the NIT
and OG evolutions. Over the course of the year long inspiral, |t — (7 — Z,(O))\ <5 %1073, |¢ —
(¢ — Z")| < 107 and |g, — G| < 1073 with the differences only spiking to <102 just as the
trajectories reach the separatrix where the adiabatic approximation breaks down.

Finally, we test the effect the NIT procedure has on the waveform. In principle, we could
use our averaged equations of motion in conjunction with the Fast EMRIWaveforms (FEW)
framework to rapidly compute waveforms with relativistic amplitudes. However, currently, the
FEW framework only has amplitude data for Schwarzschild inspirals. As such, we make use of
the same procedure as the numerical kludge [10] by mapping the Boyer—Lindquist coordinates
{t,r,0, ¢} to flat space coordinates and using the quadrupole formula to generate the waveform.
The resulting waveforms are only an approximation to the true waveforms, but since both
inspiral trajectories are being fed through the same waveform generation scheme this should
not bias the results when finding the difference in the waveform as a result of using the NIT
trajectory instead of the OG trajectory.
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Figure 2. The trajectory through (p, ¢) space for an inspiral with e = 1073, a = 0.9M,
and initial conditions (p, = 7.1, ey = 0.48). We show the inspiral computed using the

OG equations, the NIT equations of motion and the inverse NIT to first order in €. The
insets zoom into the start and end of the inspiral to reveal the small orbital timescale oscil-
lations. The NIT averages through these oscillations, and when using the inverse NIT to
add the oscillations back on, we see that the NIT trajectory remains almost perfectly in

phase with the OG trajectory throughout the inspiral.

From figure 4, we can see that the waveforms generated by each evolution scheme, sampled
every t = 1M = 5s, are almost identical by eye. We can further quantify this by calculating the
waveform mismatch using the WaveformMatch function from the SimulationTools
[90] Mathematica package and assuming a flat noise curve. From figure 5, we see that the
mismatch remains below 5 x 10~8 throughout the inspiral. At this level of mismatch the two
waveforms would be completely indistinguishable for EMRIs with SNR of up to (at least) 3000

[91-93].
Next, the difference between the OG and NIT quantities should scale linearly with the mass

ratio. This is illustrated in figure 6, where starting with initial conditions p, = 4 and ¢y = 0.2

we evolved the inspiral until it reached p = 3 for mass ratios ranging from 10! to 10>, While

working with only machine precision arithmetic we found that for smaller mass ratios the
numerical error of the solver of the OG inspiral became dominant over the difference with the
NIT. To rectify this, we increased the working precision of our solver to 30 significant digits
and found that the difference does, in fact, scale linearly with the mass ratio. This requirement
for higher precision only affected the OG solver, the NIT equations of motion can be solved
with machine precision arithmetic without introducing any significant error.

Since the difference between OG and NIT quantities scales with the mass ratio, it is natural
to ask how large can the mass ratio be before the NIT and OG waveforms differ enough to affect
data analysis. Following the procedure outlined in reference [38], we used our fast NIT inspiral
code along with a root-finding algorithm to find the initial value of p that corresponds to a year
long inspiral for a given value of the mass ratio and initial eccentricity, and assuming a primary
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Figure 3. The difference in the orbital phase and extrinsic quantities for a equatorial
Kerr inspiral with € = 107> and a = 0.9M calculated using the OG and NIT equations
of motion with initial conditions p, = 7.1, ey = 0.48. We find that the differences remain
small throughout the inspiral, only becoming large as the secondary approaches the last
stable orbit where the adiabatic approximation breaks down.

mass of 10°M_,. We use these initial conditions to calculate the overlap between year-long NIT
and OG waveforms. This calculation is repeated with mass ratios € = {1,3,5,7,9} x 1073
and initial eccentricities ey ranging from 0.05 to 0.45 in equally spaced steps of 0.05. The
result of this analysis can be seen in figure 7. This demonstrates that NIT and OG waveforms
have overlaps larger than the benchmark of 0.97 [94] for mass ratios less than ~3 x 1073,
but these overlaps decrease substantially for mass ratios larger than this. We also see that the
overlap generally decreases as the initial eccentricity increases, though this effect is not as
strong as the effect demonstrated by a similar analysis in reference [38] for NITs applied to
highly eccentric inspirals in Schwarzschild. They also found that the mismatch between NIT
and OG waveforms became substantial for mass ratios larger than 2 x 10~%. These differences
between the two analyses are most likely the result of our inspirals being deeper in the strong
field and driven by a self-force computed in a different gauge (reference [38] uses the Lorenz
gauge self-force). Such mismatches should not be an issue for EMRI data analysis as EMRIs
have mass ratios that range from 10~ to 10~*. However, these mismatches become significant
for intermediate mass ratio inspirals, with mass ratios between 10~* to 10—, Since both the
OG and NIT equations of motion are formally valid to the same order in the mass ratio, it is
not clear a priori which of the two would be closer to the true inspiral. When completed at
one-post-adiabtatic (1PA) order the two sets of equations represent different resummations of
the 1PA equations of motion, differing only in their higher order (2+) PA terms. The fact that
we are seeing a significant difference between these two resummations for intermediate mass
ratios suggests that such higher order PA terms might become relevant. However, in this case
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Figure 4. Two snapshots of the dominant (/,m) = (2,2) mode of the quadrupole
waveform for our prograde, equatorial Kerr inspiral with (a,€, py,ep) =
(0.9M,107°,7.1,0.48). These snapshots correspond to the first and last hours of
the inspiral. This shows that the waveform generated using the NIT trajectory almost
perfectly overlaps with the waveform generated using the OG trajectory. It also
demonstrates how dramatically an EMRI waveform evolves throughout the inspiral.

it might just be signalling the importance of the missing orbit-averaged dissipative self-force
term at 1PA order.

Finally, we note that using the NIT equations of motion produces a substantial speed-up
over using the OG equations. From table 1, we see the typical computation time for an inspiral
starting at p, = 7.1 and ey = 0.48 and evolved until the inspiral reaches the last stable orbit
for different values of the mass ratio. We see that as we decrease the mass ratio by an order
of magnitude, the OG inspiral takes roughly an order of magnitude longer to compute, as it
would have to resolve an order of magnitude more orbital cycles before reaching last stable
orbit. The NIT inspirals all take roughly the same amount of time to evolve to the last stable
orbit, regardless of the mass ratio. Using our current Mathematica implementation, the NIT
inspirals can be computed in less than a second. This time could be further reduced tens of
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Figure 5. The mismatch between the semi-relativistic quadrupole waveforms between
inspirals calculated using the OG equations with (a, €, py, ¢0) = (0.9M,1073,7.1,0.48)
and the adiabatic EOM matched initial conditions, the adiabatic EOM calculated with
matched initial frequencies, and the near-identity transformed EOM. We also mark the
mismatch that would be indistinguishable for signals with SNR = 100.

milliseconds if one uses a compiled language such as C/C++, as was done in paper I [36]. We
see that using the NIT equations of motion is most advantageous for long inspirals with small
mass ratios. Another benefit of using the NIT is that the inspiral requires taking fewer time
steps, which results in less numerical error, making it easier achieve a given target accuracy.

The only disadvantage of our formulation is that our final trajectory is parameterized in
terms Mino time A\, whereas LISA data analysis applications will need waveforms param-
eterized Boyer—Lindquist retarded time ¢. Since our formulation also outputs #(\), we can
numerically invert this to get A(f) which allows us to resolve this issue at the cost of addi-
tional computation time. This was also a problem with the NIT formulation in Schwarzschild
where the final trajectory is outputted as a function of the quasi-Keplerian angle x [36, 38]. This
problem might be circumvented entirely by performing an additional transformation to our NIT
equations of motion which would produce averaged equations of motion parameterized by ¢ as
outlined in [35].

Since we are now satisfied that our formulation can produce fast and accurate self-force
driven trajectories, we can now use this procedure to explore the phenomenology of eccentric,
equatorial Kerr inspirals.

6.3. Impact of adiabatic and post-adiabatic effects

With the ability to generate fast and accurate inspirals, we can survey the physics of equatorial
Kerr inspirals and examine how this differs from the Schwarzschild case. From figure 8(a),
we see the familiar effect of gravitational radiation reaction on the semilatus rectum, p, and
eccentricity, e, whereby p and e both decrease over the inspiral with e growing a little as the
last stable orbit is approached [44, 78, 79]. As the inspiral approaches the last stable orbit
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Figure 6. The absolute difference in the quantities of a prograde inspiral witha = 0.9M
and ep = 0.2 after evolving from p = 4 to p = 3 using either the OG or NIT equations
of motion. We observe that all the differences follow the solid, black e reference curve,
as expected.

adiabaticity breaks down and the inspiral undergoes a transition to plunge [95-98]. As such,
we stop our inspirals just before the last stable orbit. Our results are the first inspirals to include
conservative self-force corrections to the equations of motion in Kerr spacetime. The initial
phase g, o only evolves secularly when conservative self-force corrections are present and so we
use this as a measure of the influence of these corrections [31]. This is illustrated by the dashed
orange curves in figure 8(a), which mark the number of radians g, o will evolve from a given pair
of initial conditions (o, €p) until the last stable orbit. For retrograde Kerr (and Schwarzschild
orbits in figure 10), we find that g, increases throughout the inspiral, whereas for prograde
Kerr g, decreases during the inspiral before increasing slightly just before plunge. This is
consistent with the change of sign in the correction to the rate of periapsis advance induced by
the conservative self force as a function of spin in the circular orbit limit [88]—see appendix
D for further details.

As discussed in section 6.1, one can readily calculate adiabatic inspirals using the NIT
equations of motion by simply neglecting the post-adiabatic terms. However, when trying to
determine how post-adiabatic corrections effect the inspiral, one must be mindful of how one
matches up an adiabatic inspiral with its post-adiabatic counterpart. Following the argument
found in references [31, 32], matching the initial conditions (py, o) results in an error in the
orbital phases that grows linearly in ¢ as the conservative self-force changes the orbital frequen-
cies [86]. Instead, one should instead match the Boyer—Lindquist time fundamental frequencies
Q, and Q. For an adiabatic inspiral, these are directly related to the Mino-time fundamental

. Ty .
frequencies via Qf\‘iﬁ = %‘ [42]. To calculate these frequencies as perturbed by the conserva-
tive self-force, one can either follow the method outlined in reference [32], or one can calculate
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Figure 7. The overlap between OG and NIT waveforms for year-long, prograde, a =
0.9M, equatorial Kerr inspirals as a function of the mass ratio and initial eccentricity.
The difference between the two waveforms is less than the accuracy benchmark of 0.97
for mass ratios <3 x 1073, but not for mass ratios larger than this. While increasing
eccentricity does have an effect on the overlap, this effect is not as strong as the effect
observed in figure 9 of reference [38].

Table 1. Computational time required to evolve an inspiral from its initial conditions of
po = 7.1 and ey = 0.48 to the last stable orbit for different values of the mass ratio, as
calculated in Mathematica 12.2 on an Intel Core i7 @ 2.2 GHz. The computational time
for the OG inspiral scales inversely with the mass ratio, whereas the computational time
for NIT inspirals is independent of the mass ratio. This demonstrates how the smaller the
mass ratio of the inspiral, the greater speed-up one obtains from using the NIT equations

of motion.

€ OG Inspiral NIT Inspiral Speed-up
1072 44 s 0.85s ~37
1073 6m48s 0.78 s ~491
10-4 54m12s 0.81s ~3782
1073 6h16 m 0.76 s ~29 655

them directly from the NIT equations of motion:

o T e

2 SF __
¥ =t £ 0@ ana OF =

50
1 O®). 44)
€S

We find that both approaches give the same result up to an error that scales as €. With this in
hand, we can now choose a value for our initial conditions (7, &) for our self-forced inspiral,
and then root find for initial conditions (p)¢, ¢59) that satisfy the simultaneous equations

Q@ ") — QM e = 0, (45a)
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Figure 8. Sample trajectories through (p, ¢) space for prograde and retrograde equato-
rial Kerr inspirals with ¢ = 107> and a = 0.9M. From these plots, we see the familiar
behaviour of EMRIs losing eccentricity as the compact object approaches the primary
and then gaining eccentricity just before crossing the separatrix (dashed black line). The
dashed orange curves are contours that mark the number of radians g, o will evolve from
a given point until plunge. The conservative self-force for retrograde orbits has a similar
effect to the non-spinning case as it causes ¢, to increase throughout the inspiral. In the
prograde case, g, decreases for most of the inspiral and then slightly increases shortly
before plunge.

Q@ e — Q4 et = 0. (45b)

Using this procedure to match the initial frequencies we find that the linear-in-# growth of
the difference in the orbital phases is removed and the phase difference grows quadratically in
t as expected—see figure 9.

6.4. Comparing inspirals driven using radiation gauge and Lorenz gauge self-force in
Schwarzschild spacetime

We now turn our attention to the special case of Schwarzschild (a = 0), where we now have
interpolated GSF models calculated in two different gauges. In addition to our outgoing radia-
tion gauge self-force model, we make use of an interpolated Lorenz gauge self-force from ref-
erence [31], which is valid in the domain 6 < p < 12and 0 < e < 0.2. We apply the same NIT
procedure to inspirals driven by this force model, and find agreement with inspirals calculated
in paper I, up to the precision of the numerical solver.

To assess the accuracy of the dissipative self-force, we calculate the orbit averaged energy
and angular momentum fluxes, and find that they agree with values from the literature with a
relative error less than 103 for both models across the parameter space. To assess the accuracy
of the conservative self-force, we calculate the periapsis advance in the circular orbit limit as
outlined in [85] using the formula found in [88]. We find that both models show good agreement
with the literature across the Lorenz gauge model’s domain of validity, with the Lorenz gauge
model producing errors less than 103 and the radiation gauge model producing relative errors
less than 1072
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Figure 9. Difference in ¢ as a function of ¢ between an adiabatic and a first order
self-forced inspiral when either matching initial conditions or matching the initial
Boyer—Lindquist frequencies. The self-forced inspiral has initial conditions (po, €y) =
(7.1,0.48) with mass ratio e = 10~>. Matching initial conditions results in an error that
grows linearly with #, while matching frequencies produces an error that is initially
constant and then grows quadratically with .

While we find good agreement between the two results for gauge invariant quantities, we see
from figure 10 that the inspirals experience dramatically different conservative effects, depend-
ing on the gauge used. While in both cases, the conservative self-force acts against geodesic
periapsis advance, we see that the evolution of g, depends heavily on the gauge involved,
while the trajectories through p and e space are less affected. This is to be expected as the
leading order averaged rates of change of p and e are related to the gauge invariant asymp-
totic fluxes, while the change in g, is induced entirely by the (gauge dependent) conservative
self-force [27].

Just as when comparing adiabatic and self-forced inspirals it is important to match the initial
frequencies (rather than the initial (p, e) values). We note that for the Lorenz gauge model, we
must account for the fact that the perturbed time coordinate, 7, is not asymptotically flat [99]. We
can define an asymptotically flat time coordinate for Lorenz gauge inspirals via the following
rescaling

t=(1+ ea)t, (46)
where « is given by
1
alp,e) = — Eh§}>(r — 00). (47)

We make use of a code provided to us by Akcay to numerically calculate this quantity for
Lorenz gauge values of p and e [25, 100]. Equation (46) means the perturbed Boyer—Lindquist
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Figure 10. Sample Schwarzschild trajectories through (p, €) space using either a radia-
tion gauge or a Lorenz gauge model, accompanied by contours denoting the change in
gro (in radians) by the end of the inspiral if the inspiral had started in that point of the
parameter space. While there are only slight differences in the (p, €) trajectories, there
is a stark difference in the evolution of g, induced by each model.

frequencies must also be rescaled by:

T, +ef) Ty + e
QLo — (1 - ea)w and QT =(1 - ea)(ﬁifl()w). (48)
' T, +es
t(LG)
In the radiation gauge model, the corresponding subtleties have been dealt with by including
the gauge completion corrections, so the frequencies can be calculated using equation (44) as

before. Thus, we can choose a value for p, (LG) and e(LG) in Lorenz gauge and root find for values
of p(RG) and e(RG) in radiation gauge that satlsfy.
QRO (p (RG) ~<RG)) QL9 p (LG) ~(LG>) — (49a)
Q(RG) (~(RG) ~(RG)) QEﬁLG) (pE)LG)’ égLG)) —0. (49b)

This allows us to make comparisons between inspirals driven by self-force models calculated
in different gauges. We use an inspiral driven by the Lorenz-gauge force model with initial
conditions (py, ep) = (11,0.18), mass ratio € = 1073 as our reference inspiral which should
last just over two and a half years for a 10°M, primary.

In figure 11, we see the difference in the phase of the waveform ® as a function of time
between the Lorenz gauge NIT inspiral, and a number of reference models. We make use of
the relations between the NIT quantities and the waveform phases derived in reference [38] to
find

D, =g —BZY+ 0% and Oy =¢—BZO + O (50)

We then feed the solutions for {p(r),e(r), @,(t), Py(r)} into the FEW package to
generate these eccentric Schwarzschild waveforms [17]. Finally, we make use of the
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Figure 11. The difference in the waveform phase ® for various inspirals as a function of
t when compared to NIT inspiral driven by a Lorenz gauge self-force model, with initial
conditions (a, py, eg) = (0,11, 0.18), mass ratio € = 1077, viewing angles © = 7 /4 and
& = 0, and sampled every Ar = 1M ~ 5s. We also show the mismatch (MM) between
the waveforms in each case. By matching the initial frequencies, we compare an inspiral
calculated using a radiation gauge self-force model, an adiabatic inspiral, an inspiral
with the adiabatic pieces of the Lorenz gauge model and conservative pieces from the
radiation gauge model, and a Lorenz gauge model with a 10% relative error added to
each conservative piece. In all cases the difference grows quadratically in time. This plot
suggests that post-adiabatic waveforms calculated using only the first-order self-force
differ significantly depending on the gauge used.

SimulationTools Mathematica package to calculate the mismatches and decompose the
waveforms into a single evolving amplitude A(#) and phase ®(#). This allows us to find the dif-
ference in the waveform phase A®(f) between the Lorenz gauge inspiral and the other inspiral
calculations. We use this as our point of comparison as the waveform phase is an observable
and thus a gauge invariant quantity.

We note that in each case, we see constant error which gives way to quadratic growth with
tjust as in figure 9. As we discussed in section 6.3, this shows that the initial frequencies were
correctly matched. From the blue curve, we see that the NIT radiation gauge inspiral quickly
goes out of phase with the Lorenz gauge NIT inspiral, resulting in a very large mismatch of
0.93. We found that the largest source of error here is due to interpolation error for in the
adiabatic pieces of the NIT. Since these are related to the gauge invariant fluxes, these pieces
should be identical in both models. As such, we can rectify this error by using the Lorenz
gauge functions for the adiabatic pieces and continue to use the radiation gauge functions for
the conservative pieces of the NIT equations of motion. The improvement is evident in the
green curve, which shows much better agreement with the Lorenz gauge NIT inspiral, with the
mismatch falling to 0.83. However, it is only slightly better than matching an adiabatic inspiral
(orange curve) using equation (45) resulting in a mismatch of 0.86. Both radiation gauge and
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adiabatic inspirals go out of phase by almost 100 radians by the time they reach the last stable
orbit.

In order to rule out the possibility of interpolation error of the conservative effects being the
primary cause of this difference, we repeat the Lorenz gauge inspiral, but this time we manu-
ally add a relative error of § = 0.1 to all of the conservative pieces of both the NIT equation
of motion and our matching procedure for the initial conditions, e.g., ¢, = Y, + ef() —

T, +e (}Sl) + 5]7(,')) etc. We note that this is an order of magnitude larger than the 10~ error

produced by the radiation gauge model when calculating the gauge invariant quasi-circular
periapsis advance. From the red curve, we see that manually adding a constant 10% relative
error results in phase difference and a mismatch (0.54) which is significantly smaller than what
we observe between the two self-forced inspirals. This gives us confidence that this difference
is not dominated by numerical error.

From these investigations, we infer that the trajectories driven using only the first order
self-force are gauge dependent, and thus, so too are their waveforms. Since post-adiabatic
waveforms are an observable quantity, this leads us to conclude that incorporating the orbit-
averaged dissipative second-order self-force will be necessary to obtain gauge invariant, post-
adiabatic waveforms. Moreover, since the difference between the radiation and Lorenz gauge
self-forced inspirals is of the same magnitude as the difference with the adiabatic inspiral, we
further conclude that the impact of the orbit-averaged dissipative second-order self-force must
be of a similar magnitude in at least one of the two gauges.

7. Discussion

In this paper, we present the first self-forced inspirals in Kerr spacetime. We computed the self-
force in the radiation gauge using the code of reference [27] and interpolated it over a region of
the parameter space of eccentric, equatorial orbits using Chebyshev interpolation. Our model
achieves sub-percent accuracy for the self-force across the two dimensional parameter space
using only 105 points is a substantial improvement over cubic spline interpolation which would
require O(10?) points to achieve a comparable level of accuracy. So far we have applied our
method to strong-field regions of the parameter space for three values of the primary’s spin
(a = 0,£0.9M). It remains as future work to interpolate over the spin of the primary, however,
the Chebyshev interpolation method appears to be a promising approach to tiling data from
expensive GSF codes across the four-dimensional generic Kerr parameter space. This method
could be further improved with the aid of a detailed of the study of the analytic structure of the
GSF near the last stable orbit.

With an interpolated self-force model in hand, we computed inspirals using an action-angle
formulation of the method of OG. This approach is sketched in reference [34] and in we imple-
ment these equations of motion for generic (eccentric and inclined) inspirals about a Kerr black
hole. Our Mathematica implementation will be made publicly available on the Black Hole
Perturbation Toolkit [49]. For a binary with (small) mass ratio, €, numerically solving the OG
equations takes minutes to hours due to the need to resolve the ~1/¢ oscillations in the orbital
elements. To overcome this, we follow paper I [36] and apply near-identity (averaging) trans-
formations (NIT) which produce equations of motion that capture the correct long-term secular
evolution of the binary but can also be rapidly numerically solved.

As a test of this formulation, we applied it to our eccentric, equatorial self-forced inspirals.
We showed that our NIT’d quantities remain close to the original evolution variables through-
out the inspiral at the expected order in the mass-ratio. When the mass ratio is greater than
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1:300, we find the difference between year-long NIT and OG inspirals becomes significant
for data analysis, reinforcing the findings of reference [38]. Note, however, that a priori it is
not known which (the NIT or OG inspiral) is closer to the true inspiral, since both are accurate
to the same order in the mass-ratio.

With our efficient NIT model of eccentric, equatorial inspirals we explored the effects of the
GSF. We find that prograde inspirals around a rapidly rotating black hole generally experience
an additional periastron advance on top of the periastron advance induced by geodesic motion.
This is in contrast to the ‘periastron retreat’ experienced by retrograde inspirals and inspirals
around non-rotating black holes [101].

The NIT equations of motion make it convenient to compare inspirals both with and without
post-adiabatic effects included and we confirmed that without post-adiabatic effects, the orbital
phases of a typical EMRI will incur an error of order O(e”). Moreover, by comparing inspi-
rals under the influence of self-force models calculated in different gauges, we find that the
resulting trajectories are gauge dependent. This difference due to gauge causes a de-phasing
that is comparable in magnitude to not including any post-adiabatic effects. This suggests that
in order to obtain gauge invariant post-adiabatic waveforms, one must also include second
order self-force results. Second order self-force calculations are presently made using a two-
timescale framework [30, 102]. For the equations of motion, this framework is related to the
NITs [35, 37], but more work is required in order to explicitly transform the two-timescale
results into forcing terms that could be used in the framework presented in this paper. Many of
the averaging techniques developed in this work are also useful for the two-timescale approach
[35].

For complete post-adiabatic waveforms, one would also need to include the spin of the
secondary. Inspirals incorporating the leading conservative spin induced effects around a non-
rotating primary have been calculated [103] and the effect of (anti-)aligned secondary spin on
the energy and angular momentum fluxes have recently been computed for eccentric orbits
[104]. These effects can readily be incorporated into the NIT framework.

Another natural extension of our work is to non-equatorial orbital motion. We already have
results for spherical inspirals that will be the topic of an upcoming paper. After that we plan to
tackle generic orbits, but there are two major barriers to this. The first is the larger parameter
space which will make calculating the self-force extremely expensive [83]. Our Chebyshev
interpolation method should help to reduce the number of points in the parameter space where
the self-force needs to be calculated. The second barrier is the presence of orbital resonances
[105-109].

Near these resonances the NITs break down and an alternative averaging procedure over
the resonance timescale needs to be applied [35]. While a lot is known about the effects
of resonances on EMRI trajectories [105—110], rapidly computing inspiral trajectories while
incorporating all resonant effects remains an open challenge.

Finally, we note that in this paper we use the leading-order quadrupole formula to generate
the waveforms from the OG and NIT inspirals. This is sufficient for our purposes where we
wish to compare waveforms from OG and NIT inspirals but for LISA data analysis we will
want to use relativistic waveform amplitudes. These were recently efficiently interpolated in
reference [17] for Schwarzschild inspirals. That work used orbit-averaged fluxes to drive the
inspirals but it would be straightforward to use a NIT inspiral instead. Once the waveform
amplitudes have been interpolated for Kerr inspirals it could be combined immediately with
the implementation presented in this work.
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Appendix A. Geodesic motion

We present here relations for quantities that were key to deriving our action-angle formulation
for the method of OGs. Two of the radial roots the potential V, and one root of the polar
potential V_ are given in equations (9). The remaining roots are given by [42]

M r+n r4n M\’ a*Q
"Tioe T 2 +\/( 2 _1—62>_r1r2(1—52) (Al
2
r4:A (A1b)

rirr(l — &%)’

£2
go=y @0 =)+~ 5 (Al

Using action angles also has the advantage of providing analytic solutions for the # and ¢
coordinates of the secondary, which take the form

1(A) = TA+1:(g) +1:(qz)  and  G(N) = Ty + ¢(qr) + $:2(q).  (A2a-b)

where T, and T are the Mino-time fundamental frequencies, ¢, and ¢, are periodic functions
of g,, and ; and ¢, are periodic functions of g.. The explicit expressions for these functions,
and the Mino-time frequencies, can be found in references [42, 46], and are implemented in
KerrGeodesics Mathematica package of the Black Hole Perturbation Toolkit [49].

In this work we make use of analytic solutions to the geodesic equations written interms of
the action angles for the orbital phases § = {g, g, }. These were first derived in reference [42]
and then presented in a simplified form in reference [46]. The radial and polar solutions to the
geodesic equations are given by

r3(ri — rp)sn? (K&, 1k,) — ra(ry — r3)
(ri — rsn? (X, [k,) — (r = r3)

r(qr) = (A3)

and

7(q;) = z-sn (K(kz)@

kz) ; (A4)
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where sn is Jacobi elliptic sine function, K is complete elliptic integral of the first kind, and

(=13 —ra)

kr - )
(r1 —r3)(ra — ra)

2
and k= a*(1 — 52)% (A5a-b)
+

Appendix B. Evolution equations for the integrals of motion

Our goal for this section is to derive evolution equations for the integrals of motion P =
{p,e,x}. To do so, we must first consider how a different set of integrals of motion P =
{&,L,K} evolve in terms of the covariant components of the particle’s four-acceleration
{ai,ar,a;,a4}.

Using the second OG equations (12b) along with definitions of £ and £ in equation (5), we
can obtain the evolution equations for £ and L:

d& dc
T —>a,, and T Yag. (Bla-b)

To find the evolution of I, we note that the contravariant components of the Killing tensor can
be written as [34]

K8 =251 4 g7, (B2)
where [ and 77 are null vectors with components

w? A a

I a .
= K@,—i—@,—i—z@s and 7= —8;— —8,

oy oy + i&b (B3a-b)

Taking the derivative of K from equations (5c) with respect to proper time gives us

K

= K% uqas. (B4)
dr

Expanding this out explicitly while making use of the orthogonality condition, g*’u,az = 0
and converting to Mino time gives us:

ac_ae2
d\  d A

dc 2
(w45 — awzﬁ) + —— (azl: — awzé’) —2¥Au,a,. (B5)
dx A
Using the above equations, we can express how the roots {ry, 12, z_ } evolve with Mino time
by exploiting the same trick as in appendices A.2 and A.3 of [34]. First, we note that, using
the chain rule, we can express the rate of change of r; or r; as

dl’l,z o 37‘172 d'Pj
dh 9P dA (B6)
We then find expressions for Ory»/9P; be differentiating V,(r) with respect to P;.
27‘;; - = (1= &) — r)(r — r3)(r — 74)3%, (B7a)
BV 81"2
d =—(1—-&)(r — - — 1) B7b
o7, ( )11 — 1r2)(ry — 13)(r2 — 14) P, (B7b)
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We then note that the coefficients proceeding dr , /OP; are also obtained by differentiating V,
with respect to r and then evaluating at r », i.e.,

v, Ori
Zr — i B
P .., K(r12) P, (BY)

where we have defined

Kk(r) = ddVrr =4EF(r)r — 2rA(r) — 2(r — M)(r2 + K), (B9)
F(r)=w(r)?E —aLl. (B10)

Combining equations (B6) and (B8) and using the appropriate definition of V, from
equation (7a) to calculate the partial derivatives gives us our evolution equations for r; and
.

dri _ _2F(r2)
d)\ /<;(r1,2)

dﬁ) 4 Alna)dk (B11)

w(r )2% —a—
2han T Taa k(ro) dA

We can use similar steps as above to find the evolution of z_. Again, the chain rule tells us
that the evolution of z_ follows

dz. 9z dP;

—— = . B12
dA  OP; dA (B12)
We then use 3—7‘% ~ along with the second definition V; in equation (7b) to find an expression
for g%;j
oV, b . 0z
—| =-2z — ) BI13
7P, . - (BzZ —z3) P, (B13)
However, using the first definition of V, in terms of {€, £, Q} gives us the following explicit
expressions for 3—7‘;] )
v, 2 e 2 5 oV, 5 V. 5
| =208 (1 —72), | = -2L77, d | =1—2z.
o |. afz2 (1 —z2) ac |, V4 an 90|, z
(Bl4a-c)
Combining the results from equations (B12), (B13), (B14a—c) gives us
2z (z4 — fz-)dz-  dQ bt dc b, dE
— s ——=—-2L| —— | —— +2a°E —. BI15
I—2) dn -2 ) o (B15)

Since we have expressions for the evolution of {€, £, K}, we can derive and expression for the
evolution of Q by taking the derivative of equation (6) with respect to A:
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ax  “ax
Combing these two results and simplifying yields our final expression for the evolution of z_

dz_ 1 Ldi oo (AL ,dE
e 0 —2(L - g Bl
A\~ 2z (2 - B2) ( a2 (E-a’d) <d>\ o dA))’ (B17)

where we have used equations (9c¢) to tidy up the final expression.
Now that we know how {ry,r,z_} evolve, determining the evolution of {p,e, x} is
straightforward since we can convert from one set to the other using the relations

2 _
— i’ e="11 }’2’ and x=4+4/1-722. (B18a-c)
M(ry +r2) rtn

We can then take the derivative of these equations with respect to A and use the chain rule to
obtain equation (13).

Appendix C. Evolution of the orbital phases

While it is straightforward to obtain equation (15) from the first OG equations (12a) this
equation is difficult to evaluate numerically at the turning points of the orbit, i.e., when
8xg /0q; = 0. As such, following the procedure described in reference [34], we derive an
equivalent evolution equation for the initial phases which is finite at the turning points.

We start by considering the definition of the geodesic potentials:

Vi(x', B) = (f&) 1)

If we add together the derivative of both sides of this expression with respect to P; and then
multiply both sides by P;, one obtains:

oV [ Ox' . Vi 5 ox
o ((%Pj) +op b= <8P P,) . (C2)

Rearranging and plugging in equation (15) allows us to write

AV ox' 3V Bx

We also note that taking the derivative of (C1) with respect to Mino time A and rearranging
yields
Vi . OV

P =2i% — il C4
op; 1T T T oa (&

Rearranging this and subbing into equation (C3) and simplifying gives us
v Bx . 1aV; ox' .
0 =2 X' — = — (=P, ). C5
i = ([ =35] - (37) )
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We note that the square bracket term will vanish for geodesics. For perturbed orbits this
means that this term will be proportional to the component of the four-acceleration a’ scaled
by a factor of X2 to compensate for taking derivatives with respect to A instead of 7. When
evaluating this expression, we make use of the osculating condition x'(\) = x5(\). This leads
is to the simplification

9

o, = Peda Oy,

6q,‘ dA N 86],‘ "

(C6)

Combining these results with equation (C5) gives us our final expression for the evolution of
the initial phases which is regular at the turning points, as expressed in equation (16).

Appendix D. Self-force corrections to the periapsis advance around a
spinning black hole

The periapsis advance is a observable quantity that has been used to compare models of com-
pact binary dynamics [101]. The effect of the GSF on this observable for quasi-circular EMRIs
around a rotating primary was explored in reference [88]. One important insight, that is present
in the supplemental material of that work, is the effect that the spin of the primary and orbital
radius has on the self-force correction to the rate of periapsis advance. For completeness, we
highlight this result in this appendix.

For quasi-circular inspirals the relation between the dimensionless quantity W = Q?/ Qi
and €4 is an important benchmark for comparing between different calculational approaches
to the two-body problem [88, 101, 111]. The linear in mass ratio correction to the quantity is
defined via

W(e;a, Q) = W(0;a, Q) + epla, Q) + O, (D1)

where W(0; a,()y) is the background value for the periapsis advance, and p(a, §24) is the
correction induced by the first-order GSF.

Figure 12 demonstrates how p varies as a function of orbital radius r and the spin of the
primary a. We plot the ratio risco/r, where risco is the radius of the ISCO. This ratio is conve-
nient for plotting the results as goes from 1 at the ISCO for all spin values and asymptotically
approaches zero as r grows large. As one would expect, the plot demonstrates that this correc-
tion grows larger as the radius of the inspiral approaches the ISCO. This correction is positive
for all retrograde orbits and in the strong field for prograde orbits. This means that self-force
typically acts against the periapsis advance caused by the background geodesic motion, result-
ing in a reduction of the observed periapsis advance of the binary. However, for positive spins
and at large radii, there is a region of the parameter space (in blue) where this correction is neg-
ative, meaning that the self-force increases the observed rate of periapsis advance compared to
the background geodesic motion. The larger the spin, the smaller the radii at which this effect
occurs. As such, this effect is most prominent for prograde orbits around rapidly rotating black
holes.

We find that the effect of the conservative self-force on the orbital phase for eccentric inspi-
rals is consistent with the sign of the self-force induced rate of periastron advance, p, in the
quasi-circular limit—see section 6.3.
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Figure 12. The linear in mass ratio correction, p, to the periapsis advance, W, as a func-
tion of distance from the ISCO risco /r and the spin of the primary, a. The contours show
that p grows larger as the radius of the inspiral approaches the ISCO. p is positive for
most of the parameter space, including for all retrograde orbits, implying that in these
regions the self-force acts against the geodesic periapsis advance. However, for all pro-
grade orbits, there is a region (in blue) where this correction is negative meaning the
self-force instead increases the rate of periapsis advance. The region where this occurs
grows larger as a increases The black crosses mark the location of the underlying data
from reference [88] used to calculate the contour plot.
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