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Abstract

Unconventional phase transitions in disordered and interacting systems

by

Shijun Sun

This thesis will start by presenting an equivalence between a broad class of

interacting disorder-free and disordered non-interacting systems. Such systems include,

but are not limited to, nodal semimetals, dilute gases of bosons, trapped-ion systems

with long-range interactions, and superconductive films. This equivalence is powerful:

on the one hand, it allows one to simulate many-body effects by mapping them to

single-body effects in disorder potentials; on the other hand, one can predict new types

of phase transitions by mapping existing ones to them.

After establishing the equivalence, I will discuss three examples of such un-

conventional phase transitions found by duality mapping. For the first example, I will

show that the BCS-BEC crossover can be mapped to a disorder-driven transition in

nodal-point semimetal using the derived duality. For the second example, I will show

that the BCS-superconducting transition can be mapped to a disorder-driven transi-

tion in nodal-line semimetals. These two disorder-driven transitions are different from

the Anderson metal-insulator transition, which expands the types of disorder-driven

transitions in non-interacting systems.

The third example is an unconventional interaction-driven transition found by

mapping disorder-driven transitions to them. I will derive a phase transition of a dilute

xii



gas of bosons with power-law dispersion at finite temperatures between a phase where

the bosons are effectively non-interacting and a phase where the bosons are strongly

interacting. I will also discuss an example spin model that exhibits this transition,

which is the d-dimensional XXZ model with long-range interactions, with the interaction

strength decaying as the distance to the power δ. The elementary excitations in this

model are magnons with dispersion kδ−d with attractive interactions. The spin model

might be realized, and the phase transition can be detected in trapped-ion experiments.

Finally, in the last part of this thesis, I will discuss the effects of quenched

disorder in magnetic materials. I will focus on a special type of quenched disorder —

spin vacancies. Though the spin vacancies are defects achieved by substituting a non-

magnetic ion to replace the original magnetic ion, the screening by the surrounding bulk

spins can introduce a free-spin degree of freedom, a “quasispin”, to the vacancies, which

leads to a 1/T contribution to the magnetic susceptibility. I will derive this quasispin

effect for Ising chains with nearest- and next-to-nearest-neighbor interactions. I will

also study the effective interactions between the spin vacancies mediated through the

bulk spins.
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Chapter 1

Introduction

Real materials always contain quenched disorder to some degree, therefore,

idealized theoretical models that assume spatial homogeneity only give accurate pre-

dictions when the effects of disorders are unimportant. Here, by quenched disorder, I

mean defects that are fixed and not evolving over time, e.g., vacancies, random fields,

and bond defects. The opposite type of disorder, which is often referred to as “annealed

disorder”, are disorders that can slowly rearrange and equilibrate, e.g., defects in soft

matter. This thesis focuses on the former type, quenched disorder.

Quenched disorder can lead to effects drastically different from the effects in

clean systems. In 3 dimensions or higher, sufficiently strong disorder potentials can lead

to the localization of the wavefunctions; this is known as the Anderson localization [1],

which has no counterpart in clean systems. In magnetic materials, quenched disorders

can lead to a different ground state of the system (e.g., random-field Ising model in

2D does not ferromagnetically order) and can introduce a new phase transition (e.g.,

1



spin-glass transition for systems with random-bond-disorders).

This chapter and the following three chapters will focus on a subset of disor-

dered systems — disordered non-interacting electrons, where the disorder can be mod-

eled by a random field coupled to the electrons. This can be described by the following

Hamiltonian

Ĥ = Ĥ0 + Ĥ1. (1.1)

Here, Ĥ0 is the Hamiltonian of the clean system, and Ĥ1 is the coupling to the disorder

potential. In general, Ĥ1 can be written as

Ĥ1 = u(r) + σ⃗ · u⃗s(r) + σ⃗ · [u⃗o(r)× p̂] ,

where the first term is the coupling to a scalar disorder potential, which is analogous to

a random shift to the chemical potential of the electron; the second term describes the

interaction of the electron with a random magnetic field; and the last term describes the

spin-orbit coupling with a disorder potential. From now on, I will focus on the potential

for scalar disorder; the other two cases can be analyzed using a similar treatment.

Because the scalar disorder potential is equivalent to a random shift of the

chemical potential, one can always shift the chemical potential such that the disorder

potential has zero mean ⟨u(r)⟩dis = 0. In this thesis, I consider Gaussian distributed

random potential (i.e., only correlations between two disorder potentials is nonzero,

⟨u(r)u(r′)⟩dis ̸= 0, and correlations involve three or more disorder potentials can be

neglected).

Physical quantities that are most interesting to us are often the so-called self-

averaged quantities. For these quantities, the experimentally measured values are their

2



disorder averaged values
〈
Ô
〉
dis

which depend only on the mean and the correlation

between the disorder potentials. This is because, for a sufficiently large system, i.e., sys-

tem size much larger than the correlation length, one can imagine dividing the system

into regions of size correlation length and averaging over the values of the observable in

different regions. This gives the disorder-averaged value. Theoretically, these disorder-

averaged values can be computed diagrammatically or by using a field-theoretical de-

scription. In what immediately follows, I will discuss a field-theoretical description for

non-interacting systems with quenched disorder.

1.1 Field theoretic description

In clean systems, thermodynamic quantities can be computed by differentiating

the free energy with respect to the conjugate variable, for example, the density of

quasiparticles can be computed by

⟨n̂⟩ = ∂

∂µ
(kBT logZ) , (1.2)

where Z is the partition function, and µ is the chemical potential. In order to derive the

disorder-averaged quantities, one needs to compute disorder averages for the logarithm

of the partition function ⟨logZ⟩dis. For example, the disorder-averaged particle density

is given by

⟨n̂⟩dis = kBT
∂

∂µ
⟨logZ⟩dis . (1.3)

In general, disorder averages for the logarithm of the partition function are hard to

compute. However, there are three known methods for computing disorder-averaged

3



quantities:

1. Replica trick [2, 3], which is based on the following formula

logZ = lim
R→0

ZR − 1

R
. (1.4)

Using this method, one can now compute an easier quantity
〈
ZR
〉
dis

for integer-

valued R and take the formal limit of R→ 0 to extrapolate ⟨logZ⟩dis.

This method can be used to describe interacting systems, but it is not as rigorous

as the other two methods.

2. Supersymmetry method [4, 5]: since Bosonic and Fermionic determinants cancel

Zζ =
∫

Dψe−
∫
ψ̄Mψ = det(M)−ζ ,

{
ζ = 1 for bosons

ζ = −1 for fermions

(1.5)

one can introduce both Bosonic and Fermionic degrees of freedom to the partition

function to ensure the partition function is unity ZSUSY = Zζ=−1Zζ=+1 ≡ 1.

The supersymmetry method is mathematically rigorous, but it only applies to

non-interacting systems.

3. Keldysh formalism [6, 7, 8]: includes a forward and a backward time contour,

which cancels with each other and the partition function Z ≡ 1.

The Keldysh formalism can treat interactions and non-equilibrium, but it is the

hardest-to-use method among the three.

In this thesis, I will use the Replica method to write field theories for disordered systems.

The partition function for a disordered metal described by the Hamiltonian Eq. (1.1)

4



can be written as

〈
ZR
〉
dis

=

∫
DuDΨDΨ† exp

[
−
∫
ψ†
a

(
E − ĥdis + u(r)

)
ψa d

dr

−1

2

∫
u(r)U−1(r− r′)u(r′) ddrddr′

]
, (1.6)

where a is the replica index, Ψ is a R-component vector, and we consider Gaussian

distributed disorder potential with correlation ⟨u(r)u(r′)⟩dis = U(r− r′). Here, we used

the Einstein summation convention, i.e., repeated index is summed over. Carrying out

the integration over the disorder potential in the above equation gives

〈
ZR
〉
dis

=

∫
DuDΨDΨ† exp

[
−
∫
ψ†
a

(
E − ĥdis + u(r)

)
ψa d

dr

+
1

2

∫
ψ†
a(r)ψ

†
b(r

′)U(r− r′)ψb(r
′)ψa(r) d

drddr′
]
. (1.7)

We see here that averaging disorder leads to an effective attractive interaction among

the particle fields.

1.2 Anderson localization

Non-interacting disordered systems can undergo a disorder-driven phase tran-

sition — the Anderson metal-insulator transition. In 3-spatial dimensions or higher, for

a sufficiently strong disorder, the wavefunctions of electrons in the disorder potential

can become localized

|ψ(r)| ∼ exp

(
−|r − r0|

Lc

)
, (1.8)

where Lc is the localization length. Therefore, in the localized phase, the electric con-

ductivity approaches zero, and the system becomes an insulator. This phenomenon
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was introduced by Phillip Anderson in 1958 [1] and has been extensively studied ever

since [9, 10, 11, 12]. For systems in one or two spatial dimensions, localization happens

with an arbitrarily weak disorder [13, 14, 15, 16].

The precursor of the Anderson localization is the so-called weak localization,

this effect can be intuitively understood from quantum interferences between paths of

electrons. When computing the quantum mechanical probability of getting from one

point to another, one sum over the complex amplitudes of all paths connecting the

two points. Typically, the phase differences between different paths are large, and the

interference between paths is unimportant. However, for a self-intersecting path, e.g.,

the path shown in Fig. 1.1a, there always exists a corresponding non-intersecting path

with the same length and with the opposite direction of the trajectory along the loop,

e.g., Fig. 1.1b. The amplitudes of these two paths have the same phase and are enhanced

by quantum interference.

|A1 +A2|2 = 4|A1|2 (1.9)

Here, A1 and A2 are the amplitudes of the paths shown in Fig. 1.1a and b. We see

from here that the total probability is twice as large as the classical probability without

interference. This interference increases the scattering rate and therefore, decreases

conductivity. In one- and two-dimension, the probability of having path intersections is

unity, regardless of the strength of the disorder. On the contrary, in three-dimension,

the probability of path intersection is less than unity, therefore, a sufficiently strong

disorder is needed for localization.

In the following sub-section, I will introduce a more rigorous description of

6



Figure 1.1: (a) Self-intersecting path; (b) Path with the same length as (a), but with
an opposite travel direction along the loop.

the behavior of disordered electronic systems. I will derive the non-linear sigma model

(NLσM) for a disordered system, which describes the long-wavelength behavior of the

system. The Anderson localization transition can be derived from a renormalization

group (RG) analysis of the NLσM.

1.2.1 Sigma model

In this section, I will derive the NLσM for the orthogonal symmetry class

(class AI in the Cartan symbol) explicitly. The NLσM of other symmetry classes can

be derived similarly. Systems in the orthogonal symmetry group have time-reversal

symmetry T with T 2 = +1, and no charge-conjugation symmetry nor chiral symmetry,

as shown in Table. 1.1. This corresponds to, e.g., spinless particles with time-reversal

symmetry. With time-reversal symmetry, the disordered Hamiltonian is invariant under

the following transformation

T : ĥdis → UT ĥ
T
dis U

−1
T (1.10)

7



where UT is a unitary transformation. Therefore, for spinless particles, the Hamiltonian

satisfies

ĥdis = ĥTdis. (1.11)

For spinful particles, e.g., for spin-1/2, the Hamiltonian satisfies

ĥdis = σ̂y ĥ
T
dis σ̂y (1.12)

where σ̂y is the Pauli-y matrix in the spin space.

With the time-reversal symmetry, it is natural to write the particle fields in

Eq. (1.7) in terms of Nambu spinors

Φa =
√
N

 ψa

ψ̄Ta

 and Φ̄a = (CΦa)
T =

√
N
(
ψ̄a, ψ

T
a

)
, (1.13)

where N is a normalization factor, and C = τx with τx being the Pauli-x matrix in the

Nambu space. Here, I assumed that the particles are spinless. For spinful particles, the

operator C can have structures in the spin space.

In terms of the Nambu spinors, the field-theoretical action can be written as

S =
1

2

∫
r
Φ̄a(r)

 E − ĥ 0

0 E − ĥ

Φa(r)− g

∫
r
Φ̄aΦaΦ̄bΦb (1.14)

Here, we used that ĥT = ĥ since the Hamiltonian is spinless and time-reversal invariant;

and we consider short-range correlated disorder with strength g =
∫
r′ U(r − r′). To

describe physical quantities that contain both retarded and advanced Green’s functions,

for example,
〈
GA(E)GR(E′)

〉
dis

, one considers field-theoretical actions with structures

8



in both retarded and advanced spaces, which can be written as follows

S =
1

2

∫
r
Φ̄(r)

(
E − ε

2
− ĥ
)
Φ(r) +

ε

4

∫
r
Φ̄ΛΦ− g

∫
r
Φ̄aΦaΦ̄bΦb (1.15)

where Φ is a 4R-dimensional vector, with the first 2R components in the retarded

space and the latter 2R components in the advanced space; Λ is a 4R × 4R matrix,

Λ = diag{INambu,replica,−INambu,replica}, where INambu,replica is a 2R×2R identity matrix;

and ε = E − E′.

One can now decouple the quartic term in both the Cooper and the diffusion

channel using a matrix-valued field. This brings the action to the following form

S =
1

2

∫
r
Φ̄(r)

[(
E − ε

2

)
+
ε

2
Λ− ĥ

]
Φ(r) +

πνg

4

∫
r
Φ̄aQabΦb +

(πν)2g

4

∫
r
Q2. (1.16)

Integrating out Φ in the above action gives

S =

∫
r

[
−1

2
Tr log

(
−ξ̂ + ε

2
Λ +

πνg

2
Q
)
+
g(πν)2

4
TrQ2

]
. (1.17)

Here, ξ̂ = Ĥ − E − ε
2 . The saddle point equation for the Q matrix is given by

Q =
1

πν

∫
ddp

(2π)d

(
−ξ̂ + ε

2
Λ +

πνg

2
Q
)−1

. (1.18)

Solving the saddle point equation in the limit of small ε leads to Q = U †ΛU , where

U †U = 1.

The saddle point equation has a Sp(4R) symmetry. To see this, let us consider

a transformation G to the Nambu spinor

Φ → GΦ, where GT τxG = τx. (1.19)

Then, the transformation leaves the action invariant. A symmetry transformation pre-

serves τx belongs to the Sp group, so G ∈ Sp(2τ × 2RA × R). A solution of the saddle
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point equation is invariant under the subgroup Sp(2τ ×R)×Sp(2τ ×R). Therefore, the

NLσM lives in the group manifold Sp(4R)
Sp(2R)×Sp(2R) . The group manifold for the NLσM of

other symmetry classes can be derived similarly and are summarized in Table. 1.1.

For systems with a finite Fermi surface, we can expand around the Fermi

surface and the operator ξ̂ ≈ vFn · ∇. Expanding the Tr log(· · · ) to the lowest non-

vanishing order in ε and ∇, one gets the effective action for the Goldstone modes [5, 17]

S =

∫
r
tr

[
v2F
g

(∂µQ)2 − iπν

4
εΛQ

]
. (1.20)

The localization effect can be derived from an RG analysis of the conductivity

in dimensions close to two, d = 2 + ϵ. Since the derivation is standard and is not the

main focus of this thesis, I will not derive the RG equation here, but only provide the

result. The renormalization of the conductivity obeys the equation [5, 17, 18]

∂ℓg = −(d− 2)g +
2

π
g2 (1.21)

under a rescaling of length scales by a factor of eℓ. Therefore, disordered systems in the

orthogonal class always localize in two dimensions. The results of the RG analysis for

disordered systems in all ten symmetry classes are summarized in Table. 1.1.

1.3 Unconventional disorder-driven phase transitions

It has been commonly believed that the Anderson metal-insulator transition

is the only disorder-driven transition in non-interacting disordered systems. However,

pioneer works [19, 20, 21, 22, 23, 24, 25] have shown that a broad class of systems can

display disorder-driven transitions distinct from Anderson localization. Such systems
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are non-interacting disordered systems with power-law quasiparticle dispersion ξk =

a|k|α, in spatial dimensions higher than 2α. These systems include 3-dimensional Dirac

and Weyl semimetals, cold-atom systems with long-range interactions, etc. The phase

transition manifests itself in the disorder-averaged density of states (DoS), conductivity,

and other observables [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

In this section, I will briefly review this unconventional disorder-driven transi-

tion, which was extensively studied in Refs. [24, 25, 28] (see also Ref. [19] for a review).

I will first review the RG analysis of disordered non-interacting systems with power-law

dispersion and derive the phase transition (Sec. 1.3.1). Then, I will discuss the critical

behavior of the observables near the transition (Sec. 1.3.2).

1.3.1 Renormalization group analysis

The disorder potentials are chosen to be short-range correlated with a coupling

constant κ characterizing the strength of the disorder

The renormalization of the disorder strength involves repeatedly integrating

out shells of momenta

Ke−l < |k| < K, (1.22)

〈
U(r)U(r′)

〉
dis

= κδ
(
r− r′

)
. (1.23)

where K is the ultraviolet cutoff and l > 0. The parameters in the original theory get

renormalized, and the renormalized values “flow” under RG with respect to different

length scales (i.e., they are functions of l). We can then ask how the coupling constants

flow as one goes to long wavelengths (large l). The RG flow is most interesting if it
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Figure 1.2: Diagrams for the renormalization of the disorder strength at one-loop order.

develops an unstable fixed point at a certain value of the coupling constant, such value

is usually referred to as the “critical value”. If this happens, the behavior of the system

is drastically different if the coupling constant is smaller or larger than the critical value,

as the RG flows to different regions at long wavelengths. Therefore, the unstable fixed

point distinguishes two different phases of the theory and describes a phase transition.

The diagrams that contribute to the renormalization of the disorder strength

are shown in Fig. 1.2. Evaluating these diagrams at zero external frequencies and

momenta, we get the renormalization of the disorder strength given by

δκ = 4κ2
∫
Ke−l<|k|<K

ddk

(2π)d
1

ξ2k
=

4κ2SdK
d−2α

a2(2π)d
1− e−(d−2α)l

d− 2α
, (1.24)

where Sd is the area of a d-dimensional unit sphere. Differentiating with respect to l,

one can derive the RG equation for the disorder strength

∂lκ = 4κ2
SdK

d−2α

a2(2π)d
. (1.25)

It is convenient to define a dimensionless coupling constant

γ = 4κ
SdK

d−2α

a2(2π)d
. (1.26)

Then, the RG equation for the dimensionless coupling constant is

∂lγ = −(d− 2α)γ + γ2. (1.27)
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Figure 1.3: The RG flow of Eq. (1.27). In high dimensions, d > 2α, the unstable fixed
point at γc = d−2α describes a phase transition between an effective disorder-free phase
and a strongly disordered phase. This disorder-driven phase transition is different from
the Anderson localization transition.

The RG flow of the dimensionless coupling constant in Fig. 1.3 follows directly from this

equation, where the arrow pointing to the direction of the change of γ as l increases. One

can see from Fig. 1.3 that, in high dimensions, d > 2α, the RG flow has an unstable fixed

point at γc = d− 2α. For γ < γc, the RG flows to the Gaussian fixed point at γ = 0 at

long distances. This corresponds to a phase effectively disorder-free. For γ > γc, the RG

flows to large γ and the system is strongly disordered at long distances. Therefore, the

fixed point at γc describes a disorder-driven phase transition. One can also compute the

critical exponent from the RG equations, for example, the correlation length exponent

ν = 1
d−2α and the dynamical exponent z = α + d−2α

4 [24, 25, 28]. These critical

exponents are different from the critical exponents of the Anderson metal-insulator

transitions. Therefore, the transition reviewed in this section belongs to a universality

class different from the universality classes of the Anderson transitions.
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1.3.2 Critical behavior in density of states

Physical observables exhibit singular behavior near the non-Anderson disorder-

driven transition at γ = γc. For example, the disorder-averaged DoS takes the following

form near the critical point [19, 24, 25, 28]

ρ(E, κ) = (E − Ec)
d
z
−1Φ

[
(κ− κc) / (E − Ec)

1
zv

]
+ ρsmooth , (1.28)

where z and ν are the dynamical exponent and the correlation length exponent, respec-

tively; Φ is a universal scaling function. Near the critical disorder strength, the DoS

ρ ∝ |E−Ec|
d−z
z +ρsmooth . For strong disorder, κ > κc, the DoS is roughly a constant for

low energies, and scales like ρ ∝ (κ−κc)(d−z)ν+ρsmooth . And for weak disorder, κ < κc,

the DoS scales similarly as in a disorder-free system, ρ ∝ (κc − κ)−dν(
z
α
−1)|E −Ec|

d−α
α ,

and increases rapidly as the disorder strength approaches to the critical value.
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T C S
Compact

NLσM manifold
RG of σ Examples of systems

A 0 0 0 U(2N)
U(N)×U(N) WL

Integer quantum Hall,

Diffusive metal

AI 1 0 0 Sp(4N)
Sp(2N)×Sp(2N) WL Diffusive metal

AII −1 0 0 O(2N)
O(N)×O(N) WAL

Quantum spin Hall,

Z2 topological insulator,

Diffusive metal + spin-orbit coupling

AIII 0 1 0 U(N) ≡ 0 Bipartite hopping + random flux

BDI 1 1 1 U(2N)
Sp(2N) ≡ 0 Bipartite hopping

CII −1 1 −1 U(N)
O(N) ≡ 0 Bipartite hopping

D 0 0 1 O(2N)
U(N) WAL 2D px + ipy-wave superconductor

C 0 0 −1 Sp(2N)
U(N) WL

Singlet superconductor in B⃗,

Quantum spin Hall

DIII −1 1 1 O(N) WAL Superconductor + spin-orbit coupling

CI 1 1 −1 Sp(2N) WL Singlet superconductor

Table 1.1: Table of Altland-Zirnbauer symmetry classes. The first column is the
ten symmetry classes in Cartan symbols. T , C, and S = TC in the 2nd, 3rd, and
4th column are the time-reversal, particle-hole, and chiral symmetries. 0 denotes the
absence of the symmetry; 1 (−1) denotes the presence of the symmetry and operating
the symmetry transformation twice gives +1 (−1). A disordered system belonging to a
specific symmetry class can be described by an effective NLσM whose group manifold
is listed in the 5th column. Here, N denotes the number of replicas. The RG of
the conductivity in these NLσM are given in the 6th column. Here, “WL” denotes
weak localization of the disordered system, “WAL” denotes weak anti-localization of the
disordered system, and “≡ 0” means the renormalization of the conductivity vanishes.
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Chapter 2

Interaction-disorder duality

The previous chapter has made clear that the Anderson metal-insulator transi-

tion is not the only phase transition in non-interacting disordered systems. This chapter

and the following chapter focus on expanding the types of disorder-driven phase tran-

sitions that are different from the Anderson localization transition. The new disorder-

driven transitions are predicted using the previously well-studied phase transitions in

interacting clean systems via a duality that we will derive in this chapter. This chapter

is based on Ref. [36].

The duality maps an interacting system in d spatial dimensions with a low

DoS at the chemical potential to a disordered non-interacting system in d + 1 spatial

dimensions. In addition to predicting new disorder-driven transitions, such duality

mapping also allows for easier simulation of manybody effects in the interacting system,

by mapping them to single particle properties in the disordered system.

In what follows, I will first give a heuristic argument for why we may expect
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interacting disorder-free systems to behave similarly to disordered non-interacting sys-

tems and when we can expect them to be equivalent systems in Sec. 2.2. I will then

summarize the duality mapping we derived in Ref. [36] (Sec. 2.1) and provide an explicit

derivation for a correspondence of observables on both sides to all orders in perturba-

tion theory (Sec. 2.3). Finally, I will give an example of such equivalent systems — a

quantum dot and a one-dimensional disordered wire in Sec. 2.4.

2.1 Summary of the mapping

The duality maps a d-dimensional interacting system to a d + 1-dimensional

disordered non-interacting system. The interacting system is described by a Hamilto-

nian of the form

Ĥ =

∫
Ψ̂†(r) ξp̂Ψ̂(r) ddr− 1

2

∫
Ψ̂†(r)Ψ̂†(r′)U(r− r′)Ψ̂(r′)Ψ̂(r) ddrddr′. (2.1)

Here, Ψ̂† is the particle creation operator; ξp̂ is the single-particle dispersion; and

U(r − r′) is the interaction potential. The particles may be bosonic or fermionic. The

dispersion ξp̂ and the interaction can either be scalar functions of the momenta and

positions, describing spinless particles, or matrices in band and spin spaces, describing

particles with non-trivial band and spin structures.

The mapping applies to a subset of interacting systems satisfying the following

constraint. The screening effects of the interaction potential are either suppressed or

have no qualitative effects on the observables and phenomena of interest. Examples of

systems where screening effects are suppressed are systems with low density of states
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at the chemical potential, such as nodal semimetals and dilute gases with the power-

law dispersion ξp ∝ pα in dimensions d > α. This includes graphene, Weyl/Dirac

semimetals in d = 2 and d = 3, parabolic semimetals in d = 3, and dilute Bose and

Fermi gases in dimension d > α. We will discuss this constraint in more detail and the

example systems that the mapping applies in the following sections.

The dual disordered system is d + 1-dimensional, with the extra dimension

mapped to the Matsubara time dimension in the interacting system. The disordered

system has an additional pseudospin-1/2 structure for reasons that will become clear in

the following section.

The disordered system that is mapped to an attractive interacting system is

described by the Hamiltonian

ĥ = σ̂zξp̂ + σ̂ypd+1 + σ̂zu(ρ), (2.2)

where σ̂x, σ̂y and σ̂z are the Pauli matrices in the pseudospin-1/2 space, pd+1 is the com-

ponent of momentum along the d+ 1-st dimension, which is mapped to the Matsubara

time direction in the interacting system; and u(ρ) is the disorder potential.

We do not assume a specific form of interaction in the interacting system.

The form of interaction is mapped to a corresponding form of disorder correlation

⟨u(ρ)u(ρ′)⟩dis = U(r − r′)δ(rd+1, r
′
d+1). For example, short-range interaction that is

described by a coupling constant g is mapped to short-range correlated disorder poten-

tial with the disorder strength characterized by the same coupling constant

g =

∫
U(r− r′)ddr′ =

∫ 〈
u(ρ)u(ρ′)

〉
dis
dd+1ρ′. (2.3)
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The disordered system that is mapped to a repulsive interacting system is described by

the Hamiltonian

ĥrepulsive = σ̂zξp̂ + σ̂ypd+1 + σ̂yu(ρ), (2.4)

with the only difference compared to Eq. (2.2) being a Pauli-y matrix multiplied by the

disorder potential rather than the Pauli-z matrix.

The duality mapping holds at the operator level. As we will show in Sec. 2.3,

each observable in the interacting system corresponds to a disorder-averaged quantity in

the disordered system, whose values are the same, to all orders in perturbation theory.

For example, the number density operator n̂ = Ψ̂†(r)Ψ̂(r) in the interacting system is

mapped to the following disorder-averaged quantity in the dual disordered system

ρ̂s(ρ) =
1

4
Tr
[
σ̂zG

R(ρ,ρ, 0) + σ̂zG
A(ρ,ρ, 0)

]
, (2.5)

Interacting model Disordered model

Coordinates (τ, r) (rd+1, r)

Temperature/size T 1/ℓd+1

Particle types/

boundary conditions

Boson/Fermion
Periodic/anti-periodic boundary

conditions along d+ 1 direction

Interaction potential/

disorder correlation

U(r− r′) ⟨u(rd+1, r)u(rd+1, r
′)⟩dis

Observables n̂ (density) ρ̂s, Eq. (2.5)

Table 2.1: Correspondence between quantities in the interacting disorder-free and
non-interacting disordered systems.
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where Tr is taken over the pseudospin degree of freedom, andGR(ρ,ρ, E) andGA(ρ,ρ, E)

are the retarded and advanced Green’s functions.

The duality mapping is summarized in Table. 2.1.

2.2 Heuristic argument

To see the similarity between an interacting system and a disordered non-

interacting system, let’s start with the d-dimensional interacting system described by

the Hamiltonian Eq. (2.1). The partition function of this interacting system can be

written as

Z =

∫
DΨDΨ† exp

[
−
∫

Ψ† (∂τ + ξp̂
)
Ψ dτddr

+
1

2

∫
Ψ†(r)Ψ†(r′)U(r− r′)Ψ(r′)Ψ(r) dτddrddr′

]
. (2.6)

For attractive interactions, one may introduce an auxiliary scalar field ϕ(τ, r) to decouple

the interaction term. This is the Hubbard-Stratonovich (HS) transformation. Then, the

partition function can be written as

Z =

∫
DϕDΨDΨ† exp

[
−
∫

Ψ† (∂τ + ξp̂ + ϕ
)
Ψ dτddr

− 1

2

∫
ϕ(τ, r)U−1(r− r′)ϕ(τ, r′) dτddrddr′

]
. (2.7)

One can see that the partition functions (2.6) and (2.7) are equivalent by integrating

the HS field in Eq. (2.7). The transformed partition function has a nicer form than the

original one because it is quadratic in the field Ψ.

Equation (2.7) has a similar form as a partition function of a disordered system,
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with the path integral of the HS field ϕ interpreted by an average over disorder poten-

tials, and the correlations between the disorder potentials are described by U(r − r′).

However, there are important differences between these two similar-looking partition

functions. To make it explicit, let us integrate the particle fields Ψ in Eq. (2.7).

Z =

∫
Dϕ det

(
∂τ + ξp̂ + ϕ

)
exp

[
−1

2

∫
ϕ(τ, r)U−1(r− r′)ϕ(τ, r′) dτddrddr′

]
(2.8)

Here, the determinant is produced from the Gaussian integration of the particle fields,

which gives correction to the effective action of the field ϕ. Physically, this is due to the

particles screening the interaction potential.

On the other hand, as we recall from Sec. 1.1, a field-theoretical description

of disordered systems has additional structures in the replica, supersymmetry, or the

Keldysh space, to ensure the partition function Z = 1. Consequently, the determinant

in Eq. (2.8) is equal to one. In the replica method, this is because the limit of the

number of replicas approaches zero. In supersymmetry representation, this is because

the contributions from the bosonic and fermionic sectors cancel. Physically, this result

can be phrased as the disordered potentials are not screened in systems with quenched

disorder.

Therefore, the claim of our mapping is that a subset of interacting systems

where the screening effects are either suppressed or have no qualitative effects on the ob-

servables of interest can be mapped to disordered non-interacting systems. The screen-

ing effects are suppressed in systems with low DoS at the chemical potential. For

example, in nodal semimetals and dilute gases with the power-law dispersion ξp ∝ pα

in dimensions d > α, the DoS is proportional to ρ(E) ∝ E
d
α
−1 → 0 for E → 0, the
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effect of screening is proportional to the DoS and is suppressed. Such systems include

graphene, Weyl/Dirac semimetals in d = 2 and d = 3, parabolic semimetals in d = 3,

and dilute Bose and Fermi gases in dimension d > α.

In addition, the duality mapping can also apply to systems with finite DoS, so

long as the phenomena of interest are unaffected by screening. An example is the BCS

superconducting transition in 2D metals. Near the phase transition, the dominant effects

are from the Copper channel, and the effects of screening are subdominant. Therefore,

the duality mapping can be applied and map the BCS transition in 2D metals to a

disorder-driven transition in 3D nodal-line semimetals. We will discuss this example in

more detail in Sec. 3.2.

2.2.1 Matsubara time & Hermitization procedure

Another important difference between interacting and disordered systems is

that, in contrast to interacting systems, disordered systems do not have the Matsubara

time direction. As we recall from Sec. 1.1, the partition function of disordered systems

Eq. (1.6) is defined at a specific energy E of the physical process, and the integral

involves only spatial directions.

Therefore, the duality maps a d-dimensional interacting system to a d + 1-

dimensional disordered system, with the extra spatial dimension mapped to the Mat-

subara time direction. It is tempting to write the dual disordered Hamiltonian as

ĥ′ = ∂d+1 + ξp + u(ρ), (2.9)

where ρ = (r, rd+1) is a d+1-dimensional vector, and i∂d+1 = i ∂
∂ rd+1

is the momentum
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along the d + 1-st dimension. This Hamiltonian matches with the Hamiltonian for

interacting system Eq. (2.1). However, Eq. (2.9) is non-Hermitioan, with the first term

anti-Hermitian and the latter two terms Hermitian.

The Hermitian Hamiltonian for the dual disordered system Eq. (2.2) is de-

rived by applying a ”Hermitization” procedure [37, 38, 39, 40] to the non-Hermitian

Hamiltonian Eq. (2.9). The Hermitization procedure is as follows:

1. Any non-Hermitian Hamiltonian can be separated into a Hermitian part and an

anti-Hermitian part and can be written as

HNH = H′ + iH′′, (2.10)

with both H′ and H′′ being Hermitian;

2. Then, one can double the Hilbert space and write an equivalent Hermitian Hamil-

tonian as follows

HHermitian = σ̂xH′ − σ̂yH′′, (2.11)

where σx and σy are the Pauli matrices. Please see the subsection 2.2.1.1 for an

explanation of the equivalence between Eqs. (2.10) and (2.11).

Using the Hermitization procedure, we arrive at the Hamiltonian for the disordered

system that is dual to the attractively interacting system, ĥ = −σ̂ypd+1+ σ̂xξp̂+ σ̂xu(ρ),

which matches Eq. (2.2) up to a rotation in the pseudospin basis.
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2.2.1.1 More on the Hermitization procedure

We can understand the Hermitization procedure as follows. For non-Hermitian Hamilto-

nians, the energies of the states are complex numbers, and the left and right eigenstates

are different and are given by

HNH |ϕR⟩ = E |ϕR⟩ , HNH |ϕL⟩ = E∗ |ϕL⟩ . (2.12)

One can write a Hermitian Hamiltonian in a doubled Hilbert space as follows

HHermitian =

 0 HNH − E

H†
NH − E∗ 0

 (2.13)

Then, the states (|ϕR⟩ , 0)T and (0, |ϕL⟩)T are the zero modes of this Hermitian Hamil-

tonian. For the zero-energy states of the original non-Hermitian Hamiltonian, E = 0,

and the Hermitized Hamiltonian takes the form Eq. (2.11). These zero-energy states

are the states we focus on in this chapter.

In summary, the non-Hermitian Hamiltonian Eq. (2.10) is equivalent to the

Hermitian Hamiltonian Eq. (2.11) if we consider only the zero-energy states on both

sides.

2.2.2 Mapping for repulsive interactions

The HS transformation we described in Eq. (2.7) applies only to attractive

interactions. For repulsive interactions, the HS transformation can still be applied

using an imaginary HS field. The partition function after the transformation is given
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by

Z =

∫
DϕDΨDΨ† exp

[
−
∫

Ψ† (∂τ + ξp̂ + iϕ
)
Ψ dτddr

− 1

2

∫
ϕ(τ, r)

[
−U−1(r− r′)

]
ϕ(τ, r′) dτddrddr′

]
. (2.14)

Note that the interaction potential U(r− r′) < 0 for repulsive interactions. Therefore,

the path integral of the HS field ϕ has the correct form as a Gaussian integral.

The partition function Eq. (2.14) resembles a partition function of a disordered

system with an imaginary disorder potential. Mapping to an imaginary disorder poten-

tial is not as bizarre as it seems. Using the Hermitization procedure described in the

previous section, we derive the Hamiltonian for the dual disordered system.

ĥrepulsive = σ̂zξp̂ + σ̂ypd+1 + σ̂yu(ρ) (2.15)

Here, we ”Hermitize” the disorder potential by multiplying it with the Pauli matrix σ̂y

rather than σ̂z as in the Hamiltonian Eq. (2.2) of disordered systems dual to attractively

interacting systems.

2.3 Derivation of observable correspondence to all orders

in perturbation theory

In this section, I provide a rigorous derivation of the duality to all orders in

perturbation theory. The elements of the diagrammatic technique for the interacting

disorder-free system and the disordered non-interacting system follow directly from the

Hamiltonians Eqs. (2.1) and (2.2), and are shown in Fig. 2.1.
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Figure 2.1: Elements of the diagrammatic technique for the interacting disorder-free
(left) and non-interacting disordered (right) models in momentum space that illustrate
perturbative equivalence between the two classes of systems. D(ω,p) and −D̃(k,p) are
the interaction propagators and disorder lines, respectively. In the case of short-range
interactions, both the interaction propagators and the impurity lines are independent
of their frequencies and momenta and are described by the coupling constant defined
above, D(Ωi,Pi) = D̃(Ki,Pi) = −g.

The duality allows for a one-to-one mapping between operators in the inter-

acting system and operators in the corresponding disordered system. An example of

such operator mapping is the number-density operator n̂ = Ψ̂†(r)Ψ̂(r) in the interacting

system and the disorder-averaged quantity Eq. (2.5)

ρ̂s(ρ) =
1

4
Tr
[
σ̂zG

R(ρ,ρ, 0) + σ̂zG
A(ρ,ρ, 0)

]
, (2.5)

in the corresponding disordered system. The diagrams that contribute to the number-

density operator are shown in Fig. 2.2a-c, while the diagrams for the disordered system

that contribute to the disordered quantity Eq. (2.5) are shown in Fig. 2.2d. Example

diagrams in the interacting system that can be neglected are shown in Fig. 2.2b,c.

The diagrams in Fig. 2.2b involve polarization operators, i.e., parts of the diagram

involve additional particle loops in between interaction propagators. These are the

aforementioned diagrams that contribute to the screening effects. The polarization
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Figure 2.2: Diagrams for observables in interacting disorder-free systems and the corre-
sponding non-interacting disordered systems. (a) Contributions to the number density
of interacting particles. (b)-(c) Examples of neglected contributions; diagrams in (b)
are neglected due to the suppression of screening effects; (c) is the Hartree contribution,
which can be absorbed into a redefinition of the chemical potential. (d) Contributions
to the corresponding disorder-averaged quantity ρs, given by Eq. (2.5).

operators are proportional to the DoS at the chemical potential of the system.

∝ DoS at chemical potential

Therefore, for systems with low DoS at the chemical potential or phenomena whose

screening effects are unimportant, diagrams in Fig. 2.2b can be neglected. The diagram

in Fig. 2.2c is the Hartree contribution, whose effect can be absorbed in a redefinition

of the chemical potential.

The remaining diagrams that contribute to the number-density operator in

the interacting system are shown in Fig. 2.2a. Each of these remaining diagrams cor-

responds to a diagram for the dual disordered system, which are shown in Fig. 2.2d.

Corresponding diagrams are diagrams that are identical to each other by replacing the

interaction propagators with the disordered lines (dashed lines) and vice versa. The
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diagrammatic correspondence holds to all orders in perturbation theory.

In what immediately follows, I will demonstrate that the values of the corre-

sponding diagrams in the interacting and disordered systems match. I will first show

this for short-range interaction and short-range correlated disorder potential. The inter-

action strength and the disorder strength match and are described by the same coupling

constant

g =

∫
U(r− r′)ddr′ =

∫ 〈
u(ρ)u(ρ′)

〉
dis
dd+1ρ′. (2.16)

However, the mapping is not limited to short-range interaction and disorder correlation.

In the next subsection, I will show a rigorous derivation of the mapping for general forms

of the interaction and disorder correlation.

For short-range interactions, the value of a diagram with N interaction prop-

agators contributing to the density of particles in the interacting system is given by

±g
NTN+1

V N+1

∑
ω,p

1

(iω1 − ξp1)
2

1

iω2 − ξp2

. . .
1

iω2N − ξp2N

. (2.17)

Here, the “+” and “−” signs correspond to bosonic and fermionic particles, respectively;

g is the coupling constant; T and V are the temperature and volume of the system; and

the sum is carried over N + 1 independent frequencies and momenta.

Each sum with respect to Matsubara frequencies ω in Eq. (2.17) can be replaced

with two summations:
∑

ω . . . =
1
2

∑
ω . . .+

1
2

∑
−ω . . ., and (2.17) can be rewritten as

±g
NTN+1

2V N+1

∑
σ=±1

∑
ω,p

1

(iω1σ − ξp1)
2

1

iω2σ − ξp2

. . .
1

iω2Nσ − ξp2N

. (2.18)

The value of the corresponding diagram in the disordered system contributing to the
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dual disorder-averaged quantity ρs with N disordered lines is given by

± gN

2V N+1ℓN+1
d+1

∑
p,k

Tr

[
1

ik1σ̂x − ξp112×2

1

ik1σ̂x − ξp112×2
. . .

1

ik2N σ̂x − ξp2N12×2

]
,

(2.19)

where the “+” and “−” signs correspond to periodic and anti-periodic boundary condi-

tions along the d+1-st dimension, respectively; g is the coupling constant that describes

the strength of short-range correlated disorder potential; the dual disordered system has

a volume of V ℓd+1; the trace Tr [. . .] is taken over the pseudospin degrees of freedom;

and 12×2 is the 2× 2 identity matrix in the pseudospin space.

The value (2.18) of the diagram for the interacting disorder-free system matches

the value (2.19) of the corresponding diagram for the non-interacting disordered system.

This is because

1. The trace over the pseudospin space can be replaced by the summation of σ in

Eq. (2.18). Since all the propagators in the square bracket in Eq. (2.19) commute

with each other in the pseudospin space, one can replace the operator σ̂x with its

eigenvalues σx = ±1 in the denominators.

2. The momentum summation of k in Eq. (2.19) is identical to the frequency sum-

mation ω in Eq. (2.18), because the temperature T of the interacting system

matches the inverse length ℓd+1 (cf. Table 2.1) and (fermionic) bosonic particles

in the interacting system are mapped to (anti-)periodic boundary conditions in

the disordered system.

In the subsection that immediately follows, I will provide a rigorous derivation
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of the duality mapping without assuming a specific form of the interaction potential

and the disorder correlation.

2.3.1 Derivation for a general form of interaction

In this section, I provide the derivation of the duality for a generic finite-range

interaction and disorder correlation. The interaction propagator and the “impurity

line” [41] are given by

D(r, τ ; r′, τ ′) = −
〈
Tτ ϕ̂(r, τ)ϕ̂(r

′, τ ′)
〉
= U(r− r′), (2.20)

where ϕ̂ are the bosonic fields corresponding to the interaction between the particles,

and

−D̃(ρ− ρ′) =
〈
u(ρ)u(ρ′)

〉
dis

= U(r− r′)δ(rd+1 − r′d+1). (2.21)

Here, in accordance with the common convention, the impurity line (cf. Fig. 2.1) is

defined to be positive for a real random potential. Note that the disorder correlation in

the dual system is chosen to match the form of the corresponding interaction potential.

The elements of the diagrammatic technique for both systems are shown in Fig. 2.1.

The value of each diagram with N interaction propagators contributing to the

density of particles n̂ in the interacting system is given by

(−1)N+F T
N+1

V N+1

∑
ω,p

1

(iω1 − ξp1)
2

1

iω2 − ξp2

. . .
1

iω2N − ξp2N

D(Ω1,p1) . . . D(ΩN ,pN ).

(2.22)

Here, F = 1 for fermionic particles and F = 0 for bosonic particles; D(Ωi,pi) is the

interaction propagator in the frequency and momentum space, and the sum is carried
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over N + 1 independent frequencies and momenta, with the rest frequencies and mo-

menta for the particle and interaction propagators determined by energy and momentum

conservation laws. We assume the convergence of the sum for each diagram.

The bosonic propagator D(Ωi,pi) is an even function of the Matsubara fre-

quency Ωi,. Therefore, each summation with respect to Matsubara frequencies ω in

Eq. (2.22) can again be replaced with two summations with respect to ω and −ω,∑
ω . . . =

1
2

∑
ω . . .+

1
2

∑
−ω . . ., which gives

(−1)N+F TN+1

2V N+1

∑
I=0,1

∑
ω,p

1

[(−1)Iiω1 − ξp1 ]
2

1

(−1)Iiω2 − ξp2

. . .

1

(−1)Iiω2N − ξp2N

D(Ω1,p1) . . . D(ΩN ,pN ). (2.23)

The value of the topologically equivalent diagram contributing to ρs in the dual disor-

dered non-interacting system is given by

(−1)N+F

V N+1ℓN+1
d+1

∑
p,k

Tr

[
σ̂z

1

−k1σ̂y − ξp1 σ̂z

σ̂z
2

1

−k1σ̂y − ξp1 σ̂z
σ̂z . . .

σ̂z
1

−k2N σ̂y − ξp2N σ̂z

]
D̃(K1,p1) . . . D̃(KN ,pN ), (2.24)

where (ki,pi) is a d+1-dimensional momentum; i = 0, 1, . . . 2N −1; Tr . . . is taken with

respect to the pseudospin degrees of freedom; (anti-)periodic boundary conditions have

to be chosen along the d+1-st dimension for mapping to the (fermionic) bosonic particles

in the interacting system; −D̃(Ki,pi) is the Fourier-transform of the impurity lines.

Similar to the interacting diagrams, the summation is carried over N + 1 independent

momenta, with the other momenta determined by the momentum conservation laws. In
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Eq. 2.24, the particle propagator is defined as

(−kiσ̂y − ξpi σ̂z)
−1 =

1

2

[
GA(ki,pi, E = 0) +GR(ki,pi, E = 0)

]
, (2.25)

where GA and GR are the advanced and retarded Green’s functions of a free particle.

Equation (2.24) can be rewritten as

(−1)N+F

2V N+1ℓN+1
d+1

∑
p,k

Tr

[
1

ik1σ̂x − ξp112×2

1

ik1σ̂x − ξp112×2
. . .

1

ik2N σ̂x − ξp2N12×2

]
D̃(K1,p1) . . . D̃(KN ,pN ), (2.26)

where 12×2 is the identity matrix in the pseudospin space.

Since all the propagators in the square bracket commute with each other, we

can again replace the operator σ̂x with its eigenvalues (−1)I with I = 0, 1. Then,

Eq. (2.26) can be rewritten as

(−1)N+F

2V N+1ℓN+1
d+1

∑
I=0,1

∑
p,k

[
1

i(−1)Ik1 − ξp1

1

i(−1)Ik1 − ξp1

. . .

1

i(−1)Ik2N − ξp2N

]
D̃(K1,p1) . . . D̃(KN ,pN ). (2.27)

This matches the value of the corresponding diagram for the interacting system Eq. (2.23),

so long as ℓd+1 = 1/T and the Matsubara frequencies ωi in Eq. (2.23) match the values

of the momenta ki in Eq. (2.27).

In summary, we have established the correspondence, to all orders of the per-

turbation theory, between observables in a d-dimensional bosonic (fermionic) interacting

disorder-free system at temperature T and a dual d+1-dimensional non-interacting dis-

ordered system of length ℓd+1 = 1/T with (anti-)periodic boundary conditions along
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the d + 1-st dimension. For the corresponding observables, when the screening effects

can be neglected in the interacting system, all diagrams at each order in perturbation

theory can be one-to-one mapped to topologically equivalent diagrams, whose values

have been shown to be equal.

In the next subsection, I will further demonstrate the derivation of the dual-

ity by considering explicitly several lowest-order diagrams contributing to ⟨n̂(r)⟩ and

⟨ρ̂s(ρ)⟩dis.

2.3.2 Zeroth- and first-order diagrams

The concentration of particles at the zeroth order is given by

⟨n̂(0)(r)⟩ = T

V

∑
ω,p

′ (−1)F

iω − ξp
=

1

V

∑
p

1

exp (ξp/T )∓ 1
, (2.28)

where
∑′ is the regularised sum over Matsubara frequencies. This corresponds to, e.g.,

an infinitesimal phase correction to the frequencies [42] iω → iωe−iωδ, which ensures

that the sum of Matsubara Green’s function over frequencies gives the Bose (Fermi)

distribution function for bosonic (fermionic) frequencies.

For the disordered system, the zeroth-order contribution to the dual observable

is given by

⟨ρ(0)s (ρ)⟩dis =
(−1)F

V ℓd+1

∑
p,k

′
Tr

[
σ̂z
2

1

−kσ̂y − ξpσ̂z

]
=

1

V

∑
p

1

exp (ξpℓd+1)± 1
, (2.29)

where “+” and “−” correspond to periodic and antiperiodic boundary conditions along

the d + 1-st dimension, respectively. Equations (2.28) and (2.29) are exactly equal for

ℓd+1 = 1/T , in accordance with the duality transformation derived in this paper.
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Figure 2.3: First-order diagrams for the density n̂ in interacting disorder-free (a) and
the operator ρs in non-interacting disordered (b) systems.

The first-order correction to ⟨n̂⟩ is shown in Fig. 2.3a. The value of this diagram

is given by

(−1)F+1 T
2

V 2

∑
ω1,ω2,p1,p2

1

(iω1 − ξp1)
2

1

iω2 − ξp2

D(ω1 − ω2,p1 − p2). (2.30)

Again, since the bosonic propagator is even under the inversion of Matsubara frequency,

D(ω1 − ω2,p1 − p2) = D(−ω1 + ω2,p1 − p2), the sum with respect to the frequen-

cies in Eq. (2.30) can be equivalent written as two sums:
∑

ω1,ω2
. . . = 1

2

∑
ω1,ω2

. . . +

1
2

∑
−ω1,−ω2

. . .. Therefore, Eq.(2.30) can be rewritten as

(−1)F+1 T
2

2V 2

∑
ω1,ω2,p1,p2

[
1

(iω1 − ξp1)
2

1

iω2 − ξp2

+
1

(−iω1 − ξp1)
2

1

−iω2 − ξp2

]

×D(ω1 − ω2,p1 − p2). (2.31)

The corresponding diagram for the non-interacting disordered system con-
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tributing to ρs is shown in Fig. 2.3b and the value is given by

(−1)F

V 2ℓ2d+1

∑
p1,p2,k1,k2

Tr

[
σ̂z

1

−k1σ̂y − ξp1 σ̂z

σ̂z
2

1

−k1σ̂y − ξp1 σ̂z
σ̂z

1

−k2σ̂y − ξp2 σ̂z

]

×
[
−D̃(k1 − k2,p1 − p2)

]
(2.32)

Multiplying σ̂z on both numerators and denominators and taking the trace with respect

to the eigenvalues of σ̂x gives

(−1)F+1

2V 2ℓ2d+1

∑
p1,p2,k1,k2

(
1

ik1 − ξp1

1

ik1 − ξp1

1

ik2 − ξp2

+
1

−ik1 − ξp1

1

−ik1 − ξp1

1

−ik2 − ξp2

)
D̃(k1 − k2,p1 − p2). (2.33)

The values Eqs. (2.31) and (2.33) are equal, since the values of ωi and ki match. This

directly follows from the choice of the boundary conditions and ℓd+1 = 1/T , specified

in the summary of the mapping, Table. 2.1.

2.4 Example – quantum dot and disordered wire

In this section, I provide an example of equivalent systems by the duality

mapping. The interacting system is a one-site Hubbard model (quantum dot) described

by the Hamiltonian

Ĥdot = ξn̂↑ + ξn̂↓ − gn̂↑n̂↓, (2.34)

where ξ is a constant describing the energy between the two levels of the quantum dot

(see Fig. 2.4), and n↑ and n↓ are the numbers of the electrons in the “spin up” and

“spin down” states.
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Figure 2.4: Energy levels of the one-site Hubbard model.

The quantum dot is mapped to a one-dimensional disordered wire model, de-

scribed by the Hamiltonian

ĥwire =
∑
i=↑,↓

Ψ̂i(x) [ξσ̂z − iσ̂y∂x + u(x)σ̂z] Ψ̂i(x). (2.35)

Here, u(x) is the one-dimensional random potential, which is short-range correlated

with the disorder strength given by∫
⟨u(x)u(x′)⟩dx′ = g. (2.36)

To see Eq. (2.34) maps to Eq. (2.35) by the duality, we can first rewrite the Hamiltonian

Eq. 2.34 in an equivalent form

Ĥdot =
(
ξ +

g

2

)
n̂↑ +

(
ξ +

g

2

)
n̂↓ −

g

2
(n̂↑ + n̂↓)

2 , (2.37)

where we have used that n̂2↑,↓ = n̂↑,↓. The partition function of this quantum dot system

is given by

Z =

∫
DΨ̄DΨ e−

∫ β
0

∑
i=↑,↓ Ψ̄i(τ)[∂τ+ξ+ g

2 ]Ψi(τ) dτ− g
2

∫ β
0 [

∑
i=↑,↓ Ψ̄i(τ)Ψi(τ)]

2
dτ . (2.38)

Decoupling the quartic term by an HS field ϕ gives

Z =

∫
DΨ̄DΨDϕ e−

∫ β
0

∑
i=↑,↓ Ψ̄i(τ)[∂τ+ξ+ g

2
+ϕ(τ)]Ψi(τ) dτ− 1

2g

∫ β
0 ϕ2(τ) dτ

. (2.39)
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Applying the established duality transformation, this model can be mapped to the

disordered non-interacting model given in Eq. (2.35), with the bosonic field ϕ(τ) mapped

to a random potential u(x) and the Matsubara time τ mapped to the coordinate x.

The dual disorder potential is short-ranged with the strength described by the coupling

constant g.

Strictly speaking, the one-site Hubbard model Eq. (2.34) does not satisfy the

assumption of the mapping since the screening effects and the Hartree-type contribu-

tions are not negligible. For example, diagram (a) in Fig. 2.5 corresponds to the Hartree

contribution to the average occupation number ⟨n̂σ⟩ with spin σ, whose value is equal

to diagram (b), and therefore, is not negligible. However, observables that are unaf-

fected by the screening diagrams in the quantum dot model can still be mapped to

the observables in the disordered wire system. As an example, the following number

correlator

K = ⟨n̂↑n̂↓⟩ − ⟨n̂↑⟩⟨n̂↓⟩ (2.40)

is not affected by the screening or Hartree contributions to the first order in g. The

diagrams that contribute to the correlator K are shown in Fig. 2.5, which do not involve

screening and Hartree effect, to the leading order in coupling g. The value of the

correlator is given by

K = [2.5c] + o(g2) =
g

T

[
eξ/T

(1 + eξ/T )2

]2
+ o(g2). (2.41)

The correlator can also be computed directly in the equilibrium state at temperature
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Figure 2.5: Diagrams that contribute to the correlators K of the one-site Hubbard
model Eq. (2.34) and Kdis of the disordered wire Eq. (2.35). K and Kdis are defined in
Eqs. (2.40) and (2.44), respectively

T , and is given by

K =

∑
n↑,↓=0,1 n↑n↓e

−
n↑ξ+n↓ξ−gn↑n↓

T∑
n↑,↓=0,1 e

−
n↑ξ+n↓ξ−gn↑n↓

T

−

∑n↑,↓=0,1 n↑e
−

n↑ξ+n↓ξ−gn↑n↓
T∑

n↑,↓=0,1 e
−

n↑ξ+n↓ξ−gn↑n↓
T

2

(2.42)

=
g

T

[
eξ/T

(1 + eξ/T )2

]2
+ o(g2), (2.43)

where we again kept only the leading contribution in g in the last equality.

Since the leading order contributions to the correlator K do not involve screen-

ing or Hartree contributions, it can be mapped to an observable in the dual disordered

wire system.

Kdis = ⟨ρs↑ρs↓⟩dis − ⟨ρs↑⟩dis⟨ρs↓⟩dis. (2.44)

The diagrams contributing to the correlator Kdis are shown in Fig. 2.5. The leading
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order contribution to Kdis is given by

Kdis = [2.5d] + o(g2)

=
g

ℓ3d+1

∑
k1

Tr

(
σ̂z

1

−k1σ̂y − ξσ̂z

σ̂z
2

1

−k1σ̂y − ξσ̂z

)2

+ o(g2)

=
g

ℓ3d+1

∑
k1

−k21 + ξ2(
k21 + ξ2

)2
2

= g ℓd+1

[
eξℓd+1

(1 + eξℓd+1)2

]2
+ o(g2). (2.45)

Because the quantum dot described by the Hamiltonian (2.34) is fermionic, the dual

disordered wire described by the Hamiltonian (2.35) has antiperiodic boundary condi-

tions. Since ℓd+1 = 1/T , Eqs. (2.41) and (2.45) are exactly equal, as expected from the

duality mapping.

2.5 Types of dual systems and outlook

The Hamiltonian Eq. (2.1) and (2.2) describe multiple types of interacting and

disordered systems. As shown in Table. 2.2, these systems can be broadly classified

into three classes. The mapping is exact for the first case — ξp vanishes at a point.

The screening effect is, in general, non-negligible for the case with ξp vanishes at a

surface since the DoS is non-zero at the fermi level. However, for physical properties

where screening effects are unimportant, the mapping can still be carried out. As an

example, systems with a finite Fermi surface can undergo a BCS transition. Near the

phase transition, the dominant diagrams are ladder diagrams, which do not involve

particle loops, and therefore, can be mapped to a disorder-driven instability for the

dual disordered system. I will discuss this in more detail in Sec. 3.2. The mapping for

39



Interacting model Disordered model

ξp vanishes at a point

(p = 0)

Nodal-point semimetal

or dilute gas with

power-law dispersion

Anisotropic

nodal-point semimetal

ξp vanishes at a surface Metal Nodal-line semimetal

pd+1 constrained
Systems at very high

temperatures

Nodal-point semimetal

(isotropic)

Table 2.2: Three classes of equivalent interacting and disordered systems.

the third case is not exact.

The duality mapping is powerful because it allows for predictions of new phase

transitions by mapping previously known ones. In the following two chapters, I will

show one example of new phase transitions for each of the three types of systems.

For the first case, the duality maps the BEC-vacuum transition for dilute

gas of bosons at zero temperature to a disorder-driven transition for disordered nodal-

point semimetals (Sec. 3.1). For the second case, the BCS transition of a 2-dimensional

metal is mapped to a disorder-driven transition of a 3-dimensional nodal-line semimetal.

Though for the third case, the case with pd+1 constrained, the mapping is not exact,

it still allows us to predict a high-temperature interaction-driven transition in a system

with power-law dispersions ξp ∝ pα, through a mapping of the non-Anderson disorder-

driven transitions [19] for particles with the same dispersion in the same dimension. I
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will discuss this transition in more detail in Chap. 4.

41



Chapter 3

Unconventional phase transitions in

disordered semimetals

The equivalence between interacting disorder-free systems and disordered non-

interacting systems established in the previous section allows one to map interaction-

driven phase transitions to disorder-driven phase transitions and vice versa. This is

counterintuitive since it is a common belief that Anderson metal-insulator transition is

the only type of disorder-driven transition in non-interacting disordered systems, and

interacting disorder-free systems, on the other hand, undergo many types of interaction-

driven transitions. However, Sec. 1.3 has shown disordered non-interacting systems with

power-law dispersion in high dimensions can undergo disorder-driven transitions that

are distinct from the Anderson transition. This suggests that there may exist more

types of disorder-driven transition. Therefore, the duality mapping we established can

be used as an effective tool to explore new disorder-driven transitions by mapping known
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interaction-driven transitions to them. This chapter presents two examples of uncon-

ventional disorder-driven transitions that are predicted by mapping interaction-driven

transitions. The first example is a disorder-driven transition in anisotropic nodal-point

semimetals that is dual to the BEC-vacuum transition for power-law dispersing Bose

gases with attractive interactions (Sec. 3.1); and the second example is a disorder driven

transition in 3-dimensional nodal-line semimetals dual to the BCS superconducting tran-

sitions in 2-dimensional metals (Sec. 3.2).

3.1 Disorder-driven transition in a nodal-point semimetal

Dilute Bose gases with power-law dispersions ξk ∝ |k|α and short-range at-

tractive interactions exhibit the so-called vacuum-BEC transition [43, 44, 45, 46] in low

temperatures. The transition can be derived from an RG analysis of the coupling con-

stant g describing the interaction strength, at chemical potential µ→ 0−, which yields

an exact RG equation at zero temperature

∂lγ = (α− d)γ + γ2 (3.1)

under the rescaling of the length scale by a factor of eℓ. Here, γ is the dimensionless

coupling constant defined as

γ =
Sd

2(2π)d
gKd−α, (3.2)

where Sd is the volume of a unit d-dimensional sphere, and K is the ultraviolet mo-

mentum cutoff. The RG equation Eq. (3.1) describes the RG flow as shown in Fig. 3.1.

In low dimensions, d < α, the effects of attractive interactions grow at long-wavelength
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Figure 3.1: The RG flow of Eq. (3.1). γ is the dimensionless coupling constant. In the
interacting Bose gas system, γ describes the interaction strength. In the dual disordered
system, γ describes the disorder strength. In high dimensions, d > α, the unstable fixed
point at γ = γc describes a phase transition. In the interacting system, this phase
transition is the BEC-vacuum transition between a weakly interacting (vacuum) phase
and a strongly interacting (BEC) phase. In the disordered system, the phase transition
is between an effective disorder-free phase and a strongly disordered phase.

and the system is unstable. In high dimensions, d > α, the RG flow has an infrared

unstable fixed point at γc = d − α. Interactions weaker than the critical interaction

strength γ < γc renormailzes to zero at long wavelength; and interactions stronger than

the critical value γ > γc grows under renormalization. Therefore, the RG fixed point at

γc distinguishes a phase with effectively non-interacting particles (the vacuum phase)

and a phase of strongly correlated particles (the BEC phase). The particle number is

zero at chemical potential µ→ 0− for the effectively non-interacting phase and non-zero

for the strongly correlated phase, and can be used as an order parameter to distinguish

the two phases.

The dual disordered system is d+1-dimensional and is described by the Hamil-

tonian

ĥ = σ̂zξp̂ + σ̂ypd+1 + σ̂zu(ρ), (3.3)
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where ξk is chosen to be the same form as the dispersion of the interacting system, and

the disorder potential is short-range correlated with the disorder strength described

by the same coupling constant g. The RG equation Eq. (3.1) can be mapped exactly

to the disordered system, where now the unstable fixed point in dimensions d > α

describes a disorder-driven phase transition between an effectively disorder-free phase

and a strongly disordered phase. This disorder-driven transition manifests itself in

the critical behaviour of observables, such as the DoS and transport coefficients in the

system. In contrast to the non-Anderson disorder-driven transitions [19] introduced in

Sec. 1.3, the transition predicted here is described exactly by the RG equation (3.1),

which allows for an exact determination of the correlation-length critical exponent ν =

1/(d− α).

3.1.1 Details of the RG analysis for interacting Bose gases and disor-

dered semimetals

This section provides the details of the RG analysis. As we will show, the

renormalization of the interaction strength for the interacting Bose gas and the disorder

strength for the dual disordered nodal-point semimetal is described by the same RG

flow equation (3.1), which follows directly from the duality transformation between the

two systems.

The RG procedure for the interacting system involves repeatedly integrating

out shells of largest momenta,

Ke−l ≤ |k| ≤ K. (3.4)
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Figure 3.2: Diagrams for the renormalization of the coupling constants in the interact-
ing Bose gas [(a)–(e)] and the disordered nodal-point semimetal [(a′)–(d′)].

This procedure renormalizes the parameters in the original theory, for example, the

interaction strength g and the chemical potential µ. The diagrams for the one-loop

renormalization of the interaction strength are shown in Figs. 3.2(a)–3.2(e). When

evaluating these diagrams, it is sufficient to set all external incoming and outgoing

frequencies and momenta to zero and sum/integrate only with respect to intermediate

frequencies and momenta. At low temperatures, the dominant contribution comes from

diagram Fig. 3.2(c), and is given by

[3.2c] = g2
∫
ω

∫
k

1

iω − ξ̂k
⊗ 1

−iω − ξ̂−k

(3.5)

Here, we approximated the Matsubara frequency summation as an integral T
∑

iω . . .→∫
dω
2π . . . for low temperatures; the integration with respect to the momentum k are

carried out over the momentum shell (3.4); the dispersion ξk ∝ kα has the power

dependence on the momentum k, but may also have additional structure in the valley

or spin space; ⊗ is the product of the spin/valley subspaces corresponding to the top

and bottom propagators in Fig. 3.2(c). For a scalar dispersion, ξk = |k|α, which has no
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valley and spin structure, the renormalized interaction strength has a trivial structure

in the spin/valley space, and is given by

δg = [3.2c] =
g2SdK

d−α

2(2π)d
1− e−(d−α)l

d− α
. (3.6)

This leads to the RG flow equation for the interaction strength

∂lg =
SdK

d−α

2(2π)d
g2. (3.7)

Introducing the dimensionless coupling constant

γ =
Sd

2(2π)d
gKd−α, (3.8)

we can write the one-loop RG flow equation as

∂lγ = (α− d)γ + γ2. (3.9)

It has been shown in Ref. [43] that the RG flow equation (3.9) is exact, i.e.

applies beyond the one-loop approximation. The renormalization of the interaction

strength is given by the set of ladder diagrams shown in Fig. (3.3), and therefore can

be described by an iterative equation. This leads directly to an exact form of the RG

equation (3.9).

The diagrams contributing to the renormalization of the disorder strength of

the dual disordered non-interacting system, described by the Hamiltonian (3.3), are

shown in Figs. 3.2(a′)–3.2(d′). Each of these four diagrams can be mapped to the dia-

grams 3.2(a)–3.2(d) for the interacting Bose gas by the duality mapping. The diagrams

in the disordered system do not include diagrams with a closed loop of particles, for
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Figure 3.3: Ladder diagrams for the renormalization of the interaction strength.

example, Fig. 3.2(e). However, the contribution of such diagrams is suppressed for the

interacting dilute Bose gas due to the low DoS at the chemical potential. Therefore,

the renormalization of the interaction strength of the Bose gas can be mapped to the

renormalization of the disorder strength of the dual disordered system order by order

in perturbation theory.

The main contribution to the renormalization of the disorder strength g comes

from Fig. 3.2(c′). While the other contributions to the renormalization are suppressed,

it is convenient to evaluate Figs. 3.2(c′) and 3.2(d′) together:

[3.2c′] + [3.2d′]

= g2
∫
p

∫
pd+1

σ̂z

(
1

ξpσ̂z + pd+1σ̂y
+

1

ξ−pσ̂z − pd+1σ̂y

)
σ̂z ⊗ σ̂z

1

ξpσ̂z + pd+1σ̂y
σ̂z

= g2
∫
p

∫
pd+1

2ξ2p[
ξ2p + p2d+1

]2 σ̂z ⊗ σ̂z

≈ g2SdK
d−α

2(2π)d
1− e−(d−α)l

d− α
. (3.10)

Therefore, the flow of the disorder strength can be derived and is again given by

Eq. (3.9). The identical RG flows for the coupling in the interacting Bose gas and

the non-interacting disordered system follow directly from the duality transformation

established in the previous chapter.

In high dimensions, d > α, the RG equation (3.9) has an unstable fixed point
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at γc = d−α, which corresponds to a phase transition. Systems with disorder strength

weaker than the critical value γc belong to the effective disorder-free phase, in which the

disorder strength renormalizes to zero. Systems with disorder strength stronger than the

critical value below to the strongly disordered phase, with disorder strength renormalizes

to a finite value. This disorder-driven phase transition extends the previously studied

non-Anderson disorder-driven transitions discussed in Sec. 1.3.

3.2 BCS-like disorder-driven transition in nodal-line

semimetal

In this section, I will show that the BCS superconducting transition of a 2-

dimensional metal can be mapped to a disorder-driven instability of a 3-dimensional

nodal-line semimetal using the established interaction-disorder duality. This is based

on Zhu and Syzranov’s work, Ref. [47].

According to the duality, a 2-dimensional metal can be mapped to a 3D non-

interacting disordered nodal-line semimetal described by Hamiltonian

ĥ = v (|p− pF |) σ̂z + vkσ̂y + u(ρ)σ̂z, (3.11)

where ξp = v (|p− pF |) is the quasiparticle dispersion near the Fermi surface in the 2-

dimensional metal; p = (px, py) is the 2-dimensional momentum vector in the xy plane,

in which the nodal line lies; pF is the Fermi momentum; k is the momentum component

along the z axis; v is the quasiparticle velocity in the directions perpendicular to the

nodal line. The disorder potential u(ρ) is short-range correlated, with the disorder
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strength identical to the strength of the short-range attractive interaction in the BCS

model of the 2-dimensional metal.

In general, the mapping from interacting 2-dimensional metal to disordered

non-interacting nodal-line semimetal does not satisfy the requirement of low DoS at the

Fermi surface. However, near the transition, the dominant diagrams that contribute

to the renormalization of the interaction strength are the ladder diagrams, as shown

in Fig. 3.3, which do not consist of particle loops. Therefore, the ladder diagrams

in the Cooper and exciton channels of the 2D metal can be mapped to the diagrams

in the disordered nodal-line semimetal that renormalizes the disorder strength. The

renormalized disorder strength is given by

gc =
g0
2

pF g0
2πv2

log vK
|E|

1− pF g0
2πv2

log vK
|E|

(σ̂x ⊗ σ̂x − σ̂z ⊗ σ̂z) , (3.12a)

ge =
g0
2

pF g0
2πv2

log vK
|E|

1− pF g0
2πv2

log vK
|E|

(σ̂x ⊗ σ̂x + σ̂z ⊗ σ̂z) , (3.12b)

where gc and ge corresponds to renormalizations due to the Cooper and exciton channels,

respectively; g0 is the bare disorder strength; E is the quasiparticle energy; and K

is the ultraviolet cutoff. The singularities of (3.12a) and (3.12b) are mapped to the

singularities of the renormalized couplings in the interacting metal near the Cooper and

exciton-condensation instabilities.

The singularity of the renormalized coupling leads to singular behavior in ob-

servables. For example, the DoS diverges as

ρ(g,E) ∝ |gc(E)− g|−2 |E| (3.13)

for g smaller than the critical value gc(E) and crosses over to a constant as g approaches
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gc(E), where the critical disorder strength is given by gc(E) ≈ 2πv2/pF log
(
vK
|E|

)
.

Therefore, as E → 0 (approaches the nodal-line), the DoS crossover from 0 to finite

as the disorder strength increases and approaches to the critical value.
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Chapter 4

Finite temperature criticality in systems

with power-law interactions

In this chapter, I will discuss the critical behavior of a d-dimensional dilute

gas of bosons with power-law dispersion ξk = a|k|α, and short-range interactions char-

acterized by a coupling constant g at a finite temperature T . In spatial dimensions

d > 2α, the system exhibits a phase transition between weakly and strongly interacting

phases. This transition is similar to the non-Anderson disorder-driven phase transitions

discussed in Sec. 1.3. The similarity is predicted by the established interaction-disorder

duality presented in Chap. 2.

The phase transition can be realized in a trapped-ion spin system, the d-

dimensional XXZ model with power-law interactions, described by the following Hamil-

tonian [48, 49, 50, 51]

Ĥ = −1

4

∑
i ̸=j

J

|i− j|d+α
(
σ̂xi σ̂

x
j + σ̂yi σ̂

y
j +∆σ̂zi σ̂

z
j

)
− h

2

∑
i

σ̂zi . (4.1)
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Here, the external field polarizes spins along the +z-direction. Elementary magnetic

excitations in the system correspond to spin flips, hereinafter referred to as magnons,

which propagate with dispersion ξk ∝ |k|α. The magnons are attractively interacting

due to the z-z coupling. Therefore, the phase transition that will be derived in this

chapter manifest itself in this spin model as a function of the coupling ∆ along the

z-direction and the temperature. The weakly and strongly coupling phases corresponds

to a phase with free magnons and a phase with strongly-coupled magnons, and can be

distinguished experimentally by measuring the spin correlation function in x direction.

In what follows, I will start by describing qualitatively the critical behavior

of power-law dispersing bosons (Sec. 4.1), and providing a detailed RG analysis of the

model in Sec. 4.2. Then, in Sec. 4.3, I will show that the RG analysis can be applied to

and the derived phase transition can be realized in the power-law interacting XXZ model.

Finally, in Sec. 4.4, I will discuss the similarity of this interaction-driven phase transition

and the previously studied non-Anderson disorder-driven phase transition [19].

4.1 Critical behaviors for power-law dispersing bosons at

finite temperature

For power-law dispersing bosons with short-range attractive interactions, g <

0, in spatial dimensions d > 2α, the system exhibits a phase transition between a

weakly interacting phase and a strongly interacting phase. In the former, the bosons

are effectively non-interacting; they behave like an ideal gas. In the latter, the low-
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Figure 4.1: The renormalization group flow of Eq. (4.4), which describes the critical
behavior of a dilute gas of power-law dispersing bosons ξk = a|k|α with short-range
interactions in spatial dimension d. Here, γ is the dimensionless coupling constant
characterizing the interactions. γ > 0 corresponds to repulsive interactions. (a) In low
dimensions, d < 2α, there is a stable fixed point at γc = 2α−d > 0, which describes the
universal properties of the power-law dispersing bosons with repulsive interactions. (b)
In high dimensions, d > 2α, the fixed point at γc = 2α−d < 0 is unstable and describes
a phase transition for attractively interacting bosons.

energy quasiparticles are strongly interacting. As far as we know, such phase transition

has not been previously studied in the literature and is the main focus of this paper.

The phase transition can be derived via an RG analysis of the model. The RG flow is

as shown in Fig. 4.1. In dimensions d > 2α, the RG flow has an infrared unstable fixed

point at γc = −(d− 2α), which corresponds to the phase transition describes above.

For bosons with short-range repulsive interactions, g > 0, in spatial dimen-

sions d < 2α, the system has a universal repulsive interaction strength. The universal

repulsive interaction is described by the same RG fixed point, which is now infrared

stable — the coupling constant renormalizes toward the fixed point at long wavelength.

The spin model mentioned above can also serve as an example for this case. However,

the study of universal properties of the spin model described by this fixed point will be
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left for a future work.

4.2 Renormalization group analysis

In this section, I present a field-theoretical RG analysis of the model of power-

law dispersing bosons with short-range interactions. The field theoretic action of such

a boson, ψ, can be written as

S =

∫
dτddr

[
ψ† (∂τ − ξk̂ + µ

)
ψ +

g

2
ψ†ψ†ψψ

]
, (4.2)

where the power-law dispersion ξk = a|k|α. Under renormalization, the coupling con-

stant and the chemical potential are renormalized to values depends on the ultraviolet

momentum cutoff K, g(K) and λ(K). In the subsection immediately follows, I will

present the derivation of the set of RG equations that describe the flow of the param-

eters with respect to the ultraviolet cutoff scales. Before getting into the details of the

derivations, I will first show the results.

Based on the derived RG flow equations, one can define a dimensionless cou-

pling constant

γ =
5Cd
a2

gTKd−2α, (4.3)

as a combination of the coupling constant g, the temperature T , and the ultraviolet

momentum cutoff K. Here, Cd = Sd/(2π)
d and Sd is the area of a unit sphere in d-

dimensional spaces. Then, the RG equations for the dimensionless coupling constant γ

and the parameter λ are given by

∂ℓγ = (2α− d)γ − γ2 , ∂ℓλ =
1

5
γλ. (4.4)
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The RG equation for γ determines the RG flow as shown in Fig. 4.1. γ < 0 corresponds

to attractive interactions. In spatial dimensions d > 2α, the RG equation has an

unstable fixed point at γc = −(d− 2α), which suggests the power-law dispersing bosons

with attractive interactions exhibit a phase transition at finite temperatures.

For attractive interactions, the system is unstable and energetically favorable

to have a finite order parameter. Nevertheless, one can study the RG with a negative

and small chemical potential µ → 0−, where the system is stable when interactions

are weak. In low dimensions, d < 2α, the effects of attractive interactions grow at

long-wavelength and the system becomes unstable. In high dimensions, d > 2α, the

RG equation has an unstable fixed point at γc = 2α − d < 0. For |γ| < |γc|, the

interaction strength renormalizes to zero at long wavelength, and the system is stable.

For |γ| > |γc|, the effects of attractive interactions grow under renormalization and

the system energetically favors a finite order parameter. Therefore, the RG fixed point

for attractive interactions describes a phase transition between a phase with effectively

non-interacting bosons and a phase of strongly coupled bosons.

The same RG equations also apply to short-range repulsive interactions, cor-

responding to the γ > 0 side of the diagram. In dimensions d < 2α, the system has a

stable RG fixed point at γc = 2α − d, which suggests the power-law dispersing bosons

at finite temperatures have a universal interaction strength for repulsive interactions.
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4.2.1 Details of the RG analysis

The RG equations (4.4) are derived from a two-step RG analysis. We consider

the system at a finite temperature T . In general, the system contains modes with higher

energies compared to the scale set by the temperature, ξk > T , and modes with lower

energies, ξk < T . However, near a critical point, the behavior of the system is dominated

by the low-energy modes. Therefore, we perform the RG by the following two steps.

First, we integrate out the higher energy modes from the ultraviolet cutoff to the scale

ξK ≪ T , which gives an effective theory of the low-energy modes. We then apply the

RG analysis for the effective theory of the low-energy modes.

Initial renormalization

At one-loop order, integrating out the higher energy modes gives a correction to the

self-energy of the following form

Σ(1)(ω,p) = 2gT
∑
Ω

′
∫ KΛ

K

ddk

(2π)d
U(q = 0)

iΩ− ξk + µ
= 2g

∫ KΛ

K

ddk

(2π)d
nB(ξk − µ) ≈ 0. (4.5)

Here,
∑′ is the regularised sum over Matsubara frequencies, (for example, infinitesimal

phase corrections to the frequencies iω → iωe−iωδ); KΛ denotes the ultraviolet cutoff

of the system; K is the ultraviolet cutoff of the low-energy effective theory; nB(ξ) is

the Bose distribution function. The self-energy correction approximates to zero because

the temperature is approximately zero compared to the energy of the modes being

integrated out, which leads to nB(ξq − µ) → 0 for any ξq > 0. Therefore, the initial

renormalization does not correct the self-energy to all orders of perturbation theory.

The initial renormalization to the coupling constant g comes merely from the
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ladder diagrams and is given by

g(K) = g(KΛ)− g(KΛ)g(K)T
∑
ω

∫ KΛ

K

ddq

(2π)d
1

iω − ξq

1

−iω − ξ−q

= g(KΛ)− g(KΛ)g(K)
Sd

2(2π)d
1

a

1

d− α

(
Kd−α

Λ −Kd−α
)
. (4.6)

Therefore, the RG equations for λ and g are

∂ℓg = −Cd
2a
g2Kd−α, ∂ℓλ = 0. (4.7)

Solving the equations determines the renormalized values

g(K) =

[
1

g(KΛ)
− 1

g̃c
+

1

g̃c

(
K

KΛ

)d−α]−1

, (4.8)

and λ(K) = λ(KΛ). Here, Cd = Sd/(2π)
d, with Sd being the area of a d-dimensional

unit sphere, g̃c is the critical coupling constant, given by

g̃c = −(d− α)
2a

Cd
Kd−α

Λ . (4.9)

Therefore, in dimensions d > α, for coupling constants much smaller than the critical

value, g(KΛ) ≪ g̃c, the contribution from the initial renormalization is higher order in

g(KΛ)/gc and is negligible, g(K) ≈ g(KΛ).

For long-range interactions, U(r−r′) ∝ − 1
|r−r′|d+α , with the power α the same

as the power of the particle dispersion, a similar argument allows one to renormalize

the long-range interaction to a short-range interaction, with the order of magnitude of

the interaction strength remain unchanged.
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“High temperature” RG

With the initial renormalization carried out, one can then perform an RG analysis to

the low-energy effective theory whose ultraviolet energy cutoff scale is ξK ≪ T . In other

words, the low-energy theory is at a high temperature. The peculiarity of RG analyses

at a high temperature comes from the Matsubara zero modes. The bosonic Matsubara

frequencies are ωn = 2nπT for n ∈ Z. At high temperatures, T ≫ ξK , the absolute

values of the frequencies |ωn| ≫ ξK for n ̸= 0. Therefore, the zero frequency modes

dominate the rest of the frequency modes in computing the renormalization of λ and g.

To be specific, let us consider the renormalization of the coupling constant g at

high temperatures. The diagrams contributing to the renormalization of g to the one-

loop order are shown in Fig. 4.2. Evaluating the diagrams at zero external frequency

and momenta, we get

[4.2a] = [4.2b] = [4.2d] = [4.2e] = g2T
∑
ω

∫
ddk

(2π)d
1

iω − ξk

1

iω − ξk

= g2T
∑
ω

∫
ddk

(2π)d
−ω2 + ξ2k(
ω2 + ξ2k

)2 , (4.10a)

[4.2c] = g2T
∑
ω

∫
ddk

(2π)d
1

iω − ξk

1

−iω − ξ−k
= g2T

∑
ω

∫
ddk

(2π)d
1

ω2 + ξ2k
. (4.10b)

Here, the momentum integration is carried out over a thin shell Ke−ℓ < |k| < K, where

K is the ultraviolet momentum cutoff. Since ξK ≪ T , the zero Matsubara frequency

modes dominate the rest of the frequency modes in the summations in (4.10). There-

fore, the frequency summation can be replaced with only the zero mode contribution
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Figure 4.2: Diagrams renormalizing the coupling constants at one-loop order.

T
∑

ω . . .→ Tδ(ω) . . ., and Eqs. (4.10) can be rewritten as

[4.2a] = [4.2b] = [4.2c] = [4.2d] = [4.2e] = g2T

∫
Ke−ℓ<|k|<K

ddk

(2π)d
1

ξ2k

= g2TCdK
d−2α 1

a2
1− e−(d−2α)ℓ

(d− 2α)
. (4.11)

The RG flow equation for g with respect to ℓ can be derived and is given by

∂ℓg = −5g2T
SdK

d−2α

a2(2π)d
+ o(g2). (4.12)

Similarly, the renormalization for the chemical potential is also dominated by

the contribution from the Matsubara zero modes. The renormalized Green’s function

is given by

G(iω,k) =
1

iω − ξk + λµ
, (4.13)

where λ is the parameter that describes the renormalization of the chemical poten-

tial. The correction to the chemical potential contains two contributions, one of which

depends on µ and the other doesn’t.

λµ −→ λµ+ λ · δµ+ δλ · µ (4.14)

Integration over a thin momentum shell Ke−ℓ < |k| < K, gives the renormalization for
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µ and λ. At one-loop order, we have

δµ = −gT
∑
ω

∫
Ke−ℓ<|k|<K

ddk

(2π)d
1

iω − ξk
(4.15)

and

δλ = −λgT
∑
ω

∫
Ke−ℓ<|k|<K

ddk

(2π)d

(
1

iω − ξk

)2

(4.16)

In these calculations, again, since ξK ≪ T , zero frequency modes dominate the rest of

the frequency modes. Therefore, we have

δµ = gT

∫
Ke−ℓ<|k|<K

ddk

(2π)d
1

ξk
= gTSdK

d−α 1

a

1− e−(d−α)ℓ

(2π)d(d− α)
(4.17)

and

δλ = λgT

∫
Ke−ℓ<|k|<K

ddk

(2π)d
1

ξ2k
= λgTSdK

d−2α 1

a2
1− e−(d−2α)ℓ

(2π)d(d− 2α)
. (4.18)

This leads to the RG equation

∂ℓλ = λ
gTSd
a2(2π)d

Kd−2α (4.19)

Based on the form of (4.12) and (4.19), one can define a dimensionless coupling con-

stant Eq. 4.3, and rewrite the RG equations in simpler forms Eq. 4.4. Solving the RG

equations with initial values g(K0) = g0 and λ(K0) = 1, the renormalized g(K) and

λ(K) can be derived

g(K) =

[
1

g0
− 1

gc
+

1

gc

(
K

K0

)d−2α
]−1

, (4.20a)

λ(K) =

(
g(K)

g0

) 1
5

, (4.20b)

where K0 is the UV cutoff, and gc = −(d − 2α) a2

5TCd
K2α−d

0 is the critical interaction

strength.
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The RG equations (4.4) allow to determine the correlation length critical ex-

ponent ν = 1/(d− 2α) and the dynamical critical exponent z = α+ d−2α
5 .

4.3 XXZ model with power-law interactions

Systems with bosonic power-law dispersing quasiparticles are ubiquitous. How-

ever, the phase transition we derived in the previous section exists when the spatial

dimension of the system is higher than the lower critical dimension dc = 2α, where

α is the power of the quasiparticle dispersion. Therefore, realistic systems exhibiting

this transition are either in 3-dimension with linearly dispersing quasiparticles or lower

dimensions with the power of quasiparticle dispersion α < 1. This section focuses on

the latter case. As we will show, the latter case and its phase transitions are accessible

to trapped-ion experiments in 1 and 2 dimensions [48, 49, 50, 51]. We also present an

experimental observable that exhibits singular behavior at the phase transition in the

following section.

We study the d-dimensional XXZ model with power-law interactions and an ex-

ternal magnetic field applied in the z-direction, described by the Hamiltonian Eq. (4.1).

Ĥ = −1

4

∑
i ̸=j

J

|i− j|d+α
(
σ̂xi σ̂

x
j + σ̂yi σ̂

y
j +∆σ̂zi σ̂

z
j

)
− h

2

∑
i

σ̂zi (4.1)

Here, σ̂s are the Pauli matrices; the interactions are ferromagnetic, J,∆ > 0. We

consider non-zero temperature, with T < J , and strong magnetic field h ≫ J . By

the following Holstein-Primakoff transformation, Eq. (4.1) can be exactly mapped to a

Hamiltonian describing hard-core magnons with power-law dispersion and long-range
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attractive interactions.

σ̂+i = 2
(
1− â†i âi

)
âi, σ̂−i = 2â†i

(
1− â†i âi

)
, σ̂zi = 1− 2â†i âi. (4.21)

Here, â†i and âi are the creation and annihilation operators of the magnons (flipped

spins). In momentum space, the Hamiltonian of the magnons can be written as

Ĥ =
∑
k

(ξk − µ) â†kâk −
∑

p1,p2,q

U (q) â†p1+qâp1 â
†
p2−qâp2 , (4.22)

where

ξk = c2J |k|α, µ = −h+ c1J(1−∆), U(q) = c1J∆− c2J∆|q|α, (4.23)

U(q) is the long-range attractive interaction, with c1 and c2 being coefficients from the

Fourier transformation of 1/|i− j|d+α, defined as

c1 =
π

d
2Γ
(
α
2

)
Γ
(
d+α
2

) , c2 = −
π

d
2Γ
(
−α

2

)
Γ
(
d+α
2

) . (4.24)

Here, the lattice spacing is chosen to be unity. In Eq. (4.22), we omitted an on-site

repulsive interaction term that prevents multiple bosons from occupying the same site.

The on-site repulsion only renormalizes single-particle Green’s functions and has no

significance for our analysis below.

We see from Eq. (4.22) that the magnons have power-law dispersions ξk =

c2J |k|α, and is a candidate of the phase transition derived in the previous section.

Moreover, in trapped-ion experiments, the power α is continuously tunable, which al-

lows one to bring the critical dimension arbitrarily close to the physical dimension of

the system, ensuring the accuracy of our RG analysis. However, the chemical potential
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for the magnons is a large negative number, in contrast to the close-to-zero chemical

potential in our RG analysis. To get around this, one can impose a constraint on the

magnetization to tune the chemical potential to the bottom of the magnon band. Exper-

imentally, this corresponds to initializing the state with a few random spin flips, before

letting it evolve with Hamiltonian (4.1). Since the Hamiltonian preserves magnetization

in the z-direction, such experimental procedures are equivalent to imposing a constraint

on the magnetization.

The interaction between magnons U(q) has two terms: one depends on the

momentum, and the other is independent of the momentum. For the long-wavelength

magnons we focus on in this paper, its momentum is much smaller than the inverse

lattice spacing |q| ≪ 1, and the term in U(q) that depends on momentum is subdomi-

nant. Under the initial renormalization (see Sec. 4.2.1), the order of magnitude of the

coefficients of both terms does not change, and the interaction can be approximated by

a coupling constant

g = −2c1J∆. (4.25)

We take this as the initial value of the coupling constant at the ultraviolet momentum

cutoff K of the low-energy effective theory and take the initial value λ(K) = 1. Then,

the dimensionless coupling at the cutoff K is equal to

γ(K) = −5Cd
2c1
c22

T∆

J
Kd−2α . (4.26)

Besides K and dimensionless numbers, γ(K) ∝ T∆/J . This allows us to derive a phase

diagram as a function of the ratio T/J and ∆. In dimensions d > 2α, the unstable
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Figure 4.3: Phase diagram of the power-law dispersing magnons at finite temperature
in d = 1, with α = 0.48 for the dispersion. The phase boundary corresponds to the
unstable RG fixed point at γc = −0.04. In the free magnon phase, the system behaves
as a gas of effectively non-interacting magnons. While in the strongly interacting phase,
the low-energy magnons are strongly coupled. Increasing temperature or the coupling
in the z-direction can render a phase transition from the free magnon phase to the
strongly interacting phase.

RG fixed point at γ(K) = γc corresponds to a one-dimensional phase boundary in the

∆–T/J plane. The phase boundary separates a free magnon phase and a strongly inter-

acting phase. For the region below the phase boundary, |γ(K)| < |γc|, the dimensionless

coupling approaches 0 at long wavelength, and the low-energy magnons are effectively

non-interacting. For the region above the phase boundary, |γ(K)| > |γc|, the dimen-

sionless coupling grows at long wavelength, which corresponds to the phase of strongly

coupled magnons. Fig. 4.3 shows the phase diagram for the 1-dimensional spin chain

with α = 0.48.

65



4.3.1 Experimental detection

The phase transition can be observed experimentally by measuring the spin

correlation functions. Experimentally, one can first initialize the state with a few ran-

domly flipped spins and then measure the spin correlation function in the x direction

⟨σxi σxj ⟩ − ⟨σxi ⟩⟨σxj ⟩. This spin correlator is proportional to the renormalized single-

particle Green’s function

⟨σxi σxj ⟩ − ⟨σxi ⟩⟨σxj ⟩ = ⟨â†i âj⟩+ ⟨âiâ†j⟩ = −2G (τ = 0, |ri − rj |) . (4.27)

The renormalized Green’s function in the frequency and momentum space is

G(iω,k) =
1

iω − ξk − Σ(ω,k)
, (4.28)

where Σ(ω,k) is the self-energy, which, in the first Born approximation, is equal to

Σ(ω,k) = 2gT
∑
Ω

′
∫ K

0

ddq

(2π)d
1

iΩ− ξq
≈ −2gT

∫ K

0

ddq

(2π)d
1

ξq
, (4.29)

where
∑′ is the regularised sum over Matsubara frequencies, g is the renormalized

coupling constant, and the integral in the last equality is equal to the number of low-

energy magnons. In the free magnon phase, the self-energy correction is small due to

the low number of magnon excitations, and the spin correlation is approximately equal

to

⟨σxi σxj ⟩ ≈ T

∫
ddk

(2π)d
eik|ri−rj |

ξk
=

T

c2J
Cd

∫
eik|ri−rj |kd−1dk

kα
= c3

T

J

1

|ri − rj |d−α
(4.30)

for α < d < α+ 1. Here, c3 is a dimensionless coefficient,

c3 = 2
Cd
c2

sin

(
−π(d− α− 1)

2

)
Γ(d− α) (4.31)
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For the case with d = 1 and α = 0.48, for example, the spin correlation ⟨σxi σxj ⟩ ∝

1/|ri − rj |0.52 falls of as a power-law with a smaller power than that in the interaction

in the model.

In the strongly interacting phase, the renormalized coupling constant grows at

long wavelength and approaches infinity at a characteristic energy scale. In this case,

the self-energy correction is large, and the spin correlation function approaches zero.

for the weak coupling along the z-direction, ∆ < ∆c, the spin correlation falls

off as a power-law, ⟨σxi σxj ⟩ ∝ 1/|ri − rj |d−α, which corresponding to the free magnon

phase in Fig. 4.3. For the coupling along z-direction ∆ > ∆c, the spins are strongly

correlated in the z-direction, and uncorrelated along the x-direction ⟨σxi σxj ⟩ = 0 for

i ̸= j. This corresponds to the strongly interacting phase in Fig. 4.3.

4.4 Relation to non-Anderson disorder-driven transitions

The phase transition we study in this chapter is similar to a completely different

type of phase transition — the non-Anderson disorder-driven transitions discussed in

Sec. 1.3 for disordered non-interacting semiconductors and semimetals with power-law

dispersion ξk ∝ kα. This similarity is predicted by the interaction-disorder duality

introduced in Chap. 2.

The duality maps the phase transition of power-law dispersing bosons at high

temperatures studied in this paper to disordered systems with a dimensional reduction

of the d+1-st dimension, where the dynamics along the extra dimension is approximated

by the zero modes. Therefore, the Hamiltonian of the disordered system is effectively
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equal to

ĥ = σ̂zξk + σ̂zu(ρ). (4.32)

However, the interacting system considered in this paper does not satisfy the prerequisite

of duality mapping because the screening of the interactions is not negligible. Therefore,

it is not guaranteed that the two phase transitions belong to the same universality class.

The RG analysis of Eq. (4.32) has been carried out in Ref. [24, 25, 28], and

the RG equations can be written as follows

∂ℓγ = (2α− d)γ − γ2 , ∂ℓλ =
1

4
γλ. (4.33)

Here, γ is the dimensionless coupling constant characterizing disorder strength, and λ

is the renormalization of energy. These RG equations are similar to the RG equations

we derived in this paper Eq. 4.4, but with a numerical difference in the equation of λ,

as expected. Hence, the phase transition derived in this paper and the non-Anderson

disorder-driven phase transition share the same lower critical dimension but differ in

values of the critical exponents, therefore, do not belong to the same universality class.
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Chapter 5

Effects of vacancy defects in magnetic

materials

This chapter is devoted to the effects of quenched disorder in magnetic mate-

rials. Quenched disorder, such as magnetic impurities, vacancies, and lattice defects,

are not only inevitable in real materials but also lead to interesting and profound phe-

nomena that cannot be understood in pure materials. This chapter focuses on one such

effect, namely the quasispins of vacancy defects.

Vacancy defects, i.e., non-magnetic impurities, are the most common type of

quenched disorder in magnetic materials. Though it is caused by a substitution of non-

magnetic ions in the magnetic material, the screening of the surrounding magnetic ions

can result in a non-zero magnetic moment associated with the vacancy. In a sense, the

spin vacancy behaves like a free spin on its own, hence the name “quasispin”.

The quasispins of vacancy defects can lead to drastic effects on the magnetic
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susceptibility at low temperatures. The susceptibility of the bulk spins satisfies the

Curie-Weiss law, χ ∝ 1
T+θW

, where θW is the Weiss constant (θW > 0 for antiferromag-

nets), whereas the quasispins give a Curie-like correction (∝ 1/T ) to the susceptibil-

ity [52, 53], which grows faster at low temperatures and can dominant the susceptibility.

In what follows, I will first introduce the effects of vacancy defects in geomet-

rically frustrated (GF) magnets (Sec. 5.1), which motivated us to theoretically study

the quasispin effects of vacancies by exactly solving a simple model — 1-dimensional

Ising model with nearest-neighbor (NN) and next-to-nearest-neighbor (NNN) interac-

tions (Sec. 5.2). Then I will consider induced interactions between the quasispins due

to the bulk spins in between the vacancies (Sec. 5.3).

5.1 Background

Recent works [54, 55] have analyzed the experimental data for the magnetic

susceptibility and the glass transition temperature for many GF magnets with different

vacancy densities and found an interesting trend. With an increase in the vacancy

density in the material, the glass transition temperature decreases, and the magnetic

susceptibility increases. The dependence of the glass transition temperature on the

vacancy density is as shown in Fig. 5.1.

The increase of the magnetic susceptibility with the increase of vacancy density

is counterintuitive. Since the vacancy defects are non-magnetic, increasing vacancy

density decreases the density of magnetic ions and therefore, should lead to smaller

magnetic susceptibility. However, the experimental data shows the opposite trend. In
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Figure 5.1: Plot taken from Ref. [54], Figure. 2a. The dependence of glass transition
temperature on the vacancy densities for available experimental data for GF magnets.

addition, the dependence of the glass transition temperature on the vacancy density is

also surprising, as it suggests a hidden energy scale T ∗ at which a transition to short-

range order takes place even for frustrated magnets free of vacancy defects. Moreover, in

most of the materials shown in Fig. 5.1, spin vacancies are the only significant source of

impurities. Therefore, the transition to short-range order cannot be simply attributed

to the quenched disorder in the system. The transition to short-range order in clean

frustrated magnets puts the existence of quantum spin liquid in GF magnets in question.

In the following sections, I will focus on explaining the dependence of the mag-

netic susceptibility on the vacancy density, which can be explained by the “quasispin”

of the vacancy defect. The screening of the surrounding spins to the vacancy can in-

troduce a non-zero magnetic moment to the vacancy, which behaves as a free spin, and
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contribute a Curie-like term to the magnetic susceptibility, χ ∝ 1/T [52, 53]. There-

fore, the magnetic susceptibility for frustrated magnets can be expected to obey the

formula [55]:

χ(T ) =
A(n− nimp)

T + θW
+
Bnimp

T
(5.1)

where the first term is the contribution from the bulk spins, which follow the Curie-

Weiss law, with θW being the Weiss temperature; nimp is the number of vacancies. At

low temperatures, the second term grows much faster than the first term. The first

term decreases with increasing nimp, but the second term increases with it. So overall,

the magnetic susceptibility grows with increasing vacancy density.

In the following sections, I will present a microscopic one-dimensional model,

which allows us to derive the quasispin of the vacancies directly.

5.2 Quasispins of vacancy defects in Ising chains with nearest-

and next-to-nearest-neighbor interactions

The content of this section were obtained in Ref. [56].

Motivated by the quasispin of vacancies in geometrically frustrated magnets,

this section presents an exactly solvable model where one can compute the quasispin of

the vacancy defect analytically. The model is the one-dimensional Ising model with NN

and NNN interactions, described by the Hamiltonian

Ĥ = J1
∑
i

σiσi+1 + J2
∑
i

σiσi+2, (5.2)

where σi = ±1 describing the spin-up and spin-down states. This section considers

72



sufficiently fast decaying interaction, |J1/J2| > 2, where the NN interaction determines

the ground state of the chain; and low temperatures, which are sufficiently smaller than

the characteristic energy scale of the system, T ≪ 2|J1| − 4J2, |J2|. All four cases of

ferromagnetic and antiferromagnetic NN and NNN interactions are considered, and the

results for each case will be discussed in the subsections below.

5.2.1 Summary of results

The magnetic susceptibilities of an Ising chain with dilute vacancies are given

by the formula

χ(T ) =
⟨S2⟩
T

nimp +
N − b(T )nimp

N
χ0(T ), (5.3)

where χ0(T ) is the susceptibility of a vacancy-free chain, nimp is the number of vacancies,

and N is the length of the Ising chain. The formula shows that the effect of vacancies

is two-fold:

1. it acts like a free spin of magnitude
√

⟨S2⟩;

2. it effectively reduces the length of the chain by an effective ”vacancy size” b(T ).

The results for all four cases of chains with ferromagnetic and antiferromagnetic NN

and NNN interactions are summarized in Table. 5.1.

For vacancy-free chains with antiferromagnetic NN interactions, the suscepti-

bility χ0(T ) is exponentially suppressed and non-singular at T = 0. As a result, the

contribution of quasispins dominants the magnetic susceptibility Eq. (5.3). We find that
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NNN

NN Antiferromagnetic

(J1 > 0)

Ferromagnetic

(J1 < 0)

Antiferromagnetic

(J2 > 0)

Quasispin ⟨S2⟩ = 0; length

increased by −b ≈ e(2J1−6J2)/T

Length reduced by

b ≈ e(2|J1|−4J2)/T

Ferromagnetic

(J2 < 0)

Quasispin ⟨S2⟩ = 1; length

reduced by b ≈ e(2J1−2J2)/T

Length reduced by

b ≈ e(2|J1|−2J2)/T

Table 5.1: The leading effects of a single vacancy on an Ising chain with the NN coupling
J1 and NNN coupling J2. The vacancy effectively reduces the length of the chain by
the “size” b(T ). In addition to that, in chains with antiferromagnetic NN interactions
and ferromagnetic NNN interactions, a quasipsin is associated with the vacancy.

the quasispin for chains with ferromagnetic and antiferromagnetic NNN interactions are

⟨S2⟩ = 1 and 0, respectively.

For chains with ferromagnetic NN interactions, however, the susceptibility

χ0(T ) of a vacancy free chain is exponentially large at T → 0 and more singular than

the quasispin contribution. Therefore, the quasispins are insignificant in this regime.

5.2.2 Qualitative interpretation

Before delving into the details of computing the magnetic susceptibilities, I

will first provide a qualitative explanation of the results of the quasispin values. An

infinite chain with a vacancy is equivalent to two half-infinite chains whose open ends

are coupled by the NNN interaction at the vacancy. As computed in Ref. [56], each

end of the half-infinite chain have a magnetic moment of 1/2. When the two ends are
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coupled by ferromagetic NNN interaction, the magnetic moments add up and resulting

in the magnetic moment ⟨S2⟩ = 1 of the vacancy; while when the two ends are coupled

by antiferromagnetic NNN interaction, the magnetic moments anti-align and resulting

in a zero magnetic moment of the vacancy.

5.2.3 Computation of the magnetic susceptibility

The contribution of the vacancy to the magnetic susceptibility is computed by

directly computing the magnetic susceptibility for a chain with and without a vacancy,

as shown in Fig. 5.2. The magnetic susceptibility can be computed using the fluctuation-

dissipation theorem, which is given by

χ(T ) =
⟨M2⟩
T

=
1

T

∑
i,j

⟨σiσj⟩, (5.4)

where M =
∑

i σi is the total magnetisation of the system; ⟨. . .⟩ is averaging with

respect to the thermal state of the system at temperature T ; and the summation with

respect to the indices i and j runs over all sites with spins. Here, we have used that the

average magnetization is zero for Ising chains without external fields.

The spin correlation functions can be computed using the domain-wall-gas

approximation, which maps the Ising chain to a one-dimensional ideal gas of domain

walls. This approximation is accurate when the domain wall excitations are dilute,

which is in accordance with the aforementioned low-temperature regime, T ≪ 2|J1| −

4J2, |J2|, considered in this chapter. The density of single domain walls is given by

nD ≈ exp (ED/T ) ≪ 1, while the density of 2π-domain walls (i.e., two domain walls on

neighboring sites) is given by nDD ≈ nD exp (−2|J1|/T ) ≪ nD. Therefore, the domain
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Figure 5.2: Spin configurations in the ground states of Ising chains with antiferro-
magnetic NN interactions and ferromagnetic NNN interactions. (a) A chain without a
vacancy. (b) A chain with a vacancy.

walls are dilute, and the approximation to an ideal gas is justified.

The domain-wall-gas approximation allows us to compute the spin correlation

function in Eq. (5.4). I present the results of the spin correlations here, and the details

of the derivation for a chain with antiferromagnetic NN interactions are given in the

subsection immediately follows.

The spin correlations for a chain without vacancy are given by

⟨σiσj⟩0 = ±1− e−βED

1 + e−βED
, (5.5)

where “+” and “−” signs for ferromagnetic and antiferromagnetic NN interactions,

respectively; and ED = 2|J1|−4J2 is the energy of the domain walls. Utilizing Eq. (5.4),

the magnetic susceptibility for a chain without a vacancy can be derived and is given

by

χ0(T ) ≈ NT−1e∓ED/T . (5.6)

Here, N is the length of the chain, and “+” and “−” signs are for ferromagnetic and

antiferromagnetic NN interactions, respectively.
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The spin correlations for a chain with a vacancy, as shown in Fig. 5.2b, for

the case with antiferromagnetic NN and ferromagnetic NNN interactions are derived in

Sec. 5.2.4 and are given by

⟨σ−1σ1⟩ =
1− e2βJ2

1 + e2βJ2
, (5.7a)

⟨σ1σj⟩ ≈
e−βED−2βJ2 − 1

1 + e−βED−2βJ2

(
e−βED − 1

1 + e−βED

)j−2

, (5.7b)

⟨σ−1σj⟩ ≈ ⟨σ−1σ1⟩⟨σ1σj⟩, (5.7c)

⟨σiσj⟩ ≈ ⟨σiσ−1⟩⟨σ−1σ1⟩⟨σ1σj⟩, (5.7d)

for i ≤ −2 and j ≥ 2. Because of the symmetry of the chain, the correlators satisfy the

following relation for all i and j

⟨σiσj⟩ = ⟨σ−iσ−j⟩. (5.8)

The contribution of one vacancy to the susceptibility can be computed using

Eq. (5.4) and is given by the difference between the susceptibility of a chain with and

without a vacancy

χ(T )− χ0(T ) = 2β (⟨σ−1σ1⟩ − ⟨σ−1σ1⟩0) + 4β
+∞∑
j=2

(⟨σ1σj⟩ − ⟨σ1σj⟩0)

+ 4β
+∞∑
j=2

(⟨σ−1σj⟩ − ⟨σ−1σj⟩0) + 2β
−∞∑
i=−2

+∞∑
j=2

(⟨σiσj⟩ − ⟨σiσj⟩0) . (5.9)

Here, the magnetic susceptibility χ and the correlation ⟨· · · ⟩ are for a chain with a

vacancy, χ0 and ⟨· · · ⟩0 are for a chain without vacancies, the labels of the chains with

and without a vacancy are given in Fig. 5.2.

For antiferromagnetic NN interactions (J1 > 0), Eqs. (5.7a)-(5.7d) and (5.4)
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give the vacancy contribution to the magnetic susceptibilities

χ(T )− χ0(T ) = T−1 − T−1e−2|J2|/T + o
(
T−1e−2|J2|/T

)
, (5.10)

for a chain with ferromagnetic NNN interactions (J2 < 0), and

χ(T )− χ0(T ) = T−1e−2|J2|/T + o
(
T−1e−2|J2|/T

)
, (5.11)

for a chain with antiferromagnetic NNN interactions (J2 > 0). In accordance with

Eq. (5.3), the first term is the quasispin contribution with ⟨S2⟩ = 1, and the sec-

ond term describes an effective length reduction of the chain by effective vacancy sizes

b(T ) ≈ e(2J1−2J2)/T for ferromagnetic NNN interactions. For antiferromagnetic NNN

interactions, (5.11) corresponds to a quasispin ⟨S2⟩ = 0 and an effective length increase

by −b(T ) ≈ −e(2J1−2J2)/T .

The case with ferromagnetic NN interactions can be computed similarly, and

the details of the calculations of the spin correlations and the magnetic susceptibili-

ties are given in Ref. [56]. The results for the leading effects of the vacancy on the

susceptibility are summarised in Table 5.1.

5.2.4 Details of calculations for chains with antiferromagnetic NN in-

teractions

In this subsection, I provide the details of the derivation of the vacancy contri-

butions to the susceptibilities for chains with antiferromagnetic NN interactions. The

calculation is similar for chains with ferromagnetic NN interactions, and is provided in

Ref. [56].
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In the ground state of a chain with antiferromagnetic NN interactions, neigh-

boring spins are antiparallel. Each excited state can be considered as a sequence of

domain walls, i.e., pairs of neighboring parallel spins separating antiferromagnetic do-

mains. Spin correlations can be found by mapping the chain to a gas of domain walls.

In a system of size r, the partition function of the domain-wall excitations is

given by

Z = 1 + C1
r e

−βED +
(
C2
r − C1

r−1

)
e−2βED + C1

r−1e
−2βED−4βJ2 + · · · , (5.12)

where

ED = 2J1 − 4J2 (5.13)

is the energy of a single domain wall and Ckn = n!
k!(n−k)! is the binomial coefficient. The

second term on the right-hand side of Eq. (5.12) is the contribution of a single domain

wall, and the third term comes from two domain walls that are not located next to each

other, with C2
r −C1

r−1 being the number of such configurations. The fourth term comes

from two domain walls next to each other.

In the limit of low temperatures, T ≪ ED, |J2|, the domain-wall excitations

are very sparse, and the system can be considered as an ideal gas of domain walls. In

this limit, configurations with domain walls located next to each other can be neglected.

The spin correlations ⟨σiσj⟩ can be found by counting the domain walls in between the

two spins σi and σj , and is given by

⟨σiσj⟩0 ≈ (−1)r
1− C1

r e
−βED + C2

r e
−2βED − · · ·

1 + C1
r e

−βED + C2
r e

−2βED + · · ·
=

(
e−βED − 1

1 + e−βED

)r
, (5.14)
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where r = |i − j|. According to this equation, the correlation length in the spin chain

is given by

ξ ≈
[
log

(
1 + e−βED

1− e−βED

)]−1

≈ 1

2
eβED . (5.15)

In this paper, we assume that the length of the chain N is much longer than the

correlation length ξ.

Equation (5.14) together with the fluctuation-dissipation relation (5.4) give

the magnetic susceptibility for a chain without vacancies

χ0(T ) = β
∑
i,j

⟨σiσj⟩0 ≈ βN + 2βN
e−βED − 1

1 + e−βED

(
1− e−βED − 1

1 + e−βED

)−1

= βNe−βED .

(5.16)

The spin correlations for a chain with a vacancy can be similarly computed by

mapping the chain to an ideal gas of domain walls. For chains with antiferromagnetic

NN and ferromagnetic NNN interactions, the ground state spin configuration in the

chain with the vacancy is as shown in Fig. 5.2b; for chains with antiferromagnetic NNN

interactions, the ground state spin configuration is given by flipping half of the chain

in Fig. 5.2b on one side of the vacancy. The presence of the vacancy modifies the

domain-wall energies near and at the vacancy.

For both ferromagnetic and antiferromagnetic NNN interactions, the domain

wall at the location of the vacancy, i.e. in between sites −1 and 1, has an energy of

2|J2|. A domain-wall excitation between sites 1 and 2 or between sites −1 and −2

has an energy of 2J1 − 2J2, and the energy of domain walls at the other locations is

unchanged by the vacancy, ED = 2J1 − 4J2. Using these excitation energies, we obtain
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the correlators of spins in the chain with a vacancy:

⟨σ−1σ1⟩ = ±1− e2βJ2

1 + e2βJ2
, (5.17a)

⟨σ1σj⟩ ≈
e−2βJ1+2βJ2 − 1

1 + e−2βJ1+2βJ2

(
e−βED − 1

1 + e−βED

)j−2

, (5.17b)

⟨σ−1σj⟩ ≈ ±1− e2βJ2

1 + e2βJ2
e−2βJ1+2βJ2 − 1

1 + e−2βJ1+2βJ2

(
e−βED − 1

1 + e−βED

)j−2

, (5.17c)

⟨σiσj⟩ ≈ ±1− e2βJ2

1 + e2βJ2

(
e−2βJ1+2βJ2 − 1

1 + e−2βJ1+2βJ2

)2(
e−βED − 1

1 + e−βED

)j−i−4

, (5.17d)

for i ≤ −2, j ≥ 2. Here, “+” and “−” signs corresponds to ferromagnetic and antiferro-

magnetic NNN interactions, respectively. For i, j ≤ −2 and i, j ≥ 2, the correlators are

unaltered by the presence of the vacancy and are given by Eq. (5.14). All the correlators

satisfy the symmetry relation ⟨σiσj⟩ = ⟨σ−iσ−j⟩.

The magnetic susceptibility of the vacancy is given by the difference in the

susceptibilities of the chain with and without the vacancy, as is given in Eq. (5.9). The

correlators for a vacancy-free chain given by Eq. (5.14) can be rewritten in terms of the

chosen labels as shown in Fig. 5.2,

⟨σiσj⟩0 ≈
(
e−βED − 1

1 + e−βED

)j−i−1

, for i ≤ −1, j ≥ 1; (5.18a)

⟨σiσj⟩0 ≈
(
e−βED − 1

1 + e−βED

)|j−i|

, for i, j ≤ −1 and i, j ≥ 1. (5.18b)

Utilising Eqs. (5.17a)-(5.17d), (5.18a)-(5.18b) and (5.9), one can obtain the
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magnetic susceptibility of the vacancy

χ(T )− χ0(T ) ≈ 2β

(
1− e2βJ2

1 + e2βJ2
− e−βED − 1

1 + e−βED

)
+ 4β

(
1

1 + e2βJ2
e−2βJ1+2βJ2 − 1

1 + e−2βJ1+2βJ2
− e−βED

1 + e−βED

e−βED − 1

1 + e−βED

)(
1 + e−βED

)
+
β

2

[
1− e2βJ2

1 + e2βJ2

(
e−2βJ1+2βJ2 − 1

1 + e−2βJ1+2βJ2

)2

−
(
e−βED − 1

1 + e−βED

)3
](

1 + e−βED

)2
(5.19)

for ferromagnetic NNN interactions; and

χ(T )− χ0(T ) ≈ 2β

(
e−2βJ2 − 1

1 + e−2βJ2
− e−βED − 1

1 + e−βED

)
+ 4β

(
e−2βJ2

1 + e−2βJ2

e−2βJ1+2βJ2 − 1

1 + e−2βJ1+2βJ2
− e−βED

1 + e−βED

e−βED − 1

1 + e−βED

)(
1 + e−βED

)
+
β

2

[
e−2βJ2 − 1

1 + e−2βJ2

(
e−2βJ1+2βJ2 − 1

1 + e−2βJ1+2βJ2

)2

−
(
e−βED − 1

1 + e−βED

)3
](

1 + e−βED

)2
(5.20)

for antiferromagnetic NNN interactions.

At low temperatures, T ≪ ED, |J2|, these give the results of the vacancy’s

susceptibilities Eqs. (5.10) and (5.11) for ferromagnetic and antiferromagnetic NNN

interactions.

5.3 Emergent interactions between quasispins

The results of this section were obtain in Ref. [57].

Section. 5.2 has focused on dilute vacancy defects (i.e., the distance between

vacancies much larger than the correlation length ξ), where one can consider the vacan-

cies independently. For a chain with a finite density of vacancies, however, vacancies can
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be correlated with one another through the bulk spins in between the two vacancies.

Such correlation can give a correction to the magnetic susceptibility of a chain with

vacancies, which grows fast with vacancy densities. This section computes the correla-

tions between the vacancies for Ising chains with antiferromagnetic NN interactions and

ferromagnetic NNN interactions, described by the Hamiltonian Eq. (5.2), with J1 > 0,

J2 < 0, which is the case with quasispin ⟨S2⟩ = 1 as is derived in the previous section.

5.3.1 Summary of results

In the limit of low temperatures, the correlation function of two quasispins of

vacancies with distance ℓ apart is given by

⟨S1S2⟩ = (−1)ℓ exp (−|ℓ|/ξ) , (5.21)

where ξ is the correlation length in the clean system, Eq. (5.15). This matches with the

correlation function between spins in a vacancy-free system. Such quasispin correlation

leads to a correction to the magnetic susceptibility χ(T ) of a chain with a finite density

of vacancies.

χ(T ) ≈ nimp

T

{
1− 1

2

nimp

N
+O

[(nimp

N

)2]}
+ χbulk(T ) (5.22)

Here, χbulk describes the contribution to the magnetic susceptibility from the bulk spins,

χbulk(T ) =
N − b(T )nimp

N
χ0(T ), (5.23)

where χ0(T ) is again the susceptibility of the vacancy-free chain and b(T ) is the vacancy

size given in the bottom left cell of Table. 5.1. The second term in Eq. (5.22) follows
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from the first virial correction to the susceptibility, which accounts for the effects of the

quasispin correlation to the leading order.

5.3.2 The magnetic susceptibility for two vacancies

We derive the correlations between quasispins by explicitly computing the

magnetic susceptibility of a chain with two vacancies and comparing it with a chain

without vacancies, as shown in Fig. 5.3. Without loss of generality, we assume the two

vacancies are located at sites 0 and ℓ.

The magnetic susceptibility of the chain is computed similarly to the previous

section, with the difference between the susceptibilities for chains with and without

vacancies given by

χ(T )− χ0(T ) = 4β
ℓ−2∑
i=2

∞∑
j=ℓ−1

(⟨σiσj⟩ − ⟨σiσj⟩0) + 4β
∞∑

j=ℓ+1

(⟨σℓ−1σj⟩ − ⟨σℓ−1σj⟩0)

+ 4β

∞∑
j=ℓ+2

(⟨σℓ+1σj⟩ − ⟨σℓ+1σj⟩0) + 2β

1∑
i=−∞

∞∑
j=ℓ−1

(⟨σiσj⟩ − ⟨σiσj⟩0)

(5.24)

where χ and χ0 are the susceptibilities for chains with and without the two vacancies,

as shown in Fig. 5.3 (a) and (b), respectively. In each of the sums, we extend the upper

limits to infinity. This is a good approximation so long as the locations of the vacancies

are sufficiently far away from the chain ends, i.e., the distance is much larger than the

correlation length ξ.

The spin correlators and the magnetic susceptibilities are computed using the

same method presented in the previous section. Therefore, in this section, I only report
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Figure 5.3: Spin configurations in the ground states of Ising chains with antiferromag-
netic NN interactions and ferromagnetic NNN interactions (a) without vacancies (b)
with two vacancies of distance ℓ apart.

the results. The details of the calculations are given in Ref. [57].

The difference in the magnetic susceptibilities of chains with and without the

two vacancies depends on the distance ℓ and is equal to

χ− χ0 ≈
2

T

[
1 + (−1)ℓe−|ℓ|/ξ

]
−
[
1 + 2(−1)ℓe−|ℓ|/ξ

]
T−1e−2|J2|/T +O

(
T−1e−2J1/T

)
(5.25)

for |ℓ| ≥ 2. For |ℓ| = 1, i.e. for the vacancies neighbouring each other, the two vacancies

break the chain into two independent semi-infinite chains. The susceptibility of such a

system is given by

χ ≈ 1

2T
+ χ0 +O

(
T−1e−(2J1+2|J2|)/T

)
. (5.26)

The two free ends each contributes a quasispin
√
⟨S2⟩ = 1

2 , giving the first term in the

above magnetic susceptibility.

5.3.3 Correlation between quasispins

To obtain the correlation between quasispins, we note that the susceptibility

differences computed in the previous subsection can be derived from a quasispin picture,
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following the fluctuation-dissipation theorem for the quasispins.

χ(T ) =
2

T
+

2⟨S1S2⟩
T

+ χbulk(T ), (5.27)

where the first term describes the contribution of two isolated quasispins, ⟨S2⟩ = 1;

⟨S1S2⟩ is the correlator of the quasispins of the two vacancies; and χbulk(T ) ≈ χ0(T )−

2T−1e−2|J2|/T =
[
1− 2

N b(T )
]
χ0(T ).

Comparing Eq. (5.27) with the results of the susceptibility difference between

chains with and without vacancies in the precious section, Eqs. (5.25) and (5.26), we

can derive the quasispin correlations. For two vacancies with distance ℓ apart, the

correlation function is given by

⟨S1S2⟩ ≈ (−1)ℓ exp

(
−|ℓ|
ξ

)
+O

(
T−1e−2|J2|/T

)
, (5.28)

for |ℓ| ≥ 2, and

⟨S1S2⟩ ≈ −3

4
+O

(
T−1e−2|J2|/T

)
, (5.29)

for two adjacent vacancies. These expressions assume the translational invariance of

the vacancy locations, which is fulfilled so long as the vacancies are sufficiently far away

from the chain ends, i.e., much larger than the correlation length.

5.3.4 First virial correction to the susceptibility

The magnetic susceptibility for a chain with nimp randomly located vacancies

is given by

χ(T ) =
nimp

T
+

1

T

nimp∑
α ̸=β,
α,β=1

⟨⟨SαSβ⟩⟩loc + χbulk(T ). (5.30)
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This again follows directly from the fluctuation-dissipation theorem for the quasispins.

Here, ⟨SαSβ⟩ is the correlator of quasispins α and β and

⟨. . .⟩loc =
1

NNvac

N∑
x1=1

N∑
x2=1

· · ·
N∑

xnimp=1

. . .

is averaging with respect to the locations x1, x2, ..., xnimp of the vacancies. We consider

large numbers Nvac ≫ 1 and dilute densities of vacancies. The dilute limit is taken such

that one can expand the correction due to vacancy correlations to the susceptibility

up to the first virial order, i.e., consider only configurations with one pair of vacancies

within a distance of order correlation length apart ℓ ∼ ξ, and all other vacancies to

be much further away ℓ ≫ ξ. Then, the summation in the above expression can be

approximated as

χ(T ) ≈ nimp⟨S2⟩
T

+ 2
n2imp

N

∞∑
ℓ=1

⟨SiSi+ℓ⟩
T

+ χbulk(T ). (5.31)

Substituting the results of the correlators Eqs. (5.28) and (5.29) to this formula and

carrying out the sum, we get

χ(T ) =
nimp

T
−
n2imp

2NT
+O

[(nimp

N

)2]
+ χbulk(T ) (5.32)

for the susceptibility of nimp randomly located vacancies in the dilute limit. The next

order correction is of order nimp/N smaller.
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Chapter 6

Conclusion

In this thesis, I start by presenting an equivalence between a broad class of

interacting disorder-free and disordered non-interacting systems. I present a careful

derivation of the duality which is valid to all orders in perturbation theory. I then use

duality mapping to predict three unconventional phase transitions by mapping existing

ones to them. The first two examples are disorder-driven transitions that expanded the

classes of non-Anderson disorder-driven transitions introduced by previous works [19,

24, 25]. The disorder-driven transitions are disorder-driven transitions in nodal-point

semimetal and nodal-line semimetal, dual to the BCS-BEC crossover and the BCS-

superconducting transition, respectively.

The third example is an unconventional interaction-driven transition found

by mapping of disorder-driven transitions. Applying a field-theoretical renormalization

group analysis, I derive a phase transition for dilute gases of bosons with power-law

dispersions. at finite temperatures. I also provide a concrete example that exhibits this
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transition — the XXZ model with long-range interactions, with the interaction strength

decay as the distance to the power d + α. The model can be realized in trapped-ion

experiments, and I show that one can detect such phase transition by a measurement of

the spin correlation functions. This transition is similar to the non-Anderson disorder-

driven transition, which is directly followed from the established interaction-disorder

duality.

Finally, in the last chapter, I discussed an interesting effect of spin vacancies

in magnetic materials, namely, it can have a “quasispin” degree of freedom, which

acts like a free spin in a magnetic field. I derive the quasispin value for Ising chains

with nearest- and next-to-nearest-neighbor interactions. Then, I study the effective

interactions between the quasispins generated by the correlations of the bulk spins and

derive the first virial correction to the magnetic susceptibility for a finite density of

vacancies.
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[22] A. Rodŕıguez, V. A. Malyshev, G. Sierra, M. A. Mart́ın-Delgado, J. Rodŕıguez-
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