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We approximate the two-body spinless Salpeter equationwith the onewhich is valid in heavy quarks limit.We consider the resulting
semirelativistic equation in a time-dependent formulation. We use the Lewis-Riesenfeld dynamical invariant method and series
solution to obtain the solutions of the differential equation.Wehave also done some calculations in order to derive the time evolution
operator for the considered problem.

1. Introduction

Salpeter equation describes the bound states of relativistic
systems in a covariant formalism [1]. Until now, the equation
has been solved by different approaches. Wick transformed
the relative momentum into an Euclidean vector to avoid
the propagator singularity and thereby obtained some con-
siderable mathematical theorems to solve the equation [2].
A very economical approach to dealing with the equation is
the Deser-Gilbert-Sudarshan-Ida representation as used by
Cutkosky [3]. Other useful techniques are well addressed in
[4–6]. Salpeter equation, on the other hand, can be consid-
ered as the generalization of the nonrelativistic Schrödinger
equation into the relativistic regime [7]. A very unappealing
characteristic of the equation is its nonlocal nature [8].
Jacquemin et al. calculated the Salpeter vertical excitation
energies for the set of 28 molecules constituting the well-
known Thiel’s set [9]. Mainland considered the equation in
the ladder approximationwhen the bound state energy is zero
[10]. Eichmann et al. presented a numerical solution of the
four-quark Salpeter equation for a scalar tetraquark [11]. Shao
et al. established the equivalence between Salpeter eigenvalue
problems and real Hamiltonian eigenvalue problems [12]
Mishima et al. investigated Salpeter equation by employing

the Dyson-Schwinger method together with the Munczek-
Nemirovsky model [13]. Owen and Barrett used quantum
electrodynamics and the Salpeter equation to calculate the
bound state energies for a two-particle system comprised of
a spin-0 and spin-1/2 particle [14]. Carbonell and Karmanov
calculated the transition form factor for electrodisintegration
of a two-body bound system in the Salpeter framework [15].
It should be emphasized that the spinless Salpeter equation
(SSE) originates from the Bethe-Salpeter equation bymaking
some simplifications to the equation and neglecting spin
degrees of freedom [16–19].

On the other hand, one of the most important problems
in quantum mechanics is the time evolution of the quantum
systems. When the time evolution enters the problem, we
have to deal with a partial differential equation which is
definitely more complicated than the ordinary counterparts.
Inmost cases, the exact analytical techniques fail and we have
to use approximate methods for our real physical problems.
Till now, a variety of techniques have been applied to the field
including the path integral [20], dynamical invariant [21–23],
and Gaussian wave packet [24]. Albeverio and Mazzucchi
considered Schrödinger equation with a time-dependent
quadratic plus quartic Hamiltonian and using Feynman
path integral representation [25]. Ibarra-Sierra et al. used
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the Lie-algebraic technique and solved the time-dependent
harmonic oscillator and the bidimensional charged particle
in time-dependent electromagnetic fields [26]. In [27], linear
invariants and the dynamical invariant method are used to
obtain the exact solutions of the Schrödinger equation for
the generalized time-dependent forced harmonic oscillator.
Choi used the dynamical invariant method to solve the
time-dependent Hamiltonian including quadratic, inverse
quadratic, and (1/𝑥)𝑝+𝑝(1/𝑥) terms [28]. Interesting aspects
of Gaussian wave packet technique, which is useful in the
field, can be found in [29–31].

Here, we are going to consider a time-dependent approx-
imation of the SSE via dynamical invariant method originally
proposed by Lewis andRiesenfeld [22]. In Section 2,we intro-
duce our time-dependent semirelativistic equation. Section 3
reports the solutions of the problem. The calculation of the
evolution operator for SSE appeared in Section 4. And the last
part shows the conclusion.

2. Time-Dependent Hamiltonian of
Semirelativistic Spinless Salpeter Equation

The Hamiltonian of two-body SSE, in the center of mass
framework, has the form

𝐻(𝑥, 𝑡) =

2

∑
𝑖=1

√𝑝2 + 𝑚2
𝑖
+ 𝑉 (𝑥, 𝑡) −

2

∑
𝑖=1

𝑚
𝑖
, (𝑐 = 1) . (1)

Using the binomial expansion, the inverse square term can be
written as [18]

2

∑
𝑖=1

(𝑝
2
+ 𝑚
2

𝑖
)
1/2

≈ 𝑚
1
+ 𝑚
2
+
𝑝2

2𝜇
+
𝑝4

8𝜂3
+ ⋅ ⋅ ⋅ , (2)

with 𝜇 = 𝑚
1
𝑚
2
/(𝑚
1
+ 𝑚
2
) and 𝜂 = 𝜇(𝑚

1
𝑚
2
/(𝑚
1
𝑚
2
−

3𝜇2))1/3. Before proceeding further, it should be emphasized
that the above approximation is only valid for heavy quark
systems. Substituting (2) into (1) and considering the relative
interaction 𝑉(𝑥, 𝑡) = 𝑓(𝑡)𝑥 bring the Hamiltonian into the
form

𝐻(𝑡) =
𝑝
4

8𝜂3
+
𝑝2

2𝜇
+ 𝑓 (𝑡) 𝑥. (3)

The existence of 𝑓(𝑡) term in the Hamiltonian prevents (3)
from appearing in the form of a known eigenvalue problem
and we therefore introduce the Lewis-Riesenfeld dynamical
invariant method in the forthcoming section.

3. Lewis-Riesenfeld Dynamical Invariant
Method and Time Evolution of the Problem

In 1969, in an article published by Lewis-Riesenfeld, a theory
which helps us to treat explicitly the time-dependent systems
without using directly the time-dependent Schrödinger equa-
tion appeared. According to Lewis-Riesenfeld method [18],
there is an invariant Hermitian operator described by

𝑑𝐼 (𝑡)

𝑑𝑡
=
𝜕𝐼 (𝑡)

𝜕𝑡
+
1

𝑖ℏ
[𝐼 (𝑡) ,𝐻 (𝑡)] = 0. (4)

If (4) acts on an arbitrary Ket from the left, it results in

{
1

𝑖ℏ
(𝐼𝐻 − 𝐻𝐼) +

𝜕𝐼

𝜕𝑡
} |Ψ⟩ = 0,

𝜕𝐼

𝜕𝑡
|Ψ⟩ + 𝐼

𝜕 |Ψ⟩

𝜕𝑡
=
1

𝑖ℏ
𝐻𝐼 |Ψ⟩ ,

𝑖ℏ
𝜕 (𝐼 |Ψ⟩)

𝜕𝑡
= 𝐻 (𝑡) (𝐼 |Ψ⟩) .

(5)

This implies that action of the invariant operator on the Ket
satisfies the time evolution equation, too.

So if we can find the dynamical invariant in such away, we
can obtain the wave function with the aim of the dynamical
invariant eigenfunctions.

In order to find the explicit form of the invariant, we
suggest

𝐼 (𝑡) = 𝐴 (𝑡) 𝑝
4
+ 𝐵 (𝑡) 𝑝

3
+ 𝐶 (𝑡) 𝑝

2
+ 𝐷 (𝑡) 𝑝 + 𝐸 (𝑡) 𝑥

+ 𝐹 (𝑡) ,
(6)

where the capital letters are arbitrary functions of time.
Although (6) has a crude form, by substituting (6) and (3)
into (4) and some algebraic process, we can get to

𝐴̇ (𝑡) 𝑝
4
+ {𝐵̇ (𝑡) − 𝐴 (𝑡) 𝑓 (𝑡) +

𝐸 (𝑡)

2𝜂3
}𝑝
3

+ {𝐶̇ (𝑡) − 3𝐵 (𝑡) 𝑓 (𝑡)} 𝑝
2

+ {𝐷̇ (𝑡) − 2𝐶 (𝑡) 𝑓 (𝑡)} 𝑝 + 𝐸̇ (𝑡) 𝑥 + 𝐹̇ (𝑡)

− 𝐷 (𝑡) 𝑓 (𝑡) = 0.

(7)

Equation (7) is relation which gives us the constraints on the
time-dependent coefficients in (6). Using (7) the following
relations are derived:

𝐴̇ (𝑡) = 0,

𝐸̇ (𝑡) = 0,

𝐹̇ (𝑡) − 𝐷 (𝑡) 𝑓 (𝑡) = 0,

𝐵̇ (𝑡) − 𝐴 (𝑡) 𝑓 (𝑡) +
𝐸 (𝑡)

2𝜂3
= 0,

𝐶̇ (𝑡) − 3𝐵 (𝑡) 𝑓 (𝑡) = 0,

𝐷̇ (𝑡) − 2𝐶 (𝑡) 𝑓 (𝑡) = 0.

(8)

Equations (8) immediately yield

𝐴 = constant,

𝐸 = constant,

𝐵 (𝑡) = ∫ [𝐴𝑓 (𝑡) +
𝐸

2𝜂3
] 𝑑𝑡 + constant,

𝐶 (𝑡) = ∫ 2𝐵 (𝑡) 𝑓 (𝑡) 𝑑𝑡 + constant,
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𝐷(𝑡) = ∫ [2𝐶 (𝑡) 𝑓 (𝑡) +
𝐸

𝑚
]𝑑𝑡 + constant,

𝐹 (𝑡) = ∫𝐷 (𝑡) 𝑓 (𝑡) 𝑑𝑡 + constant.

(9)

Therefore, given an explicit form of 𝑓(𝑡), the explicit form
of the invariant can be determined. Let us now return to
the eigenfunction. Because there is no operator term with
respect to time in the dynamical invariant operator form,
we can consider these terms as constants with respect to the
coordinates. The eigenvalue problem for the time-dependent
operator is

𝐼Φ = 𝜆Φ, (10)

where Φ and 𝜆 are the time-dependent eigenfunction
and time-independent eigenvalue, respectively. Inserting the
explicit form of the invariant and utilizing 𝑝 = −𝑖ℏ(𝑑/𝑑𝑥), we
get

ℏ
4
𝐴
𝑑4Φ

𝑑𝑥4
− 𝑖ℏ
3
𝐵 (𝑡)

𝑑3Φ

𝑑𝑥3
− 𝐶 (𝑡) ℏ

2 𝑑
2Φ

𝑑𝑥2
− 𝑖ℏ𝐷 (𝑡)

𝑑Φ

𝑑𝑥

+ 𝐸𝑥Φ + 𝐹 (𝑡)Φ = 𝜆Φ.

(11)

To find the solution of (11), we propose a series solution of the
form Φ = ∑

∞

𝑛=0
𝑎
𝑛
𝑥𝑛. Substitution of the latter in (11) results

in

ℏ
4
𝐴

∞

∑
𝑛=0

𝑛 (𝑛 − 1) (𝑛 − 2) (𝑛 − 3) 𝑎
𝑛
𝑥
𝑛−4

− 𝑖ℏ
3
𝐵 (𝑡)

∞

∑
𝑛=0

𝑛 (𝑛 − 1) (𝑛 − 2) 𝑎
𝑛
𝑥
𝑛−3

− 𝐶 (𝑡) ℏ
2

∞

∑
𝑛=0

𝑛 (𝑛 − 1) 𝑎
𝑛
𝑥
𝑛−2

− 𝑖ℏ𝐷 (𝑡)

∞

∑
𝑛=0

𝑛𝑎
𝑛
𝑥
𝑛−1

+ 𝐸

∞

∑
𝑛=0

𝑎
𝑛
𝑥
𝑛+1

+ 𝐹 (𝑡)

∞

∑
𝑛=0

𝑎
𝑛
𝑥
𝑛
= 𝜆

∞

∑
𝑛=0

𝑎
𝑛
𝑥
𝑛
,

(12)

which gives the recurrence relation as

ℏ
4
𝐴
(𝑛 + 5)!

(𝑛 + 1)!
𝑎
𝑛+5

− 𝑖ℏ
3
𝐵 (𝑡)

(𝑛 + 4)!

(𝑛 + 1)!
𝑎
𝑛+4

− 𝐶 (𝑡) ℏ
2 (𝑛 + 3)!

(𝑛 + 1)!
𝑎
𝑛+3

− 𝑖ℏ𝐷 (𝑡) (𝑛 + 2) 𝑎
𝑛+2

+ 𝐸𝑎
𝑛
+ (𝐹 (𝑡) − 𝜆) 𝑎

𝑛+1
= 0.

(13)

Finally, to write the wave function we assume Ψ = 𝜅(𝑡)Φ.
Using the time evolution equation of the wave function, we
may have

𝑖ℏ
𝜕Ψ

𝜕𝑡
= 𝐻Ψ 󳨀→

𝑖ℏ
𝜕 (𝜅 (𝑡) Φ (𝑥, 𝑡))

𝜕𝑡
= 𝐻 (𝜅 (𝑡)Φ (𝑥, 𝑡)) 󳨀→

𝑖ℏ(
𝜕𝜅 (𝑡)

𝜕𝑡
Φ (𝑥, 𝑡) + 𝜅 (𝑡)

𝜕Φ (𝑥, 𝑡)

𝜕𝑡
)

= 𝜅 (𝑡)𝐻 (Φ (𝑥, 𝑡)) ,

𝑖ℏ (
1

𝜅 (𝑡)

𝜕𝜅 (𝑡)

𝜕𝑡
+
𝜕Φ (𝑥, 𝑡)

𝜕𝑡
) = 𝐻Φ (𝑥, 𝑡) 󳨀→

𝑖ℏ
1

𝜅 (𝑡)

𝜕𝜅 (𝑡)

𝜕𝑡
= 𝐻Φ (𝑥, 𝑡) − 𝑖ℏ

𝜕Φ (𝑥, 𝑡)

𝜕𝑡
.

ln 𝜅 (𝑡) = ∫(𝐻Φ (𝑥, 𝑡)

𝑖ℏ
−
𝜕Φ (𝑥, 𝑡)

𝜕𝑡
) 𝑑𝑡 󳨀→

𝜅 (𝑡) = exp [∫(𝐻Φ
𝑖ℏ

−
𝜕Φ (𝑥, 𝑡)

𝜕𝑡
) 𝑑𝑡] ,

(14)

where we set the integration constant equal to zero. So using
𝜅(𝑡) andΦ(𝑥, 𝑡), the wave function can be written asΨ(𝑥, 𝑡) =
𝜅(𝑡)Φ(𝑥, 𝑡).

In the next section, another aspect of the time evolution
of the considered system will be investigated.

4. Time Evolution Operator for
Time-Dependent SSE

Other aspects of the time evolution study of a system are
having the time evolution operator. Time evolution operator
is an unitary operator so that

Ψ (𝑥, 𝑡) = 𝑈 (𝑡) Ψ (𝑥, 0) , (15)

where 𝑈(𝑡) should satisfy

𝑖ℏ
𝑑𝑈 (𝑡)

𝑑𝑡
= 𝐻𝑈 (𝑡) . (16)

Since the time evolution operator is unitary, using this
property and multiplying (16) by 𝑈−1(𝑡) from the right, it
changes

𝑖ℏ
𝑑𝑈 (𝑡)

𝑑𝑡
𝑈
−1
(𝑡) = 𝐻. (17)

Equation (17) helps us to find appropriate evolution operator
for (3). In order to obtain the operator we should assume an
ansatz [32]

𝑈 (𝑡) = exp [𝛾
1
(𝑡) 𝑝
4
+ 𝛾
2
(𝑡) 𝑝
3
+ 𝛾
3
(𝑡) 𝑝
2
+ 𝛾
4
(𝑡) 𝑝

+ 𝛾
5
(𝑡) 𝑥 + 𝛾

6
(𝑡)] ,

(18)
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in which 𝛾
𝑖
(𝑡) (𝑖 = 1, 2, 3, 4, 5, 6) should be determined. In

order to do this we should insert (18) into (17), which yields

𝑖ℏ
𝑑𝑈 (𝑡)

𝑑𝑡
𝑈
−1
(𝑡) = 𝑖ℏ [𝛾̇

1
(𝑡) 𝑝
4
+ 𝛾̇
2
(𝑡) 𝑝
3
+ 𝛾̇
3
(𝑡) 𝑝
2

+ 𝛾̇
4
(𝑡) 𝑝 + 𝛾̇

5
(𝑡)

⋅ 𝑒
𝛾
1
(𝑡)𝑝
4
+𝛾
2
(𝑡)𝑝
3
+𝛾
3
(𝑡)𝑝
2
+𝛾
4
(𝑡)𝑝
𝑥𝑒
−𝛾
4
(𝑡)𝑝−𝛾

3
(𝑡)𝑝
2
+𝛾
2
(𝑡)𝑝
3
+𝛾
1
(𝑡)𝑝
4

+ 𝛾̇
6
(𝑡)] .

(19)

Using Baker-Hausdorff formula, (19) can be rewritten simply
as

𝑖ℏ
𝑑𝑈 (𝑡)

𝑑𝑡
𝑈
−1
(𝑡) = 𝑖ℏ [𝛾̇

1
(𝑡) 𝑝
4

+ 𝑝
3
(𝛾̇
2
(𝑡) − 4𝑖ℏ𝛾

1
(𝑡) 𝛾̇
5
(𝑡))

+ 𝑝
2
(𝛾̇
3
(𝑡) − 3𝑖ℏ𝛾̇

5
(𝑡) 𝛾
2
(𝑡))

+ 𝑝 (𝛾̇
4
(𝑡) − 2𝑖ℏ𝛾̇

5
(𝑡) 𝛾
3
(𝑡)) + 𝑥𝛾̇

5
(𝑡) − 𝑖ℎ𝛾̇

4
(𝑡)

+ 𝛾̇
6
(𝑡)] ,

(20)

and comparing (20) and (3), we find out

𝛾
1
(𝑡) =

−𝑖𝑡

8ℏ𝜂3
+ constant,

𝛾
2
(𝑡) = 4∫𝑓 (𝑡) 𝛾

1
(𝑡) 𝑑𝑡 + constant,

𝛾
3
(𝑡) =

−3𝑖

ℏ
∫𝑓 (𝑡) 𝛾

2
(𝑡) 𝑑𝑡 −

𝑖𝑡

2ℏ𝜇
+ constant,

𝛾
4
(𝑡) = 2∫𝑓 (𝑡) 𝛾

3
(𝑡) 𝑑𝑡 + constant,

𝛾
5
(𝑡) =

−𝑖

ℏ
∫𝑓 (𝑡) 𝑑𝑡 + constant,

𝛾
6
(𝑡) = 𝑖ℏ∫ 𝛾

4
(𝑡) 𝑑𝑡 + constant.

(21)

By these parameters the evolution will be given. This section
shows that having the explicit form of 𝑓(𝑡) and 𝑓(0) we can
find the wave function at 𝑡 = 0. Also, using the wave function
and the time evolution operator which was derived during
this section we can obtain the wave function at any time.

5. Conclusion

We studied an approximation of the semirelativistic spin-
less Salpeter equation. We used Lewis-Riesenfeld dynamical
invariant to investigate time evolution of the Hamiltonian.
The explicit form of the dynamical invariant was derived.
In order to obtain eigenfunction of this invariant we dealt
with a differential equation with variable coefficients. We had
to suggest the solution in series form. The wave function
was obtained by using the eigenfunction of the dynamical
invariant and appropriate evolution operator. This kind of
investigation opens new insight for possible further studies
to study the dynamical properties of heavy mesons.
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