
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

Tenth International Workshop DICE2022 - Spacetime - Matter - Quantum Mechanics
Journal of Physics: Conference Series 2533 (2023) 012028

IOP Publishing
doi:10.1088/1742-6596/2533/1/012028

1
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Abstract. In this talk, we discuss how gauge symmetries broken explicitly by a Poincare-
breaking UV cutoff can be restored. We show that gauge symmetries can be restored by the
introduction of affine curvature in reminiscence to the Higgs field. In fact, gauge symmetries
get restored and general relativity emerges at the extremum of the metric-affine action. As per
this point, we show emergence of the general relativity, reveal how its parameters relate to the
flat spacetime loops, elucidate the new particle spectrum it brings along, and discuss its salient
signatures. We show that the resulting field-theoretic plus gravitational setup can be probed
via various phenomena ranging from collider experiments to black holes.

1. Introduction
There are scales in nature that are not particle masses. The confinement scale in QCD and the
fundamental scale of gravity are such scales. In general, if the UV cutoff Λ℘ is not the mass
of an elementary particle then it breaks Poincare symmetry as it is not a Casimir invariant of
the Poincare group [1]. The simplest UV cutoff as such is the Lorentz-invariant but translation-
breaking cut −Λ2

℘ ≤ ℓµℓ
µ ≤ Λ2

℘ on the loop momenta ℓµ. Under this cut, the effective QFT
remains Lorentz-invariant but breaks explicitly all the gauge symmetries since each gauge boson
acquires a mass proportional to Λ℘ [2, 3, 4, 5]. In addition, scalar mass-squareds (vacuum
energy) develop quadratic (quadratic and quartic) sensitivity to the UV cutoff Λ℘ [6, 7].

In this talk, we will discuss how gauge symmetries broken explicitly by a Poincare-breaking
UV cutoff can be restored by a mechanism reminiscent of the usual Higgs mechanism. Indeed,
gauge symmetries associated with a massive vector boson are restored (or realized) by the
introduction of the Higgs field [8, 9]. In reminiscent of this, we find that gauge symmetries
broken explicitly by a Poincare-breaking UV cutoff can be restored by the introduction of the
affine curvature [10, 11, 12]. In the former, what is central is the Higgs potential. In the latter,
however, the central object iss the metric-affine action [13, 14, 15, 16].

2. Effective QFT
For the purpose of analyzing the power-law quantum divergences in isolation, it is desirable to
detach them from the logarithmic divergences in terms of the scales they involve. This scheme
of regularization, the so-called detached regularization [17], extends the usual dimensional
regularization [18, 19, 20] to QFTs with a UV cutoff. In detached regularization, the effective
action capturing physics of the full quantum action at low energies takes the form [17]

Seff [η,𭟋; Λ2
℘, logµ] = Stree[η,𭟋] + δSlog[η, logµ,𭟋] + δSpow[η,𭟋; Λ2

℘, logµ] (1)
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in which Stree[η,𭟋] stands for the tree-level QFT action and δSlog[η, logµ,𭟋] collects the
logarithmic loop corrections such that both actions are gauge-invariant and independent of
the UV cutoff Λ℘. The last piece

δSpow[η,𭟋; Λ2
℘, logµ] =

∫
d4x

√
−η
{
−cOΛ

4
℘ − M 2Λ2

℘ − cϕΛ
2
℘ϕ

†ϕ+ cV Λ
2
℘tr [VµV

µ]
}

(2)

comprises the power-law corrections. The loop factors cϕ and cV depend on the QFT under
concern but cO and M 2 are rather general at one loop [17]

cO = cO(logµ)
one loop−−−−−→

(nb − nf )

64π2
, (3)

M 2 = M 2(logµ)
one loop−−−−−→ − 1

64π2
str

[
M2 log

M2

µ2

]
, (4)

in which nb(nf ) is the total number of bosons (fermions) and M2 is the mass-squared matrix
of the QFT fields. (Details of the detached regularization and its applications can be found in
[17].)

3. Effective QFT in Curved Spacetime
QFTs are specific to the flat spacetime due to the necessity of Poincare symmetry for defining
the notion of particle [21, 22]. They cannot be carried into curved spacetime because curved
spacetime does not allow special states like the vacuum and detectable structures like the
particles [23, 24].

Effective QFTs are different. They are the QFTs of long-wavelength quantum fields. They are
essent,ally the classical theory improved with quantum corrections order by order in perturbation
theory. In this regard, they are like the classical field theories and have therefore a natural
affinity with the classical curved spacetime. In other words, it should be natural to carry
effective QFTs into curved spacetime [11, 12]. In this regard, it is necessary to carry first the
flat spacetime effective QFT (with metric ηµν and the partial derivative ∂µ) to curved spacetime
(with metric gµν and covariant derivative ∇µ of the Levi-Civita connection gΓλ

µν). But, for
the metric gµν to be curved, the effective QFT in curved spacetime must involve curvature of
gµν (like, for example, the Ricci curvature Rµν(

gΓ)). It can be tempting to add the requisite
curvature terms by hand (Einstein-Hilbert term M2

0 g
µνRµν(

gΓ) plus higher-curvature terms)
but extension of the effective QFT by such bare terms is fundamentally inconsistent because
they come to mean that the curvature sector was left unrenormalized while the QFT sector was
renormalized. Similar arguments hold also for curvature terms constructed with the bare QFT
parameters in Stree[η,𭟋]. In the face of these inconsistencies, one concludes that curvature must
arise only in the loop-induced terms in the effective QFT [12]. To this end, definition of the
Ricci curvature [∇λ,∇ν ]V

λ = Rµν(
gΓ)V µ reveals that the effective QFT in curved spacetime

can develop curvature only in the gauge sector. But the gauge kinetic term VµνV
µν (with

the field strength tensor Vµν = DµVν − DνVµ and gauge covariant derivative Dµ) can generate
two-derivative structures like [∇λ,∇ν ]V

λ via only by-parts integration. Indeed, VµνV
µν can

be brought into the two-derivative form Vµ(D2)µνVν by applying by-parts integration. But by-
parts integration cannot be a real source of curvature since after all Vµ(D2)µνVν is equivalent to
VµνV

µν . This observation implies that curvature must arise while passing from flat spacetime
to the curved spacetime. In this regard, one notices that the kinetic construct [12]

IV [η] =

∫
d4x

√
−η

1

2
tr[VµνV

µν ] (5)
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is equivalent to

ĪV [η] =

∫
d4x

√
−η tr

[
V µ(−D2ηµν +DµDν + iVµν)V

ν + ∂µ(VνV
µν)
]

(6)

under by-parts integration, with the flat spacetime gauge covariant derivative Dµ. Their
difference vanishes identically

∆IV [η] = −IV [η] + ĪV [η] = 0 (7)

with the general boundary term ∂µ(VνV
µν) in ĪV [η]. But this very vanishing difference becomes

non-vanishing

∆IV [g] = −IV [g] + ĪV [g] = −
∫

d4x
√
−g tr[V µRµν(

gΓ)V ν ] (8)

when IV [η] and ĪV [η] are taken to curved spacetime via the general covariance (ηµν → gµν and
∂µ → ∇µ so that Dµ → Dµ). The reason for this non-vanishing ∆IV [g] is the aforementioned
commutator [Dλ,Dν ]V

λ = (Rµν(
gΓ) + iVµν)V

µ in curved spacetime.
It proves useful to combine ∆IV with the loop-induced gauge boson mass term

δSV [η,Λ
2
℘] =

∫
d4x

√
−η cV Λ

2
℘ηµνtr [V

µV ν ] (9)

in the power-law corrections in (2). It is clear that δSV [η,Λ
2
℘] can be rewritten as

δSV [η,Λ
2
℘] = δSV [η,Λ

2
℘] + cV ∆IV [η] = SV [η,Λ

2
℘] (10)

thanks to the fact that you ∆IV [η] = 0 in flat spacetime. This identity undergoes a nontrivial
change [11, 12]

δSV [g,Λ
2
℘, R] = δSV [g,Λ

2
℘] + cV ∆IV [g] =

∫
d4x

√
−g cV tr

[
V µ
(
Λ2
℘gµν −Rµν(

gΓ)
)
V ν
]

(11)

in curved spacetime in which ∆IV [g] ̸= 0 as given in the relation (8). It is worth emphasizing
that δSV [g,Λ

2
℘, R] is the only piece that explicitly involves curvature in the entire effective QFT

in curved spacetime. In other words, without δSV [g,Λ
2
℘, R] (more precisely ∆IV [g]), the metric

gµν would remain flat as it would have no kinetic term at all. As a result, the effective QFT
action takes the form

Seff [g,𭟋; Λ2
℘, logµ,R] = Stree[g,𭟋] + δSlog[g, logµ,𭟋] + δSpow[η,𭟋; Λ2

℘, logµ,R] (12)

in the curved spacetime of the metric gµν . Its power-law part

δSpow[g,𭟋; Λ2
℘, logµ,R] =

∫
d4x

√
−g
{

− cOΛ
4
℘ − M 2Λ2

℘ − cϕΛ
2
℘ϕ

†ϕ

+ cV tr
[
V µ
(
Λ2
℘gµν −Rµν(

gΓ)
)
V ν
]}

(13)

is obtained by taking the power-law piece in (2) to curved spacetime via the relation (8).
It is clear that the entire effective QFT in curved spacetime (12) develops a curvature-

dependent term only in the gauge sector as in (13). There is no Einstein-Hilbert term and there
is thus no gravitation at all. It is also clear that this curvature-dependent term breaks gauge
symmetries explicitly along with the loop-induced mass cV Λ

2
℘ [11, 10]. In view of these features,

it is necessary to first determine how the GR emerges from within the effective action (12).
Besides, it is necessary to also determine if emergence of the GR can kill the gauge symmetry
breaking terms. These two points will be clarified below in the framework of affine gravity with
distant inspiration from the Higgs mechanism.
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4. Reminiscencing the Higgs Field: Affine Curvature
It is necessary to distinguish between two cases: A vector boson of mass MV and a gauge boson
of anomalous loop-induced mass (proportional to Λ℘). Firstly, mass MV of a vector boson
respects the Poincare symmetry simply because it is a Casimir invariant of the Poincare group
[1, 9]. The loop-induced mass of a gauge boson, on the other hand, is a Poincare-breaking
parameter since the cutoff Λ℘ itself breaks the Poincare symmetry [3]. Secondly, in the case of a
massive vector boson, the goal is to restructure the vector field as a gauge field. In the case of a
gauge boson with loop-induced mass, however, the goal is to kill the anomalous mass. Thirdly,
being a Poincare-invariant quantity, MV can be promoted to a suitable Higgs scalar ΦV via

Λ2
℘Tr [VµV

µ] 7−→ Φ†
V VµV

µΦV (14)

as in the Higgs mechanism [8, 9]. For a loop-induced gauge boson mass, however, scalar
fields like the Higgs field cannot serve the purpose [8, 9] since the requisite field must be a
Poincare-breaking one. In search for this Poincare-breaking field, one notes that, in a general
second-quantized quantum field theory with no presumed symmetries, the Poincare (translation)
invariance emerges if the Poincare-breaking terms are identified with the spacetime curvature
[25]. Physically, this means that the Poincare-breaking sources in a QFT are the spots where
curvature can emerge. It is all clear that the UV cutoff Λ℘ is the said Poincare-breaking source in
an effective QFT. There is thus every reason to conclude that the sought-for Poincare-breaking
field should be the spacetime curvature itself. In this regard, one notices that, in the effective
action in (13), promotion of Λ2

℘gµν to the Ricci curvature Rµν(
gΓ) as a Poincare-breaking spurion

would completely eradicate the gauge symmetry breaking term cV tr
[
V µ
(
Λ2
℘gµν −Rµν(

gΓ)
)
V ν
]
.

But this promotion is inherently inconsistent simply because Rµν(
gΓ) does vanish in the flat

spacetime limit while Λ2
℘gµν does not. One way to resolve this inconsistency is to promote

Λ2
℘gµν to a curvature tensor that does not vanish in the flat spacetime limit. The simplest

curvature as such is the affine Ricci curvature [13, 14, 15]

Rµν(Γ) = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + Γρ

λρΓ
λ
µν − Γλ

ρνΓ
ρ
µλ (15)

of an affine connection Γλ
µν , which is a general connection independent of the metric tensor gµν

and its Levi-Civita connection gΓλ
µν . Needless to say, Γλ

µν is not a tensor in curved spacetime
but it transforms as a tensor in the flat spacetime in which coordinate transformations are the
linear Lorentz transformations [26]. Now, having the affine curvature Rµν(Γ) at hand, the UV
cutoff Λ℘ can be promoted to the affine curvature as

Λ2
℘gµν 7−→ Rµν(Γ) (16)

in the same philosophy as the equation (14) in which Λ℘ is promoted to the Higgs scalar ΦV .
In essence, equation (16) is a map from UV cutoff to affine curvature, and possesses three key
properties:

(i) It reduces to Λ2
℘ηµν 7→ Rµν(Γ) in the flat spacetime in which the affine connection acts as

a tensor field [26],

(ii) It is meant to hold at the fundamental scale of gravity MPl ≡ (8πGN )−1/2, where GN is
Newton’s gravitational constant.

(iii) It rests on the fact that both the affine curvature Rµν(Γ) and metric gµν are classical fields
since effective QFTs like (12) cannot be extended with new quantum fields.
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Then, the cutoff-to-curvature map (16), with these three key properties, takes the power-law
correction action (13) to a metric-Palatini (metric-affine) action [15, 16]

δSpow[g,𭟋;R, logµ,R] =

∫
d4x

√
−g

{
−

M2
Pl

2
R(g,Γ)− cO

16
(R(g,Γ))2 −

cϕ
4
ϕ†ϕR(g,Γ)

+ cV tr [V
µ(Rµν(Γ)−Rµν(

gΓ))V ν ]

}
(17)

in which R(g,Γ) ≡ gµνRµν(Γ) is the affine curvature scalar. The parameters in this action
deserve a detailed discussion: First, as follows from the equation (4), the fundamental scale of
gravity (the Planck scale) can be defined as

M2
Pl =

1

2
M 2(µ = MPl)

one loop−−−−−→ − 1

128π2
str

[
M

2
log

(
M

2

M2
Pl

)]
(18)

in which M
2
= M2

(
µ = MPl

)
. This definition comes to mean that the gravitational scale is

equal to M 2/2 evaluated at the gravitational scale simply because the map (16) holds at the
gravitational scale. It is clear thatMPl remains put at its value in (18) since curvature is classical
and matter loops have already been used up in forming the flat spacetime effective action in (1).

It is also clear that gravity remains attractive if the bosonic sector is heavier (str
[
M

2]
> 0) and

if all the matter fields weigh below the gravitational scale (str
[
M

2]
≲ M2

Pl). In general, scalars,
singlet fermions and vector-like fermions can weigh heavy without breaking gauge symmetries,

and such heavy fields can dominate MPl through str
[
M

2]
.

In line with the definition of the gravitational scale in (18), quadratic curvature coefficient
cO in (17) can be defined as

cO = cO (µ = MPl)
one loop−−−−−→

(nb − nf )

64π2
(19)

and this definition means that nb(nf ) is the number of bosons (fermions) having masses from
zero way up to the gravitational scale. In other words, nb(nf ) comprises entirety of the bosons
(fermions) since particles heavier than MPl are disfavored by the attractive nature of gravity.
It is clear that cO remains set at its value in (19) since curvature is classical and matter loops
have already been used up in forming the flat spacetime effective action in (1).

5. Affine Dynamics: From UV Cutoff to IR Curvature
Having elucidated the parameters of the metric-Palatini action (17), it is time to go back to the
total effective action (12). In fact, it takes the complete metric-Palatini form [16]

Seff [g,𭟋;R, logµ,R] = Stree[g,𭟋] + δSlog[g, logµ,𭟋] + δSpow[g,𭟋;R, logµ,R] (20)

after using the action (17). This metric-Palatini theory contains both the metrical curvature
R(gΓ) and the affine curvature R(Γ). It remains stationary against variations in the affine
connection (namely δΓSeff [g,𭟋;R, logµ,R] = 0) provided that

Γ∇λDµν = 0 (21)

such that Γ∇λ is the covariant derivative of the affine connection Γλ
µν , and

Dµν =

(
1

16πGN
+

cϕ
4
ϕ†ϕ+

cO
8
gαβRαβ(Γ)

)
gµν − cV tr [VµVν ] (22)
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is the disformal metric of tensor fields, including the affine curvature R(Γ). The motion equation
(21) implies that Dµν is covariantly-constant with respect to Γλ

µν , and this constancy leads to
the exact solution

Γλ
µν =

1

2
(D−1)λρ (∂µDνρ + ∂νDρµ − ∂ρDµν)

= gΓλ
µν +

1

2
(D−1)λρ (∇µDνρ +∇νDρµ −∇ρDµν) (23)

in which, needless to say, gΓλ
µν is the Levi-Civita connection of the curved metric gµν . The

Planck scale in (18) is the largest scale and therefore it is legitimate to make the expansions

Γλ
µν = gΓλ

µν +
1

M2
Pl

(
∇µDλ

ν +∇νDλ
µ −∇λDµν

)
+O

(
M−4

Pl

)
(24)

and

Rµν(Γ) = Rµν(
gΓ) +

1

M2
Pl

(∇α∇µDαν +∇α∇νDαµ −□Dµν −∇µ∇νDα
α) +O

(
M−4

Pl

)
(25)

so that both Γλ
µν and Rµν(Γ) contain pure derivative terms at the next-to-leading O

(
M−2

Pl

)
order

[11, 12]. The expansion in (24) ensures that the affine connection Γλ
µν is solved algebraically

order by order in 1/M2
Pl despite the fact that its motion equation (21) involves its own curvature

Rµν(Γ) through Dµν [13, 14]. The expansion (25), on the other hand, ensures that the affine
curvature Rµν(Γ) is equal to the metrical curvature Rµν(

gΓ) up to a doubly-Planck suppressed
remainder. In essence, what happened is that the affine dynamics took the affine curvature R
from its UV value Λ2

℘ in (16) to its IR value R in (25). Indeed, in the sense of holography
[27, 28], the metrical curvature R sets the IR scale [29] above which QFTs hold as flat spacetime
constructs [21, 22, 23].

6. Restoration of Gauge Symmetries
One consequence of the solution of the affine curvature in (25) is that the problematic loop-
induced gauge boson mass term gets defused as∫

d4x
√
−gcV tr [V

µ(Rµν(Γ)−Rµν(
gΓ))V ν ]

equation (25)−−−−−−−−→
∫

d4x
√
−g
{
zero +O

(
M−2

Pl

)}
(26)

after using the solution of the affine curvature in (25) in the metric-Palatini action (17)
[10, 11, 12]. The O

(
M−2

Pl

)
remainder here, containing the next-to-leading order derivative term

in (25), involves derivatives of the scalars ϕ and gauge fields Vµ, and can produce therefore no
mass terms for either of them. It is worth noting that the gauge symmetries broken explicitly
by a Poincare-conserving (Poincare-breaking) UV cutoff are restored via the Higgs field ΦV (via
the affine curvature R) at the minimum of the ΦV potential energy (at the extremum of the
metric-affine action). This contrast shows that Poincare-conserving and Poincare-breaking UV
cutoffs are fundamentally different and lead, respectively, to field-theoretic and gravitational
completions of the effective QFT.

7. Emergence of General Relativity
One other consequence of the solution of the affine curvature in (25) is that non-gauge sector of
the metric-Palatini action (17) reduces to the quadratic curvature gravity∫

d4x
√
−g

{
−
M2

Pl

2
R(g,Γ)− cO

16
(R(g,Γ))2 −

cϕ
4
ϕ†ϕR(g,Γ)

}
equation (25)−−−−−−−−→

∫
d4x

√
−g

{
−

M2
Pl

2
R− cO

16
R2 −

cϕ
4
ϕ†ϕR+O

(
M−2

Pl

)}
(27)
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in which R = gµνRµν(
gΓ) is the usual curvature scalar in the GR. As in (26), the O

(
M−2

Pl

)
remainder here consists of the next-to-leading order and higher terms in (25). It involves
derivatives of the long-wavelength fields ϕ and Vµ, produces thus no mass terms for these fields,
and remains small for all practical purposes.

The reductions (26) and (27) give rise to the total QFT plus GR action

Stot[g,𭟋] = Stree[g,𭟋] + δSlog[g, logµ,𭟋] +

∫
d4x

√
−g

{
−
M2

Pl

2
R− cO

16
R2 −

cϕ
4
ϕ†ϕR

}
(28)

in which the QFT sector

SQFT[g,𭟋] = Stree[g,𭟋] + δSlog[g, logµ,𭟋] (29)

is the usual MS-renormalized QFT resting on the matter loops in flat spacetime and evolving
from scale to scale by renormalization group equations in logµ [3]. Its gravity sector

SGR[g, ϕ] =

∫
d4x

√
−g

{
−
M2

Pl

2
R− cO

16
R2 −

cϕ
4
ϕ†ϕR

}
(30)

rests on the flat spacetime loop factors and emerges from the requirement of restoring gauge
symmetries. With these two unique features, it differs from all the other matter-induced gravity
theories (induced [30, 31, 32], emergent [33, 34], analogue [35], broken symmetry [36, 37], and the
like). It is an R+Rϕ2+R2 gravity theory [38] whose each and every coupling is a flat spacetime
loop factor (coefficient of Λ2

℘ or Λ4
℘ in (2)). It is the gauge symmetry-restoring emergent gravity

or briefly the symmergent gravity [12, 11, 10], which is reformulated in a completely new setting
in the present work. It should not be confused with the effective action computed in curved
spacetime, which gives M2

Pl ∝ Λ2
℘ along with Λ℘-sized scalar and gauge boson masses and a Λ4

℘-
sized vacuum energy density [30, 31, 32]. Symmergent gravity, as reformulated and elucidated
in the present work, stands out as a novel framework for completing effective QFTs in the UV
when the UV cutoff is a Poincare-breaking one.

8. Discussions and Conclusion
In this talk, we have discussed how gauge symmetries broken explicitly by a Poincare-breaking
UV cutoff can be restored, and what consequences such restoration can have. The end result is
symmergent gravity as an emergent gravity plus MS–renormalized QFT framework. Below, we
discuss briefly some salient implications of the symmergent gravity [10, 11, 12].

First, gravitational scale necessitates new physics beyond SM (BSM). The
gravitational scale MPl in SGR(g, ϕ) is induced by the flat spacetime matter loops as in (18).
In the SM, it takes the value M2

Pl ≈ −G−1
F , where GF ≈ (293 GeV)−2 is the Fermi scale. Its

negative sign, set by the top quark contribution, is obviously unacceptable. It must be turned to
positive if gravity is to be attractive, and this can be done if there exist new particles beyond the
SM spectrum. These beyond-the-SM (BSM) particles are a necessity. In regard to the enormity
of the gravitational scale (which can be brought to its physical shell by a conformal rescaling of
the metric), the BSM sector must have

(i) either a light spectrum with numerous more bosons than fermions (for instance, mb ∼
mf ∼ G

−1/2
F with nb − nf ∼ 1032),

(ii) or a heavy spectrum with few more bosons than fermions (for instance, mb ∼ mf ≲ MPl

with nb − nf ≳ 10),

(iii) or a sparse spectrum with net boson dominance .
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In general, BSM particles do not have to couple to the SM particles simply because all they

are requiered to do is to saturate the super-trace in (18) at a value M2
Pl ≃ M

2
Pl. In other

words, there are no symmetries or selection rules requiring the SM particles to couple to the
BSM particles. They can form therefore a fully-decoupled black sector [39, 40, 41, 11] or a
feebly-coupled dark sector [11, 42, 43], with distinctive signatures at collider searches [44], dark
matter searches [45], and other possible phenomena [11].

Second, Higgs-curvature coupling can probe the BSM. The loop factor cϕ in SGR(g, ϕ)
couples the scalar curvature R(g) to scalar fields ϕ. It is about 1.3% in the SM [10, 11].
Its deviation from this SM value indicates existence of new particles which couple to the SM
Higgs boson. These BSM particles can be probed via their effects on various gravitational and
astrophysical phenomena [46, 47, 48].

Third, symmetries of the BSM sector might shed new light on the cosmological
constant problem. The vacuum energy contained in SQFT(g,𭟋) [17]

V (µ)
one loop−−−−−→ V (⟨ϕ⟩) + 1

32π2
str

[
M

4

(
1− 3

2
log

M
2

µ2

)]
(31)

gathers together field-independent log µ corrections in (29) in the minimum ϕ = ⟨ϕ⟩ of the

scalar potential V (ϕ). Its empirical value is Vemp =
(
2.57× 10−3 eV

)4
[49]. The cosmological

constant problem is to shoot this specific value with the prediction in (31), and such a shooting
is tantalizingly fine-tuned [50]. But, as a way out possible only in symmergence, it might be
possible to achieve a resolution if the BSM fields enjoy appropriate symmetries and selection
rules [43]. For instance, a supersymmetric BSM sector would help in eliminating V (µ) but its
realization can require extra structures [51].

Fourth, quadratic curvature term can probe the BSM. The loop factor cO in SGR(g, ϕ)
is proportional to the boson-fermion number difference. It vanishes identically in a QFT with
equal bosonic and fermionic degrees of freedom (as in the supersymmetric theories [52, 53]) and,
as a result, the gravitational sector in (30) reduces to the GR. This normally is not possible since
under general covariance all curvature invariants can contribute to the gravitational sector, and
it simply is not possible to get the exact GR. But symmergence is able to generate the GR, the
exact GR, when the SM+BSM involves equal bosonic and fermionic degrees of freedoms [11, 12].

The loop factor cO, when nonzero, acts as probe of the BSM in strong-curvature media. It
can probe the BSM sector in terms of nb − nf via strong-curvature effects. One such effect is
the Starobinsky inflation, and seems to require nb − nf ≈ 1013 [54]. One other effect concerns
the black holes, which put limits [55, 56, 57] on cO and the vacuum energy V (µ) through the
EHT observations [58].

Fifth, heavy BSM does not necessarily destabilize the light scalars. Light scalars
ϕL in SQFT(g,𭟋) are oversensitive to heavy fields. Indeed, their masses mϕL

are shifted by an
amount

δm2
ϕL

= cϕL
λϕL𭟋Hm

2
𭟋H log

m2
𭟋H
µ2

(32)

if they couple with loop factor cϕL
and coupling constant λϕL𭟋H to heavy fields 𭟋H of masses

m𭟋H ≫ mϕL
. This mass correction reveals that heavier the 𭟋H larger the shift in the ϕL mass

and stronger the destabilization of the light scalar sector. This is the famous little hierarchy
problem [59]. It is the reason the null LHC results [60, 61] have sidelined supersymmetry and
other known completions.

Can symmergence have a different say on the little hierarchy problem? Can it provide a
resolution? To answer these questions, one notices that the BSM sector is necessitated for
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generating the gravitational scale, and all that its formula in (18) involves is super-trace over
mass-squareds of the SM+BSM particles. In other words, there is no symmetry principle or
selection rule requiring the SM and BSM fields to interact. Indeed, the coupling λϕL𭟋H is not
under any constraint since workings of symmergence do not depend on it. This means that
symmergence allows λϕL𭟋H be small enough to keep δm2

ϕL
small enough. More precisely, it is

possible ensure δm2
ϕL

≪ m2
ϕL

if λϕL𭟋H obeys the bound

|λϕL𭟋H | ≲ λSM

m2
ϕL

m2
𭟋H

(33)

in which λSM ∼ O(1) is a typical SM coupling. This “small-coupling domain” is specific to
symmergence. It is the domain in which the SM and BSM are sufficiently decoupled and the
little hierarchy problem is naturally avoided.

Symmergence, as a framework intertwining emergent gravity and new physics sector, can have
widespread effects in various phenomena. Its study in collider, astrophysical and cosmological
setting can provide therefore further information.
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