
Eur. Phys. J. C          (2023) 83:911 
https://doi.org/10.1140/epjc/s10052-023-12083-9

Regular Article - Theoretical Physics

Conformal hairy black holes of quartic quasi-topological gravity
with power-Yang–Mills source

Askar Ali1,a, Khalid Saifullah2,3,b

1 Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Peshawar 25000, Pakistan
2 Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
3 School of Mathematical Sciences, Queen Mary University of London, London, UK

Received: 20 May 2023 / Accepted: 26 September 2023
© The Author(s) 2023

Abstract We study higher dimensional hairy black holes
of quartic quasi-topological gravity in the framework of non-
abelian power-Yang–Mills theory. It is shown that real solu-
tions of the gravitational field equations exist only for positive
values of quartic quasi-topological coefficient. Depending on
the values of the mass, conformal coupling constants, quasi-
topological coefficients, Yang–Mills magnetic charge, and
nonlinearity parameter, they can be interpreted as black holes
with one horizon, at most three horizons and naked singu-
larity. It is also shown that the solution associated with these
black holes has an essential curvature singularity at the centre
r = 0. Thermodynamic and conserved quantities for these
hairy black holes are computed and we show that the first
law has been verified. We also check thermodynamic stabil-
ity in both canonical and grand canonical ensembles. In addi-
tion to this, we also formulate new power-Yang–Mills hairy
black hole solutions in pure quasi-topological gravity. The
physical and thermodynamic properties of these black holes
are discussed as well. It is concluded that unlike Yang–Mills
black holes without scalar hair there exist stability regions for
the power-Yang–Mills hairy black holes in grand canonical
ensemble. Finally, we discuss the thermodynamics of hori-
zon flat power-Yang–Mills rotating black branes and analyze
their thermodynamic and conserved quantities by using the
counter-term method inspired by AdS/CFT correspondence.

1 Motivation

Higher dimensional gravities sometimes give rise to more
interesting possibilities than the four-dimensional theories.
This major leap can help solve the problem of “hierarchy

a e-mail: askarali@math.qau.edu.pk
b e-mail: ksaifullah@fas.harvard.edu (corresponding author)

of scales”. Many higher dimensional models have been for-
mulated in recent years. The well-known generalization of
Einstein’s gravity is the Lovelock gravity [1–3]. The equa-
tions of motion obtained in this gravity are still second
order. Due to the topological background of Lovelock grav-
ity, the corresponding Gauss–Bonnet term in the action does
not possess any dynamical contribution in four dimensional
geometries. Similarly, the third order Lovelock term gives
contributions to the gravitational field equations in space-
time dimensions greater than or equal to seven. The gener-
alization to this theory which contains the cubic and quar-
tic curvature terms and possess dynamical contributions in
five spacetime dimensions is the quasi-topological gravity
[4–6]. The equations of motion for second, third [4,5], and
fourth order [6] quasi-topological gravities are also second
order for the spherically symmetric metric and are nontrivial
in five and higher dimensions. Nevertheless, the field equa-
tions for generic line elements are of order four, and quasi-
topological Lagrangian varies with the spacetime dimension.
It is also crucial to remember that, up to a certain factor,
the linearized equations of quasi-topological gravity corre-
late with the linearized equations of Einstein’s gravity on
maximally symmetric backgrounds. Recently, the general-
ized cubic quasi-topological gravity has also been established
[7]. This extended theory allows Schwarzschild-like solu-
tions and also leads to Einstein’s gravity in an adequate limit.
In addition, this theory also develops the same degrees of
freedom as Einstein’s gravity. This generalized model can
also be used to draw conclusions about Lovelock, quasi-
topological and Einsteinian cubic [8] theories. Furthermore,
it has been confirmed that any effective action of gravity the-
ory containing higher curvature terms can be made to resem-
ble the action of some generalized quasi-topological grav-
ity. Note that this can be accomplished if one redefines the
metric tensor [9]. Besides vacuum solutions [7], the charged
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solutions in generalized quasi-topological gravities have also
been found in Ref. [10]. It has also been proven that the
ensemble of cubic invariants referring to five dimensional
quasi-topological gravity, when expressed in four dimen-
sional spacetime, simplifies to the form that represents four
dimensional Einsteinian gravity with second order equations
of motion in the FLRW ansatz. Notably, the inflationary
period in this instance is entirely geometrical [11].

The holographic investigation of the conformal field the-
ories in various dimensions (greater than or equal to four)
may also be affordable in the backdrop of quasi-topological
gravity [5]. The lower non-zero value for the ratio between
the shear viscosity and entropy can also be found in a par-
ticular region of the continuum of quasi-topological grav-
itational couplings [12]. In the AdS/CFT correspondence,
quasi-topological gravity can offer sufficient coupling con-
stants that have a one-to-one correspondence with the central
charges, enabling the construction of gravitational space-
times [5,13–17]. Furthermore, since the terms of quasi-
topological gravity are not truly topological, so, the non-
trivial gravitational effects in fewer dimensions are also pos-
sible. Therefore, this theory has priority over the Lovelock
gravity [6]. The causality for the CFT can be sustained by
imposing certain constraints on the coupling constants of this
extended theory [18–20]. Thus, it might be very interesting
to study black holes and black branes in quasi-topological
gravity. In this context, quasi-topological black holes have
been investigated in the literature [4,5,21–23]. Two families
of solutions for the neutral and Maxwellian charged quasi-
topological black holes were derived in Refs. [6,24]. The
black hole solution in cubic quasi-topological gravity with
power-Maxwell source has been constructed in Ref. [25].
The solutions describing Lifshitz quartic quasi-topological
black holes were found in Ref. [26].

In this paper we investigate the hairy black holes of quartic
quasi-topological gravity. To achieve this we non-minimally
couple the scalar field with gravity by employing the tech-
nique discovered by Oliva and Ray [27]. This approach leads
to the development of numerous hairy black hole solutions
in different gravity theories, where the scalar field is well-
defined everywhere outside of the horizon while its back-
reaction onto the metric is captured analytically [28–32].
These solutions depict conformal hairy black holes in higher
dimensions where no-go results were observed [33]. It has
been shown that these objects have immensely rich thermo-
dynamic properties, such as isolated critical points and black
hole λ-lines [34,35]. Recently, charged hairy black holes in
the framework of quasi-topological gravity have also been
explored in Refs. [36,37].

The non-abelian Yang–Mills theory, which is employed
in the investigation of gauged AdS super-gravity theories,
is a modified form of abelian Maxwell’s theory. The con-
formal invariance allowed the Yang–Mills model to be tran-

sitioned from the dS4 to the finite cylinder I × S3 where
I = (−π/2, π/2) and S3 refers to the round sphere in three
dimensions. The dynamics of the Yang–Mills field in dS4 has
been observed to be simulated by geodesic motion in the infi-
nite dimensional space Mvac of gauge-inequivalent Yang–
Mills vacua on S3 [38]. This is true in the low energy limit,
wherein the momentum along I is much diminutive than S3.
The SU (N ) Yang–Mills formulation in extra dimensions has
also been examined as a basic plaything model of gauge-
Higgs unification. In this instance, the functional renormal-
ization group was put forward and the UV completeness of
the five dimensional Yang–Mills theory in regard to asymp-
totic safety concerning UV complete models of gauge-Higgs
unification has been looked over [39]. Meanwhile, the zero
temperature effective action associated with SU (2) Yang–
Mills theory has also been devised. The boundary condi-
tions that go along with this action reshaped the symme-
try of the four dimensional boundary at the origin into a
U (1)-complex scalar setup [40]. The Yang–Mills model has
also been analytically explored in the infrared (IR) limit by
deploying first principles [41]. The one-loop IR singularities
are shown to be caused by IR/UV assembling in regard to
the non-commutative SU (N ) Yang–Mills theory [42]. As a
result of magnetic monopoles and their condensation in a
dual superconductor scenario, quark confinement may also
be characterized by the Yang–Mills field. The abelian pro-
jection approach openly dissolves both the local and global
gauge symmetries as a consequence of partial gauge fix-
ing [43,44]. However, utilizing the novel gauge invariant
technique of Yang–Mills theory, the non-abelian magnetic
monopole can be effectively made available [45]. It should
be noticed that in the SU (3) Yang–Mills formulation, these
monopoles play a key role in the isolation of fundamen-
tal quarks. Moreover, topologically protected quantum com-
putations can make advantages of non-abelian excitations,
particularly the Majorana fermions [46–48]. The assump-
tion of Yang–Mills field as a source of gravity was given
in Ref. [50]. Under this assumption, a class of asymptoti-
cally flat spherically symmetric Yang–Mills solutions was
derived numerically. The black holes of Einstein’s gravity
with this source have been studied in Ref. [51]. Similarly,
Yang–Mills black holes with cosmological constant in Ein-
stein’s theory were studied in Refs. [52–54]. Other investi-
gations of black holes within this framework of Yang–Mills
field are in Refs. [55–58]. A new family of black holes in
Lovelock–Yang–Mills theory were also introduced in Ref.
[58]. By taking the Wu-Yang ansatz [59], the authors of Ref.
[60] derived the analytical solution describing black holes
in quasi-topological-Yang–Mills gravity. Instead of Yang–
Mills theory, one can also couple power-Yang–Mills theory
with gravity and explore black holes [61], i.e., to consider
the source as (F (a)

αβ F (a)αβ)q , where F (a)
αβ is the Yang–Mills

field with 1 ≤ a ≤ (d − 1)(d − 2)/2 and q is a parameter
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of nonlinearity. Using this idea, the black holes of Lovelock
gravity were studied and new third order Lovelock as well as
Gauss–Bonnet solutions were found [61]. Similarly, dimen-
sionally continued power-Yang–Mills black holes [62] and
Lovelock-power-Yang–Mills black holes surrounded by dark
fluid [63] have also been found recently. The thermal stabil-
ity and critical behaviour of the nonlinear Yang–Mills black
holes have also been recently examined [49]. Note that three
different nonlinear Yang–Mills models have been employed
for the construction of solutions describing these black holes
[49]. In this paper, we are taking the Wu-Yang ansatz [59]
for the study of power-Yang–Mills black holes with scalar
hair in quartic quasi-topological gravity.

The physics of black holes in pure Lovelock gravity
has attracted much attention from theoretical physicists.
Recently, black holes of this theory with different matter
sources have been studied in the literature [64–69]. It is
shown in Ref. [70] that the black hole of d = 3N + 1
dimensional pure Lovelock gravity is stable. A study related
to the ADM mass and quasi-local energy in this theory is
presented in Ref. [71]. Similarly, thermodynamic behaviour
and PV criticality of pure Lovelock black holes were also
investigated [72]. In addition to the Yang–Mills solution rep-
resenting black holes of quartic quasi-topological gravity,
the authors of Ref. [60] derived the Yang–Mills black hole
solution in pure quasi-topological theory as well. Motivated
by this work, we also discuss power-Yang–Mills hairy black
holes of pure quasi-topological theory in this paper.

Recently, rotating black branes in Einstein’s theory with
nonlinear electromagnetic sources have been studied [73].
The generalization of these nonlinearly charged rotating
black branes in Gauss–Bonnet gravity have also been worked
out [74]. Furthermore, thermodynamics of rotating Love-
lock black branes with Maxwell [75,76] and nonlinear elec-
tromagnetic sources [77–79] has also been probed. Simi-
larly, the rotating black branes of quasi-topological grav-
ity and their thermodynamic properties have been studied
[80,81]. In this paper, we investigate black branes of quar-
tic quasi-topological gravity when coupled with the power-
Yang–Mills field. A new class of Yang–Mills black branes
will also be recovered from our results when we put q = 1.

The outline of this paper is as follows. In Sect. 2, we
construct the action function associated with quartic quasi-
topological-scalar gravity and use the model of power-Yang–
Mills theory for the determination of new hairy black hole
solutions. In Sect. 3, we investigate the thermodynamic prop-
erties and validity of the first law for these objects. In Sect.
4, we work out the physical properties of power-Yang–Mills
hairy black holes in pure quasi-topological gravity. Thermo-
dynamic stability of these pure quasi-topological black holes
are discussed in Sect. 5. Further, Sect. 6 is devoted to the ther-
modynamic properties of power-Yang–Mills rotating black

branes and their associated conserved quantities. Finally, we
present some concluding remarks in Sect. 7.

2 Quartic quasi-topological black holes with
power-Yang–Mills source

The action describing the quartic quasi-topological gravity
coupled to Yang–Mills theory is given in Ref. [60]. Here,
we use the power-Yang–Mills field as a source and work for
new hairy black hole solutions in quartic quasi-topological
gravity. In this setup, we consider the N-parameters gauge
group G whose structure constants C (k)

(i)( j) are defined as

γi j = − �(i)( j)

|�|1/N
, (2.1)

where, i. j, k run from 1 to N , �(i)( j) = C (k)
(i)(l)C

(l)
( j)(k) and

� is its determinant. Thus, the action for the quartic quasi-
topological gravity coupled with the power-Yang–Mills the-
ory in higher spacetime dimensions is given by

I = 1

16π

∫
dd x

√−g

×
[
R − 2� + μ̃2L2 + μ̃3L3 + μ̃4L4 − �

q
]
, (2.2)

where � is the Yang–Mills invariant defined as

� = γabF
(a)
αβ F (b)αβ . (2.3)

Also, � denotes the cosmological constant, R refers to the
Ricci scalar and μ̃2, μ̃3 and μ̃4 are the coefficients of quasi-
topological gravity. Furthermore, L2, L3 and L4 denote the
Lagrangians for Gauss–Bonnet, the cubic and quartic quasi-
topological theories, respectively, and are expressed as [60]

L2 = Rμνγρ R
μνγρ − 4RμνR

μν + R2, (2.4)
L3 = Rρσ

μν R
αβ
ρσ R

μν
αβ

+ 1

8(2d − 3)(d − 4)

(
u1Rμνρσ R

μνρσ R

+u2Rμνρσ R
μνρ
α Rσα + u3Rμνρσ R

μρ Rνσ + u4R
ν
μR

ρ
ν R

μ
ρ

+u5R
ν
μR

μ
ν R + u6R

3), (2.5)

L4 = c1Rμνρσ R
ρσαβ Rκγ

αβ Rμν
κγ + c2Rμνρσ R

μνρσ Rαβ
αβ

+c3RRμνR
μρ Rν

ρ+c4
(
Rμνρσ R

μνρσ
)2+c5Rμν R

μρ Rρσ R
σν

+c6RRμνρσ R
μρ Rνσ + c7Rμνρσ R

μρ RναRσ
α

+c8Rμνρσ R
μραβ Rν

αR
σ
β

+c9Rμνρσ R
μρ Rαβ R

νασβ + c10R
4 + c11R

2Rμνρσ R
μνρσ

+c12R
2Rαβ R

αβ + c13Rμνρσ R
μναβ Rν

αβγ R
σγ

+c14Rμνρσ R
μαρβ Rκαγβ R

κνγ σ , (2.6)

where the coefficientsui ’s and ci ’s are given in the Appendix.
The Yang–Mills gauge field can be defined as

F (a) = d A(a) + 1

2η
C (a)

(b)(c)A
(b) ∧ A(c), (2.7)
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where η is the coupling constant while A(a) refers to Yang–
Mills potential of the SO(d − 1) gauge group. The structure
constants have been computed in Ref. [82]. Additionally, if
the conformal scalar field is non-minimally coupled with the
extended Euler densities, and can be described through the
fourth rank mixed tensor

Sγ δ
αβ = φ2Rγ δ

αβ − 2δ
[γ
[α δ

δ]
β]∇κφ∇κφ − 4φδ

[γ
[α ∇β]∇δ]φ

+8δ
[γ
[α ∇β]φ∇γ ]φ, (2.8)

then the action (2.2) can be generalized as

Ibulk = 1

16π

∫
dd x

√−g

[
R − 2� + μ̃2L2 + μ̃3L3

+ μ̃4L4 − �
q + 16π

(
b0φ

d S(0)

+ b1φ
d−4S(1) + b2φ

d−8S(2) + b̃3φ
d−12S(3)

qt

+ b̃4φ
d−16S(4)

qt

)]
,

(2.9)

where

S(0) = 1,

S(1) = S = gαβ Sαβ = gαβ Sσ
ασβ,

S(2) = S2 − 4Sαβ S
αβ + Sαβκγ S

αβκγ ,

(2.10)

S(3)
qt = Sρσ

μν S
αβ
ρσ S

μν
αβ + 1

8(2d − 3)(d − 4)

(
u1Sμνρσ S

μνρσ S

+u2Sμνρσ S
μνρ
α Sσα

+u3Sμνρσ S
μρ Sνσ + u4S

ν
μS

ρ
ν S

μ
ρ + u5S

ν
μS

μ
ν S + u6S

3),
(2.11)

S(4)
qt = c1Sμνρσ S

ρσαβ Sκγ
αβ Sμν

κγ + c2Sμνρσ S
μνρσ Sαβ

αβ

+c3SSμν S
μρ Sν

ρ + c4
(
Sμνρσ S

μνρσ
)2

+c5Sμν S
μρ Sρσ S

σν + c6SSμνρσ S
μρ Sνσ

+c7Sμνρσ S
μρ SναSσ

α + c8Sμνρσ S
μραβ Sν

αS
σ
β

+c9Sμνρσ S
μρ Sαβ S

νασβ + c10S
4 + c11S

2Sμνρσ S
μνρσ

+c12S
2Sαβ S

αβ + c13Sμνρσ S
μναβ Sν

αβγ S
σγ

+c14Sμνρσ S
μαρβ Sκαγβ S

κνγ σ . (2.12)

It is to be noted that the above tensor Sγ δ
αβ possesses the same

symmetries as the Riemann tensor. We take the metric ansatz
in d-dimensional spacetime as

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2

k, (2.13)

where

d�2
k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dθ2
1 + ∑d−2

j=2
∏ j−1

l=1 sin2 θldθ2
j , k = 1,

dθ2
1 + sinh2 θ1dθ2

2 + sinh2 θ1∑d−2
j=3

∏ j−1
l=2 sin2 θldθ2

j , k = −1,∑d−2
j=1 dφ2

j , k = 0,

(2.14)

stands for the metric of a (d − 2)-dimensional hyper-surface
of constant curvature (d−2)(d−3)k and volumeVd−2. Now,
using the line element (2.13) and the Lagrangian density of
power-Yang–Mills model i.e. LpY M = −�

q , it is possible to
write the energy-momentum tensor associated with power-
Yang–Mills field as

T (a)ν
μ =−1

2

[
δν
μ�

q−4q
(d−2)(d−1)/2∑

a=1

(
F (a)

μλ F (a)νλ

)
�

q−1
]
.

(2.15)

The variation of action (2.2) with respect to the gauge poten-
tials A(a) yields

d(�F (a)
�

q−1) + 1

η
C (a)

(b)(c)�
q−1A(b) ∧� F (c) = 0, (2.16)

where � denotes the duality. Now, using the line element
(2.13) and the Wu-Yang ansatz introduced in Refs. [59–62],
the power-Yang–Mills field equations [83,84] will be satis-
fied provided the gauge potential one-forms are expressed
as

A(a) = Q

r2C
(a)
(l)( j)x

ldx j , r2 =
d−1∑
l=1

x2
l . (2.17)

The parameter Q is proportional to the Yang–Mills magnetic
charge while 2 ≤ j +1 ≤ l ≤ d−1. For simplicity it is con-
venient to use di = d − i and redefine the quasi-topological
coefficients as

μ2 = d3d4μ̃2,

μ3 = d3d6(3d2
1 − 9d1 + 4)

8(2d − 3)
μ̃3,

μ4 = d1d2d4d8d
2
3 (d4

1 − 15d4
1 + 17d3

1

− 156d2
1 + 150d1 − 42)μ̃4.

(2.18)

Similarly, if we vary the action (2.9) with respect to the scalar
field, the scalar field equation can be obtained as

b0dφd1 + b1d2φ
d5S(1) + d4b2φ

d9S(2)

+ d3d2
6 (3d2 − 15d + 16)

8(2d − 3)
b̃3φ

d13 S(3)
qt

+(
d1d2d4d

2
8d

2
3 (d5

1−15d4
1+72d3

1−156d2
1+150d1−42)

)
b̃4φ

d17S(4)
qt = 0. (2.19)

We consider the scalar field as

φ = N

r
, (2.20)
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then Eq. (2.19) would be satisfied if the following equations
hold

b0dd1N
8 + b1d1d2(dd1 + 4)kN 6 + b2d1d2d3d4

(dd1 + 16)k2N 4 + b̃3d1d2d3d6(dd1 + 36)(3dd5 + 16)k3N 2

8(2d − 3)

+b̃4k
4d2

1d
2
2d

2
3d4d8

×(dd1 + 64)(d5
1 − 15d4

1 + 72d3
1 − 156d2

1

+150d1 − 42) = 0, (2.21)

b1d1d2N
6 + 2b2d1d2d3d4kN

4 + 3b̃3d1d2d3d6k2N 2

8(2d − 3)(3dd5 + 16)−1

+4b̃4k
3d2

1d
2
2d3d4d8(d

5
1 − 15d4

1 + 72d3
1 − 156d2

1

+150d1 − 42) = 0. (2.22)

The equations of motion describing gravitational field can be
obtained if we vary the action (2.2) with respect to the metric
tensor gμν . Thus, using Eqs. (2.16)–(2.18), (2.20)–(2.22) in
(2.2) one can get the following fourth-order equation

μ4�
4 + μ3�

3 + μ2�
2 + � + ϒ = 0, (2.23)

where � = (k − f (r))/r2 and

ϒ =
⎧⎨
⎩

− 2�
d1d2

− m
rd1

− 16πH
d2rd

− dq3 d
q−1
2 Q2q

(d1−4q)r4q , q �= d1
4

− 2�
d1d2

− 16πH
d2rd

− m
rd1

− Qd1/2d3
rd1

ln r, q = d1
4 .

(2.24)

The constant of integration m in the above equation is related
to mass of the gravitating object with power-Yang–Mills
magnetic charge, while the parameter H is defined through

H = b0N
d + d2d3b1kN

d2 + d2d3d4d5b2k
2Nd4

+ d2d3d6d7(3dd5 + 16)b̃3k3Nd6

8(2d − 3)

+ d1d
2
2d

2
3d4d8d9(d

5
1 − 15d4

1 + 72d3
1 − 156d2

1 + 150d1

− 42)b̃4k
4Nd8 .

(2.25)

The power-Yang–Mills quasi-topological solution can be
explicitly expressed from the polynomial equation (2.23) as

f (r) = k − r2 ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− μ3
4μ4

− 1
2

(
H1 −

√
2A2
H1

− 2y − 3A1
)
,

μ4 > 0

− μ3
4μ4

+ 1
2

(
H1 −

√
− 2A2

H1
− 2y − 3A1

)
,

μ4 < 0,

(2.26)

where

H1 = (
A1 + 2y

) 1
2 ,

A1 = μ2

4
− 3μ2

3

8μ2
4

,

H2 = − A3
1

108
+ A1Z

3
− A2

2

8
,

A2 = μ3
3

8μ3
4

− μ3μ2

2μ2
4

+ 1

μ4
,

Z = − 3μ4
3

256μ4
4

+ μ2μ
2
3

16μ3
4

− μ3

4μ2
4

+ ϒ

μ4
,

W =
(

− H2

2
±

√
H2

2

4
+ P

3

27

) 1
3

,

P = − A2
1

12
− Z,

(2.27)

and

y =
⎧⎨
⎩

− 5
6 A1 + W − P

3W , W �= 0

− 5
6 A1 + W − H

1
3

2 , W = 0.
(2.28)

It can be easily understood from (2.26) that the metric func-
tion describes solutions of the gravitational field equations
of two types for μ4 > 0 and μ4 < 0. It should be noted that
the parameter ϒ obtained in (2.24) becomes highly negative
for small values of the coordinate r . This makes the fourth
term in parameter Z as well as the parameter P of (2.27),
very large. In case μ4 < 0, this gives negatively large value
for P which yields an imaginary solution for W for small
values of r . Hence, we would not consider μ4 < 0. In order
to get the metric function (2.26) in simpler form, we assume
the special case μ2 = μ3 = 0. Thus, the power-Yang–Mills
quasi-topological solution for μ4 �= 0 becomes

f (r) = k − r2

2

[
∓

√
2�

1
3 + 2ϒ

3μ4�
1
3

±
√√√√−2�

1
3 ± 2

μ4

(
2�

1
3 + 2ϒ

3μ4�
1
3

)− 1
2 − 2ϒ

3μ4�
1
3

]
,

(2.29)

where

� = 1

16μ2
4

+
√

1

256μ4
4

− ϒ3

27μ3
4

. (2.30)

It should be noted that the upper sign in Eq. (2.29) corre-
sponds to the case μ4 > 0 while the lower sign is for μ4 < 0.
In the limit μ4 → 0, we can write the series expansion of
metric function (2.29) as

f (r) = k + ϒr2 + μ4ϒ
4r2 + 4μ2

4ϒ
7r2 + O((μ4)

8/3),

(2.31)
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where ϒ is given in Eq. (2.24). The above expansion implies
the Einstein-power-Yang–Mills solutions with some correc-
tions in μ4. The Ricci and Kretschmann invariants for the
metric ansatz (2.13) respectively take the forms

R =
[
d2d3

(
k − f (r)

r2

)
− f ′′(r) − 2d2

r
f ′(r)

]
, (2.32)

and

K=
[

2d2d3

(
k − f (r)

r2

)2

−(
f ′′(r)

)2+2d2

r2

(
f ′(r)

)2
]
.

(2.33)

The primes denote derivatives with respect to the coordi-
nate r . So, by using the metric function obtained for the case
μ4 > 0, it can easily be shown that both the scalars diverge
at the center r = 0. Hence, there is a true curvature singular-
ity at r = 0 for our power-Yang–Mills solutions. The hori-
zons of the black hole can be described from the condition
f (r+) = 0. Figure 1 shows the plot of the metric function
for different values of the mass parameter m. The values of
r for which the curve touches the horizontal axis correspond
to the horizon’s location. One can see that the black hole
with higher mass has smaller event horizon’s radius, how-
ever, when the mass parameter attains lower values the event
horizon’s radius increases. Figure 2 describes the behaviour
of solution (2.26) for various values of μ4. It can be observed
that for the fixed values of parameters d, m, �, k, Q, and
q, the values of horizons are affected by the parameter μ4.
However, at infinity the behaviour of the metric function does
not depend on parameter μ4. Furthermore, the dependence
of the solution on the Yang–Mills charge Q is presented in
Fig. 3. It is easily seen that the increase in Q shifts the loca-
tion of the event horizon towards the right. Similarly, the
behaviour of the resulting metric function for different val-
ues of the parameter q is demonstrated in Fig. 4. Furthermore,
the effects of the conformal coupling constants on solution
(2.26) can be analyzed from Fig. 5. One can conclude that
by increasing the values of b1, b2, b̃3 and b̃4, the event hori-
zon’s radius decreases. It is also worthwhile to note that, for
q = 1, the solution (2.26) reduces to the metric function
of Yang–Mills quasi-topological black hole with conformal
hair. Additionally, the power-Yang–Mills black hole solu-
tion without scalar hair can be obtained if one puts H = 0 in
Eq. (2.26).

3 Thermodynamics of quartic quasi-topological
power-Yang–Mills black holes

Now, we study the thermodynamic properties of the black
holes described by Eqs. (2.23)–(2.28). We can compute the

Fig. 1 Dependence of function f (r) (Eq. (2.26)) on the mass for fixed
values of d = 5, Q = 2, q = 2, k = 1, μ2 = −0.09, μ3 = −0.006,
μ4 = 0.0004, b0 = 1, b1 = 1, b2 = 1, b̃3 = 1, b̃4 = 1, N = 1, and
� = −1

Fig. 2 Plot of function f (r) (Eq. (2.26)) versus the parameter μ4 for
fixed values d = 7, m = 1.5, Q = 2, q = 2, k = 1, μ2 = −0.09,
μ3 = −0.006, b0 = 1, b1 = 1, b2 = 1, b̃3 = 1, b̃4 = 1, N = 1, and
� = −1

Fig. 3 Dependence of function f (r) (Eq. (2.26)) on the Yang–Mills
charge Q for fixed values of d = 7, m = 1.5, q = 2, k = 1, μ2 =
−0.09, μ3 = −0.006, μ4 = 0.03, b0 = 1, b1 = 1, b2 = 1, b̃3 = 1,
b̃4 = 1, N = 1, and � = −1

Arnowitt Deser Misner mass density with the help of sub-
traction method [85] as follows

M = d2

16π
m, (3.1)

123



Eur. Phys. J. C           (2023) 83:911 Page 7 of 19   911 

Fig. 4 Dependence of function f (r) (Eq. (2.26)) on the nonlinearity
parameter q for fixed values of d = 7, m = 1.5, Q = 1, k = 1,
μ2 = −0.09, μ3 = −0.006, μ4 = 0.03,μ4 = 0.03, b0 = 1, b1 = 1,
b2 = 1, b̃3 = 1, b̃4 = 1, N = 1, and � = −1

Fig. 5 Dependence of function f (r) (Eq. (2.26)) on the Yang–Mills
charge Q for fixed values of d = 11, q = 3, Q = 10, m = 7.5, k = 1,
μ2 = −0.09, μ3 = −0.006, μ4 = 0.03, N = 1, and � = −1

where the parameter m is given in Eq. (2.24). Hence, we can
write the value of M in terms of the outer horizon radius as

M =

⎧⎪⎪⎨
⎪⎪⎩

d2
16π

(
μ4k4rd9+ + μ3k3rd7+ + μ2k2rd5+ + krd3+ − 2�r

d1+
d1d2

− 16πH
d2r+ − dq−1

2 dq3 Q
2qr

d1−4q
+

(d1−4q)

)
, q �= d1

4 ,

d2
16π

(
μ4k4rd9+ + μ3k3rd7+ + μ2k2rd5+ + krd3+ − 2�r

d1+
d1d2

− 16πH
d2r+ − Qd1/2d3 ln r+

)
, q = d1

4 .

(3.2)

The Yang–Mills charge corresponding to the black hole
(2.26) can be computed through the Gauss law as

Q̃ = 1

4π
√
d2d3

∫
dd−2r

√√√√d2d1/2∑
a=1

(
F (a)

μλ F (a)νλ

)
= Q

4π
.

(3.3)

Using the condition f (r+) = 0 and differentiating the poly-
nomial equation (2.23) yields the Hawking temperature as

TH (r+) = r9+W1(r+) − 2k�1(r+)

4πr+�1(r+)
, (3.4)

where

�1(r+) = r6+ + 2μ2kr
4+ + 3μ3k

2r2+ + 4μ4k
3, (3.5)

W1(r+) = μ4k4d1

r9+
+ μ3k3d1

r7+
+ μ2k2d1

r5+
+ kd1

r3+
− 2�

d2r+

− 16πH

d2r
d+1+

− Y(r+), (3.6)

and

Y(r+) =

⎧⎪⎨
⎪⎩

dq−1
2 dq3 Q

2q

r4q+1
+

, q �= d1
4 ,

Qd1/2d3

rd+
, q = d1

4 .

(3.7)

Following Ref. [86], we compute the entropy density as

S = rd2+
4

+ d2kμ2r
d4+

2d4
+ 3d2k2μ3r

d6+
4d6

+ d2k3μ4r
d8+

d8
+ b1

4
Nd2

+ kb2d3d2Nd4

2
+ 3d2d3(3dd5 + 16)k2b̃3Nd6

32(2d − 3)
+ d1d

2
2d

2
3d4

× (d5
1 − 15d4

1 + 72d3
1 − 156d2

1 + 150d1 − 42)b̃4k
3Nd8 .

(3.8)

Consideration of mass M as a function of entropy S and
charge Q̃ enables us to construct the first law as

dM = THdS + Ud Q̃, (3.9)

where TH =
(

∂M
∂S

)
Q̃

and U =
(

∂M
∂ Q̃

)
S

. The calculations

show that the same form of temperature i.e. (3.4) can be
obtained from this relation. Moreover, the potential associ-
ated with power-Yang–Mills field can be found as follows:

U=
(

∂M

∂ Q̃

)
S
=

⎧⎨
⎩

− qdq2 d
q
3 (4π Q̃)2q−1

8π(d1−4q)
rd1−4q
+ , q �= d1

4 ,

− d1d2d3(4π Q̃)d3/2

32π
ln r+, q= d1

4 ,

(3.10)

The charge Q̃ should be fixed in the canonical ensemble and
the thermodynamic stability can be examined by assuming
small variations of the entropy. Hence, thermodynamic sta-
bility would be guaranteed if the specific heat is positive.
The specific heat capacity at a constant Yang–Mills charge
Q̃ can be computed from CH = TH ( ∂S

∂TH
)Q̃ . So, from Eqs.

(3.4)–(3.8), we can calculate the heat capacity in the form

CH =
�1(r+)�3(r+)

(
r10+ W1(r+) − 2kr+�1(r+)

)
4
(
2k�2

1(r+) + r10+ �1(r+)W ′
1(r+) + �2(r+)W1(r+)

) ,

(3.11)
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Fig. 6 Dependence of heat capacity CH (Eq. (3.11)) on the Yang–
Mills charge Q̃ = Q/4π for fixed values of d = 9, q = 5, k = 1,
μ2 = −0.9, μ3 = −0.6, μ4 = 0.005, b0 = 1, b1 = 1, b2 = 1, b̃3 = 1,
b̃4 = 1, N = 1, and � = −1

Fig. 7 Dependence of heat capacity CH (Eq. (3.11)) on the parameter
q for fixed values of d = 7, Q = 1, k = 1, μ2 = −0.9, μ3 = −0.6,
μ4 = 0.05, b0 = 1, b1 = 1, b2 = 1, b̃3 = 1, b̃4 = 1, N = 1, and
� = −1

where

W ′
1(r+) = −9μ4k4d1

r10+
− 7μ3k3d1

r8+
− 5k2d1μ2

r6+
− 3kd1

r4+

+ 2�

d1r2+
+ 16πH(d + 1)

d2r
d+2+

+ Y1(r+), (3.12)

Y1(r+) =

⎧⎪⎨
⎪⎩

(4q+1)dq−1
2 dq3 (4π Q̃)2q

r4q+2
+

, q �= d1
4 ,

dd3(4π Q̃)d1/2

rd+1+
, q = d1

4 ,
(3.13)

�2(r+) = 2r15+ + 8μ2kr
13+ + 18μ3k

2r11+ + 32μ4k
3r9+,

(3.14)

and

�3(r+) = d2r
d3+ + 2d2kμ2r

d5+ + 3d2k
2μ3r

d7+
+ 4d2k

3μ4r
d9+ .

(3.15)

The behaviour of heat capacity depending on outer horizon
r+ for various values of charge Q̃ = Q/4π is given in Fig. 6.
The region where this quantity is positive implies black hole
stability in this ensemble. It is also worthwhile to note that
the points at which this quantity vanishes indicate the possi-

Fig. 8 Dependence of heat capacity CH (Eq. (3.11)) on the parameter
μ4 for fixed values of d = 9, q = 5, k = 1, Q = 1, μ2 = −0.9,
μ3 = −0.6, b0 = 1, b1 = 1, b2 = 1, b̃3 = 1, b̃4 = 1, N = 1, and
� = −1

Fig. 9 Dependence of heat capacity CH (Eq. (3.11)) on the conformal
coupling parameters for fixed values of d = 9, q = 5, k = 1, μ2 =
−0.9, μ3 = −0.6, μ4 = 0.5, N = 1, and � = 1

bility of first order phase transitions. However, those values
for which it is infinite correspond to the possibility of sec-
ond order phase transitions. It can be observed that as charge
Q increases, the outer horizon radius corresponding to the
infinite heat capacity is changing its location. Additionally,
Fig. 7 shows the corresponding plot for different values of
parameter q. The case q = 1 corresponds to the heat capac-
ity of Yang–Mills hairy black hole in this gravity theory. It
is concluded that the heat capacity has three singular points
r1,2,3 such that r1 < r2 < r3 for any value of the param-
eter q. It is observed that the hairy black hole whose outer
horizon r+ belongs to the region (0, r1) ∪ (r1, r2) is locally
stable. On the other hand, there exist two zeros rc,d of CH

in the interval (r2, r3) such that the black hole is unstable in
the subinterval (r2, rc)∪ (rc, rd), and stable in (rd , r3). It can
also be observed that the increase in q shifts the locations of
these singular points to the right. The graph of heat capacity
for multiple values of μ4 is presented in Fig. 8. It provides
a clear view of the local stability and instability zones. Fur-
thermore, Fig. 9 illustrates the consequences of the conformal
coupling constants on the local stability of hairy black holes.
When it comes to the grand canonical ensemble, both the
charge Q and entropy S should be treated as variables. In
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Fig. 10 Plot of detH (Eq. (3.18)) for different values of the Yang–
Mills charge Q̃ = Q/4π and fixed values of d = 9, q = 5, k = 1,
μ2 = −0.9, μ3 = −0.6, μ4 = 0.5, b0 = 3, b1 = 0.9, b2 = 2,
b̃3 = 0.1, b̃4 = 1, and � = −1

addition to specific heat and Hawking temperature, the local
thermodynamic stability can be guaranteed from the positiv-
ity of ∂2M/∂ Q̃2 and the determinant of the Hessian matrix
[87,88]. The determinant of the Hessian matrix is given by

detH =
(

∂2M

∂S2

)(
∂2M

∂ Q̃2

)
−

(
∂2M

∂S∂ Q̃

)2

. (3.16)

If we compute

(
∂2M
∂ Q̃2

)
for our resulting solution, we have

(
∂2M

∂ Q̃2

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− q(2q−1)dq2 d
q
3 (4π)2q (Q̃)2q−2

8π(d1−4q)
rd1−4q
+ ,

q �= d1
4 ,

− d1d2d2
3 (4π)d3/2(Q̃)d5/2

64π
ln r+,

q = d1
4 .

(3.17)

This equation shows that the parameter

(
∂2M
∂ Q̃2

)
is negative

for d1 > 4q when 2q ≥ 1 and so the black hole would
be unstable in this ensemble. However, for the spacetime
dimensions satisfying d1 < 4q it is positive and so ther-
mal stability will be determined from the behaviour of the
Hessian matrix. It should be noted that, when the spacetime
dimensions satisfy q = d1/4, then the black hole is unstable
in grand canonical ensemble. Furthermore, the case q = 1 in
Eq. (3.17) also corresponds to the instability of Yang–Mills
quasi-topological black hole [60]. Thus for q > d1/4, one
can compute the Hessian matrix determinant as

detH = q(2q − 1)
(
2k�2

1(r+) + r10+ �1(r+)W ′
1(r+) + W1(r+)�2(r+)

)
dq2 d

q
3 (4π)2q Q̃2q−2

8π2r4q−d3+ (4q − d1)�
2
1(r+)�3(r+)

− 4d2q−2
2 d2q

3 q2(4π Q̃)4q−2

r8q−14
+ �2

1(r+)
.

(3.18)

Figures 10, 11, 12 and 13 describe the plots of detH in
terms of the outer horizon when q > d1/4. These plots

Fig. 11 Dependence of detH (Eq. (3.18)) on the parameter q for fixed
values of d = 9, Q = 0.3, k = 1, μ2 = −0.9, μ3 = −0.6, μ4 = 0.5,
b0 = 3, b1 = 0.9, b2 = 2, b̃3 = 0.1, b̃4 = 1, and � = −1

indicate that the power-Yang–Mills black holes of smaller
outer horizons can be thermodynamically stable in the grand
canonical ensemble because the associated determinant of
the Hessian matrix could be positive when q > d1/4. How-
ever, as r+ increases this quantity is negative and so we have
instability of black holes. Furthermore, Fig. 13 shows that the
scalar field has also a significant impact on the stability of
smaller objects.

4 Pure quasi-topological black holes with
power-Yang–Mills source

Now, we want to determine a new class of hairy black hole
solutions in pure quasi-topological gravity. In order to do
this, we set R = L2 = L3 = 0, so that the action becomes

Ibulk = 1

16π

∫
dd x

√−g

[
− 2� + μ̃4L4 − �

q

+16π

(
b0φ

d S(0) + b1φ
d−4S(1) + b2φ

d−8S(2)

+b̃3φ
d−12S(3)

qt + b̃4φ
d−16S(4)

qt

)]
, (4.1)

while, the field equation (2.23) reduces to

μ4�
4 + ϒ = 0, (4.2)

where � = (k − f (r))/r2 and ϒ was defined in (2.24).
Hence, the solution in this case can be obtained as
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Fig. 12 Plot of detH (Eq. (3.18)) for various values of μ4 and fixed
values of d = 9, Q = 0.3, q = 5, k = 1, μ2 = −0.9, μ3 = −0.6,
b0 = 3, b1 = 0.9, b2 = 2, b̃3 = 0.1, b̃4 = 1, and � = −1

Fig. 13 Dependence of detH (Eq. (3.18)) on the conformal scalar field
for fixed values of d = 9, Q = 0.3, k = 1, q = 5, μ2 = −0.9,
μ3 = −0.6, μ4 = 0.1, and � = −1

f (r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k ∓ r
3
2

μ4

[
μ3

4

( 2�r2

d1d2
+ m

rd3
+ 16πH

d2rd2
+ dq3 d

q−1
2 Q2q

(d1−4q)r4q−2

)] 1
4 ,

q �= d1
4 ,

k ∓ r
3
2

μ4

[
μ3

4

( 2�r2

d1d2
+ m

rd3
+ 16πH

d2rd2
+ Qd1/2d3 ln r

rd−3

)] 1
4 ,

q = d1
4 .

(4.3)

For obtaining real solutions, we take � > 0 and μ4 > 0.
Since the spacetime dimension d = 9 produces negative
value for μ4 while other choices of d lead to positive values,
so it is convenient to ignore the case of d = 9. Our numerical
calculations show that for the determination of black hole
solution, one needs to take d > 9. In the limit r → ∞,
the metric function corresponding to pure quasi-topological-
power-Yang–Mills solution tends to

f (r) = k ∓
(

2�

μ4d1d2

) 1
4

r2. (4.4)

Note that, the minus and plus signs are defined respectively
for k = 1 and k = −1, whereas the other cases lead to
naked singularity. Thus, the choice � > 0 in this metric
function may describe asymptotically AdS and dS pure quasi-
topological black holes with k = −1 and k = 1, respectively.

Fig. 14 Dependence of f (r) (Eq. (4.3)) on the parameter q when d =
11, Q = 10, m = 1, k = −1, N = 1, μ4 = 109, b0 = 1, b1 = 1,
b2 = 1, b̃3 = 1, b̃4 = 1, and � = 1

These power-Yang–Mills black holes possess horizons, if the
equation f (r) = 0 has positive real roots. Hence, on the basis
of appropriate choices for the parameters d, m, Q, � and μ4,
the pure quasi-topological solution can describe a black hole
having one or more horizons. In this regard, we plot metric
function (4.3) as a function of r with � = 1 in Figs. 14,
15, 16 and 17. The horizons of the black hole are given by
those spots where the curve surpasses the horizontal axis.
It may be noted that for k = −1 and d > 9, the solution
(4.3) describes AdS black hole with at most three horizons,
an extreme dS black hole and a naked singularity. It is also
shown that the nonlinearity parameter q and conformal cou-
pling parameters affect the horizon structure of the black
hole. The case q = 1 in Eq. (4.3) corresponds to the solution
of the hairy black hole in pure quasi-topological gravity with
Yang–Mills source. Figure 16 shows the behaviour of metric
function (4.3) for various values of the conformal parameters.
Additionally, in Fig. 17, the smaller roots of f (r) = 0 are
associated with the black hole horizons, whereas the larger
one corresponds to the cosmological horizon. It can also be
verified that for a positive value of quasi-topological param-
eter μ4, the Kretschmann scalar associated with pure quasi-
topological solution in the vicinity of r = 0 takes the form
as

K ∝
(
m

μ4

)1/2

r−(d1)/2, (4.5)

which diverges at r = 0. Therefore, the pure quasi-
topological power-Yang–Mills black hole has an essential
central singularity.

5 Thermodynamics of pure quasi-topological
power-Yang–Mills black holes

In order to study thermodynamic properties of pure quasi-
topological hairy black holes described by metric function
(4.3) we will work out various thermodynamic quantities. In
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Fig. 15 Dependence of f (r) (Eq. (4.3)) on μ4 when d = 11, q = 3,
k = −1, m = 1, Q = 1, N = 1, b0 = 1, b1 = 1, b2 = 1, b̃3 = 1,
b̃4 = 1, and � = 1

Fig. 16 Dependence of f (r) (Eq. (4.3)) on the conformal scalar field
when d = 11, Q = 10, q = 3, k = −1, m = 1, N = 1, and � = 1

Fig. 17 Dependence of the dS solution (Eq. (4.3)) on the parameter q
when d = 11, Q = 10, k = 1, m = 1, μ4 = 109, N = 1, b0 = 1,
b1 = 1, b2 = 1, b̃3 = 1, b̃4 = 1, and � = 1

this case too, the mass density follows from Eq. (3.1) and, as
a function of outer horizon, it can be obtained as

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2
16π

(
μ4k

4rd9+ − 2�r
d1+

d1d2
− 16πH

d2r+ − dq3 d
q−1
2 Q2qr

d1−4q
+

d1−4q

)
,

q �= d1
4 ,

d2
16π

(
μ4k

4rd9+ − 2�r
d1+

d1d2
− 16πH

d2r+ − d3Q
d1/2 ln r+

)
,

q = d1
4 .

(5.1)

Fig. 18 Dependence of heat capacity CH (Eq. (5.5)) on the Yang–
Mills magnetic charge Q̃ = Q/4π for fixed values of d = 11, q = 6,
k = −1, μ4 = 109, b0 = 2, b1 = 0.9, b2 = 2, b̃3 = 0.5, b̃4 = 1, and
� = 1

Using the condition f (r+) = 0 and the polynomial equation
(4.2), it is straightforward to obtain Hawking temperature as

TH =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4π

[
r8+

4μ4k3

(
μ4k4d1
r9+

− 2�
d2r+ + 16πH

d2r
d+1+

− dq3 d
q−1
2 Q2q

r4q+1
+

)

− 2k
r+

]
q �= d1

4 ,

1
4π

[
r8+

4μ4k3

(
μ4k4d1
r9+

− 2�
d2r+ + 16πH

d2r
d+1+

− d3Qd1/2

rd+

)

− 2k
r+

]
, q = d1

4 .

(5.2)

Again, using the same technique as in Ref. [86], the entropy
density of pure quasi-topological black hole can be calculated
as

S = d2k3μ4r
d8+

d8
+ b1

4
Nd2 + kb2d2d3Nd4

2

+ 3d2d3(3dd5 + 16)k2b̃3Nd6

32(2d − 3)

+ (d5
1 − 15d4

1 + 72d3
1 − 156d2

1 + 150d1 − 42)

d1d
2
2d

2
3d4b̃4k

3Nd8 .

(5.3)

Our calculations show that the temperature (5.2) is equal

to

(
∂M
∂S

)
. Thus, the power-Yang–Mills black holes in pure

quasi-topological gravity also fulfill the first law of thermo-
dynamics (3.9), provided that the power-Yang–Mills poten-
tial associated with (4.3) is given by

U = ∂M

∂ Q̃
=

⎧⎨
⎩

− qdq3 d
q
2 (4π Q̃)2q−1r

d1−4q
+

8π(d1−4q)
, q �= d1

4 ,

− d1d2d3
32π

(4π Q̃)d3/2 ln r+, q = d1
4 .

(5.4)

The heat capacity can be obtained as
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Fig. 19 Plot of heat capacity CH (Eq. (5.5)) for different values of the
nonlinearity parameter q. The other parameters are selected as d = 11,
Q = 1, k = −1, μ4 = 109, b0 = 2, b1 = 0.9, b2 = 2, b̃3 = 0.5,
b̃4 = 0.05, and � = 1

Fig. 20 Dependence of heat capacity CH (Eq. (5.5)) on the parameter
μ4. The other particular values are taken as d = 11, Q = 1, k = −1,
q = 6, b0 = 3, b1 = 0.9, b2 = 2, b̃3 = 0.5, b̃4 = 0.05, and � = 1

Fig. 21 Dependence of heat capacity CH (Eq. (5.5)) on the conformal
coupling constants with d = 11, q = 6, Q = 1, k = −1, μ4 = 109,
and � = 1. Furthermore, we have chosen b0 = 1, b1 = 0.5, b2 = 1
for black curve, b0 = 2, b1 = 0.7, b2 = 1.5 for red curve and b0 = 3,
b1 = 0.9, b2 = 2 for blue curve

CH = TH

(
∂S
∂TH

)
Q̃

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2k3μ4r
d8+

(
d2k4μ4d9r

4q−8
+ −2�r4q

+ +16πHr4q−d
+ −dq3 d

q
2 Q

2q
)

(
(4q−7)dq2 d

q
3 Q

2q−14�r4q
+ −16πHd7r

4q−d
+ −μ4k4d2d9r

4q−8
+

) , q �= d1
4 ,

d2k3μ4r
d8+

(
μ4k4d2d9r

d9+ −2�r
d1+ +16πHr−1+ −d2d3Qd1/2

)
(
Qd1/2d2d3d8−14�r

d1+ −16πHd7r
−1+ −k4μ4d2d9r

d9+
) , q = d1

4 .

(5.5)

Note that, the parameter Q is related to Yang–Mills charge
Q̃ through Eq. (3.3). The above expression reduces to the
heat capacity of Yang–Mills hairy black holes in pure quasi-

topological gravity when q = 1. The local stability of power-
Yang–Mills black holes (i.e. when q �= 1) can be described
from the plot of heat capacity as a function of r+. Figure 18
shows the plot of heat capacity for different values of Q and
fixed values of other parameters involved in the associated
expression of this quantity. The region in which this thermo-
dynamic quantity is positive corresponds to local stability
while its negativity implies local instability of pure quasi-
topological black holes. One can see that the horizon radius
associated with infinite heat capacity, say rc, gets larger when
Yang–Mills magnetic charge increases. It is worth noting that
the black holes whose outer horizons are greater than rc are
stable. Furthermore, size of the smallest possible stable black
holes also grows when this parameter attains greater values.
Similarly, Fig. 19 depicts the behaviour of this quantity for
different values of the parameter q. One can analyze that
for power-Yang–Mills hairy black holes, there exist regions
of local stability in the canonical ensemble. This is in con-
trast to the non-hairy Yang–Mills black holes of pure quasi-
topological gravity which are locally unstable. Hence, the
nonlinearity of Yang–Mills field induces certain affects on
the local thermodynamic stability of black holes. Addition-
ally, Figs. 20 and 21 respectively demonstrate the effects of
quasi-topological parameter μ4 and conformal coupling con-
stants on the local stability of pure quasi-topological black
holes. It is shown that the heat capacity rises when these
parameters get larger values.

In the grand canonical ensemble, the entropyS and charge
Q̃ should be considered as variables. In this ensemble, the
local thermodynamic stability can be determined from the
positivity of both

(
∂2M/∂ Q̃2

)
and the determinant of the

Hessian matrix. Using the above value of mass in (5.1) we
can compute

(
∂2M

∂Q2

)
=

⎧⎨
⎩

− q(2q−1)dq3 d
q
2 (4π)2q Q̃2q−2

8π(d1−4q)
rd1−4q
+ , q �= d1

4 ,

− d1d2d2
3 (4π)2q Q̃d5/2

64 ln r+, q = d1
4 .

(5.6)

The above quantity is negative when q = 1 and q ≤ d1/4.
Thus, for these two choices the black hole is unstable in
this ensemble. However, for q > d1/4, the above quantity is
positive and so we need to check the behaviour of the Hessian
matrix determinant for the investigation of thermal stability.
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Fig. 22 Dependence of the determinant detH (Eq. (5.7)) on the charge
Q̃ for fixed values of d = 11, q = 4, k = −1, μ4 = 109, b0 = −2,
b1 = 0.9, b2 = 2, b̃3 = 0.5, b̃4 = 1, and � = 1

The determinant of Hessian matrix for q > d1/4 in terms of
the outer horizon can be computed as

detH = 55
qdq2 d

q
3 (2q − 1)(4π Q̃)2q−2rd1−4q

+
8(d1 − 4q)μ2

4k
6d2

×
[
μ4k4d9

rd7+
+ 14�

d2r
d15+

− 16πHd7

d2r
2d−15+

+ d2q − 1dq3 (4π Q̃)2q(4q − 7)

r4q+d15+

]

− d2q
3 d2q−2

2 q2(4π Q̃)4q−2

4μ2
4k

6r8q−14
+

. (5.7)

The plot of detH for various values of charge Q̃ = Q/4π

is shown in Fig. 22. One can observe that as the Yang–Mills
charge increases, the horizon radius of the largest stable black
hole also increases. Similarly, the behaviour of this deter-
minant for different values of nonlinearity parameter q and
quasi-topological parameter μ4 is given in Figs. 23 and 24,
respectively. It can also be analyzed that there exists a value
r0 such that detH is positive when r+ < r0. This indicates
the region of black hole’s stability. However, as r+ increases
its value from r0, this determinant becomes negative and
we have thermodynamic instability in the grand canonical
ensemble. Finally, we conclude that unlike Yang–Mills black
holes [60] of pure quasi-topological gravity, the power-Yang–
Mills black holes with conformal scalar hair in this theory
could be thermodynamically stable in the grand canonical
ensemble.

6 Rotating black branes in quartic quasi-topological
gravity with power-Yang–Mills source

In this section we will implement solution (2.26) for k =
0 with a global rotation. This can be done, if we use the

Fig. 23 Dependence of the determinant detH (Eq. (5.7)) on the param-
eter q for fixed values of d = 11, Q̃ = 10, k = −1, μ4 = 109, b0 = −2,
b1 = 0.9, b2 = 2, b̃3 = 0.5, b̃4 = 1, and � = 1

Fig. 24 Dependence of the determinant detH (Eq. (5.7)) on the param-
eter μ4 for fixed values of d = 11, q = 4, k = −1, Q̃ = 100, b0 = −2,
b1 = 0.9, b2 = 2, b̃3 = 0.5, b̃4 = 1, and � = 1

transformation describing the rotation boost in the t − φi

planes, i.e.,

t �−→ �t −
p∑

i=1

aiφi ,

φi �−→ �φi − ai
l2
t. (6.1)

The SO(d1) rotation group in d-dimensions contains the
maximum number of rotational parameters. Hence, the inde-
pendent parameters of rotation are of number [d1/2], where
[...] stands for the integer part. Thus, the line element for the
rotating spacetime with flat horizon and p ≤ [d1/2] rotation
parameters can be given as

ds2 = − f (r)
(
�dt −

p∑
i=1

aidφi
)2 + dr2

f (r)

+r2

l4

p∑
i=1

(
aidt − �l2dφi

)2

−r2

l2

p∑
i< j

(
aidφ j − a jdφi

)2 + r2
d2−p∑
i=1

dx2
i , (6.2)
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Fig. 25 Dependence of the solution f (r) (Eq. (2.26)) on the parameter
Q for fixed values of d = 11, m = 1, q = 7, H = 0, k = 0,
μ2 = −0.09, μ3 = −0.006, μ4 = 210, and � = −1

Fig. 26 Plot of the solution f (r) (Eq. (2.26)) for different values of
the parameter q and fixed values d = 11, H = 0, m = 0.5, Q = 2,
k = 0, μ2 = −0.09, μ3 = −0.006, μ4 = 107, and � = −1

where � =
√

1 + ∑p
i=1 a

2
i / l

2, l is a scale factor related to
cosmological constant and ai ’s are the p parameters of rota-
tion. It should be noted that static line element (2.13) and
rotating metric (6.2) can be mapped locally onto each other,
not globally. In order to study the physical properties of the
solutions obtained for k = 0 in quartic quasi-topological
gravity coupled to power-Yang–Mills theory, we plot the met-
ric function f (r) for suitable values of parameters involved
in it. It is worth noting that for k = 0, the parameter H van-
ishes and the solutions have no scalar hair. In Figs. 25, 26
and 27, it is clear that the metric function possesses diver-
gences at the central position r = 0. One can also verify that
the Kretschmann scalar diverges at this point. However, as r
becomes larger and larger, the behaviour of f (r) is depen-
dent on the value of the cosmological constant �. Moreover,
Figs. 25, 26 and 27 show the behaviour of the metric func-
tion for different values of parameters Q, q and μ4 in AdS
spacetime. One can see that these parameters are affecting the
values of the horizons, and behaviour of the metric function.

Fig. 27 Dependence of the solution f (r) (Eq. (2.26)) on the parameter
μ4 for fixed values of d = 11, H = 0, m = 0.5, Q = 2, k = 0,
μ2 = −0.09, μ3 = −0.006, and � = −1

Now, the Killing vector associated with the rotating black
brane metric can be defined as

X = ∂t +
p∑

j=1

� j∂φ j , (6.3)

where � j refers to the angular velocity and is given by

� j = −
(

gtφ j

gφ jφ j

)
= a j

�l2
. (6.4)

The expression for Hawking temperature associated with this
rotating black brane takes the form

TH (r+) = f ′(r+)

4π�
= r2+

4π�
ϒ ′(r+). (6.5)

During the computation of thermodynamic quantities from
the variation of action (2.2) with respect to metric tensor, one
gets a total derivative surface term containing the derivatives
of δgμν normal to the boundary. Since these derivative terms
do not cancel with each other, so, the variation of the action
is not well-defined. To handle this issue, it is convenient to
add the generalized Gibbons–Hawking surface term Ib with
the bulk action (2.2). Thus, the variational principle would
be well-defined if this boundary term can be included in the
following form

Ib = I(I )
b + I(I I )

b + I(I I I )
b + I(I V )

b , (6.6)

where I(I )
b , I(I I )

b , I(I I I )
b and I(I V )

b respectively, stand for the
surface terms corresponding to Einstein [89], second order
Lovelock (Gauss–Bonnet) [5,90], cubic quasi-topological
[91] and quartic quasi-topological [92] gravities. These terms
are obtained as

I(I )
b = 1

8π

∫
∂M

dd1x
√−γK, (6.7)

I(I I )
b = 1

8π

∫
∂M

dd1x
√−γ

2μ̃2l2

3d3d4

(
3KKadKad

−2KacKcdKa
d − K3), (6.8)
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I(I I I )
b = 1

8π

∫
∂M

dd1x
√−γ

[
3μ̃3l4

5d1d2
2d3d6

(
d1K5

−2K3KadKad + 4d2KabKabKcdKd
eKec

−(5d1 − 6)KKab
(
d1KabKcdKcd − d2KacKbdKcd

))]
,

(6.9)

and

I(I V )
b = 1

8π

∫
∂M

dd1 x
√−γ

×
[

2μ̃4l6

7d1d2d3d8(d2
1 − 3d1 + 3)

(
α1K3KabKacKbdKcd

+ α2K2KabKabKcdKe
cKde + α3K2KabKacKbdKceKd

e

+ α4KKabKabKcdKe
cK f

d Ke f + α5KKabKc
aKbcKdeK f

d Ke f

+ α6KKabKacKbdKceKd f Ke f + α7KabKc
a

KbcKdeKd f KegK f g
)]

,

(6.10)

where γab refers to the induced metric tensor on the bound-
ary ∂M while K stands for the trace of the extrinsic curva-
ture Kab of this boundary. Note that these boundary terms
are valid for the case of any rotating black branes of quartic
quasi-topological theory, however, if the horizon boundary of
the object is not flat then the corresponding surface terms of
Gauss–Bonnet and quasi-topological gravities would be dif-
ferent from Eqs. (6.8)–(6.10). It is worthwhile to note that the
value of the total action Ibulk +Ib is infinite on the solutions.
However, this divergence can be removed with the help of
the counter-term method [93–96]. Note that the infiniteness
of the action can also be tackled through the employment of
background subtraction technique [97,98]. In this method,
the boundary surface must be embedded in a different back-
drop geometry against which all the quasi-local quantities
are calculated. This backdrop spacetime can be encompassed
into the bulk action through the adoption of terms that per-
tain to the extrinsic curvature of the embedded surface. This
approach makes the physical quantities heavily dependent on
the selection of the backdrop geometry. The boundary sur-
face can usually not be incorporated into a backdrop space-
time. Subsequently, for the scenario of asymptotically AdS
solutions, it might be more practical to employ the counter-
term method suggested by AdS/CFT correspondence [99].
Using this notion, we might compute the action and the con-
served quantities intrinsically that do not rely on any back-
drop geometry. The curvature invariants of the induced line
element would be considered on the boundary in this situa-
tion. For an identified value of d, there are a huge number of
achievable invariants, though only a finite number of terms
have nonzero impacts on the boundary. Note that the bound-
ary would expand to infinity. This technique has also been
utilized for determining the conserved quantities of various

gravitational objects, e.g. rotating black holes, black holes
having NUT charge, topological black holes, and rotating
black branes [100,101]. Though the counter-term technique
is frequently employed for the situations involving infinite
boundaries, it may also be applied to estimate the conserved
quantities in the scenario of finite boundaries [102,103]. The
same approach has also been advanced to dS and asymptoti-
cally flat spacetimes [104–106]. It should be underlined that
there would only be a finite number of terms for any specific
value of d that are not vanishing at infinity. This fact holds
true regardless of the choice of the bulk theory. Remember
that, for asymptotically AdS solutions, the counter-terms that
eliminate the infiniteness of the action in Einstein’s gravity
should also erase the corresponding divergences in Love-
lock and quasi-topological gravities. There have not yet been
any rotating solutions with curved boundary at infinity in the
scheme of quartic quasi-topological gravity. In light of this,
we are limiting ourselves to the counter-terms associated with
the rotating black branes. These objects have flat boundaries,
hence the counter-term action with only one term is offered
by

Icount = − 1

8π

∫
∂M

dd1x
√−γ

(
d2

Lef f

)
, (6.11)

where Lef f describes the effective scale length factor related
to l and parameters μ̃2, μ̃3 and μ̃4. Note that, Lef f reduces
to l when the coupling constants i.e. μ̃2, μ̃3 and μ̃4 approach
zero. Using the counter-term method, the overall action
Ibulk+Ib+Icount becomes finite and can be used to compute
the conserved and thermodynamic quantities.

The conserved quantities related to the timelike ∂t and
rotational ∂φ j Killing vector fields can be computed as

M = (d1�
2 − 1)m

16πd2ld2
, (6.12)

Ji = d1�aim

16πd2ld2
. (6.13)

One can clearly see that by choosing the rotation parameter
ai equal to zero or � = 1, the angular momentum J vanishes
and (6.12) then describes the mass of the static black hole.
The Yang–Mills charge per unit volume Vd2 in this case can
be obtained as

Q̃ = �Q

4πld4
. (6.14)

It is well-known that entropy is the quarter of horizon area
[107–109]. Using this, the entropy density for the power-
Yang–Mills black brane can be obtained as

S = �rd2+
4ld4

. (6.15)

In order to check the validity of the first law, it is more con-
venient to calculate the mass in terms of extensive variables
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S, Q̃ and J. Therefore, by taking Z = �2 and using Eqs.
(6.12)–(6.13), we construct the Smarr-type formula as

M(S, Q̃, J ) = (d1Z − 1)J

d1l
√Z(Z − 1)

. (6.16)

It should be noted that the parameter Z should be dependent
on the extensive parameters. Using Eqs. (6.14)–(6.15) and
the condition for event horizon i.e. f (r+) = 0, it is possible
to obtain an equation E(S, Q̃, J ) = 0, whose positive real
root is Z = �2 and

E(S, Q̃, J ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

16πld3d2 JZd1/2d2

d1
√Z(Z−1)

+ 2�ld1d4/d2 (4)d1/d2

d1d2S−d1/d2

+ (π Q̃)2qdq−1
2 dq3

(
4ld4

)(d1+2qd4)/d2

(d1−4q)Zd4q/d2S(4q−d1)/d2
, q �= d1

4 ,

16πld3d2 JZd1/2d2

d1
√Z(Z−1)

+ 2�ld1d4/d2 (4)d1/d2

d1d2S−d1/d2

+
(

4ld4π Q̃
)d1/d2

d3

d2Zd1/4 ln

(
4ld4 S
Z1/2

)
, q = d1

4 .

(6.17)

Now, it is straightforward to write the mass M(S, Q̃, J ) in
terms of the extensive parameters and compute the intensive
parameters conjugate to them as follows

TH =
(

∂M

∂S
)
J,Q̃

,

�k =
(

∂M

∂ Jk

)
S,Q̃

,

(6.18)

while, the power-Yang–Mills potential is given by

U =
(

∂M

∂ Q̃

)
S,J

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2q J (d3Z+1)dq−1
2 dq3 (π Q̃)2q

(
4ld4

)(2qd4+1)/d2S(d1−4q)/d2

2d1l(d1−4q)Zqd4/d2 (Z(Z−1))3/2Y(S,Q̃,J )
,

q �= d1
4 ,

d3(d3Z+1)(4π)d1/d2 ld1d4/d2 J Q̃1/d2

2ld2
2Zd1/4(Z(Z−1))3/2Y(S,Q̃,J )

ln
( 4Sld4√Z

)
,

q= d1
4 ,

(6.19)

in which

Y(S, Q̃, J )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(π Q̃)2qdq2 d
q
3 d4

(
4ld4

)(d1+2qd4)/d2S(d1−4q)/d2

(d1−4q)Z1+d4q/d2

+ 8πld3 J (d3Z+1)Zd1/2d2

d1(Z(Z−1))3/2 ,

q �= d1
4 ,

8πld3 J (d3Z+1)Zd1/2d2

d1(Z(Z−1))3/2 + d3(4π Q̃)d1/d2 ld1d4/d2

2d2Z1+(d1/4)(
1 + d1

2 ln
( 4Sld4√Z

))
,

q = d1
4 .

(6.20)

Our calculations showed that the angular velocity and Hawk-
ing temperature in (6.18) are same as (6.4) and (6.5), respec-
tively. Thus, our power-Yang–Mills rotating black brane sat-
isfy the first law as

dM = THdS +
p∑

i=1

�i d Ji + Ud Q̃. (6.21)

7 Summary

In this work, we mainly focused on the physical and ther-
modynamic properties of hairy black holes in quartic quasi-
topological gravity with power-Yang–Mills source. First, we
have considered the fourth order quasi-topological-scalar
gravity and coupled it with the power-Yang–Mills theory.
From the Wu-Yang ansatz, the gauge potentials are defined
and the gravitational field equations are solved. In this con-
text, two analytic power-Yang–Mills hairy black hole solu-
tions are derived for μ4 > 0 and μ4 < 0 in this theory. It
is shown that the real solutions exist only when μ4 > 0. We
have also write the two expressions separately for the met-
ric function valid in spacetime dimensions when q �= d1/4
and q = d1/4. We also studied the physical properties of
these black holes and plotted the associated solution f (r)
given in (2.26) for various values of the parameters m, q,
Q, b0, b1, b2, b̃3, b̃4, and μi ’s. Depending on the suitable
choices for these parameters, either the solution describes
a hairy black hole which can possess one or at most three
horizons or it can describe a naked singularity. It is shown
that variations in quasi-topological parameter μ4 affect the
position of the horizon. On the other hand, this effect is neg-
ligible at infinity. Similarly, it can also be concluded that
the value of the event horizon is shifted to the right when
the charge Q increases. However, by increasing the values
of conformal coupling parameters the event horizon’s radius
decreases. It should be noted that for q = 1, the solution
(2.26) yields the metric function of Yang–Mills hairy black
hole in quartic quasi-topological theory. Correspondingly,
the power-Yang–Mills black hole solution without scalar hair
can be obtained if one puts H = 0 in Eq. (2.26). In addi-
tion to this, we have also studied thermodynamics of these
power-Yang–Mills black holes. During this study, we worked
out different thermodynamic quantities and plotted them as
well. In the canonical ensemble, the positivity of specific heat
capacity implies local thermodynamic stability. Hence, from
the plots of heat capacity we have concluded that this quantity
diverges at three different points. Additionally, those points
at which heat capacity vanishes can also be identified from
these plots. It is observed that variations of the charge, non-
linearity parameter, quasi-topological parameter, and confor-
mal coupling constants have produced unavoidable impacts
on the local stability of black holes and divergences of the
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specific heat. Thermodynamic stability in grand canonical
ensemble have also been investigated. It is shown that the
black holes with q ≤ d1/4 are unstable in this ensemble.
However, for q > d1/4 there exist stability regions for black
holes. From the plots of the Hessian matrix, we have con-
cluded that the smaller hairy black holes could be stable in
this ensemble. However, when the outer horizon r+ increases
then detH is negative and so we have thermodynamic insta-
bility of the black holes. Thus, it can be concluded that the
power-Yang–Mills and conformal scalar fields produce the
possibility for local stability in the grand canonical ensemble.
This behaviour is in contrast to the Yang–Mills theory [60],
where quasi-topological non-hairy black holes are locally
unstable in this ensemble.

In addition to quartic quasi-topological hairy black holes,
we also derived a new family of hairy black hole solu-
tions in pure quasi-topological theory within the framework
of power-Yang–Mills source. The associated plots of pure
quasi-topological black hole solution (4.3) for suitable val-
ues of parameters show that for k = −1 and d > 9, this
solution describes AdS black hole with at most three hori-
zons, an extreme dS black hole and a naked singularity. It is
shown that by choosing � > 0, the asymptotic expression of
metric function (4.4) describes the asymptotically AdS and
dS power-Yang–Mills black holes for k = −1 and k = 1,
respectively. The effects of Yang–Mills charge, conformal
scalar field, and parameter q on the horizon structure of black
holes can also be observed from these plots. Note that, the
case q = 1 in (4.3) gives the hairy black hole solution of pure
quasi-topological gravity with Yang–Mills source. The local
thermodynamic stability in both canonical and grand canon-
ical ensembles have also been probed. Our results show that
there exist the regions of local stability for the power-Yang–
Mills hairy black holes in the canonical ensemble. This can
be seen from the corresponding plots of heat capacity. More-
over, from the plots of the determinant of Hessian matrix,
one can identify the regions of local stability for these hairy
black holes in the grand canonical ensemble. It should be
noted that it is the nonlinearity of Yang–Mills field that plays
the main role in the stability of these black holes. For q = 1
and H = 0, our results correspond to those of the Yang–
Mills non-hairy black holes in pure quasi-topological grav-
ity which are unstable in both canonical and grand canonical
ensembles.

In the last part of our paper, we have assumed a gen-
eral rotating line element with p ≤ [(d − 1)/2] rotational
parameters and study the rotating black branes of quartic
quasi-topological gravity coupled to power-Yang–Mills the-
ory. The plots of metric function (2.26) with k = 0 and H = 0
show that for suitable values of parameters d, q, m, μ2, μ3

and μ4, it can describe the power-Yang–Mills black brane
with inner and outer horizons for Q < Qext , extremal black
brane for Q = Qext and naked singularity for Q > Qext .

Here, we included the generalized Gibbons–Hawking surface
terms for the quasi-topological gravity which made the action
well-defined. By incorporating the analytic continuation of
the metric, we were able to work out the Hawking temper-
ature and angular velocities. Additionally, we have adopted
the counter-term approach to establish the finite action and
conserved quantities. It is shown that the conserved quan-
tities of these power-Yang–Mills black branes are indepen-
dent of the coupling coefficients i.e. μ2, μ3 and μ4 for fixed
values of mass, Yang–Mills charge and rotation parameters
ai . However, one can notice that the thermodynamic quanti-
ties depend indirectly on these coupling coefficients through
the value of the outer horizon r+. The Smarr-type formula,
which characterizes the mass density as a function of entropy,
Yang–Mills magnetic charge and angular momenta, was fur-
ther developed. We showed that the first law is satisfied for
the power-Yang–Mills black branes obtained in this paper. It
is worthwhile to note that for q = 1, these results correspond
to the Yang–Mills black branes of quartic quasi-topological
gravity.

It would be very interesting to study the hairy black
holes in quintic quasi-topological gravity. In addition to this,
the study of black holes and black branes of cubic quasi-
topological gravity coupled to Yang–Mills theory in Lifshitz
spacetime [26] could also be very interesting.
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Appendix

The coupling coefficients bi ’s and ci ’s introduced in the
Lagrangians (Eqs. (2.5), (2.6)) of the cubic and quartic quasi-
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topological gravities are, respectively, defined as follows:

u1 = 9d1 − 15,

u2 = −24d2,

u3 = 24d,

u4 = 48d2,

u5 = −12(3d1 − 1),

u6 = 3d.

(7.1)

c1 = −d2(d
7
1 − 3d6

1 − 29d5
1 + 170d4

1 − 349d3
1 + 348d2

1

− 180d1 + 36),

c2 = −4d4(2d
6
1 − 20d5

1 + 65d4
1 − 81d3

1 + 13d2
1 + 45d1

− 18),

c3 = −64d2(3d
2
1 − 8d1 + 3)(d2

1 − 3d1 + 3),

c4 = −(d8
1 − 6d7

1 + 12d6
1 − 22d5

1 + 114d4
1 − 345d3

1

+ 468d2
1 − 270d1 + 54),

c5 = 16d2(10d4
1 − 51d3

1 + 93d2
1 − 72d1 + 18),

c6 = −32d2
2d

2
4 (3d2

1 − 8n + 3),

c7 = 64d3d
2
2 (4d3

1 − 18d2
1 + 27d1 − 9),

c8 = −96d2d3(2d
4
1 − 7d3

1 + 4d2
1 + 6d1 − 3),

c9 = 16d3
2 (2d4

1 − 26d3
1 + 93d2

1 − 117d1 + 36),

c10 = d5
1 − 31d4

1 + 168d3
1 − 360d2

1 + 330d1 − 90,

c11 = 12d6
1 − 134d5

1 + 622d4
1 − 1484d3

1 + 1872d2
1

− 1152d1 + 252,

c12 = 8(7d5
1 − 47d4

1 + 121d3
1 − 141d2

1 + 63d1 − 9),

c13 = 16d1d2d3d4(3d
2
1 − 8d1 + 3),

c14 = 8d1(d
7
1 − 4d6

1 − 15d5
1 + 122d4

1 − 287d3
1 + 297d2

1

− 126d1 + 18).

(7.2)
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