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Abstract
Using quantum Riemannian geometry, we solve for a Ricci = 0 static
spherically-symmetric solution in 4D, with the S2 at each t, r a noncommuta-
tive fuzzy sphere, finding a dimension jump with solutions having the time and
radial form of a classical 5D Tangherlini black hole. Thus, even a small amount
of angular noncommutativity leads to radically different radial behaviour, mod-
ifying the Laplacian and the weak gravity limit. We likewise provide a version
of a 3D black hole with the S1 at each t, r now a discrete circle Zn, with the time
and radial form of the inside of a classical 4D Schwarzschild black hole far
from the horizon. We study the Laplacian and the classical limit Zn → S1. We
also study the 3D FLRW model on R× S2 with S2 an expanding fuzzy sphere
and find that the Friedmann equation for the expansion is the classical 4D one
for a closed R× S3 Universe.

∗ The first author was partially supported by CONACyT (México).
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1. Introduction

The idea that not only quantum phase spaces but spacetime coordinates themselves could
be noncommutative or ‘quantum’ due to quantum gravity effects has been around since the
first days of quantum theory. An often cited early work was [44], although not proposing
a closed spacetime algebra as such. In modern times, such a quantum spacetime hypothesis
was proposed in [32] on the grounds that the division into position and momentum should be
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arbitrary and hence if these do not commute then so should position and momentum separately
noncommute. Several flat quantum spacetimes were studied in the 1990s [20, 28, 38] based on
quantum symmetry [12, 30], but only recently has there emerged a constructive formalism of
quantum Riemannian geometry [12] to more easily develop curved models [3, 11, 29, 36, 37,
39]. This formalism complements Connes’ well-known ‘spectral triple’ approach to noncom-
mutative geometry [18] based on an axiomatically defined ‘Dirac operator’ in that the different
layers of Riemannian geometry are built up starting with a bimodule of differential forms Ω1

for the coordinate algebra A, a quantum metric g ∈ Ω1 ⊗A Ω1 and a compatible ‘quantum Levi-
Civita’ connection∇ : Ω1 → Ω1 ⊗A Ω1, without necessarily having a Dirac operator at all. This
bottom-up approach fits well with examples coming from quantum groups and in some cases
leads to spectral triples, see [12, chapter 8.5].

In the present work, we take curved quantum spacetime model building to the next level
with black hole and FLRW cosmological models. Here [3], introduced an expanding FLRW
model based on R× S1 with S1 replaced by a discrete groupZn with noncommutative differen-
tials, while the coordinate algebra itself remains commutative. In section 3, we similarly look
at the 3D R× S2 model but replace S2 by a noncommutative fuzzy sphere. This has coordinate
algebra Cλ[S2] defined as the usual angular momentum algebra viewed as a quantum space
[9, 23, 28] but with a fixed value of the quadratic Casimir (i.e., a coadjoint orbit quantisa-
tion) and with differential structure as recently introduced in [12]. Here, Cλ[S2] are infinite-
dimensional algebras but for a discrete series of values of the deformation parameter, they
can be reduced to the matrix algebra ‘fuzzy spheres’ introduced by Madore [31] as ‘finite
geometries’ and studied in several further works, see [7, 25, 26, 47] to name some. A feature of
our approach is that we adopt a single functorial framework that includes discrete geometries,
noncommutative geometries such as fuzzy spheres, and indeed classical Riemannian geometry,
as opposed to ad hoc methods for different settings.

We then proceed to our main results, noncommutative black hole models. Previously, 4D
black holes were studied in a semidirect ‘almost commutative’ quantisation [35] but with the
quantum geometry only implicitly defined through the wave operator constructed as a noncom-
mutative extension to the classical differential calculus. Also previously, a 4D FLRW model
was constructed in a deformation setting at the Poisson–Riemannian geometry level [24] and
with the expected dimension, but at the price of nonassociativity of the exterior algebra due to
curvature of the Poisson connection. Hence, the models in the present paper are the first fully
noncommutative FLRW and black hole ones that we are aware of within usual (associative)
quantum Riemannian geometry. Section 4 does the 4D black hole with S2 in polars replaced by
a fuzzy one, while section 5 looks for a 3D black hole model with the S1 in polar coordinates
replaced by Zn. The latter is not flat but Ricci flat (which cannot happen classically in 3D) and
has a naked singularity rather than a horizon.

A common feature that we find is what we call ‘dimension jump’. It has long been known
that quantum exterior algebras often have extra dimensions that could not be predicted clas-
sically. Thus, in [3, 36] the calculus on Z and Zn respectively was actually 2D and this made
possible curvature effects not expected for a classical line or circle. The limit of the geometry
on Zn as n →∞ was likewise shown in [3] to be a classical circle but with an extra one-form
θ′ normal to the circle when viewed in the plane. We then found that the Friedmann equations
for the discrete R× Zn model were the same as for a classical flat R× R2 FLRW model (an
expanding plane), i.e. a dimension jump. The same will apply now for the fuzzy sphere with,
in the classical limit λp → 0, an extra ‘normal’ direction θ′ for the sphere embedded in R3.
This time the dimension jump means that the radial-time sector matches to the closed (pos-
itively curved) 4D FLRW model. For the black hole model, the dimension jump means we
land on radial and time behaviour matching the 5D Tangherlini black hole [45] when we use
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the fuzzy sphere. Here the β(r) = 1 − rH/r factor in the familiar Schwarzschild metric case
for horizon radius rH is now a factor β(r) = 1 − r2

H/r2. This gets asymptotically flat faster
than the Schwarzschild case and the effective gravity in the Newtonian limit is an inverse
cubic force law. Finally, for the R2 × Zn black hole, we have β = −rH/r which is as for a
usual black hole but without the constant term. This therefore approximates the metric inside
a Schwarzschild black hole of infinite mass (so that the missing 1 is negligible). We also cover
the case β(r) = rH/r of interest in its own right. These models have no horizon but naked sin-
gularities. We describe the Zn → S1 limit where S1 retains a 2D noncommutative differential
structure, and the classical projection to the usual calculus on S1 where the metric is no longer
Ricci flat, i.e. this is a purely quantum-geometric solution of the vacuum Einstein equations.

Our noncommutative models are theoretical and we are not aware of an immediate appli-
cation, but they do indicate an unusual phenomenon which has a purely quantum origin in an
extra ‘normal direction’ θ′ required for an associative differential calculus in our examples.
We also begin to explore some of the physics in our noncommutative backgrounds. In prin-
ciple, one could use a new framework [10, 13] of quantum geodesics to do this, but the full
formulation of that is rather involved and we propose instead a direct approach starting with
the Klein–Gordon equation in the noncommutative background. In section 4.1, we introduce
the notion of a Schroedinger-like equation for an effective quantum theory relative to an exact
solution in the same manner as usual quantum mechanics for a free particle can be obtained as
a nonrelativistic limit of the Klein–Gordon equations for solutions of the form e−ımtψ with ψ
slowly varying. The novel feature will be to replace e−ımt by an exact reference solution of the
Klein Gordon equation, and we explain first how this looks for a classical Schwarzschild black
hole. This appears to be rather different from well-known methods of quantum field theory
on a curved background [14, 42, 43] but fits with the general idea of [10, 13] that a quantum
geodesic flow is actually a Schroedinger-like evolution.

The paper starts with some preliminaries in section 2, where we introduce the key points
of the formalism for quantum Riemannian geometry from [12] by way of the quantum metric
and connection for the fuzzy sphere from [29], and investigate the classical limit of the latter.
We use dot or ∂t for time derivatives and prime or ∂r for radial derivatives (while ∂i, ∂± will
be noncommutative angular derivatives). We sum over repeated indices. ⊗s will denote the
symmetric tensor product, where we add the two sides flipped, and we work in units where
� = c = 1. Numerical computations were done with Mathematica. The paper concludes with
some remarks about further directions.

2. Recap of the fuzzy sphere and its classical limit

The fuzzy sphere A = Cλ[S2] in the sense of [12, 23, 28, 29] just means the angular momentum
enveloping algebra U(su2) with an additional relation giving a fixed value of the quadratic
Casimir. This is the standard coadjoint quantisation of the unit sphere with its Kirillov–Kostant
bracket known since the 1970s, and in our conventions takes the form

[xi, x j] = 2ıλpεijkxk,
∑

i

x2
i = 1 − λ2

p, (2.1)

where λp is a real dimensionless parameter. These conventions are chosen so that the standard
spin j representation ρ j descends to a representation of the the fuzzy sphere if λp = 1/(2 j+
1). In this case, ρ j is surjective but has a large kernel and quotienting out by this gives the
‘reduced fuzzy sphere’ cλ[S2] ∼= M2 j+1(C) via ρ j, recovering the original usage of the term
‘fuzzy sphere’ in [31] as a matrix algebra with additional structure. We are not restricted to
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these discrete values, however. Also note that physical coordinate generators with units of
length would be

Xi :=Lxi, [Xi, X j] = 2ıλpLεijkXk,
∑

i

X2
i = L2(1 − λ2

p) (2.2)

as a deformation of a sphere of radius L. For a quantum gravity effect, we might expect
λp ∼ lPlanck/L in terms of the Planck length.

Next, there is a rotationally invariant differential calculus [12, example 1.46] in the sense
of an exterior algebra (Ω, d) given by central basic one-forms si ∈ Ω1 and exterior derivative

dxi = εijkx js
k, dsi = −1

2
εijks

j ∧ sk, (2.3)

with associated partial derivatives defined by d f (x) = (∂i f )si in this basis (they act in the
same way as orbital angular momentum). The si are preferable as they graded commute with
everything, but they can be recovered in terms of the dxi by

si =
1

1 − λ2
p

(xiθ
′ + εijk dx jxk); θ′ = xis

i =
xi dxi

2ıλp
. (2.4)

There is a similar formula in the context of reduced fuzzy spheres M2 j+1(C) in [31]. There is
also a ∗-operation with x∗i = xi and si∗ = si. (Then ∗ commutes with d and θ′∗ = θ′.) There is
also a top form

s1 ∧ s2 ∧ s3 =
1

2ıλp(1 − λ2
p)
θ′3 (2.5)

in contrast to 1
2 εijkxis j ∧ sk = θ′2

2ıλp
for a deformation of the two-sphere volume form.

A metric on the fuzzy sphere from the point of view of quantum Riemannian geometry
means g ∈ Ω1 ⊗A Ω1 subject to certain conditions, and is shown in [12] to be necessarily of
the form

g = gi js
i ⊗ s j (2.6)

for a real symmetric matrix gi j. Here g, in order to have a bimodule inverse, needs to be central
and this forces the gi j to be constants. By bimodule inverse, we mean a bimodule map

( , ) : Ω1 ⊗A Ω
1 → A (2.7)

inverting g in the sense ((ω, ) ⊗ id)(g) = ω = (id ⊗ (,ω))(g) for all ω ∈ Ω1. A ‘bimodule map’
means commuting with the product by elements of A from either side, i.e. tensorial from either
side, and we also require tensoriality in the middle in asking that (, ) is well-defined on the
tensor product over A. This then requires g to be central [11], see [12, lemma 1.16] for a short
proof. In our case, (si, s j) = gi j is just the inverse matrix to gi j. The rotationally invariant ‘round
metric’ is gi j = δi j or g = si ⊗ si (sum over i understood). Finally, quantum symmetry in the
sense ∧(g) = 0 requires the matrix to be symmetric and reality in the sense flip(∗ ⊗ ∗)(g) = g
then requires gi j to be real-valued.

We next need a quantum Levi-Civita connection∇ : Ω1 → Ω1 ⊗A Ω1 in the sense of torsion
free and metric compatible. Here, if X : Ω1 → A is a right module map or ‘right vector field’
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then ∇X := (X ⊗ id)∇ is well defined as a kind of ‘covariant derivative’ on Ω1. The associated
left Leibniz rule is

∇(aω) = da ⊗ ω + a(∇ω) (2.8)

for all a ∈ A,ω ∈ Ω1. We define the torsion tensor and Riemann curvature tensor for any
connection as maps [12]

T∇ : Ω1 → Ω2, T∇ = ∧∇− d, R∇ : Ω1 → Ω2 ⊗A Ω
1, R∇ = (d ⊗ id − id ∧∇)∇.

(2.9)

However, as we can also multiply one-forms by algebra elements from the right, we need
another Leibniz rule [22]

∇(ωa) = (∇ω)a + σ(ω ⊗ da) (2.10)

for some bimodule map σ : Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1. The generalised braiding map σ is not
additional data as it is determined by the above if it exists. Connections where it exists are called
‘bimodule connections’ and we will focus on these. We then define the metric compatibility
tensor by

∇g := (∇⊗ id + (σ ⊗ id)(id ⊗∇))g. (2.11)

The connection is quantum Levi-Civita if T∇ = ∇g = 0. We also require a reality condition

σ ◦ flip(∗ ⊗ ∗) ◦ ∇ = ∇ ◦ ∗. (2.12)

Finally, for physics we need a Ricci tensor and the working definition [12] is to suppose
a bimodule map i : Ω2 → Ω1 ⊗A Ω1 and define Ricci by a trace of (i ⊗ id)R∇ : Ω1 → Ω1 ⊗A

Ω1 ⊗A Ω1. This can be done explicitly via the metric and its inverse to make the trace between
the input and the first output factor,

Ricci = (( , ) ⊗ id)(id ⊗ i ⊗ id)(id ⊗ R∇)g. (2.13)

These natural definitions mean, however, that Ricci as it comes out from quantum Riemannian
geometry is − 1

2 of the usual Ricci in the classical case. The Ricci scalar S = ( , )Ricci is also
− 1

2 of the usual one.
All of this can be solved for the fuzzy sphere under the assumption that the connection

coefficients are constant in the si basis, giving [29]

∇si = −1
2
Γi

jks j ⊗ sk, Γi
jk = gil(2εlkmgm j + Tr(g)εljk). (2.14)

Moreover, as classically, we can just take the map i to be the antisymmetric lift, so

i(si ∧ s j) =
1
2

(si ⊗ s j − s j ⊗ si). (2.15)

The resulting Ricci curvature on the fuzzy sphere is in [29] but in the round metric case one
has

∇si = −1
2
εijks

j ⊗ sk, Ricci = −1
4

g, S = −3
4
. (2.16)
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This round metric connection projects in the reduced fuzzy sphere M2 j+1(C) case to something
similar to the covariant derivative in [31]. The Ricci curvatures are not the values you might
have expected for a unit sphere even allowing for our conventions. Nor does the Einstein tensor
(at least, if defined in the usual way) vanish as would be the case for a classical two-manifold.

To understand this last point better, which is the modest new result of this preliminary
section, we look more carefully at the classical limit λp → 0. By the Leibniz rule and the values
above, we have for the round metric

∇(θ′) = xi∇si + dxi ⊗ si = −1
2
εijkxis

j ⊗ sk + εijkx js
k ⊗ si =

1
2
εijkxis

j ⊗ sk

=
1

2(1 − λ2
p)2

εijk(x jθ
′ + εjmn(dxm)xn) ⊗ (xkθ

′ + εkab(dxa)xb)

=
1
2
εijk dxi ⊗ (dx j)xk + O(λp).

This means that we cannot just set θ′ = 0 in the classical limit for the given quantum geometry.
Meanwhile, we write the commutation relations of the calculus as

[θ′, xi] = 2ıλp dxi, xi dxi = 2ıλpθ
′,

[xi, dx j] = 2ıλp(δi jθ
′ − x j

1 − λ2
p

(xiθ
′ + εimn(dxm)xn))

from which we see that the calculus is commutative and xidxi = 0 in the classical limit λp → 0
as expected for the unit sphere, but θ′ itself does not need to vanish, and we have seen that it
cannot if we want to have a limit for ∇. Rather, we consider the classical limit as the classical
sphere plus a single remnant θ′ which graded-commutes with everything and (in the classical
limit) does not arise from functions and differentials on the sphere. Indeed, this limit is not a
strict differential calculus but a generalised one for this reason, but there is no such problem in
the quantum case, where

θ′ =
1

2ıλp
xi dxi (2.17)

shows its origin as ‘normal’ to the sphere as embedded in R3. We now note that the round
metric has the limit

g = si ⊗ si = (xiθ
′ + εimn(dxm)xn) ⊗ (xiθ

′ + εiab(dxa)xb)

= (1 − λ2
p)θ′ ⊗ θ′ + εimnxiθ

′ ⊗s (dxm)xn + (δmaδnb − δmbδna)(dxm)xn ⊗ (dxa)xb

= θ′ ⊗ θ′ + dxi ⊗ dxi + O(λp)

since the calculus is commutative to O(λp). Thus, we see that the rotationally invariant ‘round’
metric actually has an extra direction required by the calculus. We can recover the completely
classical S2 by the limit λp → 0 and projecting θ

′
= 0, but traces taken for the Ricci curvature

before we do this will remember the extra ‘normal direction’ and not map onto the classical
values.
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3. Expanding fuzzy sphere FLRW model

Here we work with the coordinate algebra A = C∞(R) ⊗ Cλ[S2], where the R has a classical
time variable t with classical dt graded commuting with t, dt and with the generators xi, si of
the exterior algebra of the fuzzy sphere. We first consider a general metric of the form

g = β dt ⊗ dt + ni(dt ⊗ si + si ⊗ dt) + gi js
i ⊗ s j, (3.1)

where gi j is a symmetric 3 × 3 matrix of coefficients and β, ni further coefficients, a priori
all valued in A. Centrality of the metric, however, then forces the ni = 0 and the remaining
coefficients to be in the centre of Cλ[S2], which is trivial. Hence gi j, β are functions only of the
time t. The reality condition for quantum metrics forces them to be real-valued.

Next, a general QLC for the calculus has the form

∇si = −1
2
Γi

jks j ⊗ sk + γ i
js

j ⊗s dt + τ i dt ⊗ dt (3.2)

∇dt = μ jks j ⊗ sk + η js
j ⊗s dt + Γ dt ⊗ dt (3.3)

again with Γi
jk, γ i

j, τ
i,Γ, η j,μ jk ∈ A. However, given that the spatial metric gi j are functions

only of t, it is natural to assume this also for the spatial Christoffel symbols Γi
jk just as is

done for the fuzzy sphere alone in [29]. In this case, compatibility of ∇ with the relations of
commutativity of dt, si with t, x j and the natural assumption that the associated braiding σ has
the classical ‘flip’ form when one of the arguments is dt require that γ i

j, τ
i,Γ, η j,μ jk are also

function of time alone in order to have a bimodule connection.
The nontrivial conditions for ∇ to be torsion-free are

1
2

(−Γi
jk + εi

jk)s j ∧ sk = 0, μ jk = μk j, (3.4)

since d(dt) = 0. The condition ∇g = 0 for metric compatibility then produces

dt ⊗ si ⊗ s j : ġi j + gilγ
l

j + gl jγ
l
i = 0,

dt ⊗ dt ⊗ dt : β̇ + 2βΓ = 0,

sl ⊗ sm ⊗ s j : −gi j

2
Γi

lm − gin

2
Γn

pjσ
ip

lm = 0,

sl ⊗ dt ⊗ s j : gi jγ
i
l + βμl j = 0,

dt ⊗ dt ⊗ s j : gi jτ
i + βη j = 0,

sn ⊗ sp ⊗ dt : gi jγ
j
lσ

il
np + βμnp = 0,

dt ⊗ si ⊗ dt : gi jτ
j + βηi = 0,

sm ⊗ dt ⊗ dt : 2βηm = 0.

It is clear from third of these and the first of (3.4) that Γi
jk is indeed the Christoffel symbol for

the fuzzy sphere QLC as solved uniquely in the ∗-preserving case with constant coefficients
in [29]. Also, the last equation implies that ηm = 0 and, using this together with the fifth or
seventh equation, we get τ i = 0. The second equation makesΓ = −β̇/(2β). Using gikγ

k
j = γi j

and the symmetry of gi j in the first equation gives the value of γ i
j, then this together with the
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4th equation gives μi j, resulting in

γ i
j = −1

2
ġ jkgik, μi j =

ġi j

2β
. (3.5)

Note that μi j is proportional to the time derivative of the metric, which implies that it is also
symmetric if the metric is, solving the second half of (3.4). Because γ i

j,μi j just depend on real
functions, they are also real-valued functions. This leads to a reasonably canonical QLC.

Theorem 3.1. Up to a reparametrisation of t, a generic quantum metric on the algebra
C∞(R) ⊗ Cλ[S2] can be taken in the form

g = −dt ⊗ dt + gi js
i ⊗ s j,

where gij is a time-dependent real 3 × 3 symmetric matrix. Moreover, this admits a canonical
∗-preserving QLC

∇dt = −1
2

ġi js
i ⊗ s j, ∇si = −1

2
Γi

jks j ⊗ sk − 1
2

gkiġ jks j ⊗s dt,

where Γijk = 2εikmgmj + Tr(g)εijk as for the fuzzy sphere in [29] . The associated Ricci scalar
and Laplacian are

2S = −gi jg̈i j − Tr(g) +
1
2

(Tr(g))2 − δi j −
1
4

(
gmlgi jġmlġi j + gklgmnġnkġlm

)
,

Δ = gi j∂i∂ j −
1
2

gi jġi j∂t − ∂2
t .

Proof. The analysis for the metric (3.1) was done above and we were forced by the require-
ment for the metric to be central (in order to be invertible) to ni = 0 and only a time dependence
β(t), gi j(t). We add the ∗-reality of the metric in the form flip(∗ ⊗ ∗)g = g to find β and gi j

real. Quantum symmetry also requires the latter to be symmetric, while the expected signature
requires β(t) < 0.

Now substituting the values obtained so far in the analysis of the general form of (3.2) and
(3.3), we have the connection

∇dt =
1

2β
ġi js

i ⊗ s j − 1
2
β̇

β
dt ⊗ dt; ∇si = −1

2
Γi

jks j ⊗ sk − 1
2

gkiġ jks j ⊗s dt (3.6)

for some unknown Γi
jk(t), where this does not depend on fuzzy sphere variables under our

assumptions. The requirement of being ∗-preserving yields

ġ jk(s j ⊗ sk − σ(sk ⊗ s j)) = 0, Γi
jks j ⊗ sk − Γ

i

k jσ(sk ⊗ s j) = 0. (3.7)

with the second of these the same as for the fuzzy sphere in [29] at each fixed time. Here we
used dt∗ = dt. Thus all the equations for Γi

jk are the same as in that paper and hence there is
a unique solution (2.14) for it in terms of gi j(t), as stated, under our assumptions. In this case,
we know from [29] that σ = flip on s j ⊗ sk and hence the first of (3.7) is empty, as is the 6th of
the metric compatibility equations in our previous analysis. The rest of the ∗-preserving con-
ditions require Γ, ηi, γ i

j to be real-valued functions, which already holds as we have solved for
them.

8
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The curvature for the connection (3.6) is

R∇dt =

(
1

2β
g̈i j −

β̇

4β2
ġi j −

1
4β

gmlgilg jm

)
dt ∧ si ⊗ s j

+
1

4β

(
−ġlkε

l
i j + ġilΓ

l
jk

)
si ∧ s j ⊗ sk +

1
4β

glmġ jlġimsi ∧ s j ⊗ dt

R∇si =

(
1
4
Γi

jlg
mlġkm − 1

4
Γl

jkgmiġlm

)
dt ∧ s j ⊗ sk

+

(
1
4

gliġmlε
m

jk −
1
4
Γi

jlg
mlġkm

)
s j ∧ sk ⊗ dt

+

(
1
4
Γi

mlε
m

jk −
1
4
Γi

jmΓ
m

kl +
1

4β
gmiġ jmġkl

)
s j ∧ sk ⊗ sl

+

(
−1

2
(ġkiġ jk + gkig̈ jk) +

β̇

4β
gkiġ jk −

1
4

gkigmlġlkġ jm

)
dt ∧ s j ⊗ dt,

leading to the Ricci tensor,

2Ricci =

(
1

2β

(
g̈i j −

β̇

2β
ġi j −

1
2

gklġilġ jk

)
+

1
2
Γl

m jε
m

li −
1
4
Γl

lmΓ
m

i j

+
1

4β
gmlġmlġi j +

1
4
Γl

imΓ
m

l j −
1

4β
gmlġimġl j

)
si ⊗ s j

−
(
−1

2

(
ġklġlk + gi jg̈i j

)
+

β̇

4β
gi jġi j −

1
4

gklgmnġnkġml

)
dt ⊗ dt

+

(
1
2

gnlġmnε
m

il −
1
4
Γl

lmgnmġin +
1
4
Γl

imgnmġln

)
si ⊗ dt

+

(
−1

4
Γl

lmgnmġin +
1
4

gnlġmnΓ
m

li

)
dt ⊗ si.

Next, as we require β(t) < 0, we can generically absorb this in a redefinition of t (by changing
to a new variable t′ solving dt′

dt =
√
−β(t)). Therefore, up to such a redefinition, we can assume

that β = −1 as stated. In this case, and with Γi
jk as explained from (2.14), the Ricci tensor

simplifies to

2Ricci =

(
− g̈i j

2
+

1
2

gklġilġ jk −
1
4

gmlġmlġi j − gi j − δi j +
1
2

Tr(g)gi j

)
si ⊗ s j

−
(
−1

2

(
ġklġlk + gi jg̈i j

)
− 1

4
gklgmnġnkġml

)
dt ⊗ dt

+

(
1
2

gnlġmnε
m

il −
1
2
εkl

mgnmgklġin +
1
4

(2εkl
mgik +Tr(g)εl

im)gnmġln

)
si ⊗ dt

+

(
−1

2
εkl

mgklg
nmġin −

1
4

gnlġmn

(
2εkm

igkl + Tr(g)εm
li

))
dt ⊗ si.

9
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Making the contraction with the inverse metric, we recover the required Ricci scalar. The
Laplacian for a function f = f (t, xi) follows as

Δ f = (, )∇(d f ) = (, )∇(∂i f si + ḟ dt)

= gi j∂i∂ j f − ∂2
t f − 1

2
gi jġi j∂t f − 1

2
g jkΓi

jk∂i f ,

where the last term vanishes when we take into account the explicit form of Γi
jk, recovering

the required Laplacian. �

The QLC here is unique under the reasonable assumption as in [29] that theΓi
jk are constant

on the fuzzy sphere, given that the gi j have to be. The theorem applies somewhat generally,
but now we take the expanding round metric gi j = R2(t)δi j for the spatial part, so the metric,
non-zero inverse metric entries, QLC, curvature and Laplacian are

g = −dt ⊗ dt + R2(t)si ⊗ si, (dt, dt) = −1, (si, s j) =
δi j

R2
, (3.8)

∇dt = −RṘsi ⊗ si, ∇si = −1
2
εi

jks j ⊗ sk − Ṙ
R

si ⊗s dt, (3.9)

R∇dt = −RR̈ dt ∧ si ⊗ si, (3.10)

R∇si =

(
1
4
εpi

nεpkm − Ṙ2δi
mδnk

)
sm ∧ sn ⊗ sk +

R̈
R

dt ∧ si ⊗ dt, (3.11)

Ricci = −
(

Ṙ2 +
1
2

RR̈ +
1
4

)
si ⊗ si +

3
2

R̈
R

dt ⊗ dt, (3.12)

S = −3

(
Ṙ2

R2
+

R̈
R
+

1
4R2

)
, (3.13)

Δ =
1

R2

∑
i

∂2
i − 3

Ṙ
R
∂t − ∂2

t . (3.14)

Also of interest is the Einstein tensor and, in the absence of a general theory, we assume as in
[3] the ‘naive definition’ Eins = Ricci − S

2 g, which works out as.

Eins =

(
R̈ +

1
2

Ṙ2 +
1
8

)
si ⊗ si − 3

2

(
1

4R2
+

Ṙ2

R2

)
dt ⊗ dt (3.15)

and is justified by checking that

∇ · Eins = 0. (3.16)

Here, if we have any tensor for the form T = f dt ⊗ dt + pR2si ⊗ si, then the divergence is

∇ · T = (( , ) ⊗ id)∇T = −
(

ḟ + 3( f + p)
Ṙ
R

)
dt + ∂i psi (3.17)

and we use this now for the particular form of the Einstein tensor to establish (3.16). We also
assume this form of T for the energy–momentum tensor of dust with pressure p and density f,

10



Class. Quantum Grav. 38 (2021) 145020 J N Argota-Quiroz and S Majid

in which case the continuity equation ∇ · T = 0 for p a function only of t is

ḟ + 3( f + p)
Ṙ
R

= 0 (3.18)

as usual, and Einstein’s equation Eins + 4πGT = 0 in our curvature conventions is

4πG f =
3
2

(
Ṙ2

R2
+

1
4R2

)
, 4πGp = − R̈

R
− 1

2
Ṙ2

R2
− 1

8R2
= − R̈

R
− 4πG

3
f . (3.19)

These are identical to the classical FLRW equations, see e.g. [16, chapter 8], for a 4D closed
Universe with curvature constant κ = 1/(4R2

0) in the classical FLRW metric

−dt ⊗ dt + R(t)2

(
1

r2(1 − κr2)
dr ⊗ dr + gS2

)
,

where gS2 is the metric on a unit sphere, R0 is a normalisation constant with dimension of
length, and we have adapted R(t) to include a factor r in order to match our conventions.

4. Black hole with the fuzzy sphere

We assume a similar framework as in the previous section, but now with a 4D metric of a static
form in polar coordinates. Thus, we add a radial variable r with differential dr and consider
the Schwarzschild-like metric

g = −β(r)dt ⊗ dt + H(r)dr ⊗ dr + r2gi js
i ⊗ s j. (4.1)

The algebra of functions here is A = C∞(R× R>0) ⊗ Cλ[S2] with classical variables and dif-
ferentials t, r, dr, dt for the R× R>0 part (so these graded commute among themselves and
with the functions and forms on the fuzzy sphere). The coefficients gi j define the metric on
the fuzzy sphere, and centrality and reality of the metric dictates that these are constant real
values. Thus, gi j is a real symmetric invertible 3 × 3 matrix (it should also be positive definite
for the expected signature) and β(r), H(r) are real-valued functions.

We start with the general form of connection on the tensor product calculus,

∇si = −1
2
Γi

jks j ⊗ sk + αi dt ⊗ dt + γ i dr ⊗ dr +Δi dr ⊗s dt + ηi
j dt ⊗s s j + τ i

j dr ⊗s s j,

∇dt = ai js
i ⊗ s j + b dt ⊗ dt + c dr ⊗ dr + d dr ⊗s dt + e j dr ⊗s s j + f j dt⊗s s j,

∇dr = hi js
i ⊗ s j + θ dt ⊗ dt + R dr ⊗ dr + φ dr ⊗s dt + ν j dt⊗s s j + ψ j dr ⊗s s j.

Assuming that σ(dt⊗ ), σ(⊗ dt), σ(dr⊗ ), σ(⊗ dr) are the flip on the one-forms dr, dt, si and
the natural restrictions needed for a bimodule connection, one finds that all the coefficients are
functions of t and r alone (constant on the fuzzy sphere).

The torsion freeness conditions for ∇dt,∇dr and ∇si are

ai j = a ji, hi j = h ji, Γi
jk − Γi

k j + 2εi
jk = 0, (4.2)

respectively, and the conditions needed for the compatibility with the metric are

dr ⊗ dt ⊗ dt : ∂rβ + 2βd = 0,

dr⊗3 : ∂rH + 2HR = 0,

11
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dr ⊗ sl ⊗ s j : 2rgl j + r2gi jτ
i
l + r2glmτ

m
j = 0,

sm ⊗ sn ⊗ dt : −βamn + r2gi jη
j
lσ

il
mn = 0,

dt⊗3 : −2βb = 0,

dr ⊗ dr ⊗ dt/dr ⊗ dt ⊗ dr : −βc + Hφ = 0,

dt ⊗ dr ⊗ dr : 2Hφ = 0,

si ⊗ dt ⊗ dr/si ⊗ dr ⊗ dt : −βei + Hνi = 0,

dr ⊗ s j ⊗ dt/dr ⊗ dt ⊗ s j : −βe j + r2gi jΔ
i = 0,

si ⊗ dt ⊗ dt : −2β f j = 0,

dt ⊗ dt ⊗ s j/dt ⊗ s j ⊗ dt : −β f j + r2gi jα
i = 0,

si ⊗ dt ⊗ s j : −βai j + r2gl jη
l
i = 0,

dt ⊗ dr ⊗ dt/dt ⊗ dt ⊗ dr : −βd + Hθ = 0,

sm ⊗ sn ⊗ dr : Hhmn + r2gi jτ
j
lσ

il
mn = 0,

dt ⊗ dr ⊗ si/dt ⊗ si ⊗ dr : Hνi + r2gi jΔ
j = 0,

dr ⊗ dr ⊗ si/dr ⊗ si ⊗ dr : Hψi + r2gi jγ
j = 0,

si ⊗ dr ⊗ dr : 2Hψi = 0,

si ⊗ dr ⊗ s j : Hhi j + r2gl jτ
l
i = 0,

sp ⊗ sq ⊗ sm : glmΓ
l
pq + gi jΓ

j
lmσ

il
pq = 0,

dt ⊗ si ⊗ s j : gl jη
l
i + gilη

l
j = 0.

We immediately note that b = φ = f j = ψi = 0 for the 5th, 7th, 10th, and 17th equations
respectively. In this case, we have that αi = φ = γ i = 0 by the 11th, 6th and 16th equations
respectively. Also, solving simultaneously the 8th, 9th, 15th equations, we obtain Δi = ei =
ν i = 0. The values of d and R are deduced from the 1st and 2nd equations respectively, while
θ comes from 13th and 1st equations, with result

d = −∂rβ

2β
, R = −∂rH

2H
, θ = −∂rβ

2H
. (4.3)

The 3rd equations together with the symmetry of gi j lead to τ i
j = − 1

r δ
i

j. Now, we can solve
the 18th equation as

hi j =
r
H

gi j. (4.4)

The 20th equation gives the condition ηi j − η ji = 0, where we used ηk
jgki = ηi j. But the 12th

equation produces ai j =
r2

β ηi j so that ai j is anti-symmetric, which together with the torsion
freeness conditions imply that ai j = ηi

j = 0.

Theorem 4.1. The static Schwarzschild-like metric with spatial part a fuzzy sphere,

g = −β(r)dt ⊗ dt + H(r)dr ⊗ dr + r2gi js
i ⊗ s j,

12
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where gij is a constant real symmetric matrix, has a canonical ∗-preserving QLC

∇dt = − 1
2β

∂rβdr ⊗s dt,

∇dr = − 1
2H

∂rH dr ⊗ dr +
r
H

gi js
i ⊗ s j − 1

2H
∂rβ dt ⊗ dt,

∇si = −1
2
Γi

jks j ⊗ sk − 1
r

dr ⊗s si,

where Γijk = 2εikmgmj + Tr(g)εijk is the fuzzy sphere QLC from [29] . The corresponding Ricci
scalar and Laplacian are

S =
1

2Hβ
∂2

r β − 1
4Hβ2

(∂rβ)2 − 1
4H2β

∂rβ∂rH +
3

2r2

+
1

4rH
(3 + Tr(g))

(
∂rβ

β
− ∂rH

H

)
+

Tr(g)
r2H

(
1 − H

2

)
+

(Tr(g))2

4r2
,

Δ = − 1
β
∂2

t +
1
H
∂2

r +

(
3

rH
− ∂rH

2H2
+

∂rβ

2Hβ

)
∂r +

gi j

r2
∂i∂ j.

Proof. Most of the analysis was done above. The torsion-freeness and metric compatibility
conditions for the Christoffel symbol Γ of the fuzzy sphere part are the same as in [29], namely
the second half of the ∗-preserving conditions

hi js
i ⊗ s j − h ji σ(s j ⊗ si) = 0, Γi

jks j ⊗ sk − Γ
i

k jσ(sk ⊗ s j) = 0

coming from ∇dr and ∇si respectively, with (si)∗ = si, dr∗ = dr and dt∗ = dt. There is there-
fore a unique solution for Γ under the assumption that it consists of constants on the fuzzy
sphere [29], and we use this solution. This has σ the flip on the si and hence Γ real. In this
case, the other condition for ∗-preserving requires hi j to be Hermitian, which already holds
because hi j is real and symmetric for (4.4). The 4th and 14th metric compatibility equations
also then hold. The connection stated is then obtained by substituting into the general form of
the connection. This completes the analysis for the canonical QLC.

The curvature for this connection comes out as

R∇si =

(
1
4
Γi

jkε
j
mn −

1
4
Γi

mlΓ
l
nk +

1
H

gnkδ
i
m

)
sm ∧ sn ⊗ sk

− 1
2rH

∂rHsi ∧ dr ⊗ dr +
1
2r

(
εi

jk − Γi
jk

)
s j ∧ sk ⊗ dr − 1

2rH
∂rβsi ∧ dt ⊗ dt,

R∇dt =

(
∂2

r β

2β
−

(
∂rβ

2β

)2

− 1
4βH

∂rβ∂rH

)
dt ∧ dr ⊗ dr +

r
2Hβ

∂rβgi jdt ∧ si ⊗ s j,

R∇dr = − r
2H2

gi j∂rHdr ∧ si ⊗ s j +
r

2H
(gmlΓ

l
n j − gi jε

i
mn)sm ∧ sn ⊗ s j

+

(
1

4H2
∂rβ∂rH − 1

2H
∂2

r β +
1

4βH
(∂rβ)2

)
dr ∧ dt ⊗ dt +

gi j

H
si ∧ s j ⊗ dr.
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Taking the antisymmetric lift of products of the basic one-forms and tracing gives the associated
Ricci tensor

4Ricci =

(
∂2

r β

β
− 3

rH
∂rH − 1

2βH
∂rβ∂rH − 1

2

(
∂rβ

β

)2
)

dr ⊗ dr

+
1
H

(
1

2H
∂rβ∂rH − ∂2

r β +
1

2β
(∂rβ)2 − 3

r
∂rβ

)
dt ⊗ dt

+

(
r

Hβ
gi j∂rβ − r

H2
gi j∂rH + 4

gi j

H
− 2gi j − 2δi j + Tr(g)gi j

)
si ⊗ s j.

This gives the Ricci scalar as stated. The Laplacian is also immediate from ∇ and the inverse
metric. �

The QLC here is unique under the reasonable assumption as in [29] that theΓi
jk are constant

on the fuzzy sphere, given that the gi j have to be. To do some physics, we focus on the static
rotationally invariant case where gi j = kδi j, for a positive constant k. In this case, it follows
from the above that Ricci = 0 if and only if

H(r) =
1

β(r)
, β(r) =

1
2

(
1
k
+ 1

)
− 3

4
k +

c1

r2
,

where c1 is an arbitrary constant. The values

k =
1
3

(
√

7 − 1), c1 = −r2
H (4.5)

give the form of β for the Tangherlini black hole metric of mass M, namely

β(r) = 1 − r2
H

r2
, r2

H =
8
3

G5M, (4.6)

but note that the latter only makes sense in 5D spacetime due to an extra length dimension in
the Newton constant G5. We are thinking of our model as 4D so we will not take this value
but just work with rH as a free parameter. A different value of k can be absorbed in a different
normalisation of the t, r variables while rH is more physical.

The quantum geometric structures in this ‘fuzzy black hole’ Ricci flat case are

g = −
(

1 − r2
H

r2

)
dt ⊗ dt +

(
1 − r2

H

r2

)−1

dr ⊗ dr + r2ksi ⊗ si, (4.7)

(dt, dt) = − r2

r2 − r2
H

, (dr, dr) = 1 − r2
H

r2
, (si, s j) =

δi j

kr2
, (4.8)

∇dt = − r2
H

r(r2 − r2
H)

dr ⊗s dt, (4.9)

∇dr =
r2

H

r(r2 − r2
H)

dr ⊗ dr − r2
H

r3

(
1 − r2

H

r2

)
dt ⊗ dt + rk

(
1 − r2

H

r2

)
si ⊗ si, (4.10)

∇si = −1
2
εi

jks j ⊗ sk − 1
r

dr ⊗s si, (4.11)

R∇dt = − 3r2
H

r2(r2 − r2
H)

dt ∧ dr ⊗ dr +
( rH

r

)2
k dt ∧ si ⊗ si, (4.12)
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R∇dr =
(rH

r

)2
k dr ∧ si ⊗ si + 3r2

H
r2 − r2

H

r6
dr ∧ dt ⊗ dt, (4.13)

R∇si =

(
−1

4
+ k

(
1 − r2

H

r2

))
si ∧ s j ⊗ s j +

( rH

r

)2 1
r2 − r2

H

si ∧ dr ⊗ dr

+
r2

H

r6
(r2

H − r2)si ∧ dt ⊗ dt, (4.14)

Δ = −
(

1 − r2
H

r2

)−1

∂2
t +

(
3
r
− r2

H

r3

)
∂r +

(
1 − r2

H

r2

)
∂2

r +
1

kr2

∑
i

∂2
i . (4.15)

For comparison, the classical Tangherilini 5D black hole metric has the form

g = −
(

1 − r2
H

r2

)
dt ⊗ dt +

(
1 − r2

H

r2

)−1

dr ⊗ dr + r2gS3

with the Laplacian

Δ = −
(

1 − r2
H

r2

)−1

∂2
t +

(
3
r
− r2

H

r3

)
∂r +

(
1 − r2

H

r2

)
∂2

r +
1
r2
ΔS3 ,

where gS3 denotes the metric element on a unit S3. We see that this has just the same form as
our metric and Laplacian except that our unit fuzzy sphere Laplacian

∑
i∂

2
i is replaced by the

classical unit S3 Laplacian

ΔS3 =
1

sin2 ψ
∂ψ(sin2 ψ∂ψ) +

1

sin2 ψ sin θ
∂θ(sin θ∂θ) +

1

sin2 ψ sin2 θ
∂2
φ

in standard angular coordinates.
We will also be interested in the spatial geometry of the fuzzy black hole as a time slice

with respect to the t coordinate. This is easily achieved in our formalism.

Proposition 4.2. Defining the spatial geometry of the fuzzy black hole as a slice of the 4D
geometry by setting dt = 0, gives

g = β−1 dr ⊗ dr + kr2si ⊗ si,

∇dr =
r2

H

r3 β
dr ⊗ dr + krβsi ⊗ si,

∇si = −1
2
εi

jks j ⊗ sk − 1
r

dr ⊗s si,

R∇dr = k
( rH

r

)2
dr ∧ si ⊗ si,

R∇si =

(
kβ − 1

4

)
si ∧ s j ⊗ s j +

r2
H

r4β
si ∧ dr ⊗ dr,

Ricci =
3r2

H

2r4β
dr ⊗ dr +

(
k

(
1 − r2

H

2r2

)
− 1

4

)
si ⊗ si,

S =
3
r2

(
1 − 1

4k

)
,

15
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using the antisymmetric lift as usual and β = 1 − r2
H

r2 . The spatial Einstein tensor Eins =
Ricci − S

2 g comes out as

Eins =
3

2r2β

(
1
4k

− β

)
dr ⊗ dr +

1
2

(
1
4
− k

(
1 +

r2
H

r2

))
si ⊗ si

and is conserved in the sense ∇ · Eins = 0.

Proof. That setting dt = 0 gives a QLC for the reduced metric and its curvature follows on
general grounds but can be checked explicitly. The computation of Ricci is a trace of R∇ as
usual: we apply this to the second factors of g and then apply (dr, dr) = β−1, (si, s j) = δi j

kr2 (and
other cases zero) to the first two tensor factors. The Ricci scalar S and Einstein tensor then
follow. For its divergence, we first compute ∇Eins by acting with ∇ on each tensor factor but
keeping its left-most output to the far left using the trivial flip σ,

∇Eins =
1
2

(
1
4
− k

(
1 +

r2
H

r2

)) (
−1

r
si ⊗ si ⊗ dr

)
+ d

(
3

2r2β

(
1
4k

− β

))
⊗ dr ⊗ dr

+
3

2r2β

(
1
4k

− β

) (
2r2

H

r3β
dr ⊗ dr ⊗ dr + krβsi ⊗ si ⊗ dr

)
+ · · · ,

where . . . refers to terms that involve dr ⊗ si or si ⊗ dr in the first two tensor factors. The terms
in ∇(si ⊗ si) with s’s in all tensor factors cancel. We then define ∇ · Eins by applying ( , ) to
the first two tensor factors to give

∇ · Eins =

(
− 3

2r3k

(
1
4
− k

(
1 +

r2
H

r2

))
+ β

(
1
4
− k

(
1 +

r2
H

r2

))′

+
3

2r2

(
1
4k

− β

)
2r2

H

r3β
+

9
2r3

(
1
4k

− β

))
dr

from the displayed terms taken in order. We then check that the function in brackets vanishes.
�

4.1. Motion in the fuzzy black hole background

In terms of physical implications, since the radial form for the fuzzy black hole is the same
as that of the Tangherilini solution, we can apply the usual logic that g00 = −(1 + 2Φ) to first
approximation contains the gravitational potential Φ per unit mass governing geodesic motion
for a mass m in the weak field limit. Therefore in our case, this should be

Φ = − r2
H

2r2
(4.16)

but, because we are thinking of this as a 4D model, we do not set rH to be the same as for
a Tangherilini 5D black hole. Rather, we think of rH as the physical parameter and equate it
for purpose of comparison with rH = 2GM so that the horizon occurs at the same r as for a
Schwarzschild black hole of mass M. The weak field force law is no longer Newtonian grav-
ity, having an inverse cubic form according to Φ = −2G2M2/r2. This is rather different from
modified gravity schemes such as MOND for the modelling of dark matter [41], but could still
be of interest.
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To properly justify the above, we should study geodesics, which is possible but not easy on
quantum spacetimes. Here, we instead reach the same conclusion from the point of view of
quantum mechanics as the non-relativistic limit of the Klein–Gordon equation

Δφ = m2φ.

As proof of concept, we first do this for a classical Schwarzschild black hole, where
β(r) = 1 − rH

r . The Laplacian is

ΔSch = − 1
β

∂2

∂t2
+Δr +

1
r2
ΔS2 ; Δr :=

1
r2

∂

∂r

(
βr2 ∂

∂r

)

andΔS2 is normalised to have eigenvaluesλl = −l(l + 1) on the spherical harmonics of degree
l ∈ N ∪ {0} for the orbital angular momentum. We focus on waves of fixed l and look for
solutions of the form

φ = e−ımtψl(t, r)

with ψl slowly varying in t. Accordingly neglecting its double time derivative, the
Klein–Gordon equation becomes the Schroedinger-like equation

ıψ̇l = − β

2m

(
Δr +

λl

r2

)
ψl + (β − 1)

m
2
ψl, (4.17)

where β(Δr +
λl
r2 ) is a modification by β of the R3 Laplacian on ψl in polars, which we think

of as the square of a modified momentum (the difference is anyhow suppressed at large r), and
(β − 1)m/2 = −GMm/r is the expected Newtonian potential for Schroedinger’s equation in
the presence of a point source of mass M.

Note that e−ımt is not itself a solution of the Klein–Gordon equation. Repeating the above but
with reference to an actual solution would be analogous to finding the forces experienced by a
particle in geodesic motion, where one only sees tidal forces. Doing this in the Schwarzschild
case, we first solve (numerically) for spherical l = 0 solutions of the form

φ = e−ıωtφω(r);

(
ω2

β
− m2

)
φω +Δrφω = 0 (4.18)

with initial conditions specified at large r. We then look for a Schroedinger-like equation
relative to a fixed φω , by solving the Klein–Gordon equation for solutions of the form

φ = e−ıωtφω(r)ψl(t, r) (4.19)

with ψl of orbital angular momentum labelled by l and slowly varying in t. This time we obtain

ıψ̇l = − β

2ω

(
Δr +

λl

r2
+ 2β

φ′
ω

φω

∂

∂r

)
ψl (4.20)

with a new velocity-dependent correction but without the gravitational point source potential,
as expected.

The natural choice for a reference field is to focus on the case ω = m. For large r, we can
neglect β′ relative to 2/r in Δr and in this case one has an exact solution for φm in terms of
Bessel I, K functions. We choose conditions which match to Bessel I, say, at large r, and we

17



Class. Quantum Grav. 38 (2021) 145020 J N Argota-Quiroz and S Majid

Figure 1. Radial solution φm(r) for the Klein–Gordon equation around a black hole
shown for m = 2/rH, rH = 1 and asymptotic form of φ′

m/φm shown dashed.

assume m > 1/rH so that the test particle Compton wavelength is less than rH . Then φ′
m/φm is

barely oscillatory for larger m and decays gradually as r →∞ according to

φ′
m

φm
≈ ım

√
rH

r − rH
, r � rH . (4.21)

The exact numerical solution as illustrated in figure 1 is similar to this, although more oscil-
latory. We see that in this ‘comoving frame’ from a Klein–Gordon point of view, we do not
experience the main force of gravity but we do see a novel radial velocity term in the effective
Schroedinger-like equation approximated as

ıψ̇l ≈ − β

2m

(
Δr +

λl

r2

)
ψl − ıβ

3
2

√
2GM

r
ψ′

l (4.22)

far from the horizon. Nearer the horizon, one needs to use the actualφ′
m/φm to avoid an instabil-

ity coming in from the horizon. A numerical solution forψl at l = 0 using the actual values is in
figure 2, showing an initial Gaussian centred at r = 5rH evolving much as in regular quantum
mechanics but, unlike the latter, decaying over time. Some of the noise in the picture comes
from the numerical approximation.

The above is for a regular Schwarzschild black hole, but one can make a similar analysis
for the different radial equation for our fuzzy black hole and thereby justify (4.16), provided
we know something about the operators

∑
i∂

2
i .

Proposition 4.3.
∑

i∂
2
i on the fuzzy sphere has eigenvalues λl = −l(l + 1) as for the

classical ΔS2 , with eigenspaces

Hl = {xi1 xi2 . . . xil f i1...il | f totally symmetric and traceless}.

Proof. Here, as vector spaces, C[x1, . . . , xn] = C[su∗
2] ∼= U(su2) by the Duflo map (as for

any Lie algebra). This sends a commutative monomial in the xi to an average of all orderings
of its factors (it is an isomorphism because, although there are nontrivial commutation relations
in the enveloping algebra, these are strong enough to reorder at the expense of lower degree.)
This map is covariant for the coadjoint and adjoint actions, in our case, of su2, and therefore
descends to a vector space isomorphism between polynomial functions on the classical sphere
in cartesian coordinates on one side, and the fuzzy sphere Cλ[S2] on the other side. Moreover,
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Figure 2. Schroedinger-like evolution relative to the φm in figure 1. We see an initial
Gaussian centred at r = 5rH evolving much as in quantum mechanics but decaying over
time, with the essentially zero initial values at r = 1.1rH , 10rH held fixed.

∂kxi = εi jkx j for our differential calculus on the latter acts as orbital angular momentum. Hence∑
i∂

2
i acts as the quadratic Casimir and can be computed on the classical sphere, where it

decomposes the polynomial functions into the spherical harmonics of each degree l. These
then correspond to the Hl as stated. One can check this directly on the fuzzy sphere on low
degrees by hand, to fix the normalisation. For example, on degree l = 1, we have

∑
k∂

2
k xi =

∂kεijkx j = εjmkεijkxm = −2xi. �
An expansion of M2 j+1(C) into subspaces similar to Hl also applies in the reduced fuzzy

sphere case with l = 0, . . . , 2 j, see [31]. It means in our case that we can solve the Laplacian and
look at the non-relativistic limits by the same methods as we illustrated for the Schwarzschild
black hole. The only difference is that our functions have values ψl(t, r) ∈ Cλ[S2], but the
differential equations themselves in t, r are purely classical according to

Δfuz = − 1
β

∂2

∂t2
+Δr +

1
kr2

λl; Δr :=
1
r3

∂

∂r

(
βr3 ∂

∂r

)

with β = 1 − r2
H/r2. Taking e−ımt as reference gives the same form as (4.17) but with λl

kr2 in a
modified effective spatial Laplacian. Then (β − 1)m/2 = −2G2M2m/r2 for the gravitational
potential energy, in agreement with (4.16).

Next, for the ‘comoving’ version, the l = 0 solutions of the Klein–Gordon equation are
given by solving (4.18) as before and, relative to this, slowly-varying ψl defined by (4.19)
obey the Schroedinger-like equation (4.20) but now with λl

kr2 in place of λl
r2 . Focussing on the

ω = m case, the main difference now is that φm decays more rapidly and in first approximation,

19



Class. Quantum Grav. 38 (2021) 145020 J N Argota-Quiroz and S Majid

Figure 3. Radial solution φm(r) for the Klein–Gordon equation around a fuzzy black
hole shown for m = 4/rH , rH = 1, and function φ′

m(r)/φm(r).

if we leave out the β′ term in Δr, is now solved by

φm(r) ∝
(
r2 − r2

H

) 1
2±

1
2

√
1−m2r2

H

r2
.

We focus on the + case of the square root, which leads for m � 1/rH to a fair approximation

φ′
m

φm
≈ ım

rH

r(1 − r2
H

r2 )
, r � rH.

The exact numerical solution is similar but with a degree of oscillation as illustrated in figure 3.
As a result, the long range Schroedinger-like equation is

ıψ̇l ≈ − β

2m

(
Δr +

λl

kr2

)
ψl − ıβ

2GM
r

ψ′
l

if we use the Schwarzschild value of rH , showing a coupling to the velocity term of the same
size as the usual gravitational potential per unit mass. As before, near the horizon we need the
actual φ′

m/φm values for stability of the solutions. An initial Gaussian breaks up and decays
over time, looking much as before.

Finally, although we have used the Schwarzschild value of rH for purposes of comparison,
since the geometry is asymptotically flat, we could naively try to define an actual ADM mass
by copying its physical formulation in terms of the Einstein tensor of the spatial geometry
[5, 17, 40], which in spherical polars amounts to the limit r →∞ of

M(r) =
2

G(n − 1)(n − 2)Ωn−1

∫
Sn−1

r

Eins(r∂r,
√
β∂r)d

n−1Ω

=
2

G(n − 1)(n − 2)
rn−1 Eins(r∂r,

√
β∂r)

for a spatial geometry of dimension n. Here there is a factor−2 compared to the usual definition
because our Ricci and hence Einstein tensor conventions reduce in the classical case to − 1

2 of
the usual ones. Ωn−1 is the volume of a unit sphere of dimension n − 1 and we integrate with
measure dn−1Ω over the sphere Sn−1

r at radius r. The conformal Killing vector field in the
general formula in [40] is just r∂r in our case and the unit outward normal vector field is

√
β∂r

given the form of the spatial metric. As everything is rotationally invariant, the integration
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merely gives a factor rn−1Ωn−1. For a usual Schwarzschild black hole with n = 3, the Einstein
tensor of the spatial geometry in our conventions can be extracted from [12, cor. 9.9] to find

EinsSch(r∂r,
√
β∂r) =

1
2r
√
β

(1 − β), M(r) =
rH

2G
√
β
→ rH

2G

as expected for the Schwarzschild β(r) = 1 − rH
r . If we instead use the fuzzy quantum black

hole spatial geometry in proposition 4.2, the radial sector is completely classical, so it still
makes sense to read off Eins(∂r, ∂r) as the coefficient of dr ⊗ dr, resulting in our case in

Einsfuz(r∂r,
√
β∂r) =

3
2r
√
β

(
1
4k

− β

)
,

which, since β(r) = 1 − r2
H

r2 and k �= 1
4 , results in M(r) →∞. If we took k = 1

4 then we would
not have a Ricci flat metric in the spacetime quantum geometry and we would get M(r) → 0,
which is not reasonable either. These problems are a consequence of the dimension jump in the
quantum model, evidently requiring a more sophisticated approach to ADM mass. By contrast,

if we were to set n = 4 and k = 1
4 then we would obtain M(r) → r2

H
2G , which is rather close to

the value (4.6) for a classical 5D black hole.
There is a similar story if we try to compute the Komar mass in 4D from its classical formula

as a surface integral around a two-sphere at infinity. This can be written, cf [46], as the limit
r →∞ of

MKomar(r) = − 1
8πG

∫
S2(r)

i∂t i∂r (∂rβ dt ∧ dr) =
1

2G
r2∂rβ

where, for our form of metric, the timelike Killing vector converted to a one-form via the
metric is ξ = −βdt with ∇∧ ξ = −∇∧ (βdt) = −d(βdt) = ∂rβdt ∧ dr since ∇ has zero
torsion. The unit timelike reference field is 1√

β
∂t and (and as above) the outward unit nor-

mal to the sphere S2(r) of radius r is
√
β∂r (the

√
β factors cancel in their product). For a

Schwarzschild black hole, this gives rH
2G as expected, but for our solution β(r) = 1 − r2

H
r2 , we

obtain MKomar(r) → 0. We would have obtained a reasonable answer if we were integrating
over a three-sphere in a four-dimensional spatial geometry, but that is not the case for our
fuzzy black hole geometry.

5. Black hole with the discrete circle

We now consider the same ideas as in the preceding section, but for a 3D spacetime metric
with S1 in polar coordinates replaced by the discrete group Zn. The 2D FLRW model with S1

replaced by Zn was done in [3] and we use the same notations. Briefly, i ∈ Zn now labels the
vertices of a polygon as an integer mod n. The ‘step up’ and ‘step down’ partial derivatives
are ∂± = R± − id, where (R± f )(i) = f (i ± 1) and e± are the associated invariant one-forms
with e+∗ = −e−. The calculus on Zn is not commutative as e± f = R±( f )e± for a function f ,
the e± anticommute with each other and the exterior derivative is d f = (∂± f )e± (sum over ±)
and de± = 0. The classical limit n →∞ can be seen as a circle with a noncommutative 2D
calculus, which is the classical calculus on S1 extended by a one-form Θ0. The latter has no
classical analogue but can be viewed as normal to the circle when embedded in a plane [3], but
without an actual normal variable. The natural invariant metric on the polygon is −e+ ⊗s e−.
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Now the spacetime coordinate algebra is A = C∞(R× R>0) ⊗ C(Zn) with t, r for the time
and radial classical variables, and we consider a static Schwarzschild-like metric of the form

g = −β(r)dt ⊗ dt + H(r)dr ⊗ dr − αab(r, i)ea ⊗ eb. (5.1)

Invertibility of the metric requires centrality, which dictates αab(r, i) = αa(r, i)δab−1 for some
real-valued functions αa. We also require edge-symmetry αa = Ra(αa−1 ) so that the length of
each edge •i − •i+1 for the Zn at radius r is the same in either direction, namely given by some
real function a(r, i) according to

α+(r, i) = a(r, i), α−(r, i) = R−a(r, i). (5.2)

We limit attention to this form of metric.
We take analogous conditions on the tensor product calculus as in the previous section, in

the sense that the functions of the time t, radius r as well as dt, dr are classical and graded-
commute with everything. In view of this, and in line with [3] and with the fuzzy case above,
we make the simplifying assumption that the connection braiding σ among the differentials
dr, dt and between them and e± is just the flip map. In this case, the most general form of a
potential bimodule connection turns out to be

∇ea = −Γa
bce

b ⊗ ec + νa
bdt⊗s eb + γa

bdr ⊗s eb,

∇dt = ξabea ⊗ eb + b dt ⊗ dt + c dr ⊗ dr + h dr ⊗s dt,

∇dr = Aabea ⊗ eb + B dt ⊗ dt + C dr ⊗ dr + D dr ⊗s dt,

where the coefficients are elements of the algebra A and of the form

νa
b = νaδa,b−1 , γa

b = γaδa,b−1 , Aab = Aaδa,b−1 , ξab = ξaδa,b−1 . (5.3)

We now analyse when such a bimodule connection is a QLC. The requirement to be torsion
free comes down to

Aab = Aba, ξab = ξba, Γa
bc = Γa

cb, ∧(id + σ)(ea ⊗ eb) = 0, (5.4)

while to be metric compatible comes down to the 13 equations:

dr ⊗ dt ⊗ dt : ∂rβ + 2βh = 0,

dr⊗3 : ∂rH + 2HC = 0,

dt⊗3 : 2βb = 0,

dr ⊗ dt ⊗ dr/dr ⊗ dr ⊗ dt : −βc + HD = 0,

dt ⊗ dt ⊗ dr/dt ⊗ dr ⊗ dt : −βh + HB = 0,

dt ⊗ dr ⊗ dr : 2HD = 0,

dr ⊗ ea ⊗ eb : −∂rαab − αcbγ
c
a − αacRa(γc

b) = 0,

ea ⊗ eb ⊗ dt : −βξab − αcdRc(νd
f )σc f

ab = 0,

ea ⊗ dt ⊗ eb : −βξab − αcbν
c

a = 0,

ea ⊗ eb ⊗ dr : HAab − αcdRc(γ
d

f )σ
c f

ab = 0,
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ea ⊗ dr ⊗ eb : HAab − αcbγ
c

a = 0,

ea ⊗ eb ⊗ ec : −∂aαbc − αdcΓ
d

ab − αd f Rd(Γ f
gc)σdg

ab = 0,

dt ⊗ ea ⊗ eb : −αcbν
c

a − αacRa(νc
b) = 0.

The 1st and 2nd equations gives h, C respectively, and these together with the 5th equation give
B, resulting in

h = − 1
2β

∂rβ, C = − 1
2H

∂rH, B = − 1
2H

∂rβ. (5.5)

The 3rd, 6th and 4th equations imply that c = b = D = 0. Next, the 9th and 11th equations
tell us that

νa = −βξa

αa
, γa =

HAa

αa
, (5.6)

while, given the edge-symmetry, the 13th and 7th equations reduce to

νa + Ra(νa−1) = 0, γa + Ra(γa−1) = −∂rαa

αa
. (5.7)

Given that the 12th equation for metric compatibility and the torsion-freeness condition are the
same as for the polygon in [3], we are led to take Γa

bc at each radius r the same as for the QLC
∇Zn on the polygon found there. This has

∇Zn e+ = (1 − ρ)e+ ⊗ e+, ∇Zn e− = (1 − R2
−ρ

−1)e− ⊗ e−,

ρ(r, i) =
a(r, i + 1)

a(r, i)

and its braiding obeys σ(e± ⊗ e∓) = e∓ ⊗ e±, in which case the 8th and 10th metric compati-
bility equations become

Ra(νa−1) = − β

αa
ξa−1 , Ra(γa−1 ) =

HAa−1

αa
. (5.8)

Using the first of (5.6) and (5.8) in (5.7) leads us to ξa = −ξa−1 , which together with the sec-
ond half of the torsion-freeness conditions (5.4) requires ξa = 0, and as consequence νa = 0.
Similarly, inserting the second half of (5.6) and (5.8) in (5.7) produces

−Aa − Aa−1 =
∂rαa

H
. (5.9)

In summary, for a QLC, it only remains to solve for Aa, γa subject to such residual equations,
with the other coefficients zero or determined. It also remains to impose reality in the form of
∇∗-preserving.

Proposition 5.1. Assuming a static edge-symmetric central metric (5.1) and σ the flip on
generators involving dr, dt leads to a ∗-preserving QLC if and only if ∂−∂rαa = 0 (which needs
the underlying a(r, i) to be the sum of a function of r and a function of i). The ∗-preserving
QLC with real coefficients is then unique and given by
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∇dt =− 1
2β

∂rβ dr ⊗s dt,

∇dr =− 1
2H

∂rH dr ⊗ dr − ∂rα+

2H
e+ ⊗ e− − ∂rα−

2H
e− ⊗ e+ − 1

2H
∂rβ dt ⊗ dt,

∇e± =∇Zn e± − 1
r

dr ⊗s e±.

Proof. The ∗-preserving conditions for ∇ include conditions on Γ which coincide at each r
with those for a QLC on Zn as in [3], for which the solution is unique, so we are forced to this
choice for Γ. The remaining ∗-preserving conditions require B, C, h to be real-valued, which
already holds because they are functions of the metric coefficients, together with the conditions∑

a

(Aa−1σ(ea−1 ⊗ ea) − Aaea ⊗ ea−1
) = 0, γa = Ra(γa−1 ), (5.10)

∑
a

(ξa−1σ(ea−1 ⊗ ea) − ξaea ⊗ ea−1
) = 0, νa = Ra(νa−1). (5.11)

The conditions (5.11) are trivially fulfilled, while the second half of (5.10) implies Aa = Aa−1 ,
which together with the form of the braiding map σ solves the first half of (5.10). In this case,
(5.9) takes the form

−Aa − Aa =
∂rαa

H
. (5.12)

The second halves of (5.6) and (5.8), together with the edge-symmetric condition, tell us that
Aa = Ra−1 (Aa) and hence that Aa is independent of the discrete variable, i.e., just a function of
r. In this case, we must have

A± = −∂rα±
2H

± ıy(r), γ± = −∂rα±
2α±

± ı
Hy(r)
α±

for some real-valued function y(r). It is natural at this point to set y(r) = 0 so as to keep coef-
ficients real, and we do this now (this was also done at the parallel point in [3]). Another
consequence of A± being constant on the polygon is ∂±A± = 0, which lead us to ∂±∂rαa = 0.
This corresponds to restricting the underlying metric function a(r, i) in (5.2) as stated. �

This is a general result, but we now focus attention on the Zn-invariant metric where a(r, i)
is independent of i and moreover of the expected radial form.

Theorem 5.2. The static Zn-invariant Schwarzschild-like metric

g = −β(r)dt ⊗ dt + H(r)dr ⊗ dr − r2e+ ⊗s e−

has a canonical ∗-preserving QLC,

∇dt =− 1
2β

∂rβ dr ⊗s dt,

∇dr =− 1
2H

∂rH dr ⊗ dr − r
H

e+⊗s e− − 1
2H

∂rβ dt ⊗ dt,

∇e± =− 1
r

dr ⊗s e±
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with the corresponding Ricci scalar and Laplacian

S =
1

2Hβ
∂2

r β − 1
4Hβ2

(∂rβ)2 − 1
4H2β

∂rH∂rβ − 1
rH2

∂rH +
1

rHβ
∂rβ +

1
r2H

,

Δ =
2
r2

(∂+ + ∂−) − 1
β
∂2

t +
1
H
∂2

r +

(
2

rH
− 1

2H2
∂rH +

1
2Hβ

∂rβ

)
∂r.

This is Ricci flat if and only if

H(r) =
1

β(r)
, β(r) =

rH

r
(5.13)

for some constant rH of length dimension.

Proof. Taking α± = r2 in the preceding proposition immediately gives the canonical QLC
stated. Its associated curvature comes out as

R∇dt =
1

2β

(
∂2

r β − 1
2β

(∂rβ)2 − 1
2H

∂rH∂rβ

)
dt ∧ dr ⊗ dr

− r
2Hβ

∂rβ dt ∧ e+ ⊗s e−,

R∇e± = −∂rH
2rH

e± ∧ dr ⊗ dr − 1
2rH

∂rβe± ∧ dt ⊗ dt − 1
H

e± ∧ e∓ ⊗ e±,

R∇dr =
1

2H

(
1

2H
∂rβ∂rH − ∂2

r β +
1

2β
(∂rβ)2

)
dr ∧ dt ⊗ dt

− 1
2

r∂rβ dr ∧ e+⊗s e−.

Taking the antisymmetric lift of products of basic one-forms and tracing gives the associated
Ricci tensor

2Ricci =

(
1

2β
∂2

r β −
(
∂rβ

2β

)2

− 1
4Hβ

∂rH∂rβ − 1
rH

∂rH

)
dr ⊗ dr

+

(
− r

2Hβ
∂rβ +

r
2H2

∂rH − 1
H

)
e+⊗s e−

+

(
1

4H2
∂rβ∂rH − 1

2H
∂2

r β +
1

4Hβ
(∂rβ)2 − ∂rβ

rH

)
dt ⊗ dt.

The Ricci scalar and Laplacian follow on application of the inverse metric. We then solve for
Ricci = 0. The calculations are straightforward and are omitted. �

The quantum geometric structures in the discrete black hole-like Ricci-flat case are

g = − rH

r
dt ⊗ dt +

r
rH

dr ⊗ dr − r2e+ ⊗s e−, (5.14)

(dt, dt) = − r
rH

, (dr, dr) =
rH

r
, (e±, e∓) = − 1

r2
, (5.15)

∇dt =
1
2r

dr ⊗s dt, (5.16)
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∇dr = − 1
2r

dr ⊗ dr − rHe+ ⊗s e− +
r2

H

2r3
dt ⊗ dt, (5.17)

∇e± = −1
r

dr ⊗s e±, (5.18)

R∇dt =
1
r2

dt ∧ dr ⊗ dr +
rH

2r
dt ∧ e+ ⊗s e−, (5.19)

R∇dr = − r2
H

r4
dr ∧ dt ⊗ dt +

rH

2r
dr ∧ e+ ⊗s e−, (5.20)

R∇e± = − 1
2r2

e± ∧ dr ⊗ dr +
r2

H

2r4
e± ∧ dt ⊗ dt ∓ rH

r
e+ ∧ e− ⊗ e±, (5.21)

Δ = − r
rH

∂2
t +

rH

r
∂2

r +
rH

r2
∂r +

2
r2

(∂+ + ∂−). (5.22)

To keep the signature, we can take rH > 0 and we will analyse this case first. However,
to approximately match the inside of a black hole, we will then also analyse the case
rH = −2GM < 0 with the physical roles of r, t interchanged.

We also note that β = H = 1 leads to

g = −dt ⊗ dt + dr ⊗ dr − r2e+ ⊗s e−, Ricci = −1
2

e+ ⊗s e−, S =
1
r2

,

Δ = −∂2
t + ∂2

r +
2
r
∂r +

2
r2

(∂+ + ∂−),

which is more like the spacetime Laplacian in 3 spatial dimensions, again showing the dimen-
sion jump and the constant curvature at each fixed radius and time. Here, S1 behaves more like
S2 in polar coordinates, just with 2(∂+ + ∂−) in the role of the angular Laplacian.

5.1. Klein–Gordon equation on the discrete black hole-like model for β(r) > 0

Here, we analyse the case of the length scale rH > 0 in the Laplacian (5.22) found for the dis-
crete black hole-like model above in ‘polar coordinates’ form. The eigenvalues of the angular
Laplacian ∂+ + ∂− are labelled by l ∈ Zn and given by [3]

λl = ql + q−l − 2 = 2

(
cos

(
2πl
n

)
− 1

)
= −4 sin2

(
πl
n

)
; q = e

2πı
n

with eigenfunctions qil. If we followed the format of section 4.1, we might first consider
‘quantum mechanics-like ’ solutions of Klein–Gordon equations Δφ = m2φ of the form

φ = e−ımtψl(t, r)

of orbital angular momentum l and slowly varying in t. This is not particularly justified from
the form of the metric but leads to

ıψ̇ = − rH

2mr

(
Δr +

2λl

r2

)
ψl +

(
1 − rH

r

) m
2
ψl; Δr =

rH

r2
∂r(r∂r).

The mass term from the Klein–Gordon equation has not cancelled due to the rH/r factor in the
dt ⊗ dt term in the metric, except in the vicinity of r ≈ rH .
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Figure 4. Solution of Klein–Gordon equation for l = 0 and ω = m = rH = 1, with
Cauchy boundary condition at r0 = rHm2/ω2.

Here, it makes more sense to look in the ‘comoving’ case where we start with an l = 0
reference solution of the Klein–Gordon equation of the form

φ = e−ıωtφω; φ′′
ω +

1
r
φ′
ω +

(
r2

r2
H
ω2 − r

rH
m2

)
φω = 0.

A generic solution of this for ω = m = rH = 1 is shown in figure 4, which illustrates that we
can have an extended region whereφω is approximately constant, here with boundary condition

φ′
ω(r0) = 0, φω(r0) = 1; r0 := rH

m2

ω2
.

This results in ∣∣∣∣φ′
ω(r)

φω(r)

∣∣∣∣ < m
|ω|rH

, r ≈ r0

for a reasonable range around the central value, as illustrated in the second half of the figure.
An obvious choice would be ω = m and hence r0 = rH , but we can choose other ω to have
other central values r0.

Next, we use this as reference and look for solutions of the Klein–Gordon equations of the
form φ = e−ıωtφω(r)ψl(t, r) with ψl in the λl eigenspace and slowly varying in t. Discarding
ψ̈l terms, we have

ıψ̇l = − rH

2ωr

(
Δr +

2φ′
ω

φω

rH

r
∂r +

2λl

r2

)
ψl

and hence in any regime where the φ′
ω/φω term can be neglected, we have approximately

ıψ̇l ≈ − rH

2ωr

(
Δr +

2λl

r2

)
ψl

as an effective Schroedinger-like equation. We still have an expected scale factor out front, but
now the unwanted mass terms are absent, i.e. this looks more like free motion as expected.

We can go further and replace r by a new variable

ρ(r) =
r2

2rH
,

∂

∂r
=

r
rH

∂

∂ρ
,

∂2

∂r2
=

∂

∂r

(
r

rH

∂

∂ρ

)
=

r2

r2
H

∂2

∂ρ2
+

1
rH

∂

∂ρ
,
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in which case

ıψ̇l ≈ − 1
2ω

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

2λl

(2ρ)
3
2 r

1
2
H

)
ψl.

This absorbs the β2 = r2
H/r2 factor in front of the radial double derivative so as to look more

like flat space quantum mechanics, but has an unusual radial power for the angular contribution.
Here ω plays the role of the effective mass and determines the central value

ρ0 =
rH

2

(m
ω

)4

around which we wish our approximation to hold.

5.2. Continuum limit of the discrete black hole-like model

Here, we send n →∞ in such a way that the Zn geometry becomes S1 with its usual constant
metric. The algebraic way to do this was explained in [3] as a switch from functions on Zn to
the algebraic circle C[s, s−1], where classically s = eiθ for an angle coordinate θ. The limiting
calculus is not, however, the classical one on S1, being 2D not 1D. Rather, it is the q → 1 limit
of the 2D q-deformed calculus with generators f ± and the commutation relations and exterior
derivative [3]

f − s = −s f +, f +s = s( f − + (q + q−1) f +), ds = s f +, ds−1 = s−1 f −.

The calculus is inner with

Θ =
q

(q − 1)2
( f + + f −)

and has a quantum metric

gS1 =
1
2

f + ⊗s f − +
q

(q − 1)2
( f + + f −) ⊗ ( f + + f −).

One can check that this is central, i.e. commutes with s and obeys the reality property flip
(∗ ⊗ ∗)(gS1) = gS1 for a quantum metric if q is real or modulus 1. If we impose q = e

2πı
n and

sn = 1 then this is the constant metric 1
2 (q − q−1)2e+ ⊗s e− on Zn under the correspondence

[3]

e± =
q f ± + f ∓

(q − q−1)(q − 1)
. (5.23)

In this case (q − q−1)2 is negative, which is the reason for the − sign that was needed in the
discrete model. But we do not impose these restrictions and thereby work on the circle. One
still has a flat ∗-preserving QLC with

∇ f ± = 0, f +∗ = − f −

and σ the flip on the basic one-forms. We now work on A = C∞(R× R>0) ⊗ C[s, s−1] with
t, r, dt, dr classical and graded-commuting with the s, f ±. We take the metric

g = − rH

r
dt ⊗ dt +

r
rH

dr ⊗ dr + r2gS1
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and we look for QLCs with σ assumed to be the flip on the basic one-forms.

Proposition 5.3. The metric g has a canonical Ricci flat ∗-preserving QLC and associated
geometry

∇dt =
1
2r

dr ⊗s dt,

∇dr = − 1
2r

dr ⊗ dr +
r2

H

2r3
dt ⊗ dt + rHgS1 , ∇ f ± = −1

r
dr ⊗s f ±,

R∇dt =
1
r2

dt ∧ dr ⊗ dr − rH

2r
dt ∧ gS1 ,

R∇dr = − r2
H

r4
dr ∧ dt ⊗ dt − rH

2r
dr ∧ gS1 ,

R∇ f ± = − 1
2r2

f ± ∧ dr ⊗ dr +
r2

H

2r4
f ± ∧ dt ⊗ dt +

rH

r
f ± ∧ gS1 ,

Δ = − r
rH

∂2
t +

rH

r
∂2

r +
rH

r2
∂r +

1
r2
ΔS1 ,

ΔS1 = −4(1 + (q − 1)s∂q)
(q + 1)2

(s∂q)2,

where ∂q is the standard q-derivative so that ΔS1 on modes sl has eigenvalue

λl = −
4ql[l]2

q

(q + 1)2
, [l]q :=

1 − ql

1 − q
.

Proof. First, we can redo the discrete black hole-like model with a(r, i) = ar2 for any con-
stant factor a for the angular term gZn = −ae+⊗s e− in the metric. This same factor enters in
the connection∇dr as gZn there. The same happens for R∇ in the term where e+ ⊗s e− entered.
We then replace gZn by gS1 to get the connection as stated, noting that f ± are a linear combina-
tion of e±, so expressions linear in these have the same form. This version is constructed so as
to be isomorphic to the discrete black hole-like model when q = e

2πı
n and sn = 1 are imposed,

but these properties do not enter into the computations for a QLC, so this also holds for generic
q, and likewise for Ricci flatness and for being ∗-preserving when |q| = 1. One can do a direct
check of these features and see that ∇ is ∗-preserving also when q is real, as a consequence of
gS1 being real in the required sense.

For Ricci, the antisymmetric lift i( f + ∧ f −) = 1
2 ( f + ⊗ f − − f − ⊗ f +) of

f + ∧ f − =

(
q − 1
q + 1

)
(q − q−1)2e+ ∧ e−

is equivalent to that of e+ ∧ e− when we use the correspondence (5.23). We also use the inverse
metric which on the f ± comes out as

( f ±, f ±) = − 4q
r2(q + 1)2

, ( f ±, f ∓) = 2
q2 + 1

r2(q + 1)2
.

For the Laplacian, we use dsl = − q[l]qsl

q+1 (q[−1 − l]q f + + [1 − l]q f −) from [3] and (, ) to com-

pute Δsl = ( , )∇dsl = − 4q2+l

r2(q+1)2 [l]2
qsl, which we write as stated since s∂qsl = [l]qsl for the
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standard q-derivative ∂q f (s) = ( f (qs) − f (s))/((q − 1)s). The other values of Δ on func-
tions of r, t are unchanged from the discrete case. In the classical case with s = eıθ, we have
s ∂
∂s = −ı ∂

∂θ
as the limit of s∂q. �

It remains to say a few words about the actual classical limit of the geometry. As explained
in [3], this is a joint process q → 1 and f + = − f −, with the latter taking precedence so that
gS1 →− f + ⊗ f + = dθ ⊗ dθ as classically in our normalisation of gS1 . In this way, one arrives
as the classical 1 + 2-dimensional curved metric

gclass = − rH

r
dt ⊗ dt +

r
rH

dr ⊗ dr + r2 dθ ⊗ dθ,

which is not, however, Ricci flat. One finds in our conventions (which are −1/2 of the usual
ones)

Ricci = −1
2

(
r2

H

2r4
dt ⊗ dt − 1

2r2
dr ⊗ dr +

rH

r
dθ ⊗ dθ

)
, S = 0,

Δ = − r
rH

∂2
t +

rH

r
∂2

r +
1
r2

∂2

∂θ2
.

The Laplacian agrees with the limit of the q-deformed geometry but Ricci does not. This is
due to the 4D cotangent bundle in the quantum model, since the trace gives a different result
from the trace in the quotient, where we impose f + = − f −. Moreover, the dropped terms in
the metric that are singular as q → 1 contribute in the calculation of Ricci = 0 in the quantum
model.

5.3. Discrete black hole model for β(r) < 0

Here we briefly analyse the case where rH < 0 in our previous presentation of the discrete black
hole-like model. More precisely, we still define rH = 2GM > 0 but replace rH by −rH and we
also replace t by r and r by t in all the formulae (5.14)–(5.22) so as to match the signature.
Thus, the quantum metric and resulting quantum geometry are now

g = − t
rH

dt ⊗ dt +
rH

t
dr ⊗ dr − t2e+ ⊗s e−,

∇dr =
1
2t

dr ⊗s dt, ∇dt = − 1
2t

dt ⊗ dt +
r2

H

2t3
dr ⊗ dr + rHe+ ⊗s e−,

∇e± = −1
t

dt⊗s e±, Δ = − rH

t
∂2

t +
t

rH
∂2

r −
rH

t2
∂t +

2
t2

(∂+ + ∂−)

with a curvature singularity now at t = 0. We next make a change of variable

t =

(
3τ
2

) 2
3

r
1
3
H = η(τ )2rH , η(τ ) =

(
3τ
2rH

) 1
3

in order to have a constant term in the ‘time’ coefficient of the metric, so that the quantum
geometric structures become
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g = −dτ ⊗ dτ + η−2 dr ⊗ dr − η4r2
He+ ⊗s e−,

∇e± = − 2
3τ

dτ ⊗s e±, ∇dτ =
1

3η2τ
dr ⊗ dr + ηrHe+ ⊗s e−,

∇dr =
1

3τ
dr ⊗s dτ , Δ = −∂2

τ −
1
τ
∂τ + η2∂2

r +
2

η4r2
H

(∂+ + ∂−).

We now do the parallel analysis to section 5.1. Using the above Laplacian for the Klein–Gordon
equation, we first look for solutions of the form φ = e−ımτψl(τ , r), where ψl is slowly varying
in τ and with eigenvalue λl for the angular sector. Ignoring ψ̈l, we have

ıψ̇l = − η2

2m + ı
τ

(
∂2

r +
8λl

9τ 2

)
ψl −

ım
τ (2m + ı

τ )
ψl

where dot denotes ∂τ . If we assume that we are very far from the τ = 0 singularity in the sense

τ � 1
m

(i.e. at macroscopic times much larger than the Compton wavelength in time units), we have

ıψ̇l ≈ − η2

2m

(
∂2

r +
8λl

9τ 2

)
ψl. (5.24)

This looks a bit like quantum mechanics, not in the presence of a point source potential but
rather with an overall time-dependent expansion factor and a time-dependent contribution of
the angular momentum. Note that e−ımτ does not itself obey the Klein Gordon equation.

Next, we look for the ‘comoving’ behaviour, noting that reference solutions of the
Klein–Gordon equation of mass m and l = 0 are in fact given by Hankel functions, of which
we focus on the first type,

φm(τ ) = H(1)
0 (−mτ ).

Here, the real and imaginary parts (Bessel J, Y functions respectively) oscillate, φm(0) has an
infinite (imaginary) value and |φm|2 gradually decreases with time. This therefore plays the
role of an exact plane wave. Relative to this, we look for solutions of the form

φ(τ , r) = φm(τ )ψl(τ , r)

with ψl slowly varying in τ , leading to a Schroedinger-like equation

ıψ̇l = −η2h(mτ )
2m

(
∂2

r +
8λl

9τ 2

)
ψl,

where

h(s) = −ı
H(1)

0 (−s)

H(1)
1 (−s) + 1

2s H(1)
0 (−s)

≈ 1

for large s, as shown on the left in figure 5. Here, one can see that h(mτ ) approaches 1 very
rapidly as τ � 1/m. In other words, the behaviour near the τ = 0 singularity is different but
for larger τ the effective Schroedinger-like equation is now much more sharply approximated
by (5.24) than before.
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Figure 5. Function h(mτ ) in definition of Schroedinger-like equation for discrete black
hole metric and evolution of a Gaussian centred at r = 10rH at τ = 1/m, for rH = m = 1
and l = 0. The essentially zero initial values at r = 0, 20rH are held fixed.

The numerical solution for the real part of these equation is shown on the right in figure 5,
where we used the exact function h(mτ ) and set the initial Gaussian at mτ = 1. The evolution
becomes noticeably constant in r compared to regular quantum mechanics. Some of the noise
in the picture comes from the numerical approximation.

6. Concluding remarks

We have solved for the quantum Levi-Civita connection and hence found the quantum geom-
etry for quantum metrics with each sphere at radius r, t replaced by a fuzzy sphere Cλ[S2].
We did this for both FLRW-type metrics (3.1) and static black-hole like metrics (4.1) in polar
coordinates and general metric gi j on the fuzzy sphere. We also completed the discrete case
with static metric (5.1), where each sphere is replaced by Zn as a discrete circle or its non-
commutative S1 limit, the FLRW-like case having already been treated in [3]. After the general
analysis, we specialised to the ‘round’ metric gi j = kδi j in the fuzzy case and the regular poly-
gon metric −e+ ⊗s e− in the discrete case, respectively, and solved the Friedmann equations
for the cosmological model and the Ricci = 0 equation for the black-hole-like models.

The four models between them show a remarkably consistent ‘dimension jump’ phe-
nomenon where the radial-time sector behaves as for a classical model of one dimension higher.
The origin of this from a mathematical point of view is what has been called a ‘quantum
anomaly for differential structures’ [33], where quantisation of an algebra while preserving
symmetries typically has an obstruction requiring either a breakdown of associativity or, which
is our approach here, an extra cotangent dimension. This then affects both the Ricci tensor and
Laplace operator. This is not surprising, but it is remarkable that the result appears so simply
as a classical dimension jump. The consequence from a physical point of view is striking: if
each sphere at r, t is better modelled as fuzzy due to quantum gravity effects, which is plausible
enough if one wanted to preserve rotational symmetry but allow for some noncommutativity
of spatial coordinates, then Ricci flat solutions, in particular, have a very different long range
behaviour in 4D, being now of the form of a 5D black hole with the black hole appearing as a
source of an inverse cubic gravitational force. In the discrete circle case, as well as in its non-
commutative circle limit, the fact that the circle has zero constant curvature in contrast to S2

also resulted in dropping the 1 in the usual Schwarzschild factor β = 1–2GM/r, which meant
that we only approximated a black hole far inside the horizon. We are not proposing the model
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as 4D physics, since the angular sector remains a circle not a sphere, but it could be of inter-
est in 2 + 1 gravity. It also illustrates that it is possible to have a nonflat Ricci = 0 quantum
geometry in 3D, ultimately because of the hidden extra cotangent direction. The geometric
meaning of the extra dimension was discussed in [3] as a kind of normal to the circle but with-
out actually extending the circle to an ambient plane. (This is not unlike the notion of a ribbon
or framed knot in TQFTs.) Finally, we have considered θ′ as part of the background quantum
geometry, but in the light of experience with Connes spectral triple approach (and notably, the
appearance of a Higgs field there [19]), it could be interesting to promote this extra one-form to
a dynamical field. According to our discussion, such a field might be associated to some kind
of ‘normal bundle’. Other ideas for a physical role of θ′ have ranged from a spontaneously
induced external time as in [33–35] to a direction associated to a renormalisation group flow
[23]. In the former context, a functional coefficient in front of θ′ was indeed interpreted in
[34, 35] as a gravitational potential.

In summary, we offer new models with different radial-time behaviour from those expected.
We do not know if such effects could be relevant to real-world cosmology, but the idea of
modified gravity [41] is of interest and it is possible that our new theoretical mechanism could
likewise be of interest. We also introduced a novel ‘comoving’ Schroedinger-like equation i.e.
slowly varying relative to an actual solution φm of the Klein–Gordon equation. We have not
developed this as a formal theory but this could certainly be looked at further as a complement
to more established methods of quantum field theory on curved spaces [14, 42, 43]. In par-
ticular, the solutions ψl appear in practice to dissipate over time even for a regular black hole
background. This could potentially relate to ideas for gravitational measurement, but note that
this would be a very different phenomenon from gravitational decoherence [8], which applies
to mixed states not pure states.

Of course, our analysis is only as good as the assumed formalism, and here we assumed
the constructive approach to quantum Riemannian geometry as in [12]. As in the concluding
remarks in [3], it would be fair to say that the Einstein tensor in the general set up here is
not known and the proposal for Ricci is merely by analogy (a trace of Riemann) rather than
springing from a more conceptual understanding. In general, in order to take a trace, the for-
mulation of Ricci depends on a lifting map i : Ω2 → Ω1 ⊗A Ω1 which classically would express
a two-form as an antisymmetric tensor but which in general depends on the structure of Ω2.
Fortunately, for the models in the present paper, as in [3], there are natural basic one-forms
with respect to which Ω2 is given by skew-symmetrising, so we can take i in the standard
form as classically. We also found for the FLRW model (3.15) and for the spatial geometry
of the fuzzy black hole model (proposition 4.2), that the quantum Einstein tensor defined by
Eins = Ricci − S

2 g, where S is the Ricci scalar, led as expected to ∇ · Eins = 0. Such vanish-
ing of the divergence provides evidence that this ‘naive’ definition of the Einstein tensor can be
useful for some classes of models. It has also been used in some other approaches, such as [4].
An actual derivation and deeper understanding from a noncommutative variational principle,
remains, however, an important direction for further work. This issue is discussed further in
the concluding remarks of [3].

The physics of such quantum Ricci and Einstein tensors also remains to be understood much
better. For example, we took the view for the fuzzy black hole that an observer sees the event
horizon at r = rH , which is the physical parameter, but equated it to 2GM for an effective
‘Schwarzschild mass’ for the purposes of comparison. To do better, one should have a non-
commutative version of ADM theory, but we saw that naively adopting its classical physical
formulation in terms of the spatial Einstein tensor [5, 17, 40] while using the spatial quan-
tum Einstein tensor gave an infinite ADM mass as a consequence of the dimension jump. We
likewise found that naively adopting the classical formulation of the Komar mass as a surface
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integral gave an unreasonable answer. Here again, one should have a better noncommutative
version of the theory relating a ‘surface’ integral of ∗dξ (where ξ is the timelike Killing one-
form and ∗ is the Hodge star operator) to a volume integral of the evaluated Ricci curvature
(so as to be topological for a vacuum solution). This again requires a deeper understanding of
the Ricci tensor in the noncommutative case. In our case, we would also have to deal with ∗dξ
being a three-form due to the extra dimension.

It is also the case that the models in the present paper do not concern quantum gravity itself,
but rather noncommutative classical gravity proposed to better model quantum gravity effects.
It remains to understand mechanisms for how our class of models might indeed emerge from
an underlying theory. Thus, [24, 28] gave some reasons for why the fuzzy sphere could emerge
from 2 + 1 quantum gravity, but it is unclear how such arguments might extend to the higher
dimensional models proposed here. By contrast, [1] studies effects on the interior of a black
hole from loop quantum gravity, albeit the considerations there are quite different. See also [6]
as an example of a loop quantum gravity model of a cosmological nature. There are also many
other approaches to quantum gravity, some of them implicitly or explicitly related to some
kind of noncommutative geometry. Aside from Connes spectral triples, which can be applied to
models of quantum gravity, e.g. [27], we also mention lattice quantum gravity [2] and causal set
models [21] as approaches where spacetime is modified away from the continuum and which
it would be interesting to connect better to noncommutative geometry. There are also emerging
variants of the formalism we used which could be useful to consider, for example [15] studies
Zn with a larger class of not necessarily edge-symmetric metrics compared to [3].

Nevertheless, the class of models studied in this paper were particularly nice as far as the
quantum geometry itself is concerned and more tractable than fully noncommutative models
where r, t need not be classical as they were for us. We refer to the concluding remarks of
[3] for a wider discussion. Also remaining to study, even for our simple class of models, are
quantum geodesics using the Schroedinger-like formalism of [10, 13]. This requires further
machinery, notably the construction of a certain A–B-bimodule connection (where B is the
classical geodesic-time algebra), and will be considered elsewhere. These are some directions
for further work.
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