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Abstract
Quantum coherence, the ability of a system to be in a quantum superposition of pure states, is a
distinct feature of quantum mechanics that has no direct analog in classical mechanics. Quantum
states that possess coherence efficiently outperform their classical counterparts in fundamental
science and practical applications, including quantum metrology, computation, and simulation.
Generation of coherence without the need to employ strong classical drives remains a challenging
and not yet experimentally explored task. Beyond individual thermally-induced coherences already
proposed for different experiments, correlated quantum coherences of multiple qubits represent a
new target. We prove that correlated qubit coherence emerges thermally stimulated from
incoherent states in hybrid superconducting and solid-state systems comprising non-interacting
qubits coupled only via Dicke-type interaction to a shared thermal mechanical oscillator, exhibits
coherences beyond the Tavis–Cummings coupling and, moreover, can be advantageous in
quantum sensing.

1. Introduction

In the classical description of a physical system, it is in principle possible to assign perfectly certain values to
the system’s configuration parameters. Possible uncertainties are associated, in classical physics, with the lack
of knowledge of the exact state of the system and are the subject of statistical mechanics and fields alike. In
contrast to that, in quantum mechanics, even perfect determination of the state of a system yields pure states
that can exhibit statistical uncertainties in the form of e.g. the celebrated Heisenberg principle. Consequently,
quantum mechanics allows the existence of coherent quantum superpositions in such pure states. The ability
to create quantum coherent superpositions of relevant basis quantum states is a contributing factor in a
multitude of quantum applications including, e.g. quantum metrology [1, 2], communication and
cryptography [3, 4], simulation and computing [5–7]. Correspondingly, there exists a substantial effort to
quantify quantum coherence [8–13] and study the ways of its creation (see e.g. [14, 15] for reviews).

However, much less is understood and experimentally tested about the operational mechanisms of
quantum coherence generation. The paradigmatic approach to generating coherent superpositions of energy
basis states typically includes strong coherent and classical driving of the target system. Without the drive,
the system itself normally tends to equilibrate to its environment and reach a thermal state, with the latter
being merely an incoherent mixture of the energy eigenstates. Therefore, the coherent drive has to compete
with the thermalization process and hence the drive strength is a necessity. It has recently been demonstrated,
however, that a properly engineered interaction between a system of interest and its thermal environment is
capable of generating steady-state coherences [16] in the absence of a coherent drive. The quantum
coherence rises from specific coherent interactions with an environment or between sub-systems open to the
environment. The powerful drive-less approach has been further studied and developed in [17–25]. A related
question of whether transient dynamics can autonomously generate coherence of a qubit coupled to a
thermal mechanical oscillator found an affirmative answer in [26]. Moreover, it was shown that increasing
the initial temperature of the mechanical oscillator can surprisingly have a positive effect on the amount of
generated coherence. Recently, for autonomous quantum thermodynamics, such investigation was focused
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to entanglement of interacting qubits between baths with asymmetric temperatures [27, 28], eventually
created and enhanced by the joint weakly coupled thermal bath [29, 30] and possibly extendable to many
qubits [31–34].

Here, we tackle a more challenging problem of autonomous generation of multi-qubit quantum
coherences between different qubits provided by only a coupling to a single thermal oscillator in a star
configuration. We show, differently, that starting with fully incoherent states, a much greater correlated
quantum coherence emerges [35] already in a symmetric configuration during transient dynamics from only
coherent interaction with a single thermal oscillator and persists under relevant thermalization. When the
correlated coherence is non-vanishing, although entanglement can be small or even zero, the entire coherence
in the system is no longer stored locally and must exist within the correlations between the non-interacting
subsystems. Within a certain limit, an increase in the temperature of the mechanical oscillator has a positive
effect on the different types of coherence of the qubits. Specifically, we observe different thermally induced
correlated coherences due to the counter-rotating terms of the Dicke interactions, eventually combined with
local coherences for the composite interactions [16–25, 36], not available in a simpler Tavis–Cummings
model without counter-rotating coupling terms. To illustrate the practical applicability of the generated
coherence, we analyze quantum sensing of an overall qubit phase and show that the quantum Fisher
information of the qubits grows with the increasing temperature of the mechanical oscillator. It overcomes
schemes based on an asymmetrical thermal excitation of two qubits coupled by energy-conserving
interaction [27–30, 32], that exhibits vanishing Fisher information even if they exhibit correlated coherence.

Motivated by recent progress at the superconducting and solid-state quantum platforms, we study a
symmetrical configuration where two (or a larger number of) qubits, not coupled directly to each other, are
each coupled to a common mechanical oscillator. In recent years such hybrid systems comprising both
two-level systems and harmonic oscillators attracted significant attention [37–39]. Indeed, chaining together
subsystems of a fundamentally different nature by means of controllable interfaces allows one to take
advantage of the strengths of the individual subsystems. In particular, in the so-called electromechanical
systems where superconducting qubits are coupled to motion of a mechanical oscillator [40–47], the qubit
can be used to facilitate creation of exotic quantum states of the mechanical oscillator. Complementary, the
mechanical oscillator provides a means for the upconversion of the qubit’s quantum state to the telecom
wavelengths, necessary for efficient long-distance quantum communication. Another example of similar
synergy is spin-mechanical systems such as NV-centers coupled to mechanical motion via strain, stress, or
magnetic fields [48–52]. Alternatively, mechanical oscillator can be coupled to quantum dots [53–55], or
similar coupling can be observed in trapped ions [56, 57], hybrid atom-optomechanical or
electro-optomechanical setups [38, 58–61].

Inspired by these experimental possibilities, our study showcases a counterintuitive phenomenon of fully
autonomous emergence of correlated coherence in qubits from totally incoherent states. Importantly, the
qubits do not interact with each other directly but instead are coupled only via a mediating thermal
mechanical oscillator. We test our findings on systems including two and three qubits coupled to a shared
mechanical mode and prove that the coherence persists under relevant damping. In practice, such generation
of coherence may have applications in quantum information tasks where a coherent joint drive of qubits is
not accessible or may be strongly unwanted because of undesired side effects of such drive. To verify an
impact in an application, we analyze sensing capability for the collective phase estimation by the qubits using
the Fisher information enhanced by the thermally-induced correlated coherences. Our study thus facilitates
the development of fully autonomous correlated coherence generation in hybrid systems with potential
applications in quantum technology and thermodynamics.

2. Results

2.1. Model and correlated coherence
The simplest system we consider consists of two qubits coupled to a mechanical oscillator (MO)
(figure 1(a)). Such a model can be experimentally realized in hybrid electromechanical devices, where qubits
are coupled to the mechanical mode capacitively, or via magnetic flux and electromotive interaction [37, 45,
62–64]. Another suitable platform for studying qubit-mechanical interaction at a quantum level is
represented by the spin-mechanical devices in which the mechanical oscillator can couple to the spin of the
NV centers or quantum dots in solid-state systems [50, 53, 65].

Considering a Dicke-type interaction [66, 67], typical for the superconducting and solid-state platforms
described above, our system of interest with two identical qubits (N = 2) can be described by the following
Hamiltonian (h̄= 1)

H= ωma
†a+

1

2

2∑
i=1

ωqiσzi +
2∑

i=1

gxiσxi

(
a+ a†

)
, (1)
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Figure 1. (a) Schematic diagram of a hybrid system comprising a mechanical oscillator (MO) with frequency ωm interacting via
Dicke-type coupling with two or more two-level systems (TLSs or qubits) with the transition frequencies ωqi . MO is coupled at a
rate γm to a bath at temperature Tm corresponding to mean occupation nth. At the same time, MO can be cooled down and
initialized in the thermal state with a different thermal occupation nm ̸= nth. Qubits also interact with their individual baths and
undergo the damping and dephasing at rates γxi , γzi . (b) Possible experimental implementations of hybrid qubit-mechanical
systems [48]. Above: capacitive coupling of a movable membrane to a superconducting qubit (JJ: Josephson junction, Cshunt:
shunting capacity), below: magnetic or strain coupling of a cantilever to an NV-center or a quantum dot. (c) Conceptual scheme
of the correlated coherence buildup. The initially incoherent states (diagonal in the energy bases) of the qubits and the oscillator
transforms (after tracing out the mechanical oscillator) into a state of two qubits that can have both local coherence (blue squares)
and correlated coherence (green squares).

where the first two terms describe the free evolution of the mechanical oscillator and the qubits, respectively.
We denote a and a† the annihilation and creation operators of the MO with frequency ωm, while ωqi is the
transition frequency of the ith qubit described by the Pauli matrices σµi (µ= x,y,z; i = 1,2). The last sum
in equation (1) describes the interaction between the MO and the qubits, parametrized by coupling rates gxi .
For the most part, we assume two identical qubits at resonance with MO: ωq1 = ωq2 = ωm, and the coupling
rates equal: gx1 = gx2 = g0. The impact of unequal frequencies and coupling rates is studied in sections S1 and
S7. In the rotating wave approximation, the counter-rotating terms in the Hamiltonian vanish, and the
resulting interactions can be described using the Tavis–Cummings model. Importantly, the T–C model,
while creating correlated coherences between the qubits, does not produce quantum states that are capable of
increasing the resolution of collective phase shift measurement (see section S5).

In order to evaluate the thermally-induced effects in the system, we estimate its quantum state ρ̂(t) as a
function of time. The system starts in a product state where the MO is initialized in a thermal state with
mean occupation nm while two qubits are prepared in their ground states |gi⟩ (i = 1,2). The MO’s initial
temperature can be made lower than the one of its bath by using cavity or feedback cooling [68]. In order to
find the evolution of the density matrix, we solve numerically either von Neumann master equation, for a
closed system, or the Lindblad or Bloch–Redfield master equation for an open system (see section 4 for
details). An approximate solution for short-time unitary dynamics of the closed system is in section S4. For
the case of an open system, we consider the mechanical oscillator to be coupled to its environment
(characterized by mean occupation nth) at rate γm, and the qubits to experience damping and dephasing at
rates γxi and γzi with the qubits environments being in vacuum. The state of the two qubits is then obtained
from ρ̂(t) by tracing out the degrees of freedom of the MO: ρ̂qq(t) = Trm(ρ̂(t)).

For the analysis of the coherence of the qubits, we use two measures of quantum coherence. First is the
relative entropy of coherence [9, 11] that for an arbitrary state π̂ reads

Crel (π̂) = S
(
π̂diag

)
− S(π̂) , (2)

where S(π̂)≡−Tr[π̂ ln π̂] is von Neumann entropy, and π̂diag =
∑

i ⟨i|π̂|i⟩ |i⟩⟨i| is the density matrix π̂ with
off-diagonal elements removed. Second, the quantum correlated coherence [12], which for the state of two
qubits reads:

Ccc

(
ρ̂qq

)
= Crel

(
ρ̂qq

)
−Crel

(
ρ̂q1

)
−Crel

(
ρ̂q2

)
, (3)

where ρ̂q1(q2)(t) = Trq2(q1)[ρ̂qq(t)] is the state of the first (second) qubit obtained by partial trace over degrees
of freedom of the second (first) one.

Hereinafter, we will refer to Crel(ρ̂qq) as the total relative entropy of coherence in order to distinguish it
from the local relative entropy of coherence Crel(ρ̂qi) of individual qubits. The total relative entropy of
two-qubit coherence in equation (2) describes the overall amount of local coherence together with the one
present in their correlation. Therefore, we use the correlated coherence (3) that discards the local quantum
relative entropies of coherence, to distinguish them [12]. When Crel(ρ̂qq) = Ccc(ρ̂qq), no coherence is present
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Figure 2. Correlated coherence C = Ccc = Crel in the system of two qubits induced by thermal fluctuations of a mechanical
oscillator (Dicke-Type model). (a) and (e) Maximally attainable amount of quantum correlated coherence (total entropy of
coherence) Cmax as a function of initial mechanical occupation nm. (a) Ideal case of unitary evolution according to the Dicke
model (1). Inset plots show total coherence C(t) as a function of time and the vanishing of the local relative entropy of coherence

C(q1,2)
rel . (e) Maximally attainable coherence in an open system (black line reproduces the results of panel (a) for comparison).

(b)–(h) Open-system simulation of the qubits coherence as a function of time using different approaches, for different initial
thermal occupations nm and different bath temperature nth of the mechanical oscillator. (b)–(d) Bloch–Redfield master
equation-based approach, (f)–(h) Lindblad master equation-based approach. Other parameters are: coherent coupling rates
g0 ≡ gx1 = gx2 = 0.1ωm, mechanical damping rate γm = 10−3ωm, all qubit damping and dephasing rates γxi,zi = 2× 10−5ωm

(with i = 1,2).

locally and all the coherence comes from the correlations between the qubits. As our qubit system is
considered local, and no qubit communication is relevant in such a scenario, we use correlated coherence as
the appropriate quantity instead of more narrow entanglement and broader entropy of coherence.

2.2. Thermally-induced correlated coherence of two qubits
To estimate the capability of a thermal mechanical oscillator to induce correlated coherence in the two-qubit
system, we first consider the unitary evolution induced by the Dicke-type Hamiltonian (1). Results of the
simulations are in figure 2(a) where we show the maximum attainable values of quantum correlated
coherence Ccc and total relative entropy of coherence Crel as a function of the initial thermal occupation of
the mechanical mode, nm. Besides, the inset plots in figure 2(a) demonstrate the evolution of C ≡ Ccc = Crel

as functions of time for different values of initial phonon number nm. We should note that in the absence of
coupling term∝ σz(a+ a†) in the Dicke model, it is not possible to generate local qubit coherences in the
system, (see inset plot of figure 2(a) and [26]). In this condition, the quantum correlated coherence would be
equal to the total relative entropy of coherence. From panel (a) of figure 2, it is clear that the rising of the
initial occupation number of the mechanical mode causes the maximum accessible amount of quantum
correlated coherence (total relative entropy of coherence) to increase. There is a range of optimum values for
2⪅ nm ⪅ 4 at which Cmax, takes the highest values (Cmax ≈ 0.30). Increasing nm further causes the coherence
to saturate at a slightly lower value around Cmax ≈ 0.27.

The thermal environment of the mechanical oscillator plays a twofold role in the creation of the qubits’
coherence in our scheme. First, it is instrumental in the preparation of the initial thermal state of the MO,
which has a positive effect on the coherence, and second, a fraction of the coherence is dissipated towards this
environment and hence lost. Therefore, it is important to also investigate the open-system dynamics
including the dissipation of the MO. Our analysis shows that the thermal noise of the oscillator’s
environment does not break the emergent effect of the correlated coherence. As is seen in figures 2(b)–(h),
the maximum values of Cmax only get reduced but remain thermally stimulated in the presence of the fixed
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Figure 3. (a) Maximal qubits’ coherence as a function of net qubit-mechanical coupling g0/ωm for different initial occupation
numbers nm = nth = 3,15 for the time period t ∈ [0,100]. The black circles indicate the maximum values of Cmax which can be
reached for strong coupling g0/ωm ≈ 0.74 when nm = nth = 3 and moderate coupling rate g0/ωm ≈ 0.22 when nm = nth = 15.
(b), (c) Quantum correlated coherence (relative entropy of coherence) as a function of time for different coupling rates when (b)
nm = nth = 3 and (c) nm = nth = 15. Black circles specify the maximum attainable of C. Other parameters same as in figure 2.

mechanical damping rate γm = 10−3ωm as well as two-qubit damping and dephasing rates,
γx1,2 = γz1,2 = 2× 10−5ωm. In addition, the maximum values of Cmax shift to the higher initial occupations
nm while we increase the thermal phonons. In panels (b)–(d) of figure 2, the time evolution of the qubits’
coherence is depicted for the open system dynamics (we have used the Bloch–Redfield approach to extract
the final state of the system). As seen, the results are in line with the outcomes of master equation methods
(see figures 2(f)–(h)) (there is only a small deviation for higher numbers of nm around the initial time
interval). In figure 2(e), the optimum values of Cmax are depicted as a function of the initial occupation nm
for different mechanical thermal noise nth in a time period t ∈ [0,100]. Additionally, figures 2(f)–(h)
illustrates the time evolution of the coherences. For the same damping, we see that the maximum amounts of
quantum correlations between two qubits in terms of qubit–qubit coherence increase as a function of the
initial phonon number nm. Starting from the vacuum state of the MO, i.e. nm = 0, we get the higher values
for Cmax when we increase the temperature of the mechanical bath, i.e. nth. For some values of nm,
0.6⪅ nm < 6, the occupation number of the mechanical bath plays the negative role, while for nm ⩾ 6, Cmax,
becomes independent of nth as well as nm for sufficiently long time interval. The time evolution plots
of figures 2(f)–(h) also show the same results where the quantum coherence is depicted as a function of
normalized time ωmt. The best outcome is obtained for the initial time period and when nm = 15. The
independent behavior of Cmax with respect to nth in figure 2(e) is consistent with the time evolution results
(see panels (f)–(h) of figure 2), where the maximum values of the qubit–qubit coherence are achieved at
initial time intervals when the thermal environment can not significantly affect the dynamics of the system.
Moreover, C being independent of initial thermal occupation nm for long time evolution (see figures 2(b)–(d)
and (f)–(h)), could indicate the outcomes of steady-state solution where the system performs autonomously
of initial conditions. Curiously, from figure 2(e) it follows that for certain temperatures of the bath (e.g.
nth = 15), pre-cooling of the mechanical oscillator only reduced achievable coherence.

The effect of the coupling constant g0 on qubit–qubit coherence is shown in figure 3. As is seen, for
smaller thermal phonon number nm = nth = 3, we obtained better results for Cmax in the strong coupling
regime where g0 ⩾ 0.5ωm. However, the highest values of coherence for nm = nth = 15 can be attained
already for moderate coupling rate 0.1⩽ g0/ωm ⩽ 0.3. Here, we checked the behavior of the maximally
attainable coherence parameter for time period ωmt ∈ [0,100] for the same decoherence parameters as
in figure 2. In addition, panels (b) and (c) in figure 3(a) demonstrate the evolution of qubit–qubit coherence
C in time for different thermal phonon numbers nm = nth = 3 and 15 as well as different coupling rates. It is
visible that the evolution of C undergoes faster relaxation towards the steady state for weak and ultra-strong
coupling g0 = 0.01ωm and g0 = 0.8ωm, respectively, while for the moderate coupling, C shows the oscillating
patterns for a longer time. On the other hand, we can reach greater steady-state values for quantum
correlated coherence C, as we increase the two-qubit-mechanical couplings g0.

Here, we consider a rather simplified case of symmetric Dicke-type resonant coupling of two qubits to a
mechanical oscillator. For the study of the effects of other characteristic parameters on qubit–qubit
coherence, we refer the reader to sections S1 and S7. In particular, we show that the quantum correlated
coherence of the qubits is maximized in this regime compared to cases of detuned qubits (ωqi ̸= ωm) or
coupling other than the Dicke-type one (e.g.∝ (σx1 +σx2)Xm). In terms of damping rates, we also
demonstrated that the qubit–qubit coherence is not affected by higher values of the mechanical damping γm

and it is robust against the qubits decoherence compatible with the state-of-the-art parameters [46, 69].
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Figure 4.Non-zero off-diagonal elements of the density matrix of the two qubits. (a) and (e) maximal values of the density matrix
elements, (a) |ρ̂max

eegg| and (e) |ρ̂max
egge| as a function of the initial mechanical occupation number nm for different values of the

mechanical environment occupation nth. (b)–(d) and (f)–(h) Time evolution of the matrix elements for different occupations nm
and nth. Other parameters same as in figure 2.

2.3. Structure of the density matrix for correlated coherence
As we observed previously, individual qubits in our system show no local coherence in their partial states, but
instead, the present coherence originates from the correlations between the two qubits. This indicates the
creation of non-classical correlations between the qubits and raises the questions of whether the qubits
exhibit entanglement and what is the structure of the density matrix. Of certain interest are the off-diagonal
elements of the density matrix of the two qubits. In particular, we evaluate the off-diagonal contributions of
the maximally entangled Bell states, |Φ±⟩ ∝ |gg⟩± |ee⟩ and |Ψ±⟩ ∝ |eg⟩± |ge⟩. Here, |e,g⟩ are the energy
basis states of the qubits: σz |e⟩= |e⟩ ,σz |g⟩=−|g⟩. These contributions are defined as |ρ̂eegg(t)|=
| ⟨ee|ρ̂qq(t)|gg⟩ | and |ρ̂egge(t)|= | ⟨eg|ρ̂qq(t)|ge⟩ |. For the Bell states, one has | ⟨ee|Φ±⟩ ⟨Φ±|gg⟩ |= 1/2 and
| ⟨eg|Ψ±⟩ ⟨Ψ±|ge⟩ |= 1/2. These values apparently constitute the upper boundary of the achievable matrix
elements values. Separable pure states that, in the general case, have the form |x,y⟩ ≡ (

√
x |e⟩+

√
1− x |g⟩)⊗

(
√
y |e⟩+

√
1− y |g⟩) (with 0⩽ x,y⩽ 1) can also have non-zero matrix elements of this kind.

Straightforward maximization shows that for the pure separable states | ⟨ee|x,y⟩⟨x,y|gg⟩ |=√
x(1− x)y(1− y)⩽ 1/4 with the inequality saturated when x= y= 1/2. A very similar calculation shows

that the same bound is valid also for the matrix elements corresponding to |Ψ⟩. Moreover, it is easy to prove
that this bound applies also to mixed separable states.

In figure 4, we show how the maximal values of the density matrix elements |ρ̂max
eegg| and |ρ̂max

egge| behave
with respect to initial thermal phonon number nm in the case of open system dynamics, with different
occupations of the bath. As previously, we consider the cases nth = 3,15, and nth = nm. According to figure 4,
increasing the initial mechanical occupation has a positive effect on maximal obtainable values of the density
matrix elements. In the case of |ρ̂max

eegg|, its increase indicates that the mechanical oscillator mediates a
σx1σx2—type coupling between the qubits with the strength of this interaction positively correlated with the
oscillator’s initial occupation. On the other hand, the element |ρ̂max

egge| can rise due to simple quanta hoping
between differently occupied oscillators. The element |ρ̂max

eegg| is an increasing function of nm, while the
behavior of |ρ̂max

egge| in figures 3(b) and (d) is similar to the one of the coherence. Concerning the temporal
dynamics, from the inset plots of figure 4, we realize that the maximal values for those elements are attained
during the initial transient time interval. Moreover, |ρ̂egge(t)| tends to saturate around some steady value
|ρ̂egge| ≈ 0.15 for longer time which would be independent of nm, while |ρ̂eegg| diminishes fast in time when

6
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Figure 5. Optimum values of (a) quantum correlated coherence (relative entropy of coherence) Cmax
qqq of three qubits and (b)

bipartite quantum correlated coherence (relative entropy of coherence) Cmax
qq in qubit-mechanical Dicke model with two (blue

line) and three (red line) qubits. Inset plots in panels (a) and (b) show the evolution of tripartite as well as bipartite quantum
correlated coherence (relative entropy of coherence), respectively. Mechanical environment occupation nth = 15, other
parameters same as in figure 2.

the thermal phonon nm = nth increases (compare inset plots (c) and (d) of figure 4). By inspection, we see
that the off-diagonal elements of the density matrix of the qubits ρ other than ρ̂eegg, ρ̂egge are zero.

On the other hand, the application of specific entanglement measures such as concurrence and negativity
to the system of the qubits reveals that the qubits are, in fact, entangled. However, this entanglement is weak,
and moreover, decreases with the temperature of the MO, in contrast with coherence which is stimulated by
the temperature of the MO. The two qubits appear to be rather strongly entangled with the mechanical
oscillator which is indicated by decreased purity of the system of the two qubits, and by negativity. For
further details regarding the entanglement of the qubits, we refer the reader to the supplementary materials.

2.4. Thermally-induced correlated coherence of three qubits
As a generalization of our scheme, we consider an additional qubit coupled to the mechanical oscillator. We
keep the Dicke model so that the new system Hamiltonian is a direct generalization of equation (1) obtained
by extending summation to include the third qubit. In the case of three identical qubits coupled to the
mechanical oscillator, the quantum correlated coherence can be defined as a straightforward generalization
of equation (3) (see [12]):

Ccc

(
ρ̂qqq

)
= Crel

(
ρ̂qqq

)
−Crel

(
ρ̂q1

)
−Crel

(
ρ̂q2

)
−Crel

(
ρ̂q3

)
. (4)

After a Dicke-type interaction, the local relative entropy of the coherence of each individual qubit is zero and
the quantum correlated coherence acquires its maximum value which is equal to the relative entropy of
coherence (C = Ccc = Crel). The effect of increasing the number of qubits on the quantum correlated
coherence of three qubits as well as bipartite quantum correlated coherence has been shown in figures 5(a)
and (b), where we consider three identical qubits initialized in the ground state, coupled to a mechanical
oscillator, which is initially in the thermal state with mean excitation number nm. When the system
undergoes dissipation and noise, we studied the transient behavior of the qubits coherence stimulated by
initial thermal occupation nm while keeping the thermal occupation of the mechanical bath fixed at nth = 15.
As is seen in figure 5(b), bipartite quantum correlated coherence Cmax for the three-qubit model behaves
similarly as in the two-qubit model in higher values of initial thermal phonon numbers.

In addition, for the three-qubit system, the optimum values of three-qubit-coherence Cmax
qqq as a function

of nm are shown in figure 5(a). According to [9], the upper bound for the relative entropy of coherence for a
d−dimensional system is

Crel (ρ̂)⩽ S
(
ρ̂diag

)
⩽ lnd. (5)

For two qubits with d= 22, Ccc,rel
qq < 0.26≈ 0.19× 2 ln2, while for three qubits with d= 23, we have

Cqqq
cc,rel < 0.63≈ 0.30× 3 ln2. As expected, by increasing the number of qubits, the ratio Ccc,rel/ lnd improves.
A study of the density matrix elements similar to the one in section 2.3 reveals that the off-diagonal

element corresponding to the GHZ state equals zero: ⟨ggg|ρ̂|eee⟩= 0. This indicates that the three-qubit
coherence is generated by effective bipartite interactions σ(1)σ(2) between the qubits, but the effective
tripartite interaction σ(1)σ(2)σ(3) is too weak to play a meaningful role in the coherence generation.
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Figure 6.Quantum Fisher information for collective phase estimation using two [red lines] or three [blue] qubits initialized in the
state, correspondingly, ρqq or ρqqq. The nonzero QFI is provided by the correlated coherence of the qubits’ state as the local
coherence is not generated during the interaction with the oscillator in the Dicke model. The numerical parameters same as
in figure 2.

2.5. Quantum Fisher information
The results of the previous sections stimulate an essential question. Can thermally-induced correlated
coherence of multiple qubits be used in an application, although the entanglement between these qubits is
relatively small? As an illustration that the generated multiqubit coherence can have practical sensing
applications we focus on estimation of collective phase applied to all the qubits. Therefore, the sensor’s qubits
are affected only globally and feel the same phase change which is physically motivated for realistic systems.
Here, we evaluate the quantum Fisher information (QFI) [70] of the quantum state of two and three qubits
as a function of the mechanical oscillator thermal occupation nm. QFI is one of the central figures of merit in
quantum metrology [71, 72] providing the ultimate precision attainable by a general measurement with a
given quantum state at the input. Here we evaluate QFI for a collective phase estimation described by the
generator Hmeas =

1
2θ

∑
i σzi performed with the two [or three] qubits initialized in the state ρqq [or ρqqq]

produced by the interaction with the thermal mechanical oscillator. In our setup, prior to the interaction
with the mechanical oscillator, the two qubits are assumed initialized in the ground states. As these are
eigenstates of σzi , invariant underHmeas, these initial states themselves are not suitable for such measurement.
Coupling to a thermal oscillator, however, makes the qubits’ state practical for phase detection.

The QFI as a function of the initial occupation of the mechanical oscillator is presented in figure 6. First,
we can clearly see that the QFI increases for the larger mechanical oscillator’s initial occupation. In contrast
to the coherence which, as a function of nm saturates to the value lower than its maximal, the QFI is a steadily
increasing function of the initial mechanical temperature. In figures 6(b)–(e), we illustrate the behavior of
the QFI as a function of time for different initial mechanical occupations nm. The maximal value of QFI is
achieved after a short initial transient dynamics. As the occupation nm increases, the height of the initial peak
increases, and the duration of the transient leading to the optimal value advantageously decreases. Another
important observation comes from comparison of the dependence of the maximal QFI on the numberm of
the qubits with the classical scaling QFIm ∝m× QFI1. This expression shows that when using product states
of single qubits for phase estimation, the total QFI simply adds. For a single qubit, in the Dicke model,
interaction with a thermal MO produces neither coherence nor QFI at all. For two or three qubits, these
quantities are non-zero. Importantly, from comparison of results for two and three qubits, it follows that the
advantage from the third qubit goes beyond the linear classical scaling. This suggests that the metrological
improvement originates from the truly non-classical correlations that emerge through interaction with a
thermal mechanical oscillator. We can also see this from the structure of the evolved density matrix of the
qubits (section 2.3) where the only non-zero off-diagonal matrix elements are the ones corresponding to the
correlated coherence.

3. Discussion

We investigated the effects of initial thermal occupation on the coherence of a pair of qubits in the
Dicke-type model emerging autonomously from the initial incoherent states of each of the modes. We
demonstrated how initial thermal phonons can increase the coherence between two qubits. It is important to
note that there is initially no coherence (with respect to the energy basis) in the system, and all the generated
coherence emerges as a result of the rectification of the thermal fluctuations by the Hamiltonian interaction
in the system. To quantify the qubit–qubit coherence in the system, we used the relative entropy of coherence
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and quantum correlated coherence measures. Higher values of quantum correlated coherence (total relative
entropy of coherence) can be achieved by increasing the initial thermal phonon number nm and usually
emerge during the initial time interval (first few periods of mechanical oscillations). The maximum
coherence is gained when the qubits are resonant with the mechanical oscillator. Moreover, the Dicke-type
coupling is optimal for maximizing the correlated coherence between the qubits. This is in contrast with the
local coherence of individual qubits which requires coupling involving two Pauli matrices ((σx +σz)Xm) to
appear [26]. In the Dicke model, no local coherence in the individual quantum states of the qubits is
generated. These results are quantitatively confirmed by simulations of the Tavis–Cummings model for
moderate qubit-MO couplings (and qualitatively for stronger couplings, see SI). Interestingly, while the
numerical amount of coherence generated in the T–C model is close to the coherence in the Dicke model, the
T–C model does not increase quantum Fisher information for phase shift measurement. The thermal
environment of the mechanical oscillator plays a positive role in generating the qubit–qubit coherence. This
is not only by initialization of the MO in a thermal state. Additionally, we observed that by elevating the
mechanical bath temperature or equivalently, thermal occupation of the bath nth, C(t) = Ccc(t) = Crel(t)
converges into a steady value more quickly and that steady value is independent of initial thermal phonon
nm. The hotter MO with nm = nth, gave us better results for qubit–qubit quantum coherence in a moderate
qubit-mechanical coupling range g0 = 0.1ωm, while for smaller nm = nth higher values of C(t) are obtained
for strong coupling regime.

The structure of the density matrix of the qubits points out the effective type of interaction between
them. We found that increasing the initial thermal phonon nm can increase the optimum values of both
matrix elements |ρ̂max

egge| and |ρ̂max
eegg|. The maximum value of |ρ̂eegg(t)| is attained for an initial time interval,

while it diminishes fast in time when we increase the temperature of the mechanical bath. Nevertheless, the
time evolution character of |ρ̂egge(t)| is similar to the one of C(t).

In addition, we investigated the Dicke model with three qubits coupled to a shared MO. Such a system
behaves similarly, the thermal mechanical occupation also stimulates coherence between the qubits. This can
be seen both in pairwise coherence between the qubits and in tripartite coherence between them. The
tripartite coherence Cqqq is closer to the geometric boundary C< N ln2 attainable in N-qubit system than
the bipartite coherence Cqq in Dicke model with only two qubits.

Finally, we have demonstrated an increase of the quantum Fisher information corresponding to linear
measurement with the MO’s initial temperature increase. We have shown that this result holds for systems
with two and three qubits coupling to mechanics. The quantum Fisher information (QFI) is a measure of the
sensitivity of a quantum state to small changes in a parameter. For a qubit, assuming interferometric
measurement linear in Pauli matrices, the QFI indicates the sensitivity of the qubit state ρ̂ with respect to
rotations about coordinate axes. Initialization of a qubit in the ground state readily yields maximal QFI with
respect to σx,y because the ground state is a coherent superposition of their eigenstates. Simultaneously, QFI
with respect to σz (QFIz) is minimal at the ground state, because this state is invariant upon the action of
σz. Advantageously, the Dicke-type interaction with a thermal mechanical oscillator increasesQFIz during
a short initial time interval yielding a peak in QFI. The peak magnitude is an increasing function of initial
mechanical occupation nm as well. Importantly, after adding the third qubit, the QFI strongly increases,
beyond classical linear scaling proportional to the number of qubits.

Our studies were, in part, inspired by the rapid development of electromechanical devices [45, 64, 73]. In
typical electromechanical systems, the transition frequency of the qubits is normally∼1 GHz, while the
mechanical frequency and the coupling rate can be of the order of ωm ≈ 10 MHz to 1× 103 MHz and g0 ≈
1 MHz to 100 MHz [64, 69]. Our proposed protocol is thus within the experimental reach of the
electromechanical systems. Another prospective domain is represented by the high-overtone bulk acoustic
oscillators that can be coupled to TLSs via piezoelectricity [40, 46] with both TLSs and mechanical oscillators
having nearly equal frequencies of the order of few gigahertz.

Application of quantum coherence in the fields of biology [74], quantum sensing [75], quantum
thermodynamics [76–78], and quantum non-equilibrium models [79–81] has made it a hot research topic in
recent years. For such an application to be successful, proper manipulation and coherence maintenance are
crucial. However, it is worth noting that quantum coherence, as a vulnerable quantum property, can be easily
disturbed due to the interaction of the system with the environment which leads to decoherence. Generally
speaking, a system’s decoherence increases as its size does. Therefore, maintaining coherence in larger-scale
quantum systems remains a significant challenge. Here, we proposed a model that facilitates the autonomous
generation of correlated coherence in systems of multiple qubits in the presence of damping and noise with
prospective application in quantum phase sensing. This model is physically accessible and can be
manipulated on a larger scale [63, 82–84].
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4. Methods

It is possible in electromechanical devices and analogous setups to generate couplings between more than
one qubit and a mechanical oscillator [53, 63]. In general, interaction of a system of N qubits with a
mechanical oscillator can be described by a Hamiltonian (h̄≡ 1):

H=
ωm

2

(
X2
m + P2m

)
+

N∑
i=1

ωqi

2
σzi +

√
2

N∑
i=1

gi
(
σxi cosϕi sinθi +σyi sinϕi sinθi +σzi cosθi

)
Xm. (6)

Here Xm,Pm are the dimensionless quadratures of the MO: [Xm,Pm] = i. The angles (ϕi,θi) define the type of
coupling between each qubit and the MO.

By considering all the qubits to be identical and for all ϕi = 0 and θi = π/2, equation (6) transforms into
Dicke model in which a bosonic mode is coupled simultaneously to N two-level systems (qubits) [66, 67,
85]. The Dicke-type model with N = 2 is also known as a two-qubit Rabi model [86]. The analytical solution
of such a scheme, using the Bargmann representation as well as perturbation theory and under some specific
assumptions, has been already studied [86–88].

Here, we extract the numerical solution of the two-qubit Rabi model in the presence of dissipation and
noise by using the QuTiP package [89]. We assume both qubits to be initialized in ground states while the
mechanical oscillator in a thermal state such that the initial state of the tripartite system reads

ρ̂(0) = ρ̂q1 (0)⊗ ρ̂q2 (0)⊗ ρ̂m (0) = |g1⟩⟨g1| ⊗ |g2⟩⟨g2| ⊗
∞∑
k=0

nmk

(1+ nm)
k+1

|k⟩⟨k|, (7)

where |gi⟩ (i = 1,2) are the ground states of the qubits, |k⟩ is a Fock state of the mechanical oscillator. Mean
occupation of the MO equals nm satisfying Bose–Einstein statistics nm = [exp(h̄ωm/kBTm)− 1]−1, kB being
the Boltzmann constant and Tm the effective temperature of the MO.

To investigate the quantum properties of the system such as quantum coherence and quantum
entanglement, we need to access the evolved density matrix of the system. This is obtained by numerically
solving the von Neumann equation ˙̂ρ(t) =−i[H, ρ̂] in the ideal case of no decoherence, or the Lindblad
master equation

˙̂ρ=−i [H, ρ̂] +
γm

2
(nth + 1) L(a) ρ̂+

γm

2
nthL

(
a†
)
ρ̂

+
2∑

i=1

{γxi
2

(
nqi + 1

)
L(σ+i) ρ̂+

γxi
2
nqi L(σ−i) ρ̂+ γzi

(
2nqi + 1

)
(σzi ρ̂σzi − ρ̂)

}
, (8)

in the presence of dissipation and noise. Here, L(O)ρ̂≡ 2Oρ̂O† − (O†Oρ̂+ ρ̂O†O) denotes the Lindblad
superoperator. Furthermore, γm, γxi = 1/T1 and γzi = 1/T2 (i = 1,2) represent the mechanical and ith qubit
relaxation and dephasing rates, respectively. Occupation of thermal environment of ith qubit is denoted nqi .
For superconducting qubits, to a good accuracy, nqi = 0.

A different approach to look into the dynamics of an open system can be obtained through the
Bloch–Redfield method [90, 91]. The method can be applied when there is a weak coupling between a system
and the environment such that the Markovian approximation remains valid. The Bloch–Redfield master
equation in the Scrödinger picture reads

˙̂ρ=−i [H, ρ̂]−
∑
m

[
Sm,Λmρ̂(t)− ρ̂(t)Λ†

m

]
, (9)

where ρ̂(t) is the reduced density matrix of the system and Sm and Λm are operators that describe the
coupling to the environment. In the Bloch–Redfield approach, the system-bath interaction is defined by the
Hamiltonian HI =

∑
n SnBn, with Sn being a system operator which acts only on the system degree of

freedom while Bn acting only on the degrees of freedom of the environment. In addition, Λm =
∑

n

´∞
0

Cmn(τ)Sn,int(τ) dτ , with Cmn(τ) = Tr[Bm,int(τ)Bn,int(0)ρ̂env] introducing the bath correlation function, ρ̂env
represents the density operator of the bath which is in thermal equilibrium, while Bα,int(α= n,m) and Sn,int
denotes the bath and system operators, respectively, in the interaction picture.

Once we find the final state of the system, we can easily draw out the information from the quantum
aspects of qubit-mechanical interactions such as quantum coherence, entanglement and etc. To quantify the
quantum coherence we use the measure of relative entropy of coherence and quantum correlated coherence
represented in equations (2) and (3) as well as density matrix elements |ρ̂eegg|, |ρ̂egge|. In addition, by
extending the definition of the quantum correlated coherence and total relative entropy of coherence for
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more than two qubits, the study of the behavior of two or more qubits in terms of quantum correlated
coherence will be possible.

Quantum Fisher information for a linear measurement Hmeas ∝
∑

i σzi given an initial state ρ can be
computed as [92]

FQ (ρ,Hmeas) = 2
∑
i,j ̸=i

(
λi −λj

)2
λi +λj

| ⟨i |Hmeas|j⟩|2, (10)

where |i⟩ and λi denote the eigenvector and corresponding to it eigenvalue of the density matrix ρ. The
summation runs over indices for which λi +λj > 0 (i ̸= j).
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