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Abstract

Transverse bunch centroid oscillations, induced at operating beam currents at
which transverse wakefields are substantial, and observed at Beam Position Mon-
itors, are sensitive to the actual magnetic focusing, energy gain, and rf phase
profiles in a linac, and are insensitive to misalignments and jitter sources. In
the “pulse stealing” set-up implimented at the SLC, they thus allow the fre-
quent monitoring of the stability of the in-place emittance growth inhibiting or
mitigating measures—primarily the energy scaled magnetic lattice and the rf
phases necessary for BNS damping—independent of the actual emittance growth
as driven by misalignments and jitter. We have developed a physically based
analysis technique to meaningfully reduce this data. Oscillation beta-beating is
a primary indicator of beam energy errors; shifts in the “invariant” amplitude
reflect differential internal motion along the longitudinally extended bunch and
thus are a sensitive indicator of the real rf phases in the machine; shifts in beta-
tron phase advance contain corroborative information sensitive to both effects.
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Transverse bunch centroid oscillations, induced at operatthich can accordingly be taken to “advance' from beam-
ing beam currents at which transverse wakefields are sulie location to location. Choosing the mapping to be lin-
stantial, and observed at Beam Position Monitors, are seear makes families of trajectories comprising whole circles
sitive to the actual magnetic focusing, energy gain, and generically images of ellipses in the phase space observ-
phase profiles in a linac, and are insensitive to misaligrables. Both the ellipse and the phase angle contain non-
ments and jitter sources. In the “pulse-stealing' set-up imedundant information about the motion, and are inextrica-
plemented at the SLC, they thus allow the frequent morbly linked in that the phase angle and hence the phase ad-
itoring of the stability of the in-place emittance growthvance is undefined without an associated ellipse. For linear
inhibiting or mitigating measures—primarily the energymotion choosing an ellipse at one beamline location deter-
scaled magnetic lattice and the rf phases necessary for BK&nes an ellipse—its image under the transport map—at all
damping—independent of the actual emittance growth agher locations. It is usually especially useful to choose an
driven by misalignments and jitter. We have developed mitial family of geometrically similar ellipses whose shape
physically based analysis technique to meaningfully redudeas a conceptually or mnemonically useful property, like
this data. Oscillation beta-beating is a primary indicator ofhe same periodicity as the beamline itself, and/or, the dis-
beam energy errors; shifts in the “invariant' amplitude retinction that it describes the bunch “beam envelope'. Here
flect differential internal motion along the longitudinally the ellipse in phase space is a family of centroid trajecto-
extended bunch and thus are a sensitive indicator of thies, which coulde.g, correspond to the ensemble of tra-
real rf phases in the machine; shifts in betatron phase ajgctories generated by a specially distributed jitter source
vance contain corroborative information sensitive to botht the beginning of the beamline; it is emphatically not di-
effects. Examples from initial SLC applications illustraterectly related to the family of collectively interacting sin-
the method. gle particle trajectories that constitute the beam envelope.
The fact that linear transport maps ellipses into ellipses is

Differential internal motion due to intra-bunch energy orll that we use; we do not assume the invariance of the el-
amplitude spread, or bunch spatial extension which maképse area, even though it was this aspect of the single parti-
collective or multiparticle interactions possible, causesle case that historically drew attention to ellipses in phase
striking differences between the behavior of the centroigipace. Phase advance is necessary to then fully describe
of a bunched beam, which is measured by a beam posititie transport of the particular trajectories on the ellipse.
monitor, and a single particle. Bunch inhomogeneities that To be more explicit, the phase space centroid, or beam-
respond differentially to the beamline environment engeraverage positiorfz(s)) and angle(z’(s))) coordinates at
der decoherence, and possibly recoherence and echo pm@chine location, is parameterized by the non-restrictive
nomena; current dependent collective effects can strongipsatz
excite novel patterns of centroid motion.

We first discuss general aspects of the difference be-
tween centroid and single particle mechanics in the con-
text of developing a general parameterization scheme fetiat linearly maps all trajectories into unit circles, on which
the former, and then move to some more specific featur@sey are located by an advancing phagge). A(s) is a

()] cos(i(s))
( '<s>>} = V2a(s) A(s) {—sinw(s))] @)

T

of beam dynamics with transverse wakefields. 2 x 2 matrix; taking it to have unit determinant defines the
numerical “amplitude’ factoy/a(s). Since circles are in-
1 CENTROID KINEMATICS variant under rotation the re-definitioh — AQO, where

O is a rotation matrix, just re-defines the phase function;
To develop a useful description of centroid motion that prothus A has only two meaningful parameters. A set of tra-
vides more or less machine-error-specific indicators, wgctories at an “initial' beamline location constructed to fill
mimic to a large degree the familiar parameterization of unit circle and mapped in, 2’ space into a fiducial el-
single particle motion. The parameters acquire new mealipse that is geometrically characterized by the symmetric
ings in the centroid context that fully incorporate its distincmatrixag Ag AJ, will be transported at each downstream lo-
tive features, but recover their single particle significanceation into a specific ellipse whose geometric form is given
in the limiting case in which the bunch as a whole moveby aAA'. By linearity the shape depends only on the ini-
rigidly. At every location in the beamline, every trajectorytial shape parameterk A} and the area scales likg, i.e.,
in the two dimensional phase space is mapped into a poionly the ratioa(s)/ag is characteristic of the transport.
on some unit circle, where it is located by a phase angle Since the circle that the ellipse is mapped to is invari-



ant under rotations, to associate specific trajectories withill break down as the superposition propagates. An oscil-
phase angleg(s), and hence be able to speak of a “phaskation will grow “spontaneously’, a behavior impossible to
advance' requires a further but final convention. The histoachieve if theR matrix were to factorize.

ical choice made by Courant and Snyder for single particles It is frequently very useful to view thel matrix in
assigns &0° phase everywhere in the beamline to a trajecterms of its deviation from a fiducial referendg, which
tory on thez'-axis, or equivalently impose$,»(s) = 0. It in practice is usually chosen to be the single particle pe-
has the unique property that zerosurare 180° apart for riodic lattice function already mentioned. Tlescilla-

any choice of the initial ellipse geometry. tion "Bmag' B = 1tr[A " A(A 1 A)T] is invariant down-
The centroid transfer matrix R now satisfies stream of an isolated discrepancy with respect to the ref-
V2aoRAy = 2aAO(Avy), giving the representa- erence, although the effectieanda functions continu-
tion ously “beat';+/B2 — 1 is in fact the beat amplitudeB
is equivalently the average of the squares of the semi-
R = ag\/EAOAgl (2) Major and semi-minor axes of the ellipse correspond-
E ing to the transport of an initial unit circle of trajecto-

where the amplitude growth/damping factom, = ries in the normal coordinates defined By.. The ad-

\/mparameterizes thepecificamplitude shift (ex- ditional variable completing the description is tRebeat
clusive of “adiabatic' damping due to acceleration) phase or orientation angle of the anomalous ellipse incor-

: i izatiop —1 -1 N\T —

In the single particle limit, where the bunch either is d)orated asl in the parameterization, "A(4,"A)" =

single particle or behaves like oniee(, is rigid) a, — 1 B+v 32 —lcos¥  —vB?>—1lsin¥ _ Collec-
—+v/B? —1sin¥ B — B2 —-1cos¥

0 -
andA4 — \/% <_Ba 1>, where anda are the familiar tive and decoherence intrabunch effects produce a negli-

functions describing pseudo-harmonic oscillations in th@b'e deyiation inB — 1 in a lattice that is periodic and
quadrupole magnetic focusing field for the initial condition SMOth" on the scale of thigtron wavelengthdf. Section

Ap. In the single particle casé is local—it depends only 2)- Therefore when applied to datag, B serves as a use-

on the beamline location at which the trajectory is observed! indicator isolating effective magnetic strength errors. To
and not on the oscillation's prior history, and the phase adf?€ €xtentto which this is the case the beat phase in an error
vance isadditive i.e., the amount by which it increases asfT€€ region will advance according o — ¥ + 2y, where

one moves along the beamline is independent of the initi4l IS the single particle phase shite., is exclusiveof any
location. Directly equivalent to these properties is tae-  CONerentphase shift. Itis important not to ignore thieat

torizationof the R matrix: R(a — b) = R(c — b)R(a — phase since it is possible for a quadrupole strength error to
¢) for any intermediate point For generic centroid oscil- P& manifested as a rapid0° ¥ shift, while B > 1 already

lations factorization/locality is not true, and caution shoul§U€ t© an upstream error, accidentally does not change.

be applied to avoid being misled by the product decompd¥oté again that the oscillation or coheretmag' is in-
sition in (2). Centroid transport depends on the detaileBduivalent to and has nothing direct to say about the beam

internal initial state of the bunch, something which is no€nvelopeBmag that expresses the possible elevation of the

completely specified by giving its centroid phase space c&?atched equivalent emittance. _ _
ordinates alone; in fact without a specification of the sup- An alternative representation is sometimes used, will be
pressed internal variables, any centroid transfer map is sepsed in the next S?Ctlt_)n, and is instructive tp cqnslld.er.
ously ill-defined. In the linear case it is convenient in prac] WO orthogonal oscillations are treated as having individ-
tice to take all transfer matrices to correspond to rigid excH@! PSeudophase-advancesy, > and “amplitudes(;, ».
tations (kicks or instantaneous displacements) of a homl€ centroid “"normalized" transfer matrix

geneous bunch (one Who§e internal trap_sverse coordlngtes E ( Geos(Ady) (o sin(Ady)

all line up with the centroid). Superpositions of appropri- A, RAp o = “Cosin(At)  ( cos(Ad)

ately distributed excitations then can describe any coher- 2 2 ! Y/(3)

entS-tron oscillation. The set of centroid transfer maps in Cacos(AY_) (i sin(Ayp_)
the space of centroid variables thus constitutes a complete = O(Ady) <C2 sin(Ag_) (i cos( A¢_)> (4)
physical description, at the price of tolerating hysteresis, or

non-factorization/non-locality, at a basic level. whereAy = %(Adﬁ + Aq,) are the average and (half)
An instructive and practical application is to considedifference pseudo-phase-advances. The fgseudgshase

“steering-out’ a coherent oscillation by applying approadvance is used to emphasize that even in the single par-

priate kicks in some neighborhood in the beamline. Aicle case where th&? matrix factorizes, these “phase

rigidly excited oscillation (as with dipole magnets) can bedvance'-like parameters are not additive, in the sense de-

superposed to precisely cancel an incoming oscillation atribed above. The phase independent amplitude growth

some point; however, since the internal bunch distribution, = /(1 (2| cos(2A4_)]. Itis reduced by @seudophase

in the incoming oscillation would generically differ from advance difference for fixed  ». Thata, — 1inthe single

the homogeneous distribution associated with the excitgarticle limit implies a constraint among the parameters in

tion and accordingly transport differently, the cancellationthat caseB = 1 [(¢1/() + (¢2/¢1)] /] cos(2A¢_)]. Thus




B > 1 reflects disparate “orthogonal amplitudes’, and/arxp(—iv (s, 0)) (exp(iv(s,7))¢(s, 7)) wherer = 0 (the
disparate pseudo-phase advances—this is perhaps the mosnter' of the bunch, say) is chosen to define a refer-
useful way to conceptualize oscillation, as opposed to envence single particle phase advance. The centroid trans-
lope, 8-beating. Either conditiog, % (; or Ay % Ay fer matrix in the “two-phase' form (3) is then fixed since
accordingly indicates a non-"smooth' lattice and significart exp[i(Ay; — Ay)] = £(s) for ¢(sg, ) = —90°, and
collective effects¢f. above and Section 2), or the presenceé, exp[i(Aypy — A)] = &(s) for ¢ (so,7) = 0.

of effective magnetic field errors. The overall factor in the kernel in (6),
[ds(B/E)NeW,, is ~ the (Courant-Snyder)-
2 COLLECTIVE DYNAMICS shift of the bunch tail due to the defocusing effect of the

. I .wakefield, and scales its excitatory strength.
The beam dynamics of a longitudinally extended bunch in The first term in the kerel has the factor

s1,7) —(s1,7))], which oscillates with

dinatesz(s; 7) andz’(s; 7), at longitudinal positiorr. The *damping’
restriction to a pure dipole wakefield makes an exact “hy- The second term factor oscillates like tsem of “tail

drodynamic' description possiblieg., the dynamics closes and “head' phase advances and flips its sign for rigid ex-

in terms of “slice' first moments. Finite transverse em't(':itations with 90° initial phase difference. It is strongly

tance and energy spread Wlthln-a-sl|ce effects can be rEClppressed relative to the first term if the lattice is peri-
covered after this problem is solved.

As already di 4 th bl fint h odic or 'smooth' over several cycles at twice the nominal
b fs atrrlea yd |scudsste ’ (ta %ro ?Tho tm er?s er? .maﬁl-tron phase advance, and may be neglected in the leading
e further reduced to a study of the transter matriceg, | approximation. Thus the dominant wakefield effect

for rigid excitations in terms of the whole bunch cen-. - . .
. ) . is a phase independent phase shiftrg £(s), and ampli-
troid, or the observablé/ particle slice averagér(s)) = e growth/damping shift, = |¢(s)|. To the extent this

[ dN(7) #(s;7)/N = [ dr (dN/dr)z(s;7)/N, and sim- approximation is accuratg = 1.

|Iarly fqr <:.'3l(s)>' Each' slice freely O.SC'”.ateS due to Although interestinggedankenphysjkthe asymptotic
the '”'“5!' dlpole m'agnet' |mpulse, to .Wh'Ch IS Su'perposeqong. machine results that have also been obtained [1] are
free oscillations originating in deflections occurring alongnot quantitatively germane to any known extant or sefi-

the entire length of accelerator through which the beargusly contemplated machine. The perturbation series, in

ha? E‘méed’ whlc? are |r]1 t#rr.] proportional to the charg hich distributed: + 1 particle-like contributions, each as-
weighted accumulation of the instantaneous transverse offs i+« with an order in the a-shift are superposed, is

sets of the slices preceding it in the bunch, and the Wakgfraightforward Under SLC conditionsV( ~ 4 - 1010

field function of their longitudinal distance: Toms &~ 1MM, W, 2 4.1 GeV/(10"° mm-n?)), tmax = 5
z(s;7) = Ria(s, s0;7) Az’ suffices for~ 0.1% accuracy in the centroift-matrix.
s W (1 —7) A companion paper [2] provides details of the SLC
+/ dislg(s,sl;T)/dN(n) B z(s1;71)  “diagnostic pulse” implementation and examples of high
S0

(5) bunch current centroid data. Another [3] is a case study in

e . . . . which the coherent oscillation physics discussed here con-
and similarly withz'. R(s, so;7) is the single particle phy

) o . tributed crucial diagnostic insight.
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that it should be negligible in a viable, at least ap-
proximately periodic, lattice. The centroid(s) =



