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We have studied the decay D**fv using 3.0x10% BB events collected with the
CLEO TI detector at the Cornell Electron Storage Ring. We fully reconstruct the
D*Y and lepton and use the angle between the D*’-lepton pair and the parent
B to distinguish D**/v decays from other semileptonic B decays. We determine
|Veo| F(1) and the D**¢v form factor parameter p% from the decay rate distribution
dT/dw. We find |V F(1) = 0.0427 4 0.0026 + 0.0023 and p%, = 1.54 + 0.18 +
0.25, where the errors are statistical and systematic, respectively. Using these
parameters, we derive I'(B — D*/v) = 0.0400 £ 0.0027 + 0.0037, which implies
a D**fv branching fraction of (6.62 + 0.45 4+ 0.61)%. From our measurement of
V| F(1) we extract |V = 0.0468 + 0.0027 + 0.0025 £+ 0.0022, where the first
error is statistical, the second error is systematic, and the third error is from the

theoretical error on F(1).
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CHAPTER 1

MOTIVATION

1.1 Introduction

This thesis describes a study of decays of the B meson to a D* meson and leptons.
The goal of this study is to measure |V, a parameter of a model that attempts to
describe the interactions of all matter in the universe. More precise knowledge of
this parameter will help test the validity of this model and advance our knowledge
of how our universe works.

Chapter 1 describes the motivation behind our measurement of |V,|. Chapter 2
discusses the theoretical framework needed to make the measurement. Chapter 3
describes how our data is produced, collected, and processed so that we can recon-
struct B — D*(v decays. Chapter 4 describes our reconstruction of B — D*{p
decays, how we deal with backgrounds, the fit we perform to extract |Vy|, and the
results of our fit. Chapter 5 details our determination of the systematic errors on
our measurement. Chapter 6 compares our measurement to other measurements

of |V| and discusses the outlook for improvement on this measurement.



1.2 Weak Decays and the CKM Matrix

The weak force, which describes interactions between quarks and leptons, is one
of the four fundamental forces of the Standard Model. The Standard Model is
briefly described in Appendix A. The weak interactions proceed through two
charged vector bosons (W®) and one neutral vector boson (Z°). Quark flavor is not
conserved in weak decays, and quarks can decay across generations; for example,
an s quark can decay to a u quark plus a W~. If physical quark states were
eigenstates of the weak interaction, these decays would not be allowed. Instead,
the weak eigenstates must be a mixture of the mass eigenstates.

The interaction Lagrangian for charged weak processes can be written

Lint = —%(J“WJ + JHWT), (1.1)

where J* is the charged weak current and couples to the charged weak boson field

W,,. The current is written
JH = ﬂﬂ”%(l — 75) Vijdy, (1.2)

where u stands for the quark states (u, ¢, t) and d for the quark states (d, s,b). The
matrix V;; describes the rotation of the physical quark states (d, s, b) to the weak
eigenstates (d',s',b') and is known as the Cabibbo-Kobayashi-Maskawa (CKM)

matrix [2]. Explicitly, this relationship is
dl Vud Vus Vub d

s = Ve Ves Vo s |- (1.3)

o' Vie Vis Vi b



The matrix elements measure the coupling between quarks of different flavors and
can be complex. The CKM matrix must satisfy the unitarity condition VV = 1.

The matrix elements are inputs of the Standard Model; they are not predicted
by the Standard Model and must be measured through experiment. At present
only the magnitudes of the matrix elements can be measured. Only the first two

rows of the CKM matrix have been measured directly; those values are [1]

0.9735 £ 0.0008 0.2196 £ 0.0023 0.0036 £ 0.0011

0.224 +0.016 1.044+0.16  0.0402 &£ 0.0019 |, (1.4)

where some values are the average of several measurements and the value for |V,,|
actually comes from a measurement of |V,,|/|V.s|. Observations of the top quark
at the CDF and D@ experiments give the following restraint on the final three

elements [1]:
Vo ”
Vial* + [Vis[* + [Vis|?

= 0.99 = 0.29. (1.5)

The CKM matrix can be simplified from the nine parameters shown in Equa-
tion 1.3 to four independent, real parameters. This is accomplished by using the
restraints of the unitarity condition and removing unphysical quark phases. One
popular parameterization is the Wolfenstein parameterization [3], which divides

the elements into those of order 1, A, A2, and \3:
1—)\2/2 A AN3(p —inm)
V= )\ 1-)2/2 AN +O(\). (1.6)

AN (1 —p—in) —AN 1



A is a constant of order 1, and 7 gives the magnitude of the relative phase between
the elements.

The unitarity of the CKM matrix implies that all rows and columns are or-
thogonal, which leads to a more convenient way to picture the unitarity condition.

Taking the first and third columns of the matrix, we can write
VaaVayp + VeaVay + ViaVip = 0. (1.7)

Since V4 and Vjy, are of order 1 and V.4 < 0 (according to the Wolfenstein param-

eterization), we can rewrite this equation as

* \%

ub td
=1 1.8
VoVl T VeVl (18)

which can represented as a triangle in the complex plane. Figure 1.1 shows this
triangle; in term of the Wolfenstein parameterization, the corners of the triangle
are at (0,0), (1,0), and (p,n). While this process can be used on any two rows or
columns of the CKM matrix, this particular combination is one of only two triangles
where the sides are all of the same order. The other triangle contains Vi, but large
theoretical uncertainties make it difficult to measure this element experimentally.
The triangle displayed in Figure 1.1 is therefore frequently referred to as “the”
unitarity triangle.

The Standard Model has been quite successful at describing observed particle
physics properties, but there is still room within the current experimental uncer-
tainties for new physics to be discovered. By measuring all the sides and angles of
the unitarity triangle with increasing precision, we can make stronger tests of the

actual unitarity of the CKM matrix; if the sides and angles do not make a closed
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Figure 1.1: The unitarity triangle [4].

(1,0)

triangle, it would imply physics outside that described by the Standard Model.
Also, a non-zero area of the triangle is required if CP violation, already observed

in the neutral kaon system, is to be permitted within the Standard Model.

1.3 Measuring |V|

|Vp| sets the lengths of the sides of the unitarity triangle and is therefore a quite
important part of the test of unitarity. It can be measured using semileptonic B
decays when the daughter meson contains a charm quark (generically referred to
as B — X (v decays). For mesons, semileptonic decays are weak decays in which
the W emitted by the decaying quark couples to leptons while the daughter quark
and the undecayed quark, called a “spectator” quark, form one or more hadrons.

B — X (v decays consist of B — D{v and B — D*{¥ decays as well as modes with
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Figure 1.2: A quark diagram of semileptonic B decays to charm mesons [5].

higher excitation resonances of the D like B — D3¢y, and non-resonant decays
such as B — Dnlv. A quark-level diagram of a semileptonic decay of the B to a
charm meson is shown in Figure 1.2. Since the b quark decays weakly to a ¢ quark
(and leptons), the decay rate will depend on |V

Semileptonic decays are useful for measuring |V.| for several reasons. The
complicated hadronic component can be separated from the leptonic component,
isolating the effects of the strong force. Also, when there is a single hadron in the
final state will it not interact strongly with the other decay products. Experimen-
tally, semileptonic decays tend to have relatively large branching fractions, which
makes getting a sizable sample of these decays easier. Also, the single charged
lepton in the final state makes for a clean signature.

Before we get into ways to extract |V,| from semileptonic decays, here is a
little terminology. The total rate ' for a particle to decay is related to its lifetime

by I' = h/7; any measurement of some subset of decays of a particle is known



as a partial rate and is written with the mode next to I' in parentheses (e.g.
['(B — D*/v)). A “branching fraction” is the ratio of a partial rate for a particle
to its total rate and is the probability that a particle will decay through that mode.

Several techniques exist for determining |V,| from B — X /v decays. “Inclu-
sive” measurements find the partial rate I'(B — X (v) for the sum of all B — X (i
decays by observing only the charged lepton. The inclusive method has the ad-
vantage that the various complicated hadronic states do not need to be separately
identified, which both simplifies the detection and allows all of the semileptonic
decays to be used in the measurement, decreasing the statistical uncertainty. |V|

is related to the inclusive branching fraction by [4]
B(B — Xotv) = viny| Veo|* 75, (1.9)

where vy, is a constant determined from integrating the differential rate (the
derivative of the rate with respect to some variable). There are substantial uncer-
tainties on this constant from the effect of higher-order perturbative corrections,
the explicit appearance of the ¢ and b quark masses, and other sources, and it
currently has an error of about 9% [6]. In addition, the rate is determined for
the quark-level process b — cfv and assumed to apply to the hadron-level process
B — X lv. This assumption is known as quark-hadron duality, and the error
from this assumption could be as high as 5%. “Exclusive” measurements recon-
struct a particular mode, usually B — Dfp, or B — D*/p. |Vy| is extracted
from measurements of either the partial rate or the differential rate. Description

of the differential rate requires knowledge of the strong interaction dynamics in



the decay, which is presently quite limited. Measuring |V| with an experimen-
tally determined exclusive partial rate depends on integrating the description of
the differential rate; the result is quite sensitive to the theoretical uncertainties on
the differential rate. Measurements using the experimentally determined differen-
tial rate are much less sensitive to these uncertainties; however, knowledge of the
normalization of the partial rate at some point is required to extract |V|. The
normalization suffers from an uncertainty of at least 11% for B — D/r but only
5% [6] for B — D*(v . The mode B — D*{i is also experimentally simpler than

B — Dlv because its total rate is approximately three times as large due to a

dependence of the differential rate on |pp-| instead of |pp|?, which leads to a larger
data sample in general and higher statistics at the kinematic point where |V| is
measured. Also, while the B — D/{v signal will include D background from all
other B — X /v decays, B — D*/v will only have semileptonic background from
B — X v decays that include a D* or higher resonance.

[t is important to measure |V,3| from both inclusive and exclusive decays to gain
confidence in the results. In this analysis, we determine |V,,| from the differential

decay rate of the exclusive decay B —D*°¢v. The next chapter discusses the decay

dynamics of B — D*(v events and how we extract |V|.



CHAPTER 2

THEORY OF B — D*(v DECAYS

2.1 B — D*{v Decay Dynamics

The amplitude for B — D*/v decays can be written in terms of a leptonic current

(L,) and a hadronic current (H*) as follows [4]:
A= —i%EV, L, H", (2.1)

where G is the Fermi coupling constant. The leptonic current is calculable, but
the hadronic current contains non-perturbative information about the interaction
between quarks and is thus not calculable within QCD. The hadronic current is
directly proportional to the matrix element of a V' — A charged weak current

operator:

H" = (D*[V* — AM|B), (2.2)

where V# = éy"b, A* = éyFysb, and (D*| and |B) represent the wavefunctions of

the D* and B.
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2.1.1 Matrix Element

The B — D*(v matrix element can be parameterized in terms of the available
4-vectors in the process multiplied by form factors that include the information
that is not known about the overlap of the B and D®*) wavefunctions. The full

matrix element is written [4]

(D* (W, &)V* — A*B(p)) = 2L et pl psV(g?) — (mp +mp-)e™ A (¢%) +
mp-+mp=
—ET (4 )P Ay (q%) + 2mp- SLgt As(q?) —
mp—+mpx q?
2mp-L" Ay (¢, (2.3)

where p' and € are the 4-momentum and polarization of the D*, respectively, p is
the 4-momentum of the B, ¢ = (p — p')? is the squared momentum transfer of
the process, and V', Ay, Ay, Ay, and As are the form factors.! Three of the form

factors are related by

As(q®) = B Ay (¢) — P2 Ay (¢), (2.4)

2mD* ZmD*

and the condition Ag(0) = A3(0) is imposed to avoid a pole at ¢* = 0.

Some general assumptions can be made about the form factors from kinematic
considerations. Figure 2.1 shows a schematic representation of the two extremes
of ¢ at the quark level. Part (a) shows the B meson in its rest frame before decay,
with the small circles representing the two quarks confined in the larger circle of
the meson. Part (b) shows the result of a decay b — cfv at ¢* = ¢?,,,, where

the lepton and neutrino travel in opposite directions away from the meson and

For B — D*lv , ¢* ranges from 0 to 10.7 (GeV/c?)%.
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the ¢ quark stays at rest relative to the rest frame of the B. The wave function
of the spectator quark requires minimal change to keep the two quarks bound
together in a meson, which in our case is a D*, so the form factors have their
maximum values. Part (c) shows a decay at ¢ = ¢2,,, where the lepton and
neutrino travel in the same direction. In this case, the ¢ quark must recoil against
the lepton-neutrino pair and has the most momentum with respect to the B rest
frame. Since the ¢ quark is traveling away from the spectator quark, the spectator
quark wavefunction requires maximum change, so the form factors must have their
smallest values. More specific knowledge of the form factors is important for our
determination of |Vg|; this can be derived from QCD relations and is discussed in

Section 2.2.

2.1.2 Differential Decay Rate

In general, the decay rate of a process is related to its amplitude by “Fermi’s
Golden Rule”:

L= 3 AA ;. (25)

where I' is the decay rate and p; describes the phase space of the process. In the
limit of zero lepton mass, which is a good approximation for electrons and muons,
the operator ¢, will give zero when multiplied by the leptonic current L#, as it is in
A (Equation 2.1). The matrix element can then be treated as containing only the

first three terms, and the resultant decay rate depends only on the form factors V/,

Al, and AQ.
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q2: qr2nin

Figure 2.1: Kinematic extremes for B semileptonic decays [4]. (a) The rest
frame of the B meson; (b) The system after semileptonic decay in which
the ¢ quark is a rest relative to the B rest frame; (c) The system after
semileptonic decay in which the ¢ quark has the maximum velocity relative

to the B rest frame.
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The differential decay rate for B — D*(v is given by [7]

ar _ GIL|Ve|? | S
dg? 9673 [P

2
o ([H[* + [H-|* + [ Ho ). (2.6)

2
mp

The H’s are the invariant helicity amplitudes and in the zero lepton mass limit are

related to the form factors by [8]

. 1 2 2 2 2 2,2 2
Hy = oosllmh = mpe = @) A + 2mpt (), 27)
Hi = Al(q2)imeV(q2)7 (28)

where p is the momentum of the D* in the B rest frame.

The normalization of the differential decay rate depends directly on |V, so
if we can predict the value of the form factors at any point, we can measure
|Vip| from the experimentally-determined normalization of dT'/dg® at that point.
Heavy Quark Effective Theory, introduced in the next section, gives us just such

a prediction.

2.2 Determining the B — D*/7 Form Factors and |V|

While the exact masses of the six quark flavors are not known, the relative size
of their masses can be characterized. Compared with the scale factor Agcp ~ 0.2
GeV, the u, d, and s quarks are considered “light,” while the ¢, b, and ¢ quarks are
considered “heavy.” Heavy Quark Effective Theory (HQET) uses the assumption
that the heavy quarks are infinitely massive to predict the normalization of the
B — D*(v form factors at a specific point. In this section, first HQET and its

implications for the measurement of |V,| from B — D*(v decays are discussed.
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We then discuss further results on the form factors which are required to measure

[ Ves).

2.2.1 HQET and the Isgur-Wise Function

In B — D*fv decays, the heavy b quark in the B meson decays to leptons and
another heavy quark (¢) that forms a meson with the spectator light quark. In the
limit that the mass of the heavy quarks gets infinitely large (m¢g — o00), the light
degrees of freedom can be thought of as a cloud surrounding the heavy quarks.
This cloud is sometimes called the ‘brown muck’, a term invented by Isgur. The
gluons that couple to the brown muck carry momenta of order Agecp. In the
limit mg — oo, where mg becomes much larger than Agcp, the gluons are not
sufficiently energetic (i.e. their wavelength is too long) to identify the quantum
numbers of the heavy quark, which has a Compton wavelength inversely propor-
tional to its mass. The brown muck can therefore only be affected by heavy quark
attributes that act at large distances, which means that the light quark will only
see the heavy quark’s color field and not its flavor (mass) or spin.

With the mass symmetry implied by HQET, ¢ is no longer the optimal variable
to use when describing B — D*/v decay dynamics. In the limit m¢g — oo, the
velocity of the daughter heavy quark is unaffected by the rearrangement of the
light degrees of freedom and therefore remains the same as the velocity of the
original heavy quark, making the velocity of the heavy quark a conserved quantity
in the decay. The velocity of the heavy quark is also nearly equal to the velocity of

the meson(s). For these reasons, it is convenient to rewrite the matrix elements in
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terms of the available 4-velocities. The form factors become functions of w = v/,
where v is the 4-velocity of the B and v’ is the 4-velocity of the D*. There is a

close relationship between ¢? and w; for B — D*{i, they are related by

m2 +m2 . —ag?
w = Tt (2.9)

2mpmp=

The B — D*fv form factors and differential decay rate are reformulated as

follows. The differential decay rate is written as [7]

2
Z_Z = S (mp — mp-)*mphvVw? — 1w+ 1)% x

4873
w 1—2wr+r?
e (o) ()

where r = mp«/mp and the form factor F'(w) is given by

(Vs | F (w)]? (2.10)

H? + H? + H?

F(w) = ha, (w). (2.11)
w 1—2wr+r? 1
L+4 (%) (M)
The H; are the helicity form factors and are given by
Hy(w) = 1+ (1—%) (2.12)
r —2wr 7'2 w—1 h w
Hy(w) = Yi2wrs? (1 ¥, /w—ﬂh/‘;/l((w))> . (2.13)
These new form factors are related to the traditional form factors by [4]
2,/mBmpx
Vi) = hyv(w), (2.14)
mpB-+mpx w—+1
s Al () = 5rha,(w), (2.15)
2. /mpmpx* M Hy*
A Aa(¢?) = hay(w) + TP hay (w). (2.16)

The mass and spin symmetries have implications for the B — D*/v form

factors. The spin symmetry tells us that in the limit m¢g — oo, ha, goes to zero
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and the other form factors all become equal to one “universal” form factor [9]:

hy(w) = ha, (w) = ha,(w) = §(w). (2.17)

The function &(w) is called the Isgur-Wise function and is the universal form factor
for these decays. The mass symmetry gives us some information about the Isgur-
Wise function at a particular kinematic point. To the brown muck, replacing a b
quark with a ¢ quark traveling at equal velocity will have no effect, since the brown
muck cannot know the difference between heavy quark flavors. If the ¢ quark has
a different velocity, the brown muck will have to rearrange itself to compensate.
This tells us two things about the Isgur-Wise function: (1) It is normalized at
zero recoil (£(1) = 1), and (2) at w = 1, the first derivative must be negative
(£'(1) = —p).

Let us first assume that the heavy quarks are actually infinitely heavy and see
how this allows us to measure |V,;|. First, it is convenient to define the form factor

ratios Ri(w) and Ry(w) [7]:

has(w)+rha,(w)

hy (w
Ro(w) = hAVI((w)). (2.19)

In the limit mg — oo , both R;(w) and Rs(w) go to 1, which in turn means
that F(w), defined in Equation 2.11, becomes equal to &(w). Since we know
€(1) = 1, it should be a simple matter to measure dI'/dw at w = 1 and extract |V|.
Unfortunately, phase space goes to zero at w = 1 and so does dI"/dw. All is not lost,

however; bounds can be set on {(w) from non-perturbative methods (e.g. lattice
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QCD, QCD sum rules, and dispersion relations) leading to a parameterization of
&(w) in terms of p* and w [7]. We can then fit the measured dI'/dw distribution,

allowing V4| and p? to be free parameters.

2.2.2 Corrections for Non-Infinite Quark Mass

Since the quarks are not actually infinitely massive and the mass of the ¢ quark
is not particularly large compared to Agep, corrections must be made to the
normalization at w = 1, and we cannot use the Isgur-Wise function for F(w). We
go back to Ri(w) and Ry(w), which are defined such that they are expected to
vary weakly with w, and h,, (w). Instead of measuring p?, the slope of £(w) at
w = 1, we measure the slope of h4, (w) at w = 1, which we refer to as p% . We also
must know the normalization of hu, (w) at w = 1, which can be predicted using
corrections to the infinite-mass limit.

Caprini, Lellouch, and Neubert use dispersion relations and analyticity to
bound hu,(w) [10]. These bounds are translated into the following form factor

parameterization:
ha,(w) = ha, (1)[L = 8p%, 2+ (53p%, — 15)2" — (231p%, — 91)2%], (2.20)

where z = (vw + 1 — v/2)/(v/w + 1+ v/2). The authors estimate the uncertainty
on these functions to be less than 2%. Boyd, Grinstein, and Lebed have made a
similar calculation [11] and get results that are consistent within 3%.

Ry(w) and Ry(w) have been both calculated and measured. Using QCD sum

rules and applying short-distance corrections, R;(1) and Rs(1) are found to have
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the values 1.27+0.1 and 0.840.2, respectively, where the errors are estimated [7].
This method also gives the predictions [7]
Ri(w) = Ri(1)—0.12(w — 1) + 0.05(w — 1), (2.21)
Ry(w) = Ry(1)+0.11(w — 1) — 0.06(w — 1)% (2.22)

CLEO [12] has measured R;(w) and Ry(w) assuming that they are constant and

that ha, (w) is linear in w. CLEO found

Ry, = 1.18+0.30£0.12, (2.23)

Ry = 0.71+0.22+0.07, and (2.24)

Oy =1)=p%, = 0.91+0.15+0.06 (2.25)

with the correlation coefficients C(p%,, R1) = 0.60, C(p%,,R;) = —0.80 and
C(R1, Ry) = —0.82. The calculated and measured values are in good agreement.

At w = 1, hya, (1) = F(1). Corrections to F(1) come from the finite QCD
renormalizations of the flavor-changing axial currents at w = 1, QED corrections,
and power corrections in terms of Agcp/mg. Luke’s Theorem [13] protects F(1)
from first-order power corrections, a significant advantage of B — D*/7 decays
over B — D¢p decays, which are not protected. Uncertainties on F(1) come
from higher-order perturbative corrections on the QCD renormalization and the

uncertainties on the power corrections. We will use [6]
F(1) =0.913 £ 0.042, (2.26)

where the (theoretical) uncertainties have been added linearly to give a conservative

estimate.
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We measure dI'(B — D*(v)/dw using B~ — D**¢~ and charge conjugate
decays. We fit the d['(B — D*(v)/dw distribution using the parameterizations
given in Equations 2.20, 2.21, and 2.22. We use the values of R; and R, from the
CLEO measurement as our values of R;(1) and Ry(1) and allow as free parameters
[Veo| F(1) and p% . We then use the predicted value of F(1) to extract |Ve|. By
integrating the decay rate over w using the values of |V,,|F (1) and p% , we can also
extract the total rate of B — D*/v decays. The remainder of this thesis describes

our measurement.



CHAPTER 3

PARTICLE CREATION, DETECTION, AND

RECONSTRUCTION

In order to study the decays of B particles, we must have a sample of them. We
must also have some way to detect and identify the decay particles. The Cornell
Electron-positron Storage Ring, or CESR, (pronounced like the famous Roman),
gives us our supply of B’s. It is located on the campus of Cornell University, in
a circular tunnel 40 feet underground, and started operation in 1979. We detect
the decay products of the B’s in the CLEO II' detector, which collected data from
1989 to 1995.

This chapter gives a brief description of CESR in Section 3.1 and of the CLEO
IT detector in Section 3.2. The acquisition of data from CLEO II is described in
Section 3.3. Section 3.4 describes the reconstruction of events from the raw data.
The identification of particles in described in Section 3.5. Finally, Section 3.6

describes how we simulate the detector.

!There is no official explanation of this acronym, which was apparently chosen
to coordinate with CESR.

20
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3.1 CESR

B particles are a rare find in today’s universe. Because they are short-lived, having
a lifetime of about 1.6 ps, any B’s that are created in nature (for instance by high-
energy cosmic rays) do not stick around for long before decaying. If we want to
study them, then, we must first create some. We do this by accelerating electrons
and positrons up to more than 5 GeV of energy and colliding them with CESR. A
schematic of the machines used to do this is shown in Figure 3.1.

In concept, creating massive particles from light particles is simple. The equiv-
alence of mass and energy tells us that if we collide a particle-antiparticle pair of
particles with a little mass but a lot of momentum (hence a lot of energy), we can
get, out of that collision a pair of particles with a lot of mass but little momentum.
The difficulty lies in the details, which in this case are left in the capable hands
of the CESR staff. They are responsible as much as anyone for the data that we
analyze.

As the name suggests, CESR collides electrons and positrons, but CESR itself
actually does not accelerate the electrons and positrons up to the energies needed
to create B’s. The process starts in a linear accelerator, known as the linac. At
the very beginning of the linac, an electrode is heated to emit electrons. These
electrons are accelerated down a 30 cm pipe through a series of strong electric
fields. The electrons come out of the end of the linac with about 300 MeV of
energy. Assuming a constant electric field throughout the length of the pipe, this

means that the electrons reach 90% of the speed of light in just 3.9 cm! To create
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Figure 3.1: A schematic view of CESR.
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positrons, electrons with about 140 MeV of energy are directed into a tungsten
target. The resulting collisions produce electrons, positrons, and X-rays. The
positrons are then siphoned off down the rest of the linac and are accelerated to
an energy of 200 MeV.

From the linac, the electrons or positrons are injected into the synchrotron. The
job of the synchrotron is to raise the energy of the particles from a few hundred
MeV to more than 5 GeV. The synchrotron consists of 192 bending magnets and 4
linear accelerating sections, all of which sit along the inner wall of the underground
tunnel. The bending magnets create simple dipole magnetic fields to bend the
trajectory of the particles in a circle of fixed radius (i.e. the tunnel). The radius
of curvature of a charged particle’s path in a magnetic field can be expressed as
R = p/qB, where R is the radius of curvature, p is the momentum of the particle,
q is its charge, and B is the field strength. As the energy of the particles increases,
so does their momentum; in order to keep the particles moving with a particular
radius of curvature, the magnetic field must increase, and that increase must be
synchronized with the momentum increase. It is from this synchronization that
the synchrotron takes its name. It takes about 4000 revolutions in the synchrotron
to get the particles up to the energy required to make B particles, 5.29 GeV. All
of these revolutions take place in less than one hundredth of a second, and just
before they are injected into CESR the particles are traveling at 99.9999995% of
the speed of light.

The purpose of CESR is both to keep the positrons and electrons at a particular

energy and to collide them at a particular place. Like the Synchrotron, CESR
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consists of many magnets and a few accelerating sections lined up along the outer
wall of the tunnel. These magnets surround a pipe that runs the length of the ring,
called the “beam pipe” because it contains the particle beam. The beam pipe lies in
a circle with a circumference of 768 m. In addition to 86 dipole bending magnets,
CESR contains 106 quadrupole “focusing” magnets. Since the particles do not
enter CESR with uniform energy or direction, most of them have paths that would
eventually lead them to collision with the wall of the beam pipe. The focusing
magnets focus the beam of particles in much the same way a concave lens focuses
a beam of light. Unlike a lens, however, the quadrupole magnetic field actually
focuses in one direction (for instance side to side) and defocuses in the other
direction (up and down). In addition, particles that are originally turned away
from one side of the beam pipe will eventually make their way to the other side if
not redirected. Many quadrupole magnets are therefore required, arranged so that
each magnet is rotated 90 degrees around the beam pipe compared to the magnets
on either side of it. This arrangement causes the beam to be alternately focused
and defocused in each direction, with the cumulative effect that the particles stay
away from the beam pipe walls. CESR also has sextupole and octupole magnets,
which focus the momentum distribution of the beam.

Unlike the synchrotron, the accelerator sections in CESR do not increase the
energy of the particles. Instead, these sections allow CESR to maintain the energy
of the particles. Each particle on average loses 1.2 MeV of energy per revolution
in the form of X-rays, which are known as “synchrotron radiation” because they

are a by-product of bending charged particles in a magnetic field. These X-rays
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are emitted tangential to the beam and the majority run into the outer wall of the
beam pipe, which must be cooled, but since they are well-collimated and can be
produced over a substantial amount of time, they are a valuable tool themselves.
At certain points in the ring, the X-rays are allowed to go off into experimental
stations. This setup is known as the Cornell High Energy Synchrotron Source, or
CHESS, and scientists from all over the world use the synchrotron radiation to
do research in the areas of physics, chemistry, biology, environmental science, and
material science.

When starting from scratch, first positrons are created in the linac, accelerated
in the synchrotron, and then injected into CESR. Unlike the synchrotron, CESR
must contain both types of particles at once. Once the appropriate number of
positrons is in the ring, the acceleration and injection process is repeated with
electrons, with the electrons injected so they travel the opposite way around the
ring. Since electrons and positrons have the same mass, they would normally
travel the same path, or “orbit”, around the ring. This would lead to electron-
positron collisions all along the length of the beam pipe, which means that the
collisions we are so interested in and have gone to so much trouble to cause would
not happen where we have a detector set up to record them. To prevent these
collisions, electrostatic separators are included to make the electrons and protons
travel slightly different paths; these paths are called “pretzel orbits” because the
electron and positron paths weave around each other. The beam pipe is also kept

under a vacuum of 10~ torr to prevent interactions with air or other particles.
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The electrons and positrons are allowed to collide only at the “interaction point”,
which is at the center of the CLEO II detector.

The particles in the CESR beams are not evenly distributed. Instead, there are
nine groups of particles, called trains, evenly spaced around the ring. Each train
is made up of some number of bunches of particles. When CLEO II started taking
data, there was only one bunch in each train. Towards the end of data-taking
with CLEO II, in November of 1994, a bunch was added to each train, making a
total of 18 bunches. Currently, CESR runs in what is known as “9x4” running,
which means 9 trains of 4 bunches each. Grouping the bunches this way helps with
the timing of the data readout, which is discussed below. It also allows for more
particles to be put into CESR, thus increasing the frequency of collision. Each
collision is generally referred to as an “event.”

The number of collisions is measured using instantaneous luminosity, which is

defined as

N_4N,_

L= fn—7F=, (3.1)

where f is the frequency of revolution of the particles, n is the number of bunches,
N+ and N,- are the number of positrons and electrons in each bunch, respectively,
and A is the cross-sectional area of the beams. At the interaction point, each bunch
is 2 cm long, 0.3 mm wide, and 8um high. The current record for instantaneous
luminosity for CESR is 1.2x10% /cm?s. The total number of collisions that occur

is measured by integrating the instantaneous luminosity over time.
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3.1.1 The YT Resonances

Although CESR was designed to run over a range of energies, during CLEO II
data taking it ran primarily at a center-of-mass energy (E.,) of 10.58 GeV. At
this energy the ete™ collisions sometimes produce a bound state of a b and b quark
known as the Y(4S) resonance, which decays 100% of the time to a BB pair. As
the name implies, the T(45) is the third excited state of this bound pair. CLEO
was the first experiment to resolve the Y(1S5), T(2S), and Y(3S) resonances [14]
and the first to observe the Y(4S5) [15].

The Y(4S) is the lowest-energy state of the Y that produces BB pairs. The
Y (3S), with a mass of 10.36 GeV/c? [1], does not have enough mass (energy) to
decay to two B particles, which together have a mass of 10.56 GeV/c? [1]. The
Y (4S5), however, has just enough mass at 10.58 GeV/c? [1] to decay to a BB pair.
It is frequently assumed in B branching fraction measurements that the branching
fraction for the Y (4S5) to decay to B* B~ (referred to as f, ) and B°B° (fy) are
equal. A recent CLEO measurement confirmed this assumption at the 8% level
(cite Sylvia), but the ratio fi_/foo has been predicted to be as high as 1.18 [17].

Figure 3.2 shows the cross-section (which is related to probability) of eTe™ —
hadrons for the energy range of the first four resonances. Notice that the T res-
onance peaks sit on a hadronic background. This background is referred to as
“continuum background” and mostly consists of ete™ — ¢ events, where ¢ stands
for a u, d, s, or ¢ quark (which are all quarks lighter than the b quark). Also in-
cluded are e"e~ — 777~ events where one or both of the 7’s decays hadronically.

The amount of continuum background scales as 1/E? . Some continuum events are
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difficult to distinguish from BB events and must be subtracted using a process de-
scribed below. Other background processes that exist are ete™ — e*e~ (Bhabha 2

events) and ete™ — ptpu~ (p-pairs); cross-sections for these backgrounds are much

higher than the cross-section for hadronic events, but are easy to distinguish from

BB events.
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Figure 3.2: The first four T resonances.

The ratio of Fox-Wolfram moments H,/Hy [18] gives us some handle on vetoing
continuum events. This ratio contains information about the shape of an event.
Y(4S) — BB events tend to be isotropic, or “spherical,” with particles carrying

energy in all directions; the Y (4S5) is produced and decays at rest and each daughter

?Named after Indian physicist Homi Jehangir Bhabha (1909-1966), who made
significant contributions to the understanding of the production of electron-
positron pairs from cosmic rays.
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B meson is produced with a momentum of about 0.3 GeV/e¢. In a continuum event,
the mass of the quark pair is much lower than F,,, so the daughter particles of
these quarks’ hadronization have higher momenta than the B’s. These events tend
to have a more “jetty” appearance; that is, the energy in the event tends to be
distributed back-to-back. The ratio of Fox-Wolfram moments H,/H, measures
how jetty an event is, assigning spherical events numbers closer to zero, and jetty
events numbers closer to one, with 98% of BB events containing D**/v decays
having Hy/H, values less than 0.4.

Requiring small Hy/H, removes some but not all continuum events from on-
resonance data samples. The rest of the events are subtracted using a pure sample
of continuum events. At energies just below the T (4S) resonance, only contin-
uum processes generate hadronic events, and these events are very much like the
continuum events produced at the Y(4S) energy. Because the cross-section for
continuum events is about four times the cross section for Y(45) at E., = 10.58
GeV, CESR must spend a substantial amount of time running below the Y(4S5)
resonance energy to collect a large enough sample of continuum events. CESR
usually spends two-thirds of the time running “on-resonance” at E.,, = 10.58 GeV

and one-third of the time running “off-resonance” at E.,, = 10.52 GeV.

3.2 The CLEO II detector

Making B particles is not enough; in order to learn anything about them, we also

must observe them, which is the purpose of the CLEO II detector. CLEO II was



30

installed from 1988 to 1989 and began taking data in late 1989. While CLEO II
is referred to as “a detector,” it is actually a collection of many different types
of detectors. A cross-section of CLEO II is shown in Figure 3.3. As particles
travel out radially from the beam pipe, they encounter the following detectors, in
order: the Precision Tracker, the Vertex Detector, the Outer Drift Chamber, the
Time of Flight Detector, the Electromagnetic Calorimeter, also called the Crystal
Calorimeter, and the Muon Detector. The Precision Tracker, Vertex Detector,
and Outer Drift Chamber are often referred to together as the “tracking cham-
bers” because they are used to reconstruct the path a particle follows through the
detector. A superconducting magnet coil provides a 1.5 T magnetic field inside all
detectors except the Muon Detector. Since CLEO II has been described in great
detail elsewhere [19], each component is only briefly described below.

We adopt the following coordinate system when describing CLEO II. The polar
angle # is defined with respect to the direction of the electrons at the interaction
point, also known as the z axis. Using a cylindrical coordinate system, r represents
the distance from the beam line, and ¢ = 0 points horizontally in the northward
direction at the interaction point. CLEO II is symmetric with respect to 6; on
a large scale, it is also symmetric in ¢. “Layer” refers to components arranged
cylindrically around the z axis; these are stacked radially.

The first object a particle encounters as it moves away from the interaction
point is not actually a detector; it is the CESR beam pipe, which must extend

inside CLEO II so that the vacuum within the beam pipe can be maintained. The
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Figure 3.3: A side view of the CLEO II detector.
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beam pipe section inside the detector is made of beryllium and has a thickness of

0.5 mm and a radius of 3.5 cm.

3.2.1 Precision Tracker

The Precision Tracker (PT) sits just outside of the beam pipe, in the region 3.5 cm
to 7.5 cm (radial). It is made up of 6 layers of “straw tubes”, which are aluminized
mylar tubes with a gold-plated tungsten wire running through the center. There
are a total of 384 straw tubes in the PT. The tubes, which vary in diameter, are
arranged in the pattern shown in Figure 3.4 by the label “PTL.” The tubes are
held in this pattern by two endplates made of G-10 plastic. Gas flows through the
tubes; originally this gas was a mixture of 50% argon and 50% ethane, but in April
1992 it was switched to dimethyl ether, which produces better position resolution.

The PT uses ionized electrons and an electric field to detect particles. The
wires in the tubes are held at high voltage, and the tubes are held at ground,
which produces an electric field within the tube in a direction that pushes electrons
toward the wire. A charged particle traveling through the tube ionizes some of the
gas particles in the tube. The liberated electrons follow the electric field and drift
toward the wire, picking up speed as they go. Close to the wire, the electrons pick
up enough speed to ionize more gas particles, which then ionize more gas particles
in a chain reaction known as an “avalanche”. When the electrons reach the wire,
they produce a measurable current in the wire, which is read out. The wires are
known as “sense wires” since they indirectly detect particles passing through. Note

that only charged particles can be detected with this technique, since only they
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can ionize the gas particles. The signal from the sense wires, including time and
accumulated charge (pulse height) are read out at one end. The PT can only give

information about the r — ¢ position of a particle and none on its position in z.

3.2.2 Vertex Detector

The Vertex Detector (VD) sits directly outside the PT in the region 7.5 cm to
17.5 cm. It operates on the same basic principle as the PT. The VD’s major com-
ponents are wires and cathodes. The wires are strung between two G-10 endplates.
There are 800 nickel-chromium sense wires making up 10 layers. 2,272 aluminum
field wires are arranged to make hexagonal cells around the sense wires; the field
wires shape the electric field, taking the place of the tubes in the PT. The two
cathodes are made of sheets of mylar to which aluminum foil has been applied.
The foil is segmented in ¢ and z into separate “pads.” The inner cathode sits
just inside the innermost layer of wires, and the outer cathodes sits just outside
the outermost layer of wires. Figure 3.4 shows the arrangement of the wires and
cathodes. The entire VD volume is filled with a 50-50 mixture of argon and ethane.

Like the PT, the sense wires in the VD are held at high voltage. The field wires
are held at ground to make the electric field around the sense wire. The cathodes
are also held at ground and shape the electric field for the first and last sense wire
layers. Unlike the PT, the VD measures information about a particle’s position
in z as well as the r — ¢ plane. The sense wires are read out at both ends, and a
particle’s z position can be determined from the different amount of charge that

accumulates at each end of the wire (known as the “charge division” method).
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The cathodes are also used to determine z position. When a particle induces a
negatively-charged avalanche on a sense wire near a cathode, a negative “image
charge” of the ion cloud develops on the cathode pads nearest the avalanche. The
z position of the avalanche and hence the particle is determined by analyzing the

distribution of charge on the pads.

3.2.3 Outer Drift Chamber

The Outer Drift Chamber (DR) is set up very much like the VD, with a few
differences. It occupies the region 17.5 cm to 95.0 cm and consists of sense wires,
field wires, and cathodes. The arrangement of the wires and cathodes is shown in
Figure 3.5. There are 12,240 gold-plated tungsten sense wires arranged in 51 layers
with 36,240 field wires arranged around them. The field wires around the inner 40
layers are made of gold-plated aluminum, with the remainder made of gold-plated
copper-beryllium. The wires are strung between two aluminum endplates, each
3.175 cm thick. The endplates are manufactured flat but bow inwards at smaller
radii due to the enormous tension provided by the 48,480 wires. The endplates are
held apart at their outer edge by a cylinder of composite panels. The wires are
insulated from the endplates with plastic bushings. The cathodes have the same
construction and position relative to the wires as in the VD. The sense wires are
held at high voltage, and the field wires and cathodes are held at ground. The DR
volume is filled with a 50-50 mixture of argon and ethane.

Because of the large number of sense wires in the DR, it is impractical to read

the wires out at both ends to obtain z information. Instead, eleven sense layers
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of the DR are strung slightly crooked, not quite parallel with the z axis, with
their ends offset in ¢. The r — ¢ position of the wire is therefore a function of z.
The offset layers are known as “stereo” layers because they give three-dimensional
information about the particle’s position. The 40 layers strung parallel to the z
axis are known as “axial” layers. To determine the z position of the particle at the
stereo layers, first the particle’s r — ¢ position at the stereo layers is predicted using
the axial layers. Then the z position of the particle is determined by where along
the wire the r — ¢ information from the stereo wire matches the r — ¢ information
of the axial layers.

Information from the PT, the VD, and the DR is used together to determine the
paths that charged particles traveled through the detector. A pattern-recognition
algorithm goes through all the r—¢ and z information and essentially “connects the
dots” to find tracks. Figure 3.6 shows a schematic r — ¢ view of the PT, VD, and
DR, with open and closed dots representing data points from a typical event. The
lines drawn connecting the dots show the reconstruction of particles’ paths through

2

the detector, known as “tracks.” The closed dots have been used to reconstruct

tracks. The momentum resolution for reconstructed tracks is approximately

()% = (0.0015p;)* + (0.0055)?, (3.2)

Pt

where p, is the track’s momentum (in GeV/¢) in the r — ¢ plane. For particles with
momentum of 2 GeV /¢, this gives a resolution of 0.6%. The angular resolution of
tracks is 1 mrad in ¢ and 4 mrad in 6. These tracks tell us a particle’s charge, from

which way they curl due to the magnetic field, and momentum, but by themselves
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they tell nothing more. Particle identification, which is determining what type of

particle created a track, is discussed in Section 3.5.

3.2.4 Time of Flight Detector

The Time of Flight detector (TF) sits just outside the tracking chambers. It is
divided into two parts to provide better solid angle coverage. The “barrel” section
sits just outside the DR and is so named because of the cylindrical arrangement of
the components. It consists of 64 blocks, also called counters,® of a special plastic
(Bicron BC-408, which has polyvinyltoluene as a base) that has been doped to
make it scintillate, or emit light, when particles pass through it. The counters are
2.8 m long, 10 cm wide, and 5 cm thick and cover the region 36° < # < 144°. The
light signal is read out on each end by phototubes, which are connected to the
counters with lucite light pipes. The “endcap” section sits outside of the endplates
of the DR, at 1.175 m from the interaction point. There are 28 counters on each
end of the DR. The endcap counters are shaped like truncated pie pieces; they are
58 cm long, 5 cm thick, and vary in width from 6.4 cm to 19.6 cm. They cover
the regions 15° < 0 < 36° and 144° < # < 165°. The endcap counters are read out

with phototubes attached directly to the narrow ends of the counters. All counters

30ne of the earliest uses of detectors in particle physics was as “coincidence”
detectors, where one would put two detectors next to or on top of each other and
look for simultaneous signals that implied the passage of a particle through the
detectors. Omne would count the events and so the detectors were referred to as
“counters”; the name has stuck.
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Figure 3.6: An r — ¢ view of data in the CLEO tracking chambers.
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are wrapped in aluminum foil and then electrical tape. The TF provides 97% solid
angle coverage.

When a charged particle travels through a TF counter, the counter emits light,
with the maximum emission at 425 nm. The light travels down the counter to the
phototube(s), where the time of arrival is read out along with the pulse height.
If a track reconstructed in the tracking chambers is found to travel through a
counter with a signal above threshold, the track is used to determine where in z
the particle passed through the counter. The amount of time it took the signal
to travel from where the track entered the counter to the end of the counter is
calculated using the distance the light traveled along the counter and the speed of
light in the scintillator. This quantity is subtracted from the signal’s time of arrival
at the phototube. The end product is the amount of time it took for the track to
arrive at the counter from the interaction point, or the “time of flight,” which then
becomes associated with the matched track. In the barrel counters, the time-of-
flight measurements from the two phototubes are averaged to get one measurement.
The resolution of the barrel TF is about 170 ps; the endcap resolution is slightly
worse because the counters are only read out at one end and because there is
more material for particles to interact with between the interaction point and the

counters.

3.2.5 Electromagnetic Calorimeter

The Electromagnetic, or Crystal, Calorimeter (CC) sits outside the TF. It consists

of 7,800 thallium-doped cesium iodide crystals, all of which are approximately
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30 cm long and 5 cm by 5 cm square. Like the TF, it is divided into barrel and
endcap sections. The barrel section is made up of 6,144 crystals in the region 32° <
0 < 148°. The crystals are placed such that their long axis points slightly away
from the interaction point in order to reduce gaps between the crystals through
which particles can travel. As z increases, the crystals must tip over more to point
towards the interaction point, so the shape of the crystals changes slightly. The
crystals are set in 48 z rows, with 128 crystals arranged azimuthally in each row.
The endcap sections consist of 828 identical rectangular crystals on each end of the
detector, all of which sit horizontally along the z direction. The endcap crystals
overlap slightly in z with the barrel crystals, covering the regions 15° < 6 < 36°
and 144° < # < 165°. The endcap and barrel sections together provide 95% solid
angle coverage.

Like the TF, the CC crystals scintillate, but in the CC the phenomenon is used
differently. The density of CsI is much higher than polyvinyltoluene: 4.53 g/cm?

2. This higher density makes it more probable that particles

versus 1.032 g/cm
will lose energy in the calorimeter through processes such as ionization, scatter-
ing, bremsstrahlung (radiation emitted when a charged particle decelerates), pair
production (the production of an electron-positron pair from a photon), and nu-
clear interaction. The particles initiate a chain reaction of interactions and decays
known as a “shower.” Electron and photon showers are contained within the crys-
tals, so all of their energy is measured, giving the detector its name. Hadron

showers travel much further radially, depositing energy in the magnet coil and be-

yond. Muons, which are minimum-ionizing particles, usually travel through the
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calorimeter undisturbed. The showers produce scintillation light in the crystals,
which is detected by four silicon photodiodes mounted on the end of each crystal.

Showers are reconstructed using the amount of light detected in each crystal.
First the amount of light is converted to the amount of energy deposited in that
crystal. Next, clusters of adjacent and near-adjacent crystals with energies above
threshold are located. The highest-energy crystal in each cluster must have a signal
above 10 MeV. Then the energy and position of the shower are determined from
the cluster signals. The shower energy is the sum of the energies in the contributing
crystals. This energy is corrected based on studies of ete™ — ete ™y (radiative
Bhabha) and ete™ — v events, where it is known that the energy of the three
particles must add up to twice the beam energy. The photon energy resolution is
3.8% at 100 MeV and 1.5% are 5 GeV in the barrel. The position of the shower
is calculated as the energy-weighted mean of the position of the center of each
crystal in the cluster;* energy-dependent corrections are applied to this position.
The angular resolution for barrel photon showers is 11 mrad at 100 MeV and 3

mrad at 5 GeV.

3.2.6 Superconducting Magnet and Muon Detector

The 1.5 T magnetic field in most of CLEO II allows for the determination of particle
charge. This magnetic field is produced with a large superconducting coil, which
sits outside the barrel calorimeter. The coil has a diameter of 3 meters and is 3.5 m

in length. It carries a current of 3,300 amps, storing 25 MJ of energy, and is cooled

4This is somewhat like finding the center of mass of a solid.
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down to superconducting temperatures with liquid helium. The coil produces a
field uniform to £0.2% over 95% of the DR volume. The field is monitored with
an NMR probe that sits a few centimeters beyond the end of the DR. Three layers
of iron 36 cm thick sit outside the coil and channel the looping magnetic field lines.

The barrel muon detectors (MU) extend from 43° < § < 137°. The detectors
sit between and outside of the magnet return iron layers. The detector components
operate much like the tracking chambers. Each section is 5 m long, 8.3 cm wide,
and 1.0 cm tall and is oriented with its long axis parallel to the z axis. The
sections are divided into eight separate volumes with a piece of plastic that runs
the length of the section and has a comb-like profile. The plastic is coated with
graphite to provide a field cage on three sides for silver-plated copper-beryllium
wires which run down the center of each of the eight channels. Orthogonal copper
pickup strips, similar in idea to the VD and DR cathodes, provide the fourth side
of the field cage and give z information. The wires are held at high voltage, and
the volume is filled with a 50-50 mixture of argon and ethane. The wires are read
out at both ends and use charge division to give more z information. This type of
drift chamber is known as a “plastic streamer counter.” The counters are placed
in layers of three at 36, 72, and 108 cm in the magnet return iron. Endcap muon
counters sit outside the return yoke and increase the total solid angle coverage of
the muon detector to 85%. The spatial resolution of the muon detector is 4.6 cm

(5.7 cm) for particles which reach the middle (outer) layer of barrel counters.
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3.3 Data Acquisition

With electrons and positrons traveling near the speed of light, not much time
elapses between bunch crossings as the bunches travel around the CESR ring.
Electron and positron trains pass each other with a frequency of 390 kHz such that
with 9 trains the crossing frequency is about 3.5 MHz. Although not every crossing
produces a collision, the rate is still far too high for the data acquisition system to
read out every event; in addition, not every event is of interest. The events which
we would like to record (where an Y (45S) is created) happen at the rate of a few Hz.
CLEO II has a system, called the trigger system, that examines each event as it
happens and determines if it should be written out. This system is driven by the
timing system, which coordinates the readout of events with the crossing time of
electron and positron bunches. This timing system enables, disables, and resets
readout from detector components, based on results of the trigger system. The
trigger system is designed to detect primarily BB events, but some Bhabha and
p-pair events are saved for calibrating the detector.

The trigger operates on several levels, where each level uses more complicated
information from the detector. One level must be passed before the trigger system
examines the next level; in the event of a failure, the system goes back to ground
zero. The first level, called L0, looks at data from the VD, TF, and CC. L0 takes
about 30 ns to make a decision, slowing the data-taking rate to about 20 kHz. If
L0 is passed, the gates to the detector electronics are disabled so that no new data

are put in the short-term memory. The next level, L1, looks at DR data as well
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as data used by LO. It takes about 1 us and slows the rate to 25 Hz. The last
level, L2, slows the rate to a few Hz. L2 takes 30-50 us and makes use of tracking
information from the VD and DR. If L2 is satisfied, the data from that event are
written out to disk. The efficiency of the trigger for choosing BB events is 99.8%
and for choosing events where at least one B decays to D*/v is essentially 100%.

There are over 28,000 sensitive elements (e.g. sense wires) in CLEO II, for
each of which several quantities must be recorded. Since generally the particles
produced in the event reach only a small fraction of the channels, writing out the
information recorded by each channel would be a waste of storage space. Channels
are only written out if they have recorded a signal that falls over a certain threshold
and within a certain time window determined by the timing system; in the CC the
channel must also be near another activated channel that passes an energy cut.
This weeding out is known as “sparsification.” In addition, events read out to disk
are analyzed with a program (called level3 in reference to the trigger) that rejects
more events before they are permanently recorded. In the end, CLEO II recorded

about 27 million hadronic events.

3.4 Event Reconstruction

The raw data recorded from CLEO II must be processed to reconstruct tracks and
showers as well as various higher-level information, such as the particle identity of
tracks and showers. The program that processes the data is called pass2 and is a

collection of separate processors. The output of pass2 is usually stored in what is
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known as ROAR format, which takes up significantly less storage space than the raw
data. This section describes the output variables of pass2 that we use to identify
and reconstruct B — D*(U decays.

Figure 3.7 shows a data event that has been processed by pass2. All detectors
are shown in cross-section except the CC, where each barrel crystal is represented
by a rectangle in a view that approximates looking at the inside of a tin can. The
raw signals are represented as dots (tracking chambers and MU), open rectangles
(TF), filled-in rectangles (CC), or bars (MU). The reconstructed tracks are repre-
sented by lines; the number at the end of each tracks is its momentum in GeV/ec.
The number by each shower is its measured energy in GeV. The squares seen in
the DR represent endcap crystal hits; endcap TF hits are not shown.

We can not directly detect B’s with CLEO II, because B’s are short-lived
and decay to other particles within the beam pipe. Some of these decay parti-
cles are also short-lived and decay further. The six types of particles that are
most frequently directly detected by CLEO II are photons, electrons, muons, pi-
ons (charged), kaons (charged), and protons. Many processors repeatedly analyze
the same hits assuming that a different kind of particle (e, p, w, K, or p) created
the signal and let the user choose which assumption she prefers. Most other parti-
cles, including 7%’s, and D**’s, are reconstructed from the signals of their daughter
particles.

The basics of tracking were discussed at the end Section 3.2.3. The first pro-
cessors used to find tracks are TRIO [21] and DUET. These processors are designed

to find all possible tracks, and they often find two tracks where only one particle
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Figure 3.7: A data event showing track momentum and shower energy.
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passed® or a track where no particles passed. The TMNG® processor [22] examines
the output of TRIO and DUET and rejects many duplicate and fake tracks. Although
we have other ways of removing the contribution to our B — D*{7 signal from
fake tracks, TMNG is useful in reducing the number of background events that we
must deal with.

One other processor runs on the tracks to improve momentum reconstruction.
TRIO and DUET reconstruct tracks assuming that they follow perfectly helical paths.
As particles travel through the tracking chambers they lose energy through ion-
ization and other interactions with the material in the tracking chambers. The
radius of curvature of their path decreases as they slow down. By assuming a
helical path, TRIO and DUET end up using a radius of curvature that is too large
at the outer edge of the DR and too small at the inner edge of the PT, leading to
an incorrect projection of the particle’s momentum at the interaction point. The
KLMN processor [23] takes into account this change in curvature; it outputs five
sets of track parameters, one for each possible particle type, because the different

particle types lose energy differently.

®An example of this can be seen in Figure 3.7 if one looks carefully; the track
pointing a little below the 1 o’clock position has two labels at the end (the 0.43
covers up much of the 0.58), which indicates that two tracks were found.

STMNG stands for TrackMan the Next Generation, and yes, it really is after
the TV show.
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3.5 Particle Identification

3.5.1 Particle Identification with Specific Ionization

The difference in energy loss which requires KLMN to output five sets of parameters
can be exploited for particle identification. The amount of energy a particle loses
through ionization per unit length, called dE/dz, depends on = v/c, where v
is the particle’s speed and ¢ is the speed of light. Particles which have the same
momentum will have different values of 3 if they have different masses and therefore
will lose different amounts of energy. The amount of charge deposited on the wires
in the drift chamber is proportional to the dE/dx of the particle; by examining
the mean value of the charge deposited on wires by a particular track, we can
determine dE /dx for that particle. Figure 3.8 shows dE/dx versus momentum for
tracks in the drift chamber. The lines represent the mean values of dE/dz for the
different particle types, and the points are values from data tracks; the data for
electrons are not shown because they would obscure the other distributions. While
the distributions of K and 7 particles are clearly separated in the momentum range
0.25GeV/c < p < 0.5GeV/c, they merge fairly quickly as momentum increases.
Since most of the 7’s and K’s that we reconstruct in this analysis have momentum
greater than 0.5 GeV/¢, we do not make use of the dE/dx information for = and
K candidates; however, as seen in Figure 3.8, dE/dx continues to offer us some

discrimination for electrons and is used in electron identification, described below.
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Figure 3.8: The dE/dx distribution versus momentum for particles in the

DR.
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3.5.2 Particle Identification through Time of Flight

The TF detector exists primarily for particle identification and works on a principle
similar to that used for dE/dz measurements. The TF measures each particle’s
time of arrival at the detector. From this time and the distance the particle
traveled to get there, derived from the track information, the particle’s 3 (speed) is
determined. As mentioned above, particles with the same momentum but different
mass will have different (’s; this can be seen in Figure 3.9, which shows 1/ versus
momentum, where 3 has been determined in the TF. The lines represent the ideal
value of 1/ for the different particle types; again electron data points are not
shown. The TF measurements can separate K’s and 7’s up to a slightly higher
momentum than dE/dz, about 0.6 GeV /¢, but again we choose not to use these
measurements for KX and 7 candidates. The TF data offer further discrimination

of electrons from other particle types and are also used in electron identification.

3.5.3 Photon Identification

The CC is the only detector that detects photons. We use the processor CCFC
to reconstruct showers in the manner discussed in Section 3.2.5. Electromagnetic
showers, which are showers produced by photons or electrons, generally have a
different energy distribution than hadronic showers. The ratio of the energy mea-
sured in the nine crystals surrounding and including the highest-energy crystal (a
3x3 crystal square) to the energy measured in the 25 surrounding crystals (a 5x5

crystal square) is known as E9/E25. Electromagnetic showers tend to have most
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Figure 3.9: 1/§ measured in the TF versus momentum measured in the

tracking chambers.
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of their energy concentrated in the middle nine crystals, giving them values of
E9/E25 close to 1. Because hadronic showers spread out their energy, giving them
E9/E25 values significantly less than 1, E9/E25 can be used to distinguish photon
and electron showers from all other types.

To distinguish photon showers from electron showers, we look for reconstructed
tracks that point to the shower. This process is called track-shower matching and
is carried out by the CDCC processor [24]. Electromagnetic showers that have tracks
pointing to them can be ruled out as photon showers, since photons do not leave
tracks in the tracking chambers. CDCC designates track-shower matches of several
different types. For type 1 matches, the track must point within 8 cm of the
center of the shower. For type 2 matches, the track must point within 8 cm of the
center of any crystal in the shower. Matches of type greater than 3 use only r — ¢
information or indicate that a track which does not satisfy a type 1 or 2 match
passes near another matched shower. The data event that was shown in Figure 3.7
is shown again in Figure 3.10, this time with the track-shower match information.
The first number shown at the end of the tracks is the track number, and the
second number is the number of the matched shower; vice-versa for shower labels.
The absence of a second number means that no track (shower) was matched to

that shower (track).

3.5.4 Lepton Identification

Correctly identifying leptons from D**fv decays requires a more direct system than

identifying the hadrons. As mentioned above, we do not use any direct particle
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Run: 53957 Event: 20250

Figure 3.10: A data event showing track-shower matching. The first number
at the end of a track is the track number; the second number is the number

of the matched shower. The labeling is reversed for the showers.
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identification information (dFE/dx, time of flight) for our K and 7 candidates; in-
stead, the K, 7, and 7° from the D** are identified indirectly. In the case of the
D°, the 4-momenta of two candidate tracks are combined, and the mass of the
resulting “particle” is examined. If the two particles really came directly from the
DP, the resulting mass will be close to mpo;” if two non-related tracks are com-
bined, the mass will most likely fall far from mpo. A similar procedure is followed
to find 7»’s from two showers and D**’s from D° and 7° candidates. Requiring the
reconstructed mass of the candidate parent particle to fall in some range around
the measured mass of the parent particle effectively identifies the daughter parti-
cles. Since we do not detect neutrinos in CLEO II, the same procedure cannot be
followed to identify the lepton from the B [25]. We instead identify leptons directly
by their track and/or shower properties; this of course causes us to include leptons
which do not come from D*°/v decays, a subject which is addressed in the next
chapter.

We use the CEID package [26] to identify electron candidates. CEID examines
each track and produces a log-likelihood that each track is an electron, called

r2elec. r2elec is defined as

r2elec = ln(llz¢ ) (3.3)

where the sum is over several variables, described below, P,; is the probability
that, given the variable’s value, the track/shower was produced by an electron,

and Py; is the probability that value was not produced by an electron. P, and

"There is measurement error in the momenta of the tracks, so the mass of
correctly-identified D%’s is smeared around the true mass.
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Py; are calibrated using Bhabha events, which are purely electrons, and T(15)
decays, which produce very few electrons. r2elec includes the variables dFE/dx,
the track-shower match distance, E9/E25, and the time of flight, all of which
were described above, as well as E/p, the track-shower match distance, LP2SH,
and LP3SH. A higher value of r2elec means that it is more likely that track was
produced by an electron.

E/p and the track-shower match distance relate track information to shower
information. FE/p refers to the energy of the matched shower, E, divided by the
track’s momentum, p. For electrons, which have a very small mass (0.5 MeV/c?),
the relationship E? = m?c* + p?c? becomes to good approximation E = pc at the
energies in which we are interested (E > 800 MeV). Since electrons (and photons)
usually deposit all of their energy in the calorimeter, E/p is very close to 1 for
electrons, while for other charged particles it is usually significantly less. The
track-shower distance is defined as the absolute distance between the center of the
shower and the point on the surface of the CC to which the track extrapolates.
The track-shower distance tends to be smaller for electrons. Figure 3.11 shows the
E/p and track-shower distance distributions of electrons and hadrons.

The variables LP2SH and LP3SH give information about the size of the shower.
LP2SH is the RMS width of the shower, and LP3SH is the ratio of the RMS width
of the shower in # to the RMS width of the shower in ¢. Electrons have narrower
distributions than hadrons in both of these variables. Figure 3.12 shows these

distributions for electrons and for hadrons.
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Muon identification is more simple than electron identification because of the
muon detector. Tracks are extrapolated to the muon counter layers and matched
to hits. To be a match, there must be hits in at least two out of the three counters
in that layer. There must be a match in any layer that the muon is expected to
reach (based on its momentum) or the track is disqualified. If there is a match in
an outer layer but one is not found where expected in an inner layer, the variable
MUQUAL is set to be non-zero. The variable DPTHMU records how many interaction
lengths® of iron the particle penetrated to reach the outermost matched layer. The
three counter layers sit at roughly 3, 5, and 7 interactions lengths (depending on
the trajectory of the track). Particles must have at least 1, 1.4, and 1.8 GeV/c
of momentum to reach a DPTHMU of 3, 5, and 7, respectively. Track number 2 in
Figure 3.10 is most likely a muon; it has 1.5 GeV/c of momentum and penetrates
to the second muon counter layer, as expected given its momentum. Requiring
higher values of DPTHMU gives a lower efficiency but also decreases the likelihood

that the track is not a muon, known as the “fake rate.”

3.6 Detector Simulation

The CLEO II detector response to D*°/v and other decays is simulated by a
program called CLEOG. We use this simulation to measure the efficiency for CLEO
IT to reconstruct D*°/v decays, to simulate some background events, and to test

our method for measuring V|-

8A nuclear interaction length is the average distance a particle travels in a
material between interactions with the nuclei in that material. In iron it is 16.8 cm.
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CLEOG is based on GEANT [28], a program which simulates the passage of particles
through matter. The simulation is based on random-number generation and is
therefore often referred to as “Monte Carlo.” The CLEOG code contains a complete
description of the material in CLEO II, from sense wires and calorimeter crystals
to support structures and readout cables. Figure 3.13 shows an r — ¢ cross-section
of one quadrant of the detector at z = 0. The inner and outer cathodes and
support structures of the tracking chambers are visible, as well as the barrel TF
counters, the barrel CC crystals, the superconducting coil and return yoke, and
the first two layers of the muon detector. The tracks in the figure show how
GEANT propagates particles, including secondary particles from interactions with
the detector material; this is especially apparent in the calorimeter showers. The
tracks shown are, in clockwise order, an electron, a =, a photon, and a w+. This
“event” was generated for display purposes; in general, GEANT takes input from QQ,
a program which simulates the creation and decay of B-pairs in the beam pipe.
GEANT starts with the daughters of the B’s and propagates them outward from
the interaction point, allowing the particles to decay further. GEANT records how
much energy was deposited in each detector component, and CLEQG translates the
energy into a raw signal exactly like the raw signals read out of CLEO II, writing
the signals to an output file. This output file is then input to pass2, which outputs

a ROAR file that can be analyzed like a data file.
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Figure 3.13: Simulated particle tracks.



CHAPTER 4

MEASUREMENT

In this chapter we describe how we measure |V;| from our data sample. Section 4.1
describes our data sample. Section 4.2 describes several Monte Carlo samples that
we use in our analysis. Section 4.3 gives the details of how we reconstruct D**/v
candidates. Section 4.4 describes the likelihood fit that we use to determine the

D**v yields in bins of w. Finally, Section 4.5 describes how we extract |V,| from

the D*90v yields.

4.1 Data Sample

We do our analysis with 3.04 million BB events (2.9fb™") produced on the Y(45)
resonance and with 1.5fb™ ! of off-resonance data. We use the 4s2 through 4sG
“recompress” data sets, excluding the runs between 59630 and 61778 (part of 4s9
and all of 4sA) because of poor calibration of the CC at low shower energies. The

data sets are summarized in Table 4.1.

61
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Table 4.1: The CLEO II data sets.

Data Set | Start Date | End Date | Lrotar (pb™") | Lon/Loss | Nps
42| 11/11/90 | 6/4/91 672.0 2.36 | 503790
453 9/18/91 | 2/17/92 630.2 221 | 487290
454 4/10/92 | 5/26/92 317.5 212 | 231262
455 7/9/92 | 10/5/92 |  342.7 2.06 | 230005
456 11/3/92 | 1/19/93 316.5 273 | 247102
457 | 3/16/93 | 7/6/93 461.3 162 | 314084
48 8/1/93 | 9/27/93 | 2744 201 | 202458
459 | 11/22/93 | 1/10/94 340.1 197 | 249463
4sA | 1/20/94 | 2/28/94 190.8 254 | 143563
4sB | 3/19/94 | 5/16/94 |  140.9 132 | 86569
4sC | 6/16/94 | 8/15/94 141.5 3.21 | 114491
4sD | 9/15/94 | 10/9/94 98.0 105 | 53218
4sE | 10/9/94 | 11/1/94 128.8 116 | 66334
4sF | 11/3/94 | 11/28/94 | 145.9 134 | 90632
4G | 1/19/95 | 4/9/95 456.6 152 | 302289
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4.2  Simulated Events

The analysis uses events from a GEANT-based [28] Monte Carlo simulation (de-
scribed in Section 3.6) to provide information on D*/v events and some back-
grounds. We use three samples, which are described below and are known as
generic Monte Carlo, D*/v Monte Carlo, and D* X /v Monte Carlo.

We use a sample of 15.5 million “generic” BB Monte Carlo events to simulate
some backgrounds and for systematic error studies. This sample is meant to simu-
late the CLEO II BB data. The name “generic” refers to the fact that the B’s are
allowed to decay through any known decay mode. These decays are cataloged in
the file /cleo/clib/runfil/decay.dec. The branching fractions of the various
modes are set using measurements from the data. Of particular importance to this
analysis, the semileptonic branching fractions have been adjusted so that the mo-
mentum spectrum of leptons from B — X .fv decays matches the same distribution
measured from the data. This is accomplished by moving the separate branching
fractions up and down; since different modes have different lepton spectra due to
mass and spin differences in the X, adjusting the branching fractions relative to
one another also adjusts the lepton momentum distribution.

Our D*/v Monte Carlo sample consists of 4.75x10° BB events in which we have
required one of the B’s to decay through the series of decays that we reconstruct (
B — Dl , D** — D0 etc.). The other B is allowed to decay generically. In the
simulation, D*/v decays are modeled using a linear form factor (for h, (w)) with

the parameters measured in a previous CLEO analysis [12]. We simulate other
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form factors by re-weighting this sample. The EvtGen package accounts for the
angular correlations between the decay products (which is necessary because some
decay products have non-zero spin). Simulation of final-state radiation, which
occurs when the lepton in the B — D*/v decay radiates a photon, is provided by
PHOTOS [29].

We generate a sample of 40,000 D* X /v decays for our D*X /v Monte Carlo,
where D* X (v refers to B semileptonic decays containing D resonances higher than
D* and the decay B — D*nfv. Non-resonant B — D*rnlv decays are modeled
using the results of Goity and Roberts [30], and B — D**{v decays are modeled
using the ISGW2 [31] form factors. The specific modes and branching fractions

used are listed in Table 4.2.

4.3 Event Reconstruction

To suppress non-BB events, we require the ratio of Fox-Wolfram moments H,/H,
[18] to be less than 0.4. We calculate this ratio using only Trackman-approved
(TMNG) tracks with energy less than the beam energy and showers that do not have
a type 1 or 2 track match. We also require KLASGL = 10, which is an event category

defined by the following conditions:

e The event must have at least three charged tracks, one of which has to

extrapolate back to within 5 mm of the interaction point;

e The sum of the energy measured in the tracking chambers and the calorimeter

must be at least 20% of the center-of-mass energy of the event;
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Table 4.2: Modes and branching fractions used for B — D* X fv simulation.

Primary Decay

Secondary Decay

B(B~ — D1~ 1,) = 0.23%

B(B~ — D% (~1,) = 0.11%

B(D:® — D70 = 33.0%

B(D? — D*x%) = 33.0%

B(B~ — D (~1,) = 0.33%

B(D3® — D70 = 10.4%

(
(
B(B~ — DY ¢ ) = 0.66%
(
(

B(B~ — D" (1) = 0.02%

B(D" — D% = 33.7%

B(B~ — D™ (1) = 0.22%

B(D™ — D*070) = 12.2%

B D*IO D*O,Y) — 01%
B(D* — Dt 1) = 0.6%

(
(DY
(
(
B(D" — D*0v) = 0.4%
(
(
(
( D7) = 0.3%

B D*IO

B(B® — D*r*(=5,) = 0.47%

=

B® = DIt 6=i) = 0.11%

B(Dit — D0rt) = 67.0%

=

B(D} — D*7 %) = 67.0%

=

B® — D3t 0—1,) = 0.33%

B(Dit — DOrt) = 20.8%

B(B® = D't (~17,) = 0.02%

(
(
(B® — Df =) = 0.66%
(
(
(B°

B — D*'t E_ﬂg) =0.22%

B(D*+ —

(

(Df

(

B(D* — D*x+) = 33.1%

( D 7t) = 24.9%

B(D"+ — Di%x+) = 0.3%
(

B(D*+ — Dt %) = 0.7%
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e [f there are three tracks, the sum of the energy measured in the calorimeter

must be at least 15% of the center-of-mass energy;

e [f there are three or four tracks, the sum of the energy measured in the
calorimeter must be less than 65% of the center-of-mass energy (this excludes

radiative Bhabha events);

e The vertex of the event must fall within 2 ¢m of the interaction point in the

r — ¢ plane and 5 cm in the z direction.

We reconstruct D*?’s by looking for the daughter particles from the decays
D* — D°%7% D° — K-7*, and 7° — ~v (charge-conjugate decays are implied
throughout this work). We first combine oppositely-charged kaon and pion can-
didates in hadronic events to form D° candidates. We use the Kalman kaon and
pion hypothesis tracks for the kaon and pion candidate, respectively. We require
the tracks to be Trackman (TMNG) approved and to have a KINCD value of 0 or
—2, which requires good z information. We also require DBKL, the distance of
closest approach to the interaction point in the » — ¢ plane, to be less than 0.005
m, and ZOKL, the distance of closest approach in z, to be less than 0.05 m. We
require |cosf| < 0.9 for kaon and pion candidates. Tracks with cos @ larger than
this pass through the endplate of the VD, which contains a significant amount
of material. This material is not modeled well by our simulation, so we exclude
those tracks from consideration. We veto on Z_ESCAPE tracks, in which the z in-
formation comes from an assumption that the particle left the detector via the

endplate at the layer of the outermost hit, and DREDGE tracks, which are tracks
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Figure 4.1: (a) The my, distribution. All requirements are met except
|mp, — 1.865 GeV/c?| < 0.020 GeV/c?. We accept candidates that fall
between the vertical lines. (b) The Am distribution. All requirements are
met except |Am — 0.1422 GeV/c?| < 0.003 GeV/c?. We accept candidates

that fall between the vertical lines.

constructed from “leftover” hits not matched to any other track. The resolution
of the mg, peak is about 7 MeV; we accept candidates that lie in the window
M, — 1.865 GeV/c?| < 0.020 GeV/c?, roughly three times this resolution. The
my, distribution for D*/v candidates is shown in Figure 4.1(a).

The pions produced in the decay D** — D% have low momentum (< 250
MeV) because the combined mass of the D° and 7° is within 8 MeV of the mass
of the D**. We give these pions the label “slow.” We add a slow 7° to the D°
candidate to get a D** candidate. We take 7° candidates from the anlcp0.inc

common block. The momentum information for these 7%°s has been derived from
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a kinematic fit to pairs of calorimeter showers that modifies the shower parameters
to force the reconstructed 7° to have the measured 7° mass, 0.13498 GeV/c%. We
require both showers to pass a cut for E9/E25 which has been calibrated to be 99%
efficient for photons and which varies with the shower’s energy. We veto showers
with a track match of type 1 or 2, and we veto “bad” showers, which contain a
crystal which is known to be noisy. The di-photon mass m.,, is the mass calculated
from the raw shower information; the data distribution has an unexplained bump
in the region 0.142 GeV/c? < m,, < 0.150 GeV/c* which is not modeled by the
Monte Carlo (see Figure B.3). We require m. to pass 0.120 GeV/¢? < m.,, < 0.150
GeV/c? to avoid this bump. The Am = mg.r — mg, resolution for D*V’s is
about 0.9 MeV, so we require |[Am — 0.1422 GeV/c?| < 0.003 GeV/c?. The Am
distribution for D*? candidates is shown in Figure 4.1(b), and the m.,., distribution
is shown in Figure 4.2. Particles with | cosf| > 0.71 travel through the endplate of
the outermost tracking chamber before reaching the calorimeter, again traversing
a significant amount of material. We therefore require that both photons satisfy
|cos@] < 0.71 so as to remain in the part of the calorimeter with the best energy
and position resolution. Both photons must have energy greater than 30 MeV to
limit background from very soft showers. Finally, we require the momentum of the
D* candidate to be less than 4y/E% — m3. ., or about 2.5 GeV/c, where Ep is
the energy of the beam.

We next combine the D** candidate with a lepton candidate, accepting both
electrons and muons. We use the Kalman electron and muon track parameters

for electrons and muon candidates, respectively. We choose electron and muon
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Figure 4.2: The m,., distribution. All requirements are met except 0.120
GeV/c? < m., < 0.150 GeV/c?>. We accept candidates that fall between

the vertical lines.

identification parameters that are compromises between higher efficiency and a
lower chance that the particle is not a lepton. Electrons are identified using the
CEID package and requiring R2ELEC > 3. We require our candidates to lie in the
momentum range 0.8 GeV/c < p, < 2.4 GeV/¢; the lower bound is chosen to limit
the contribution from D* X /v decays, and the upper bound is the endpoint of D*/v
decays. We require muon candidates to have MUQUAL = 0 and DPTHMU > 5, which
means they must penetrate two layers of steel in the solenoid return yoke, or about
5 interaction lengths. Only muons with momenta above about 1.4 GeV/c satisfy
this requirement; we therefore demand that they lie in the momentum range 1.4
GeV/e < p, < 2.4 GeV/c. The lepton must satisfy |cosf| < 0.71 and the same

requirements on Trackman, KINCD, DBKL, ZOKL, Z_ESCAPE, and DREDGE as the tracks
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that make up the D candidates. The charge of the lepton must match the charge
of the kaon.

We use the D*® and lepton to calculate the variables cosp_p-¢ and w, which
are related to the kinematics of the B — D*/v decay. Through energy and
momentum conservation, we can relate the invariant mass of the neutrino to the

4-momenta of the B, the D*°, and the lepton:
v, = (pB — pp- — P0)*. (4.1)
Setting the neutrino mass to zero gives
0=m% +mp., —2(EgEp-¢ — Pp - Pp-t)- (4.2)

The energy and momentum of the D*-lepton pair come from our reconstruction.
The B mass has been measured by CLEO [32], and the magnitude of the B mo-
mentum has been measured for each data set (see below for details); from these
we compute Eg. We solve for the only unknown quantity, the angle between the

B meson and the D*-lepton pair:

2EgEps« —m%—m? ., (4 3)
2lpsllPp=(] ' '

coslp_p-¢p =

When calculating Ep-, we use the true D*® mass rather than the reconstructed
M t0 avoid a bias in the cos #z_ p«, distribution of the high Am sideband, which
we use to determine a background as described in Section 4.4.1. For off-resonance
events, we compute cos fg_p+, using the average B momentum and scaling the D*

and lepton 4-momenta by the ratio E,,/E,f.
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We derive the momentum of the B from measurements of the average B® and
BT momenta for each data set [33]. The momentum of B’s reconstructed in generic
Monte Carlo differs from the true B momentum by 0.00124+0.0006 GeV /¢ on av-
erage, so we first correct the data momenta by this amount. The average over all
data sets of the BY and B* momenta differ by 0.0083+0.0022 GeV /¢, which is
expected since the B® and BT have slightly different masses. We combine the B°
and BT measurements in each data set to improve the statistical error, adding the
the measured difference to the B® momenta. There are errors on the average B~
momentum from half of the error on the mean B* — B® momentum difference (1.1
MeV/c), the statistical error on the correction to the BT momentum (0.6 MeV/c)
and the statistical error on the average momentum from the statistical error on
each dataset measurement (0.9 MeV/¢); added in quadrature, these errors give a
total error of 1.6 MeV /c. The average BT momentum for each dataset derived from
this method is listed in Table 4.3. We also use the measured B°-B™ momentum
difference to correct the value of the B mass measured in [32] to mp+ = 5278.9+0.6
MeV/c?.

While we use cos 0 p+¢ to distinguish true B — D*{¥ decays from background,
it is also necessary for calculating w. Without knowing the flight direction of the B,
we cannot calculate the true value of w, but cosfp_p«, gives us some information
on the B direction relative to the D*-lepton pair. We find the B momentum for

each of the extreme cases as follows, with Y standing for the D*-lepton pair:
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Table 4.3: The average B™ momentum for each data set. The errors are

uncorrelated between data sets.

Data Set | BT Momentum (GeV/c)
4s2 0.3003=£0.0028
4s3 0.3348+0.0023
4s4 0.3397£0.0035
4s5 0.3069£0.0038
4s6 0.33484+0.0031
4s7 0.3214+0.0029
4s8 0.308440.0045
4s9 0.311940.0041
4sA 0.3043£0.0056
4sB 0.3540£0.0058
4sC 0.2962=+0.0061
4sD 0.2854+0.0122
4sE 0.302740.0089
4sF 0.2985£0.0069
4sG 0.2928+0.0036
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e We calculate p';, which gives the direction perpendicular to the D*-lepton

combination and in the plane defined by the D* and lepton momenta:
PL = pe(Py - Pp+) — Do (Py - Pe). (4.4)

e We find two momentum vectors for the B, one in which pp points maximally
in the direction of p, , and one in which p points maximally in the direction

opposite of p:
P = || cos Opy Py + |Pa|sinbpypu, (4.5)

where |pp| is the measured B momentum.

e We calculate ¢2, which is the invariant mass of the virtual W, for each pp
from the B and D* 4-momenta:

¢* = p¥. = (0, +p0)* = (pp — pp-)~. (4.6)

From that we calculate w using Equation 2.9.

e We average the two values of w.

We divide the data into ten equal bins of w from 1.0 to 1.5, but not all of
our data sits within these limits. The w endpoint for B — D*/v decays is 1.504,
and some events are also reconstructed outside the physics limits due to detector
resolution. We assign events with w < 1 to the first bin and events with w > 1.5
to the last bin. In the high w bins, we suppress background with minor loss of
signal efficiency by restricting the cosine of the angle between the D* and the
lepton (cosfp«_,). The distribution of cos@p«_, versus w is shown in Figure 4.3

for B —D*{v decays. The accepted angles are listed in Table 4.4.
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Figure 4.3: The distribution of w versus cos @p-_, for simulated D*°/v de-
cays. We accept candidates that fall below and to the left of the stairstep

line.

Table 4.4: The accepted regions of the cosine of the angle between the D*

and the lepton in each w bin.

w Bin Number | w Limits | Accepted cosfp-_p
1-5 < 1.25 -1.0 to 1.00
6 1.25-1.30 -1.0 to 0.25
7 1.30-1.35 -1.0 to 0.00
8 1.35-1.40 -1.0 to -0.25
9 1.40-1.45 -1.0 to -0.50
10 > 1.45 -1.0 to -0.75
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4.4 Extracting the D*fv Yields

Our B — D*{v candidates contain D*/v, D*X /v, and various backgrounds. We
separate out the D*/rv component using a binned maximum likelihood fit to the
cos fp_p-¢ distribution. In this fit, the normalizations of the various background
distributions are fixed and we allow the normalizations of the D*/v and the D* X (v
events to float. While we allow the overall normalization of D*X /v decays to
vary, the relative branching fraction of each D* X /v mode remains fixed. Unlike
many likelihood fits, our likelihood fit includes the statistical uncertainties on the
background, D*°/v, and D*X /v cosfp_p-¢ distributions along with the data un-
certainties [34].

By fitting we allow the data to set the normalization of the D* X (v events. As
shown in Figure 4.4, B — D*{v decays are concentrated in the physical region,
—1 < cosfp_p-y < 1, while the larger missing mass of the D**/v decays allows
them to populate cosfp_p-; < —1. The normalization of the D* X /v contribution
is therefore primarily determined by the data in the cos #z_p«, region less than -1.
For each bin, we fit in a cos fp_p-, region chosen to include approximately 95% of
the D*X /v events in that bin. These regions are listed in Table 4.5.

Our D*%¢v Monte Carlo includes B —D*/v decays with final-state radiation.
Since we do not reconstruct the emitted photon in these events, we miss some of the

energy, which makes the reconstructed cos g p-y lower than the actual cos g p+.
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Figure 4.4: The cosfp_p-¢ distributions for D*/v and D*X /v simulated
events. The D* X /v decays are shown at about twice their relative branch-
ing fraction in the generic Monte Carlo, since at the correct normalization

the cos 0p_p-¢ distribution is difficult to see.
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Figure 4.5: The left plot shows the cos #z_p-, distribution for D*°¢v Monte
Carlo where either there is no final state radiation or the emitted photon
has an energy of less than 100 MeV. The right plot shows the cosfpg_p+s
distribution for D*°/v Monte Carlo where final state radiation has occurred

and the emitted photon has an energy greater than 100 MeV.

This effect increases the low-side tail of the D*%¢v cos @5_p-, distribution.! Since
the simulation of final-state radiation is only known to be correct to about 30% [29],
we want to limit our reliance on the simulation of this tail. As shown in Figure 4.5,
the cosfOp_p-; tail comes primarily from events with final-state radiation where
the emitted photon has an energy greater than 100 MeV. We choose to treat such
events as background by including them in the cosfp_p+, fit but not including

them in our D**fv yield.

IThere is a low-side tail on the D**¢v cos g p-; distribution even without final-
state radiation; this tail is primarily due to the electron losing energy in interactions
with the detector material.
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Table 4.5: The regions of cos fp_p«y over which we perform a binned max-

imum likelihood fit.

w Bin Number | w Limits | cosfp_p+; Fit Region
1-6 < 1.30 -8.0 to 1.5
7 1.30-1.35 -6.0 to 1.5
8 1.35-1.40 -4.0 to 1.5
9 1.40-1.45 -3.0 to 1.5
10 > 1.45 -2.0to 1.5

Section 4.4.1 describes how we determine the cos @g_p-, distributions and nor-
malizations for the backgrounds, and Section 4.4.2 describes how we determine the
cos Op_p+¢ distributions for D*/v and D*X/v. The results of the cos0g_p«, fits

are given in Section 4.4.3.

4.4.1 Backgrounds

There are several sources of decays other than B — D*/v and B — D*X /v that
fulfill our requirements. We divide these backgrounds into five classes: continuum,
combinatoric, uncorrelated, correlated and fake lepton. The contribution of each
background in the range —1 < cosfp p-y < 1 (the “signal region”) is listed in

Table 4.6. We discuss each background and how we determine it below.
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Table 4.6: The contribution of each background in percent in the range

—1 < cosfp _p-¢ < 1 (the “signal region”) for D**/v candidates.

Background | Contribution (%)
Continuum 2.8
Combinatoric 37.8
Uncorrelated 4.7
Correlated 0.1

Fake Lepton 0.2

Continuum Background

Continuum events are subtracted using off-resonance data, with cosfp_p-y recon-
structed as discussed in Section 4.3. We normalize the continuum background
using the ratio of on-resonance to off-resonance luminosities, corrected for the
small difference in the cross-sections at the two center-of-mass energies. For our

data sample, this normalization is 1.92.

Combinatoric Background

Combinatoric background events are those in which one or more of the particles in
the D** candidate does not come from a true D*? decay. This is a large background
for D*°¢v decays primarily because there are many low-energy background showers
in the calorimeter that can combine to give a 7° that meets all of our requirements.

In addition, we do not have the benefit of a charge correlation between the 7° and
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other particles in the decay. Random combinations of K~ and 7t candidates also
contribute to this background. Correctly reconstructed D*%’s peak at mp«0o—mpo =
0.1422 GeV/c?, while combinatoric background has a smooth distribution that falls
over a broad range of Am. The lower and upper limits of w for each bin restrict
the range of the D** energy in each bin, so in each bin the average value of the
D*® momentum decreases slightly as Am increases, which in turn changes the
cos Op_p-p distribution. We take the cosfp_p-, distribution of D*® candidates
from the high Am sideband region 0.147 GeV/c? < Am < 0.165 GeV/c? to be
representative of the combinatoric background in the Am signal region. We choose
this region because it is large enough to give us a good sample of these events but
keeps the mean value of the momentum as close as possible to that of the Am
signal region.

The normalization of the Am sideband events comes from fits to the Am dis-
tributions in each bin of w. We fit each Am distribution with a functional form for
the background and a histogram of the Am lineshape for correctly reconstructed
D*%’s. We assume a background distribution of the form n(Am —m o )®ebAm=mz0)
and vary n, a, b, and the normalization of the signal peak. After the fit, we inte-
grate the background function in both the Am signal and sideband regions. We
take the ratio of the area in the Am signal region to the Am sideband region as
the normalization for the Am sideband cos 0p_p-, distribution.

The lineshape for the Am peak is taken from tagged D*°/v Monte Carlo and
includes some D* candidates that are not quite correctly reconstructed. D**’s

reconstructed with all the correct particles except one wrong photon preferentially
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populate the Am signal region, which means that the Am sideband does not fully
account for this type of misreconstruction. We choose to treat the excess as part
of our D*%/v signal, and we include these events in the D**/v lineshape so they
do not bias the Am fit. Also, the width of the peak of the Am distribution
from signal Monte Carlo is smaller than the width of the peak in the data. We
have determined that the smaller width is due to a low estimate of the noise on
the calorimeter crystals in the Monte Carlo and non-linearity in the response of
the crystals at low shower energies that is not modeled by the Monte Carlo (see
Appendix B for details). Correcting these faults causes the width of the Monte
Carlo Am peak to increase by 0.6140.10 MeV /c? in quadrature; it was impractical
to regenerate our Monte Carlo with these improvements, so we instead add this
smearing to our Am lineshapes. A fit is shown for a representative w bin in
Figure 4.6. The normalizations are listed in Table 4.7.

A small component of the combinatoric background is not addressed using
our method for background subtraction. This contribution comes from correctly
reconstructed D° meson decays in which the D is truly a daughter of a D** and the
slow pion is properly found, but the D° did not decay in the mode D° — K 7.
An example of such a mode is D° — K~ K*. By misassigning the K* the mass
of a m, the energy of the D° candidate is underestimated; mg,= E? — p? is
then lower than mpo. Assigning the wrong mass smears mg, around the mean
(because mg, depends on the momenta of the two particles), and sometimes these
events end up in our mg, signal region. In the case of three-body decays like

D° — K u'tv,, the p is assigned too much mass, making the mean mp, higher,
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Figure 4.6: A fit to the Am distribution of events in the third w bin. The

data (solid squares) are superimposed with the combinatoric background
distribution (dashed curve) and the sum of the background and the D*

signal (solid histogram).
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Table 4.7: The Am sideband normalizations for each w bin.

w Bin Number

Normalization

1

10

0.27314+0.0161
0.29414+0.0196
0.2394£0.0199
0.2567+0.0261
0.2360+0.0257
0.2277£0.0295
0.259140.0413
0.194140.0455
0.2481£0.0555

0.265610.0628
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but we also miss the energy of the v,, bringing the mean mg, back in range of our
signal region.

We determine the contribution of this component using the generic Monte
Carlo. The D° modes that contribute are listed in Table 4.8. The first column
gives the modes. The second column in the table shows the yield for each mode
in the cosfp p-y signal region from the generic Monte Carlo; the uncertainties
are statistical only. The third column gives the branching fraction that was used
in generating the generic Monte Carlo, and the fourth column gives the measured
branching fraction and uncertainties for each mode. We normalize the contribution
from each mode using the ratio of the measured branching fraction to the branching
fraction used in the Monte Carlo times the ratio of the number of BB events in
the data and generic Monte Carlo (0.196). The last column shows the scaled yield
from each mode, and the uncertainties include both the statistical uncertainty and
the uncertainty on the measured branching fraction. The total predicted yield
in the data from this background is 5.2+2.5; this is 0.5+0.3% of the B — D*{p
yield we find with our cosfp_p+, fits. Since the branching fraction of the main
contributing mode (D — pm) is unmeasured, we include this contribution only as

a systematic uncertainty.

Uncorrelated Background

Uncorrelated background arises when the D*® and lepton come from the decays of
different B mesons. It is a relatively small background but has many components.

B decays produce D*?’s through semileptonic modes as well as through hadronic



85

CCFC G CFGT [e107,
¢OF L0 ¢ 0T X (90F L¢) ¢ 0T X0 1¥F¢ Tag_ v q
TOFT0 %e0F LT %06°¢ IF1 L od
C0FC0 %01 F 80T %66 IF1 I3+ od
PeFECE UTTFIT %09°T PFLT gL oLyl < o
Z0FCT0 %LT'0 F TE'E %vLE IF1 a3 o
COFT0 |01 Xx(600FcCT) ¢—0T X 0G°T TF1 _LL o
COFCO0 |00 X(9T0FCTH) ¢ 0T X PEF 1¥F¢ MM d

PPIX poredg | [1] "A'd pamsed]y | “J'g O[I®)) 9O\ | POLX O[IR)) dIUOIN PO\

AL 4— (] JO UOIIORIJ SUMDURIY PIINSLIUL 9} OSTL oM
‘AL <— (7 opouwr oY} 10 "L _d 4= (7 10 _L . d 4 (] IOYHD WOIJ WO }S9I OY} PUR ‘OPOU JURUOSIIUOU
O} WOIJ SAUI0D SHUSAD PUNOISIDRY Y JO OUO SARIP (L0 <— (7 PUR ‘| L_0 < (7 ‘_L 0 < (7 yURUOSDI
pue sfedop (L L, % 4— (] JURUOSII-UOU [0 SOPNIUI AI0803Rd (LYY <— (T OYJ, "PUR|OpPIS Wy 9}

Aq pejoeiqus AUy 10U oIv JRYY L3 4 (] URY} YO (7 OU} JO SOPOW ARIID POIPNIS :§F O[qR],



86

modes. Semileptonic B decays produce leptons, and daughters of the B can also
produce leptons. Combinations of various subsets of these D**’s and leptons satisfy
our requirement on the charge correlation of the K and lepton. Mixing of a neutral
B pair introduces further D**-lepton pairs with the correct charge correlation.
To determine this background, we use the cosfp_p-, distribution from generic
Monte Carlo for each combination and normalize the contributions according to
the measured production rates for each D*° and lepton component.

We classify D*’s into two categories: upper-vertex, in which the D* contains
the ¢ in the decay chain b — c¢s, and lower-vertex, in which the D*’s ¢ quark is
of the opposite sign of its parent b quark. We also classify the leptons as primary
leptons, which come from semileptonic B decays, or secondary leptons, in which
the lepton is from the chain b — ¢ — sfv.

We divide the uncorrelated background events into five categories as follows
(where the first number gives the category designation and the second number

gives the percentage of uncorrelated background consisting of that category):

e (1) a lower-vertex D* combined with a secondary lepton in an event with
an unmixed BB pair (because primary leptons from the other B have the

wrong charge correlation) (26.6%);

e (2) an upper-vertex D** combined with a primary lepton in an event with

an unmixed BB pair (17.3%);
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e (3) a lower-vertex D** in which the K and 7 have been exchanged (swapped)

and paired with a primary lepton in an event with an unmixed BB pair

(42.0%);

e (4) alower-vertex D** from a B° or B® combined with a primary lepton from

the other B, which has mixed (9.3%);

e (5) miscellaneous combinations, of which no one sub-category makes up more

than 2% (4.7%).

We further divide categories (1-3) into D**-lepton pairs from BTB~ events and
BB events. We obtain the cos f5_p-, distributions for each category for the Am
signal and sideband regions from generic Monte Carlo. With tagging, we require
the K and 7 candidates to be primary or secondary descendents of a D, but we

0 showers. This allows some combinatoric back-

make no requirements on the 7
ground into the cosfp p-, distributions, which we subtract from the cosfg_p-p
distribution using the Am sideband cosfp_p+, distribution normalized with the
same normalizations as the data combinatoric background. We also require that
the D and lepton come from different B’s.

With the combinatoric background subtracted, we normalize each category
according to its components. To obtain the normalizations of the B decays con-
taining D**’s, we compare the yield of inclusive D** decays in data and generic
Monte Carlo events. Since the cosfp_p+, distribution depends somewhat on the

momentum distribution of the D*°, we normalize the D*° sources separately in

low (pp- < 1.3 GeV/¢) and high (pp- > 1.3 GeV/c) momentum bins. We scale
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Table 4.9: B~ decays of the form D® D® K®) that contribute to the un-

correlated background. Some analogous B° decays also contribute.

Decay Branching fraction (%)
B~ — D*D*K~ 1.5
B~ — DD~ K?° 1.5
B~ = D*DK~ 0.5
B~ = DD K" 0.5
B~ — D'D*K~ 0.5
B~ — DD K*~ 0.3
B~ — DD K*0 0.3
B~ — D*DYK*~ 0.5
B~ = DD~ K*° 0.5
B~ — D'D*K*~ 0.25

the simulated events to match the data, assuming that the upper-vertex D**’s are
correctly modeled and attributing the difference to the lower-vertex D*?’s. We will
vary this assumption later to assess the systematic uncertainty. The upper-vertex
decays that contribute to this background are listed in Table 4.9. The normaliza-
tions for lower-vertex D**’s are listed in Table 4.10.

We find the normalization of D*’s reconstructed with exchanged K’s and 7’s by
studying inclusive D** decays with the charge correlation of the slow pion reversed.
We determine the ratio of exchanged to unexchanged yields for both data and

simulated D*™’s in the same momentum bins as above. We use the ratio of these
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Table 4.10: The normalizations for D*? elements of the uncorrelated back-

ground.
Rate pp- < 1.3 GeV/c | pp- > 1.3 GeV/c
lower-vertex 0.812+0.055 0.963+0.048
K — 7 exchange 0.94+0.10 1.19£0.12

rates to normalize the contribution from D*’s reconstructed with exchanged K and
7 particles. The normalizations are listed in Table 4.10. While the normalizations
are consistent with 1, which we expect since this effect is primarily kinematic and
therefore easy to simulate, we use the measured rates to be conservative.

The primary lepton decay rate in the generic Monte Carlo for leptons with
momenta between 0.8 and 2.4 GeV/c is 9.18+0.07% and is consistent with its
measured value of 8.99 + 0.42% [35], where the error includes statistical and sys-
tematic errors; since this measurement was made at CLEO, we include only the
systematic errors that are uncorrelated with our analysis. The secondary lepton
rate for leptons with momenta between 0.8 and 2.4 GeV/c in the generic Monte
Carlo is 1.83%; we scale the secondary lepton contributions by 0.836 to make the
Monte Carlo consistent with the measured value of 1.53 + 0.12% [35]. We adjust
X4, the B®— B mixing rate, to its measured value of 0.1744-0.009 [1] by scaling the
unmixed BYB° components by 0.993 (in categories 1-3) and the mixed components
(category 4) by 1.035.

Finally, we scale each category by the ratio of the number of BB events in the

data to the generic Monte Carlo, (3.0 x 10°)/(15.5 x 10°) = 0.196. Table 4.11
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shows each category and the rates that we use to normalize them; it also gives the

normalization for each category.

Correlated Background

Correlated background events are those in which the D*° and lepton are daughters
of the same B, but the decay was not B — D*/v or B — D*X/{v. In order to
have the correct charge correlation with the D*°, the lepton must come from a
secondary decay. The most common sources are B — D*7rv followed by leptonic
7 decay, and B — D*D{ followed by semileptonic decay of the D*). We get the
cos g p~¢ distribution for this background from generic Monte Carlo. The modes

and branching fractions are listed in Table 4.12.

Fake Lepton Background

Fake lepton background arises when a hadron is misidentified as a lepton and
is then used in our reconstruction. This background was measured by carrying
out our analysis on the same data sample and choosing hadrons to be the lepton
candidate instead of identified leptons. We normalize the resulting cosfg_p+, dis-
tributions using measured rates of hadrons faking electrons or muons. Tim Riehle
has measured the momentum-dependent fake probability [37] for kinematically-
identified samples of hadrons in the data: pions are identified using K9 — 77~
decays, kaons using D*t — D%t — K~=r*r*, and protons from A — pr=. We

convolute the fake probabilities with the momentum spectrum of hadronic tracks
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Table 4.12: Modes that contribute to the correlated background, and their

branching fractions.

Mode decay.dec Branching Fraction (%)
B — DX 7v 1.65
B — D,D*° 1.39
B — DD 3.08
B — D*DWKX 5.6
B — D*D* 3.4
B — D 1 — pv 0.47
B — D* plus v conversion —

in events with an identified D** to obtain an average fake rate of 0.035% for a

hadronic track to fake an electron and 0.68% to fake a muon.

4.4.2 D*fv and D*X /v cos8p_p-; distributions

The cos 0g_ p«, distributions of D*fv and D* X ¢v events are obtained from the D*{v
and D* X /v Monte Carlo samples. Since the other B in the event also decays, the
cos fp_p+¢ distributions can contain the same backgrounds listed above.

The largest background contribution to the signal cosfg_p+«, distributions
comes from the combinatoric background. We have found that the normaliza-
tions of the Am sideband required to remove this background from the simulated

events are consistent with those we use to remove it from data events. The nor-
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malizations obtained from Am fits of the data can fluctuate statistically around
their true values, and these fluctuations affect the amount of this background that
we assign. In order to keep the amount of this background consistent between data
and simulated events, we use the normalizations obtained with the data and the
cos Bp_p-¢ distributions from the Am sideband of the simulated events to remove
the combinatoric background from the cosfp_p+, distributions of all simulated
events.

We veto the small contribution of all other backgrounds to the D*fv and D* X v

cos p_p+¢ distributions using generator-level information.

4.4.3 coslp_p+ fit results

With the cos@p_p-, distributions of D**/v, D*X /v, and the backgrounds, we fit
the data in bins of w. The results of the cosfp_p«, fits are shown for each w bin
in Figures 4.7 through 4.11. We use the normalization of the D**/v and D*X /v
components and the area of the respective cosfg_p+, distributions to extract the
D*lv and D*X/v yields. The D*fv and D*X /v yields are given in Table 4.13.
The fits are good in terms of both the x? (calculated after the likelihood fit) and

the agreement of the data and fit distributions outside the fit regions.

Cross-checks of the cosfp_p+, Fits

In order to check that the D* X /v model in our Monte Carlo is consistent with

the data, we plot the D*X /v yield from the cosfp_pp fits over the D* X /v yield
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Table 4.13: The results of the fit to the cosfz_p+, distribution in each w

bin. The fits are likelihood fits; the quoted x?’s are calculated from the

results of the fit.

w Range | D**v Yield | D*X /v Yield | x?/dof
1.00-1.05| 69.7 £ 19.6 -20.6£19.2 17.3/17
1.05-1.10 | 122.8 £ 20.7 -1.0£22.0 13.4/17
1.10- 1.15 | 110.6 £ 18.8 23.31+18.2 23.7/17
1.15-1.20 | 127.5 £ 18.7 4.5+13.3 17.6/17
1.20 - 1.25 | 123.4 £ 17.1 10.6+£14.6 12.8/17
1.25-1.30 | 102.6 £ 16.2 14.64+17.9 13.5/17
1.30 - 1.35 | 99.8 £ 15.1 -14.0+13.3 14.8/13
1.35-1.40 | 113.8 £ 15.6 -4.0£13.2 11.3/9
1.40-1.45] 62.0 £ 15.2 -0.8+14.7 6.0/7

1.45-151| 21.4 £+ 164 17.6+14.6 1.6/5
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Figure 4.12: The points show the D*X/v yield in the data from the

cos Op_p-¢ fits, and the line shows the D*X /v distribution in w from the

Monte Carlo. The plots have been normalized to equal area.

predicted by the Monte Carlo in bins of w. This plot is shown in Figure 4.12. The
agreement between the data and Monte Carlo distributions is good.

We also plot the results of the cosfp_p- fits in terms of the D** energy, the
lepton momentum, and the angle between the lepton momentum in the virtual W's
rest frame and the flight direction of the virtual W in the B’s rest frame (cos 6y).
These distributions are related to the B — D*/v model used in the fits. Since
we do not do our fit with these variables, agreement between the fit results and
the data is a good indication that our fit correctly determines the D*/v yield. For
each variable, we plot the sum of the results of the w bin fits in the signal region
and the cosfp_p-, range outside of the signal region but included in the fit. The

D*0 energy plots are shown in Figure 4.13, the lepton momentum plots are shown
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Figure 4.13: The sum of the results of the cos0p_p- fits in D** energy in
(a) the signal region and (b) the cosfp_p- region outside the signal region

but within the fit range.

in Figure 4.14, and the cos#, plots are shown in Figure 4.15. The agreement of

the fit distribution with the data distribution is good in all plots.

4.5 Extracting |V

The basics of our measurement of |V,,| were discussed in Section 2.2. To review,
we measure dI'/dw (Equation 2.10) in the data and then fit the distribution using
the parameterizations of hy, (w), R;(w), and Re(w) given in equations 2.20, 2.21,
and 2.22, keeping V| F(1) and p?, as free parameters.

CLEO IT is not 100% efficient at reconstructing B — D*( decays, and there is
some measurement error in the decays that we do reconstruct, leading to smearing

in the reconstructed value of w. This effect is illustrated in Figure 4.16. Some
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Figure 4.14: The sum of the results of the cosfz_p+, fits in lepton momen-
tum in (a) the signal region and (b) the cos @p_p+, region outside the signal

region but within the fit range.

of this smearing comes from the inherent resolution of the detector, and some
comes from our assumptions about the direction of the B when we calculate w.
We include an efficiency matrix in our fit, €;;, that includes our estimate of the
efficiency for reconstructing B — D*/v events and the smearing on w.

The efficiency matrix € is calculated using D*fv signal Monte Carlo. A matrix
element ¢;; represents the efficiency for reconstructing a D*{v event in the jth w
bin when its true w falls in the 7th w bin. To be consistent with our method for
finding the cos g _p-, distribution of D*/v events, described in Section 4.4.2, we
subtract the combinatoric background in the simulated events using the Am side-
band and the data normalizations. We veto all other backgrounds using generator-

level knowledge of the simulated events. A single element of the efficiency matrix
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Figure 4.15: The sum of the results of the cosfp p-y fits in cosfy in (a)
the signal region and (b) the cosfp_p+, region outside the signal region
but within the fit range. In the limit that the masses of the lepton and
anti-neutrino are zero, the weak decay requires them to have left-handed
and right-handed helicity, respectively. cos@, = 1 is favored in B — D*{v
decays because the spin of the D* allows the W to have left-handed helicity

required by its decay to a lepton-anti-neutrino pair.
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is thus calculated using

e = (57— n;S5%) /S (4.7)

where S{* and S are the number of non-vetoed candidates reconstructed in the
ith w bin in the Am signal and sideband regions, respectively, n; is the normaliza-
tion of the Am sideband region (from the data Am fits), and S; is the number of
D*(v events generated in the jth w bin. When finding S;* and Sside we include
only D*%¢v decays where either there is no final state radiation or where the emit-
ted photon has an energy less than 100 MeV. We correct the efficiency by -1.26%
to account for final-state radiation in the D® — K~7* decay; this efficiency cor-
rection in determined with PHOTOS and is consistent with the treatment of final-
state radiation in the two measurements that we average to get B(D° — K ).
The efficiency is corrected by generated w bin for slow-7° efficiency differences
between data and Monte Carlo BB events. The event environment, defined as
the number and distribution of nearby showers and calorimeter hits, is known to
differ between data and Monte Carlo BB events. This environment affects the
efficiency by providing showers that can overlap with the showers of the daughter
photons and change their energy and shape. We measure this efficiency difference
by “embedding” (inserting) Monte Carlo-generated slow-7° showers with kinematic
distributions appropriate to D*/v decay into samples of hadronic events selected
from our data and simulated BB events. For the 7°’s embedded in the data events,
we adjust the calorimeter noise and add a smearing to the crystal gains so that
our simulation reproduces the distributions of E9/E25 and m.,,, for slow 7°’s. The

efficiency is measured in bins of w using our analysis requirements for the recon-
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Table 4.14: The corrections applied to the efficiency matrix, in percent.

w (generated) | Efficiency Correction (%)
1.00-1.05 -5.3
1.05-1.10 -5.1
1.10-1.15 -3.7
1.15-1.20 2.2
1.20-1.25 1.3
1.25-1.30 6.2
1.30-1.35 1.4
1.35-1.40 2.3
1.40-1.45 -4.1
1.45-1.51 -5.4

all -0.6

structed slow pion combined with generated quantities for the remainder of the
D*%0v decay. In this way we correctly weight the efficiency for kinematic effects
of our cuts. We measure the efficiency difference for these embedded showers and
apply these differences as efficiency corrections. This study is described in greater
detail in Appendix B. The efficiency corrections are given in Table 4.14, and the
efficiency matrix is given in Table 4.15.

Our fit minimizes
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Table 4.15: The efficiency matrix used in the |V, fit. The i index gives
the generated w bin, and the j index gives the reconstructed w bin. The
efficiencies are given in percent. A Am sideband subtraction is performed
using the normalizations from the data Am fits; this is the source of the

scatter in the diagonal elements.

1 ] 11.15 | 1.55 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

21 0.71 1936 |1.58 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000.00]|0.00

3002 |1.12|8.01 | 1.67|0.00 | 0.01 | 0.00| 0.00 | 0.00 | 0.00

4 | 0.00 | 0.00|1.427.04|2.05|0.01]0.00]0.00|0.00 | 0.00

5 | 0.01 | 0.000.00|1.60|6.44|2.16 | 0.03 | 0.00 | 0.00 | 0.00

6 | 0.01 | 0.00|0.000.00 188|593/ 241 0.07|0.00 | 0.00

7 1 0.01 {0.00]0.010.010.01]|1.93]4.84|2.23|0.06] 0.00

8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 1.86 | 5.11 | 2.12 | 0.04

9 | 0.00 | 0.00{0.00]0.01}0.00|0.00|0.00]|1.89|4.80|1.34

10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.06 | 1.51 | 5.72
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where N is the D*°fv yield in the " w bin, N; is the predicted number of
decays in the j™ w bin (calculated from dI'/dw), and the matrix € accounts
for the reconstruction efficiency and the smearing in w. In addition, we take
advantage of the recent CLEO measurement of (fy_/foo)(7s-/750) [16] (where
fi— = B(Y(4s) — B*B") and fo = B(Y(4s) — B°B’)) and add a term to x>
constraining this ratio. We assume that foo =1 — f, .

Explicitly, N; is
Nj = 4f,_ Ny(as) Bp-o Bpo Bo 7 / dw L, (4.9)
wj

where 75+ is the B lifetime, Bp-o is the D*® — D7 branching fraction, Bpo is
the D° — K~7t branching fraction, B,o is the 7° — v branching fraction, and
Nr(s) is the number of T(4S5) events in the sample. The values that we use for the
B lifetimes and the various branching fractions are listed in Table 4.16. Because
the branching fraction given for D — K—7* in [1] does not take into account the
different treatment of final-state radiation by the different measurements, we take
a weighted average of two D — K 7T branching fraction from measurements
made at CLEO [38] and ALEPH [39] in which we know how final-state radiation

was treated.

4.5.1 Results
The results of the fit can be seen in Figure 4.17. We find the following:

V| F(1) = 0.0427 £ 0.0025 (4.10)

ph, = 1.544+0.18 (4.11)
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Table 4.16: The BT lifetime and the branching fractions used in the [V
fit. All values are from [1] except B(D° — K m"), which is explained in

the text.

TB+ 1.653£0.028 ps

1.5484+0.032 ps

TRo

B(D* — D7)

(61.942.9)%

B(D® — K—7*) | (3.86+0.11)%
B(r — ~vv) (98.798+0.032)%
fio = 0.51040.018 (4.12)
x> = 8.8/8dof, (4.13)

where the errors are statistical. The correlation coefficients between the results are
C(ValF(1), #3,) = 0.832, C[ValF(1), £, ) = ~0.299, and C(fA,, £y ) = 0.000,
Using |Ve|F(1) and p%, and integrating dI'/dw over all w gives T' = 0.0400 +
0.0027 ps~ !, which implies a B~ — D*"/v branching fraction of 6.62%. Using

F(1) = 0.913 4 0.042 [6], we find
V| = 0.0468 & 0.0035 (4.14)

The systematic uncertainties on these measurements are the subject of the next

chapter.
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CHAPTER 5

SYSTEMATIC UNCERTAINTIES

The biggest challenge in this analysis is to have a systematic uncertainty that is
comparable in size to our statistical uncertainty. We divide these uncertainties
into three main groups: uncertainty from our various background subtractions,
uncertainty on our efficiency for reconstructing D**/v decays, and uncertainties
that come about on our results from uncertainties on constants in our |Vy| fit
(like the D*® — D%z branching fraction). There are also uncertainties from the
parameterization of the B — D*/ form factors, the model we use to simulate
the final-state radiation, and the D* X /v decay model. Section 5.1 describes the
uncertainties from the backgrounds, Section 5.2 describes the uncertainties from
our estimate of the reconstruction efficiency, and Section 5.3 describes the uncer-
tainties from the branching fractions, lifetimes, and form factor ratios. Section 5.4
describes the remaining uncertainties. Finally, Section 5.5 summarizes all of the
sources of uncertainty and gives the totals.

Our basic method for determining most of these uncertainties is to vary the
cos p_p~¢ normalization or distribution of some component and/or the D**/v ef-
ficiency and to repeat our analysis. We then use the change in our results to

determine the uncertainty. In the following, we will frequently give the change in

111
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our results when we vary a parameter with a Gaussian uncertainty in only one
direction. Experience has shown us that most parameters with Gaussian uncer-
tainties automatically lead to symmetric uncertainties on our measurements; the
exceptions are Ry (1) and R»(2), where we must include the correlation between the
measurement uncertainties. Unless mentioned, we take all changes from parameter

variations to be symmetric.

5.1 Background Uncertainties

5.1.1 Continuum Background

When calculating w for off-resonance events, we scale the energy of the D* and
lepton to reflect the difference in the on- and off-resonance center-of-mass ener-
gies. While the momentum distribution of scaled off-resonance particles does not
match the distribution of on-resonance particles [40], the difference between the
two is smaller than the difference between un-scaled and scaled off-resonance dis-
tributions. To assess the systematic uncertainty from this scaling, we compare our
results with the scaling to the results we get if we repeat the analysis without scal-
ing the D* and lepton energies. We take the systematic uncertainty to be half of
the difference. The change in the results and the uncertainties assigned are listed

in Table 5.1. We assign an uncertainty of 0.15% on |V|F'(1) from this source.
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Table 5.1: The change in our results due to not scaling the D* and lepton
energies for off-resonance events and the uncertainties we assign for the

continuum background, which is equal to half the change.

Vool F(1)(%) | p*(%) | T(B = D*tw)(%)

Change -0.30 -0.67 -0.01

Uncertainty 0.15 0.33 0.00

5.1.2 Combinatoric Background

In assessing the uncertainty on our result from the combinatoric background, we
want to consider how well the Am sideband cosfp_p«, distribution reproduces
the distribution of the background in the Am signal region and how well our
Am fit does at finding the normalization of the Am sideband. As mentioned
before, the D** momentum distribution of the combinatoric background in the
Am sideband has a slightly lower mean momentum than the background in the
Am signal region, leading to a slightly different cosfp_p-, distribution. Because
this effect is kinematic, the generic Monte Carlo does a good job of predicting
the distribution difference and is a good place to test the effect of this difference.
For the same reason, the Monte Carlo also reproduces the Am distribution of
the combinatoric background in the data, allowing us to test the functional form
that we have chosen for the background. We perform our analysis on the generic
Monte Carlo twice, once where we determine the combinatoric background using

the procedure outlined in Section 4.4.1 and once where we use the absolutely
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Table 5.2: The results of the study of combinatoric background using the

generic Monte Carlo.

Source V| F(1)(%) | p*(%) | T(B — D*tv)(%)
Difference -1.54 -4.24 +0.20
Statistical Uncertainty 1.56 2.27 1.51
Uncertainty 2.19 4.81 1.52

normalized true tagged combinatoric background in place of the Am sideband
distribution. When performing the |V,| fit, we use the same linear form factor
that was used to generate the B — D*/v decays in the generic Monte Carlo.
We compare the results from the two analyses and take any differences as part
our systematic uncertainty. The statistics of the study are limited, and we find
statistical uncertainties on the shifts of the same order as the shifts. To include
these errors, we add in quadrature the statistical uncertainties of this study. The
results of this study are shown in Table 5.2.

There are additional uncertainties in the normalizations due to the Am fits to
the data distributions. The Am lineshape from D**/v Monte Carlo can affect the
outcome of the Am fit. To assess this effect, we first vary the width we add to the
peak of the signal Monte Carlo Am distribution by its statistical uncertainty and
repeat the Am fits. We then repeat the data analysis using the new normalizations
and assign any change in the result as a systematic uncertainty. Also, Am appears
to peak slightly higher in the Monte Carlo than the data; we shift it down by 0.15

MeV/c? and take the change in our result as an uncertainty. Since there may be
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small differences in the Am distributions of combinatoric background between data
and Monte Carlo, we try other functional forms for the background distribution.
The two forms we use are a(Am — my0)Y2 + b(Am — mgo) + c(Am — myo)3/2,
where a, b, and c are the free parameters, and a(Am — m0)Y? + b(Am — myo),
where a and b are the free parameters. We again repeat the analysis with the new
normalizations and note the changes in our results. We take the larger excursion
as our systematic uncertainty. The uncertainties from the changes to the Am fit
are shown in Table 5.3.

The final contribution to the systematic uncertainty from our combinatoric
background estimate comes from the decays modes other than D — K7 that are
reconstructed in our my, signal region. The specific modes were given in Table 4.8.
We find the total contribution to our D**fv yield from this source is 0.540.3%.
We add the yield and uncertainty in quadrature to get a 0.6% uncertainty on our
B — D*(v yield, which translates to a 0.3% uncertainty on |Vy|F(1).

We assign a total uncertainty of 2.24% to |V|F (1) from the combinatoric

background. The systematic uncertainties from the combinatoric background are

summarized in Table 5.4.

5.1.3 Uncorrelated Background

The uncertainties from the uncorrelated background come from the uncertainties
on the normalizations we use for the various components. To determine the uncer-

tainty on our results from these normalizations, we vary the D* and lepton rates,
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Table 5.4: Summary of systematic uncertainties due to the combinatoric

background. We add the components in quadrature to get the total.

Source V| F (1) (%) | p?(%) | T(B — D*tv)(%)
Generic Monte Carlo Study 2.19 4.81 1.52
Am Fit 0.31 0.57 1.19
Leakage from Other D Modes 0.30 0.0 0.60
Total Uncertainty 2.24 4.86 2.01

repeat our analysis, and note the change in our results. The variations we make

are:

e We vary the contribution from upper-vertex D*’s by 50% [41]. When de-
creasing the upper-vertex rate, we increase the lower-vertex D* rate by 1.8%
to keep the inclusive D* rate constant. We do this separately for the low and

high D* momentum bins.

e We vary the inclusive D* rate by one sigma separately for the low and high

D* momentum bins.

e We vary the primary lepton rate by one sigma, changing the secondary lepton
rate by 29% to keep the total lepton rate (10.5240.44%) constant. The
change to the secondary rate is quite conservative, since the uncertainty on
that rate is only 8/to do this because it makes the maximal change to the

cos 0p_p+¢ distribution.
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We vary the total lepton rate by one sigma.

We vary the rate for K-m exchange in D*’s by one sigma in each D* momen-

tum bin.

We vary x4 by one sigma.

We vary the “miscellaneous” category by 100%.

The effects on the results and the total uncertainty from this background are shown

in Table 5.5. We find an uncertainty of 0.79% from this background.

5.1.4 Correlated Background

Since the correlated background is so small, we vary the entire contribution by
50% to assess the systematic uncertainty. This results in a change in |V|F (1) of
0.13%, which is small compared to most of our other uncertainties. We could vary
each mode individually by the measurement uncertainty on its branching fraction,
since some of the modes have uncertainties less than 50%, but the improvement of
our total uncertainty and would be minimal. The uncertainties from the correlated

background are shown in Table 5.6.

5.1.5 Fake Lepton Background

We vary the measured electron and muon fake rates separately by 50%. This is
conservative, but it has also almost no effect on our result; the total uncertainty

on |Vip|F(1) is 0.04%. The uncertainties are shown in Table 5.7.
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Table 5.6: The uncertainties from the correlated background.

Vo F(1)(%) | p*(%) | T(B — D*"tv)(%)

Uncertainty 0.13 0.43 0.64

Table 5.7: The changes to our result with variations of the lepton fake rates.
We add the changes together in quadrature to get the total uncertainty from

the fake lepton background.

Variation V| F(1)(%) | p?(%) | T(B — D*tv) (%)
Vary electron fake rate 50% +0.01 +0.01 +0.01
Vary muon fake rate 50% +0.04 +0.01 +0.08
Total Uncertainty 0.04 0.01 0.08

5.2 Efficiency Uncertainties

In this section we describe uncertainties to our results that come from uncertainties

in the D**/v efficiency.

5.2.1 Slow-7" Efficiency

The efficiency for reconstructing slow 7%’s is the largest source of uncertainty in our
analysis. It is tricky to determine this uncertainty with precision because the re-
construction efficiency of these low-energy particles is quite sensitive to the details
of our simulation. We have done an extensive study, described in Appendix B, that

both improves the simulation of slow 7°’s and decreases the efficiency uncertainty
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Figure 5.1: The efficiency for reconstructing Monte Carlo 7%’s versus w in
the region |cosf| < 0.7071 for simulated events where the 7° is the only

particle.

(compared to the previous CLEO |V,,| analysis [42]). In this section we give a brief
review of our method and the uncertainties on our results caused by uncertainties
in the slow-7* efficiency.

Neutral slow pions decay to two low-energy photons (30-230 MeV) that are
detected in the calorimeter, so unlike charged particles they can be reconstructed
all the way down to zero momentum. The lowest-momentum 7°’s decay almost
back-to-back, with the photons depositing energy about equally in the calorimeter.
As the 7% momentum increases over the D**/v range, the photon energies become
less symmetric, which tends to push some of the lower-energy photons below our
minimum energy requirement of 30 MeV. The neutral slow pion efficiency therefore

drops slowly as w increases, as shown in Figure 5.1.
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We have explored the slow pion efficiency as a function of many variables in the
simulation of CLEO II. The slow pion efficiency depends on the exact placement
and amount of the material in the simulation. The photons can interact with
any of the material in the detector, which means that they start their showers
before reaching the calorimeter. When the photons interact with material at radii
smaller than the outer boundary of the DR (“inner material”), either none of the
photon’s energy travels out to the calorimeter, or not enough of the energy is
deposited in the calorimeter to pass our energy cut or to make the proper m.,.
When the photons interact with material at or outside the outer boundary of the
DR (“outer material”), the showers usually are reconstructed, but they may not
pass our cuts on the shape ( E9/E25). Some of the energy is also lost, which
affects m., and gives the m,, distribution an asymmetric tail on the low side. The
amount of outer material affects the shape of the low-side tail and therefore the
efficiency for reconstructed 7°’s to pass our requirement on m... The 7° efficiency
depends also on the amount of noise in the calorimeter. We simulate two categories
of calorimeter noise: “incoherent” noise, which is applied crystal-by-crystal, and
“coherent” noise, which is applied to groups of crystals with neighboring electronics
connections. We have adjusted the incoherent noise in the simulation, but there is
statistical uncertainty on amount that it should be increased that adds uncertainty
to our efficiency correction. We have this statistical uncertainty because we adjust
the noise based on comparisons of data and Monte Carlo distributions. Likewise,
there is a statistical uncertainty on the amount of smearing that we add to the gain

of the calorimeter electronics. Finally, the energy down to which our simulation
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follows photons is important because it can affect the shape of the showers in the
calorimeter.

We determine our sensitivity to the uncertainty on the efficiency correction
by repeating our embedding procedure using six separate samples of 7%’s. Each

sample is different from the baseline sample as follows:

e (1) We vary the incoherent noise by the statistical uncertainty on its adjust-

ment;

e (2) We vary the crystal gain smearing by the statistical uncertainty on its

adjustment;
e (3) We vary the coherent noise by 25% [43];

e (4) We vary the inner material by 10% based on a study of the material in
the simulation comparing the polar angle distribution of data and simulated

vy events [44];

e (5) There is some certainty about the outer DR cathode material because
the inner DR cathodes are probed in the study of inner material, but the rest
of the outer material has not been studied, so we vary the outer material by

15%;

e (6) We lower the energy down to which our simulation follows photons to

0.1 MeV.

We calculate new efficiency corrections for each of the six variations and recompute

the efficiency matrix. The efficiency correction in w bins for each variation is given
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in Table 5.8. We then repeat the |V,,| fit using these new efficiencies and take
the changes in our results as the uncertainty. We take all of the uncertainties to
be symmetric, including the uncertainty from the photons cutoff. While it is only
reasonable to lower the photon cutoff, not raise it, in the end the difference between
our total uncertainties up and down would be small, so we add it in quadrature
with the rest of the uncertainties. We include in our total the statistical uncertainty
on our studies and a small uncertainty based on the fact that we add two showers
to events when we embed 7%’s for our efficiency study. The slow pion efficiency
may change differently for data and simulated events when we embed these extra
showers in the events; we find no statistically significant evidence of this in our
studies, but we include a small uncertainty (0.34% on |V, |F (1)) to cover this effect.
Table 5.9 shows the changes to our results with the efficiency correction variations,
the contribution to our uncertainty from the statistics of our study and “number of
showers” effect, and the total uncertainty from the slow-7° efficiency, which comes

to 3.11% on |V, |F(1).

5.2.2 Lepton Identification Efficiency

The electron identification efficiency for Monte Carlo electrons is an input param-
eter to driver, the program that processes ROAR files. When the user examines
R2ELEC for a Monte Carlo track, driver first looks to see if that track was cre-
ated by an electron. If so, driver looks up the efficiency for electrons of that
momentum. By tossing a random number, driver determines if that track will be

identified as an electron or not.



Table 5.8: The B —D*%v efficiency correction as computed for the six
variations to the simulation. The first column lists the w range for each bin.
The second through seventh columns show the uncertainties in percent for
the variations in incoherent noise (IN), crystal gains (CG), coherent noise

(CN), inner material (IM), outer material (OM), and CUTGAM (GAM). The
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last column gives the statistical uncertainty for each variation.

w IN | CG | CN | IM | OM | GAM || Uncertainty
1.05-1.10 | 0.9 | -5.8| -3 |-74|-41| -4.9 -2.2
1.10-1.15 | -7.5 | -3.2 |-1.5| 6.4 | -45 | -4.5 -2.6
1.15-1.20 | -7.7 | -6.7 | -5.1 | -49| O -3.8 -1.3
1.20-1.25 | -24 | -38|-71|-1.8|-5.1| -5.3 4.6
1.25-1.30 | 0.7 | 5.7 | 3.9 | 7.3 | 5.5 | 24 3.9
1.30-1.35 | -3.7 | -1.6 | 2.3 |-3.3| 2.5 | -4.8 8.8
1.35-1.40 | -5.5 | -7 |-3.1]-3.3| 0.5 | -5.3 4.2
1.40-1.45 | -49|-1.2 | -11 | 1.6 | 3.3 4.2 5.4
1.45-1.51-1.1]-6.5] 0.2 |-6.1|-56| -1.3 -0.8




126

Table 5.9: The changes to our results from the variations in the slow-7°

efficiency correction and the uncertainties from the statistics of our slow-7°

study and the number of showers. We add these together in quadrature to

0

get the total uncertainty from the slow-7" reconstruction efficiency.

Mode Vel F(1) (%) | p*(%) | T(B = D*v)(%)
Incoherent Noise up 1 o +0.81 -2.55 +3.95
Gain Smearing down 1 o +0.78 -1.02 +2.49
Coherent Noise up 25% +0.52 -0.82 +1.78
Inner Material up 10% -0.98 -2.68 +0.39
Outer Material up 15% -0.41 -1.40 +0.42
~v Cutoff down +1.54 +0.93 +2.25
Statistics of Study 2.13 3.31 2.73
Number of showers in events 0.34 0.00 0.68
Total Uncertainty 3.11 5.40 6.18
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We determine the electron identification efficiency of the data by embedding
data electrons in data events [45]. Events are selected from all data sets with the
requirements that there be at least one lepton in the event, that Hy/H, < 0.4,
and that the center-of-mass energy is greater than 5.28 GeV. Electron tracks are
selected from data radiative Bhabha events. The track must meet our tracking
criteria detailed in Section 4.3, and in addition the dot product between the isolated
track and the embedded track must be greater than 0.996. Also, we require that
the total energy near the track in the calorimeter (known as PVERTX) be less than
3 GeV. Embedded electrons are then found by requiring R2ELEC> 3.

There are several sources of uncertainty on the electron identification uncer-
tainty. The efficiency is sensitive to the requirements made on the electron tracks
including PVERTX (0.3%) and the dot product (0.2%). The electrons selected for
embedding may be systematically different than B — D*/v electrons. We have
studied this by comparing the R2ELEC distributions for electrons from Monte Carlo
radiative Bhabha events to electrons generated in events with no other particles.
We assign an error of 0.6% to this effect. Two different methods are compared
for selecting the electron tracks from the radiative Bhabha events which result in
slightly different samples; a 2.0% uncertainty is assigned to this difference. The
radiative Bhabha events must meet a requirement on the energy and momentum
visible in the event; the uncertainty from this requirement is 0.6%. The efficiency
determined from isolated electrons matches that from embedded electrons to 1.0%.
The efficiency distribution versus momentum showed variations between data sets;

this difference adds a 1.0% uncertainty. Finally, an embedding study done with
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Monte Carlo electrons and events shows that the embedding procedure determines
the correct efficiency for B — D*{v electrons to 0.6%. We add these errors in
quadrature to get an electron identification efficiency uncertainty of 2.6%.

Chaouki Boulahouache has determined the the efficiency for muons in radiative
putp~ events in data. Comparing this efficiency to the efficiency for muons in our
B — D*/v Monte Carlo, and taking into account the momentum distribution of
of B — D*fv muons, we find that the ratio of data to Monte Carlo efficiencies is
1.009+0.013. We take the 0.9/identification efficiency uncertainty of 1.6%.

We weight the electron and muon efficiency uncertainties by the relative abun-
dance of each species in our B — D*(v yield to get an overall uncertainty of

2.2%.

5.2.3 Track-Finding Efficiency

We determine the tracking efficiency uncertainties for the lepton and the K and 7
forming the D° with an embedding study similar to the study of slow-7° efficiency,
but performed with charged pions with momenta between 0.5 and 2.0 GeV/c [46].
We find an efficiency uncertainty of 0.7% each for the K and 7 and 0.5% for the
lepton. We combine these uncertainties linearly to get a total efficiency uncertainty
of 1.9%, which implies an uncertainty of 0.95% on |V,|F(1). These uncertainties

are confirmed in a study of 1-prong versus 3-prong 7 decays [47].
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5.3 Uncertainties from Constants

In this section we describe the uncertainty on our results from the uncertainty on

the many constants we use is our |V| fit.

5.3.1 Ri(1) and Ry(1)

The form factor ratios R;(1) and Ry(1) affect the lepton spectrum and therefore
the fraction of events satisfying our 0.8 GeV/c electron and 1.4 GeV/c muon
momentum requirements. To estimate the uncertainty due to the measurement
uncertainties on Ry(1) and Ry(1), we begin by repeating our analysis while varying
the values of R;(1) and Ry(1) by their measurement uncertainties of 0.32 and 0.23,
respectively. We vary R;(1) up and down by one sigma and keep Ry(1) fixed,
and then we keep R;(1) fixed and vary Ry(1) up and down by one sigma. From
these results we calculate P/0R;(1) and 0P/ORy(1), where P stands for the
parameter (|V|F(1), p4,, or I'(B — D*(v)) whose uncertainty we are calculating.

We calculate the uncertainty as

2
2 oP oP
o= .Zl OR;i(1) OR;(1) B (5.1)

1,]=

where E;; = 0?7 and E;; = pijoio; (where pjo = —0.82 is the correlation coefficient
from the R;(1) and Ry(1) measurement). The uncertainties from this source are

given in Table 5.10; we assign an uncertainty of 1.07% to |V|F'(1) from this source.
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Table 5.10: The variation in the results with R;(1) and Ry(1). The total
uncertainty reported for each fit takes into account the correlation between

Ry (1) and Ry(1) in the original measurement.

Variation V|F(1) (%) | p*(%) | T(B — D*v)(%)
Ry (1) down +1.86 -1.64 +2.95
Ry (1) up -1.78 +1.83 -2.32
Ry (1) down +1.17 +11.87 +1.22
Ry (1) up -1.31 -13.73 -1.19
Uncertainty 1.07 14.26 1.78

5.3.2 B Momentum and Mass

The cosOp_p+, distribution depends on the B momentum and mass that we use
to construct this variable. We know the exact value of the momentum and mass
in our Monte Carlo, but there is measurement uncertainty on the data values. To
determine the uncertainty from this source, we vary the B momentum and mass
separately by their measurement uncertainties and take the change in our results
as our uncertainty. We find an uncertainty of 0.55% on |V|F'(1) from this source.

The changes and uncertainty are given in Table 5.11.

5.3.3 Number of BB Events

The uncertainty of the number of BB events in our data sample has been deter-

mined as 1.8% [48], which leads to an uncertainty of 0.9% on |V|F'(1).
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Table 5.11: The changes in our results when we vary the B momentum and

mass. We add the results in quadrature to get the uncertainty.

Variation \Va|F (1) (%) | p*(%) | T(B — D*tv)(%)
B momentum down 1 o +0.53 +0.44 +0.66
B mass down 1 o +0.16 -0.10 +0.40
Total Uncertainty 0.55 0.45 0.77

5.3.4 Branching Fractions and Lifetimes

The fractional uncertainties on the D*® — D%z® branching fraction (4.7%) and the
D" — K7 branching fraction (2.3%) contribute the same fractional uncertainty
to ['(B — D*(v), half of that to |V|F(1) because of the square root, and none to
9?417 which is not affected by changes to the overall normalization of dI"/dw.

The uncertainty to the B lifetimes enters in more obliquely because of our
constraint on f, . To determine the uncertainty from the lifetimes, we vary the
lifetimes by their uncertainty and repeat the |V,| fit. This gives us an uncertainty

of 0.82% on |V|F(1). The changes and uncertainty are given in Table 5.12.

5.4 Other Uncertainties

5.4.1 Final-State Radiation

The final-state radiation model has a small effect on our D*/v yields because it

affects the D**0v cos@z_p-, distributions. Because we require the emitted photon
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Table 5.12: The changes in our results from modification of the B lifetimes

and the uncertainty we assign from this source.

Variation V| F(1) (%) | p?(%) | T(B — D*tv)(%)
BT lifetime up 1 o -0.54 0.00 -0.85
B lifetime up 1 o -0.62 0.00 -1.00
Total Uncertainty 0.82 0.00 1.31

Table 5.13: The change in our results when we do not include radiative
D*%v events in our D*°/v Monte Carlo and the uncertainty that we assign

due to the final-state radiation model.

Vo F(1) (%) | p*(%) | T(B = D*tw)(%)

Change -0.53 -0.74 -0.41

Uncertainty 0.16 0.22 0.12

to have energy less than 100 MeV, the model also affects the D**/v efficiency. The
final-state radiation model is estimated by the authors of PHOTOS to be good to
30%. We determine our sensitivity to the model by repeating our analysis without
including radiative D*%/v decays in our D*°/v Monte Carlo. We then take 30% of
the change to our results as our uncertainty. This leads to a 0.16% uncertainty on

|Vep|F'(1). The changes and uncertainties are given in Table 5.13.
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5.4.2 D*X/v Model

With the exception of the B — D{/~7 mode, which has been measured by CLEO
and ALEPH [49], the modes that contribute to the D*X v background have not
been exclusively reconstructed. For this reason, we have little direct knowledge
of the D*X /v form factors or branching fractions. Since we allow the D*X /v
contribution to float in our cosfp_p+, fits, the poor knowledge of the inclusive
D* X lv branching fraction does not effect us; however, the cos #_p«y distributions
that we use in our fits are affected by the model uncertainties of the ISGW2
model [31].

With little or no data to compare to predictions, it is difficult to know what is
a reasonable variation of the ISGW2 model. Instead, we assume that the changes
to the cosfp_p«, distribution from the model uncertainty is smaller than the dif-
ference in the cosfp_p+, distribution of the different modes. We find that the
two modes with the combination of the largest contribution to the cosfpg_p-, dis-
tribution and the most different cos@gz_p+, distributions are B — D* 7/, and
B — D:%li,. The cosfp_p-, distribution of these modes are shown in Figure 5.2.
To assess our uncertainty from the D* X /v model, we repeat our analysis, replacing
the D*X /v cosOg_p«, distribution in the fits with the cosfp_p+, distribution of
B — D**nli; or B — D;% (i, We take the larger excursion as our systematic un-
certainty. We assign an uncertainty of 1.15% on |V,|F (1) from the D*X v model.
The effect of the separate modes on our results and the systematic uncertainties

are given in Table 5.14.
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Figure 5.2: The cosfp_p-, distribution of (a) the B — D**7fv and (b) the

B — D, /lv events contributing to the D* X /v sample for D**/v.

Table 5.14: The variation in the results with the D*X /v model and the

uncertainties we assign.

Mode V| F(1) (%) | p*(%) | T(B — D*v)(%)
B — D*rly +1.15 +2.69 -0.02
B — Dlv -0.03 -0.67 +0.52
Uncertainty 1.15 2.69 0.52
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5.5 Total Uncertainty

All of the sources of uncertainty are listed in Table 5.15. We find the total un-
certainty by adding the separate uncertainties in quadrature. We find a total sys-
tematic uncertainty of 5.4% on |V|F (1), 16.3% on pj, , and 9.4% on the decay

width ['(B — D*(v).
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Table 5.15: The fractional systematic uncertainties for the D*°/v results.

Source V| F(1)(%) | p*(%) | T(B — D*tv)(%)
Continuum background 0.2 0.3 0.0
Combinatoric background 2.2 4.9 2.0
Uncorrelated background 0.8 1.2 0.5
Correlated background 0.1 0.4 0.6
Fake Lepton background 0.0 0.0 0.1
Slow-7° Efficiency 3.1 5.4 6.1
Lepton identification 1.1 0.0 2.2
K, m & ¢ finding 1.0 0.0 1.9
Ry (1) and R»(1) 1.1 14.3 1.8
B Momentum and Mass 0.6 0.5 0.8
Number of BB events 0.9 0.0 1.8
B(D*® — D7) 2.4 0.0 4.7
B(D® — K—n7) 1.2 0.0 2.3
B lifetimes 0.8 0.0 1.3
Final State Radiation Model 0.2 0.2 0.1
D* X /lv model 1.2 2.7 0.5
Total 0.4 16.3 9.4




CHAPTER 6

CONCLUSION

6.1 Final Results

We have measured [Vi|F'(1) and pi, from the width I' from D**¢v decays. Our

final results are

V| F(1) = 0.0427 4 0.0026 + 0.0023 (6.1)
Pry, = 1.54£018£0.25 (6.2)
X* = 8.8/8dof, (6.3)

where the first errors are statistical and and the second errors are systematic. The

results These results imply the following:

['(B — B — D*(p) = 0.0400 & 0.0027 = 0.0037 (6.4)

B(D*%v) = 6.62+0.45+ 0.61, (6.5)

where again the errors are statistical and systematic. Using F(1) = 0.913 £

0.042 [6], we find
V| = 0.0468 £ 0.0027 + 0.0025 + 0.0022, (6.6)

137
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where the first error is statistical, the second error is systematic, and the third

error reflects the error on F(1). The total error on |Vg| is 9.2%.

6.2 Combined Fit with D*" /v

An analysis of D*"¢v decays has been done in parallel with this analysis [50]. That
analysis uses the method described in Chapter 4 to extract D** /v yields in bins of
w. We do a combined fit for |V,,|F(1) and p%, using the method described in Sec-
tion 4.5, where the x? that we minimize is the sum of the y? term in Equation 4.8,
a similar term related to the D*T /v yields, and a term constraining f, . In the fit
we assume a common decay width I'(B — B — D*/7) and a common F(w); we

also assume f,_ + foo = 1. From this combined fit, we find:

V| F(1) = 0.0422 4 0.0013 + 0.0018 (6.7)
pfml = 1.61£0.0940.21 (6.8)
x> = 16.5/18dof, (6.9)

where the first errors are statistical and and the second errors are systematic.

These results imply the following:

I'(B— B — D) = 0.0376 +0.0012 + 0.0024 (6.10)
B(D*fy) = 6.21+0.20 =+ 0.40, (6.11)
B(D**fv) = 5.82+0.19+0.37, (6.12)

where again the errors are statistical and systematic. The errors for the branching

fractions are completely correlated. From the combined results for |Vo|F(1) we
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find
Vo] = 0.0462 = 0.0014 £ 0.0020 + 0.0022, (6.13)

where the first error is statistical, the second error is systematic, and the third
error reflects the error on F(1). The total error on |V,| from the combined fit is

7.1%.

6.3 Comparison to Previous CLEO Measurement

The previous CLEO measurement [42] of |V,|F(1) from B — D*(0 was made
using both D**fv decays and D*Tlv decays and a linear form of F(w). The
constraints from dispersion relations allow a curvature, which tends to increase
|Vap|F'(1) by about 2.6% [51]. Making this correction, the result for |V|F(1) from

the previous analysis is
V| F(1) = 0.0360 £ 0.0019 + 0.0018, (6.14)

where the errors are statistical and systematic. The previous analysis also mea-
sured B(D**¢v) from only D**/v decays; modifying the previous result to use our
values for B(D*® — D°7%) and B(D® — K~7*) and the value of f, _ from our fit,

we get
B(B — D*lv) = 5.45+0.57 4+ 0.68, (6.15)

where the errors are statistical and systematic.
Both of the results from the previous measurement are somewhat lower than

our results. Our data sample includes the data sample of the previous analysis and
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increases the number of BB events by roughly a factor of two. We have found that
the new data favor larger values of |V|F (1) and the branching fraction, and also
that results from the old data and the new data are consistent within uncorrelated
systematic uncertainties. This work decreases the systematic uncertainty on the
branching fraction by 26%, and our combined result on |Vg,|F(1) decreases the

systematic uncertainty by 24%.

6.4 Comparison to Other Measurements

6.4.1 |Vgy|F (1) from Exclusive B — D*{v

We compare our D**/v and combined results to measurements of |V F (1) from
exclusive B — D*(v decays made at LEP [52] (an electron-positron collider in
Switzerland) in Table 6.1. These results are plotted in Figure 6.1. The LEP
results include results from the ALEPH, DELPHI, and OPAL experiments. The
|Vp| Working Group at LEP has adjusted the separate measurements so that each
measurement has the same input parameters. All of the LEP analyses use the
same form factor constraints used in this analysis [10].

LEP generates B particles from eTe™ collisions, but they run at a much higher
center-of-mass energy than CESR. As a result, the B’s detected in the various
experiments have significant momentum, with an average value around 30 GeV/c.
The advantage of this setup is that B —D*T/v decays can easily be detected
at low w because the boost of the B momentum raises the momentum of the 7+

from the decay of the D**. There are, however, several disadvantages. The high B
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Table 6.1: Comparison of |Vg|F(1) and p%, results. The “inclusive” and

“exclusive” notation on the OPAL results refers to the D° decay.

Measurement |Vcb|F(1) /0311

This work 0.0427 £ 0.0035 | 1.54 £ 0.31

This work combined with D**¢v | 0.0422 + 0.0022 | 1.61 + 0.23

ALEPH 0.0330 £ 0.0026 | 0.74 £ 0.5
DELPHI 0.0345+0.0029 | 1.22+0.4
OPAL (exclusive) 0.0375 £+ 0.0025 | 1.42+0.3
OPAL (inclusive) 0.0379 + 0.0027 | 1.21+04

momentum leads to a much poorer resolution in w. The boost also makes it difficult
to distinguish D* X /v decays from D*/v decays and increases the background from
other B decays including B — D*7v.

Our result is higher than all of the LEP results, but is fairly consistent with all of
them. The main difference in method between our analysis and the LEP analyses
lies in the treatment of the D*X /v background. The LEP analyses absolutely
normalize the D*X /v contribution using a model [53] constrained by measured
rates. The comparison suggests that this model may overestimate the contribution
to the D*lv yield from D* X /v decays, or that it may have the wrong distribution
in w. Since we allow the data to set the level of D*X /v decays in bins of w, we

are not as sensitive to these model uncertainties.
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Figure 6.1: Measurements of |V|F'(1) from exclusive B — D*(v decays,
from Table 6.1. The inner error bars show the statistical error, and the

outer error bars show the total error.
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6.4.2 |Vg| from B — D¢v and Inclusive Measurements

Table 6.2 gives our combined measurement for |V,| along with measurements of
|Vp| from other kinds of analyses. Three of these results are from single analyses of
the CLEO II dataset, and the fourth (b — cfv) uses a data sample of comparable
size. The I'(B — X lv) analysis determines |V,;| from the inclusive partial width
of semileptonic B decays. The I'(b — ¢fv) comes from several LEP analyses which
have determined the inclusive partial width of semileptonic decays of particles
containing a b quark; at LEP these can include B (ub), B, (sb), and baryons. The
results are plotted in Figure 6.2.

There are several things worth noticing in Figure 6.2. First, with these data
samples the results are all consistent, and B — D/v clearly leads to the most
imprecise measurement. Also, the error on the results from the inclusive methods
are almost saturated by theoretical errors, and there is an additional unknown
theoretical uncertainty from the assumption of quark-hadron duality that could
be comparable to the error already reported. The total error on the b — clv
measurement is smaller than the total error on the B — D*/v measurement
(without the duality error, if any), but the b — ¢fv measurement will not benefit
from smaller experimental errors. From that it is clear that B — D*/v currently

offers the best way to measure |V,,| if the experimental errors can be reduced.
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Figure 6.2: Measurements of |V;| from exclusive and inclusive decays, Ta-
ble 6.2. The inner error bars show the statistical error, and the outer error
bars show the total error. The b — c¢/v measurement uses a slightly larger

data sample than the rest.
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Table 6.2: Comparison of our combined result to |V;| determined from

B — D/v and inclusive semileptonic B decays.

This work combined with D** /v | 0.046240.0033
CLEO B — Dli [54] 0.0416+0.0072
['(b— clv) [1] 0.0408+0.0025
['(B — X (v) [1] 0.0400+0.0026

6.4.3 B — D*%v Branching Fraction

The B — D**/v branching fraction has been measured by ARGUS [55]. They find
B(B = D*0y) = 6.6+1.6+1.5, (6.16)

where the uncertainties are statistical and systematic. Our central value agrees

well with theirs.

6.5 Future Measurements

In this work we have reported on the most precise measurement of the B —D*%¢v
branching fraction. When we combine this analysis with a similar analysis of
B —D**lv decays, we find the most precise measurement of |V F(1). We extract
a value of V| where the largest error comes the theoretical uncertainty on the
value of F(1).

Several experiments, including CLEO, are in the process of collecting larger

samples of B decays. The BaBar experiment at the Stanford Linear Accelerator



146

Center hopes to collect at least 30fb™" of T (4S) decays, a data sample which
would be about 10 times the size of the sample used in this measurement. This
data sample would decrease the size of the statistical error on |V,| by more than
a factor of two, but determinations of |V| from exclusive B — D*/v decays are
already limited by the systematic and theoretical uncertainties. In the case of this
analysis, a larger data sample would do little to decrease the systematic error.
Reducing the systematic error on |V| from its present level will therefore require
a great deal more work, as will improvement of the theoretical uncertainties. The
improvement is statistical error from the larger data samples of CLEO and the “B

factories” will most likely be the next step in a more precise determination of |V|.



APPENDIX A

A REVIEW OF THE STANDARD MODEL

The “Standard Model” [56] is the name physicists have given to a description
of matter and all interactions between that matter. According to the Standard
Model, all matter is made up of quarks and leptons, which are assumed to be
elementary particles. While leptons can be observed individually, quarks are con-
fined to bound states of two or three quarks, called hadrons. This makes it difficult
to determine the masses of the quarks, since the masses can only be determined
indirectly through their influence on the properties of the hadrons. The value at-
tributed to the quark masses depend on how those masses are defined. The quark
masses given here are ranges that depend on the particular schemes used to ex-
tract them. The quarks are listed in Table A.1 and the leptons in Table A.2 with
their masses and electric charges. The quarks and leptons are divided into three
“generations,” with the d, u, e, and v, in the first generation, the s, ¢, p, and v,
in the second generation, and the b, t, 7, and v, in the third generation.

Each particle has an antiparticle with opposite charge but the same mass,
represented by a “bar” over the quark symbol, as in b. All quarks and leptons
have a spin of { and positive parity. Quarks are found in either a bound state of

two quarks (one quark and one antiquark), known as a meson, or three quarks (any

147
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Table A.1: The mass and charge of the six quarks in the Standard Model [1].

Name Mass Range Charge

d (down) 3-9 MeV/c? —te
up) 1-5 MeV/c? +3e
s (strange) | 75-170 MeV/c? —le
¢ (charm) | 1.15-1.35 GeV/c? | +3e
b (bottom) | 4.0-4.4 GeV/c? —le

t (top) 165-180 GeV/c? +3e

combination of quarks and antiquarks), known as a baryon; mesons and baryons

are known collectively as hadrons. The mesons important to this analysis are:

B~, made of a u and b quark;

D° D*° made of a ¢ and @ quark, where the D° is the .J = 0 state and the

D*Y is the J = 1 state;
e K, made of a u and s quark;

7+, made of a v and d quark;

70, which is a linear combination of the u@ and dd states.

The charge conjugate particles (B, DO, etc.) have the same quark content with
each quark (antiquark) replaced by its antiquark (quark).

Four forces describe all of the interactions between matter. The forces are:
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Table A.2: The mass and charge of the six leptons in the Standard Model [1].

Name Mass Charge
e~ (electron) 0.511 MeV/c? -1
Ve (electron neutrino) <3eV/c? 0
p~ (muon) 106 MeV/c? -1
v, (muon neutrino) | < 0.19 MeV/c? 0
7~ (tau) 1.78 GeV/c? -1
7, (tau neutrino) < 18 MeV/c? 0

Electromagnetic, which describes interactions between photons (the mediator

of this force) and particles with non-zero electromagnetic charge;

Weak, which describes quark-lepton interactions and is mediated by the W

and Z particles;

Strong, which describes quark-quark interactions and is mediated by gluons;

Gravitational, which is mediated by gravitons.

The properties of the mediator particles are summarized in Table A.3. The order
of relative strength of the forces, from strongest to weakest, is strong, electromag-
netic, weak, gravitational. The strong and weak forces work only over very short
distances (10715 m or less), while the range of the electromagnetic and gravita-
tional forces appears to be infinite. At high enough energies, the electromagnetic

and weak forces appear to have the same strength, unifying into one “electroweak”
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Table A.3: The properties of the mediators of the four fundamental forces.

Mediator Charge | J” Mass Range
gluon (g) 0 1- 0 10-% m
photon () 0 1- 0 o
W, 2° +e,0 | 1 [80,91 GeV/e2| 10718
graviton (G) 0 9+ 0 o

force, and there is reason to believe all of the forces are caused by a single inter-
action that breaks down to four at the current energy level of the universe. This
is the motivating factor behind the search for so-called “Grand Unification Theo-
ries,” but there is plenty of progress left to be made in the understanding of the

individual forces.



APPENDIX B

SLOW 7 EFFICIENCY STUDY

B.1 Introduction

We are motivated to study 7° efficiency by a need to determine the reconstruction
efficiency for D**/v events, which we use to measure |Vy|. We reconstruct D**’s
through the decays D** — D% D — K-zt and 7° — ~v. The photons

0 candidates are formed from

are detected as showers in the calorimeter, and
pairs of photon showers. The biggest contribution to the uncertainty on the D**¢v
efficiency comes from the 7° reconstruction. In the previous CLEO measurement
of |V from D**fv events [42], the uncertainty assigned to slow 7° efficiency was
8.6%; not only have we made a considerable improvement on this measurement, we
have also found a way to improve the agreement of slow-7° Monte Carlo E9/E25,
Moy, and Am (Am = mprm0 — mg,) distributions with data.

The 7%’s generated in D*°/v decays have momenta between 0 and 250 MeV /c,
a range which is termed “slow” in CLEO lingo. The showers tend to have low

energy, staying between 30 MeV (our lower cutoff) and 230 MeV. Because of the

low momentum, the showers also stay well-separated in the calorimeter.
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For this study, we use Recompress data and Monte Carlo, excluding the run
regions in the 4s9 and 4sA datasets with calibration errors in the CC constants [57].
We use CCFC to reconstruct the photons from the 7° decay, and we get 7° candidates
from anlcp0.inc.

Our goal is to find the difference between the efficiency for reconstructing 7%’s
in data and Monte Carlo, and the uncertainty on this difference. We find that the
E9/E25, m,,, and Am distributions are not reproduced well in the Monte Carlo for
slow 7’s. By correcting an error in the Time of Flight material and adjusting two
Monte Carlo parameters, we find that we can largely correct these discrepancies.
To study the 7° efficiency, we first generate single 7%’s using a modified Monte Carlo
in which these problems have been corrected and embed these 7°’s in data events.
We also generate single 7’s using the default Monte Carlo which we embed in
Monte Carlo events. We then find the 7° efficiency difference for the two samples,
which equals the efficiency difference between data and Monte Carlo. We vary six
Monte Carlo parameters that affect 70 efficiency to determine the uncertainty on

the efficiency difference.

B.2 Comparing data and Monte Carlo 7%’s
In our D*°/v analysis, we make the following requirements on 7° candidates:
e [/, > 30MeV

e |cosf,| <0.7071
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no type 1 or type 2 match of shower to track

no “bad” showers

E9/E25 > 99% efficient cut from cce925

0.120 GeV/c? < m., < 0.150 GeV/¢?

0.1392 GeV/c? < Am < 0.1452GeV /¢?

All of these cuts affect the 70 efficiency, but the efficiency is more sensitive to
some than others. The Monte Carlo is tuned to reconstruct both shower energy
and direction correctly on average, but there could be small differences in effi-
ciency in data and Monte Carlo if the event environment affects the shape of the
reconstructed shower energy or direction differently. This effect, if there is one,
is included in our study through embedding, which is described in Section B.4.3.
To first order, we believe that the track-shower matching in Monte Carlo matches
that in the data; any difference will have little effect on the 7° efficiency, since our
candidates are 98% efficient for passing that cut. The “bad” showers designation
is exactly reproduced since it comes from a list of “bad” crystals. We will show,
however, that the shapes of E9/E25, m,,, and Am are significantly different in
data and Monte Carlo for slow 7%’s due to low-level Monte Carlo parameters and
event environment effects. Understanding how the distributions of E9/E25, m..,
and Am differ between data and Monte Carlo can give us a handle on how well

the Monte Carlo simulates data 7%’s.
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B.2.1 E9/E25 and My for inclusive 7%’s

We look at inclusive 7%’s to get an idea how the distributions of E9/E25 and m.,,

0’s in events

compare between data and Monte Carlo. We are only interested in 7
that are similar to D**/v events, so we make the following requirements on both

data and generic Monte Carlo events:
e KLASGL = 10
e R2GL< 0.4
e require an electron or muon with:

— 0.8GeV/e < prepton < 2.4GeV/c

— | €08 brepton| < 0.7071
— R2ELEC > 3 for electron

— DPTHMU > 5 and MUQUAL = 0 for muon.

Additionally, we include only 7%’s that pass our analysis cuts and have momentum
less than 250 MeV /¢ in our study. We make no Am cut since we are not forming
D%,

We first compare E9/E25 for showers that make up slow 7° candidates. We
divide the showers into energy bins of 30 MeV, beginning with 30-60 MeV and going
up to 210 MeV. We were unable to develop a way to subtract background events
from the data E9/E25 distributions, so these plots include both real photon showers

that make fake 7%’s and fake photon showers. Using tagging for these showers in
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Figure B.1: The E9/E25 distribution for tagged 7°’s and tagged background

0°s with momenta,

from generic Monte Carlo. We include all showers from 7
up to 250 MeV/c and with 0.1325GeV/c? < m.,, < 0.1375GeV/c?. The

plots are absolutely normalized.

generic Monte Carlo, we determined that the fake 7° background peaks in E9/E25
in nearly the same way as showers from real 7%’s (see Figure B.1). To minimize fake-
7 background, we tighten the m.,., cut to 0.1325 GeV/c? < m., < 0.1375 GeV /%
We show the E9/E25 distributions for data and generic Monte Carlo in the first
four energy bins in Figure B.2. While the tails match surprisingly well, there is a
clear difference in the shape of the main body of the distribution. We will quantify
this difference in Section B.4.2; for now, we note that the shapes are significantly

different in the region where we apply our E9/E25 cut.



156

10*

éhovx)er e‘neréy 6(‘)-90‘ MeV

..."5:‘—\1_

101 | | | | ‘ | | | o | | | ‘ | | |
| showér eﬁerggl 90‘-126 MeV | | sHowér en‘erg)} 126-15b MeV |

.
P R

Lke

10*

10°

\
D
e
o

102 L
0.00 0.50 0.00 0.50 1.00

Figure B.2: The E9/E25 distributions for data (lines) and Monte Carlo

(dots) inclusive 7°

’s in shower energy bins. The vertical lines represent
the lowest and highest values of the E9/E25 cut for that energy bin. For
photons with |cosf,| < 0.7071, the 99%-efficient cut value is calculated from
cut = 0.955E°%99% — 0.004E 1 + (1.6 x 10 ¥)E~* — 0.018 £~ "5, where F is

the shower energy in GeV. The plots have been normalized to equal area in

each energy bin.
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We also look at m.,, in inclusive 7%’s. We divide the 7’s into 10 equal momen-
tum bins between 0 and 250 MeV/c. We subtract the fake-7° background from
data 7’s using tagged background from generic Monte Carlo 7%’s; the details of
this are described in Appendix C. We compare these background-subtracted data
distributions with the tagged-7° m.., distributions from generic Monte Carlo. Fig-
ure B.3 shows this comparison for all momenta. The Monte Carlo distribution is
substantially narrower and does not reproduce a feature on the high side of the

data distribution.

B.2.2 Am for D*%/v candidates

Finally, we look at Am for D*°/v candidates in data and generic Monte Carlo.
Figure B.4 shows a fit to the Am distributions using the background function
we use in our analysis' and a simple Gaussian shape for the signal peak. Unlike
the cases of E9/E25 and m.,, where we intend to use our distributions to tune
the Monte Carlo, for Am we are merely checking for consistency. We find the
width for the data Am peak to be 0.85040.048 MeV /c?, while we find a width of
0.743+0.018 MeV /c? for the generic Monte Carlo, a difference of 0.41+0.10 MeV /c?

when the widths are subtracted in quadrature.

'The function is n(Am — m0)*e’ @™ ™=0)  where we vary n, a, and b.
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Figure B.3: The m.,, distribution for data and Monte Carlo inclusive 7°’s
with momentum less than 250 MeV /c. The vertical lines represent our cut.
The Monte Carlo 7°’s have been tagged; the fake-7° background has been

0

subtracted from the data 7 candidates. The plots have been normalized

to equal area.
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B.3 Monte Carlo parameters that affect slow-7" efficiency

Some Monte Carlo parameters strongly affect the shape of the E9/E25 and m.,
distributions; others may still affect slow-7° efficiency while having little effect on
the shape of E9/E25 and m.,,. We describe all such parameters here, noting which
we can change to make the Monte Carlo E9/E25 and m., distributions a better

match to the data.

B.3.1 Calorimeter noise

There are two categories of noise that are put on the calorimeter crystals. The first
type, incoherent noise, is applied crystal by crystal. For each crystal, a random
number is generated from a Gaussian distribution, multiplied by a constant o for
that crystal, and added to that crystal’s signal. Changing this noise affects both
E9/E25 and m,,.

The second type of noise is applied to groups of crystals and is termed coherent
noise. The crystals are put in groups of 48 according to their hardware connections
(i.e. half of the crystals connected to the same board). A random number is again
generated from a Gaussian distribution, multiplied this time by a group o, and
then the same noise is added to each of the 48 crystals in that group. Changing

this noise has small effects on E9/E25 and m.,,.
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B.3.2 Material

The material between the interaction point and the calorimeter affects the efficiency
of the calorimeter. Photons that interact with material closer to the beam pipe
tend to not be reconstructed in the calorimeter, while photons that interact with
material closer to the calorimeter tend to deposit some fraction of their energy in
the calorimeter and are still reconstructed. For that reason, we divide the material
in CLEOG into “inner” material, which includes all material at radii smaller than
the outer DR cathode, and “outer” material, which includes material from the
outer DR cathode to the inner CC support structure. Since photons that interact
in the inner material are generally not reconstructed, changing the inner material
has little or no effect on E9/E25 and m,,. If a photon starts its shower outside the
inner region but before it reaches the calorimeter, both the shape of the shower
in the calorimeter and its reconstructed energy are affected. Changing the outer
material changes the shape of the m,., low-side tail and makes fairly small changes

to the E9/E25 distribution.

B.3.3 Calorimeter crystal gains

The crystal gains (electronic-gain corrected ADC counts to energy conversion) are
calibrated using showers with energies of about 5 GeV, which is much higher than
the energies we see for slow 7%s (30-230 MeV). It is possible that a non-linearity

exists that would make the gains depend on the shower (or crystal) energies. Com-
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parison of Monte Carlo and data crystal response? leaves room for a small scattering
in the crystal gains at low crystal energies that does not exist at higher energies.
Since we only use our modified Monte Carlo to generate slow 7%’s, which have
low-energy showers, we apply a scatter to the gain at all crystal energies.> We add
this scatter in the subroutine cceadc.F. We multiply the gain of each crystal by
1+ rs, where r is a Gaussian random number and different for each crystal, and
s is the percent scatter divided by 100 (e.g. if we add a 3.2% scatter, we multiply
times 1 + 7(0.032)). Adding a scatter to the crystal gains has a small effect on

E9/E25, but a significant effect on the width of m.,,.

B.3.4 CUTGAM

In CLEOG, the parameter CUTGAM describes the lowest energy to which GEANT
(through CLEOG) will track photons; when the energy of a photon falls below this
cutoff, all of its energy is deposited in the current volume. The value of this cut-
off can be changed at run-time with an FFREAD command (CUTS 0.0001). In the
calorimeter, the value of this cutoff can affect the shape of showers by restricting
the extent to which showers can spread out, thereby affecting the value of E9/E25.
The default value of this cutoff is 1 MeV, which is chosen as a compromise between
CPU time and accuracy. Lowering this cutoff can affect the shape of showers by

allowing showers to expand further.

2Done by Brian Heltsley.
3In effect, we are only adding this scatter at low energies. This is not the correct
thing to do in general, since it adds a scatter independent of crystal energy.
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B.3.5 Event environment

Finally, the event environments in data and Monte Carlo can affect slow-7° effi-
ciency differently. The effects of the event environment can be seen by comparing
E9/E25, m.,,, and Am for events with only slow 7°’s and D**/v signal Monte Carlo
events. Figures B.5 and B.6 show these effects. While it is difficult to change the
event environment in the Monte Carlo, we can gauge the effect of differences be-

tween the data and Monte Carlo events environments by embedding.

B.4 Method

Here we describe an error we found in the Time of Flight material definition in
CLEQOG and how we improve the agreement of the Monte Carlo E9/E25 and m..,, dis-
tributions with data. We also describe how we determine the efficiency correction

for D*°0v s and how we determine the uncertainty on this correction.

B.4.1 Correcting an error in the Time of Flight material

Before we tune E9/E25 and m.,,, we first make a correction to the Time of Flight
(TOF) material in CLEOG. After close inspection of the material in the outer detec-
tor (the outer DR cathodes and beyond), we discovered that the radiation length
entered in the description of the TOF material for the TOF barrel and endcap
detectors (KMATBS and KMATES) is too short. GEANT calculates the radiation length
for each material based on the atomic weight and atomic number read in for that

material. The default values entered for the scintillator material are A = 20 and
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Figure B.6: The Am distributions for 7°’s from events with only 7%’s
(single-° events) and fully simulated tagged D*°v events. The vertical

lines represent our cut limits. The plots are normalized to equal area.
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Z = 10. This leads to a radiation length of 28.6 cm, which is quite different from
the value of 43.8 cm quoted in the Particle Data Booklet for scintillator material.*
The default values for the radiation length and the thickness of the TOF scintilla-
tor lead to the material in the TOF barrel detector making up 16.7% of a radiation
length. Using the correct radiation length and making some assumptions about
the amount of aluminum foil and electrical tape wrapped around each scintilla-
tor,> we calculate there should be 11.6% of a radiation length for the TOF, which
corresponds to a radiation length of 41.2 cm. Accordingly, we change A and Z to
12 and 6, respectively, in CLE0G.® This change makes negligible difference to the
E9/E25 distribution, but significantly changes the shape of the low-side m,, tail.

This is our first step, albeit backwards, towards matching the data distributions.

B.4.2 Tuning the Monte Carlo E9/E25 and m,, distributions to

the data

From the inclusive-7°

E9/E25 and m,., distributions, we determine by how much
the distributions need to change. In the case of E9/E25, we find how much the
peak of the distribution needs to be moved; for m,,, we determine how much width

needs to be added in quadrature. We next generate events containing only slow

4The PDG gives the radiation length for polyvinyltolulene with a carbon-to-
hydrogen ratio essentially identical to that of the TOF scintillators.

We use 0.015cm aluminum and 0.096 cm carbon (for electrical tape). We
got this from examining an actual endcap TOF counter, which had 2 layers of
aluminum foil on each side and an average of 2 layers of electrical tape on each
side. We assumed the same wrapping was used on the barrel counters.

6The endcap counters have the same thickness as the barrel counters, so the
same changes should be made to A and Z in the endcap.
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7’s (called “single 7%’s”from now on) with the default Monte Carlo. Then, we
generate more single-m° events using a CLEOG where certain parameters have been
modified. We compare the E9/E25 and m,, distributions for the “default” events
and the “modified” events. We vary our modifications until the difference between
the “modified” and “default” 7% distributions match the differences between the
data and generic Monte Carlo inclusive 7°’s. We end up with a version of Monte
Carlo which does a better job of simulating the data E9/E25 and m., distributions.
We use this Monte Carlo to generate 7%’s, which we embed in data events. The
E9/E25 and m.,., distributions of these embedded 7°’s should then match those for
real data 7°%’s.

We generate events containing only 7°’s by generating B~ — D*° /™ i, events
and forcing the D° the lepton, and the other B in the event all to decay to
neutrinos. We require the generated lepton to have a momentum between 0.8 and
2.4GeV/c and to have |cosOjepron| < 0.7071. We also require both of the photons
from the 7° decay to be in the region |cosf,| < 0.7071. This allows us to have
a 7 sample with the same momentum spectrum as the 7%’s from B~ — D*V ¢~y
events. The momentum spectrum is shown in Figure B.7.

Both the incoherent calorimeter noise and CUTGAM have significant effects on
the shape of E9/E25. The Monte Carlo has been calibrated with the default
values for these parameters, and changing them throws the calibration off. While
we can account for this for either parameter at some level (see Appendix E),
changing the incoherent noise has more predictable effects, since it essentially adds

a common amount of noise to all showers. Since our goal is to determine not just
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Figure B.7: The 7° momentum spectrum for D*°/v Monte Carlo events

with the cuts listed in the text.

an uncertainty but an efficiency correction, we choose to increase the amount of
incoherent noise to match the E9/E25 distributions and take the efficiency change
from varying CUTGAM to be an uncertainty.

Looking at the shapes in Figure B.2, we quantify the shape difference by deter-
mining the peak of each distribution. These peak values are shown in Figure B.8.
Also shown in Figure B.8 are the mean E9/E25 values calculated for the range
between an energy-bin-dependent lower cutoff” and 1. We use the means as a
cross-check since the peaks are limited by statistics. We determine that we should

increase the incoherent noise by 55+5% to match the E9/E25 peaks. The peak

"The cutoffs are 0.80, 0.84, 0.88, 0.90, 0.92, and 0.94 for bins 1, 2,...6, where
the bins are 30 MeV wide and start at 30 MeV.
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Figure B.8: The peak (left) and mean (right) values of E9/E25 for data

0

and generic Monte Carlo inclusive 7°’s in energy bins.

shifts for Monte Carlo with the incoherent noise increased by 55% and 60% are
shown in Figure B.9. Figure B.10 shows the mean shifts for the same noise increase.

Increasing the incoherent noise increases the width of m.,, but not enough to
match the data. We quantify the width difference by fitting the central part of the
m,, distribution to a Gaussian. We then subtract the Monte Carlo widths from
the data widths in quadrature. The widths and differences are listed in Table B.1.
These widths already include any event environment effects which may increase the
width, so we can use single-7® Monte Carlo to determine what modifications are
necessary to match the width increases. To saturate the difference, we find we must
add a scatter of 3.240.2% to the gains. The uncertainty includes the statistical

uncertainty from the inclusive 7%’s and our single-7° samples. The width added
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in Monte Carlo when we correct the TOF material, increase the incoherent noise,
and add gain smearing is compared to the width we need to add in Figure B.11.

The three modifications to the Monte Carlo,

e correcting the radiation length of the TOF material,
e increasing the incoherent noise o’s by 55%, and

e adding a gain scatter of 3.2%,

make up what we from now on call the “Modified Monte Carlo”. We call the
Monte Carlo without these modifications the “Default Monte Carlo”. We use both

0

to determine an efficiency correction for slow 7"’s, as we describe in the following

section.

B.4.3 Finding the data-Monte Carlo efficiency difference

We choose to do our efficiency study by embedding Monte Carlo 7%’s in both generic

0 events so that the

BB Monte Carlo and data events rather than using single-m
efficiency changes we measure include the effects of the event environment on the
E9/E25, m.,, and Am shapes. We embed into events chosen with the same dataset
balance as our data.

We run CLEOG to produce .fzx files of single-7’ events. We use the STRP
processor to get the information from the . fzx events, with one minor modification.

STRP does not save the ADC count for a crystal; it instead converts the crystal

ADC count to an energy. In the default STRP, the crystal energy information
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Table B.1: The m.,, widths from simple Gaussian fits to the inclusive 7

distributions.

Monte Carlo widths in quadrature.
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7 Momentum Data Monte Carlo | Difference
(MeV/c) width (MeV/c?) | width (MeV/c?) | (MeV/c?)
0-25 6.10+0.56 4.16+0.08 4.46+0.77
25-50 5.42+0.18 4.1840.03 3.45+0.28
50-75 5.03+0.14 4.13+0.02 3.684+0.21
75-100 5.61+0.14 4.15+0.02 3.78+0.20
100-125 5.03+0.15 4.10+0.02 3.70+0.22
125-150 5.36+0.16 4.084+0.02 3.47+0.24
150-275 5.23+0.16 3.97+0.02 3.40+0.25
175-200 5.30+0.16 3.95+0.02 3.03+0.24
200-225 9.37+0.17 3.96+0.02 3.64+0.25
225-250 5.13+0.15 3.93+0.02 3.28+0.24

0

The difference is calculated by subtracting the data and



175

is truncated at 1MeV. This systematically throws out on average 0.5MeV per
crystal; in a 1 GeV shower this loss is not important, but in a 30 MeV shower it is
quite significant. To avoid this problem, we save crystal energies down to 10keV.

Using the MERG processor, we merge the 7° information into bed events selected
from generic Monte Carlo, on-resonance data, and off-resonance data. We make
one® minor modification to the MERG processor. MERG converts the crystal energies
it gets from the STRP files back into ADC counts. Since the crystal energies get
truncated in STRP, the reconstructed ADC count is always slightly smaller than
the generated ADC count (e.g. 516.998 instead of 517.000). MERG truncates the
reconstructed ADC count, so the reconstructed value usually comes out 1 ADC
count below the generated value for each crystal hit in a shower, effectively lowering
each crystal energy by about 0.2 MeV. The cumulative effect is that the embedded
shower has an energy that is too low by about 1.5MeV. The solution is simple;
we modify MERG to round the reconstructed ADC count rather than truncating it.
This change completely eliminates this error.

For a complete discussion of how bed events are selected, see Bruce Berger’s

CBX about charged slow pion efficiencies [46]. We use the same bed events as the

charged slow pion study. Briefly, the criteria for bed events are as follows:

e KLASGL = 10
d Ntracks >4

e R2GL< 0.4

8It’s really two, since we also have to change the energy-to-ADC conversion to
be consistent with the change to STRP.
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e Require electron or muon:

0.8GeV/e < prepton < 2.4GeV/e
— | €08 brepton| < 0.7071

R2ELEC > 3 for electron

DPTHMU > 5 and MUQUAL = 0 for muon

We select bed events from on-resonance data, off-resonance data, and generic BB
Monte Carlo.
Once we have the 7°’s embedded within the bed events, we look at those events

and see if we can find the embedded 7%’s. To be “found”, a 7°

must pass the cuts
that we require on the 7%'s in our B~ — D*° /¢~ 7, analysis. To make the Am
cut, we form Am with the generator-level information for the D°. As mentioned
in Section B.4.2, our modifications to the default Monte Carlo parameters (i.e.
constants) throws off the calibration of the Monte Carlo. As a result, some energy
(about 1 MeV) gets added to each shower, which also causes m.,, to increase.
Since this is a calibration issue, and not some profound change to the simulation,
we correct for this energy change. We describe how we correct for this change in
Appendix E.

A look at the Am shape of embedded 7° candidates (see Figure B.22) shows
a peak at the expected value of Am and a significant background. We subtract
7% candidates that also appear in the bed events, so the background comes from

one of the showers we have embedded combined with a random shower in the bed

event. This background makes up about 20% of the 7° candidates in the Am
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signal region in embedded events. Since this background also occurs in our D*/v
signal Monte Carlo, and to be consistent with our procedure for calculating the
D*%v efficiency, we perform a Am sideband subtraction for our results in w bins.’
We use 0.147GeV/c? < Am < 0.165 GeV/c? as our sideband, and we normalize
the sideband contribution using the combinatoric scale factors from our D*/v
analysis. This sideband subtraction leaves about 35% of this background, or 7%
of the candidates in the signal region.

We calculate the efficiency for each bed type (on-resonance, off-resonance, and

Monte Carlo) as follows for each w bin:

€type — [(Nfound(embed),sig - Nfound(bed),sig)

_S(Nfound(embed),side - Nfound(bed),side)]/Nbeda (Bl)

where €, is the efficiency, sig or side means in the Am signal (0.1392-0.1452) or
sideband (0.147-0.165) region, s is the combinatoric scale factor from our D**fv
analysis, Njound(embed) 15 the number of 7%s found in the embedded events,
Nfound(bedy 18 the number of 7%s found in the bed events, and Nj.q is the num-
ber of bed events.

We calculate the 7° efficiency for data events from €,, and €,/

1 l-xz55
€data = <E> €on — < $B§B> €off (BQ)

9In our D*°/v analysis, we divide the data into 10 bins of w, where w is defined
as the dot product of the 4-velocities of the B and D* and is equal to the D*’s
relativistic v in the B rest frame.
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where xpg = .749 comes from the on/off ratio and the efficiency difference for
on- and off-resonance events to pass the bed event selection cuts. The statistical
uncertainty on rpz has a negligible effect on €g444-

Finally, we compare the 7° efficiencies for Modified 7’s embedded in data
events and Default 7%’s embedded in Monte Carlo events. We calculate the effi-

ciency difference

Ae = Hata—tMC (B.3)

eEMcC

B.4.4 Variations on the Modified Monte Carlo

The Modified Monte Carlo represents our “best guess” for determining slow-m ef-
ficiency; however, there are some uncertainties in this determination. We make six
variations to the Modified Monte Carlo and determine how the efficiency difference
changes with each variation. We take the change in the efficiency difference to be
the systematic uncertainty.

The six variations are:

e incoherent noise (IN): there is an uncertainty of 5% on the increase in the
incoherent noise o’s. We change this increase to 60%, and decrease the gain

scatter to 3.1% to keep the m., widths the same.

e crystal gains (CG): There is an uncertainty of 0.2% on the gain scatter. We

decrease the gain scatter to 3.0%.

e coherent noise (CN): According to Jesse Ernst, it is possible that the coherent

o’s are wrong by up to 25%. We increase these o’s by 25%, while changing
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the incoherent noise increase to 50% and the gain scatter to 3.0% to keep

the E9/E25 and m,, distributions the same.

e inner material (IM): We increase the inner material by 10% based on a study

done by Brian Heltsley [44].

e outer material (OM): There are no studies of which we are aware that probe
the level of accuracy of the outer material. There is some certainty about the
outer DR cathode material, since the inner DR cathodes are probed in the
study of inner material. The rest of the material is fairly simple, but, wary
of the TOF mistake, we increase the outer material by 15% as a conservative
measure. We change the incoherent noise increase to 50% and the gain scatter

to 3.0%.

e gamma cutoff (GAM): We lower CUTGAM to 0.1 MeV. This has a fairly notice-
able effect on E9/E25, and we must change the incoherent noise increase to
35% to keep the E9/E25 peak in the right place. We also increase the gain

scatter to 3.6%.

B.5 Results

In this section we present our results for the slow 7° efficiency difference and the

uncertainty on that difference.
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B.5.1 Efficiency difference

We measure the following efficiencies using 1.6 x 10* embedded 7%’s and performing

the Am sideband subtraction:
® ¢,, = 0.5925 4+ 0.0038,
® c,rf = 0.5873 +0.0038, and
e ¢)rc = 0.5980 £ 0.0038,

where ¢,, is the efficiency for Modified Monte Carlo 7%’s embedded in on-resonance
data events, €,s is the efficiency for Modified Monte Carlo 7%’s embedded in off-
resonance data events, and ey is the efficiency for Default Monte Carlo 7%s
embedded in generic Monte Carlo events. From these we get €444, = 0.5980+0.0060,
which implies a slow-7* efficiency difference of —0.6241.08%. The results are given

in w bins in Table B.2 and plotted in Figure B.12.

B.5.2 Systematic uncertainty on the efficiency difference

There are two types of contributions to the systematic uncertainty on the efficiency
difference. The first comes from the uncertainty on the values of the many CLEOG
parameters, as we described in Section B.4.4. The second comes from the effect

that the number of background showers has on 7 efficiency and is described below.
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Table B.2: The data and Monte Carlo efficiencies and efficiency difference
in w bins. The uncertainty on the efficiencies includes the statistical uncer-

tainty from the combinatoric background scale factor, which largely cancels

in the efficiency difference.

Efficiency
w EMc €data Difference (%)
1.00-1.05 | 0.6268+0.0149 | 0.59354+0.0198 -5.3+3.7
1.05-1.10 | 0.6106+0.0128 | 0.5797+0.0170 -5.14+3.1
1.10-1.15 | 0.622140.0122 | 0.5992+0.0159 -3.7£2.9
1.15-1.20 | 0.6167+0.0126 | 0.6305+0.0160 2.24+2.9
1.20-1.25 | 0.57424+0.0133 | 0.5818+0.0169 1.3+3.3
1.25-1.30 | 0.588540.0140 | 0.62504+0.0177 6.2+3.4
1.30-1.35 | 0.5873+0.0165 | 0.5953+0.0196 1.44+3.4
1.35-1.40 | 0.5820+0.0174 | 0.5955+0.0219 2.3+3.8
1.40-1.45 | 0.5850+0.0213 | 0.56114+0.0243 -4.1+4.1
1.45-1.51 | 0.5756+0.0219 | 0.5446+0.0256 -5.4+4.4
all 0.59804-0.0047 | 0.5943+0.0058 -0.6+1.1
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Variations

We generate separate 7’ samples for each of the variations described in Sec-
tion B.4.4. We embed each of these samples in data and recalculate the efficiency
difference. We take the difference between the efficiency difference we calculate
using the Modified Monte Carlo and the efficiency difference we calculate using
a variation to be the systematic uncertainty due to that variation. The results
of these variations are listed in Table B.3. Over all momenta, and with the Am

sideband subtraction, the changes in the efficiency difference are:
e incoherent noise: -3.5+0.8%
e crystal gains: -2.4+0.8%
e coherent noise: -2.04+0.8%
e inner material: -0.2+0.8%
e outer material: -0.440.8%
e CUTGAM: -2.1£0.8%

We take all of these uncertainties to be symmetric, with the exception of CUTGAM
(there’s clearly no benefit to raising CUTGAM). Adding the uncertainties in quadra-
ture and including the statistical uncertainty, we get a total uncertainty from the

variations of T24%.



Table B.3: The systematic uncertainties in bins of w on the efficiency dif-
ference (includes Am sideband subtraction) due to parameter uncertainty.
The first column lists the w range for each bin. The second through seventh
columns show the uncertainties in percent for the variations in incoherent
noise (IN), crystal gains (CG), coherent noise (CN), inner material (IM),

outer material (OM), and CUTGAM (GAM). The last column gives the sta-
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tistical uncertainty for each variation.

w IN | CG | CN | IM | OM | GAM || Uncertainty
1.00-1.05| 6.2 | -05| 2.3 | -2.1| 1.2 0.4 3.1
1.05-1.10 | -24 | 1.9 | 3.6 |11.5| 0.6 0.6 2.5
1.10-1.15|-4.0|-30| -14 | -1.2 | 3.7 | -0.1 2.4
1.15-1.20 | -4.6 | -6.0 | -93 | -4.0 | -7.3 | -7.5 2.4
1.20-1.25 | -0.6 | 44 | 2.6 6.0 | 4.2 1.1 2.6
1.25-1.30 | -9.9 | -7.8 | -3.9 | -9.5 | -3.7 | -11.0 2.6
1.30-1.35|-69 | -84 | -45 | 47 |-09| -6.7 2.8
1.35-1.40 | -7.2 | -3.5 | -13.1 | -0.7 | 1.0 1.9 3.1
1.40-1.45| 3.0 | -24| 43 | -20|-1.5 2.8 3.3
1.45-1.51 | -4.7| 3.4 | 3.9 5.8 | -1.2 | 44 3.7
all -3.5|-24| -20 |-021]-04] -21 0.9
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Number of Showers

The number of showers in our bed events and in B — D*/v candidate events are
quite similar for data and Monte Carlo (see Figure B.13). When we embed showers,
however, we increase the number of showers in an event by 2 (on average). If the
data and Monte Carlo efficiencies somehow depend differently on the number of
showers, this difference could add a bias to our efficiency measurements.

To estimate the uncertainty due to this source, we calculate the efficiency for
finding embedded 7%’s in bins of the number of showers in the bed events for both
data and Monte Carlo events. We fit the results to a straight line, as shown in
Figure B.13. We use the slope from the fit to calculate the change in efficiency
due to the difference in the number of showers. The numbers for this calculation
are shown in Table B.4. We find that this effect changes the efficiency difference

by 0.58+0.35%, which we take as an uncertainty of 0.68%.

B.5.3 Total 7¥ efficiency uncertainty

We find an efficiency difference of —0.6 +1.1%, an uncertainty from the variations
of 72:4%, and an uncertainty from the number of showers of 0.7%. This leads to a

total efficiency difference and uncertainty of —0.6123%.

B.6 Cross checks

We compare the E9/E25 and m., distributions for both the embedded Default

and Modified Monte Carlo with data distributions. We also check to see if the
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Figure B.13: The number of showers in D**/v candidate events and our
selected bed events for data (left) and Monte Carlo (right). The D**fv

candidates have all analysis cuts applied to them.

Modified Monte Carlo shows any increase in the width of the Am peak. Finally,
we check that the peak of m,, falls in the same place for data and Monte Carlo

0

inclusive 7"’s.

B.6.1 E9/E25 and m,, distributions

Figures B.15 and B.16 show the E9/E25 distributions for embedded 7°’s and D*/v
candidates from data in two shower energy bins. There is a clear improvement in
agreement between the Default and Modified 7%’s. The E9/E25 shape for the
Modified Monte Carlo in the 90-180 MeV bin is not quite in agreement with the

data, but the difference is covered by the change in shape with the variations. Fig-
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ures B.17 and B.18 show how the E9/E25 distribution changes with the variations
to the Modified Monte Carlo.

The background in embedded events that comes from one of the showers we
have embedded combined with a random shower in the bed event makes it dif-
ficult to directly compare the m..shape for real inclusive 7°’s with correctly-
reconstructed embedded 7%’s. For calculating the efficiency in w bins, we subtract
these background events using the Am sideband, but it turns out that the com-
ponent of this background that falls in the Am sideband does not have the same
shape in m,, as the component in the Am signal region. The difference occurs
primarily in the low-side-tail region of m.., (0.120 GeV/c? and less). We have tried
to compensate using a tagged m.,, shape for this background from D**/v signal
Monte Carlo, but this is not a perfect solution, since the energy distribution of
the background showers in the signal Monte Carlo is not the same as the bed
events (although it is close for the Monte Carlo bed events). The result is that
the background-subtracted m.,., shape for embedded events is lower than it should
be for the low-side region, while the high-side shape is fine. We compensate by
also plotting m.., for single 7%’s, where the low-side tail is fine, but which we
know does not have the correct high-side tail shape (which comes from the event
environment). Figures B.19 and B.20 show the m.,., distribution for Default and
Modified 7°’s and inclusive data 7°’s. Looking at the low side of the single-7° plots
(left plots) and the high side of the embedded-7° plots (right plots), we see that

the agreement is good between data and the Modified Monte Carlo. Figure B.21
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shows how the m,., distribution changes with the variations to the Modified Monte

Carlo.

B.6.2 Am width

Figure B.22 shows the Am distribution for Modified Monte Carlo 7°’s embedded in
data events and Default Monte Carlo 7%’s embedded in Monte Carlo events. From
a fit to these distributions similar to the fits in Figure B.4, we find that the width
of the Am peak increases in quadrature by 0.507+0.041 MeV/c?. As reported in
Section B.2.2, the generic Monte Carlo D*°/v candidates lacked 0.4140.10 MeV /c?
in width. The fact that our modifications cause the Am width to increase by the
correct amount (within errors) is a great verification that our modifications are

valid since we do not explicitly tune the width of this variable.

B.6.3 m,, peak

The efficiency for passing the m,, cut depends partly on where the peak of the m.,,
distribution falls. If the Monte Carlo and data were to have the exact same shape

O efficiency for Monte Carlo and data would

in m,, but were displaced, the 7
be different. Since our study deals exclusively with Monte Carlo 7°’s, we were
concerned that we might be overlooking a source of efficiency difference.

To compare the location of the m., peak for data and Monte Carlo, we examine

the means from the Gaussian fits to the m,, shapes used to determine the widths

for data and Monte Carlo inclusive 7”’s (Section B.4.2). We find that, over all
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momentum bins, the means are different by 0.01 4 0.02 MeV/c?, a difference to

which our analysis is quite insensitive.

B.7 Conclusion

We find a 7° efficiency difference and uncertainty of —0.6753% for D*fv 7%s.
Using 7° momentum bins, where we do not do a Am sideband subtraction, our
result is —0.773:3%. These results are valid only for the particular 7° momentum
spectrum that we used, but we have included a way to calculate the uncertainty
given a different momentum spectrum. This result is a large improvement over the

previous best uncertainty measurement of 8.6% [42].
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Figure B.17: The change in E9/E25 for showers with energy between 30
and 90 MeV and with 7% momenta between 50 and 125 MeV/c for the six
variations (dots) compared to the Modified Monte Carlo (line). The plots

are made from unembedded 79’s.
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Figure B.18: The change in E9/E25 for showers with energy between 90
and 180 MeV and with 7° momenta between 50 and 125 MeV /c for the six
variations (dots) compared to the Modified Monte Carlo (line). The plots

are made from unembedded 79’s.
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Figure B.21: The change in m.., for the six variations (dots) compared to
the Modified Monte Carlo (line) over all 7° momenta. The plots are made

from unembedded 7°’s.
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Figure B.22: TheAm distributions for Modified 7°’s embedded in data and
Default 7%’s embedded in Monte Carlo. The plots are normalized to equal

area.



APPENDIX C

BACKGROUND SUBTRACTION FOR

INCLUSIVE 7 m.,, DISTRIBUTIONS

The m,, background shape of Monte Carlo is different from that of data, but
not radically (see Figure C.1). We postulate that this difference is due entirely to
the different number of low-energy showers, an assumption that we will re-evaluate
below. If we reweight the fake 7%’s from generic Monte Carlo based on their shower
energies, the reweighted fake-7° m., distribution from Monte Carlo should look
exactly like the fake-7° distribution in data. We subtract the reweighted fake-7°
distribution from the data distribution to get the m,, distribution from real data
7%’s. We do this in 10 equal bins of 7° momentum from 0 to 250 MeV/c.

First, we plot the total number of showers in all events versus energy for data
and generic Monte Carlo. The showers must pass all of the cuts listed in Section B.2
with the exception of the m,, and Am cuts. We subtract continuum background
from all data candidates using off-resonance data. These distributions are shown
in Figure C.2.

We then normalize the Monte Carlo distribution based on the relative number

of BB’s in the data and generic Monte Carlo samples. This normalization turns

200



201

50000
40000
30000

20000 "

10000 — -

‘ | | ‘ | | ‘ | | ‘ | | ‘ |
0
0.090 0.110 0.130 0.150 0.170

m(yy) (GeV)

Figure C.1: The m,,distributions for all inclusive slow-7° candidates from

data and Monte Carlo. The plots are normalized to equal areas. The fact
that the Monte Carlo is high on the low side and low on the high side implies

a different energy spectrum for the Monte Carlo background showers.
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Figure C.3: The m., shape of the 7° background from re-weighted generic

Monte Carlo for four of the ten momentum bins.

out to be 0.203640.0037, where the uncertainty comes from the 1.8% uncertainty
on the number of BB’s in the data, slightly different than the normalization based
on all hadron events (0.192) because of a slight difference in efficiency for passing
the event cuts listed above. We divide the data distribution by the renormalized
Monte Carlo distribution; the resulting reweighting factors are shown in Figure C.2.

We tag fake 7°’s in generic Monte Carlo for the background m.,., shape. We
re-weight the contribution of each fake 7° to the m,, distribution by the product
of the re-weighting factors for each shower based on its energy. This gives us

background m.,, distributions, which are shown in Figure C.3.
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Figure B.3 shows that the tagged Monte Carlo 7°’s do not go much above
0.155GeV/c? in m.,,. If we use the normalization of 0.2036 for the re-weighted
Monte Carlo background, the data m,,shape has a considerable tail above
0.155 GeV/c? (see Figure C.4), when we have no reason to expect this tail. We
instead find the normalization by fitting the background shape over all momenta to
the data shape over all momenta in the region 0.155 GeV/c* < m.,, <0.185 GeV /%
This fit is shown in Figure C.4.

We use the background shapes to subtract the background from the data m.,,
shapes, shown in Figure C.5. We normalize the backgrounds using the common
normalization from the fit to m.,,. The subtracted shapes are shown compared to
the tagged Monte Carlo shapes in Figure C.6.

We have a reason to believe that this method does not do an entirely correct
job of subtracting the fake 7%’s. The normalization we get from the high-side m.,,
fit (0.2056+0.0008) and from the number of BB’s in the data and generic Monte
Carlo samples (0.203610.0037) agree within uncertainties, so there is no cause for
concern there. While we do not expect that the normalization should be a function
of 7° momentum if it only depends on the number of BB’s, this is exactly what we
see. Figure C.7 shows the results of the m,, fit in momentum bins; it is clearly not
a flat distribution. This leads us to believe that our assumption that the difference
in the m,, background shapes comes solely from a difference in the number of low-
energy showers in data and Monte Carlo is not quite correct. We do believe that

our background subtraction is accurate to several percent, which is good enough
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Figure C.5: The m.,, shape of the data 7° candidates for four of the ten

momentum bins. Continuum background has been subtracted.
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Figure C.6: The m.,, shape of data (line) and tagged generic Monte Carlo

(dots) s for four of the ten momentum bins.
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Figure C.7: The ratio of normalizations from fits to m,, in 7° momentum

bins to the normalization from the number of BB events.

for the purpose of comparing the m,, shapes, but further development of this

background-subtraction technique would be necessary to decrease the uncertainty.



APPENDIX D

APPLYING A TAIL TO THE SINGLE-r"

E9/E25 DISTRIBUTIONS

0 candidates

We compare the E9/E25 means for generic Monte Carlo inclusive 7
and single 7%’s in Table D.1. Our first step towards adding a tail is to assume
that the inclusive-7® E9/E25 distribution has a spike from real 7%’s of area 100 at
the mean E9/E25 value for single-7”’s. (This approach obviously has little to do
with what the distribution actually looks like.) We then attribute the difference

in means to a spike at 0.8. We calculate the area of this second spike as

Ay = 100222 (D.1)

M;—0.8"

where A, is the area of the second spike, M, is the E9/E25 mean from single-7°
Monte Carlo, and M; is the E9/E25 mean from inclusive 7° Monte Carlo. We
then insert this second spike into an imaginary distribution for the modified single
7% Monte Carlo, which has a spike of area 100 at its measured mean. From that
distribution, we can calculate a corrected mean, shown in Table D.2. We compare
the corrected mean (M,) to the inclusive-m® mean (M;) to get the final change in

the mean, M; — M,.. These corrected mean changes are plotted in Figure B.10.

209
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Table D.1: The mean values of E9/E25 calculated for six shower energy
bins. The second column gives the range over which the mean was cal-
culated. The third and fourth columns give the means for showers from

inclusive generic Monte Carlo slow 7%’s and from Default single 7%’s, re-

spectively.
Shower Energy (MeV) | E9/E25 Range | Inclusive 7° | Default Single 7°
30-60 0.80-1.0 0.9284 0.9418
60-90 0.84-1.0 0.9486 0.9552
90-120 0.88-1.0 0.9591 0.9634
120-150 0.90-1.0 0.9645 0.9645
150-180 0.92-1.0 0.9691 0.9716
180-210 0.94-1.0 0.9741 0.9752

Table D.2: The mean of E9/E25 measured for Modified single 7%’s (second

column) and corrected using the method in Appendix D.

Shower Energy (MeV) | Modified Single 7° | Corrected Mean
30-60 0.9180 0.9068
60-90 0.9378 0.9319
90-120 0.9508 0.9468
120-150 0.9583 0.9555
150-180 0.9645 0.9621
180-210 0.9689 0.9678




APPENDIX E

SHOWER ENERGY AND m.,., CORRECTIONS

FOR MODIFIED MONTE CARLO

CLEQG is calibrated such that the energy of photons reconstructed in the calorime-
ter matches their generated energy on average. When we change the calibration
constants, as we do when changing the noise levels, or when we change CUTGAM,
the reconstructed energies become shifted from the generated energies. This shift
in shower energies also affects m,,. If we ignore this effect, it biases the efficiency
for showers passing the shower energy, E9/E25,' and m.., cuts.

We correct for the shift in shower energy by examining the reconstructed shower
energy versus the generated energy for single 7° events generated with the Modified
Monte Carlo and for each variation. We find that, except in the case of the CUTGAM
variation, the energy shift is consistent with being flat (see Figure E.1). We fit
the shift to a constant, which we then use to correct the reconstructed shower
energies in the embedded events. In the case of the CUTGAM variation, we fit the

shift to a line and apply an energy-dependent correction to the shower energies.

'The E9/E25 cut value depends on the shower’s energy. The dependence is
given in the caption to Figure B.2.
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The amounts that we correct the shower energies in the Modified Monte Carlo and
the variations are listed in Table E.1.

Since the shower energies change, the peak of m,, also moves. We make a
correction similar to the correction to the shower energies, except that we compare
the peak of m.,, in the Modified Monte Carlo (or variations) to the peak of m.,
in the Default Monte Carlo in 7° momentum bins. We fit the difference versus
momentum to a straight line, and use the results of the fit to correct m., based
on the momentum of the 7° candidate. The normalizations and slopes for the m.,,
corrections are also listed in Table E.1.

We assess the uncertainty of these corrections by varying the results of each fit
(shower energy shift, m.,. peak difference) by its statistical uncertainty. We also
try correcting m. in momentum bins instead of using the fit. We find that each
change to the correction makes less than 0.1% difference in the resulting Modified-
Default efficiency difference. We neglect these uncertainties, since they are at least

an order of magnitude smaller than any statistical uncertainty in our study.
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MINUIT %2 Fit to Plot 1&1
full
File: /a/lns184/cdat/daf3/blv2/temp/mean.dat 13-FEB-2001 16:01
Plot Area Total/Fit 21.210/21.210 Fit Status 3
Func Area Total/Fit 482.40 / 482.40 E.D.M. 3.487E-21
¥?= 10.1for 10- 2 d.of., C.L=255%
Errors Parabolic Minos
Function 1: Polynomial of Order 1 - QUICK
NORM 2.5094 + 9.7424E-02 - 0.0000E+00 + 0.0000E+00
SLOPE -2.92307E-03 + 8.4326E-04 - 0.0000E+00 + 0.0000E+00
*OFFSET 0.00000E+00 + 0.0000E+00 - 0.0000E+00 + 0.0000E+00
b
s _
=
> L |
= t
s L |
@
x 2+ + —
©
[
o r + 7
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Figure E.2: The fit to the shift in the m,, peak versus 7° momentum

between the Modified and Default Monte Carlos.
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Table E.1: The constants used to correct the shower energies and m.,, in
the Modified Monte Carlo and the variations. The second column gives
the correction to the reconstructed shower energy for the variation listed
in the first column. The third and fourth columns give the normaliza-
tions and slopes of the line fits for the m.,, correction (input momentum
in MeV /¢, get correction in MeV). We use the same corrections for Modi-
fied and inner material reconstruction. The CUTGAM variation introduces an
energy-dependent shift to the reconstructed shower energy; we fit this shift
to a straight line and make an energy-dependent correction to the shower

energies.

Shower Energy My Mgy

Variation Correction (MeV) | Norm (MeV) | Slope (x107%)

Modified 1.182£0.095 2.513£0.098 -2.9740.85

incoherent noise 1.142+0.098 3.18240.098 -6.20+0.85

crystal gains 1.055£0.092 2.917£0.098 -6.02£0.85

coherent noise 1.113£0.096 2.33240.098 -2.96£0.85

inner material 1.182+0.095 2.5134+0.098 -2.97+0.85

outer material 1.107£0.092 2.547£0.098 -6.01£0.85

norm:—0.2240.23
CUTGAM e 10— | ~2.72520.098 |  0.68:0.0.85
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