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We present the mathematical construction of the physically relevant quantum Hamil-
tonians for a three-body system consisting of identical bosons mutually coupled by a
two-body interaction of zero range. For a large part of the presentation, infinite scatter-
ing length will be considered (the unitarity regime). The subject has several precursors
in the mathematical literature. We proceed through an operator-theoretic construction
of the self-adjoint extensions of the minimal operator obtained by restricting the free
Hamiltonian to wave-functions that vanish in the vicinity of the coincidence hyperplanes:
all extensions thus model an interaction precisely supported at the spatial configura-
tions where particles come on top of each other. Among them, we select the physically
relevant ones, by implementing in the operator construction the presence of the specific
short-scale structure suggested by formal physical arguments that are ubiquitous in the
physical literature on zero-range methods. This is done by applying at different stages the
self-adjoint extension schemes à la Krĕın–Vǐsik–Birman and à la von Neumann. We pro-
duce a class of canonical models for which we also analyze the structure of the negative
bound states. Bosonicity and zero range combined together make such canonical models
display the typical Thomas and Efimov spectra, i.e. sequence of energy eigenvalues accu-
mulating to both minus infinity and zero. We also discuss a type of regularization that
prevents such spectral instability while retaining an effective short-scale pattern. Besides
the operator qualification, we also present the associated energy quadratic forms. We
structured our analysis so as to clarify certain steps of the operator-theoretic construction
that are notoriously subtle for the correct identification of a domain of self-adjointness.
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Zero-range interaction for the bosonic trimer at unitarity

1. Introduction. A Plurality of Approaches and Models

We are concerned in this work with a class of models for a three-dimensional quan-

tum system of this kind: three non-relativistic, identical bosons are coupled among

themselves by means of an isotropic two-body interaction of zero spatial range and,

for the main part of our analysis, with infinite scattering length. The interaction

does not couple the spins.

We shall discuss in particular which models are mathematically well-posed,

besides being physically meaningful, which leads to an amount of very instructive

subtleties.

It is fair to say that the system under consideration has undergone various

phases of interests over the decades, both in the physical and in the mathematical

literature, until the present days. Originally, and also without imposing the bosonic

symmetry, it emerged as the typical picture for interacting nucleons in early nuclear

physics, at the scale of which the inter-particle interaction may well be considered

of zero range as compared to the atomic scales. Instead, in more recent times it

has been a system of interest in cold atom physics, given the modern experimental

advances in inducing effective zero-range interactions in a Bose gas or in heteronu-

clear gaseous mixtures by means of sophisticated Feschbach-resonance techniques.

As our perspective here is mainly mathematical, even if driven by strong physical

inspiration, it is worth stressing an important and long-lasting difference of the

approaches.

Physical investigations of the quantum three-body problem with zero-range

interaction have always had as primary interest the characterization of the bound

states of the system. To this aim, at least in the more modern literature (given its

vastness, we refer to the recent reviews [9, 56]), the eigenvalue problem is invariably

set up in terms of the free Hamiltonian (all in all particles subject to a zero-range

interaction are meant to move as free bodies except when they come on top of

each other), with the constraint that the three-body eigenfunction must display the

‘physical’ short-range asymptotics

ψ(x1,x2,x3) ∼ 1

|xi − xj | −
1

a
as |xi − xj | → 0, (1.1)

where a is the s-wave scattering length in each two-body channel. The behavior

(1.1) was identified by Bethe and Peierls in 1935 [7] as the actual leading behavior

of eigenfunctions with ‘contact’ interaction. Next, solutions are obtained, with an

ad hoc analysis applicable to the eigenvalue problem only, and not to the generality

of states in the domain of the underlying Hamiltonian, by reducing the three-body

eigenfunction to a convenient triple of two-body channel ‘Faddeev components’,

in a combination of which that encodes the possible bosonic or fermionic symme-

try, where each Faddeev component is a function of one pair of internal Jacobi

coordinates. In the case of three identical bosons,

ψ(x1,x2,x3) = χ(x12,x12,3) + χ(x23,x23,1) + χ(x31,x31,2), (1.2)
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where

xij = xj − xi, xij,k = xk − xi + xj
2

. (1.3)

Based on the Faddeev equations formalism for the three-body system [23, 24], the

original problem is thus boiled down to a single Faddeev component χ. At this level

the problem is conveniently separable upon switching from Jacobi to hyper-radial

coordinates and expanding χ into definite angular momentum terms, and in each

sector of definite angular symmetry the problem becomes tractable analytically and

numerically.

The above line of reasoning, in fact encompassing a multitude of similar vari-

ants, is most presumably due to an original idea of Landau, elaborated in the mid

1950’s by Skornyakov and Ter-Martirosyan [60] in a famous study of the three-body

quantum system with zero-range interactions. (Actually, [60] predates by a couple

of years of Faddeev’s first work [22] on the three-body scattering theory, and makes

use of Green’s function methods. Then in [22] Faddeev showed that the equation

identified by Skornyakov and Ter-Martirosyan for solving the three-body eigenvalue

problem could be recovered in the formal limit of zero interaction range from the

ordinary scheme of Faddeev equations.)

In atomic physics the approach sketched above is the basis of what one has

customarily referred to since then as ‘zero-range methods’ [18]. The same approach

resurfaced in the early 1970’s by Efimov [19, 20] in his famous work on quantum

three-body systems with finite-range two-body interactions (with important pre-

cursors such as Macek [35] in the usage of hyper-radial equations for three-body

energy levels). Efimov’s analysis established a reference for the subsequent literature

on cold-atom few-body systems.

The catch here is that such a physical scheme is solid when the inter-particle

interactions are realized, say, by potentials Vij that are sufficiently regular and have

short range, thereby making the underlying three-body Hamiltonian

− 1

2m1
Δx1 −

1

2m2
Δx2 −

1

2m3
Δx3 + V12(x1 − x2) + V23(x2 − x3) + V13(x1 − x3)

(1.4)

(in units � = 1) unambiguously realized as a self-adjoint operator on the three-body

Hilbert space, and thus giving rise to a well-posed set of Faddeev equations. At zero

range, instead, the model is formally thought of as

− 1

2m1
Δx1 −

1

2m2
Δx2 −

1

2m3
Δx3 + μ12δ(x1 − x2)

+μ23δ(x2 − x3) + μ13δ(x1 − x3) (1.5)

(for some coupling constants μij): as (1.5) is not an ordinary Schrödinger operator,

for it Faddeev components of the three-body eigenfunctions and the corresponding

Faddeev equations do not make sense strictly speaking, but for a formal limit of

zero interaction range.
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In short, physical zero-range methods determine eigenfunctions and eigenvalues

of a formal Hamiltonian that otherwise remains unspecified.

The signature of a possible remaining ambiguity of the physical approach is the

emergence of an unphysical continuum of eigenvalues, an occurrence that depends

on the masses, the attractive or repulsive nature of the interaction, and the bosonic

or fermionic exchange symmetry in (1.5). When this happens, an (infinite) discrete

set of bound states is selected by imposing an additional restriction to the admis-

sible eigenfunctions. Such restriction may be suitably interpreted as a three-body

short-range boundary condition. This occurrence was initially observed by Sko-

rnyakov [59] right after his joint work [60] with Ter-Martirosyan, and was analysed

by Danilov [15] who selected the admissible solutions in the spirit of the additional

experimental three-body parameter proposed at the same time by Gribov [30].

That choice was soon after justified on more rigorous operator-theoretic grounds

by Faddeev and Minlos [50, 51]. (It is actually remarkable that such Russian key

contributions all span a fistful of years, from the work [60] by Skornyakov and Ter-

Martirosyan in 1956 to the period 1959–1961 with the works by Skornyakov [59],

Gribov [30], Danilov [15], Faddeev [22], and Faddeev and Minlos [50, 51].) The pos-

sible necessity of an additional three-body parameter and its physical interpretation

have become by now a standard picture in the physical literature of cold atoms in

the zero-range regime [56, Sec. 4].

Mathematical investigations of the quantum three-body problem with zero-

range interaction, on the other hand, have pursued over the decades a different

programme: to qualify first the Hamiltonian of the system, as an explicitly declared

self-adjoint operator on Hilbert space, through its operator or form domain of self-

adjointness and its action on each function of the domain, and only after to analyze

the spectral properties.

This conceptual scheme was brought up first in the already mentioned seminal

works by Faddeev and Minlos [50, 51], which were deeply mathematical in nature.

There, rigorous Hamiltonians of contact interaction were proposed as suitable self-

adjoint extensions of the symmetric operator(
− 1

m1
Δx1 −

1

m2
Δx2 −

1

m2
Δx2

)∣∣∣∣
C∞

0 ((R3
x1

×R3
x2

×R3
x3

)\Γ)
, (1.6)

namely the free three-body Hamiltonian restricted on smooth functions that are

compactly supported away from the ‘coincidence manifold’

Γ :=
⋃
i,j

Γij , Γij := {(x1,x2,x3) |xi = xj}. (1.7)

The motivation is that any such extension encodes by construction a singular inter-

action only ‘supported’ at the points of Γ. (Such a scheme lied on the very same

footing as the analogous rigorous construction of two-body zero-range interaction

Hamiltonians, initially proposed in 1960 by Berezin and Faddeev [6].) In order for

the analysis to produce physically meaningful results, the actual extensions of (1.6)
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to be considered are only those defined on domains of self-adjointness consisting of

wave-functions that display the Bethe–Peierls short-range asymptotics (1.1).

All this has been then specialized among various lines, among which:

• a more operator-theoretic line in the Faddeev-Minlos spirit, developed from the

mid 1980’s to the recent years by Minlos (also in collaboration with Menlikov,

Mogilner, and Shermatov) [37, 38, 43–49, 52, 53, 58], with also recent contribu-

tions by Yoshitomi [66], and by the present author in collaboration with Ottolini

[39, 40], and with Becker and Ottolini [5];

• a line exploiting quadratic forms methods, initiated at the end of the 1980’s by

Dell’Antonio, Figari, and Teta and mainly developed in the following decades by

an Italian community [3, 4, 12–14, 16, 17, 26, 41, 42, 62] (the works [12, 13, 42]

being co-authored by the present author), with also recent contributions by Moser

and Seiringer [54, 55];

• a side line by Pavlov and his school [34, 36], retaining the same ideas, but aimed

at rigorously constructing variants of the formal Hamiltonian (1.5) for particles

with spin, and a spin–spin contact interaction;

• an extremely interesting, not-much-developed-yet line of constructing (three-

dimensional) three-body Hamiltonians with zero-range interactions as rigorous

limits, in the resolvent sense, of ordinary Schrödinger operators with potentials

that scale up to a delta profile — an idea discussed first by Albeverio, Høegh-

Krohn, and Wu [1] in the early 1980’s (one-dimensional counterpart results have

been recently established in [2, 31]).

For what exposed so far, it is clear that the physical and the mathematical

branches of the literature on the quantum three-body problem on point interaction,

albeit very deeply cross-intersecting, are not immediately transparent to each other.

The rigorous definition of the self-adjoint Hamiltonian is much more laborious than

the formal diagonalization made by physicists, and unavoidably requires the analy-

sis of technical features of the Hamiltonian other than the ‘observable energy levels’.

Besides, the Hamiltonians of interest not having the form of a Schrödinger operator,

the mathematical analysis faces the lack of various powerful tools from Schrödinger

operator theory.

Furthermore, the implementation of the Bethe–Peierls asymptotics (1.1), a cru-

cial step of the mathematical modeling, yields various technical difficulties.

First, (1.1) is a point-wise asymptotics and need be understood as an expan-

sion in a precise functional sense in order to be meaningfully implemented in the

operator-theoretic construction of the Hamiltonian.

Next, there is an arbitrariness in the modeling as to prescribing the Bethe–

Peierls condition for all the functions of the desired domain of self-adjointness, or

possibly just for a meaningful subspace, e.g., the eigenfunctions only.

In addition, once a realization of the minimal operator (1.6) is found that fulfills

the Bethe–Peierls condition, a possibility that one encounters is that this is only

a symmetric operator with a variety of self-adjoint extensions, so that another
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parameter must be introduced to label each extension beside the given scattering

length a, in complete analogy to the three-body parameter of the physicists.

Another possibility is that after implementing the Bethe–Peierls asymptotics,

the resulting candidate Hamiltonian, be it already self-adjoint or not, is unbounded

from below (beside being obviously unbounded above, as is the initial operator

(1.6)). That multi-particle quantum models of zero-range interaction may be such is

known since when Thomas in 1935 [63], modeling the tritium as if the range of the

interaction was exactly zero, showed that the scattering of the proton over the two

neutrons would result in an infinity of bound states accumulating at minus infinity

(‘Thomas collapse’, in the sense of ‘fall of the particles to the center’), and this is well

familiar in modern cold atom theoretical physics. Yet, this complicates the mathe-

matical treatment, for instance making the quadratic form approach unsuited.

Related to that, one is then also concerned with producing meaningful regular-

izations of those models obtained along the conceptual path described above, where

the spectral instability is removed and yet certain relevant features of the effective

Hamiltonian are retained.

With this work we provide a comprehensive and up-to-date overview of all such

instances, and in particular a systematic discussion of the technical procedures for

the rigorous construction of self-adjoint Hamiltonians of physical relevance. This

also allows us to clarify certain steps of the operator-theoretic construction that

are notoriously subtle for the correct identification of a domain of self-adjointness.

Our main results, Theorems 2.9, 4.6, 7.1, 7.4, and 9.5, present respectively:

• the general classification of all self-adjoint realizations of the minimal operator

(1.6) (a vast class that of course includes also physically non-relevant operators,

i.e. realizations characterized by non-local boundary conditions),

• the characterization of all those extensions displaying the physical short-scale

structure for the functions of their domains,

• the rigorous construction of a class of canonical models with the physical short-

scale structure, and their spectral analysis,

• the counterpart for a class of regularized models where the instability is cured at

an effective level.

The bosonic trimer with zero-range interaction has a natural parameter to be

declared in the first place, the scattering length a of the two-body interaction.

It is the above-mentioned parameter governing the short-scale asymptotics (1.1).

Whereas throughout our general discussion on physically relevant extensions we

shall keep a generic, for a sharper presentation the final construction of the canonical

models is done in the regime a = ∞. In physics this is referred to as the ‘unitary

regime’, and many-body systems with two-body interaction of infinite scattering

length are customarily called ‘unitary gases’ [11] (for the connection with the optical

theorem in which the choice a =∞maximizes the scattering amplitude, and the fact

that in turn the optical theorem is a consequence of the unitarity of the quantum

evolution). The unitary regime is surely the physically most relevant one, for its
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applications in cold atom physics and its universality properties: we shall then stay

in this regime for a large part of our analysis.

On a more technical level, appropriate self-adjoint extension schemes are needed

along the discussion. As the minimal operator (1.6) is non-negative, it is natural to

apply to it the Krĕın–Vǐsik–Birman extension scheme for semi-bounded symmetric

operators [28], and in fact for the specific problem under consideration this turns out

to be more informative than the (equivalent) extension scheme à la von Neumann

[57, Sec. X.1]. Yet, at a later stage, when the implementation of the physical short-

scale structure only produces symmetric extensions, their self-adjoint realizations,

namely the final Hamiltonians of interest, are to be found via von Neumann’s theory,

because already the symmetric operator one starts from is unbounded from below,

hence the Krĕın–Vǐsik–Birman is not applicable.

Once mathematically well-posed (i.e. self-adjoint) and physically meaningful

Hamiltonians are constructed, it is fairly manageable to express their quadratic

forms, as we do in the sequel. Of course, as in several precursors of the present work,

one can revert the order and study first a given quadratic form, typically selected

by a physically grounded educated guess, proving that it actually represent a self-

adjoint operator. What escapes such approach is the systematic classification of all

extensions of interest: the standard classification theorems, indeed, are essentially

formulated as operator classifications.

To conclude, there are surely various interesting directions along which it would

be desirable to continue this study. To mention some of the most attractive ones,

a more explicit theoretic dictionary between this mathematical approach and the

physical zero-range methods, the characterization of the quantum dynamics under

the considered Hamiltonians, and an extension of such models to many-body sys-

tems with zero-range interaction.

Notation. Besides an amount of fairly standard notation, as well as further con-

venient shorthand that will be introduced in due time, we shall adopt the following

conventions throughout.

p three-dimensional variable (bold face)

p one-dimensional variable (italics)

z complex conjugate of z ∈ C
〈·, ·〉 Hilbert scalar product, or pairing

∫
Rd fg, anti-linear

in the first entry

‖v‖ Hilbert space norm of the vector v

Hs(Rd) Sobolev space of order s ∈ R
C∞

0 (Ω) space of smooth functions with compact support inside the open

Ω ⊂ Rd
D(S) operator domain of the operator S

D[S] quadratic form domain of the operator S
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D[q] domain of the quadratic form q

S[f ] evaluation of the quadratic form of S on the element f ∈ D[S]
S operator closure of the operator S

S∗, S� adjoint of S (different notation depending on the reference

Hilbert space)

m(S) bottom of the symmetric operator S: m(S) = inff∈D(S) 〈f, Sf〉/‖f‖2
� identity operator, acting on the space that is clear from the context

� zero operator, acting on the space that is clear from the context

1K characteristic function of the set K

δ(x) Dirac delta distribution centerd at x = 0

f̂ Fourier transform of f , with convention

f̂(k)= (2π)−
d
2

∫
Rd e

−ikωf(ω)dω

f∨ inverse Fourier transform of f

f ≈ g c−1|g(ω)| ≤ |f(ω)| ≤ c|g(ω)| for some c > 0 and all admissible ω

� direct sum between vector spaces

⊕ (if referred to operators) reduced direct sum of operators

⊕ (if referred to vector spaces) Hilbert orthogonal direct sum

� Hilbert orthogonal direct sum of non-closed subspaces

Unless when it becomes relevant to emphasize that, we shall tacitly understand

all identities f = g between measurable functions in the sense of almost everywhere

identities.

2. General Extension Scheme and Admissible Hamiltonians

2.1. The minimal operator

In order to discuss realizations of the formal Hamiltonian (1.5) as self-adjoint exten-

sions of (1.6), one factors out the translation invariance by introducing the center

of mass and the internal coordinates

yc.m. :=
x1 + x2 + x3

3
, y1 := x1 − x3, y2 := x2 − x3, (2.1)

and by re-writing

− 1

2m
Δx1 −

1

2m
Δx2 −

1

2m
Δx3 = − 1

6m
Δyc.m. +

1

m
H̊, (2.2)

where

H̊ := −Δy1 −Δy2 −∇y1 · ∇y2 . (2.3)

In absolute coordinates, three-body wave-functions Ψ(x1,x2,x3) are bosonic,

namely invariant under exchange of any pair of variables, hence under the cor-

responding transformation of the internal coordinates, according to the following
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scheme: {
x1 ↔ x2

x3 fixed
⇔
{
y1 ↔ y2

y2 − y1 ↔ −(y2 − y1){
x1 ↔ x3

x2 fixed
⇔
{
y1 ↔ −y1

y2 ↔ y2 − y1{
x2 ↔ x3

x1 fixed
⇔
{
y1 ↔ −(y2 − y1)

y2 ↔ −y2.

(2.4)

Transformations (2.4) clearly preserve the center-of-mass variable. Therefore,

bosonic symmetry selects, within the Hilbert space of the internal coordinates

H := L2(R3 × R3, dy1dy2), (2.5)

the ‘bosonic sector’, namely the Hilbert subspace

Hb ≡ L2
b(R

3 × R3, dy1dy2)

:=

{
ψ ∈ L2(R3 × R3, dy1dy2) such that

ψ(y1,y2) = ψ(y2,y1) = ψ(−y1,y2 − y1)

}
(2.6)

in the sense of almost-everywhere identities between square-integrable functions.

The meaningful problem is then to characterize the self-adjoint extensions, with

respect to Hb of the densely defined, closed, and symmetric operator

D(H̊) := Hb ∩H2
0

(
(R3

y1
× R3

y2
)\Γ)

H̊ := −Δy1 −Δy2 −∇y1 · ∇y2 ,
(2.7)

where

Γ :=

3⋃
j=1

Γj with

⎧⎪⎪⎨⎪⎪⎩
Γ1 := {y2 = 0}
Γ2 := {y1 = 0}
Γ3 := {y1 = y2}

(2.8)

in the sense of hyperplanes in R3 × R3, and

H2
0

(
(R3

y1
× R3

y2
)\Γ) := C∞

0

(
(R3

y1
× R3

y2
)\Γ)‖ ‖H2

. (2.9)

In the notation (2.8), the hyperplane Γj is the set of configurations where the two

particles different than the jth one coincide.

In short, H̊ is the operator closure of −Δy1 − Δy2 − ∇y1∇y2 initially defined

on the bosonic smooth functions on R3 × R3 which are compactly supported away

from the coincidence manifold Γ.

As the reasonings that will follow are somewhat more informative in the momen-

tum representation, we shall often switch to the variables p1,p2 that are Fourier

conjugate to y1,y2 (yet, all our considerations can be straightforwardly re-phrased

in position coordinates). One deduces from (2.6) that, for any ψ ∈ H,

ψ ∈ Hb ⇔ ψ̂(p1,p2) = ψ̂(p2,p1) = ψ̂(p1,−p1 − p2) (2.10)
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for almost every p1,p2. Moreover,

ψ|Γ1(y1) = ψ(y1,0) =
1

(2π)3

∫∫
R3×R3

dp1dp2 e
iy1·p1ψ̂(p1,p2), (2.11)

from which, using the identity

1

(2π)3

∫
R3

dy1 e
iy1·(q1−p1) = δ(q1 − p1),

one deduces

ψ̂|Γ1(p1) =
1

(2π)
3
2

∫
R3

ψ̂(p1,p2) dp2, (2.12)

and analogous expressions for ψ̂|Γ2 and ψ̂|Γ3 . This includes also the possibility that

the evaluation of ψ at a coincidence hyperplane makes (2.11)–(2.12) infinite for

(almost) every value of the remaining variable.

By a standard trace theorem (see, e.g., [61, Lemma 16.1]), if ψ ∈ H2(R3 ×R3),

then its evaluation ψ|Γj at the jth coincidence hyperplane is a function in H
1
2 (R3),

hence not necessarily continuous. Thus, when f ∈ D(H̊) the vanishing “f |Γj = 0”

in H
1
2 (R3) is to be understood by duality as

0 = 〈η, f |Γj 〉H− 1
2 ,H

1
2

=

∫
R3

η̂(p) f̂ |Γj (p) dp ∀ η ∈ H− 1
2 (R3). (2.13)

This means that for any f ∈ D(H̊) the vanishing at Γ1, Γ2, or Γ3 corresponds,

respectively, to ∫∫
R3×R3

f̂(p1,p2) η̂(p1) dp1dp2 = 0,∫∫
R3×R3

f̂(p1,p2) η̂(p2) dp1dp2 = 0,∫∫
R3×R3

f̂(p1,p2) η̂(−p1 − p2) dp1dp2 = 0,

(2.14)

for each η ∈ H− 1
2 (R3), as one may conclude combining (2.10), (2.12) (and its

counterparts by symmetry), and (2.13).

The following is therefore proved.

Lemma 2.1. The definition (2.7) is equivalent to

D(H̊) =

{
f ∈ Hb ∩H2(R3 × R3)

f satisfies (2.14) ∀ η ∈ H− 1
2 (R3)

}
̂̊
Hf(p1,p2) = (p2

1 + p2
2 + p1 · p2)f̂(p1,p2) .

(2.15)
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A convenient shorthand shall be

Hs
b(R

3 × R3) := Hb ∩Hs(R3 × R3), s ≥ 0, (2.16)

for Sobolev spaces with bosonic symmetry.

Let us also observe that for any λ > 0

p2
1 + p2

2 + p1 · p2 + λ ∼ p2
1 + p2

2 + 1, (2.17)

in the sense that each quantity controls the other from above and from below.

2.2. Friedrichs extension

It is clear that H̊ is lower semi-bounded, with lower bound m(H̊) = 0. As such, it

has a distinguished extension, the Friedrichs extension H̊F .

Lemma 2.2. The Friedrichs extension H̊F of H̊ is the self-adjoint operator act-

ing as

(H̊Fφ)(y1,y2) = −Δy1φ(y1,y2)−Δy2φ(y1,y2)−∇y1 · ∇y2φ(y1,y2), (2.18)

or equivalently

(̂̊HFφ)(p1,p2) = (p2
1 + p2

2 + p1 · p2)φ̂(p1,p2), (2.19)

defined on the domain

D(H̊F ) = H2
b(R

3 × R3). (2.20)

Its quadratic form is

D[H̊F ] = H1
b(R

3 × R3)

H̊F [φ] =
1

2

∫∫
R3×R3

(∣∣(∇y1 +∇y2)φ
∣∣2 + ∣∣∇y1φ

∣∣2 + ∣∣∇y2φ
∣∣2) dy1 dy2.

(2.21)

Proof. The form domain D[H̊ ] of H̊ is the completion of D(H̊) = Hb∩H2
0 ((R

3
y1
×

R3
y2
)\Γ) in the norm ‖f‖F := (〈f, H̊f〉 + ‖f‖2H)

1
2 , and ‖f‖F ≈ ‖f‖H1 owing to

(2.17). Reasoning as done in collaboration with Ottolini in [39, Lemma 3(ii)], the

above-mentioned completion is precisely H1
b(R

3×R3). Thus, D[H̊ ] = H1
b(R

3×R3).

Since (2.18)–(2.20) obviously defines a self-adjoint extension of H̊ with domain

entirely contained in D[H̊ ], necessarily such operator is the Friedrichs extension of

H̊ . The explicit formula for the evaluation of the quadratic form follows from the

identity p2
1 + p2

2 + p1 · p2 = 1
2 (p1 + p2)

2 + 1
2p

2
1 +

1
2p

2
2.

As H̊ is bounded from below, its self-adjoint realizations may be identified by

means of the Krĕın–Vǐsik–Birman extension scheme for semi-bounded symmetric

operators [28]. In this scheme each extension is conveniently parametrized with

respect to a reference extension that has everywhere-defined bounded inverse.
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Now, the Friedrichs extension H̊F has zero at the bottom of its spectrum

and hence is not everywhere invertible in Hb. One then searches for self-adjoint

realizations of the shifted operator H̊ + λ�, for some λ > 0, since obviously

D(H̊ + λ�) = D(H̊), (H̊ + λ�)F = H̊F + λ� ∀λ > 0, (2.22)

and the latter operator is indeed everywhere invertible in Hb. Once the self-adjoint

extensions of H̊+λ� are identified, the corresponding ones for H̊ are then read out

from the former by removing the shift.

The data needed for the classification of the self-adjoint extensions of H̊ + λ�,

according to the Krĕın–Vǐsik–Birman theory, are the deficiency subspace ker(H̊∗ +
λ�) and the action of (H̊F + λ�)−1 on such space. We shall designate these data.

First of all, obviously,

((H̊F + λ�)−1ψ)̂(p1,p2) = (p2
1 + p2

2 + p1 · p2 + λ)−1ψ̂(p1,p2) (2.23)

for every ψ ∈ Hb and λ > 0. Next we describe the adjoint.

2.3. Adjoint

For given ξ ∈ H− 1
2 (R3) and λ > 0 let uλξ be the function defined by

ûλξ (p1,p2) :=
ξ̂(p1) + ξ̂(p2) + ξ̂(−p1 − p2)

p2
1 + p2

2 + p1 · p2 + λ
. (2.24)

Lemma 2.3. (i) For every λ > 0 there exists a constant cλ > 0 such that for every

ξ ∈ H− 1
2 (R3) one has

c−1
λ ‖ξ‖H− 1

2 (R3)
≤ ‖uλξ‖H ≤ cλ‖ξ‖

H− 1
2 (R3)

. (2.25)

(ii) For every ξ ∈ H− 1
2 (R3), uλξ ∈ Hb.

(iii) If uλξ = uλη for some ξ, η ∈ H− 1
2 (R3) and λ > 0, then ξ = η.

(iv) For ξ ∈ H− 1
2 (R3) and λ, μ > 0 one has uλξ − uμξ ∈ H2

b(R
3 × R3).

Proof. Part (i) can be proved by easily mimicking the very same argument of

[13, Lemma B.2]. Part (ii) follows from (i) and from the invariance of (2.24) under

the transformations (2.4). Part (iii) follows from (i), owing to the linearity ξ �→ uξ.

Part (iv) follows from the identity

ûλξ (p1,p2)− ûμξ (p1,p2) =
(μ− λ)(ξ̂(p1) + ξ̂(p2) + ξ̂(−p1 − p2)

)
(p2

1 + p2
2 + p1 · p2 + λ) (p2

1 + p2
2 + p1 · p2 + μ)

and from (2.17) and (2.25).

Lemma 2.4. Let λ > 0.

(i) One has

ker(H̊∗ + λ�) =
{
uλξ | ξ ∈ H− 1

2 (R3)
}
. (2.26)
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(ii) One has

D(H̊F ) = H2
b(R

3 × R3) =

⎧⎪⎪⎨⎪⎪⎩φ ∈ Hb

∣∣∣∣∣∣∣∣
φ̂ = f̂λ +

ûλη
p2
1 + p2

2 + p1 · p2 + λ

for fλ ∈ D(H̊), η ∈ H− 1
2 (R3)

⎫⎪⎪⎬⎪⎪⎭.
(2.27)

(iii) One has

D(H̊∗) =

{
g ∈ Hb

∣∣∣∣∣ ĝ = φ̂λ + ûλξ

for φλ ∈ H2
b(R

3 × R3), ξ ∈ H− 1
2 (R3)

}

=

⎧⎪⎪⎨⎪⎪⎩g ∈ Hb

∣∣∣∣∣∣∣∣
ĝ = f̂λ +

ûλη
p2
1 + p2

2 + p1 · p2 + λ
+ ûλξ

for fλ ∈ D(H̊), ξ, η ∈ H− 1
2 (R3)

⎫⎪⎪⎬⎪⎪⎭ (2.28)

and

((H̊∗ + λ�)g)̂= (p2
1 + p2

2 + p1 · p2 + λ)φ̂λ (2.29)

with

φ̂λ := f̂λ +
ûλη

p2
1 + p2

2 + p1 · p2 + λ
, (2.30)

or equivalently

(̂H̊∗g)(p1,p2) = (p2
1 + p2

2 + p1 · p2)ĝ(p1,p2)

− (ξ̂(p1) + ξ̂(p2) + ξ̂(−p1 − p2)
)
. (2.31)

The decompositions in (2.27) and (2.28) are unique, in the sense that for each

φ ∈ D(H̊F ) there exist unique fλ, η satisfying the decomposition in (2.27), and for

each g ∈ D(H̊∗) there exist unique fλ, η, ξ satisfying the decomposition in (2.28).

Proof. Any u ∈ ker(H̊∗ + λ�) = ran(H̊ + λ�)⊥ is characterized by∫∫
R3

û(p1,p2) (p
2
1 + p2

2 + p1 · p2 + λ) f̂(p1,p2)dp1dp2 = 0 ∀ f ∈ D(H̊).

Combining this with (2.14), one deduces that û(p1,p2) (p
2
1+p2

2+p1 ·p2+λ) must

be a linear combination of ξ̂(p1), ξ̂(p2), and ξ̂(−p1−p2) for a generic ξ ∈ H− 1
2 (R3);

as u ∈ Hb, this combination must be the sum (up to an overall multiplicative

prefactor). Thus, û(p1,p2) (p
2
1 + p2

2 + p1 · p2 + λ) = ξ̂(p1) + ξ̂(p2) + ξ̂(−p1 − p2),

which proves part (i). Parts (ii) and (iii) then follow from part (i) and from (2.23)

as an application of the standard formulas

D(H̊F ) = D(H̊)� (H̊F + λ�)−1 ker(H̊∗ + λ�)

D(H̊∗) = D(H̊)� (H̊F + λ�)−1 ker(H̊∗ + λ�)� ker(H̊∗ + λ�)

(see, e.g., [28, Lemma 1 and Theorem 1]).
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Remark 2.5. (2.26)–(2.28) show that functions in D(H̊∗) have a ‘regular’ H2-

component and a ‘singular’ L2-component, with no constraint among the two. The

regular part is the domain of H̊F , the singular part is the kernel of H̊
∗+λ�. Because

of the possible singularity of a generic g ∈ D(H̊∗), the action on g of the differential

operator −Δy1 − Δy2 − ∇y1 · ∇y2 produces in general a non-L2 output. More

precisely, (2.31) shows that one has to subtract from (−Δy1 −Δy2 − ∇y1 · ∇y2)g

the distribution

(2π)
3
2

(
ξ(y1)δ(y2) + δ(y1)ξ(y2) + δ(y1 − y2)ξ(−y2)

)
(2.32)

(that is, the inverse Fourier transform of the second summand in (2.31)), a distri-

bution supported at the coincidence manifold Γ, in order to obtain the L2-function

H̊∗g.

Remark 2.6. In position coordinates (y1,y2), each of the two functions uλη and uλξ
appearing in the expression (2.28) of a generic element g ∈ D(H̊∗) is obtained by

taking the convolution of the Green function Gλ relative to −Δy1−Δy2−∇y1 ·∇y2+

λ with a distribution of the form (2.32) for the two considered labeling functions

η, ξ. This structure, and the fact that in (2.32) ξ (and η) is interpreted as a function

on the union of the coincidence hyperplanes, is formally analogous to the familiar

picture in electrostatics, where uλξ is the ‘potential’ relative to the ‘charge’ ξ. For

this reason, as has been customary since long in this context [16], we shall retain

the nomenclature that ξ and η are the charges for the function g. In this respect,

by charges we shall mean functions in H− 1
2 (R3).

For g ∈ D(H̊∗), there is a unique charge ξ at each parameter λ > 0 satisfying the

decomposition (2.28), but a priori ξ might be λ-dependent. Let us show that this

cannot be the case, and one can speak of the charge ξ of g tout court (understanding

ξ, as usual, as the charge of the singular part of g, not to confuse it with the charge

η appearing in the regular part of g).

Lemma 2.7. Let λ, λ′ > 0 and g ∈ D(H̊∗). If, according to (2.28),

ĝ = φ̂λ + ûλξ = φ̂λ′ + ûλ
′
ξ′

for some φλ, φλ
′ ∈ H2

b(R
3 × R3) and ξ, ξ′ ∈ H− 1

2 (R3), then ξ = ξ′.

Proof. Since uλ
′
ξ − uλξ ∈ H2

b(R
3 × R3) (Lemma 2.3(iv)), then

Fλ
′
:= φλ − (uλ′

ξ − uλξ
)

defines a function in H2
b(R

3 × R3), and

ĝ = φ̂λ + ûλξ = F̂λ′ + ûλ
′
ξ .
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Comparing the latter identity with ĝ = φ̂λ′ + ûλ
′
ξ′ , the uniqueness of the decompo-

sition (2.28) of g with parameter λ′ implies

Fλ
′
= φλ

′
, uλ

′
ξ = uλ

′
ξ′ .

In turn, the latter identity implies ξ = ξ′ (Lemma 2.3(iii)).

2.4. Deficiency subspace

Lemma 2.4 shows that H̊ has infinite deficiency index, as is the dimensionality of

the deficiency subspace ker(H̊∗ + λ�) independently of λ > 0.

In the self-adjoint extension problem under study, it is convenient to use a

unitarily isomorphic version of ker(H̊∗ + λ�), which we shall now characterize.

To this aim, for η ∈ H− 1
2 (R3) and λ > 0 we define (for a.e. p)

(Ŵλη)(p) :=
3π2√

3
4p

2 + λ
ξ̂(p) + 6

∫
R3

ξ̂(q)

(p2 + q2 + p · q+ λ)2
dq. (2.33)

Lemma 2.8. Let λ > 0.

(i) For generic ξ, η ∈ H− 1
2 (R3) one has Wλη ∈ H 1

2 (R3) and

〈uξ, uη〉H = 〈ξ,Wλη〉
H− 1

2 (R3),H
1
2 (R3)

. (2.34)

(ii) Formula (2.33) defines a positive, bounded, linear bijection Wλ : H− 1
2 (R3) →

H
1
2 (R3).

Proof. By suitably exploiting symmetry in exchanging the integration variables,

〈uξ, uη〉H =

∫∫
R3×R3

dp1dp2
ξ̂(p1) + ξ̂(p2) + ξ̂(−p1 − p2)

p2
1 + p2

2 + p1 · p2 + λ

× η̂(p1) + η̂(p2) + η̂(−p1 − p2)

p2
1 + p2

2 + p1 · p2 + λ

= 3

∫∫
R3×R3

dp1dp2
ξ̂(p1) η̂(p1)

(p2
1 + p2

2 + p1 · p2 + λ)2

+6

∫∫
R3×R3

dp1dp2
ξ̂(p1) η̂(p2)

(p2
1 + p2

2 + p1 · p2 + λ)2
.

In the first summand in the right-hand side above one computes∫
R3

dp2

(p2
1 + p2

2 + p1 · p2 + λ)2
=

π2√
3
4p

2
1 + λ

,

which eventually yields, in view of the definition (2.33),

〈uξ, uη〉H =

∫
R3

ξ̂(p) (Ŵλη)(p) dp.
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From the latter identity and (2.25) we deduce

‖Wλη‖
H

1
2
= sup

‖ξ‖
H

− 1
2
=1

∣∣∣∣∫
R3

ξ̂(p) (̂Wλη)(p) dp

∣∣∣∣ = sup
‖ξ‖

H
− 1

2
=1

∣∣〈uξ, uη〉H∣∣
≤ sup

‖ξ‖
H

− 1
2
=1

‖uξ‖H‖uη‖H ≤ const · ‖η‖
H− 1

2
∀ η ∈ H− 1

2 (R3),

which shows that WλH
− 1

2 (R3) ⊂ H
1
2 (R3) and that (2.34) holds true. This com-

pletes the proof of part (i).

Concerning part (ii), we know from the reasoning above that the map Wλ :

H− 1
2 (R3)→ H

1
2 (R3) is bounded. By (2.25) and (2.34),

〈η,Wλη〉
H− 1

2 ,H
1
2
= ‖uη‖2H ≥ c−2

λ ‖η‖2
H− 1

2
,

which implies coercivity

‖Wλη‖
H

1
2
≥ c−2

λ ‖η‖
H− 1

2
.

This shows that Wλ is a positive, injective H− 1
2 → H

1
2 map. Wλ is thus invertible

on ranWλ and by boundedness ranWλ is closed in H
1
2 (R3). It only remains to

show that ranWλ is also dense in H
1
2 (R3) to conclude that W−1

λ is everywhere

defined and bounded. Now, testing by duality an arbitrary ξ ∈ H− 1
2 (R3) against

ranWλ ⊂ H
1
2 (R3) we see that

〈ξ,Wλη〉
H− 1

2 ,H
1
2
= 0 ∀ η ∈ H− 1

2 (R3)

⇒ 〈uξ, uη〉H = 0 ∀uη ∈ ker(H̊∗ + λ�)

⇒ uξ = 0

⇒ ξ = 0,

and this implies that ranWλ is dense in H
1
2 (R3). Part (ii) is proved.

As a direct consequence of Lemma 2.8, the expression

〈ξ, η〉
H

− 1
2

Wλ

:= 〈ξ,Wλ η〉
H− 1

2 ,H
1
2
= 〈uξ, uη〉H (2.35)

defines a scalar product in H− 1
2 (R3). It is equivalent to the standard scalar product

of H− 1
2 (R3), as follows by combining (2.35) with (2.25).

We shall denote by H
− 1

2

Wλ
(R3) the Hilbert space consisting of the H− 1

2 (R3)-

functions and equipped with the scalar product (2.35). Then the map

Uλ : ker(H̊∗ + λ�)
∼=−−−→ H

− 1
2

Wλ
(R3), uξ �→ ξ (2.36)

is an isomorphism between Hilbert spaces, with ker(H̊∗ + λ�) equipped with the

standard scalar product inherited from H.
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2.5. Extensions classification

For an arbitrary Hilbert space K let us denote by S(K) the collection of all self-

adjoint operators A : D(A) ⊂ K′ → K′ acting on Hilbert subspaces K′ of K.
The Krĕın–Vǐsik–Birman theory determines that, given λ > 0 and hence the

deficiency subspace ker(H̊∗+λ�), the self-adjoint extensions of H̊ are in an explicit

one-to-one correspondence with the elements in S(ker(H̊∗ + λ�)).

Equivalently, by unitary isomorphism (Sec. 2.4), each self-adjoint extension of

H̊ is labeled by an element of S(H− 1
2

Wλ
(R3)). In practice, the latter viewpoint is

going to be more informative.

The extension classification takes the following form.

Theorem 2.9. Let λ > 0.

(i) The self-adjoint extensions of H̊ in Hb constitute the family{
H̊Aλ

| Aλ ∈ S
(
H

− 1
2

Wλ
(R3)

)}
, (2.37)

where

D(H̊Aλ
) =

⎧⎪⎪⎨⎪⎪⎩g ∈ D(H̊∗)

∣∣∣∣∣∣∣∣
η = Aλξ + χ

ξ ∈ D(Aλ)
χ ∈ D(Aλ)⊥λ ∩H− 1

2

Wλ
(R3)

⎫⎪⎪⎬⎪⎪⎭ (2.38)

or equivalently

D(H̊Aλ
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
g ∈ Hb

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ĝ = φ̂λ + ûλξ with

φ̂λ = f̂λ +
ûλη

p2
1 + p2

2 + p1 · p2 + λ
,

fλ ∈ D(H̊),

η = Aλξ + χ, ξ ∈ D(Aλ),
χ ∈ D(Aλ)⊥λ ∩H− 1

2

Wλ
(R3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (2.39)

and (
(H̊Aλ

+ λ�)g
)̂= (p2

1 + p2
2 + p1 · p2 + λ) φ̂λ. (2.40)

In (2.38)–(2.39) above ⊥λ refers to the orthogonality in the H
− 1

2

Wλ
-scalar prod-

uct. The Friedrichs extension H̊F , namely the operator (2.18)–(2.20), corre-

sponds to the formal choice ‘Aλ =∞’ on D(Aλ) = {0}.
(ii) An extension H̊Aλ

is lower semi-bounded with

H̊Aλ
≥ −Λ� for some Λ > 0

if and only if, ∀ ξ ∈ D(Aλ),
〈ξ,Aλξ 〉

H
− 1

2
Wλ

≥ (λ− Λ)‖ξ‖2
H

− 1
2

Wλ

+ (λ− Λ)2〈ξ, (H̊F + Λ1)−1ξ〉
H

− 1
2

Wλ

.
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In particular,

m(H̊Aλ
) ≥ −λ⇔ m(Aλ) ≥ 0

m(H̊Aλ
) > −λ⇔ m(Aλ) > 0.

(2.41)

Moreover, if m(Aλ) > −λ, then

m(Aλ) ≥ m(H̊Aλ
) + λ ≥ λm(Aλ)

λ+m(Aλ) . (2.42)

(iii) The quadratic form of any lower semi-bounded extension H̊Aλ
is given by

D[H̊Aλ
] = D[H̊F ] � U−1

λ D[Aλ]

H̊Aλ
[φλ + uλξ ] = H̊F [φ

λ] + λ
(‖φλ∥∥2H − ∥∥φλ + uλξ

∥∥2
H
)
+Aλ[ξ]

∀φλ ∈ D[H̊F ] = H1
b(R

3 × R3), ∀ ξ ∈ D[Aλ],

(2.43)

and the lower semi-bounded extensions are ordered in the sense of quadratic

forms according to the analogous ordering of the labeling operators, that is,

H̊A(1)
λ

≥ H̊A(2)
λ

⇔ A(1)
λ ≥ A(2)

λ . (2.44)

We recall that the symbolm in (2.41)–(2.42) denotes the bottom of the spectrum

of the considered operator.

Theorem 2.9 is a direct application of the general extension scheme à la Krĕın–

Vǐsik–Birman (we refer, e.g., to [28, Theorems 5–7]) to the minimal operator H̊+λ�,

given the data provided by Lemmas 2.1, 2.2, and 2.4, and exploiting the Hilbert

space isomorphism (2.36) in order to re-phrase the classification formulas in terms

of the unitarily isomorphic version H
− 1

2

Wλ
(R3) of the deficiency subspace.

We shall customarily refer to each Aλ as the ‘labeling operator’, or also the

‘(Vǐsik–)Birman operator’, of the extension HAλ
. (Strictly speaking, the actual

labeling operator originally introduced by Vǐsik [64] and Birman [8, 33] was rather

the inverse of the present Aλ on ranAλ — see, e.g., [28, Sec. 3].)

Remark 2.10. The domain of each H̊Aλ
, as indicated by (2.38), is a suitable

restriction of the domain of H̊∗ obtained by selecting only those functions g whose

charges ηg and ξg are constrained by the self-adjointness condition

ηg = Aλξg + χg (2.45)

for some additional charge χg ∈ D(Aλ)⊥λ , whence

(ηg −Aλξg) ∈ D(Aλ)⊥λ ∩H− 1
2 (R3). (2.46)

Remark 2.11. Fixed a self-adjoint extension H of H̊ and representing it as

H = H̊A(H )
λ

for suitable labeling operators A(H )
λ for each λ > 0 according to
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Theorem 2.9, one has

D(A(H )
λ

)
= D(A(H )

λ′
) ∀λ, λ′ > 0. (2.47)

That is, the explicit action of each labeling operator changes with λ, but the domain

stays fixed. This is an obvious consequence of the identity

D(A(H )
λ

)
=

{
ξ ∈ H− 1

2 (R3)

∣∣∣∣∣ ξ is the singular-part charge of g

for some g ∈ D(H )

}
(2.48)

that follows from the uniqueness of the charge ξ for each g (Lemma 2.7).

3. Two-Body Short-Scale Singularity

The domain of each self-adjoint extension H̊Aλ
of H̊ is a suitable restriction of the

domain of H̊∗. Each restriction of self-adjointness must be a constraint of the form

(2.46) on the charges η and ξ (Remark 2.10). As such two charges characterize

respectively the regular (φλ) and the singular (uλξ ) part of a generic g ∈ D(H̊∗),
indirectly this constraint is a condition linking φλ and uλξ (which otherwise would

be independent). In practice this amounts to selecting those g’s from D(H̊∗) which
display an admissible type of short-scale asymptotics as |y1| → 0, of |y2| → 0, or

|y2 − y1| → 0, that is, when two of the three particles of the trimer come on top of

each other.

In this section we elaborate on this perspective, as it is going to drive the

identification of physically meaningful self-adjoint extensions of H̊ .

3.1. Short-scale structure

For the functions ψ ∈ L2(R3×R3, dy1dy2) of interest, let us highlight a convenient

way to monitor the behavior of ψ(y1,y2) as |y2| → 0 at fixed y1.

Let us write y2 ∈ R3 in spherical coordinates as y2 ≡ |y2|Ωy2 , with Ωy2 ∈ S2,
and for ρ > 0 and almost every y1 ∈ R3, let us define

ψav(y1; ρ) :=
1

4π

∫
S2

ψ(y1, ρΩ)dΩ. (3.1)

Thus, the function y1 �→ ψav(y1; ρ) is the spherical average of the function y1 �→
ψ(y1,y2) over the sphere with |y2| = ρ.

For later purposes, we are concerned with certain meaningful behaviors of

ψav(y1; ρ) as ρ → 0 at fixed y1, namely when it either approaches a finite value

or instead diverges as ρ−1. With no pretension of full generality, let us adopt the

following characterization: we shall say that a measurable function ϕ : [0,+∞)→ C
displays ‘Z-behavior’ (at zero) when ϕ ∈ L2(R+, ρ2dρ), ϕ is continuous in a neigh-

borhood (0, εϕ) for some εϕ > 0, and∫ +∞
0 dρ sin ρ−ρ cos ρ

ρ ϕ
(
ρ
R

)
ϕ
(
1
R

) R→+∞−−−−−→ π

2
cϕ (3.2)
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for some constant cϕ ∈ C. In terms of the even extension φ(ρ) := ϕ(|ρ|), ρ ∈ R,
(3.2) is equivalent to ∫ R

−R φ̂(s) ds− 2R φ̂(R)∫
R
eis/R φ̂(s) ds

R→+∞−−−−−→ cϕ. (3.3)

The request that ϕ ∈ L2(R+, ρ2dρ) is made precisely with the function ρ �→
ψav(y1; ρ) in mind, of course.

Observe that (3.2)–(3.3) is just a convenient way to characterize the behavior

of ϕ(ρ) as ρ → 0. This is clear if one interprets separately the two summands

that emerge from the above expressions (but in general we do want to include the

possible effect of compensation between them). Thus, for instance, if φ is a Schwartz

function with φ(0) = ϕ(0) �= 0, standard Riemann–Lebesgue and Fourier transform

arguments yield∫ +∞

0

dρ
sin ρ

ρ
ϕ
( ρ
R

)
R→+∞−−−−−→ ϕ(0)

∫ +∞

0

dρ
sin ρ

ρ
=
π

2
ϕ(0),

∫ +∞

0

dρ cos ρϕ
( ρ
R

)
=

√
π

2
R φ̂(R)

R→+∞−−−−−→ 0,

therefore in this case (3.2) is satisfied with cϕ = 1. More generally, the asymptotic

finiteness of the quantities ∫ R
−R φ̂(s) ds∫

R
eis/R φ̂(s) ds

,
R φ̂(R)

φ
(
1
R

)
as R→ +∞ encodes a prescription on φ(ρ) as ρ vanishes, including when φ (hence

ϕ) is singular at ρ = 0. In fact, (3.2)–(3.3) encode in general a possible compensation

among the above two summands. For instance, for the function ϕ = ρ−11(0,1) one

finds∫ +∞
0

dρ sin ρ−ρ cos ρ
ρ ϕ( ρR )

ϕ( 1
R )

=

∫ R

0

dρ
sin ρ− ρ cos ρ

ρ2
=

[
− sin ρ

ρ

]R
0

R→+∞−−−−−→ 1,

meaning that in this case (3.2) is satisfied with cϕ = 2
π .

Clearly, the Z-behavior is not the most general behavior of ρ �→ ψav(y1; ρ) when

ψ ∈ L2(R3 × R3, dy1dy2) or even, for later applications, when ψ belongs to the

domain of self-adjoint operator of interest. It is generic enough, though, to comprise

both functions ϕ with sufficient regularity at ρ = 0 and integrability over [0,+∞),

and functions with enough integrability and local ρ−1-singularity.

Lemma 3.1. Let ψ ∈ Hb such that for almost every y1 the function ρ �→ ψav(y1; ρ)

has Z-behavior, for concreteness uniformly in y1 (thus, with the same constant in

the limit (3.2)). For R > 0 and a.e. p1 let

Âψ,R(p1) :=
1

(2π)
3
2

∫
p2∈R

3

|p2|<R

ψ̂(p1,p2) dp2. (3.4)
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Then, for a.e. y1, and for some constant cψ ∈ C,

Aψ,R(y1) = cψ ψav

(
y1;

1

R

)
(1 + o(1)) as R→ +∞. (3.5)

Remark 3.2. In the assumption of the Lemma ψ may be singular at y2 = 0, in

which case both sides of (3.5) diverge with R. If instead ψ is suitably regular at

y2 = 0, then the right-hand side converges to ψ(y1,0), consistently with (2.11)–

(2.12) above.

Proof of Lemma 3.1. One has

Aψ,R(y1) =
1

(2π)3

∫∫
R3×R3

dp1dp2 e
ip1·y1 1{|p2|<R}(p2) ψ̂(p1,p2)

=

∫∫
R3×R3

dz1dz2 δ(z1 + y1) δR(z2)ψ(z1, z2)

=

∫
R3

dz2 δR(z2)ψ(−y1, z2)

=

∫
R3

dz2 δR(z2)ψ(y1,−z2),

where

δR(z2) :=

(
1{|p2|<R}
(2π)

3
2

)∨
(z2) =

1

(2π)3

∫
p2∈R

3

|p2|<R

eip2·z2 dp2

=
2π

(2π)3

∫ R

0

dr r2
∫ 1

−1

dt eir|z2|t

=
2R3

(2π)2
sinR|z2| −R|z2| cosR|z2|

(R|z2|)3 .

In fact, δR is a smooth, approximate delta-distribution in three dimensions. Thus,

Aψ,R(y1) =
2

(2π)2

∫
R3

dz2
sin|z2| − |z2| cos |z2|

|z2|3 ψ

(
y1,

1

R
z2

)

=
2

(2π)2

∫ +∞

0

dρ
sin ρ− ρ cos ρ

ρ

(∫
S2

dΩψ

(
y1,

1

R
ρΩ

))

=
2

π

∫ +∞

0

dρ
sin ρ− ρ cos ρ

ρ
ψav

(
y1,

ρ

R

)
.

By assumption (see (3.2) above),

lim
R→+∞

∫ +∞
0 dρ sin ρ−ρ cos ρ

ρ ψav(y1,
ρ
R )

ψav

(
y1,

1
R

) =
π

2
cψ
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for some constant cψ ∈ C. Therefore,
Aψ,R(y1)

=
2

π

∫ +∞

0

dρ
sin ρ− ρ cos ρ

ρ
ψav

(
y1,

ρ

R

)
R→+∞

= cψ ψav

(
y1,

1

R

)
(1 + o(1)),

which completes the proof.

Remark 3.3. Should, more realistically, the function ρ �→ ψav(y1, ρ) in the above

proof display Z-behavior non-uniformly in y1, the counterpart of the cψ-constant

would be a function cψ(y1). We are not really interested in pushing such generality

forward: we merely introduced the Z-behavior to visualize, in meaningful concrete

cases, the correspondence between the two expressions (3.4) and (3.5) with explicit

dependence on the cut-off parameter R.

3.2. The Tλ operator

In practice, the computation of (3.4) for elements of D(H̊∗) produces a quantity

that for convenience we analyse separately in this subsection, before resuming the

discussion in the following Sec. 3.3.

For ξ ∈ H− 1
2 (R3) and λ > 0 we define (for a.e. p)

(T̂λξ)(p) := 2π2

√
3

4
p2 + λ ξ̂(p)− 2

∫
R3

ξ̂(q)

p2 + q2 + p · q+ λ
dq. (3.6)

At least for ξ ∈ H− 1
2+ε(R3), ε > 0, (3.6) defines an almost-everywhere finite

quantity, for∣∣∣∣∣
∫
R3

ξ̂(q)

p2 + q2 + p · q+ λ
dq

∣∣∣∣∣ � ‖ξ‖H− 1
2
+ε

(∫
R3

(q2 + 1)
1
2−ε

(p2 + q2 + 1)2
dq

)1/2

< +∞.

Instead, the example ξ̂0(q) := 1{|q|≥2}(|q| log |q|)−1 shows that (3.6) may be infinite

for generic H− 1
2 -functions.

The map ξ �→ Tλξ is central in this work. It commutes with the rotations in R3

and therefore, upon densely defining it over Hs(R3), s ≥ − 1
2 , one has

Tλ =

∞⊕
�=0

T
(�)
λ (3.7)

in the sense of direct sum of operators on Hilbert space with respect to the canonical

decomposition

Hs(R3) ∼=
∞⊕
�=0

(
L2(R+, (1 + p2)sp2dp)⊗ span

{
Y�,n |n = −�, . . . , �})

≡
∞⊕
�=0

Hs
� (R

3). (3.8)
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Here the Y�,n’s form the usual orthonormal basis of L2(S2) of spherical harmonics

and each ξ ∈ Hs(R3) decomposes with respect to (3.8) as

ξ̂(p) =

∞∑
�=0

�∑
n=−�

f
(ξ)
�,n(|p|)Y�,n(Ωp) =

∞∑
�=0

ξ̂(�)(p)

ξ̂(�)(p) :=

�∑
n=−�

f
(ξ)
�,n(|p|)Y�,n(Ωp)

(3.9)

in polar coordinates p ≡ |p|Ωp. Explicitly,

〈ξ, η〉Hs =

∞∑
�=0

〈ξ(�), η(�)〉Hs
�
=

∞∑
�=0

�∑
n=−�

∫
R+

f
(ξ)
�,n(p) f

(η)
�,n (p) (1 + p2)sp2dp. (3.10)

and

T̂λξ =

∞∑
�=0

̂
T

(�)
λ ξ(�). (3.11)

Let us denote by P� the Legendre polynomial of order � = 0, 1, 2, . . . , namely

P�(t) ≡ 1

2��!

d�

dt�
(t2 − 1)�. (3.12)

Lemma 3.4 (Decomposition Properties of Tλ). Let λ > 0 and ξ(�), η(�) ∈
Hs
� (R

3). Then, with respect to the representation (3.9),

(i) T
(�)
λ acts trivially (i.e. as the identity) on the angular components of ξ̂(�), and

acts as

f
(ξ)
�,n(p) �→ 2π2

√
3

4
p2 + λ f

(ξ)
�,n(p)− 4π

∫
R+

dq q2f
(ξ)
�,n(q)

∫ 1

−1

P�(t) dt

p2 + q2 + p q t+ λ

(3.13)

on each radial component ;

(ii) one has ∫
R3

ξ̂(p)
(
T̂λη

)
(p) dp =

∞∑
�=0

∫
R3

ξ̂(�)(p)
( ̂
T

(�)
λ η(�)

)
(p) dp (3.14)

and ∫
R3

ξ̂(�)(p)
( ̂
T

(�)
λ η(�)

)
(p) dp

= 2π2

∫
R+

dp p2 f
(ξ)
�,n(p)f

(η)
�,n (p)

√
3

4
p2 + λ

− 4π

∫∫
R+×R+

dp dq p2q2 f
(ξ)
�,n(p) f

(η)
�,n (q)

∫ 1

−1

dt
P�(t)

p2 + q2 + p q t+ λ
.

(3.15)
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Proof. The triviality of the action of T
(�)
λ on the angular components is due to

the invariance of Tλ under rotations. All other formulas are then straightforwardly

derived from (3.6) by exploiting the following standard expansion in Legendre poly-

nomials and the addition formula for spherical harmonics:

1

p2 + q2 + p · q+ λ
=

∞∑
�=0

2�+ 1

2

∫ 1

−1

dt
P�(t)P�(cos(θp,q))

p2 + q2 + |p| |q| t+ λ

=
∞∑
�=0

2π

∫ 1

−1

dt
P�(t)

p2 + q2 + |p| |q| t+ λ

�∑
r=−�

Y�r(Ωp) Y�r(Ωq) (3.16)

(see, e.g., [29, Eq. (8.814)]).

Lemma 3.5 (Mapping Properties of Tλ). Let λ > 0.

(i) For each s ≥ 1 (3.6) defines an operator

Tλ : D(Tλ) ⊂ L2(R3)→ L2(R3), D(Tλ) := Hs(R3)

that is densely defined and symmetric in L2(R3).

(ii) One has

‖Tλξ‖Hs−1 � ‖ξ‖Hs ∀ ξ ∈ Hs(R3), s ∈
(
−1

2
,
3

2

)
, (3.17)

i.e. (3.6) defines a bounded operator Tλ : Hs(R3) → Hs−1(R3) for every s ∈
(− 1

2 ,
3
2 ).

(iii) One has

‖T (�)
λ ξ‖Hs−1 � ‖ξ‖Hs ∀ ξ ∈ Hs

� (R
3), s ∈

[
−1

2
,
3

2

]
, � ∈ N, (3.18)

i.e. (3.6) defines a bounded operator Tλ : Hs
� (R

3) → Hs−1
� (R3) for every s ∈

[− 1
2 ,

3
2 ], provided that � ∈ N. In the sector � = 0 (3.18) fails in general at the

endpoints in s and only (3.17) is valid.

(iv) For any other λ′ > 0 one has

‖(Tλ′ − Tλ)ξ‖
H

1
2
� |λ′ − λ| ‖ξ‖

H− 1
2
. (3.19)

(v) For s ≥ 1
2 and ξ, η ∈ Hs(R3) one has∫

R3

ξ̂(p)
(
T̂λη

)
(p) dp =

∫
R3

T̂λξ(p) η̂(p) dp

(
s ≥ 1

2

)
(3.20)

and the quantity above is real and finite.

Proof. All claims (i)–(iii) are obvious for the multiplicative part of Tλ, namely

the first summand in the right-hand side of (3.6), and need only be proved for the

integral part of Tλ. The latter, apart from an irrelevant multiplicative prefactor, is

the same as the multiplicative part of the ‘fermionic’ counterpart of Tλ, namely the
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analogous operator emerging in the analysis of a trimer consisting of two identical

fermions and a third different particle. All the claimed properties were already

demonstrated in that case in collaboration with Ottolini in [39, Propositions 3 and

4, Corollary 2].

Concerning part (iv),

((Tλ′ − Tλ)ξ)̂(p)
=

2π2(λ′ − λ)√
3
4p

2 + λ′ +
√

3
4p

2 + λ
ξ̂(p)

+ 2(λ′ − λ)
∫
R3

ξ̂(q)

(p2 + q2 + p · q+ λ) (p2 + q2 + p · q+ λ′)
dq

whence

∣∣(Tλ′ − Tλ)ξ)̂(p)∣∣ � |λ′ − λ|
⎛⎝ 2π2 |ξ̂(p)|√

3
4p

2 + λ
+

∫
R3

|ξ̂(q)|
(p2 + q2 + 1)2

dq

⎞⎠.
Thus, ξ �→ (Tλ′−Tλ)ξ has the same behavior asWλ, and hence the sameH− 1

2 → H
1
2

boundedness.

Concerning (v), the only non-trivial piece of the claim regards the integral part

of Tλ, namely the identity∫
R3

dp ξ̂(p)

(∫
R3

dq
η̂(q)

p2 + q2 + p · q+ λ

)

=

∫
R3

dq

(∫
R3

dp
ξ̂(p)

p2 + q2 + p · q+ λ

)
η̂(q).

The exchange of integration order above is indeed legitimate, as the assumptions

on ξ, η guarantee the applicability of Fubini–Tonelli theorem. More precisely,∣∣∣∣∫
R3

dp ξ̂(p)

(∫
R3

dq
η̂(q)

p2 + q2 + p · q+ λ

)∣∣∣∣
�
∫
R3

dp |ξ̂(p)|
(∫

R3

dq
|η̂(q)|

p2 + q2 + 1

)
≤ ‖ξ‖

H
1
2

∥∥∥∥∫
R3

dq
|η̂(q)|

p2 + q2 + 1

∥∥∥∥
H− 1

2

� ‖ξ‖
H

1
2
‖η‖

H
1
2
≤ ‖ξ‖Hs‖η‖Hs < +∞ ∀ s ≥ 1

2
,

where we applied (2.17) in the first inequality and (3.17) in the third (estimate

(3.17) refers to the whole Tλ, but as commented above in the course of its proof it

is actually established by demonstrating the only non-trivial piece of the estimate,

namely the one involving the integral part of Tλ).

Remark 3.6. Tλ fails to map H
3
2 (R3) into H

1
2 (R3) as is the case, for instance, for

the action of Tλ on the class of spherically symmetric functions in F−1C∞
0 (R3

p).
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Indeed, if ξ has symmetry � = 0 and ξ̂ ∈ C∞
0 (R3

p), then the contribution from the

integral part of (T̂λξ)(p) is of the order of (see (3.13) above)∫
supp f(ξ)

dq q2 f (ξ)(q)

∫ 1

−1

dt

|p|2 + q2 + |p|qt+ λ

=
1

|p|
∫
supp f(ξ)

dq q f (ξ)(q) log

(
1 +

2|p|q
|p|2 + q2 − |p|qt+ λ

)
,

which, both in the limit |p| → 0 and |p| → +∞ is of the order of∫
supp f(ξ)

dq
q2

|p|2 + q2 − |p|qt+ λ
f (ξ)(q) ∼ 1

p2 + 1
.

The contribution from the multiplicative part of (T̂λξ)(p) is obviously a compactly

supported function, the conclusion therefore is (T̂λξ)(p) ∼ (p2 + 1)−1, and the

latter is a H
1
2−ε-function ∀ ε > 0 not belonging to H

1
2 (R3).

Remark 3.7. Parts (i) and (v) of Lemma 3.5 present two regimes of validity of

the identity (3.20) when ξ, η ∈ Hs(R3) for s ≥ 1
2 . In the regime s ≥ 1, each side

of the (3.20) is a product of two L2-functions and such identity amounts to the

symmetry of Tλ in L2(R3) with domain Hs(R3). For 1
2 ≤ s < 1, instead, Tλ does

not make sense any longer as an operator on L2(R3), and yet (3.5) still expresses

the symmetry of the action of Tλ on Hs-functions, and hence also the reality of the

considered integrals.

Additional relevant properties Tλ are discussed in Sec. 5.1.

3.3. Large momentum asymptotics

Lemma 3.8. Let g ∈ D(H̊∗) and let λ > 0. Then, decomposing ĝ = φ̂λ + ûλξ with

φ̂λ = f̂λ +(p2
1 +p2

2 +p1 ·p2 +λ)−1 ûλη as demonstrated in Lemma 2.4, in the limit

R→ +∞ one has the asymptotics∫
p2∈R

3

|p2|<R

ĝ(p1,p2) dp2 = 4πR ξ̂(p1) +

(
1

3
(Ŵλη)(p1)− (T̂λξ)(p1)

)
+ o(1) (3.21)

as well as the identity ∫
R3

φ̂λ(p1,p2) dp2 =
1

3
(Ŵλη)(p1). (3.22)

An immediate corollary of Lemma 3.8, obtained by means of Lemma 3.1 taking

R = |y2|−1 → +∞, is the following.

Corollary 3.9. Under the assumptions of Lemmas 3.8 and 3.1 one has

(2π)
3
2 cg gav(y1; |y2|) |y2|→0

=
4π

|y2| ξ(y1) +

(
1

3
(Wλη)(y1)− (Tλξ)(y1)

)
+ o(1)

(3.23)
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for some constant cg ∈ C, and

φλ(y1,0) =
1

3 (2π)
3
2

(Wλη)(y1) (3.24)

for a.e. y1.

Remark 3.10. Not for all g ∈ D(H̊∗) are (3.21) and (3.23) finite quantities, but

surely they are if the charge ξ of g has at H− 1
2+ε-regularity for some ε > 0 (as

argued right after the definition (3.6)).

Proof of Lemma 3.8. For what observed in Remark 3.10, we tacitly restrict

the computations to those ξ’s making the following integrals finite (e.g., all ξ’s

with H− 1
2+ε-regularity), for otherwise the corresponding identities to prove are all

identities between infinites.

One has∫
p2∈R

3

|p2|<R

ûλξ (p1,p2)dp2 = ξ̂(p1)

∫
p2∈R

3

|p2|<R

dp2

p2
1 + p2

2 + p1 · p2 + λ

+

∫
p2∈R

3

|p2|<R

ξ̂(p2)

p2
1 + p2

2 + p1 · p2 + λ
dp2

+

∫
p2∈R

3

|p2|<R

ξ̂(−p1 − p2)

p2
1 + p2

2 + p1 · p2 + λ
dp2.

Both last two summands in the right-hand side above converge as R→ +∞ to∫
R3

ξ̂(p2)

p2
1 + p2

2 + p1 · p2 + λ
dp2

(for the third one this follows after an obvious change of the integration variable).

Moreover,∫
p2∈R

3

|p2|<R

dp2

p2
1 + p2

2 + p1 · p2 + λ

= 2π

∫ R

0

dr r2
∫ 1

−1

dt

p2
1 + r2 + |p1|rt+ λ

=
2π

|p1|
∫ R

0

r log
r2 + p2

1 + |p1|r + λ

r2 + p2
1 − |p1|r + λ

dr

= 2πR

(
1 +

R

2|p1| log
R2 + p2

1 + |p1|R+ λ

R2 + p2
1 − |p1|R+ λ

)

+2π

√
3

4
p2
1 + λ

⎛⎝arctan |p1| − 2R

2
√

3
4p

2
1 + λ

− arctan
|p1|+ 2R

2
√

3
4p

2
1 + λ

⎞⎠
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+ π
p2
1 + λ

4
√

3
4p

2
1 + λ

log
R2 + p2

1 + |p1|R+ λ

R2 + p2
1 − |p1|R+ λ

= 4πR− 2π2

√
3

4
p2
1 + λ+ o(1) as R→ +∞.

Thus,∫
p2∈R

3

|p2|<R

ûλξ (p1,p2)dp2

= 4πR ξ̂(p1)− 2π2

√
3

4
p2
1 + λ ξ̂(p1) + 2

∫
R3

ξ̂(p2)

p2
1 + p2

2 + p1 · p2 + λ
dp2 + o(1)

= 4πR ξ̂(p1)− (T̂λξ)(p1) + o(1).

Next, we compute (using
∫
R3 f

λ(p1,p2)dp2 = 0)∫
R3

φ̂λ(p1,p2) dp2 =

∫
R3

ûη(p1,p2)

p2
1 + p2

2 + p1 · p2 + λ

= η̂(p1)

∫
R3

dp2

(p2
1 + p2

2 + p1 · p2 + λ)2

+

∫
R3

η̂(p2)

(p2
1 + p2

2 + p1 · p2 + λ)2
dp2

+

∫
R3

η̂(−p1 − p2)

(p2
1 + p2

2 + p1 · p2 + λ)2
dp2.

By an obvious change of variable one sees that the last two summands are the same.

Moreover, ∫
R3

dp2

(p2
1 + p2

2 + p1 · p2 + λ)2
=

π2√
3
4p

2
1 + λ

.

Therefore,∫
R3

φ̂λ(p1,p2) dp2 =
π2√

3
4p

2
1 + λ

+ 2

∫
R3

η̂(p2)

(p2
1 + p2

2 + p1 · p2 + λ)2
dp2

=
1

3
(Ŵλη)(p1).

This proves (3.22), and combining this with the above results for ûλξ one proves

(3.21).

By exploiting the bosonic symmetry and repeating the above arguments with

respect the other coincidence hyperplanes, one finally obtains the following picture:

• a function f ∈ D(H̊) vanishes by definition in a neighborhood of the coincidence

manifold Γ;
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• at each hyperplane, away from the configuration of triple coincidence, a function

φ ∈ D(H̊F ) is finite, as shown by (3.24);

• a generic g ∈ D(H̊∗) display the |y|−1 singularity, as shown by (3.23).

Actually, (3.23) and (3.24) express the short-scale behavior counterpart of the large

momentum asymptotics (3.21) and (3.22), respectively — and always with the

caveat that the asymptotics for g have finite coefficients only for a subclass of

charges ξ (which includes all charges with H− 1
2+ε-regularity).

The leading singularity of g is of order |y|−1 in the relative variable with respect

to the considered coincidence hyperplane. Explicitly, in terms of the charges ξ and

η of g,

gav(y1; |y2|) |y2|→0
= c−1

g

√
2

π

(
ξ(y1)

|y2| + ωξ,η(y1)

)
+ o(1), (3.25)

ωξ,η(y1) :=
1

4π

(1
3
(Wλη)(y1)− (Tλξ)(y1)

)
, (3.26)

point-wise almost-everywhere in y1. Analogous expressions hold with respect to the

other coincidence hyperplanes, with the same ξ and ωξ,η.

ξ and ωξ,η are interpreted in (3.25) as functions supported on the coincidence

hyperplane ({y2 = 0} in this case). The leading singularity’s coefficient ξ has some

H− 1
2 -regularity (in fact, more than that). The next-to-leading singularity’s coeffi-

cient ωξ,η, in general, is not even H− 1
2 -regular, owing to the mapping properties of

Wλ (Lemma 2.8) and Tλ (Lemma 3.5). But if the charge ξ is absent in g, and hence

g ∈ H2(R3 × R3, dy1dy2), then ωξ,η has the same regularity of Wλη, namely the

very H
1
2 (R3)-regularity prescribed by the trace theorem.

When a self-adjoint extension H̊Aλ
is considered, and hence the subspace

D(H̊Aλ
) is selected out of D(H̊∗) by means of the constraint (2.46) on the charges

ξ and η, in practice one makes a choice in the class of leading coefficients ξ and

subleading coefficients ωξ,η of the short-scale expansion (3.25) which amounts to

taking

ξ ∈ D(Aλ),

4π ωξ,η =
1

3
Wλ(Aλξ + χ)− Tλξ for some χ ∈ D(Aλ)⊥λ ∩H− 1

2 (R3).
(3.27)

4. Ter-Martirosyan Skornyakov Extensions

4.1. TMS and BP asymptotics

Given g ∈ Hb such that
∫
|p2|<R ĝ(p1,p2)dp2 < +∞ for all R > 0, we shall say

that g satisfies the Ter-Martirosyan Skornyakov (TMS) condition with parameter

a ∈ (R\{0}) ∪ {∞} if there exists a function ξ◦ such that∫
p2∈R

3

|p2|<R

ĝ(p1,p2) dp2
R→+∞

= 4π

(
R− 1

a

)
ξ̂◦(p1) + o(1). (4.1)
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An operator K on Hb for which all g’s of D(K) with
∫
|p2|<R ĝ(p1,p2)dp2 < +∞

∀R > 0 satisfy (4.1) shall be called a Ter-Martirosyan Skornyakov operator. (For

the time being this definition is kept deliberately general: K may or may not be

densely defined, symmetric, self-adjoint, etc., and nothing is said about the class ξ◦
belongs to.)

For those g’s of D(K) for which it is possible to repeat the arguments of

Lemma 3.1, (4.1) amounts to

gav(y1; |y2|) |y2|→0
= c−1

g

√
2

π

(
1

|y2| −
1

a

)
ξ◦(y1) + o(1) (4.2)

point-wise almost everywhere in y1 ∈ R3. (The numerical pre-factors appearing

in the right-hand side of (4.1) and (4.2) are merely prepared for the forthcoming

application to the analysis of the extensions of H̊ .)

The case a = 0 in (4.1)–(4.2) would correspond to ξ◦ ≡ 0 and hence to the fact

that the quantity
∫
R3 ĝ(p1,p2)dp2 is finite. As the TMS condition is meant to pin-

point an actual singularity of g at each coincidence hyperplane, one conventionally

excludes a = 0 from the above definition.

In fact, (4.1)–(4.2) describe a short-scale structure of g in the vicinity of each

coincidence hyperplane (but away from the triple coincidence point) which in spatial

coordinates has precisely the form of the Bethe–Peierls contact condition (1.1)

expected on physical grounds for the eigenfunctions of a quantum trimer with zero-

range interaction: in this interpretation, a is the two-body s-wave scattering length

of the interaction.

We shall refer to (4.2) too as the Bethe–Peierls (BP) condition and we shall

equivalently say that in the TMS condition (4.1), respectively, the BP condition

(4.2), the quantity

α := −4π

a
∈ R (4.3)

is the ‘inverse (negative) scattering length’ (in suitable units).

This indicates that within the huge variety of self-adjoint extensions of H̊ (The-

orem 2.9), the physically meaningful ones are those displaying the TMS condition

for functions of their domain.

De facto some arbitrariness in the modeling still remains, as we shall elabo-

rate further on in due time (Secs. 4.4 and 7.3), for one could deem an extension

‘physically meaningful’

• in the restrictive sense that all functions in the domain of the extension satisfy

the TMS asymptotics (meaning, all functions g for which, at any R > 0, the

quantity
∫
|p2|<R ĝ(p1,p2)dp2 is finite),

• in the milder sense that only some relevant functions do, for instance declar-

ing the physical asymptotics for functions with given symmetry, or for certain

eigenfunctions of the extension.
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Let us examine first the possibility that at least one function in the domain of

a self-adjoint extension of H̊ satisfies the TMS condition.

Lemma 4.1. Let H be a self-adjoint extension of H̊ and let α ∈ R. Assume that

there exists g ∈ D(H ) satisfying the TMS condition (4.1) for the given α and for

some function ξ◦. One has the following.

(i) ξ◦ must coincide with the charge ξ of (the singular part of) g (Lemma 2.7):

ξ = ξ◦. (4.4)

(ii) For every shift parameter λ > 0 with respect to which the canonical representa-

tion (2.39) of g is written, the charges ξ ∈ D(Aλ) and χ ∈ D(Aλ)⊥λ∩H− 1
2 (R3)

of g must satisfy

1

3
Wλ(Aλξ + χ) = Tλξ + αξ (4.5)

Tλξ + αξ ∈ H
1
2 (R3). (4.6)

(iii) For every shift parameter λ > 0, g and its regular part φλ must satisfy∫
p2∈R

3

|p2|<R

ĝ(p1,p2) dp2 = (4πR+ α) ξ̂(p1) + o(1), (4.7)

∫
R3

φ̂λ(p1,p2) dp2 = (T̂λξ)(p1) + α ξ̂(p1), (4.8)

φλ(y1,0) =
1

(2π)
3
2

(
(Tλξ)(y1) + α ξ(y1)

)
, (4.9)

(4.7)–(4.9) being equivalent.

Proof. Let λ > 0 and write

ĝ = f̂λ +
ûλAλξ+χ

p2
1 + p2

2 + p1 · p2 + λ
+ ûλξ

according to (2.39). Comparing the asymptotics (3.21) valid for such g with the

asymptotics (4.1) assumed in the hypothesis, one deduces

ξ = ξ◦

1

3
Wλ(Aλξ + χ)− Tλξ = α ξ◦.

From the arbitrariness of λ one concludes that the identity (4.5) holds true irrespec-

tive of λ. Moreover, Tλξ + αξ must make sense as a function in ranWλ = H
1
2 (R3)

(Lemma 2.8) irrespective of λ. This completes the proof of parts (i) and (ii). Plug-

ging (4.5) into (3.21) and (3.22) yields (4.7) and (4.8), and in fact one can be derived

one from the other, by comparison with the corresponding general identities (3.21)

and (3.22). In turn, (4.8) and (4.9) correspond to each other via Fourier transform.

Parts (ii) and (iii) too are proved.
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Remark 4.2. Owing to Lemma 4.1(ii), (4.9) must be an identity in H
1
2 (R3). This

is indeed consistent with the H2(R3 × R3)→ H
1
2 (R3) trace properties.

Remark 4.3. The ‘lesson’ from Lemma 4.1 is that TMS condition and self-

adjointness of the extension impose strong restrictions. A function g fulfilling the

TMS condition inside the domain of a self-adjoint extension of H̊ must satisfy the

restrictions (4.4)–(4.6) ∀λ > 0.

4.2. Generalities on TMS extensions

There are two relevant types of operators related with H̊ and compatible

with the emergence of large-momenta/short-scale asymptotics of Ter-Martirosyan

Skornyakov/Bethe–Peierls type:

an operator H on Hb such that H̊ ⊂H = H ∗ (respectively, H̊ ⊂H ⊂ H ∗) and
such that every g ∈ D(H ) satisfies the TMS condition (4.7) with the same given

α shall be called a Ter-Martirosyan Skornyakov self-adjoint extension (respectively,

Ter-Martirosyan Skornyakov symmetric extension) of H̊ with parameter α.

Remark 4.4. While the above definition in the self-adjoint case is self-explanatory,

based on the preceding analysis, as the self-adjoint extensions of H̊ are classified in

Theorem 2.9 and the circumstance that g ∈ D(H ) satisfies the TMS condition is

analysed in Lemma 4.1, a clarification is in order for the symmetric case. In fact,

formulas (2.39)–(2.40) above make sense also when Aλ is simply symmetric (not

necessarily self-adjoint) in H
− 1

2

Wλ
(R3), in which case the operator HAλ

thus defined

is evidently still an extension of H̊. Let us show that HAλ
is also symmetric. For

generic g ∈ D(H ),

〈g, (HAλ
+ λ�)g〉Hb

=
〈
φλ + uλξ , (HAλ

+ λ�)(φλ + uλξ )
〉
Hb

=
〈
φλ, (HF + λ�)φλ

〉
Hb

+
〈
uλξ , (HF + λ�)φλ

〉
Hb

=
〈
φλ, (HF + λ�)φλ

〉
Hb

+
〈
uλξ , u

λ
Aλξ+χ

〉
Hb

=
〈
φλ, (HF + λ�)φλ

〉
Hb

+ 〈ξ,Aλξ + χ〉
H

− 1
2

Wλ

=
〈
φλ, (HF + λ�)φλ

〉
Hb

+ 〈ξ,Aλξ〉
H

− 1
2

Wλ

∈ R.

(We used 〈uλξ , (H̊ + λ�)fλ〉Hb
= 0 in the third step, (2.35) in the fourth, and

χ ⊥λ ξ in the fifth.) For the reality of the above expression it indeed suffices Aλ
to be symmetric in H

− 1
2

Wλ
(R3). The proof of Lemma 4.1 can be just repeated for

the symmetric Aλ and the same conclusions hold for the symmetric extension H

considered now.

TMS symmetric extensions of H̊ will play a crucial role in Sec. 6. For the time

being, let us focus on TMS self-adjoint extensions, and comment on their symmetric

counterpart at the end of this section (Remark 4.8).
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The requirement that a self-adjoint extension of H̊ as a whole be a Ter-

Martirosyan Skornyakov operator imposes a precise choice of the corresponding

Birman operators Aλ.

Lemma 4.5. Let λ > 0 and α ∈ R. Let Aλ ∈ K(H− 1
2

Wλ
(R3)) and let H̊Aλ

be corre-

sponding self-adjoint extension of H̊. The following two conditions are equivalent.

(i) Every g ∈ D(H̊Aλ
) satisfies the TMS condition (4.5) with the given α.

(ii) D(Aλ) is dense in H− 1
2 (R3), (Tλ + α�)D(Aλ) ⊂ H

1
2 (R3), and

Aλ = 3W−1
λ (Tλ + α�). (4.10)

Proof. The implication (ii) ⇒ (i) is obvious from Lemma 3.8. Conversely, if (4.5)

is to be satisfied by every g ∈ D(H̊Aλ
), then owing to Lemma 4.1⎧⎨⎩Tλξ + α ξ ∈ H 1

2 (R3)

χ = 3W−1
λ (Tλξ + α ξ)−Aλξ

∀ ξ ∈ D(Aλ), ∀χ ∈ D(Aλ)⊥λ ∩H− 1
2 (R3).

The first condition means precisely (Tλ + α�)D(Aλ) ⊂ H
1
2 (R3), and the second

condition can only be satisfied if D(Aλ)⊥λ∩H− 1
2 (R3) is trivial, namely when D(Aλ)

is dense in H− 1
2 (R3) and Aλ = 3W−1

λ (Tλ + α�).

Theorem 4.6. Let α ∈ R and let H be an operator on Hb. The following two

possibilities are equivalent.

(i) H is a Ter-Martirosyan Skornyakov self-adjoint extension of H̊ with inverse

scattering length α.

(ii) There exists a subspace D ⊂ H− 1
2 (R3) such that, for one and hence for all

λ > 0,

(1) D is dense in H− 1
2 (R3),

(2) (Tλ + α�)D ⊂ H
1
2 (R3),

(3) the operator

Aλ := 3W−1
λ (Tλ + α�)

D(Aλ) := D
(4.11)

is self-adjoint in H
− 1

2

Wλ
(R3),

(4) H = H̊Aλ
.

When (i) or (ii) are matched, for one and hence for all λ > 0 one has

D(H ) =

⎧⎨⎩g = φλ + uλξ

∣∣∣∣∣∣
φλ ∈ H2

b(R
3 × R3) , ξ ∈ D,∫

R3

φ̂λ(p1,p2) dp2 = (T̂λξ)(p1) + α ξ̂(p1)

⎫⎬⎭ (4.12)
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where for each λ the above decomposition of g in terms of φλ and ξ is unique,

and

(H + λ�)g = (H̊F + λ�)φλ. (4.13)

Proof. Assume that every g ∈ D(H ) satisfies the TMS asymptotics (4.7) with the

same α. Applying Lemma 4.5 one obtains all four conditions 1. through 4. listed in

part (ii), for every λ > 0, except that D is replaced by D(Aλ) for each considered

λ. But all such D(Aλ)’s are in fact the same subspace (Remark 2.11). The proof of

(i) ⇒ (ii) is completed.

Conversely, assume that (ii) holds true for one λ◦ > 0. Applying Lemma 4.5 one

deduces that H is a Ter-Martirosyan Skornyakov self-adjoint extension of H̊ with

inverse scattering length α. Since we know already that (i) ⇒ (ii), then condition

(ii) holds true for any other λ > 0 as well. This establishes the full implication (ii)

⇒ (i).

Under condition (i), or equivalently (ii), (4.12)–(4.13) then follow from

(2.39)-(2.40) of Theorem 2.9(i) and from (4.8) and (4.11).

It is worth stressing that formulas (4.12)–(4.13) alone, considered for some sub-

space D of H− 1
2 (R3), evidently define an extension H of H̊ ; however, they do not

necessarily make H a self-adjoint extension. We formulate this point in the form

of a separate corollary for later purposes.

Corollary 4.7. Let α ∈ R, λ > 0, let D be a subspace of H− 1
2 (R3), and let H be

the operator defined by (4.12)–(4.13). Then H is self-adjoint in Hb if and only if D
is dense in H− 1

2 (R3), (Tλ+α�)D ⊂ H
1
2 (R3), and the operator (4.11) is self-adjoint

in H
− 1

2

Wλ
(R3).

Thus, the quest of Ter-Martirosyan Skornyakov self-adjoint extensions of H in

Hb is boiled down to the self-adjointness problem ofW−1
λ (Tλ+α�) inH

− 1
2

Wλ
(R3) with

domain D, hence in practice to the problem of finding a domain of self-adjointness

for the formal action ξ �→W−1
λ (Tλ + α�)ξ. This task actually constitutes the hard

part of the rigorous modeling of physically meaningful Hamiltonians of zero-range

interactions for the considered bosonic trimer.

For an operator satisfying either condition of Theorem 4.6 we shall use the nat-

ural notation Hα, so as to emphasize the only relevant parameter of the considered

Ter-Martirosyan Skornyakov (self-adjoint) extension of H̊. This must be done keep-

ing in mind that in principle for the same α ∈ R there could be distinct operators

of the form Hα, that is, distinct domains of self-adjointness for W−1
λ (Tλ + α�)

in H
− 1

2

Wλ
(R3) (Corollary 4.7), in analogy with the familiar existence of a variety of

distinct domains of self-adjointness in L2(0, 1) for the same differential operator

− d2

dx2 .
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Remark 4.8. The reasonings that led to Theorem 4.6 have an obvious counterpart

for Ter-Martirosyan Skornyakov symmetric extensions of H̊.

(i) Lemma 4.5 is equally valid when Aλ is only assumed to be symmetric in

H
− 1

2

Wλ
(R3) and the corresponding H̊Aλ

is a Ter-Martirosyan Skornyakov sym-

metric extension of H̊ , based on the observations made in Remark 4.4.

(ii) By means of such ‘symmetric version’ of Lemma 4.5, the proof of Theorem 4.6

can be straightforwardly adjusted so as to establish that:

H is a Ter-Martirosyan Skornyakov symmetric extension of H̊ with inverse

scattering length α ∈ R if and only if there exists a subspace D ⊂ H− 1
2 (R3) such

that, for one and hence for all λ > 0, D is dense in H− 1
2 (R3), (Tλ + α�)D ⊂

H
1
2 (R3), the operator Aλ := 3W−1

λ (Tλ+α�) is symmetric in H
− 1

2

Wλ
(R3) on the

domain D, and H = H̊Aλ
.

4.3. Symmetry and self-adjointness of the TMS parameter

As emerged in Sec. 4.2, the operator (4.11) is the correct Birman operator labeling

symmetric or self-adjoint TMS extensions of H̊ in terms of the general parametriza-

tion provided by Theorem 2.9 (and Remarks 4.4 and 4.8).

The symmetry or self-adjointness, in the respective Hilbert spaces, of the aux-

iliary operators Aλ and Tλ on the domain D are closely related (albeit deceptively,

in a sense), as we shall now discuss.

To avoid ambiguities, let us reserve the standard notation T ∗, T , etc., for the

adjoint of T , its operator closure, and so on, with respect to the underlying L2-space

(as done for H̊∗ as an operator on Hb), which in this context shall be L2(R3), and

let us write instead A�λ, Aλ
λ
, ⊥λ, etc., with reference to H

− 1
2

Wλ
(R3).

Lemma 4.9. Let λ > 0, α ∈ R, and let D be a dense subspace of L2(R3) such that

(Tλ + α�)D ⊂ H
1
2 (R3). Consider both Aλ := 3W−1

λ (Tλ + α�) and Tλ as operators

with domain D. Then
Aλ ⊂ A�λ ⇔ Tλ ⊂ T ∗

λ ,

that is, the symmetry of Aλ in H
− 1

2

Wλ
(R3) is equivalent to the symmetry of Tλ in

L2(R3).

Proof. D is dense in L2(R3) and hence in H− 1
2 (R3) ∼= H

− 1
2

Wλ
(R3). Owing to (2.35),

〈ξ,Aλξ〉
H

− 1
2

Wλ

= 3〈ξ, (Tλ + α�)ξ〉L2 ∀ ξ ∈ D.

Therefore, the reality of the left-hand side is equivalent to the reality of the right-

hand side

Lemma 4.10. Let λ > 0, α ∈ R, and let D be a dense subspace of L2(R3) such that

(Tλ + α�)D ⊂ H
1
2 (R3). Consider both Aλ := 3W−1

λ (Tλ + α�) and Tλ as operators
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with domain D. Assume that Tλ = T ∗
λ . Then,

(i) D(A�λ) ∩ L2(R3) = D(Aλ) = D;
(ii) Aλ = A�λ if and only if D(A�λ) ⊂ L2(R3).

Proof. Clearly (ii) follows from (i). Concerning (i), the inclusion D(A�λ)∩L2(R3) ⊃
D(Aλ) is obvious. Let now η ∈ D(A�λ) ∩ L2(R3). Then, for some cη > 0,∣∣∣〈η,Aλξ〉

H
− 1

2
Wλ

∣∣∣ ≤ cη ‖ξ‖2L2 ∀ ξ ∈ D = D(Aλ).

Equivalently, owing to (2.35),∣∣〈η, (Tλ + α�)ξ〉L2

∣∣ ≤ 1

3
cη ‖ξ‖2L2 ∀ ξ ∈ D = D(Tλ).

Therefore, η ∈ D(T ∗
λ ) = D(Tλ) = D(Aλ).

4.4. TMS extensions in sectors of definite angular momentum

As the maps ξ �→ Tλξ, ξ �→ Wλξ, ξ �→ W−1
λ ξ all commute with the rotations

in R3 (Sec. 3.2), and so too does therefore the map ξ �→ W−1
λ Tλ, then the TMS

parameter Aλ = 3W−1
λ (Tλ + α�) is naturally reduced in each sector of definite

angular momentum.

More precisely, with respect to the decomposition (3.8)–(3.9), and following the

same reasoning therein, one then has

Ŵλξ =

∞∑
�=0

̂
W

(�)
λ ξ(�), (4.14)

where each W
(�)
λ is non-trivial only radially. Moreover,

〈ξ, η〉
H

− 1
2

Wλ

=

∫
R3

ξ̂(p)
(
Ŵλη

)
(p) dp =

∞∑
�=0

∫
R3

ξ̂(�)(p)
( ̂
W

(�)
λ η(�)

)
(p) dp, (4.15)

where∫
R3

ξ̂(�)(p)
( ̂
W

(�)
λ η(�)

)
(p) dp

=

�∑
n=−�

⎛⎝∫
R+

dp p2
3π2√

3
4p

2 + λ
f
(ξ)
�,n(p) f

(η)
�,n (p)

+ 12π

∫∫
R+×R+

dp dq p2q2 f
(ξ)
�,n(p) f

(η)
�,n (q)

∫ 1

−1

dt
P�(t)

(p2 + q2 + p q t+ λ)2

⎞⎠
≡

�∑
n=−�

〈
f
(ξ)
�,n , f

(η)
�,n

〉
W

(�)
λ

, (4.16)

in complete analogy to (3.14)–(3.15).
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As the scalar product 〈·,Wλ·〉
H− 1

2 ,H
1
2
is equivalent to the ordinary H− 1

2 -scalar

product, so is the scalar product 〈·, ·〉
W

(�)
λ

defined by (4.16) equivalent to the ordi-

nary scalar product in L2(R+, (1 + p2)−
1
2 p2dp). The latter is therefore a Hilbert

space also when equipped with 〈·, ·〉
W

(�)
λ

, in which case we shall denote it with

L2

W
(�)
λ

(R+). One thus has the canonical Hilbert space isomorphism

L2(R+, (1 + p2)−
1
2 p2dp) ∼= L2

W
(�)
λ

(R+). (4.17)

By means of (4.17) one re-writes (3.8) as

H
− 1

2

Wλ
(R3) ∼= H− 1

2 (R3) ∼=
∞⊕
�=0

(
L2

W
(�)
λ

(R+)⊗ span
{
Y�,n |n = −�, . . . , �})

≡
∞⊕
�=0

H
− 1

2

Wλ,�
(R3). (4.18)

The expansion (3.9) of a generic ξ ∈ H− 1
2 (R3) is equivalently referred to the ordi-

nary decomposition or the λ-decomposition of the space (4.18).

With respect to (4.18) Aλ is reduced as

Aλ =

∞⊕
�=0

A(�)
λ =

∞⊕
�=0

3W−1
λ (T

(�)
λ + α�). (4.19)

The problem of finding a domain D of symmetry or of self-adjointness for Aλ with

respect to H
− 1

2

Wλ
(R3) is tantamount as finding a domain D� of symmetry or of self-

adjointness for A(�)
λ with respect to H

− 1
2

Wλ,�
(R3) for each � ∈ N0. This is the object

of Secs. 5 and 6.

The subspace of D(Aλ) consisting of elements g with charge ξ ∈ D� is sometimes

referred to as the charge domain of the TMS (symmetric or self-adjoint) extension

of H̊ in the �th sector of definite angular momentum.

5. Sectors of Higher Angular Momenta

In the modeling of the bosonic trimer with zero-range interaction, all the rele-

vant physics is expected in the sector of zero angular momentum, since in each

two-body channel particles undergo a low-energy, and hence essentially an s-wave

scattering.

In this respect, the qualification of the quantum Hamiltonian is somewhat arbi-

trary in the sectors of higher (non-zero) angular momentum, as in practice exper-

imental observations do not involve states in such sectors. For instance one could

simply consider a Hamiltonian where for each � ∈ N the Birman parameter of for-

mula (2.39) has domain D� = {0} and value ‘Aλ =∞’ on it, namely the Friedrichs

extension of H̊ in those sectors, whereas only the � = 0 is defined non-trivially. This

would model a total absence of interaction at higher angular momenta.
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A more typical choice is to define a model that in all �-sectors, not only � = 0,

is characterized by the physical TMS asymptotics with inverse scattering length,

and to do so by making a somewhat canonical construction for � �= 0, and a non-

trivial one for � = 0. We present such programme in this section for non-zero �. The

analysis of � = 0 is deferred to Sec. 6.

5.1. Tλ-estimates

We import here a set of useful estimates established in the already mentioned work

[12] by Correggi, Dell’Antonio, Finco, Michelangeli, and Teta.

For given λ > 0 and � ∈ N let us introduce the shorthands

Φλ[f, g] := 2π2

∫
R+

dp p2
√

3

4
p2 + λ f(p) g(p)

Ψλ,�[f, g] := 2π

∫∫
R+×R+

dp dq p2q2 f(p) g(q)

∫ 1

−1

dt
P�(t)

p2 + q2 + p q t+ λ

(5.1)

and

Φλ[f ] := Φλ[f, f ]

Ψλ,�[f ] := Ψλ,�[f, f ]
(5.2)

so that (3.14)–(3.15) now read∫
R3

ξ̂(p)
(
T̂λη

)
(p) dp =

∞∑
�=0

�∑
n=−�

(
Φλ
[
f
(ξ)
�,n , f

(η)
�,n

]− 2Ψλ,�
[
f
(ξ)
�,n , f

(η)
�,n

])
. (5.3)

Lemma 5.1. Let λ > 0 and � ∈ N. Let f : R→ C make the quantities below finite.

(i) One has

0 ≤ Ψλ,�[f ] ≤ Ψ0,�[f ] for even �

Ψ0,�[f ] ≤ Ψλ,�[f ] ≤ 0 for odd �.
(5.4)

(ii) One has

Φ0[f ] = π2
√
3

∫
R

ds |f �(s)|2

Ψ0,�[f ] =

∫
R

ds S�(s) |f �(s)|2
(5.5)

where

f �(s) :=
1√
2π

∫
R

dx e−ikx e2xf(ex) (5.6)

and

S�(s) := 2π2

∫ 1

−1

dt P�(t)
sinh(s arccos t2 )

sin(arccos t2 ) sinhπs
. (5.7)
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(iii) S� : R→ R is a smooth even function, strictly monotone on R±, and such that

0 ≤ S�+2(s) ≤ S�(s) ≤ S�(0) for even �

S�(0) ≤ S�(s) ≤ S�+2(s) ≤ 0 for odd �.
(5.8)

Proof. Part (i) follows from [12, Lemma 3.2]. Part (ii) from [12, Lemma 3.3]. Part

(iii) from [12, Lemma 3.5].

The values of S�(s) that will be relevant in the present analysis are

S0(0) =
2π3

3
> 0

S1(0) = −8π
(
1− π

2
√
3

)
< 0

S2(0) =
π2

3
(5π − 9

√
3) > 0,

(5.9)

as one easily computes from (5.7) and (3.12).

By means of the estimates above, one obtains the following important bounds.

Lemma 5.2. Let λ > 0 and let ξ ∈ H 1
2 (R3). Then∫

R3

ξ̂(p)
(
T̂λξ

)
(p) dp ≤ κ+ · 2π2

∫
R3

√
3

4
p2 + λ |ξ̂(p)|2 dp (5.10)

∫
R3

ξ̂(p)
(
T̂λξ

)
(p) dp ≥ κ− · 2π2

∫
R3

√
3

4
p2 + λ |ξ̂(p)|2 dp (5.11)

where

κ+ =
16

π
√
3
− 5

3

κ− =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−
(

4π

3
√
3
− 1

)
if ξ is non-trivial on H

1
2

�=0(R
3)

7− 10π

3
√
3

if ξ ∈
∞⊕
�=1

H
1
2

� (R
3).

(5.12)

In particular, if ξ ⊥ H
1
2

�=0(R
3), then κ− > 0 and∫

R3

ξ̂(p)
(
T̂λξ

)
(p) dp ≈ ‖ξ‖2

H
1
2

(� �= 0) (5.13)

in the sense of equivalence of norms (with λ-dependent multiplicative constants).

Proof. Expanding ξ as in (3.9) and using (5.3) one has∫
R3

ξ̂(p)
(
T̂λξ

)
(p) dp =

∞∑
�=0

�∑
n=−�

(
Φλ
[
f
(ξ)
�,n

] − 2Ψλ,�
[
f
(ξ)
�,n

])
. (*)
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Owing to (5.4), (5.5), (5.8), and (5.9),

∞∑
�=0

�∑
n=−�

Ψλ,�
[
f
(ξ)
�,n

] ≥ ∑
�∈N0

� odd

�∑
n=−�

Ψλ,�
[
f
(ξ)
�,n

] ≥ ∑
�∈N0

� odd

�∑
n=−�

Ψ0,�

[
f
(ξ)
�,n

]

=
∑
�∈N0

� odd

�∑
n=−�

∫
R

ds S�(s)
∣∣(f (ξ)

�,n

)�
(s)
∣∣2 ≥ S1(0)

∑
�∈N0

� odd

�∑
n=−�

∫
R

ds
∣∣(f (ξ)

�,n

)�
(s)
∣∣2

= −
8π(1− π

2
√
3
)

π2
√
3

∑
�∈N0

� odd

�∑
n=−�

Φ0

[
f
(ξ)
�,n

] ≥ −4

3

(2√3

π
− 1
) ∞∑
�=0

�∑
n=−�

Φ0

[
f
(ξ)
�,n

]

≥ −4

3

(2√3

π
− 1
) ∞∑
�=0

�∑
n=−�

Φλ
[
f
(ξ)
�,n

]
.

Plugging this into (*) yields (5.10). Analogously,

∞∑
�=0

�∑
n=−�

Ψλ,�
[
f
(ξ)
�,n

] ≤ ∑
�∈N0
� even

�∑
n=−�

Ψλ,�
[
f
(ξ)
�,n

] ≤ ∑
�∈N0
� even

�∑
n=−�

Ψ0,�

[
f
(ξ)
�,n

]

=
∑
�∈N0
� even

�∑
n=−�

∫
R

ds S�(s)
∣∣(f (ξ)

�,n

)�
(s)
∣∣2 ≤ S0(0)

∑
�∈N0
� even

�∑
n=−�

∫
R

ds
∣∣(f (ξ)

�,n

)�
(s)
∣∣2

=
2π3

3

π2
√
3

∑
�∈N0
� even

�∑
n=−�

Φ0

[
f
(ξ)
�,n

] ≤ 2π

3
√
3

∞∑
�=0

�∑
n=−�

Φ0

[
f
(ξ)
�,n

] ≤ 2π

3
√
3

∞∑
�=0

�∑
n=−�

Φλ
[
f
(ξ)
�,n

]
,

which combined with (*) yields (5.11) in the general case. In the particular case

when ξ has no � = 0 component the previous computation becomes

∞∑
�=1

�∑
n=−�

Ψλ,�
[
f
(ξ)
�,n

] ≤ S2(0)
∑
�∈N

� even

�∑
n=−�

∫
R

ds
∣∣(f (ξ)

�,n

)�
(s)
∣∣2

=
π2

3 (5π − 9
√
3)

π2
√
3

∑
�∈N

� even

�∑
n=−�

Φ0

[
f
(ξ)
�,n

]

≤ 5π − 9
√
3

3
√
3

∞∑
�=1

�∑
n=−�

Φλ
[
f
(ξ)
�,n

]
and plugging the latter estimate into (*), where now the � = 0 summands are

absent, one obtains (5.11) for this case.
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5.2. Self-adjointness for � ≥ 1

Let us discuss a domain of self-adjointness for the TMS parameter Aλ in H
− 1

2

Wλ,�
(R3)

when � ∈ N.
It is convenient to realize first Aλ as a symmetric operator and then construct

canonically a self-adjoint realization of it.

Let us set

λα :=

⎧⎪⎨⎪⎩
0 if α ≥ 0

α2/(2π2κ−)2 if α < 0

(
κ− = 7− 10π

3
√
3

)
.

(5.14)

Lemma 5.3. For λ > 0, α ∈ R, and � ∈ N, let
D̃� := H

3
2

� (R
3) (5.15)

and

Ã(�)
λ := 3W−1

λ

(
T

(�)
λ + α�

)
D(Ã(�)

λ

)
:= D̃�.

(5.16)

One has the following.

(i) Ã(�)
λ is a densely defined symmetric operator in H

− 1
2

Wλ,�
(R3).

(ii) If λ > λα, then m
(Ã(�)

λ

)
> 0, i.e. Ã(�)

λ has strictly positive lower bound.

Proof. (i) Obviously D̃� is dense in H− 1
2

Wλ,�
(R3). Moreover, (T

(�)
λ +α�

)D̃� ⊂ H
1
2

� (R
3)

(Lemma 3.5(iii)) and H
1
2

� (R
3) = ranW

(�)
λ (Lemma 2.8(ii)), therefore (5.16) is a well-

posed definition for a densely defined operator in H
− 1

2

Wλ,�
(R3). The map D̃� � ξ �→

T
(�)
λ ξ is densely defined and symmetric in L2(R3) (Lemma 3.5(i)). All assumptions

of Lemma 4.9 are then satisfied in the �th sector: one then concludes that Ã(�)
λ is

symmetric in H
− 1

2

Wλ,�
(R3).

(ii) For ξ ∈ D̃� we find

1

3

〈
ξ, Ã(�)

λ ξ
〉
H

− 1
2

Wλ

=
〈
ξ, (T

(�)
λ + α�

)〉
L2

≥ 2π2κ−
∫
R3

√
3

4
p2 + λ |ξ̂(p)|2 dp+ α‖ξ‖2L2

≥ (2π2κ−
√
λ+ α)‖ξ‖2L2 ≥ cλ(2π

2κ−
√
λ+ α)‖ξ‖2

H
− 1

2
Wλ

for some cλ > 0, having used (2.35) in the first step, (5.11) in the second, and the

isomorphism H− 1
2 (R3) ∼= H

− 1
2

Wλ
(R3) in the last. Thus, m(Ã(�)

λ ) ≥ 3cλ(2π
2κ−

√
λ +

α) = 6π2cλκ
−(
√
λ−√λα) and the thesis follows.
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Being densely defined, symmetric, and lower semi-bounded, Ã(�)
λ has its

Friedrichs self-adjoint extension. That will be our final TMS parameter A(�)
λ .

Proposition 5.4. Let α ∈ R, λ > λα, and � ∈ N. Define

D� :=
{
ξ ∈ H 1

2

� (R
3)
∣∣T (�)

λ ξ ∈ H 1
2

� (R
3)
}
. (5.17)

The operator

D(A(�)
λ

)
:= D�

A(�)
λ := 3W−1

λ

(
T

(�)
λ + α�

)
.

(5.18)

is the Friedrichs extension of Ã(�)
λ with respect to H

− 1
2

Wλ,�
(R3) and therefore is self-

adjoint in such space. Its sesquilinear form is

D[A(�)
λ

]
= H

1
2

� (R
3)

A(�)
λ [η, ξ] = 3

〈
η,
(
T

(�)
λ + α�

)
ξ
〉
H

1
2 ,H− 1

2
.

(5.19)

Proof. The definition (5.18) is well posed, as
(
T

(�)
λ + α�

)D� ⊂ H
1
2

� (R
3) = ranWλ.

Lemma 5.2 and the fact that Ã(�)
λ has strictly positive lower bound (Lemma 5.3(ii))

imply that the map

ξ �→ ‖ξ‖A :=
〈
ξ, Ã(�)

λ ξ
〉 1

2

H
− 1

2
Wλ

=
(
3
〈
ξ,
(
T

(�)
λ + α�

)
ξ
〉
L2

) 1
2

is a norm, and is actually equivalent to the H
1
2 -norm. Let us temporarily denote

by AF the Friedrichs extension of Ã(�)
λ with respect to H

− 1
2

Wλ,�
(R3).

As prescribed by the Friedrichs construction, AF has form domain

D[AF ] = D
(Ã(�)

λ

)‖ ‖A

= H
3
2 (R3)

‖ ‖
H

1
2 = H

1
2 (R3)

and for ξ, η ∈ H 1
2

� (R
3)

AF [η, ξ] = lim
n→∞

〈
ηn, Ã(�)

λ ξn
〉
H

− 1
2

Wλ

= 3 lim
n→∞

〈
ηn,
(
T

(�)
λ + α�

)
ξn
〉
L2

for any two sequences (ξn)n and (ηn)n in H
3
2

� (R
3) such that ξn → ξ and ηn → η in

the ‖ ‖A-norm, namely in H
1
2

� (R
3). Now, interpreting〈

ηn,
(
T

(�)
λ + α�

)
ξn
〉
L2 =

〈
ηn,
(
T

(�)
λ + α�

)
ξn
〉
H

1
2 ,H− 1

2

and using the fact that T
(�)
λ + α� is a bounded H

1
2

� → H
− 1

2

� map (Lemma 3.5(ii)),

we see that (T
(�)
λ + α�

)
ξn → (T

(�)
λ + α�

)
ξ in H

− 1
2

� (R3) and therefore

AF [η, ξ] = 3 lim
n→∞

〈
ηn,
(
T

(�)
λ + α�

)
ξn
〉
H

1
2 ,H− 1

2
= 3
〈
η,
(
T

(�)
λ + α�

)
ξ
〉
H

1
2 ,H− 1

2
.

Formula (5.19) is thus proved.
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Next, the operator AF is derived from its quadratic form in the usual manner,

that is,

D(AF ) =
⎧⎨⎩ξ ∈ D[AF ]

∣∣∣∣∣∣
∃ ζξ ∈ H− 1

2

Wλ,�
(R3) such that

〈η, ζξ〉
H

− 1
2

Wλ

= AF [η, ξ] ∀ η ∈ D[AF ]

⎫⎬⎭
AF ξ = ζξ.

This means, owing to (2.35) and (5.19), that ξ ∈ D(AF ) if and only if ξ is a

H
1
2

� -function with〈
η,W

(�)
λ ζξ − 3

(
T

(�)
λ + α�

)
ξ
〉
H

1
2 ,H− 1

2
= 0 ∀ η ∈ H 1

2

� (R
3),

for some ζξ ∈ H− 1
2

� (R3), and therefore equivalently

ξ ∈ H 1
2

� (R
3) and 3

(
T

(�)
λ + α�

)
ξ =W

(�)
λ ζξ.

The second condition, owing to the H
− 1

2

� → H
1
2

� bijectivity ofW
(�)
λ (Lemma 2.8(ii)),

is tantamount as
(
T

(�)
λ + α�

)
ξ ∈ H 1

2

� (R
3), and moreover ζξ = 3W−1

λ

(
T

(�)
λ + α�

)
ξ.

Formula (5.18) is proved.

It is instructive to remark that whereas on the domain D� the operator A(�)
λ =

3W−1
λ

(
T

(�)
λ + α�

)
is self-adjoint with respect to H

− 1
2

Wλ,�
(R3), and therefore T

(�)
λ on

the same domain is symmetric with respect to L2(R3) (Lemma 4.9), however T
(�)
λ

is not self-adjoint in L2
�(R

3).

Lemma 5.5. Let λ > 0,and � ∈ N. The operator

D(T(�)
λ

)
:= D� =

{
ξ ∈ H 1

2

� (R
3)
∣∣T (�)

λ ξ ∈ H 1
2

� (R
3)
}

T
(�)
λ ξ := Tλξ ∀ ξ ∈ D(T(�)

λ

) (5.20)

is densely defined and symmetric with respect to the Hilbert space L2
�(R

3). However,

it is not self-adjoint.

Proof. We already argued prior to stating the Lemma that T
(�)
λ is densely defined

and symmetric in L2
�(R

3). In fact, the symmetry property〈
η,T

(�)
λ ξ
〉
L2 =

〈
T
(�)
λ η, ξ

〉
L2 ∀ ξ, η ∈ D�

also follows directly from Lemma 3.5(v), because ξ, η ∈ H 1
2 (R3) and T

(�)
λ ξ,T

(�)
λ η ∈

H
1
2 (R3) ⊂ L2(R3).

With respect to L2
�(R

3) the quadratic form

D(q(�)λ ) := H
1
2

� (R
3)

q
(�)
λ [ξ] :=

〈
ξ, T

(�)
λ ξ

〉
H

1
2 ,H− 1

2
≈ ‖ξ‖2

H
1
2
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is densely defined, coercive and hence lower semi-bounded with strictly positive

lower bound (as follows from Lemma 5.2), and closed (because D(q(�)λ ) is obviously
closed with respect to the norm induced by the form, namely the H

1
2 -norm). As

such, q(�) is the quadratic form of the self-adjoint operator

D(Q(�)
λ ) =

{
ξ ∈ D(q(�)λ )

∣∣∣∣∣ ∃ ζξ ∈ L2
�(R

3) such that

〈η, ζξ〉L2 = q
(�)
λ [η, ξ] ∀ η ∈ D(q(�)λ )

}

Q
(�)
λ ξ = ζξ.

Equivalently, ξ ∈ D(Q(�)
λ

)
if and only if ξ is an H

1
2

� -function such that〈
η, ζξ − T (�)

λ ξ
〉
H

1
2 ,H− 1

2
= 0 ∀ η ∈ H 1

2

� (R
3)

for some ζξ ∈ L2
�(R

3), and therefore equivalently

ξ ∈ H 1
2

� (R
3) and T

(�)
λ ξ = ζξ .

The second condition above is tantamount as T
(�)
λ ξ ∈ L2

�(R
3). In conclusion,

D(Q(�)
λ

)
=
{
ξ ∈ H 1

2

� (R
3) |T (�)

λ ξ ∈ L2
�(R

3)
}

Q
(�)
λ ξ = T

(�)
λ ξ.

At this point it is clear that

T
(�)
λ ⊂ Q

(�)
λ =

(
Q

(�)
λ

)∗
.

The lack of self-adjointness of T
(�)
λ is then evident from the strict inclusion

D(T(�)
λ

)
� D(Q(�)

λ

)
.

6. Sector of Zero Angular Momentum

The problem of finding a domain D0 of self-adjointness in the Hilbert space

H
− 1

2

Wλ,�=0(R
3) for the operator 3W−1

λ

(
T

(�=0)
λ +α�

)
(in the following we shall shorten

the full ‘� = 0’ superscript), is more subtle than the analogous problem for � ∈ N
(Sec. 5.2), and so too is the quest for a domain D̃0 of sole symmetry.

This is related with the fact that no Sobolev space Hs
�=0(R

3) is entirely mapped

by Tλ into H
1
2 (R3) (Remark 3.6), so D̃0 cannot be a standard Sobolev space (as

opposite to when � �= 0: Lemma 5.3). A related difficulty, that emerges indirectly

from the discussion of Lemma 5.2, is the fact that when � = 0 the map

ξ �→
∫
R3

ξ̂(p)
(
T̂λξ

)
(p) dp

does not induce any longer an equivalent H
1
2 -norm (see Remark 6.2 below). In fact,

we shall see that any reasonable choice of a domain D̃0 of symmetry forW−1
λ T

(�=0)
λ

makes it an unbounded below operator, unlike the lower semi-boundedness of A(�)
λ

when � �= 0 (Lemma 5.3(ii)).
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These difficulties require an improved analysis that will be presented in this

section. They are also the source of various past mistakes leading to ill-posed models:

Section 8 discusses such perspective.

We shall follow the same conceptual path as in Sec. 5. First we discuss the

symmetric case (symmetric realization of W−1
λ T

(�=0)
λ and hence Ter-Martirosyan

Skornyakov symmetric extension of H̊), then the self-adjoint case (self-adjoint

W−1
λ T

(�=0)
λ and hence self-adjoint TMS extension). For each two steps, an amount

of technical preparation is needed.

Here we opt to discuss explicitly only a special scenario, in fact the physi-

cally most relevant one: zero-range interaction with infinite scattering length, hence

α=0. This is the regime of unitarity that we presented in the introduction.

6.1. Mellin-like transformations

For fixed λ > 0, to each charge of interest ξ ∈ Hs
�=0(R

3), written according to

(3.9) as

ξ̂(p) =
1√
4π
f(|p|), p ≡ |p|Ωp, f ∈ L2(R+, (1 + p2)sp2dp), (6.1)

we shall associate an odd, measurable function θ : R→ C defined by

θ(x) :=

⎧⎪⎪⎨⎪⎪⎩
λf

(
2
√
λ√
3

sinhx

)
sinhx coshx if x ≥ 0

−θ(−x) if x < 0

x := log

(√
3p2

4λ
+

√
3p2

4λ
+ 1

)
, p := |p|.

(6.2)

The inverse transformation is

f(p) =
θ
(
log
(√

3p2

4λ +
√

3p2

4λ + 1
))

√
3
4p

2
√

3
4p

2 + λ

p =
2
√
λ√
3

sinhx for x ≥ 0.

(6.3)

The above change of variable p↔ x is a homeomorphism on R+, with also

sinhx =

√
3

4
p2 ,

√
λ coshx =

√
3

4
p2 + λ , dp =

2
√
λ√
3

coshxdx. (6.4)

It is for later convenience that the induced function θ on R+ has been extended by

odd parity over the whole real line.

We shall refer to the function θ defined by (6.1)–(6.2) as the re-scaled radial

component associated with the charge ξ and with parameter λ. When such corre-

spondence need be emphasized, we shall write θ(ξ).
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Using (6.2)–(6.4) and the fact that 1 + p2 ∼ 3
4p

2 + λ, in the sense that each

side is controlled from above and from below by the other with some λ-dependent

constant, a straightforward computation gives∥∥ξ∥∥2
Hs(R3)

≈ ∥∥(coshx)s− 1
2 θ
∥∥2
L2(R)

(6.5)

in the sense of equivalence of norms (with λ-dependent multiplicative constants).

Let us introduce further definitions and properties that are going to be useful

in the course of the present discussion.

The function θ having odd parity on R, one has the identities∫
R+

dx θ(x)

(
log

2 cosh(x + y)− 1

2 cosh(x + y) + 1
+ log

2 cosh(x− y) + 1

2 cosh(x− y)− 1

)
=

∫
R

dx θ(x) log
2 cosh(x+ y)− 1

2 cosh(x+ y) + 1
=

∫
R

dx θ(x) log
2 cosh(x− y) + 1

2 cosh(x− y)− 1
.

(6.6)

Moreover (see, e.g., [21, I.1.9.(50)]),(
log

2 coshx+ 1

2 coshx− 1

)
(̂s) =

√
2π

sinh π
6 s

s cosh π
2 s
. (6.7)

By means of (6.7), taking the Fourier transform in the following convolution yields(∫
R

dx θ(y) log
2 cosh(x− y) + 1

2 cosh(x− y)− 1

)̂
(s) = 2π θ̂(s)

sinh π
6 s

s cosh π
2 s
. (6.8)

Here and in the following the s-dependence in θ̂(s) is only symbolic, to indicate

that the object θ̂ is a distribution on test functions of s ∈ R. Of course in special

cases θ̂(s) may well be an ordinary function.

Let γ be the distribution on R defined by

γ̂(s) := 1− 8√
3

sinh π
6 s

s cosh π
2 s
. (6.9)

The function R � s �→ γ̂(s) is smooth, even, strictly monotone increasing (respec-

tively, decreasing) for s > 0 (respectively, s < 0), with values in [1− 4π
3
√
3
, 1), asymp-

totically approaching 1 as s→ ±∞, and with absolute minimum γ̂(0) = −( 4π
3
√
3
−1).

The equation γ̂(s) = 0 has thus simple roots s = ±s0, with s0 ≈ 1.0062. We also

define

γ̂+(s) :=
1

(s− s0)(s+ s0)
γ̂(s). (6.10)

γ̂+ is therefore strictly positive, smooth, even, monotone to zero decreasing for s > 0

with s−2 decay, and with absolute maximum γ̂+(0) = s−2
0 ( 4π

3
√
3
− 1) (Fig. 1).
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Fig. 1. (Color online) Plot of the functions γ̂(s) (blue) and γ̂+(s) (orange), defined respectively
in (6.9) and (6.10).

Further quantities of interest involving ξ are conveniently expressed in terms of

the auxiliary function θ or its (one-dimensional) Fourier transform θ̂.

Lemma 6.1. Let λ > 0, s ∈ R, and ξ be as in (6.1). One has the identities(̂
T

(0)
λ ξ

)
(p) =

1√
4π |p|

4π2

√
3

×
(
θ(x) − 4

π
√
3

∫
R

dy θ(y) log
2 cosh(x− y) + 1

2 cosh(x− y)− 1

)
, (6.11)

∥∥T (0)
λ ξ

∥∥2
Hs(R3)

≈
∫
R

dx (coshx)1+2s

×
∣∣∣∣θ(x) − 4

π
√
3

∫
R

dy θ(y) log
2 cosh(x − y) + 1

2 cosh(x − y)− 1

∣∣∣∣2 , (6.12)

and ∫
R3

ξ̂(p)
(̂
T

(0)
λ ξ

)
(p) dp =

8π2

3
√
3

∫
R

ds γ̂(s) |θ̂(s)|2, (6.13)

with x and θ given by (6.2), and γ given by (6.9). In (6.11) it is understood that x ≥
0, and (6.12) is meant as an equivalence of norms (with λ-dependent multiplicative

constant).

Proof. Specializing formula (3.13) of Lemma 3.4(i) with the Legendre polynomial

P0 ≡ 1 gives(̂
T

(0)
λ ξ

)
(p)

=
1√
4π

1

p

(
2π2pf(p)

√
3

4
p2 + λ − 4π

∫
R+

dq qf(q) log
p2 + q2 + pq + λ

p2 + q2 − pq + λ

)
.
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With p = 2
√
λ√
3
sinhx and q = 2

√
λ√
3
sinh y one has

p2 + q2 + pq + λ

p2 + q2 − pq + λ
=

sinh2 x+ sinh2 y + sinhx sinh y + 3
4

sinh2 x+ sinh2 y − sinhx sinh y + 3
4

=
2 cosh(x + y)− 1

2 cosh(x + y) + 1

2 cosh(x− y) + 1

2 cosh(x− y)− 1
. (*)

Using the latter identity and (6.3) one then finds

√
4π |p| (̂T (0)

λ ξ
)
(p) =

4π2

√
3

(
θ(x)− 4

π
√
3

∫
R+

dy θ(y)
(
Ax(y) +Bx(y)

))
,

where

Ax(y) := log
2 cosh(x + y)− 1

2 cosh(x + y) + 1
, Bx(y) := log

2 cosh(x− y) + 1

2 cosh(x− y)− 1
.

Combining this with (6.6) yields (6.11).

Next, by means of (6.4) and (6.11) we find∥∥T (0)
λ ξ

∥∥2
Hs(R3)

≈
∫
R+

dp p2
(3
4
p2 + λ

)s ∣∣∣∣1p
(
θ(x) − 4

π
√
3

∫
R

dy θ(y) log
2 cosh(x− y) + 1

2 cosh(x− y)− 1

)∣∣∣∣2
=

2λ
1
2+s√
3

∫
R+

dx (coshx)1+2s

∣∣∣∣θ(x) − 4

π
√
3

∫
R

dy θ(y) log
2 cosh(x − y) + 1

2 cosh(x − y)− 1

∣∣∣∣2 .
Owing to the odd parity of θ and to (6.6), the integrand function above is invariant

under change of variable x �→ −x, therefore the last line can be re-written as

λ
1
2+s√
3

∫
R

dx (coshx)1+2s

∣∣∣∣θ(x) − 4

π
√
3

∫
R

dy θ(y) log
2 cosh(x− y) + 1

2 cosh(x− y)− 1

∣∣∣∣2 .
This gives (6.12).

Concerning (6.13), specialising formulas (3.14)–(3.15) of Lemma 3.4(ii) with the

Legendre polynomial P0 ≡ 1 gives

1

2π2

∫
R3

ξ̂(p)
(̂
T

(0)
λ ξ

)
(p) dp

=

∫
R+

dp

√
3

4
p2 + λ |pf(p)|2 − 2

π

∫∫
R+×R+

dp dq (pf(p)) (qf(q)) log

× p2 + q2 + pq + λ

p2 + q2 − pq + λ
.

The first summand in the right-hand side above can be re-written as∫
R+

dp

√
3

4
p2 + λ |pf(p)|2 =

8

3
√
3

∫
R+

dx |θ(x)|2 =
4

3
√
3

∫
R

dx |θ(x)|2,
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having used (6.3)–(6.4) in the first step and the odd parity of θ in the second.

Analogously, and using also (*) and (6.6), the second summand becomes

2

π

∫∫
R+×R+

dp dq (pf(p)) (qf(q)) log
p2 + q2 + pq + λ

p2 + q2 − pq + λ

=
32

9π

∫∫
R+×R+

dxdy θ(x) θ(y)

×
(
log

2 cosh(x+ y)− 1

2 cosh(x+ y) + 1
+ log

2 cosh(x− y) + 1

2 cosh(x− y)− 1

)
=

16

9π

∫∫
R×R

dxdy θ(x) θ(y) log
2 cosh(x − y) + 1

2 cosh(x − y)− 1
.

Thus,

1

2π2

∫
R3

ξ̂(p)
(̂
T

(0)
λ ξ

)
(p) dp

=
4

3
√
3

(∫
R

dx |θ(x)|2 − 4

π
√
3

∫∫
R×R

dxdy θ(x) θ(y) log
2 cosh(x− y) + 1

2 cosh(x− y)− 1

)
.

Applying Parseval’s identity in both summands of the above right-hand side, and

using (6.8) in the second summand, one gets

1

2π2

∫
R3

ξ̂(p)
(̂
T

(0)
λ ξ

)
(p) dp =

4

3
√
3

(∫
R

ds |θ̂(s)|2 − 8√
3

∫
R

ds |θ̂(s)|2 sinh π
6 s

s cosh π
2 s

)
.

This, and the definition (6.9), finally prove (6.13).

Remark 6.2. As the function γ̂ attains both positive and negative values, formula

(6.13) shows that the pairing
∫
R3 ξ̂(p)

(̂
T

(0)
λ ξ

)
(p) dp is not equivalent to the L2-

norm of the associated re-scaled radial function θ(ξ), and therefore (owing to (6.5))

does not induce an equivalent H
1
2 -norm, in contrast with the analogous properties

in the sectors with � �= 0 (Lemma 5.2).

Lemma 6.3. Let λ > 0 and let ξ1, ξ2 be spherically symmetric functions with re-

scaled radial components θ1, θ2 respectively, according to the definition (6.1)–(6.2).

Then ∫
R3

ξ̂1(p)
(̂
W

(0)
λ ξ2

)
(p) dp

=
4π2

λ
√
3

∫
R

θ1(x) θ2(x)

(coshx)2
dx

+
32π

λ

∫∫
R×R

θ1(x) θ2(y)

(2 cosh(x+ y) + 1) (2 cosh(x − y)− 1)
dxdy (6.14)
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and also ∫
R3

ξ̂1(p)
(̂
W

(0)
λ ξ2

)
(p) dp

=
2π2

λ
√
3

∫
R

(
s

sinh π
2 s
∗ θ̂1

)
(s) θ̂2(s) ds

+
16π

3λ

∫∫
R×R

θ̂1(s) θ̂2(t)
sinh π

6 (s+ t)

sinh π
2 (s+ t)

sinh π
3 (s− t)

sinh π
2 (s− t)

ds dt. (6.15)

In the double integrals above the order of integration is not specified, tacitly under-

standing that θ1θ2 (or θ̂1θ̂2) is sufficiently integrable, depending on the applications.

Proof. Specialising formula (4.16) with the Legendre polynomial P0 ≡ 1 gives∫
R3

ξ̂1(p)
(̂
W

(0)
λ ξ2

)
(p) dp

=

∫
R+

dp
3π2√

3
4p

2 + λ
(pf1(p)) (pf2(p))

+ 12π

∫∫
R+×R+

dp dq (pf1(p)) (qf2(q))
2pq

(p2 + q2 + λ)2 − (pq)2
.

The first summand in the right-hand side above can be re-written as∫
R+

dp
3π2√

3
4p

2 + λ
(pf1(p)) (pf2(p)) =

8π2

λ
√
3

∫
R+

θ1(x) θ2(x)

(coshx)2
dx

=
4π2

λ
√
3

∫
R

θ1(x) θ2(x)

(coshx)2
dx,

having used (6.3)–(6.4) in the first step and the odd parity of θ1 and θ2 in the

second. Next, with p = 2
√
λ√
3
sinhx and q = 2

√
λ√
3
sinh y, we re-write

2pq

(p2 + q2 + λ)2 − (pq)2
=

1

p2 + q2 − pq + λ
− 1

p2 + q2 + pq + λ

=
3

λ

(
a(x, y)− b(x, y)),

where

a(x, y) :=
1

(2 cosh(x+ y) + 1) (2 cosh(x − y)− 1)

b(x, y) :=
1

(2 cosh(x+ y)− 1) (2 cosh(x − y) + 1)
.
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This and (6.3)–(6.4) then imply

12π

∫∫
R+×R+

dp dq (pf1(p)) (qf2(q))
2pq

(p2 + q2 + λ)2 − (pq)2

=
64π

λ

∫∫
R+×R+

dxdy θ1(x) θ2(y)
(
a(x, y)− b(x, y))

=
32π

λ

∫∫
R×R

dxdy θ1(x) θ2(y) a(x, y)

=
32π

λ

∫∫
R×R

θ1(x) θ2(y)

(2 cosh(x+ y) + 1) (2 cosh(x− y)− 1)
dxdy

the second identity being due to the odd parity of θ1 and θ2 and to the obvious

relations a(−x,−y) = a(x, y), a(−x, y) = b(x, y) = a(x,−y). Adding up the two

summands we have thus worked out yields finally (6.14).

Concerning (6.15), (
1

(coshx)2

)̂
(s) =

√
π

2

s

sinh π
2 s
,

whence

4π2

λ
√
3

∫
R

θ1(x) θ2(x)

(coshx)2
dx =

2π2

λ
√
3

∫
R

(
s

sinh π
2 s
∗ θ̂1

)
(s) θ̂2(s) ds.

Moreover (see, e.g., [21, I.1.9.(6)]),(
1

2 coshx− 1

)̂
(s) =

√
2π

3

sinh 2π
3 s

sinhπs(
1

2 coshx+ 1

)̂
(s) =

√
2π

3

sinh π
3 s

sinhπs
,

whence

1

2π

∫∫
R×R

e−isx e−ity 1

(2 cosh(x+ y) + 1) (2 cosh(x− y)− 1)
dxdy

=
1

4π

∫∫
R×R

e−i s+t
2 x e−i s−t

2 x 1

2 coshx+ 1

1

2 coshx− 1
dxdy

=
1

6

sinh π
6 (s+ t)

sinh π
2 (s+ t)

sinh π
3 (s− t)

sinh π
2 (s− t)

,

and

32π

λ

∫∫
R×R

θ1(x) θ2(y)

(2 cosh(x+ y) + 1) (2 cosh(x − y)− 1)
dxdy

=
16π

3λ

∫∫
R×R

θ̂1(s) θ̂2(t)
sinh π

6 (s+ t)

sinh π
2 (s+ t)

sinh π
3 (s− t)

sinh π
2 (s− t)

ds dt.

Adding up all together yields (6.15).
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6.2. Radial Ter-Martirosyan Skornyakov equation

The next technical tool is the solution formula for the equation

T
(0)
λ ξ = η (6.16)

in the unknown ξ and with datum η, spherically symmetric on R3. (6.16) is cus-

tomarily referred to as the Ter-Martirosyan Skornyakov equation for the sector

of zero angular momentum. It appeared for the first time in [60, Eq. (12)], the

already-mentioned work by Ter-Martirosyan and Skornyakov, whence the name.

Representing as usual (see (3.9) and (6.1) above)

ξ̂(p) =
1√
4π
f (ξ)(|p|), η̂(p) =

1√
4π
f (η)(|p|)

in terms of the corresponding radial components, switching to the re-scaled radial

components θ(ξ) and θ(η) defined in (6.2), and representing the left-hand side of

(6.16) by means of (6.11), Eq. (6.16) takes the form

θ(ξ)(x) − 4

π
√
3

∫
R

dy θ(ξ)(y) log
2 cosh(x− y) + 1

2 cosh(x− y)− 1
=

1

2π2
√
λ

θ(η)(x)

coshx
(6.17)

as an identity for x ≥ 0. Let us simply re-write

θ ≡ θ(ξ), ϑ ≡ 1

2π2
√
λ

θ(η)

coshx
,

and hence

θ(x) − 4

π
√
3

∫
R

dy θ(y) log
2 cosh(x − y) + 1

2 cosh(x − y)− 1
= ϑ(x) (6.18)

in the unknown θ. Should one like to interpret (6.18) as an identity on the whole

real line, one has to assume for consistency that also ϑ, as θ(η), is prolonged by odd

parity. We shall refer to (6.18) as the radial Ter-Martirosyan Skornyakov equation

(for the � = 0 sector).

Applying (6.8)–(6.9) one sees that (6.18) is equivalently re-written in the

Fourier-transformed version

γ̂(s) θ̂(s) = ϑ̂(s), (6.19)

understood in general as a distribution equation in the distribution unknown θ̂.

In (6.18) the functional space for the unknown θ is determined by the space for

the original unknown ξ through formula (6.5). The same holds for the functional

space for ϑ, recalling that ϑ = 1
2π2

√
λ

θ(η)(x)
cosh x for some datum η. In our applications

(Secs. 6.3–6.4) we shall need η ∈ Hs
�=0(R

3) for some s > − 1
2 , in which case (6.5)

implies that θ(η)/(coshx)
1
2−s is an L2-function and hence, by the Hölder inequality,

ϑ ∼ 1

(coshx)
1
2+s

θ(η)

(coshx)
1
2−s

∈ Lp(R) ∀ p ∈ [1, 2].

Therefore, as |x| → ∞, the above ϑ has an L2-behavior dumped by a multiplicative

exponential decay.

2150010-53

R
ev

. M
at

h.
 P

hy
s.

 2
02

1.
33

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 o

n 
05

/2
0/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

May 5, 2021 14:57 WSPC/S0129-055X 148-RMP J070-2150010

A. Michelangeli

When ϑ is smooth and has rapid decrease, we can translate the solution to

(6.19) back to the x-coordinate.

Lemma 6.4. The general solution to (6.18) when ϑ is smooth and with rapid

decrease is

θ(x) = c sin s0x− 1

2s0
sin(s0|x|) ∗

(
ϑ̂

γ̂+

)∨
, c ∈ C. (6.20)

The function (6.20) belongs to L∞(R) and is asymptotically cos-periodic as |x| →
+∞ with period 2π/s0.

In the proof, as well as in the sequel, we shall make use of the identities(
δ(s− s0)− δ(s+ s0)

)∨
(x) =

2i√
2π

sin s0x, (6.21)

(
PV

1

s− s0 − PV
1

s+ s0

)∨
(x) = −

√
2π sin s0|x|, (6.22)

where PV stands for the principal value distribution. (6.22) in particular follows

from
(
PV 1

s−s0
)∨

(x) = eis0x
(
PV 1

s

)∨
(x) = i

√
π
2 e

is0x signx.

Proof of Lemma 6.4. Let us consider the Fourier-transformed version (6.19) of

(6.18). This is the same as

(s− s0)(s+ s0) θ̂(s) =
ϑ̂(s)

γ̂+(s)
, s ∈ R,

owing to (6.10). Dividing by γ̂+(s) has not altered the set of solutions because

γ̂+(s) > 0 ∀s ∈ R. We observe that by construction θ̂(−s) = −θ̂(s), ϑ̂(−s) = −ϑ̂(s),
and γ̂+(−s) = γ̂+(s), thus in the identity above both sides change sign when s �→
−s, consistently. Moreover, since γ̂+ is smooth, γ̂+(s) ∼ s−2 as |s| → ∞, and ϑ is

smooth and with rapid decrease, then so too is ϑ̂/γ̂+. Therefore, such distribution

equation has general solution

θ̂(s) = c
(
δ(s− s0)− δ(s+ s0)

)
+

ϑ̂(s)

γ̂+(s)

1

2s0

(
PV

1

s− s0 − PV
1

s+ s0

)
, c ∈ C.

The linear combination of δ(s−s0) and δ(s+s0) had to be anti-symmetric, owing to

the odd parity of θ̂. Taking the inverse Fourier transform by means of (6.21)–(6.22),

one obtains

θ(x) =
2ic√
2π

sin s0x− 1

2s0
sin(s0|x|) ∗

(
ϑ̂

γ̂+

)∨
.

An obvious re-scaling of the arbitrary constant c finally yields (6.20).
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The functions ϑ, ϑ̂, ϑ̂/γ̂+, and (ϑ̂/γ̂+)
∨ are all functions of rapid decrease in the

respective variable. Young’s inequality then gives∥∥∥∥∥sin(s0|x|) ∗
(

ϑ̂

γ̂+

)∨∥∥∥∥∥
L∞(Rx)

≤
∥∥∥∥∥
(

ϑ̂

γ̂+

)∨∥∥∥∥∥
L1(Rx)

< +∞.

The whole function (6.20) is therefore bounded.

Next, let us set

h := (ϑ̂/γ̂+)
∨

A := sin(s0|x|) ∗ h.
Since h is smooth and with rapid decrease, then A is differentiable at any order,

and a simple computation yields

A′′(x) = −s20A(x) + 2s0h(x).

Thus, using again the rapid decrease of h, asymptotically when |x| → +∞ the

function A satisfies A′′(x) + s20A(x) = 0, whence its asymptotic periodicity

A(x)
|x|→+∞

=
(
c
(ϑ)
1 cos s0x+ c

(ϑ)
2 sin s0x

)(
1 + o(1)

)
for some constants c

(ϑ)
1 , c

(ϑ)
2 ∈ C that vanish when ϑ ≡ 0.

6.3. Symmetric, unbounded below, TMS extension

Let us introduce the subspace

D̃0 :=

⎧⎪⎪⎨⎪⎪⎩ξ ∈ H− 1
2

�=0(R
3)

∣∣∣∣∣∣∣∣
ξ has re-scaled radial component

θ = sin(s0|x|) ∗
(
ϑ̂/γ̂+

)∨
for ϑ ∈ C∞

0,odd(Rx)

⎫⎪⎪⎬⎪⎪⎭. (6.23)

In (6.23) the subscript ‘odd’ indicates functions with odd parity. The constant

s0 ≈ 1.0062 is the unique positive root of γ̂(s) = 0 as defined in (6.9), and γ̂+ is

defined in (6.10). The correspondence between ξ and its re-scaled radial component

θ is given by (6.1)–(6.2).

In the above definition of D̃0 it is tacitly understood that the re-scaled radial

components are all taken with the same parameter λ > 0 in the definition (6.2). This

does not mean D̃0 is a λ-dependent subspace, as one can easily convince oneself:

the choice of λ only fixes the convention for representing the element of D̃0 in terms

of the corresponding θ.

Lemma 6.5. (i) One has

ξ ∈ D̃0 ⇒ θ(ξ)(0) = 0. (6.24)
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(ii) One has

ξ ∈ D̃0 ⇒ γ̂(s) θ̂(ξ)(s) = −2s0 ϑ̂(s) ∀ s ∈ R. (6.25)

(iii) D̃0 is dense in H
1
2−ε
�=0 (R3) for every ε > 0.

(iv) D̃0 ∩H
1
2

�=0(R
3) = {0}.

(v) For every λ > 0 and s ∈ R, T (0)
λ D̃0 ⊂ Hs

�=0(R
3).

(vi) For λ > 0, T
(0)
λ is injective on D̃0, that is,(

ξ ∈ D̃0 and T
(0)
λ ξ ≡ 0

)⇒ ξ ≡ 0. (6.26)

(vii) For every λ > 0 one has〈
ξ, T

(0)
λ η

〉
L2 =

〈
T

(0)
λ ξ, η

〉
L2 ∀ ξ, η ∈ D̃0. (6.27)

Proof. Part (i) follows from the fact that in θ(0) =
∫
R
sin(s0|y|)

(
ϑ̂/γ̂+

)∨
(y) the

term
(
ϑ̂/γ̂+

)∨
has odd parity, whereas sin(s0|y|) is even.

Part (ii) follows at once from the definition (6.23), by means of Lemma 6.4

and (6.19).

(iii) Let ξ ∈ D̃0 and ε > 0. By means of (6.5) and Lemma 6.4 one gets

∥∥ξ∥∥2
H

1
2
−ε(R3)

≈
∫
R

|θ(x)|2
(coshx)2ε

dx ≤ ‖θ‖L∞

∫
R

dx

(coshx)2ε
< +∞.

In fact, (6.5) also implies that the density of the ξ’s of D̃0 in H
1
2−ε
�=0 (R3) is equivalent

to the density of the associated θ’s in L2
odd(R, (coshx)

−2εdx). If in the latter Hilbert

space a function θ0 was orthogonal to all such θ’s, then

0 =

∫
R

θ0(x)

(coshx)2ε
θ(x) dx =

∫
R

θ0(x)

(coshx)2ε
(
sin(s0|x|) ∗

(
ϑ̂/γ̂+

)∨)
(x) dx

=

∫
R

(
sin(s0|x|) ∗ θ0(x)

(coshx)2ε

)
(x)
(
ϑ̂/γ̂+

)∨
(x) dx ∀ϑ ∈ C∞

0,odd(Rx).

(The above change in the integration order is allowed, via Fubini–Tonelli, thanks

to the rapid decrease of the functions (coshx)−2ε and (ϑ̂/γ̂+)
∨.) This would imply∫

R

sin(x0|x− y|)h0(h) dy = 0 for a.e. x ∈ R, h0 :=
θ0

(coshx)2ε
,

whence h0 ≡ 0 and then θ0 ≡ 0.

(iv) Let ξ ∈ D̃0\{0}. Since θ is not identically zero and is asymptotically cos-periodic

(Lemma 6.4), then (6.5) implies∥∥ξ∥∥2
H

1
2 (R3)

≈
∫
R

|θ(x)|2 dx = +∞.
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(v) Let ξ ∈ D̃0 and λ > 0. Owing to formula (6.12) of Lemma 6.1,∥∥T (0)
λ ξ

∥∥2
Hs(R3)

≈
∫
R

dx(coshx)1+2s

∣∣∣∣θ(x) − 4

π
√
3

∫
R

dy θ(y) log
2 cosh(x− y) + 1

2 cosh(x− y)− 1

∣∣∣∣2 ,
and owing to Lemma 6.4,

θ(x) − 4

π
√
3

∫
R

dy θ(y) log
2 cosh(x− y) + 1

2 cosh(x− y)− 1
= 2s0 ϑ(x).

Therefore, ∥∥T (0)
λ ξ

∥∥2
Hs(R3)

�
∫
R

(coshx)1+2s|ϑ(x)|2 dx < +∞,

because ϑ is smooth and has compact support.

(vi) Based on what argued for (6.16)–(6.18), and on Lemma 6.4, it is straightforward

to see that if ξ ∈ D̃0, and hence θ(ξ) = sin(s0|x|)∗
(
ϑ̂/γ̂+

)∨
for some ϑ ∈ C∞

0,odd(Rx),

then the re-scaled radial function θ(η) of the charge η := T
(0)
λ ξ is

θ(η) = −4π2s0
√
λ (coshx)ϑ.

Therefore, if T
(0)
λ ξ ≡ 0, then θ(η) ≡ 0, thus also ϑ ≡ 0, implying that ξ ≡ 0.

(vii) Owing to (6.13),∫
R3

ξ̂(p)
(̂
T

(0)
λ η

)
(p) dp =

8π2

3
√
3

∫
R

ds γ̂(s) θ̂(ξ)(s) θ̂(η)(s)

=

∫
R3

(̂
T

(0)
λ ξ

)
(p) η̂(p) dp

as an identity between finite quantities. Indeed,∫
R

ds γ̂(s) θ̂(ξ)(s) θ̂(η)(s) = −2s0
∫
R

dx ϑ(ξ)(x) θ(η)(x)

= −2s0
∫
R

dx ϑ(ξ)(x)
(
sin(s0|x|) ∗

(
ϑ̂(η)/γ̂+

)∨)
(x)

(having applied part (ii) in the first identity and (6.23) in the second), whence∣∣∣∣∫
R

ds γ̂(s) θ̂(ξ)(s) θ̂(η)(s)

∣∣∣∣ ≤ ∥∥ϑ(ξ)∥∥L1

∥∥ sin(s0|x|) ∗ (ϑ̂(η)/γ̂+)∨∥∥L∞

≤ ∥∥ϑ(ξ)∥∥
L1

∥∥∥∥∥∥
(
ϑ̂(η)

γ̂+

)∨∥∥∥∥∥∥
L1

< +∞

(again by Young’s inequality).
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Remark 6.6. Lemma 6.5 supplements the picture previously emerged from

Lemma 3.5(i) and (v), and discussed in Remark 3.7, concerning the validity of the

identity ∫
R3

ξ̂(p)
(
T̂λη

)
(p) dp =

∫
R3

T̂λξ(p) η̂(p) dp.

Indeed, such a symmetry property was previously established for ξ, η ∈ H
1
2 (R3),

whereas Lemma 6.5(v) now guarantees it also for ξ, η ∈ D̃0, namely a non-H
1
2

domain (as shown by Lemma 6.5(iii)).

Remark 6.7. Along the same line of the previous Remark, Lemma 6.5 also sup-

plements the analysis of the problem, considered in Lemma 3.5(ii)–(iii) and Remark

3.6, of finding charges ξ ∈ H
− 1

2

�=0(R
3) satisfying T

(0)
λ ξ ∈ H

1
2 (R3), which is in turn

crucial to construct W−1
λ T

(0)
λ . As observed already, high regularity of ξ(y) (hence

fast decay of ξ̂(p)) is of no avail in the sector � = 0. Now Lemma 6.5 implies that

the good feature for having Tλξ ∈ H 1
2 (R3) is a suitable oscillation of ξ̂(p) combined

with some |p|-decay compatible with H− 1
2
−
-regularity (which, loosely speaking,

corresponds to some localization of ξ(y) close to y = 0). This is seen by the fact

that θ(ξ) must satisfy (6.25), hence (Lemma 6.4) θ(ξ)(x) is cos-periodic in x, with

consequent (non-periodic) oscillation in ξ̂(p) via (6.1) and (6.3).

Lemma 6.8. Let λ > 0. Then

inf
ξ∈ ˜D0

〈ξ, T (0)
λ ξ〉L2

‖ξ‖2
H− 1

2

= −∞. (6.28)

Proof. Let ξ ∈ D̃0, and let θ be its re-scaled radial component (6.1)–(6.2). The

numerator in (6.28) is indeed finite and real (Lemma 6.5(vii), Remark 6.6). For

ε > 0 let ξε be the element of D̃0 whose re-scaled radial component θε is defined by

θε(x) := θ(εx). Then θ̂ε(s) = ε−1θ̂(s/ε). Therefore,

lim
ε↓0

〈
ξε, T

(0)
λ ξε

〉
L2 =

8π2

3
√
3
lim
ε↓0

1

ε2

∫
R

ds γ̂(s) |θ̂(s/ε)|2

=
8π2

3
√
3
lim
ε↓0

1

ε

∫
R

ds γ̂(εs) |θ̂(s)|2 = −∞,

having used (6.13) in the first identity, and the fact that
∫
R
ds|θ̂(s)|2 = +∞ (which

follows from Lemma 6.5(iv) and (6.5)) and γ̂(0) = 1− 4π
3
√
3
< 0. On the other hand,

‖ξε‖2
H− 1

2
≈
∫
R

|θε(x)|2
(coshx)2

dx =

∫
R

|θ(εx)|2
(coshx)2

dx
ε↓0−−→ 0,

owing to (6.5), (6.24), and dominated convergence. As a consequence,

lim
ε↓0

〈ξε, T (0)
λ ξε〉L2

‖ξε‖2
H− 1

2

= −∞,

which proves (6.28).

2150010-58

R
ev

. M
at

h.
 P

hy
s.

 2
02

1.
33

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 o

n 
05

/2
0/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

May 5, 2021 14:57 WSPC/S0129-055X 148-RMP J070-2150010

Zero-range interaction for the bosonic trimer at unitarity

For λ > 0, let us now consider the operator

Ã(0)
λ := 3W−1

λ T
(0)
λ

D(Ã(0)
λ

)
:= D̃0

(6.29)

with respect to the Hilbert space H
− 1

2

Wλ,�=0(R
3). The definition (6.29) is well-posed,

owing to Lemma 6.5(v) and Lemma 2.8(ii). The operator Ã(0)
λ is the counterpart,

for the sector of angular momentum � = 0, of the operator Ã(�)
λ defined in (5.16).

Lemma 6.9. With respect to the Hilbert space H
− 1

2

Wλ,�=0(R
3), the operator Ã(0)

λ is

densely defined, symmetric, and not semi-bounded.

Proof. The density of Ã(0)
λ follows from Lemma 6.5(iii) and the canonical Hilbert

space isomorphism H
− 1

2

Wλ,�=0(R
3) ∼= H− 1

2 (R3). Symmetry follows from the finiteness

and reality of〈
ξ, Ã(0)

λ ξ
〉
H

− 1
2

Wλ

= 3
〈
ξ, T

(0)
λ ξ

〉
L2 =

8π2

√
3

∫
R

ds γ̂(s)
∣∣θ̂(ξ)(s)∣∣2 ∀ ξ ∈ D̃0,

having used (6.29) and (2.35) in the first identity, and (6.13) in the second. (The

finiteness of the above quantities is argued precisely as done in the proof of Lemma

6.5(vii).) The unboundedness of Ã(0)
λ from above is obvious, and from below it

follows directly from Lemma 6.8, using again the isomorphism H
− 1

2

Wλ,�=0(R
3) ∼=

H− 1
2 (R3).

Analogously to the operator Ã(�)
λ from (5.16) when � ∈ N, Ã(0)

λ is a well-defined

labeling (Birman) operator for a Ter-Martirosyan Skornyakov symmetric extension

of our original operator of interest H̊ , with inverse scattering length α = 0, of

course only as far as the � = 0 sector is concerned. Indeed, based on Lemma 6.9,

the considerations of Remark 4.8(ii) apply. Moreover, as found for Ã(�)
λ , we shall

see that Ã(0)
λ is not self-adjoint in H

− 1
2

Wλ,�=0(R
3), and therefore it does not identify

a Ter-Martirosyan Skornyakov self-adjoint extension of H̊ (with � = 0).

Unlike Ã(�)
λ , however, Ã(0)

λ is not bounded from below, hence does not admit a

Friedrichs extension: the identification of its self-adjoint extension(s), if any, requires

a different approach than Proposition 5.4, discussed in the following Sec. 6.5.

Moreover, the Ter-Martirosyan Skornyakov symmetric extension of H̊ identified

by Ã(0)
λ for the sector � = 0 is itself unbounded from below (and above) on the

bosonic space Hb. This follows from the computation made in Remark 4.4, namely〈
g, (HA(0)

λ

+ λ�)g
〉
Hb

=
〈
ξ, Ã(0)

λ ξ
〉
H

− 1
2

Wλ
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for functions g = uλξ (with an innocent abuse of notation in writing HA(0)
λ

, as we

are only referring here to the Hamiltonian on functions with ξ-charge in the sector

� = 0): when ξ ∈ D̃0 the expectation

〈
g,HA(0)

λ

g
〉
Hb

‖g‖2Hb

=

〈
ξ, Ã(0)

λ ξ
〉
H

− 1
2

Wλ

‖ξ‖2
H

− 1
2

Wλ

− λ

can be made, at fixed λ, arbitrarily negative, owing to (6.28).

Remark 6.10. For the mere purpose of realising W−1
λ T

(0)
λ as a densely defined

and symmetric operator in H
− 1

2

Wλ,�=0(R
3), one could have selected the larger domain

D̃′
0 := D̃0 � span{ξs0}, (6.30)

where ξs0 has re-scaled radial component

θs0(x) := sin s0x (6.31)

for some tacitly declared λ > 0. All conclusions of Lemma 6.5 remain straightfor-

wardly valid for D̃′
0 but for the injectivity of T

(0)
λ on D̃′

0, for

T
(0)
λ ξs0 = 0, (6.32)

as follows from (the proof of) Lemma 6.4. The conclusions of Lemma 6.8 apply to

D̃′
0 as well, and therefore one has a version of Lemma 6.9 also for the operator

B̃(0)
λ := 3W−1

λ T
(0)
λ

D(B̃(0)
λ

)
:= D̃′

0.

(6.33)

The issue with such B̃(0)
λ , as compared to Ã(0)

λ , is that it is symmetric on a domain

that is too large for the problem of finding self-adjoint operators of Ter-Martirosyan

Skornyakov type: the operator H̊
˜A(0)
λ

(in the sector � = 0) admits self-adjoint TMS

extensions on L2
b(R

3×R3 dy1, dy2), the operator H̊˜B(0)
λ

does not. We shall complete

this discussion in Remark 7.9.

6.4. Adjoint of the Birman parameter

Here we characterize the operator
(Ã(0)

λ

)�
. We recall that ‘�’ indicates the adjoint

with respect to H
− 1

2

Wλ,�=0(R
3), whereas ‘∗’ is reserved for the adjoint in L2(R3).

Lemma 6.11. Let λ > 0. The densely defined and symmetric operator Ã(0)
λ defined

in (6.29) on the Hilbert space H
− 1

2

Wλ,�=0(R
3) has deficiency indices (1, 1). Thus, for
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every μ > 0 there exist two non-zero functions ξiμ, ξ−iμ ∈ H− 1
2

Wλ,�=0(R
3) such that

ker
((Ã(0)

λ

)� − iμ�
)
= span{ξiμ}

ker
((Ã(0)

λ

)�
+ iμ�

)
= span{ξ−iμ}.

(6.34)

Moreover,
(Ã(0)

λ

)�
acts on such eigenvectors as(Ã(0)

λ

)�
ξ±iμ = 3W−1

λ T
(0)
λ ξ±iμ = ±iμ ξ±iμ. (6.35)

Corollary 6.12. Under the above assumptions,

D((Ã(0)
λ )�

)
= D̃′

0 � span{ξiμ}� span{ξ−iμ}(Ã(0)
λ

)�
= 3W−1

λ T
(0)
λ ,

(6.36)

where D̃′
0 is the domain of the operator closure of Ã(0)

λ with respect to H
− 1

2

Wλ,�=0(R
3),

that is, D̃′
0 is the closure of D̃0 in the graph norm of Ã(0)

λ .

In practice we do not need an explicit characterization of D̃′
0. This will be clear

in due time from the usage of Lemma 7.6 in the proof of Theorem 7.4.

We also determine convenient asymptotics for the elements of
(Ã(0)

λ

)�
.

Lemma 6.13. Let λ > 0 and z ∈ C\R (in practice z = iμ for μ ∈ R\{0}, so as to

cover both deficiency subspaces (6.34)). Let ξ ∈ ker
((Ã(0)

λ

)� − z�). Then,
ξ̂(p) = Aξ

sin(s0 log |p|) +Wλ,ξ(z) cos(s0 log |p|)
p2

(1 + o(1))

as |p| → +∞ , |z|/λ→ 0

(6.37)

for two constants Aξ,Wλ,ξ(z) ∈ C with

Wλ,ξ(z) =Wλ,ξ(z). (6.38)

Here s0 ≈ 1.0062 is the unique positive root of γ̂(s) = 0 as defined in (6.9).

Proof of Lemma 6.11. Let μ > 0. Let ξ+ ∈ H− 1
2

Wλ,�=0(R
3) with

ξ+ ∈ ker
((Ã(0)

λ

)� − iμ�
)
= ran

(Ã(0)
λ ) + iμ�

)⊥λ ,

and let θ+ be the re-scaled radial component of ξ+. Then

0 =
〈
ξ+,
(Ã(0)

λ ) + iμ�
)
ξ
〉
H

− 1
2

Wλ

= 3
〈
ξ+, T

(0)
λ ξ

〉
H− 1

2 ,H
1
2
+ iμ

〈
ξ+,W

(0)
λ ξ

〉
H− 1

2 ,H
1
2

∀ ξ ∈ D̃0. (�)

Here we applied (2.35) as usual, together with (6.29) and Lemmas 2.8(ii) and 6.5(v).
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The two duality products appearing in the right-hand side above have been

computed in (the proof of) Lemma 6.1 and in Lemma 6.3:〈
ξ+, T

(0)
λ ξ

〉
H− 1

2 ,H
1
2
=

8π2

3
√
3

(∫
R

θ+(x) θ(x) dx − 4

π
√
3

∫∫
R×R

θ+(x) θ(y) log

× 2 cosh(x− y) + 1

2 cosh(x− y)− 1
dxdy

)
〈
ξ+,W

(0)
λ ξ

〉
H− 1

2 ,H
1
2
=

4π2

λ
√
3

∫
R

θ+(x) θ(x)

(coshx)2
dx+

32π

λ

∫∫
R×R

× θ+(x) θ(y)

(2 cosh(x+ y) + 1) (2 cosh(x− y)− 1)
dxdy.

Here θ denotes the re-scaled radial component of ξ ∈ D̃0.

We can also re-write the above quantities after taking the Fourier transform, by

means of (6.13) and (6.15):〈
ξ+, T

(0)
λ ξ

〉
H− 1

2 ,H
1
2
=

8π2

3
√
3

∫
R

γ̂(s) θ̂+(s) θ̂(s) ds

〈
ξ+,W

(0)
λ ξ

〉
H− 1

2 ,H
1
2
=

2π2

λ
√
3

∫
R

(
s

sinh π
2 s
∗ θ̂+

)
(s) θ̂(s) ds

+
16π

3λ

∫∫
R×R

θ̂+(t) θ̂(s)
sinh π

6 (s+ t)

sinh π
2 (s+ t)

sinh π
3 (s− t)

sinh π
2 (s− t)

ds dt.

Adding them up into the eigenvector equation (�), and using the density

D̃0 together with Fubini–Tonelli theorem, leads to the following equation in the

unknown θ+:(
θ+(x) − 4

π
√
3

∫
R

θ+(y) log
2 cosh(x− y) + 1

2 cosh(x− y)− 1
dy

)

=
iμ

2λ

(
θ+(x)

(coshx)2
+

8
√
3

π

∫
R

θ+(y)

(2 cosh(x+ y) + 1) (2 cosh(x− y)− 1)
dy

)
(6.39)

(for a.e. x ∈ R), or, equivalently,

γ̂(s) θ̂+(s) =
iμ

4λ

((
s

sinh π
2 s
∗ θ̂+

)
(s)

+
8

π
√
3

∫
R

sinh π
6 (s+ t)

sinh π
2 (s+ t)

sinh π
3 (s− t)

sinh π
2 (s− t)

θ̂+(t) dt

)
. (6.40)

The integration order’s exchange in the double integrals was possible thanks

to the fast decay of the integral kernels. This also demonstrates, unfolding (6.40)

backwards, that ξ+ satisfies

3T
(0)
λ ξ+ = iμW

(0)
λ ξ+,
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therefore T
(0)
λ ξ+ ∈ ranW

(0)
λ = H

1
2

�=0(R
3) (Lemma 2.8(ii)) and

3W−1
λ T

(0)
λ ξ+ = iμξ+ =

(Ã(0)
λ

)�
ξ+.

Thus,
(Ã(0)

λ

)�
acts on the eigenvector ξ+ precisely as 3W−1

λ T
(0)
λ .

Now, on the one hand it is well known that the dimension of the deficiency

subspace considered at the beginning of this proof is independent of μ > 0, and

therefore the dimension of the space of solutions to (6.39) (equivalently, (6.40))

does not depend on μ > 0. (In fact, owing to von Neumann’s conjugation criterion

[57, Theorem X.3], such dimension is the same even when one takes instead μ < 0,

namely when one considers the other deficiency subspace.) On the other hand,

mirroring the reasoning of Lemma 6.4’s proof, (6.40) can be re-written as

θ̂+(s) = θ̂0(s) + i
μ

λ
Lθ̂+(s)

with

θ̂0(s) := c
(
δ(s− s0)− δ(s+ s0)

)
, c ∈ C

and

Lθ̂+(s) := 1

8s0γ̂+(s)

((
s

sinh π
2 s
∗ θ̂+

)
(s)

+
8

π
√
3

∫
R

sinh π
6 (s+ t)

sinh π
2 (s+ t)

sinh π
3 (s− t)

sinh π
2 (s− t)

θ̂+(t) dt

)

×
(
PV

1

s− s0 − PV
1

s+ s0

)
(s0 ≈ 1.0062 being the unique positive root of γ̂(s) = 0).

From this we see that the dimension of the space of solutions to (6.40) is precisely

equal to one, namely it is dictated by the dimensionality of the solution space for the

pivot equation γ̂ θ̂+ = 0. The previous formulas provide also an iterative expansion

of the form

θ̂+ =
N−1∑
k=0

(
iμ

λ

)k
Lkθ̂0 +

(
iμ

λ

)N
Lθ̂+, N ∈ N

in the regime μ/λ � 1, which does not alter the dimension of the space of

solutions.

In conclusion,

dimker
((Ã(0)

λ

)� − iμ�
)
= dimker

((Ã(0)
λ

)�
+ iμ�

)
= 1 ,

the analysis of the second deficiency subspace being clearly the same as above, upon

exchanging μ with −μ. This proves that Ã(0)
λ has deficiency indices (1, 1).
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Proof of Corollary 6.12. Formula (6.36) is an immediate consequence of Lemma

6.11 and (6.29), as an application of a standard formula by von Neumann (see,

e.g., [57, Lemma on p. 138]. For sure
(Ã(0)

λ )� does act on D̃′
0 as 3W−1

λ T
(0)
λ because

this is the action of
(Ã(0)

λ )� both on D̃0 (owing to the definition (6.29)) and on the

deficiency subspaces (owing to (6.35)).

Proof of Lemma 6.13. Let θ be the re-scaled radial function associated with ξ

through (6.1)–(6.2).

Continuing the discussion from Lemma 6.11’s proof (where the present θ was

denoted by θ+), θ is the unique solution, up to complex multiplicative constant, to

θ̂(s) = θ̂0(s) +
z

λ
Lθ̂(s). (i)

In the iteration

θ̂ =

N−1∑
k=0

( z
λ

)k
Lkθ̂0 +

( z
λ

)N
Lθ̂, N ∈ N,

and in the considered regime |z|/λ� 1, the leading expression for the solution is

θ̂ = θ̂0 +
z

λ
Lθ̂0, (ii)

up to O((z/λ)2)-corrections as |z|/λ→ 0.

Let us work out (ii) choosing explicitly c =
√
2π
2i for the convenience of having

θ̂0(s) =

√
2π

2i
(δ(s− s0)− δ(s+ s0)) and hence θ0(x) = sin s0x

(see (6.21)). This will fix θ, and hence ξ, up to a complex multiplicative constant.

The computation for Lθ̂0 then gives

Lθ̂0 = −Λ̂(s)
(
PV

1

s− s0 − PV
1

s+ s0

)
with

Λ̂(s) := − 1

8s0γ̂+(s)

((
s

sinh π
2 s
∗ θ̂0

)
(s)

+
8

π
√
3

∫
R

sinh π
6 (s+ t)

sinh π
2 (s+ t)

sinh π
3 (s− t)

sinh π
2 (s− t)

θ̂0(t) dt

)

=
i
√
π

8s0γ̂+(s)
√
2

(
s− s0

sinh π
2 (s− s0)

− s+ s0
sinh π

2 (s+ s0)

− 32

π
√
3

sinh π
6 s0 sinh π

6 s

(1 + 2 cosh π
3 (s− s0)) (1 + 2 cosh π

3 (s+ s0))

)
.
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Fig. 2. (Color online) Plot of the imaginary part of the function ̂Λ(s).

We observe that Λ̂ is a smooth and rapidly decreasing function that is purely imag-

inary and has odd parity (Fig. 2). Then Λ is also smooth and rapidly decreasing,

and is real-valued and with odd parity. Thus (ii) takes the form

θ̂ = θ̂0 − z

λ
Λ̂(s)

(
PV

1

s− s0 − PV
1

s+ s0

)
. (iii)

The inverse Fourier transform of (iii) and (6.21)–(6.22) then yield

θ(x) = sin s0x+
z

λ

(
sin(s0| · |) ∗ Λ

)
(x). (iv)

For such expression we can repeat the very same reasoning of Lemma 6.4’s proof

and deduce that asymptotically as |x| → +∞ (and |z|/λ→ 0)

θ(x) =
(
sin s0x+

z

λ
aξ cos(s0x+ σξ)

)
(1 + o(1)) (v)

for some constants aξ ∈ R and σξ ∈ [0, 2π) depending on ξ. In particular aξ is

surely real, because (iv) expresses a real-valued function.

With the asymptotics (v) for the re-scaled radial function θ, we reconstruct the

asymptotics for ξ by means of (6.1)–(6.2). Up to o(1)-corrections as |x| → +∞
(hence |p| → +∞),

sin s0x = sin

(
s0 log

(√
3p2

4λ
+

√
3p2

4λ
+ 1

))

≈ sin

(
s0 log |p|

√
3

λ

)

= sin

(
s0 log

√
3

λ

)
cos(s0 log |p|) + cos

(
s0 log

√
3

λ

)
sin(s0 log |p|)
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and

cos(s0x+ σξ) = cos

(
s0 log

(√
3p2

4λ
+

√
3p2

4λ
+ 1

)
+ σξ

)

≈ cos

(
s0 log |p|

√
3

λ

)

= cos

(
s0 log

√
3

λ

)
cos(s0 log |p|)− sin

(
s0 log

√
3

λ

)
sin(s0 log |p|).

Plugging the latter identities into (v) yields

θ(x) =

(
cos

(
s0 log

√
3

λ

)
− z

λ
aξ sin

(
s0 log

√
3

λ

))
sin(s0 log |p|)

+

(
sin

(
s0 log

√
3

λ

)
+
z

λ
aξ cos

(
s0 log

√
3

λ

))
cos(s0 log |p|)

up to o(1)-corrections as |p| → +∞ and |z|/λ→ 0. Inserting this into (6.1)–(6.2),

that is,

ξ̂(p) =
θ
(
log
(√

3p2

4λ +
√

3p2

4λ + 1
))

√
3π |p|

√
3
4p

2 + λ
,

yields finally (6.37) with

Wλ,ξ(z) :=
sin
(
s0 log

√
3
λ

)
+ z

λ aξ cos
(
s0 log

√
3
λ

)
cos
(
s0 log

√
3
λ

)
− z

λ aξ sin
(
s0 log

√
3
λ

) .
In (6.37) we also re-instated the overall multiplicative constant.

The above expression for Wλ,ξ(z) shows that Wλ,ξ(z) =Wλ,ξ(z), thanks to the

fact that aξ ∈ R. Had one expressed the asymptotic periodicity (v) above in terms

of the sinus function, which amounts in practice to re-define the shift σξ, one would

have come up with an analogous expression for Wλ,ξ(z) with the same symmetry

property (6.38). The proof is thus completed.

Based on the discussion of this subsection, it is convenient to introduce the

following nomenclature for the charges belonging to the domain of
(Ã(0)

λ

)�
. Fixed

μ > 0 and representing ξ ∈ D
(
Ã(0)
λ

)�
through (6.36) as

ξ = ξ̃ + c+ξiμ + c−ξ−iμ
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for some ξ̃ ∈ D̃′
0 and c± ∈ C, we shall refer to

ξreg := ξ̃, ξsing := c+ξiμ + c−ξ−iμ (6.41)

as, respectively, the regular and the singular component of ξ. Regular and singular

parts are unambiguously defined because the sum in (6.36) is direct.

To visualize the actual difference in behavior, take for concreteness ξreg ∈ D̃0:

then its re-scaled radial function θreg satisfies

θ̂reg(s) = − ϑ̂(s)

γ̂+(s)

(
PV

1

s− s0 − PV
1

s+ s0

)
for some ϑ ∈ C∞

0,odd(Rx). On the contrary, ξsing has the behavior of ξ±iμ and in the

course of the proof of Lemma 6.13 we showed that the associated re-scaled radial

functions θ±iμ satisfy

θ̂±iμ(s) ≈
√
2π

2i

(
δ(s− s0)− δ(s+ s0)

)∓ iμ

λ
Λ̂(s)

(
PV

1

s− s0 − PV
1

s+ s0

)
up to an overall multiplicative constant and up to O((z/λ)2)-corrections as

|z|/λ→ 0.

6.5. Multiplicity of TMS self-adjoint realizations

The operator Ã(0)
λ defined in (6.29) admits a one-real-parameter family of self-

adjoint extensions with respect to the Hilbert spaceH
− 1

2

Wλ,�=0(R
3). They are qualified

as follows.

Proposition 6.14. Let λ > 0. The self-adjoint extensions of Ã(0)
λ on H

− 1
2

Wλ,�=0(R
3)

form the family {A(0)
λ,β |β ∈ R

}
(6.42)

with

D(A(0)
λ,β

)
:= D0,β

A(0)
λ,β := 3W−1

λ T
(0)
λ ,

(6.43)

where

D0,β =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ξ ∈ D

(
Ã(0)
λ

)�
with singular part satisfying

ξ̂sing(p) = c
cos(s0 log |p|) + β sin(s0 log |p|)

p2
(1 + o(1))

as |p| → +∞ for some c ∈ C

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (6.44)

Each of the A(0)
λ,β is a legitimate TMS parameter in the sector of zero angular

momentum, according to the discussion of Sec. 4, precisely as the operator A(�)
λ

defined in (5.18) is a TMS parameter in the sector � ∈ N.
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Proof of Proposition 6.14. Let μ > 0. By a standard application of von Neu-

mann’s extension theory to the operator Ã(0)
λ with deficiency subspaces (6.34) and

adjoint (6.35)–(6.36), the self-adjoint extensions of Ã(0)
λ form the family{A(0)

λ,Uν

∣∣ ν ∈ [0, 2π)
}
,

where

D(A(0)
λ,Uν

)
:=

{
ξ = ξ̃ + c(ξiμ + eiν ξ−iμ)

∣∣∣∣∣ ξ̃ ∈ D̃′
0

c ∈ C

}

A(0)
λ,Uν

ξ := 3W−1
λ T

(0)
λ ξ = 3W−1

λ T
(0)
λ ξ̃ + c

(
iμξiμ − iμeiνξ−iμ

)
.

We have tacitly and non-restrictively assumed that the functions ξ±iμ are normal-

ized in H
− 1

2

Wλ,�=0(R
3). The notation Uν is to remind that the map ξiμ �→ eiνξ−iμ

induces a unitary isomorphism Uν between the two deficiency subspaces (6.34).

Let us now characterize the ξ’s in D(A(0)
λ,Uν

)
in terms of the large-|p| asymptotics

of the corresponding ξ̂sing = c(ξ̂iμ+e
iν ξ̂−iμ) (see definition (6.41)). Owing to Lemma

(6.13), at the leading order as μ/λ → 0 and |p| → +∞, and up to an overall

multiplicative constant, one has

|p|−2 ξ̂sing(p) = sin(s0 log |p|) + wξ,λ,μ cos(s0 log |p|)
+ eiν

(
sin(s0 log |p|) + wξ,λ,μ cos(s0 log |p|)

)
,

having set

wξ,λ,μ :=Wλ,ξ(iμ)

from formula (6.37) and having used the property

Wλ,ξ(−iμ) =Wλ,ξ(iμ) = wξ,λ,μ

from (6.38). Thus, within such approximation, and suitably re-defining the overall

multiplicative constant,

|p|−2 ξ̂sing(p) = cos(s0 log |p|) + 1 + eiν

wξ,λ,μ + eiνwξ,λ,μ
sin(s0 log |p|).

At fixed ν, the above (asymptotic) condition selects all charges from D(Ã(0)
λ

)�
that

constitute the domain of the ‘νth extension’.

As

β :=
1 + eiν

wξ,λ,μ + eiνwξ,λ,μ
∈ R,

one can switch from ν-parametrization to the β-parametrization, re-defining

A(0)
λ,β := A(0)

λ,Uν
.

This leads to the final thesis.
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Remark 6.15. It is worth underlying that the overall construction so far has

involved two distinct extension schemes : the Krĕın–Vǐsik–Birman scheme for the

self-adjoint extensions of the operator H̊, classified in Theorem 2.9, and von Neu-

mann’s scheme for the self-adjoint extensions of the operator Ã(0)
λ , classified in

Proposition 6.14. (As Ã(0)
λ is not semi-bounded, the Krĕın–Vǐsik–Birman scheme is

not applicable.) In either case one speaks of singular component of a generic ele-

ment of the adjoint as that component belonging to the deficiency subspaces, and

in either case each extension corresponds to a suitable restriction of the domain of

the adjoint. However, in the Krĕın–Vǐsik–Birman scheme such a restriction selects a

subspace of the adjoint’s domain by means of a constraint between the singular and

the regular component of its elements (as commented at the beginning of Sec. 3),

whereas in von Neumann’s scheme the restriction of self-adjointness is a constraint

within the singular components only (see (6.41) and (6.44) above).

7. The Canonical Model and Other Well-Posed Variants

Merging the findings of Secs. 5 and 6 within the general scheme of Sec. 4 we can

finally present a class of models for the bosonic trimer which are mathematically

well-posed (i.e. self-adjoint) and physically meaningful (i.e. of Ter-Martirosyan Sko-

rnyakov type), and which in a sense are canonical, as we shall comment further.

7.1. Canonical model at unitarity and at given

three-body parameter

Let β ∈ R and λ > 0. With respect to the decomposition (4.18), namely

H
− 1

2

Wλ
(R3) ∼=

∞⊕
�=0

H
− 1

2

Wλ,�
(R3), (7.1)

let us consider the operator

Aλ,β := A(0)
λ,β ⊕

∞⊕
�=1

A(�)
λ (7.2)

in the usual sense of direct sum of operators on an orthogonal direct sum of Hilbert

spaces. A(�)
λ , with � ∈ N, is defined in (5.18), taking here α = 0, and A(0)

λ,β is defined

in (6.43)–(6.44). Observe that the condition λ > λα required in the definition (5.18)

is automatically satisfied here, as α = 0.

The self-adjointness of each summand in (7.2) with respect to the correspond-

ing Hilbert space H
− 1

2

Wλ,�
(R3) is proved, respectively, in Propositions 5.4 and 6.14.

Therefore, altogether Aλ,β is self-adjoint on H
− 1

2

Wλ
(R3).

Upon setting

Dβ := D0,β �
∞

�
k=1

D�, (7.3)
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the definition (7.2) is equivalent to

D(Aλ,β) := Dβ
Aλ,β := 3W−1

λ Tλ.
(7.4)

Here we use ‘�’ instead of ‘⊕’ to indicate that the sum is orthogonal with respect

to the Hilbert space orthogonal direct sum (7.1), but the summands are non-closed

subspaces of H
− 1

2

Wλ
(R3). Actually (7.3) is nothing but the explicit expression for the

domain of the direct sum operator (7.2) (with respect to the decomposition (7.1)):

the domain D0,β of A(0)
λ,β is defined in (6.44), and the D� of A(�)

λ is defined in (5.17).

Observe that Dβ is λ-independent, because so are its �-components. The second line

of (7.4) is due to the fact that each of the summands in (7.2) is an operator acting

on the corresponding �-sector as W
(�)
λ T

(�)
λ (Propositions 5.4 and 6.14), and in turn

Tλ and Wλ are reduced with respect to the decomposition (7.1) with component,

respectively, T
(�)
λ and W

(�)
λ (as seen in (3.7) and (4.14)).

It is instructive to re-cap what Dβ altogether is:

Dβ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ =
∞∑
�=0

ξ(�) ∈
∞⊕
�=0

H
− 1

2

Wλ,�
(R3) ∼= H

− 1
2

Wλ
(R3)

such that

ξ(�) ∈ H 1
2

� (R
3) and T

(�)
λ ξ(�) ∈ H 1

2

� (R
3) for � ∈ N,

ξ(0) ∈ D(Ã(0)
λ

)�
with singular part satisfying

ξ̂sing(p) = c
cos(s0 log |p|) + β sin(s0 log |p|)

p2
(1 + o(1))

as |p| → +∞ for some c ∈ C

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (7.5)

where the subspace D(Ã(0)
λ

)� ⊂ H
− 1

2

Wλ,�=0(R
3) is defined in (6.36). Moreover, follow-

ing from the analogous properties of each �-component,

Dβ is dense in H
− 1

2

Wλ
(R3) and TλDβ ⊂ H

1
2 (R3). (7.6)

Being self-adjoint on the deficiency subspace of H̊ + λ� (more precisely, on a

unitarily equivalent version of it), Aλ,β identifies a self-adjoint extension H̊Aλ,β
of

H̊ in the sense of the general classification of Theorem 2.9.

In turn, since Aλ,β acts as 3W−1
λ Tλ, its domain Dβ satisfies (7.6), according to

Theorem 4.6 the operator H̊Aλ,β
is a Ter-Martirosyan Skornyakov extension of H̊ ,

namely a physical extension.

Such extension can be defined as follows.
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Theorem 7.1. Let β ∈ R and λ > 0. Define

D(H0,β) :=

{
g = φλ + uλξ

∣∣∣∣∣ φ
λ ∈ H2

b(R
3 × R3), ξ ∈ Dβ ,

φλ(y1,0) = (2π)−
3
2 (Tλξ)(y1)

}

(H0,β + λ�)g := (−Δy1 −Δy2 −∇y1 · ∇y2 + λ�)φλ,

(7.7)

where the subspace Dβ ⊂ H− 1
2 (R3) is given by (7.5).

(i) The decomposition of g in terms of φλ and ξ is unique, at fixed λ. The subspace

D(H0,β) is λ-independent.

(ii) H0,β is self-adjoint on L2
b(R

3 × R3, dy1, dy2) and extends H̊ given in (2.7).

(iii) For each g ∈ D(H0,β) one has

φλ(y1,0) = (2π)−
3
2 (Tλξ)(y1),∫

R3

φ̂λ(p1,p2) dp2 = (T̂λξ)(p1),∫
p2∈R

3

|p2|<R

ĝ(p1,p2) dp2 = 4πR ξ̂(p1) + o(1) as R→ +∞.
(7.8)

All such conditions are equivalent, and each of them expresses the Bethe–

Peierls alias Ter-Martirosyan Skornyakov condition. In particular, the first

version of (7.8) is an identity in H
1
2 (R3).

(iv) H0,β is not semi-bounded.

Proof. As argued already, the operator H̊Aλ,β
matches the conditions of Theorem

4.6(ii) for the considered λ, therefore it is a Ter-Martirosyan Skornyakov self-adjoint

extension of H̊ with inverse scattering length α = 0. Renaming H̊Aλ,β
≡ H0,β ,

Theorem 4.6 guarantees that such H0,β is λ-independent (only the explicit decom-

position of its domain’s elements g depends on λ), with

D(H0,β) =

⎧⎨⎩g = φλ + uλξ

∣∣∣∣∣∣
φλ ∈ H2

b(R
3 × R3), ξ ∈ Dβ,∫

R3

φ̂λ(p1,p2) dp2 = (T̂λξ)(p1)

⎫⎬⎭.
The various BP/TMS conditions for H0,β and their equivalence are then guaranteed

by Lemma 4.1(iii), and the unboundedness from below (and above) of H0,β follows

from the fact that H0,β extends, in the � = 0 sector, a symmetric operator that is

not semi-bounded (see Lemma 6.9 and the observations right after).

Remark 7.2. Owing to the bosonic symmetry, if g ∈ D(H0,β), then (7.8) has

equivalent versions in the other variables, e.g.,

φλ(y,0) = φλ(0,y) = φλ(y,y) = (2π)−
3
2 (Tλξ)(y) (7.9)

(see (2.6)).
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Remark 7.3. In the sectors of definite angular momentum � ∈ N the Birman

operator Aλ,β labeling the Hamiltonian H̊Aλ,β
≡ H0,β is strictly positive, and

correspondingly H0,β is lower semi-bounded (Theorem 2.9(ii)). In this case we

can express the quadratic form of H0,β according to Theorem 2.9(iii). Explicitly,

combining (2.21), (2.43), and (5.19), we find that for all g’s of the form

g = φλ + uλξ , φλ ∈ H1
b(R

3 × R3), ξ ∈ H 1
2

� (R
3) (7.10)

for some λ > 0 and some � ∈ N (thus, excluding � = 0) the evaluation of the

quadratic form of H0,β gives

H0,β [g] =
1

2

(∥∥(∇y1 +∇y2)φ
λ
∥∥2
L2 +

∥∥∇y1φ
λ
∥∥2
L2 +

∥∥∇y2φ
λ
∥∥2
L2

)
+λ
(
‖φλ∥∥2

L2 −
∥∥φλ + uλξ

∥∥2
L2

)
+ 3

∫
R3

ξ̂(p)
(
T̂λξ

)
(p) dp (7.11)

(the L2-norms being norms in L2(R3 × R3)). Of course, the above expression is

the same for all β’s, since the parameter β only qualifies the properties of the

Hamiltonian H0,β in the sector � = 0. On the g’s of (7.10) one then has H0,β [g] ≥ 0,

and by self-adjointness the form (7.11) is closed. Through a quadratic form analysis,

the form (7.11) was proposed and proved to be closed and semi-bounded in the

recent work [4].

The double index in H0,β is to indicate that two parameters have been selected

in order to identify the operator within the general class of self-adjoint extensions

of H̊ , namely the parameter α = 0 in the Ter-Martirosyan Skornyakov condition,

and the parameter β ∈ R in the choice of the charge domain Dβ . (It is surely of

interest to repeat the same analysis for the analogous extensions Hα,β : as said,

from this perspective we only focus here on the unitarity regime α = 0, which is

the physically relevant one.)

Explicitly, α = 0 and β select the following prescriptions:∫
p2∈R

3

|p2|<R

ĝ(p1,p2) dp2
R→+∞

= 4πR+ ξ̂(p1) + o(1) (TMSα=0) (7.12)

ξ̂
(0)
sing(p)

|p|→+∞
= c

cos(s0 log |p|) + β sin(s0 log |p|)
p2

(1 + o(1)) (IIIβ) .(7.13)

As discussed in Secs. 6.3–6.4 and Proposition 6.14, the TMS condition alone, indi-

cated here with the shorthand TMSα=0, is not enough to qualify the self-adjointness

of the model: an additional β-driven condition is needed, present only for charges

in the � = 0 sector.

The shorthand IIIβ in (7.13) is meant to express the following difference. (7.12)

is a two-body condition, constraining the trimer’s wave-function when two of the

bosons come on top of each other, which is explicitly seen from the first version of
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(7.8) or also from its consequence

gav(y1; |y2|) |y2|→0∼ 1

|y2| ξ(y1) + o(1)

(see (4.2) above). Instead, (7.13) is interpreted as a three-body condition, regulating

the behavior of the trimer’s wave-function in the vicinity of the triple coincidence

configuration. Some mathematical heuristics on such three-body interpretation is

presented in [13, Remark 2.8] and [40, Sec. 8], and above all one can see from

the spectral analysis that follows (Sec. 7.2) chat such β has precisely the role of the

three-body parameter introduced by the physicists, on which we commented in the

introduction.

From this perspective, each H0,β is a canonical Hamiltonian for the bosonic

trimer with zero-range interaction: it is defined by a canonical choice, namely the

Friedrichs extension of the TMS parameter, in all sectors � �= 0, and by a β-extension

of the TMS parameter in the sector � = 0. In retrospect, also in the latter sector

the construction was canonical, in that the choice of the initial domain of symmetry

D̃0 (formula (6.23)) is the natural one guaranteeing the well-posedness condition

T
(0)
λ D̃0 ⊂ H

1
2

�=0(R
3) (Lemmas 6.4 and 6.5(v)).

7.2. Spectral analysis and Thomas collapse

For the Hamiltonian H0,β , β ∈ R, we now consider the eigenvalue problem

H0,β g = E g, E < 0. (7.14)

As H0,β is a non-trivial self-adjoint extension of the positive symmetric operator

H̊ , we are thus concerned with the negative bound states of H0,β .

Theorem 7.4. Let β ∈ R and let H0,β the operator introduced in Theorem 7.1. The

negative eigenvalues of H0,β relative to eigenfunctions with spherically symmetric

singular charge constitute the sequence (Eβ,n)n∈Z with

Eβ,n = −3 e− 2
s0

arccotβ
e

2π
s0
n
. (7.15)

The constant s0 ≈ 1.0062 is the unique positive root of γ̂(s) = 0 as defined in (6.9).

Each such eigenvalue is simple and corresponds to an eigenfunction of the form

gβ,n = u
(−Eβ,n)
ξβ,n

with

ξ̂β,n(p) = cβ,n
sin s0

(
log
(√

3p2

4|Eβ,n| +
√

3p2

4|Eβ,n| + 1
))

|p|
√

3
4p

2 + |Eβ,n|
(7.16)

with normalization factor cβ,n ∈ C.
We recall that the nomenclature ‘singular charge’ is reserved for the function ξ

uniquely associated to g in the general decomposition (2.28) (Lemmas 2.4 and 2.7).

Corollary 7.5. (i) Each H0,β admits an infinite sequence of negative bound states

with energies Eβ,n accumulating to −∞ as n→ +∞, and accumulating to zero

from below as n→ −∞.
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(ii) Different realizations H0,β1 and H0,β2 , namely β1 �= β2, have disjoint

sequences of negative bound states, but with the same universal geometric law

Eβ,n+1

Eβ,n
= exp

2π

s0
≈ 515 ∀n ∈ Z

irrespective of β.

(iii) Denoting by

σ−
p (H0,β) := {Eβ,n |n ∈ Z}

the negative point spectrum of H0,β in the sector � = 0, one has

⋃
β∈R

σ−
p (H0,β) = R

−.

The presence of an infinite sequence of eigenvalues for the three-body Hamil-

tonian which accumulate to −∞ is referred to as the ‘Thomas effect ’, or ‘Thomas

collapse’, with reference to the phenomenon that, as mentioned in the introduction,

was first discovered theoretically by Thomas in 1935 [63] through an analysis of

the three-body problem in which the Bethe–Peierls contact condition was formally

implemented in each two-body channel. The collapse, or ‘fall to the center ’, refers

to the circumstance that the corresponding three-body wave-function was showed

to shrink around the triple coincidence point. This is precisely what can be seen

from the eigenfunctions (7.16) (Remark 7.7 below).

The presence of an infinite sequence of negative eigenvalues for the three-body

Hamiltonian which accumulate to zero is referred to as the ‘Efimov effect ’, with

reference to the same phenomenon predicted theoretically in the early 1970’s by

Efimov [19, 20] for three-body quantum systems with two-body resonant interaction

of finite range.

Each Hamiltonian H0,β thus displays both the Thomas and the Efimov effect.

Moreover, the negative point spectra of the H0,β ’s fiber the whole negative half

line and their disjoint union fills R−. This is an indirect signature of the fact that the

H0,β ’s are a one-parameter family of extensions of the same symmetric operator.

The above properties of the negative point spectra of the H0,β ’s, significantly

formula (7.15), coincide with those emerging from the formal diagonalization argu-

ment of physicists’ ‘zero-range methods’ [9, 56] we surveyed in the introduction,

where β is precisely the physically grounded ‘three-body parameter’ [56, Sec. 4]. On

this basis, as anticipated in the discussion of (7.12)–(7.13), we too shall refer to

β as the three-body parameter in the Hamiltonian. In Remark 7.7 below we will

substantiate this nomenclature with rigorous mathematical arguments.

Prior to proving Theorem 7.4, let us single out this simple fact.
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Lemma 7.6. Let A be a densely defined and symmetric operator on a Hilbert

space h and assume that A admits self-adjoint extensions, i.e. dimker(A∗ − z�) =
dimker(A∗−z�) > 0 for z ∈ C\R. Let AU be the generic self-adjoint extension of A

with the notation of von Neumann’s extension scheme, that is, AU = A∗|D(AU ) with

D(AU ) = D(A)� (�+ U) ker(A∗ − z�)
for some unitary U : ker(A∗−z�) ∼=→ ker(A∗−z�). Decompose a generic ξ ∈ D(AU )
accordingly as ξ = ξ0+ c(ξ++Uξ+) for some ξ0 ∈ D(A), ξ+ ∈ ker(A∗− z�), c ∈ C.
Assume in addition that A is injective and that for some non-zero ξ ∈ D(AU ) one
has A∗ξ = 0. Then ξ0 = 0.

Proof. By assumption 0 = A∗ξ = Aξ0 + c(zξ+ + zUξ+). Moreover,

〈Aξ0, ξ+〉h = 〈Aξ0, Uξ+〉h = 0,

meaning that Aξ0 and c(zξ+ + zUξ+) are orthogonal in h. Therefore, both such

vectors must vanish, and in particular Aξ0 = 0. By injectivity of A (and hence of

A) the conclusion follows.

Proof of Theorem 7.4. Let us decompose g ∈ D(H0,β) according to (7.7) with

decomposition parameter

λ := −E,
that is, g = φλ + uλξ . Then (7.7), combined with H0,βg = −λg, implies φλ ≡ 0 and

Tλξ ≡ 0. The eigenfunctions have then necessarily the form g = uλξ for ξ ∈ Dβ such

that Tλξ = 0.

As Tλ is reduced with respect to the decomposition (7.1) with components T
(�)
λ

(as seen in (3.7)), the latter equation is equivalent to the collection of equations

T
(�)
λ ξ(�) = 0, � ∈ N0. We are concerned with eigenfunctions relative to charges ξ

belonging to the sector � = 0, namely the physically relevant ones.

Let us then focus on the problem

T
(0)
λ ξ(0) = 0, ξ(0) ∈ D0,β,

henceforth expressing the unknown ξ(0) simply as ξ. Such equation, owing to

Lemma 6.4, is solved by those ξ’s in the subspace D0,β such that the corresponding

re-scaled radial function θ’s, in the notation (6.1)–(6.2), have the form

θ(x) = c sin s0x, c ∈ C.
In this case (6.1) and (6.3) give

ξ̂(p) = c
sin s0

(
log
(√

3p2

4λ +
√

3p2

4λ + 1
))

√
3π |p|

√
3
4p

2 + λ
.

Now, in order for such ξ to belong to D0,β , ξ must only have singular component,

that is, ξ = ξsing in the notation (6.36) and (6.41). This follows from Lemma 7.6
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applied to the operator Ã(0)
λ defined in (6.29) and to its extension A(0)

λ,β defined

in (6.43). For the former, injectivity is proved in Lemma 6.5(vi) (using also the

bijectivity property of Wλ, Lemma 2.8(ii)). For the latter,
(Ã(0)

λ

)�
ξ = A(0)

λ,βξ =

3W−1
λ T

(0)
λ ξ = 0. Lemma 7.6 is then applicable, and yields ξ − ξsing = ξreg = 0.

It then remains to impose that the above generic solution ξ satisfy the asymp-

totics (7.13) for the considered β.

With simple computations analogous to those made in the proof of Lemma 6.13

we find

ξ̂(p) = c′
(
cos

(
s0 log

√
3

λ

)
sin(s0 log |p|)

p2
+ sin

(
s0 log

√
3

λ

)
cos(s0 log |p|)

p2

)
× (1 + o(1))

as |p| → +∞, for some c′ ∈ C. The comparison with (7.13) then implies

cos

(
s0 log

√
3

λ

)
= β sin

(
s0 log

√
3

λ

)
.

The latter condition selects the admissible values for λ, and hence E = −λ: explic-
itly, only the values Eβ,n = −λn with

λn = 3 e−
2
s0

arccotβ e
2π
s0
n, n ∈ Z.

This establishes (7.15), and moreover it is clear from the above discussion that the

corresponding eigenfunctions are all of the form u
(−λn)
ξn

and that each eigenvalue

Eβ,n is non-degenerate.

Proof of Corollary 7.5. Parts (i) and (iii), as well as the geometric formula of

part (ii), all follow at once from (7.15) of Theorem 7.4. The fact that

σ−
p (H0,β) ∩ σ−

p (H0,β′) = ∅, β �= β′,

can be seen as follows. If Eβ,n = Eβ′,n′ for some n, n′ ∈ Z, then
1

π

(
arccotβ − arccotβ′) = k

for some k = n−m ∈ Z, as follows straightforwardly from (7.15). For the properties

of the arccot-function, this is only possible when k = 0, in which case β = β′.

Remark 7.7. At given β ∈ R, the eigenfunctions gβ,n = u
(−Eβ,n)
ξβ,n

have charges

ξβ,n that tend more and more to be localized around y = 0 as Eβ,n → −∞, and

on the contrary more and more delocalized in space as Eβ,n ↑ 0. In the former case

gβ,n(y1,y2) is generated by a ‘charge distribution’

ξβ,n(y1)δ(y2) + δ(y1)ξβ,n(y2) + δ(y1 − y2)ξβ,n(−y2)

(up to a multiplicative constant, see (2.32)) that tends to concentrate at the

triple coincidence point y1 = y2 = 0 as Eβ,n → −∞. This is precisely the
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fall-to-the-center phenomenon associated with the Thomas effect. All this can be

seen from the explicit expression of the eigenfunctions (7.16). To visualize it we may

consider the radial distribution �β,n of the charge ξβ,n in momentum coordinate,

namely

�β,n(p) =
p2 |fβ,n(p)|2∫ +∞

0

dp p2 |fβ,n(p)|2
,

where

ξ̂β,n(p) =
1√
4π

fβ,n(|p|),

fβ,n(p) = cβ,n
2 sin s0

(
log
(√

3p2

4|Eβ,n| +
√

3p2

4|Eβ,n| + 1
))

√
3 |p|

√
3
4p

2 + |Eβ,n|
.

Figure 3 shows indeed that the more negative Eβ,n (namely, the larger n > 0), the

more flattened �β,n(p), meaning the more localized in space ξβ,n(y).

Remark 7.8. Whereas Theorem 7.4 and Corollary 7.5 focus on the negative point

spectrum of the Hamiltonian H0,β , it is not difficult to determine that its essential

spectrum is precisely

σess(H0,β) = [0,+∞). (7.17)

This can be obtained by suitably adjusting to the present setting the reasoning

developed in [5, Secs. 5 and 6] in collaboration with Becker and Ottolini. That

[0,+∞) ⊂ σess(H0,β) can be seen by means of a Weyl sequence of the same type as

the standardWeyl sequences inH2
b(R

3×R3) used to show that σess(H̊F ) = [0,+∞),

Fig. 3. (Color online) Plot of the radial distribution profile �β,n for the two charges of the
eigenfunctions of H0,β , with β = 1, relative to the quantum numbers n = 2 (blue curve) and n = 3
(orange curve: this has been multiplicatively magnified by a factor 10, for a clearer rendering).
Correspondingly, Eβ,3 < Eβ,2 < 0. The charge relative to the more negative eigenvalue is more
delocalized in momentum, hence more localized around zero in space. Discussion in Remark 7.7.
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suitably modified so as to vanish at the coincidence hyperplanes (see [5, Proposi-

tion 5.1]). For the opposite inclusion, one can reproduce a version of the Minlos–

Yoshitomi decomposition for the present Tλ, as we did in [5, Sec. 6] for the fermionic

Tλ, based on which by compactness arguments one can show that the spectral

projection relative to each interval [a, b] ⊂ (−∞, 0) is finite-dimensional.

Remark 7.9. As a follow-up of Remark 6.10, in retrospect we can comment over

the choice (6.23) of the initial charge domain D̃0 used to realize Ã(0)
λ = W−1

λ T
(0)
λ

as a densely defined and symmetric operator on H
− 1

2

Wλ,�=0(R
3).

(i) As observed already, also on the larger domain D̃′
0 from (6.30) could one make

W−1
λ T

(0)
λ symmetric on H

− 1
2

Wλ,�=0(R
3). In either case, the resulting Ã(0)

λ is an

admissible Birman parameter for a symmetric Ter-Martirosyan Skornyakov

extension H0 ≡ H̊
˜A(0)
λ

of the initial operator H̊ (in the sector � = 0). The

difference is in the smaller (D̃0) or larger (D̃′
0) domain of charges, with corre-

sponding re-scaled radial functions of the form

θ = sin(s0|x|) ∗
(
ϑ̂/γ̂+

)∨
for charges in D̃0,

θ = c sin s0x+ sin(s0|x|) ∗
(
ϑ̂/γ̂+

)∨
for charges in D̃′

0,

with ϑ ∈ C∞
0,odd(Rx) and c ∈ C.

(ii) Choosing the larger domain, one solves the eigenvalue problem

H0 g = −λg, λ > 0

(in the sector � = 0) with the same reasoning as in the proof of Theorem 7.4,

and thus finds solutions g = uλξλ with

θ(x) = sin s0x,

ξ̂λ(p) =
sin s0

(
log
(√

3p2

4λ +
√

3p2

4λ + 1
))

√
3π |p|

√
3
4p

2 + λ
,

up to an overall multiplicative constant. All such solutions are now admissible,

in that all the above ξλ’s belong to D̃′
0 irrespective of λ > 0. This proves that

H0 has a continuum of eigenvalues, which is incompatible with self-adjointness.

(iii) In fact, a laborious but instructive computation (originally alluded to in [27,

Sec. III.3]) shows that imposing the orthogonality of any two such uλξλ and

uλ
′
ξλ′ in L2

b(R
3 × R3, dy1dy2) does partition R+ into the disjoint union

R+ =
⋃
β∈R

σβ , σβ := {λβ,n = 3 e
− 2

s0
arccotβ

e
2π
s0
n |n ∈ Z},

where each sequence (−λβ,n)n∈Z is an admissible sequence of simple eigenval-

ues, with orthogonal eigenfunctions by construction, for a self-adjoint operator

on L2
b(R

3 × R3, dy1dy2) (precisely, for the operator H0,β from Theorem 7.1).
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(iv) In connection to (ii), and in view of Theorems 7.1 and 7.4, we see that the

inclusion

D̃0 ⊂ D0,β ⊂ D̃′
0

involves three distinct admissible choices for the singular charges domain (in

the sector � = 0) for symmetric TMS extensions of H̊ , only the second of which

produces a self-adjoint extension.

7.3. Variants

The canonical model(s) H0,β , β ∈ R, have variants that do not alter the � = 0

sector construction, where the essential physics takes place.

As already observed at the beginning of Sec. 5, there is an amount of arbi-

trariness in the definition of the trimer’s Hamiltonian in sectors of higher angular

momentum.

The construction developed in Sec. 5 is canonical in that it provides the

Friedrichs realization of an operator of Ter-Martirosyan Skornyakov type with

inverse negative scattering length α. (It has of course also a considerable degree of

instructiveness, from the technical point of view.)

Such construction, combined with the analysis in the sector � = 0 (Sec. 6) led to

the self-adjoint Ter-Martirosyan Skornyakov Hamiltonians of the form H̊Aλ,β
with

Birman parameter Aλ,β given by (7.2).

Equally admissible (self-adjoint and TMS) alternatives are given by modified

Birman parameters of the form

Aλ,β := A(0)
λ,β ⊕

∞⊕
�=1

A(�)
λ,α�

(7.18)

where

D(A(�)
λ,α�

)
:= D� =

{
ξ ∈ H 1

2

� (R
3)
∣∣T (�)

λ ξ ∈ H 1
2

� (R
3)
}

A(�)
λ,α�

:= 3W−1
λ

(
T

(�)
λ + α��

)
,

(7.19)

thus on the same charge domain D� that guarantees self-adjointness (Proposition

5.4), but with scattering lengths that depend on the angular sector.

In fact, it would be physically acceptable also to ignore in the first place the

interaction in sectors of non-zero angular momentum, thus focusing on the Hamil-

tonians of interest only as effective models in the sector � = 0. This is obtained by

taking the trivial (Friedrichs) extension of H̊ whenever � �= 0: particles in a three-

body state with charges that do not belong to the zero angular momentum sector

just move with free dynamics. In this case the final Birman parameter’s domain,

instead of (7.3), becomes

D0,β �
∞

�
k=1

{0}. (7.20)
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The TMS condition remains only in the sector � = 0. The Hamiltonian is just the

free kinetic operator on the other sectors.

8. Ill-Posed Models

The analysis developed in Secs. 2–7 is deeply inspired by many previous investiga-

tions we extensively referred to in the introduction, and yet it is novel in that a

number of crucial steps are performed here by thoroughly working out a rigorous

operator theoretic scheme.

In the introduction we argued that for three-body quantum systems with con-

tact interaction physical zero-range methods determine eigenfunctions and eigen-

values of a formal Hamiltonian that otherwise remains unqualified. We also argued

that mathematical approaches are aimed at constructing a self-adjoint Hamilto-

nian of Ter-Martirosyan Skornyakov type: first one declares the operator or its

quadratic form, then one performs the subsequent spectral analysis on it. Of course,

on the physical side there is the advantage of an ultimate agreement check with the

experiments.

As a matter of fact, one can track down, through the mathematical literature

on the subject, certain recurrent sources of ill-posed models, failing to provide

a three-body Hamiltonian that at the same time be self-adjoint and exhibit the

Bethe–Peierls/Ter-Martirosyan Skornyakov contact condition.

On the mathematical technical level, the model’s well-posedness lies in the cor-

rect choice of the domain of self-adjointness, among those domains that in addition

reproduce the desired short-scale physical asymptotics. A wrong choice of the (oper-

ator or form) domain fails to yield self-adjointness and produces incorrect spectral

data. In this informal sense we speak of incomplete or ill-posed models.

In some circumstances an explicit signature of some sort of incompleteness of the

mathematical model is the quantitative discordance in the spectral analysis with

numerical and experimental evidence from physics. This has been the case signifi-

cantly for three-body systems with a pair of identical fermions: the recent works [13,

39, 40] mentioned already in the introduction were essentially aimed at clarifying

this perspective, on which we shall further comment in the course of this Section.

In other occurrences the ill-posedness of the model is more subtle and less evi-

dent, and the case of the bosonic trimer is typical in this sense.

For clarity of presentation, let us group such occurrences into two categories,

discussed, respectively, in Secs. 8.1 and 8.2.

8.1. Ill-posed boundary condition

The operator-theoretic programme aims at realising a Hamiltonian of zero-range

interaction as a suitable self-adjoint extension of H̊ , the free Hamiltonian initially

restricted to wave-functions that do not meet the coincidence configuration Γ (see

(2.7)), by selecting an extension’s domain where instead the wave-functions behave

at Γ with a precise, physically grounded boundary condition (BP/TMS).
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As demonstrated in Sec. 4 (Theorem 4.6), such two-fold requirement is possible

if and only if one restricts H̊∗ to those functions g ∈ D(H̊∗) with singular charges ξ

from a distinguished subspace D ⊂ H− 1
2 (R3):

(1) D must be dense inH− 1
2 (R3) (for generic self-adjoint extensions of H̊ the charge

domain need not be dense: Theorem 2.9);

(2) D must be mapped by Tλ+α� into H
1
2 (R3) for some (and hence for all) λ > 0;

(3) D must be a domain of self-adjointness for W−1
λ (Tλ + α�) in the Hilbert

space given by H− 1
2 (R3) equipped with the twisted (equivalent) scalar product

〈·,Wλ·〉 (see (2.35)).

There are no other possibilities (Theorem 4.6).

Condition 2. above makes W−1
λ (Tλ + α�) well-posed, because Wλ is a bijection

of H− 1
2 (R3) onto H

1
2 (R3) (Lemma 2.8(ii)), and eventually leads to the desired

boundary condition, namely

for every ξ ∈ D there is φλ ∈ H2
b(R

3 × R3) with

φλ(y,0) = (2π)−
3
2 (Tλ + α�)ξ(y) for a.e. y ∈ R3,

(8.1)

or any of the equivalent versions (4.7)–(4.9). From the perspective of (8.1) the

requirement (Tλ+α�)D ⊂ H
1
2 (R3) is needed because by standard trace arguments

(8.1) is a H
1
2 -identity and would not have sense if (Tλ+α�)ξ had strictly less than

H
1
2 -regularity.

In a number of past studies the choice of the charge domain D left instead the

boundary condition (8.1) ambiguous.

The first semi-rigorous mathematical treatment of the bosonic trimer was given

by Minlos and Faddeev in the work [50], and there the choice was (with our

current notation) D̃ = F−1C∞
0 (R3

p). That is, a symmetric extension of H̊ of

Ter-Martirosyan Skornyakov type was suggested as follows: the extension’s domain

consists of those functions whose singular charges ξ are all those with smooth

and compactly supported Fourier transform ξ̂. In fact, the first two seminal works

[50, 51] by Minlos and Faddeev had rather the form of very brief announcements

with only sketches of the main reasoning and proofs; yet the space of charges

was clearly declared therein and moreover, shortly after, Flamand [27] presented a

detailed review of [50] with the same explicit domain declaration.

We also mention the subsequent choices D̃ = F−1C∞
0 (R3

p) in [43, 45, 48, 52],

D̃ = H1(R3) in [25, 47, 49, 54], and D̃ = H
3
2−ε(R3), ε > 0, in [58]. (The above-

mentioned works [45, 47–49, 52, 54, 58] are actually focused on the fermionic coun-

terpart setting; yet, also in that case one has to face the very same technical problem

of providing a well-posed definition of W−1
λ (Tλ + α�) and of making the boundary

condition (8.1) unambiguous, up to non-essential changes of numerical coefficients

in Tλ and Wλ from the bosonic to the fermionic analysis.)

Now, such proposals for D̃ are problematic. In the case D̃ = F−1C∞
0 (R3

p),

hence D̃ ⊂ Hs(R3) ∀ s ∈ R, the sectors � ∈ N are unambiguously described
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through analogues of our Lemma 5.3 and Proposition 5.4 (where our choice was

D̃ = H
3
2

� (R
3), namely the lowest Sobolev space that is entirely mapped with con-

tinuity by T
(�)
λ into the desired H

1
2

� (R
3)), and one realizes W−1

λ (T
(�)
λ + α�) self-

adjointly on the domain D� =
{
ξ ∈ H

1
2

� (R
3)
∣∣T (�)

λ ξ ∈ H
1
2

� (R
3)
}
(Proposition 5.4).

On the contrary, choosing D̃ = H1
� (R

3), � ∈ N, poses the problem of whether

(T
(�)
λ + α�)D̃ ⊂ H

1
2

� (R
3), which is not true in general.

Moreover, even the most stringent choice D̃ = F−1C∞
0 (R3

p) does not guarantee

the well-posedness of the sector � = 0. We already observed (Remark 3.6) that if

ξ ∈ F−1C∞
0 (R3

p), then T
(0)
λ ξ belongs to H

1
2−ε(R3) ∀ ε > 0, but not to H

1
2 (R3).

8.2. Incomplete criterion of self-adjointness

The next source of ill-posedness may be tracked down in the problem of determining

a domain D ⊃ D̃ of self-adjointness for W−1
λ (Tλ + α�) with respect to the Hilbert

space H
− 1

2

Wλ
(R3), once a domain D̃ of symmetry is selected.

Because of the special form of the scalar product (2.35) in H
− 1

2

Wλ
(R3), it is

straightforward to see (Lemma 4.9) that, as long as D̃ is dense in L2(R3), the

symmetry on D̃ of W−1
λ (Tλ + α�) with respect to H

− 1
2

Wλ
(R3) is equivalent to the

symmetry on D̃ of Tλ with respect to L2(R3).

Based on such a suggestive property, an amount of previous investigations [25,

27, 37, 38, 43–52, 58] adopted the claim that, for a dense subspace D of L2(R3),

W−1
λ (Tλ+α�) on D is self-adjoint with respect to H

− 1
2

Wλ
(R3) if and only if Tλ on D

is self-adjoint with respect to L2(R3).

In fact, this is not true (Lemma 5.5) and the link between the two self-adjointness

problems is more subtle (Lemma 4.10).

That the emergent Hamiltonian obtained by realising the Birman parameter

W−1
λ (Tλ+α�) self-adjointly on L2(R3) (instead of H

− 1
2

Wλ
(R3)) yields inconsistencies,

has been known for a few years with reference to the fermionic problem (a trimer

consisting of two identical fermions of mass m and a third particle of different type,

and with inter-particle zero-range interaction). In that setting, a quantitative differ-

ence emerges between the mass thresholds of self-adjointness in the various �-sectors

computed in [45, 47–49] by solving the self-adjointness problem in L2(R3), and cer-

tain spectral mass thresholds having the same conceptual meaning and obtained

by formal theoretical computations and numerics within the physicists’ zero-range

methods [10, 32, 65]. The work [13] in collaboration with Correggi, Dell’Antonio,

Figari, and Teta gave a first mathematical explanation of the situation, in the

unitary regime α = 0, by means of a quadratic form construction of self-adjoint

Hamiltonians of Ter-Martirosyan Skornyakov type, showing that certain non-L2-

charges in H− 1
2 (R3) were needed for a correct domain of self-adjointness. Right

after, in our previous works [39, 40] in collaboration with Ottolini we addressed
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the same issue, recognising that indeed the correct self-adjointness problem for the

Birman parameter is only with respect to the Hilbert space H
− 1

2

Wλ
(R3).

For a three-body system of three identical bosons there is of course no mass

parameter, hence no counterpart of the type of inconsistencies described above for

the fermionic case.

Moreover, deceptively enough, the study of the self-adjoint extensions of Tλ
with respect to L2(R3), with initial domain, say, H1(R3), yields conclusions that

are qualitatively very similar to the correct analysis of the self-adjoint realizations

of W−1
λ T

(0)
λ with respect to H

− 1
2

Wλ,�=0(R
3).

More precisely, in analogy to our discussion of Lemma 6.11, we can easily check

that the L2-computation of the deficiency spaces, namely of the solutions ξ to

T
(0)
λ ξ = iμξ in L2(R3) for μ > 0, yields

θ+(x)− 4

π
√
3

∫
R

θ+(y) log
2 cosh(x− y) + 1

2 cosh(x− y)− 1
dy =

iμ

2π2
√
λ

θ+(x)

coshx

(see (6.17) for a comparison). The above homogeneous equation replaces (6.39),

and is equivalent to

γ̂(s) θ̂+(s) =
iμ

4π2
√
λ

(
1

cosh π
2 s
∗ θ̂+

)
(s),

which replaces (6.40). By the same reasoning of the proof of Lemma 6.11, the latter

equation has a unique solution, up to multiplicative prefactor, meaning that the

deficiency indices are (1, 1). Then, mimicking the proof of Lemma 6.13, one finds

a completely analogous large-momentum asymptotics for the singular elements of

the adjoint, which leads to a structure of L2-self-adjoint realizations of T
(0)
λ that

mirrors that of Proposition 6.14.

Nevertheless, each such domain of L2-self-adjointness for Tλ is not enough to

guarantee that the corresponding three-body Hamiltonian is self-adjoint.

9. Regularized Models

The Hamiltonian H0,β constructed as canonical model in Theorem 7.1 is regarded

as instable, owing to its infinite sequence of bound state energy levels accumulating

to −∞ (Thomas collapse).

In retrospect, this feature is due to the combination of the zero-range character

of the modeled interaction and the bosonic symmetry of the model. As a comparison,

the analogous construction for a three-body system with zero-range interaction

consisting of two identical fermions and a particle of different type produces a

Hamiltonian that is lower semi-bounded in a suitable regime of masses [12].

Thus, in order to have a stable model one hypothesis must be removed, among

the vanishing of the interaction range and the bosonic symmetry. Such an observa-

tion was made by Thomas himself in his work on the tritium [63], which is remark-

able if one considers that at the time of [63] neither the precise nature of the nuclear

interaction nor the connection between spin and statistics had been understood yet.
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This poses the problem of constructing regularized models for the bosonic trimer,

which do not display the spectral instability analyzed in Theorem 7.4, and yet

describe an interaction of zero range that retains certain spectral features such as

the continuous spectrum all above some threshold, or the occurrence of negative

eigenvalues accumulating at the continuum threshold (Efimof effect), or the typical

short-range profile of the wave-functions.

Abstractly speaking, one can perform a regularization with an ad hoc energy

cut-off on the canonical model H0,β , or also with a modified Hamiltonian in the

form of a proper Schrödinger operator with two-body potentials of small but finite

(i.e. non-zero) effective range.

Somewhat intermediate between such two directions, we discuss here a construc-

tion, formerly contemplated by Minlos and Faddeev with no further analysis, of

a contact interaction Hamiltonian similar to H0,β , but with a regularization that

has the overall effect of switching off the interaction in the vicinity of the triple

coincidence configuration. The three identical bosons are allowed by the statistics

to occupy that region, in which now the regularization make them asymptotically

free. This removes the instability of the canonical model. (Secs. 9.1–9.2).

Further types of regularizations have been proposed, which are conceptually

analogous to the idea of Minlos and Faddeev in that they introduce a non-constant,

effective scattering length that tends to be suppressed (meaning, no interaction,

particles are free) when the three bosons get close to the point of triple coincidence.

Whereas the Minlos–Faddeev regularization implements such idea in position coor-

dinates, one can analogously work in momentum coordinates, making the effective

scattering length vanish at large relative momenta. For comparison, we shall discuss

such high energy cut-off in Sec. 9.3.

9.1. Minlos–Faddeev regularization

This is the ultra-violet regularization originally proposed in [50, Sec. 6] (see also

[27, Sec. VI.2] and [1]), and on which a number of results with the quadratic form

approach have been recently announced in [25].

We shall study it within the operator-theoretic scheme of the present analysis.

In practice, this is a modification of the canonical model (Theorem 7.1) along

the following line: the ordinary Birman parameter 3W−1
λ (Tλ+α�), that selects (via

Theorems 2.9 and 4.6) self-adjoint extensions of Ter-Martirosyan Skornyakov type

of the minimal operator H̊ defined in (2.7), is replaced by

3W−1
λ (Tλ + α�+Kσ), σ > 0, (9.1)

where, for generic σ ∈ R,
(Kσξ)(y) :=

σ0 + σ

|y| ξ(y)

σ0 := 2π
√
3

(
4π

3
√
3
− 1

)
.

(9.2)
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The motivation is clear from the large momentum asymptotics (3.21) valid for

generic g ∈ D(H̊), namely∫
p2∈R

3

|p2|<R

ĝ(p1,p2) dp2 = 4πR ξ̂(p1) +

(
1

3
(Ŵλη)(p1)− (T̂λξ)(p1)

)
+ o(1)

as R → +∞. Indeed, when a self-adjoint extension is selected, out of the family

(2.37), labeled by the Birman parameter (9.1) densely defined in H− 1
2 (R3), then

in the asymptotics above one has η = 3W−1
λ (Tλ + α� + Kσ)ξ (as prescribed by

formula (2.39) of Theorem 2.9), whence∫
p2∈R

3

|p2|<R

ĝ(p1,p2) dp2 = 4πR ξ̂(p1) + αξ̂(p1) + (K̂σξ)(p1) + o(1),

and also (see Corollary 3.9)

(2π)
3
2 cg gav(y1; |y2|) |y2|→0

=
4π

|y2|ξ(y1) +
(
α+

σ0 + σ

|y1|
)
ξ(y1) + o(1) .

Thus, the new self-adjoint Hamiltonian has a domain of functions that display

a modified short-scale asymptotics, as compared to the zero-range Bethe–Peierls

condition: the modification consists of the inverse negative scattering length α being

replaced by a position-dependent value

αeff := α+ (σ0 + σ)/|y|, (9.3)

where |y| is the distance of the third particle from the point towards which the other

two are getting closer and closer. Therefore, αeff → +∞ when all three particles

collapse to the same spatial position, meaning that the scattering length vanishes in

such limit. As vanishing scattering length means absence of interaction, the overall

effect is a three-body regularization that prevents the collapse of the system along

an unbounded sequence of negative energy levels.

By construction, Kσ commutes with the rotations in R and therefore is

reduced as

Kσ =
⊕
�∈N

K(�)
σ (9.4)

with respect to the orthogonal Hilbert space decomposition (4.18) of H
− 1

2

Wλ
(R3).

For all practical purposes (in view also of the discussion of Sec. 7.3) it suffices

to implement the Minlos–Faddeev regularization in the sector � = 0, thus only

inserting K
(0)
σ in (9.1), as the canonical model is already stable in the sectors of

higher angular momentum. That is the version of the regularization that we shall

study here.

With definition (9.2) and the above considerations in mind, the same conceptual

path of Sec. 6 can be now re-done, adapting it to the new Birman parameter (9.1).

To this aim, we need updated expressions of the quantities of interest in terms

of the re-scaled radial components associated to the charges.
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First of all, taking the Fourier transform in (9.2) yields

(K̂σξ)(p) =
σ0 + σ

2π2

∫
R3

ξ̂(q)

|p− q|2 dq. (9.5)

Let us also introduce two auxiliary functions, namely

Θ(θ)
σ (x) := θ(x) − 4

π
√
3

∫
R

dy θ(y) log
2 cosh(x− y) + 1

2 cosh(x− y)− 1

+
σ0 + σ

π3
√
3

∫
R

dy θ(y) log

∣∣∣∣coth x− y2

∣∣∣∣ (9.6)

for given θ, and

γ̂σ(s) := 1 +
1√

3 s cosh π
2 s

(
σ0 + σ

π2
sinh

π

2
s− 8 sinh

π

6
s

)
. (9.7)

Observe that γ̂−σ0 is precisely the function γ̂ defined in (6.9). It is easy to see that

γ̂σ is a smooth even function of R, that converges asymptotically to 1 as |s| → +∞,

and that for σ ∈ [0, 2π
√
3) has absolute minimum at s = 0 of magnitude

γ̂σ(0) = γ̂(0) +
σ0 + σ

2π
√
3

=
σ

2π
√
3

(9.8)

(see Fig. 4). Indeed, σ0 = −2π√3 γ̂(0).

Lemma 6.1 has the following analogue.

Lemma 9.1. Let λ > 0, s, σ ∈ R, and ξ be as in (6.1). One has the identities((
T

(0)
λ +K(0)

σ

)
ξ
)̂(p) = 1√

4π |p|
4π2

√
3
Θ(θ)
σ (x), (9.9)

∥∥(T (0)
λ +K(0)

σ

)
ξ
∥∥2
Hs(R3)

≈
∫
R

dx (coshx)1+2s
∣∣Θ(θ)

σ (x)
∣∣2 , (9.10)

Fig. 4. (Color online) Plot of the function γ̂σ(s) defined in (9.7), with parameter σ = 1 (blue)

and σ = 10 (orange).
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Θ̂
(θ)
σ (s) = γ̂σ(s) θ̂(s), (9.11)∫

R3

ξ̂(p)
((
T

(0)
λ +K(0)

σ

)
ξ
)̂(p) dp =

8π2

3
√
3

∫
R

ds γ̂σ(s) |θ̂(s)|2, (9.12)

with x and θ given by (6.2), Θ
(θ)
σ given by (9.6) with respect to the present θ, and

γ̂σ given by (9.7). In (9.9) it is understood that x ≥ 0, and (9.10) is meant as an

equivalence of norms (with λ-dependent multiplicative constant).

Proof. Let us focus on the Kσ-term. From (9.5), in complete analogy with (3.13),

(
̂
K

(�)
σ ξ(�))(p) =

σ0 + σ

π

�∑
n=−�

Y�,n(Ωp)

∫
R+

dq q2 f
(ξ)
�,n(q)

∫ 1

−1

dt
P�(t)

p2 + q2 − 2|p|qt ,

where for ξ we took the expansion (3.9), namely

ξ̂(p) =

∞∑
�=0

�∑
n=−�

f
(ξ)
�,n(|p|)Y�,n(Ωp) =

∞∑
�=0

ξ̂(�)(p).

Thus, for a spherically symmetric charge ξ̂(p) = 1√
4π
f(|p|),

(
̂
K

(0)
σ ξ)(p) =

1√
4π

1

p

σ0 + σ

π

∫
R+

dq qf(q) log
p+ q

|p− q| , p = |p|.

Let θ be the re-scaled radial function (6.2) associated with ξ (and f) above. With

p = 2
√
λ√
3

sinhx and q = 2
√
λ√
3

sinh y one has

p+ q

|p− q| =
sinh x+y

2 cosh x−y
2∣∣sinh x−y

2 cosh x+y
2

∣∣ =
∣∣∣∣coth x− y

2

∣∣∣∣ tanh x+ y

2
,

which, together with (6.3), gives∫
R+

dq qf(q) log
p+ q

|p− q| =
4

3

∫
R+

dy θ(y)

(
log

∣∣∣∣tanh x+ y

2

∣∣∣∣+ log

∣∣∣∣coth x− y2

∣∣∣∣)
=

4

3

∫
R

dy θ(y) log

∣∣∣∣coth x− y2

∣∣∣∣,
the last identity following from the odd-parity extension of θ over R. Therefore,

(
̂
K

(0)
σ ξ)(p) =

1√
4π

1

|p|
4(σ0 + σ)

3π

∫
R

dy θ(y) log

∣∣∣∣coth x− y2

∣∣∣∣.
Combining this with (6.11) yields (9.9).

Formula (9.10) is proved from (9.9) with the very same reasoning used for the

analogous formula (6.12) in Lemma 6.1.

Concerning (9.11), we observe that the first two summands in the expression

(9.6) of Θ
(θ)
σ have precisely Fourier transform γ̂(s)θ̂(s), as determined already in the
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proof of Lemma 6.1, with γ̂ defined in (6.9). Let us focus on the third summand,

namely the one with the σ-dependent pre-factor. One has(
log
∣∣∣coth x

2

∣∣∣)̂ (s) =

√
2

π

∫
R+

dx cos sx log coth
x

2

=

√
2

π

∫
R+

dx cos sx
(
log(1 + e−x)− log(1 − e−x)),

and (see, e.g., [21, I.1.5.(13)–(14)])∫
R+

dx cos sx log(1 + e−x) =
1

2s2
− π

2s

1

sinhπs
,∫

R+

dx cos sx log(1 − e−x) = 1

2s2
− π

2s
cothπs,

whence (
log
∣∣∣coth x

2

∣∣∣)̂ (s) =

√
π

2

tanh π
2 s

s
.

Therefore, the Fourier transform of the last summand in the expression (9.6) of

Θ
(θ)
σ is

σ0 + σ

π3
√
3

(
θ ∗ log

∣∣∣coth x
2

∣∣∣)̂ (s) =
σ0 + σ

π2
√
3

tanh π
2 s

s
θ̂(s) .

Adding this term to γ̂(s)θ̂(s) yields (9.7) and hence (9.11).

Last, concerning (9.12), in complete analogy with the proof of (6.13), we find∫
R3

ξ̂(p)
((
T

(0)
λ +K(0)

σ

)
ξ
)̂(p) dp =

∫
R+

dp p2 f(p)
4π2

p
√
3
Θ(θ)
σ (x(p))

=
8π2

3
√
3

∫
R

dx θ(x) Θ(θ)
σ (x)

=
8π2

3
√
3

∫
R

ds γ̂σ(s) |θ̂(s)|2

having applied (9.9) in the first identity, (6.3)–(6.4) and the odd parity in the

second, and Parseval’s identity in the third.

Corollary 9.2. For λ, σ > 0, the map

ξ �→
(∫

R3

ξ̂(p)
((
T

(0)
λ +K(0)

σ

)
ξ
)̂(p) dp)1

2

defines an equivalent norm in H
1
2

�=0(R
3).

Proof. Because of (9.12) and the fact that γ̂σ is uniformly bounded and strictly

positive when σ > 0, up to inessential pre-factors each ξ is mapped to ‖θ(ξ)‖L2(R)

and hence to ‖ξ‖
H

1
2 (R3)

, owing to (6.5).
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9.2. Regularization in the sector � = 0

Let us now make the Birman parameter explicit for a self-adjoint extension of

H̊ when the Minlos–Faddeev regularization is implemented with respect to the

canonical construction of extensions of Ter-Martirosyan Skornyakov type. As argued

in the previous subsection, we only need to replace the Birman parameter A(0)
λ,β

(defined in (6.43)–(6.44)) of the sector � = 0 with a regularized version, that we

shall denote by R(0)
λ,σ.

Then, with such R(0)
λ,σ at hand, and with all other canonical Birman parameters

A(�)
λ , � ∈ N, we construct the associated self-adjoint Hamiltonian by means of

Theorem 2.9.

To begin with, for σ > 0 we define (in analogy to (6.23)) the subspace

D̃0,σ :=

⎧⎪⎪⎨⎪⎪⎩ξ ∈ H− 1
2

�=0(R
3)

∣∣∣∣∣∣∣∣
ξ has re-scaled radial component

θ =
(
Θ̂/γ̂σ)

)∨
for Θ ∈ C∞

0,odd(Rx)

⎫⎪⎪⎬⎪⎪⎭. (9.13)

Here the subscript ‘odd’ indicates functions with odd parity and γ̂σ is defined in

(9.7). The correspondence between ξ and its re-scaled radial component θ is given

by (6.1)–(6.2). It is tacitly understood that the re-scaled radial components are all

taken with the same parameter λ > 0 in the definition (6.2): this does not mean D̃0,σ

is a λ-dependent subspace, as one can easily convince oneself, the choice of λ only

fixes the convention for representing its elements in terms of the corresponding θ.

Lemma 9.3. Let λ, σ > 0.

(i) D̃0,σ is dense in H
1
2

�=0(R
3).

(ii) (T
(0)
λ +K

(0)
σ )D̃0,σ ⊂ Hs

�=0(R
3) for every s ∈ R.

Proof. (i) For ξ ∈ D̃0,σ, the identity γ̂σθ̂ = Θ̂ and (6.5) imply

‖ξ‖
H

1
2 (R3)

≈ ‖θ‖L2(R) = ‖θ̂‖L2(R) ≤ ‖γ̂−1
σ ‖L∞(R)‖Θ̂‖L2(R)

= (γ̂σ(0))
−1‖Θ‖L2(R) < +∞,

owing to (9.8) and to the fact that Θ is smooth and with compact support. Because

of (6.5), the density of the ξ’s of D̃0,σ in H
1
2

�=0(R
3) is equivalent to the density of the

associated θ’s in L2
odd(R). If in the latter Hilbert space a function θ0 was orthogonal

to all such θ’s, then

0 =

∫
R

θ0(x) θ(x) dx =

∫
R

θ̂0(s)
Θ̂(s)

γ̂σ(s)
ds =

∫
R

(
θ̂0/γ̂σ

)∨
(x) Θ(x) dx

for all Θ ∈ C∞
0,odd(R): as γ̂σ is uniformly bounded and strictly positive, this implies

θ0 ≡ 0.
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(ii) On the one hand γ̂σ θ̂ = Θ̂ by the assumption that ξ ∈ D̃0,σ, on the other

hand γ̂σ θ̂ = Θ̂
(θ)
σ , owing to (9.11), whence Θ

(θ)
σ = Θ ∈ C∞

0,odd(R). Plugging this

information into (9.10) yields the conclusion.

Next, for λ, σ > 0 we define

D(R̃(0)
λ,σ

)
:= D̃0,σ

R̃(0)
λ,σ := 3W−1

λ

(
T

(0)
λ +K(0)

σ

)
.

(9.14)

Lemma 9.3, together with Corollary 9.2, guarantees that this is a well-posed def-

inition for a densely defined, symmetric, and coercive operator on H
− 1

2

Wλ,�=0(R
3).

As such, having a strictly positive lower bound, R̃(0)
λ,σ has the Friedrichs extension.

That will be our final Birman parameter. In analogy with Proposition 5.4, we prove

the following.

Proposition 9.4. Let λ, σ > 0. Define

D0,σ :=
{
ξ ∈ H 1

2

�=0(R
3) | (T (0)

λ +K(0)
σ

)
ξ ∈ H 1

2

�=0(R
3)
}
. (9.15)

The operator

D(R(0)
λ,σ

)
:= D0,σ

R(0)
λ,σ) := 3W−1

λ

(
T

(0)
λ +K(0)

σ

) (9.16)

is the Friedrichs extension of R̃(0)
λ,σ with respect to H

− 1
2

Wλ,�=0(R
3). Its sesquilinear

form is

D[R(0)
λ,σ

]
= H

1
2

�=0(R
3)

R(0)
λ,σ[η, ξ] = 3

∫
R3

ξ̂(p)
((
T

(0)
λ +K(0)

σ

)
ξ
)̂(p). (9.17)

Proof. Let us temporarily denote by RF the Friedrichs extension of R̃(0)
λ,σ with

respect to H
− 1

2

Wλ,�=0(R
3), and let us set

‖ξ‖R :=
(〈
ξ, R̃(0)

λ,σξ
〉
H

− 1
2

Wλ

) 1
2

=
(
3
〈
ξ,
(
T

(0)
λ +K(0)

σ

)
ξ
〉
L2

) 1
2 .

Owing to Corollary 9.2, the latter induces an equivalent H
1
2 -norm on D̃0,σ. As

prescribed by the Friedrichs construction, RF has form domain

D[RF ] = D
(R̃(0)

λ,σ

) ‖ ‖R
= D̃0,σ

‖ ‖
H

1
2 = H

1
2

�=0(R
3)

(the last identity following from Lemma 9.3(i)), and for ξ, η ∈ H 1
2

�=0(R
3)

RF [η, ξ] = lim
n→∞

〈
ηn, R̃(0)

λ,σξn
〉
H

− 1
2

Wλ

= 3 lim
n→∞

〈
ηn,
(
T

(0)
λ +K(0)

σ

)
ξn
〉
L2
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for any two sequences (ξn)n and (ηn)n in D̃0,σ such that ξn → ξ and ηn → η in

H
1
2

�=0(R
3). Since the pairing (ηn, ξn) �→

〈
ηn,
(
T

(0)
λ + K

(0)
σ

)
ξn
〉
L2 is an H

1
2 -pairing

(Corollary 9.2), one finds

RF [η, ξ] = 3 lim
n→∞

〈
ηn,
(
T

(0)
λ +K(0)

σ

)
ξn
〉
L2 = 3

〈
η,
(
T

(0)
λ +K(0)

σ

)
ξ
〉
L2 .

Formula (9.17) is thus proved. The operator RF is derived from its quadratic form

in the usual matter: a straightforward adaptation of the analogous argument used

in the proof of Proposition 5.4 shows that RF is indeed the operator (9.16).

With the new Birman parameter (9.16) for the sector � = 0, the construction of

the canonical model H0,β is modified as follows (see the discussion of Sec. 7.1).

Instead of the self-adjoint extension H̊Aλ,β
obtained by means of Theorem 2.9

with Birman parameter

Aλ,β = A(0)
λ,β ⊕

∞⊕
�=1

A(�)
λ

(see (7.2)), we consider another operator from the family (2.37), namely the self-

adjoint extension H̊Rλ,σ
with modified Birman parameter

Rλ,σ := R(0)
λ,σ ⊕

∞⊕
�=1

A(�)
λ . (9.18)

By definition, the domain of Rλ,σ is

D(Rλ,σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ =
∞∑
�=0

ξ(�) ∈
∞⊕
�=0

H
− 1

2

Wλ,�
(R3) ∼= H

− 1
2

Wλ
(R3)

such that

ξ(�) ∈ H 1
2

� (R
3) and T

(�)
λ ξ(�) ∈ H 1

2

� (R
3) for � ∈ N,

ξ(0) ∈ H 1
2

�=0(R
3) and

(
T

(0)
λ +K

(0)
σ

)
ξ ∈ H 1

2

�=0(R
3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (9.19)

to be compared with the previous domain (7.5).

For the sake of a more compact, unified notation, let us write

(Tλ,σξ)(y) :=
((
T

(0)
λ +K(0)

σ

)
ξ(0))(y) +

∞∑
�=1

(
T

(�)
λ ξ(�)

)
(y) (9.20)

for ξ =
∑∞
�=0 ξ

(�) ∈⊕∞
�=0 H

− 1
2

Wλ,�
(R3) ∼= H

− 1
2

Wλ
(R3). Thus,

D(Rλ,σ) =
{
ξ ∈ H 1

2 (R3)
∣∣Tλ,σξ ∈ H 1

2 (R3)
}

Rλ,σ = 3W−1
λ Tλ,σ

(9.21)

and (
Tλ,σ − Tλ

)
ξ = K(0)

σ ξ(0). (9.22)
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Theorem 9.5. Let σ > 0 and λ > 0. Define

D(Hσ) :=

⎧⎪⎪⎨⎪⎪⎩g = φλ + uλξ

∣∣∣∣∣∣∣∣
φλ ∈ H2

b(R
3 × R3),

ξ ∈ H 1
2 (R3) with Tλ,σξ ∈ H 1

2 (R3),

φλ(y,0) = (2π)−
3
2 (Tλ,σξ)(y)

⎫⎪⎪⎬⎪⎪⎭
(Hσ + λ�)g := (−Δy1 −Δy2 −∇y1 · ∇y2 + λ�)φλ ,

(9.23)

(i) The decomposition of g in terms of φλ and ξ is unique, at fixed λ. The subspace

D(Hσ) is λ-independent.

(ii) Hσ is self-adjoint on L2
b(R

3 × R3, dy1, dy2) and extends H̊ given in (2.7).

(iii) For each g ∈ D(Hσ) one has

φλ(y1,0) = (2π)−
3
2 (Tλ,σξ)(y1),∫

R3

φ̂λ(p1,p2) dp2 = (T̂λ,σξ)(p1),∫
p2∈R

3

|p2|<R

ĝ(p1,p2) dp2 = 4πR ξ̂(p1) + (
̂
K

(0)
σ ξ(0))(p1) + o(1)

(9.24)

(where R → +∞). All such conditions are equivalent. In particular, the first

version of (9.24) is an identity in H
1
2 (R3).

(iv) Hσ is non-negative and with quadratic form

D[Hσ ] = {g = φλ + uλξ |φλ ∈ H1
b(R

3 × R3), ξ ∈ H 1
2 (R3)}

Hσ[g] =
1

2

(∥∥(∇y1 +∇y2)φ
λ
∥∥2
L2 +

∥∥∇y1φ
λ
∥∥2
L2 +

∥∥∇y2φ
λ
∥∥2
L2

)
+λ
(‖φλ∥∥2

L2 −
∥∥φλ + uλξ

∥∥2
L2

)
+ 3

∫
R3

ξ̂(p)
(
T̂λ,σξ

)
(p) dp, (9.25)

the L2-norms being norms in L2(R3 × R3).

Proof. All claims follow from plugging (9.21)–(9.22) (hence, in particular, (9.16)–

(9.17)) into the general classification formulas of Theorem 2.9, owing to the self-

adjointness of the Birman parameter guaranteed by Proposition 9.4.

Each of the asymptotics (9.24) for g ∈ D(Hσ) expresses an ultra-violet regu-

larized Bethe–Peierls alias Ter-Martirosyan Skornyakov condition, that in view of

Corollary 3.9 can be thought of as

(2π)
3
2 gav(y1; |y2|) |y2|→0

=
4π

|y2|ξ(y1) +
σ0 + σ

|y1| ξ(y1) + o(1). (9.26)

As the simultaneous limit |y1| → 0, |y2| → 0 in the expression above suggests, the

regularization effectively amounts to distorting the ordinary Bethe–Peierls short-

scale asymptotics by means of a position-dependent scattering length

aeff(y) := − 4π|y|
σ0 + σ

(9.27)

2150010-92

R
ev

. M
at

h.
 P

hy
s.

 2
02

1.
33

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 o

n 
05

/2
0/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

May 5, 2021 14:57 WSPC/S0129-055X 148-RMP J070-2150010

Zero-range interaction for the bosonic trimer at unitarity

(see (4.3) above) that vanishes when all three bosons come to occupy the same

point. At this effective level, a (small) three-body correction prevents the triple

collision.

In fact, this Minlos–Faddeev regularization is rather radical, because it com-

pletely eliminates the negative spectrum (see also Remark 9.6 below). Yet, Hσ is

not merely the reduced component of the canonical Hamiltonian H0,β onto the pos-

itive spectral subspace: the signature of the physical short-scale behavior is retained

in (9.24) and (9.26), with the |y2|−1 leading singularity as |y2| → 0 at fixed y1,

only with a distorted subleading singularity driven by an effective scattering length

that vanishes as |y1| → 0.

Remark 9.6. In contrast with the computation of the negative eigenvalues of the

Hamiltonian H0,β (proof of Theorem 7.4), the analogous computation for Hσ would

lead to the equation
(
T

(0)
λ +K

(0)
σ

)
ξ = 0 for some ξ in the sector � = 0. Owing to

(9.9) and (9.11), this is the same as γ̂σ θ̂ = 0, where θ is the re-scaled radial function

associated with ξ. The difference is thus

γ̂ θ̂ = 0 for the canonical eigenvalue problem

γ̂σ θ̂ = 0 for the regularized eigenvalue problem.

Because of the presence of roots of γ̂(s) = 0, the first equation turns out to have

non-trivial admissible solutions. Instead, γ̂σ(s) ≥ γ̂σ(0) > 0 and for the second

equation one necessarily has θ ≡ 0 (absence of negative eigenvalues).

Remark 9.7. The charge term in the quadratic form expression (9.25) is explicitly

given by∫
R3

ξ̂(p)
(
T̂λ,σξ

)
(p) dp =

∞∑
�=1

∫
R3

ξ̂(�)(p)
( ̂
T

(�)
λ ξ(�)

)
(p) dp

+

∫
R3

ξ̂(0)(p)
((
T

(0)
λ +K(0)

σ

)
ξ(0)
)̂(p) dp (9.28)

(as follows from (9.17) and (9.20)). As Hσ is self-adjoint and non-negative, its

quadratic form (9.25) is obviously closed and non-negative. An announcement that

the quadratic form (9.25) is closed and lower semi-bounded on L2
b(R

3 × R3), and

thus induces a self-adjoint Hamiltonian for the regularized three-body interaction

in the bosonic trimer, has been recently made in [25].

9.3. High energy cut-off

As mentioned already, an alternative, conceptually equivalent way of making the

scattering length effectively vanish in the vicinity of the triple coincidence point is

to realize this effect at large relative momenta.

An example of this type of high energy cut-off has been recently proposed by

Basti, Figari, and Teta [3, Sec. 3] by means of quadratic form methods. We shall
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study this possibility in the general operator-theoretic framework of the present

analysis, working out more precisely a modification of [3] that allows for explicit

computations.

For a clearer readability and comparison with Secs. 9.1–9.2, we shall keep the

same notation used therein for the counterpart regularized quantities, of course

re-defined them now in a different way.

The original proposal of [3] goes along the following line: the ordinary Birman

parameter 3W−1
λ (Tλ + α�), that selects (via Theorems 2.9 and 4.6) self-adjoint

extensions of Ter-Martirosyan Skornyakov type of the minimal operator H̊ defined

in (2.7), is replaced by

3W−1
λ (Tλ + α�+Kσ,ρ), σ, ρ > 0,

(K̂σ,ρξ)(p) := σ 1{|p|≥ρ} p2 ξ̂(p).

This gives rise, via (3.21), to the modified large momentum asymptotics∫
p2∈R

3

|p2|<R

ĝ(p1,p2)dp2
R→+∞

= 4πR ξ̂(p1) + αeff(p)ξ̂(p1) + o(1)

αeff(p) := α+ σ 1{|p|≥ρ} p2,

for the elements g in the domain of the corresponding self-adjoint extension, again

with the interpretation of an effective parameter αeff(p)→ +∞ as |p| → +∞.

Reasoning in terms of quadratic forms, it is simple to check (as done in [3, Sec. 3])

that σ and ρ can be adjusted on α and λ so that the map

ξ �→
(∫

R3

ξ̂(p)
(
(Tλ + α�+Kσ,ρ)ξ

)̂(p))1
2

is an equivalent H1-norm: in fact, the effect of the additional Kσ,ρ is to rise the

multiplicative part of Tλ with an H1-term (added to the original H
1
2 -term), which

controls the integral part of Tλ. This way, a quadratic form on L2
b(R

3
y1
× R3

y2
) of

the same type of (2.43) can be constructed, namely with regular functions from

H1
b(R

3
y1
×R3

y2
) and charges from H1(R3), in which the charge term (the quadratic

form of the Birman parameter) is precisely∫
R3

ξ̂(p)
(
(Tλ + α�+Kσ,ρ)ξ

)̂(p).
Standard arguments then show that the form is closed and non-negative, hence it is

the energy form of a self-adjoint Hamiltonian for the bosonic trimer with zero-range

interactions.

The Friedrichs construction for the Birman parameter 3W−1
λ (Tλ + α� +Kσ,ρ)

associated to the above form would lead to a somewhat implicit expression for

its operator domain. Furthermore, for the purpose of having a closed and semi-

bounded charge form it suffices to add to Tλ an additional H
1
2 -term, instead of the

H1-term proposed in [3], which be large enough so as to shift the form up above
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zero. We shall study this version of the large momentum (high energy) cut-off, as

the computations within the operator-theoretic scheme are explicit.

For λ, σ > 0 let us set

(K̂λ,σ ξ)(p) := 2π2(σ0 + σ)

√
3

4
p2 + λ ξ̂(p)

σ0 := −γ̂(0) = 4π

3
√
3
− 1,

(9.29)

as well as (with x, s ∈ R)

Θ
(θ)
λ,σ(x) := (1 + σ0 + σ)θ(x) − 4

π
√
3

∫
R

dy θ(y) log
2 cosh(x − y) + 1

2 cosh(x − y)− 1

γ̂σ(s) := γ̂(s) + σ0 + σ,

(9.30)

for given θ, where γ̂ is defined in (6.9). By construction γ̂σ is the shifted version

of the γ̂-curve from Fig. 1, thus a smooth even function on R that is uniformly

bounded and strictly positive, with absolute minimum γ̂σ(0) = σ.

Analogously to (9.4), Kλ,σ =
⊕

�∈N
K

(�)
λ,σ with respect to the usual decomposi-

tion in sectors of definite angular momentum, and arguing as in Secs. 7.3 and 9.1

let us only implement the regularization in the meaningful sector � = 0.

A straightforward modification of the reasoning for Lemmas 6.1 and 9.1 and for

Corollary 9.2 yields the following.

Lemma 9.8. Let λ, σ > 0, s ∈ R, and ξ be as in (6.1). One has the identities((
T

(0)
λ +K

(0)
λ,σ

)
ξ
)̂(p) = 1√

4π |p|
4π2

√
3
Θ

(θ)
λ,σ(x), (9.31)

∥∥(T (0)
λ +K

(0)
λ,σ

)
ξ
∥∥2
Hs(R3)

≈
∫
R

dx (coshx)1+2s
∣∣Θ(θ)

λ,σ(x)
∣∣2, (9.32)

Θ̂
(θ)
λ,σ(s) = γ̂σ(s) θ̂(s), (9.33)∫

R3

ξ̂(p)
((
T

(0)
λ +K

(0)
λ,σ

)
ξ
)̂(p) dp =

8π2

3
√
3

∫
R

ds γ̂σ(s) |θ̂(s)|2, (9.34)

with x and θ given by (6.2), and Θ
(θ)
λ,σ and γ̂σ given by (9.30), where the definition of

Θ
(θ)
λ,σ is now taken with respect to the present θ. In (9.31) it is understood that x ≥ 0,

and (9.32) is meant as an equivalence of norms (with λ-dependent multiplicative

constant). Moreover, the map

ξ �→
(∫

R3

ξ̂(p)
((
T

(0)
λ +K

(0)
λ,σ

)
ξ
)̂(p) dp)1

2

(9.35)

defines an equivalent norm in H
1
2

�=0(R
3).
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We can now define, for σ > 0,

D̃0,σ :=

⎧⎪⎪⎨⎪⎪⎩ξ ∈ H− 1
2

�=0(R
3)

∣∣∣∣∣∣∣∣
ξ has re-scaled radial component

θ =
(
Θ̂/γ̂σ)

)∨
for Θ ∈ C∞

0,odd(Rx)

⎫⎪⎪⎬⎪⎪⎭,
D0,σ :=

{
ξ ∈ H 1

2

�=0(R
3) | (T (0)

λ +K
(0)
λ,σ

)
ξ ∈ H 1

2

�=0(R
3)
}
,

(9.36)

with the same remarks made for (9.13), and prove the following, based on Lemma

9.8, and easily mimicking the reasoning that let to Lemma 9.3 and Proposition 9.4.

Proposition 9.9. Let σ > 0.

(i) D̃0,σ is dense in H
1
2

�=0(R
3).

(ii) (T
(0)
λ +K

(0)
λ,σ)D̃0,σ ⊂ Hs

�=0(R
3) for every s ∈ R and λ > 0.

(iii) D̃0,σ ⊂ D0,σ.

(iv) For every λ > 0 the operator

D(R̃(0)
λ,σ

)
:= D̃0,σ

R̃(0)
λ,σ := 3W−1

λ

(
T

(0)
λ +K

(0)
λ,σ

)
.

(9.37)

is densely defined, symmetric, and coercive on H
− 1

2

Wλ,�=0(R
3).

(v) For every λ > 0 the operator

D(R(0)
λ,σ

)
:= D0,σ

R(0)
λ,σ) := 3W−1

λ

(
T

(0)
λ +K

(0)
λ,σ

) (9.38)

is the Friedrichs extension of R̃(0)
λ,σ with respect to H

− 1
2

Wλ,�=0(R
3). Its sesquilin-

ear form is

D[R(0)
λ,σ

]
= H

1
2

�=0(R
3)

R(0)
λ,σ[η, ξ] = 3

∫
R3

ξ̂(p)
((
T

(0)
λ +K

(0)
λ,σ

)
ξ
)̂(p). (9.39)

Proposition 9.9 finally shows that the operator

Rλ,σ := R(0)
λ,σ ⊕

∞⊕
�=1

A(�)
λ (9.40)

is an admissible Birman parameter labeling a self-adjoint extension H̊Rλ,σ
of H̊

according to the general classification and construction of Theorem 2.9. With a

more compact notation we can write

D(Rλ,σ) =
{
ξ ∈ H 1

2 (R3)
∣∣Tλ,σξ ∈ H 1

2 (R3)
}

Rλ,σ = 3W−1
λ Tλ,σ

(9.41)
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and (
Tλ,σ − Tλ

)
ξ = K

(0)
λ,σξ

(0), (9.42)

where

(Tλ,σξ)(y) :=
((
T

(0)
λ +K

(0)
λ,σ

)
ξ(0))(y) +

∞∑
�=1

(
T

(�)
λ ξ(�)

)
(y) (9.43)

for ξ =
∑∞
�=0 ξ

(�) ∈⊕∞
�=0 H

− 1
2

Wλ,�
(R3) ∼= H

− 1
2

Wλ
(R3).

All this leads to a new version of Theorem 9.5, with exactly the same state-

ment, of course now referred to the present Tλ,σ defined in (9.43) (and not to its

counterpart (9.20) considered in the previous subsection).

We have thus identified two distinct classes of regularized self-adjoint Hamilto-

nians of zero-range interaction for the bosonic trimer:

• the operator H MF
σ , σ > 0, namely the Hamiltonian with the Minlos-Faddeev

regularization, obtained as Hσ from Theorem 9.5 with the modified Tλ,σ fixed

in (9.20);

• the operator H he
σ , σ > 0, namely the Hamiltonian with high energy regulariza-

tion, obtained as Hσ from Theorem 9.5 with the modified Tλ,σ fixed in (9.43).

Both types of Hamiltonians are non-negative, with only essential spectrum given

by [0,+∞), and both retain a physically meaningful short-scale structure. With the

Minlov-Faddeev regularization, each g ∈ D(H MF
σ ) and the corresponding regular

part φλ of g (for fixed λ > 0) satisfy∫
p2∈R

3

|p2|<R

ĝ(p1,p2) dp2 = 4πR ξ̂(p1) +
σ0 + σ

2π2

∫
R3

ξ̂(0)(q)

|p1 − q|2 dq+ o(1),

φλ(y1,0) = (2π)−
3
2

(
(Tλξ)(y1) +

σ0 + σ

|y1| ξ(0)(y1)

)
,

(9.44)

where ξ is the singular charge of g, ξ(0) is the spherically symmetric component of

ξ, and R → +∞. With the high energy regularization, each g ∈ D(H he
σ ) and the

corresponding regular part φλ of g satisfy∫
p2∈R

3

|p2|<R

ĝ(p1,p2) dp2 = 4πR ξ̂(p1) + 2π2(σ0 + σ)

√
3

4
p2
1 + λ ξ̂(0)(p1) + o(1),

∫
R3

φ̂λ(p1,p2) dp2 = (T̂λ,σξ)(p1) + 2π2(σ0 + σ)

√
3

4
p2
1 + λ ξ̂(0)(p1).

(9.45)
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