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We present the mathematical construction of the physically relevant quantum Hamil-
tonians for a three-body system consisting of identical bosons mutually coupled by a
two-body interaction of zero range. For a large part of the presentation, infinite scatter-
ing length will be considered (the unitarity regime). The subject has several precursors
in the mathematical literature. We proceed through an operator-theoretic construction
of the self-adjoint extensions of the minimal operator obtained by restricting the free
Hamiltonian to wave-functions that vanish in the vicinity of the coincidence hyperplanes:
all extensions thus model an interaction precisely supported at the spatial configura-
tions where particles come on top of each other. Among them, we select the physically
relevant ones, by implementing in the operator construction the presence of the specific
short-scale structure suggested by formal physical arguments that are ubiquitous in the
physical literature on zero-range methods. This is done by applying at different stages the
self-adjoint extension schemes a la Krein—-Visik—Birman and a la von Neumann. We pro-
duce a class of canonical models for which we also analyze the structure of the negative
bound states. Bosonicity and zero range combined together make such canonical models
display the typical Thomas and Efimov spectra, i.e. sequence of energy eigenvalues accu-
mulating to both minus infinity and zero. We also discuss a type of regularization that
prevents such spectral instability while retaining an effective short-scale pattern. Besides
the operator qualification, we also present the associated energy quadratic forms. We
structured our analysis so as to clarify certain steps of the operator-theoretic construction
that are notoriously subtle for the correct identification of a domain of self-adjointness.
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1. Introduction. A Plurality of Approaches and Models

We are concerned in this work with a class of models for a three-dimensional quan-
tum system of this kind: three non-relativistic, identical bosons are coupled among
themselves by means of an isotropic two-body interaction of zero spatial range and,
for the main part of our analysis, with infinite scattering length. The interaction
does not couple the spins.

We shall discuss in particular which models are mathematically well-posed,
besides being physically meaningful, which leads to an amount of very instructive
subtleties.

It is fair to say that the system under consideration has undergone various
phases of interests over the decades, both in the physical and in the mathematical
literature, until the present days. Originally, and also without imposing the bosonic
symmetry, it emerged as the typical picture for interacting nucleons in early nuclear
physics, at the scale of which the inter-particle interaction may well be considered
of zero range as compared to the atomic scales. Instead, in more recent times it
has been a system of interest in cold atom physics, given the modern experimental
advances in inducing effective zero-range interactions in a Bose gas or in heteronu-
clear gaseous mixtures by means of sophisticated Feschbach-resonance techniques.

As our perspective here is mainly mathematical, even if driven by strong physical
inspiration, it is worth stressing an important and long-lasting difference of the
approaches.

Physical investigations of the quantum three-body problem with zero-range
interaction have always had as primary interest the characterization of the bound
states of the system. To this aim, at least in the more modern literature (given its
vastness, we refer to the recent reviews [9, [56]), the eigenvalue problem is invariably
set up in terms of the free Hamiltonian (all in all particles subject to a zero-range
interaction are meant to move as free bodies except when they come on top of
each other), with the constraint that the three-body eigenfunction must display the
‘physical’ short-range asymptotics

1
w(xl,Xg,Xg) ~ | as |Xi —Xj| — O, (11)

x; —%j| @
where a is the s-wave scattering length in each two-body channel. The behavior
(1) was identified by Bethe and Peierls in 1935 [7] as the actual leading behavior
of eigenfunctions with ‘contact’ interaction. Next, solutions are obtained, with an
ad hoc analysis applicable to the eigenvalue problem only, and not to the generality
of states in the domain of the underlying Hamiltonian, by reducing the three-body
eigenfunction to a convenient triple of two-body channel ‘Faddeev components’,
in a combination of which that encodes the possible bosonic or fermionic symme-
try, where each Faddeev component is a function of one pair of internal Jacobi
coordinates. In the case of three identical bosons,

(X1, X2, X3) = X(X12,X12,3) + X(X23,X23,1) + X(X31,X31,2), (1.2)
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where
X; + X;

2
Based on the Faddeev equations formalism for the three-body system [23], 24], the
original problem is thus boiled down to a single Faddeev component x. At this level
the problem is conveniently separable upon switching from Jacobi to hyper-radial
coordinates and expanding y into definite angular momentum terms, and in each
sector of definite angular symmetry the problem becomes tractable analytically and
numerically.

The above line of reasoning, in fact encompassing a multitude of similar vari-
ants, is most presumably due to an original idea of Landau, elaborated in the mid
1950’s by Skornyakov and Ter-Martirosyan [60] in a famous study of the three-body
quantum system with zero-range interactions. (Actually, [60] predates by a couple
of years of Faddeev’s first work [22] on the three-body scattering theory, and makes
use of Green’s function methods. Then in [22] Faddeev showed that the equation
identified by Skornyakov and Ter-Martirosyan for solving the three-body eigenvalue
problem could be recovered in the formal limit of zero interaction range from the
ordinary scheme of Faddeev equations.)

In atomic physics the approach sketched above is the basis of what one has

(1.3)

Xij = Xj — X4y Xijk = X —

customarily referred to since then as ‘zero-range methods’ [18]. The same approach
resurfaced in the early 1970’s by Efimov [19, 20] in his famous work on quantum
three-body systems with finite-range two-body interactions (with important pre-
cursors such as Macek [35] in the usage of hyper-radial equations for three-body
energy levels). Efimov’s analysis established a reference for the subsequent literature
on cold-atom few-body systems.

The catch here is that such a physical scheme is solid when the inter-particle
interactions are realized, say, by potentials V;; that are sufficiently regular and have
short range, thereby making the underlying three-body Hamiltonian

1 1 1
—2—m1Ax1 - 2—m2Ax2 - %Am + Via(x1 — x2) + Vas(x2 — x3) + Vis(x1 — x3)
(1.4)

(in units & = 1) unambiguously realized as a self-adjoint operator on the three-body
Hilbert space, and thus giving rise to a well-posed set of Faddeev equations. At zero
range, instead, the model is formally thought of as

1 1 1
—— Ay, — — Ay, — — Ay ) -
2mq, ' 2mo ° 2ms3  0(x1 = x2)
+ p23d(x2 — x3) + H130(x1 — X3) (1.5)

(for some coupling constants f;;): as (I3]) is not an ordinary Schrédinger operator,
for it Faddeev components of the three-body eigenfunctions and the corresponding
Faddeev equations do not make sense strictly speaking, but for a formal limit of
zero interaction range.
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In short, physical zero-range methods determine eigenfunctions and eigenvalues
of a formal Hamiltonian that otherwise remains unspecified.

The signature of a possible remaining ambiguity of the physical approach is the
emergence of an unphysical continuum of eigenvalues, an occurrence that depends
on the masses, the attractive or repulsive nature of the interaction, and the bosonic
or fermionic exchange symmetry in (LH). When this happens, an (infinite) discrete
set of bound states is selected by imposing an additional restriction to the admis-
sible eigenfunctions. Such restriction may be suitably interpreted as a three-body
short-range boundary condition. This occurrence was initially observed by Sko-
rnyakov [59] right after his joint work [60] with Ter-Martirosyan, and was analysed
by Danilov [I5] who selected the admissible solutions in the spirit of the additional
experimental three-body parameter proposed at the same time by Gribov [30].
That choice was soon after justified on more rigorous operator-theoretic grounds
by Faddeev and Minlos [50} [51]. (It is actually remarkable that such Russian key
contributions all span a fistful of years, from the work [60] by Skornyakov and Ter-
Martirosyan in 1956 to the period 1959-1961 with the works by Skornyakov [59],
Gribov [30], Danilov [I5], Faddeev [22], and Faddeev and Minlos [50, [51].) The pos-
sible necessity of an additional three-body parameter and its physical interpretation
have become by now a standard picture in the physical literature of cold atoms in
the zero-range regime [56l Sec. [].

Mathematical investigations of the quantum three-body problem with zero-
range interaction, on the other hand, have pursued over the decades a different
programme: to qualify first the Hamiltonian of the system, as an explicitly declared
self-adjoint operator on Hilbert space, through its operator or form domain of self-
adjointness and its action on each function of the domain, and only after to analyze
the spectral properties.

This conceptual scheme was brought up first in the already mentioned seminal
works by Faddeev and Minlos [50, 51], which were deeply mathematical in nature.
There, rigorous Hamiltonians of contact interaction were proposed as suitable self-
adjoint extensions of the symmetric operator

(_LAXI _ isz _ iAm) , (1.6)
mo mao

m O (R, xRS, xRS \I)

namely the free three-body Hamiltonian restricted on smooth functions that are
compactly supported away from the ‘coincidence manifold’

F::UFij; Ty = {(x1,%2,%3) | x; =%, }. (1.7)
,J

The motivation is that any such extension encodes by construction a singular inter-
action only ‘supported’ at the points of I'. (Such a scheme lied on the very same
footing as the analogous rigorous construction of two-body zero-range interaction
Hamiltonians, initially proposed in 1960 by Berezin and Faddeev [6].) In order for
the analysis to produce physically meaningful results, the actual extensions of (L6])
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to be considered are only those defined on domains of self-adjointness consisting of
wave-functions that display the Bethe—Peierls short-range asymptotics ([I1l).
All this has been then specialized among various lines, among which:

e a more operator-theoretic line in the Faddeev-Minlos spirit, developed from the
mid 1980’s to the recent years by Minlos (also in collaboration with Menlikov,
Mogilner, and Shermatov) [37, [38] [43H49] 521 53] 58], with also recent contribu-
tions by Yoshitomi [66], and by the present author in collaboration with Ottolini
[39, [40], and with Becker and Ottolini [5];

e a line exploiting quadratic forms methods, initiated at the end of the 1980’s by
Dell’ Antonio, Figari, and Teta and mainly developed in the following decades by
an Ttalian community [3) 4] 12-14] 16} (17, 26| 41, 42] 62] (the works [12} 13, 42]
being co-authored by the present author), with also recent contributions by Moser
and Seiringer [54, [55];

e a side line by Pavlov and his school [34, B6], retaining the same ideas, but aimed
at rigorously constructing variants of the formal Hamiltonian (ICH]) for particles
with spin, and a spin—spin contact interaction;

e an extremely interesting, not-much-developed-yet line of constructing (three-
dimensional) three-body Hamiltonians with zero-range interactions as rigorous
limits, in the resolvent sense, of ordinary Schrédinger operators with potentials
that scale up to a delta profile — an idea discussed first by Albeverio, Heegh-
Krohn, and Wu [I] in the early 1980’s (one-dimensional counterpart results have
been recently established in [2], B1]).

For what exposed so far, it is clear that the physical and the mathematical
branches of the literature on the quantum three-body problem on point interaction,
albeit very deeply cross-intersecting, are not immediately transparent to each other.
The rigorous definition of the self-adjoint Hamiltonian is much more laborious than
the formal diagonalization made by physicists, and unavoidably requires the analy-
sis of technical features of the Hamiltonian other than the ‘observable energy levels’.
Besides, the Hamiltonians of interest not having the form of a Schrédinger operator,
the mathematical analysis faces the lack of various powerful tools from Schrédinger
operator theory.

Furthermore, the implementation of the Bethe—Peierls asymptotics (L), a cru-
cial step of the mathematical modeling, yields various technical difficulties.

First, (L) is a point-wise asymptotics and need be understood as an expan-
sion in a precise functional sense in order to be meaningfully implemented in the
operator-theoretic construction of the Hamiltonian.

Next, there is an arbitrariness in the modeling as to prescribing the Bethe—
Peierls condition for all the functions of the desired domain of self-adjointness, or
possibly just for a meaningful subspace, e.g., the eigenfunctions only.

In addition, once a realization of the minimal operator (L6 is found that fulfills
the Bethe—Peierls condition, a possibility that one encounters is that this is only
a symmetric operator with a variety of self-adjoint extensions, so that another
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parameter must be introduced to label each extension beside the given scattering
length a, in complete analogy to the three-body parameter of the physicists.

Another possibility is that after implementing the Bethe—Peierls asymptotics,
the resulting candidate Hamiltonian, be it already self-adjoint or not, is unbounded
from below (beside being obviously unbounded above, as is the initial operator
(). That multi-particle quantum models of zero-range interaction may be such is
known since when Thomas in 1935 [63], modeling the tritium as if the range of the
interaction was exactly zero, showed that the scattering of the proton over the two
neutrons would result in an infinity of bound states accumulating at minus infinity
(‘Thomas collapse’, in the sense of ‘fall of the particles to the center’), and this is well
familiar in modern cold atom theoretical physics. Yet, this complicates the mathe-
matical treatment, for instance making the quadratic form approach unsuited.

Related to that, one is then also concerned with producing meaningful regular-
izations of those models obtained along the conceptual path described above, where
the spectral instability is removed and yet certain relevant features of the effective
Hamiltonian are retained.

With this work we provide a comprehensive and up-to-date overview of all such
instances, and in particular a systematic discussion of the technical procedures for
the rigorous construction of self-adjoint Hamiltonians of physical relevance. This
also allows us to clarify certain steps of the operator-theoretic construction that
are notoriously subtle for the correct identification of a domain of self-adjointness.

Our main results, Theorems [2.9] .6 [Tl [[4] and [@.5] present respectively:

e the general classification of all self-adjoint realizations of the minimal operator
(TE) (a vast class that of course includes also physically non-relevant operators,
i.e. realizations characterized by non-local boundary conditions),

e the characterization of all those extensions displaying the physical short-scale
structure for the functions of their domains,

e the rigorous construction of a class of canonical models with the physical short-
scale structure, and their spectral analysis,

e the counterpart for a class of regularized models where the instability is cured at
an effective level.

The bosonic trimer with zero-range interaction has a natural parameter to be
declared in the first place, the scattering length a of the two-body interaction.
It is the above-mentioned parameter governing the short-scale asymptotics ().
Whereas throughout our general discussion on physically relevant extensions we
shall keep a generic, for a sharper presentation the final construction of the canonical
models is done in the regime a = oo. In physics this is referred to as the ‘unitary
regime’, and many-body systems with two-body interaction of infinite scattering
length are customarily called ‘unitary gases’ [11] (for the connection with the optical
theorem in which the choice a = co maximizes the scattering amplitude, and the fact
that in turn the optical theorem is a consequence of the unitarity of the quantum
evolution). The unitary regime is surely the physically most relevant one, for its

2150010-7



Rev. Math. Phys. 2021.33. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 05/20/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Michelangeli

applications in cold atom physics and its universality properties: we shall then stay
in this regime for a large part of our analysis.

On a more technical level, appropriate self-adjoint extension schemes are needed
along the discussion. As the minimal operator (L)) is non-negative, it is natural to
apply to it the Krein—Visik—Birman extension scheme for semi-bounded symmetric
operators [28], and in fact for the specific problem under consideration this turns out
to be more informative than the (equivalent) extension scheme a la von Neumann
[57, Sec. X.1]. Yet, at a later stage, when the implementation of the physical short-
scale structure only produces symmetric extensions, their self-adjoint realizations,
namely the final Hamiltonians of interest, are to be found via von Neumann’s theory,
because already the symmetric operator one starts from is unbounded from below,
hence the Krein—Visik—Birman is not applicable.

Once mathematically well-posed (i.e. self-adjoint) and physically meaningful
Hamiltonians are constructed, it is fairly manageable to express their quadratic
forms, as we do in the sequel. Of course, as in several precursors of the present work,
one can revert the order and study first a given quadratic form, typically selected
by a physically grounded educated guess, proving that it actually represent a self-
adjoint operator. What escapes such approach is the systematic classification of all
extensions of interest: the standard classification theorems, indeed, are essentially
formulated as operator classifications.

To conclude, there are surely various interesting directions along which it would
be desirable to continue this study. To mention some of the most attractive ones,
a more explicit theoretic dictionary between this mathematical approach and the
physical zero-range methods, the characterization of the quantum dynamics under
the considered Hamiltonians, and an extension of such models to many-body sys-
tems with zero-range interaction.

Notation. Besides an amount of fairly standard notation, as well as further con-
venient shorthand that will be introduced in due time, we shall adopt the following
conventions throughout.

three-dimensional variable (bold face)
one-dimensional variable (italics)

ISIE ST o)

complex conjugate of z € C
() Hilbert scalar product, or pairing fRd fg, anti-linear
in the first entry
[|v]| Hilbert space norm of the vector v
H*R4) Sobolev space of order s € R
C5°(R2)  space of smooth functions with compact support inside the open

QCR?
D(S)  operator domain of the operator S
D[S]  quadratic form domain of the operator S

2150010-8
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Dlg]  domain of the quadratic form ¢
S[f]  evaluation of the quadratic form of S on the element f € D[S]
S operator closure of the operator S
S*, S* adjoint of S (different notation depending on the reference
Hilbert space)
m(S)  bottom of the symmetric operator S: m(S) = inf yep(sy (f, Sf)/|If|I?
1 identity operator, acting on the space that is clear from the context
O zero operator, acting on the space that is clear from the context

1x characteristic function of the set K
d(x)  Dirac delta distribution centerd at x = 0
f Fourier transform of f, with convention
k)= (2m)7% fpu e f(w
v inverse Fourler transform of f

~g ¢ Hgw)l < |f(w)] < clg(w)| for some ¢ > 0 and all admissible w
+ direct sum between vector spaces

&) (if referred to operators) reduced direct sum of operators

® (if referred to vector spaces) Hilbert orthogonal direct sum

H Hilbert orthogonal direct sum of non-closed subspaces

Unless when it becomes relevant to emphasize that, we shall tacitly understand
all identities f = g between measurable functions in the sense of almost everywhere
identities.

2. General Extension Scheme and Admissible Hamiltonians
2.1. The minimal operator

In order to discuss realizations of the formal Hamiltonian (Lh]) as self-adjoint exten-
sions of ([[L6]), one factors out the translation invariance by introducing the center
of mass and the internal coordinates

X1 —|—X2—|—X3

Yem. := f’ Y1 = X1 — X3, Y2:=X2—X3, (2-1)
and by re-writing
1 1 1 1 1 .
—— Ay, — — Ay, — — ANy, =—A —H, 2.2
2m ' 2m 2 2m ° 6m y”“'+m (2.2)
where
H:=—Ay, — Ay, —Vy, - Vy,. (2.3)

In absolute coordinates, three-body wave-functions ¥(x;,x2,x3) are bosonic,
namely invariant under exchange of any pair of variables, hence under the cor-
responding transformation of the internal coordinates, according to the following

2150010-9
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scheme:

X| > Xo o Y1 < y2
x3 fixed Y2 —y1 ¢ —(y2 — y1)

X1 ¢ X3 Y1 < —Yy1
= (2.4)
X fixed Y2 < Y2 — Y1
X2 <> X3 y1 ¢ —(y2 —y1)
&
x; fixed Y2 < —yo2.

Transformations (Z4) clearly preserve the center-of-mass variable. Therefore,
bosonic symmetry selects, within the Hilbert space of the internal coordinates

H = L*(R? x R3 dy;dy»), (2.5)
the ‘bosonic sector’, namely the Hilbert subspace

Hy = LQb(]R3 x R3, dy,dys)

Y € L?(R3 x R?,dy;dys) such that
V(y1,y2) = ¥(y2,y1) = ¥(=y1,¥2 — y1)
in the sense of almost-everywhere identities between square-integrable functions.

The meaningful problem is then to characterize the self-adjoint extensions, with
respect to Hy, of the densely defined, closed, and symmetric operator

(2.6)

D(H) == Hp, N HZ (RS, x R3)\I')
. (2.7)
H = _A}’1 - A}'2 — Vy, - Vya,
where
3 Iy = {y2=0}
I:=|JTr; with {Ty:={y, =0} (2.8)
=1

Iz :={y1 = y2}

in the sense of hyperplanes in R? x R?, and

H3 (B3, x B,\D) = G (B, < BG,\D) (29)
In the notation (Z8]), the hyperplane I'; is the set of configurations where the two
particles different than the jth one coincide.

In short, H is the operator closure of —Ay, — Ay, — Vy, Vy, initially defined
on the bosonic smooth functions on R? x R3 which are compactly supported away
from the coincidence manifold T'.

As the reasonings that will follow are somewhat more informative in the momen-

tum representation, we shall often switch to the variables p1, p2 that are Fourier
conjugate to y1,y2 (yet, all our considerations can be straightforwardly re-phrased
in position coordinates). One deduces from (Z.6]) that, for any ¥ € H,

¥ € Hy, & (p1,p2) = (P2, P1) = Y(P1, —P1 — P2) (2.10)

2150010-10



Rev. Math. Phys. 2021.33. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 05/20/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Zero-range interaction for the bosonic trimer at unitarity
for almost every p1, p2. Moreover,
1 R
YIr, (y1) = ¥(y1,0) = ——5 // dpidpz €Y' P19 (p1,p2),  (2.11)
(2m) R3 xR3

from which, using the identity

1 .
- d yi-(@i-p1) — § _
271) Jus yie (a1 — p1),
one deduces
— 1 -
1/1|F1 (pl) = 3 w(Pl,Pz)dP% (212)
(27'(') 2 Jgs

and analogous expressions for w/|;2 and m This includes also the possibility that
the evaluation of ¢ at a coincidence hyperplane makes (ZII)-(ZI2) infinite for
(almost) every value of the remaining variable.

By a standard trace theorem (see, e.g., [61, Lemma 16.1]), if ¢» € H?(R? x R3),
then its evaluation 9|r, at the jth coincidence hyperplane is a function in H 2 (R3),
hence not necessarily continuous. Thus, when f € D(H) the vanishing “f Ir, = 0"
in Hz (R3) is to be understood by duality as

0= <777f|Fj>H—% HE

)

~ [ ) i, p)dp e AR, (213)

o

This means that for any f € D(H) the vanishing at 'y, T'y, or I's corresponds,
respectively, to

=)

// F(p1,p2)7i(p1) dp1dps = 0,

R3 xR3

// F(p1,p2)i(p2) dp1dps = 0, (2.14)
R3 xR3

// F(p1,p2) i(—p1 — p2) dp1dpa = 0,
R3 xR3

for each n € H~2(R3), as one may conclude combining (ZI0), (ZIZ) (and its
counterparts by symmetry), and 213).
The following is therefore proved.

Lemma 2.1. The definition ([Z1) is equivalent to

2 3 3
D(ﬁ:{ f e HyN H2(R? x R?) }

1 satisfies (ZId) Vn € H™3(R?) (2.15)

~

Hf(p1,p2) = (P} +p3+p1-p2)f(p1,p2)-

2150010-11
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A convenient shorthand shall be
HE(R3 x R®) :=Hp, N H(R® x R?), s>0, (2.16)

for Sobolev spaces with bosonic symmetry.
Let us also observe that for any A > 0

pPr+Pps+p1-P2+A~p?+pitl, (2.17)

in the sense that each quantity controls the other from above and from below.

2.2. Priedrichs extension

It is clear that H is lower semi-bounded, with lower bound m(H) = 0. As such, it
has a distinguished extension, the Friedrichs extension Hp.

Lemma 2.2. The Friedrichs extension Hp of H is the self-adjoint operator act-
mg as

(ﬁF¢)(y17y2) = _AY1¢(y17y2) - Ayz(b(}’hyQ) - vy1 ! vy2¢(y17y2)7 (218)

or equivalently

—

(Hrpé)(p1,p2) = (PF + P3 + P1 - P2)o(P1. P2), (2.19)
defined on the domain
D(Hp) = H2(R? x R%). (2.20)
Its quadratic form is
D[Hp] = H}(R? x R?)

. (2.21)
HF[¢] = %//R3 - (|(vy1 + Vyz)‘b’2 + |vy1¢|2 =+ ’Vyg(bﬁ) dy1 dY2-

Proof. The form domain D[H] of H is the completion of D(H) = H, N HE((R3 x
RS,)\T) in the norm ||fl|r == ((f, ) + |fI2)%, and [[f ] ~ [If]s owing to
(2I7). Reasoning as done in collaboration with Ottolini in [39] Lemma 3(ii)], the
above-mentioned completion is precisely H}(R3 x R3). Thus, D[H] = H](R? x R3).
Since ([ZIR)-([@20) obviously defines a self-adjoint extension of H with domain
entirely contained in D[ID{ ], necessarily such operator is the Friedrichs extension of

H. The explicit formula for the evaluation of the quadratic form follows from the
identity pf + p3 + p1 - p2 = 5(P1 +P2)° + 5P1 + 5P3. o

As H is bounded from below, its self-adjoint realizations may be identified by
means of the Krein—Visik—Birman extension scheme for semi-bounded symmetric

operators [28]. In this scheme each extension is conveniently parametrized with
respect to a reference extension that has everywhere-defined bounded inverse.
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Now, the Friedrichs extension H r has zero at the bottom of its spectrum
and hence is not everywhere invertible in Hp. One then searches for self-adjoint
realizations of the shifted operator H+ AL, for some A > 0, since obviously

D(H + M) =D(H), (H+M)p=Hr+A1 YX>0, (2.22)
and the latter operator is indeed everywhere invertible in Hp. Once the self-adjoint
extensions of H + A1 are identified, the corresponding ones for H are then read out
from the former by removing the shift.

The data needed for the classification of the self-adjoint extensions of H+ M,
according to the Krein—Visik—Birman theory, are the deficiency subspace ker(]fl 4
A1) and the action of (Hp + A1)~! on such space. We shall designate these data.

First of all, obviously,

(Hp + A1) "'9) (p1,p2) = (P} + D3 +p1 P2+ A\) 0(p1,p2)  (2.23)
for every ¢ € Hp and X > 0. Next we describe the adjoint.

2.3. Adjoint
For given £ € H~2(R3) and A > 0 let ug be the function defined by

-~ o~ ~

§(p1) +&(p2) + &(—p1 — p2)
P?+pPi+pi-p2tA (2.24)

Ug‘(plpr) =

Lemma 2.3. (i) For every \ > 0 there exists a constant ¢y > 0 such that for every
£e H 2 (R3) one has

SHIEN =g gy < Nullze < exlléll =g oy (2.25)
H™ 2 (R3) H™2(R3)

(ii) For every &€ € H™%(R3), ug‘ € Hy.
(iii) Ifug‘ = uf‘, for some &, € H*%(R?’) and A > 0, then £ = 1.
(iv) For & € H2(R®) and A, n > 0 one has ug‘ —uf € H}(R® x R?).

Proof. Part (i) can be proved by easily mimicking the very same argument of
[13, Lemma B.2]. Part (ii) follows from (i) and from the invariance of (Z24]) under
the transformations (2.4)). Part (iii) follows from (i), owing to the linearity £ — we.
Part (iv) follows from the identity

(11— N (E(p1) + E(p2) + E(—p1 — P2))
P +p3+p1-pP2+A) (P +DP3+Pp1-p2+ )

U?(th) - Ug(P17P2) = (

and from [2I7) and (225]). |
Lemma 2.4. Let A > 0.
(i) One has
ker(H* + A1) = {ud |¢ € H3(R®)}. (2.26)
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(ii) One has

o~

o~ — u)‘
’ 23 3 ¢=fr+ 2 2 !
D(HF)ZHb(R XR)Z ¢ € Hyp p1+p2+p1-p2+)\
for f* € D(H), n e H™%(R3)
(2.27)
(iii) One has
: S Y
D) = g € Hy gt tue
for ¢* € HE(R® x R?), ¢ € H2(R?)
- N .
0= fr+ n —I—U,)‘
—dgen, |’ / PiI+p3+pi-p2t+A ¢ (2.28)
for f> € D(H), £&,ne H 2 (R?)
and
((H* +AL)g)"= (p? + P} + P1 - P2 + \) o (2.29)
with
= B u
= —+ s 2.30
vt P+ P3+P1-pP2+A (2.30)
or equivalently
(ﬁ[*g)(ph p2) = (pf + p% +p1-P2)9(P1, P2)
— (&(p1) + &(P2) + E(—P1 — P2)). (2.31)

The decompositions in (ZZ0) and Z28) are unique, in the sense that for each
¢ € D(HF) there exist unique f*,n satisfying the decomposition in [Z21), and for
each g € D(H*) there exist unique f*,n,& satisfying the decomposition in ([2.28)).

Proof. Any u € ker(H* + A1) = ran(H + A1) is characterized by
[ p1.p2) (9% + 93+ b1 b2 + ) Flpr. po)dprdpa =0 ¥ € D)
R

Combining this with (ZI4]), one deduces that @(p1, p2) (P} + P3+ p1- P2+ \) must
be a linear combination of £(p1), £(p2), and £(—p1—p2) for a generic £ € H2 (R3);
as u € Hp, this combination must be the sum (up to an overall multiplicative

prefactor). Thus, @(p1. p2) (PF + P} + 1 - P2 + ) = £(p1) + £(P2) + &(—p1 — P2),
which proves part (i). Parts (ii) and (iii) then follow from part (i) and from (223)
as an application of the standard formulas

D(Hp) = D(H) + (Hp + A1) ker(H* + A1)
DH*) = D(H) + (Hr + A1)~ ker(H* + AL) + ker(H* + A1)

(see, e.g., 28, Lemma 1 and Theorem 1]). |
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Remark 2.5. (Z26)-(Z28) show that functions in D(H*) have a ‘regular’ H2-
component and a ‘singular’ L?-component, with no constraint among the two. The
regular part is the domain of Hp, the singular part is the kernel of H*+ 1. Because
of the possible singularity of a generic g € D(H*), the action on g of the differential
operator —Ay, — Ay, — Vy, - Vy, produces in general a non-L? output. More
precisely, (Z31)) shows that one has to subtract from (—Ay, — Ay, — Vy, - Vy,)g
the distribution

(2m) % (E(y1)d(y2) + 6(y1)E(y2) + d(y1 — y2)E(~y2)) (2.32)

(that is, the inverse Fourier transform of the second summand in (Z3T)), a distri-
bution supported at the coincidence manifold I, in order to obtain the L2-function
H* g.

Remark 2.6. In position coordinates (y1,y2), each of the two functions u; and u
appearing in the expression (Z28) of a generic element g € D(H*) is obtained by
taking the convolution of the Green function G relative to —Ay, —Ay, —Vy, -V, +
A with a distribution of the form ([Z32) for the two considered labeling functions
7, &. This structure, and the fact that in (Z32)) £ (and 7) is interpreted as a function
on the union of the coincidence hyperplanes, is formally analogous to the familiar
picture in electrostatics, where u? is the ‘potential’ relative to the ‘charge’ £. For
this reason, as has been customary since long in this context [16], we shall retain
the nomenclature that £ and n are the charges for the function g. In this respect,
by charges we shall mean functions in H~2 (R3).

For g € D(H *), there is a unique charge £ at each parameter A > 0 satisfying the
decomposition (Z28), but a priori £ might be A-dependent. Let us show that this
cannot be the case, and one can speak of the charge € of g tout court (understanding
&, as usual, as the charge of the singular part of g, not to confuse it with the charge
n appearing in the regular part of g).

Lemma 2.7. Let \,N > 0 and g € D(H*). If, according to (Z2J),

§=$+u,E = o +ug
for some ¢*, ¢ € HE(R® x R?) and &,& € H™2(R3), then £ = ¢
Proof. Since ug‘/ - ug‘ € HE(R? x R3) (Lemma 23(iv)), then
N A N
FY =t = (ug —ug)

defines a function in HZ(R? x R3?), and

o~ o~ o~
/

g=¢Ntu}=FN+u.
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Comparing the latter identity with § = ¢ + ug‘,' , the uniqueness of the decompo-
sition (228 of g with parameter X' implies
FN = ¢, ug\ :ug\,.

In turn, the latter identity implies £ = ¢’ (Lemma 23[iii)). |

2.4. Deficiency subspace

Lemma 4] shows that H has infinite deficiency index, as is the dimensionality of
the deficiency subspace ker(IZI* + Al) independently of A > 0.

In the self-adjoint extension problem under study, it is convenient to use a
unitarily isomorphic version of ker(H* + A1), which we shall now characterize.

To this aim, for n € H~2(R?) and A > 0 we define (for a.e. p)
£(a)

32

(W3i)(p) = T | e gt 23)
1
Lemma 2.8. Let A > 0.
(i) For generic &,n € H™2(R3) one has Wan € H*(R3) and
(ugs un)a = (€W ot oy b oy (2.34)

(i) Formula 33) defines a positive, bounded, linear bijection Wy : H~2 (R3) —
Hz (R3).

Proof. By suitably exploiting symmetry in exchanging the integration variables,

= =< =<

§(p1) +&(p2) +&(—=p1 — P2)
Ug, U = dpid
(g, wn) //}RSxRS P1ep2 P +pP3+pP1-P2t+A

« n(p1) + N(p2) + 7(—p1 — P2)
P} +P3+p1-pP2+ A

=

§(p1) N(p1)
= 3// dp:d
R3 xR3 P1epe (P? +P3+p1- P2+ A)?

Za—

§(p1) 1(p2)
+6// dprd .
R3 xR3 P1ep2 (P? +P3+p1 P2+ A)?

In the first summand in the right-hand side above one computes

/ dp B w2
s (PT +P3 +P1 - P2 + )2 /%p%+/\’
which eventually yields, in view of the definition (Z33),

(e = [ Ep) (Wa)(o) dp.
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From the latter identity and (2.25]) we deduce

[ &) Tane)dp| = sup_J(uc ]

[Wanll .1 = sup
a2 lell 1 =1
H 2

el _1=1
H™ 2

1
< sup ugllulluglla < const - [lnll -y Vi€ HTE(RY),

e 1=t
H 2

which shows that WyH~2(R3) ¢ Hz2(R?) and that (234) holds true. This com-
pletes the proof of part (i).

Concerning part (ii), we know from the reasoning above that the map W) :
H~2(R3) — Hz(R3) is bounded. By (Z28) and (Z34),

W) gy = lluglly > 2 il

1,
s 2

which implies coercivity
Wanll .3 = 2l -4 -

This shows that W), is a positive, injective H ~% - H? map. W) is thus invertible
on ranW, and by boundedness ranWy is closed in Hz(R3). It only remains to
show that ranW, is also dense in H2(R3) to conclude that W' is everywhere
defined and bounded. Now, testing by duality an arbitrary £ € H _%(]RB) against
ranW, C Hz(R3) we see that

(€ Wan)y g 43 =0 Ve H AR

= (ug,ug)u =0 Vu, € ker(H* + A1)
= Ug = 0
= £ =0,

and this implies that ranW) is dense in H2 (R3). Part (i) is proved. O

As a direct consequence of Lemma [2.8] the expression
<£’n>HJV% =AEWAm) gy = (ug ug)u (2.35)
A
defines a scalar product in H—2 (R3). It is equivalent to the standard scalar product
of H=2(RR3), as follows by combining (Z35) with (Z.25).
_1

We shall denote by Hy,?(R?) the Hilbert space consisting of the H —3(R3)-

functions and equipped with the scalar product ([235]). Then the map

Unker(H' + A1) —— Hyp?(R%), e & (2.36)

is an isomorphism between Hilbert spaces, with ker(ﬁ[ * 4+ A1) equipped with the
standard scalar product inherited from #.
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2.5. FExtensions classification

For an arbitrary Hilbert space K let us denote by S(K) the collection of all self-
adjoint operators A : D(A) C K' — K’ acting on Hilbert subspaces K’ of K.

The Krein—Visik-Birman theory determines that, given A > 0 and hence the
deficiency subspace ker(fof *+ A1), the self-adjoint extensions of H are in an explicit
one-to-one correspondence with the elements in S (ker(fof * 4+ AL)).

Equivalently, by unitary isomorphism (Sec. 24)), each self-adjoint extension of
H is labeled by an element of S(Hy? (R?)). In practice, the latter viewpoint is
going to be more informative.

The extension classification takes the following form.

Theorem 2.9. Let A > 0.

(i) The self-adjoint extensions Ofﬁ in Hy, constitute the family

{HLay | Ax € S(Hy? (R))}, (2.37)
where
n=Ax{+x
D(Hya,) =<4 g € D(H") £ € D(AN) (2.38)

X € D(Ay)S> 1 Hyy? (R?)

or equivalently
g = ¢ +u with

_ 3
P +P5+Pp1-p2+ A
f* € D),
n=AE+x, DA,
X € DAL N Hyp 2 (R?)

D(Ha,) =49 €M o (2.39)

and
((Ha, +21)g)" = (P} +P3 +P1 P2+ \) 9. (2.40)

In Z38)-(Z39) above Ly refers to the orthogonality in the H;[é -scalar prod-
uct. The Friedrichs extension Hp, namely the operator (ZI8)—~(Z20), corre-
sponds to the formal choice ‘Ax = o0’ on D(Ay) = {0}.

(ii) An extension H4, is lower semi-bounded with

ﬁAA > —A1l for some A >0
if and only if, V& € D(Ay),

(€A, 3 = A= MR 4+ (A= APe, (e + A1) 1)

_1.
H,?
W Wy Wy
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In particular,

m(Ha,) > —A < m(Ay) >0

) (2.41)
m(Ha,) > -A < m(Ay) > 0.
Moreover, if m(Ay) > —A, then
o Am(Ay)
m(Ay) >m(Ha, )+ 2> AT midy) (2.42)

(iii) The quadratic form of any lower semi-bounded extension H.a, is given by
D|Ha,) = D[Hp] + Uy 'DIA)]
Ha (0" +ud] = HeloM] + A(l6M)5, — || +wd|5,) + Axle]  (2:43)
V¢r € DIHp] = HL(R? x R?), V¢ € DAy,

and the lower semi-bounded extensions are ordered in the semse of quadratic
forms according to the analogous ordering of the labeling operators, that is,

2 2 1 2
Hyw 2 Hyo o AV =AY (2.44)

We recall that the symbol m in (ZZ1)-([2.42) denotes the bottom of the spectrum
of the considered operator.

Theorem is a direct application of the general extension scheme a la Krein—
Visik-Birman (we refer, e.g., to [28, Theorems 5-7]) to the minimal operator H+)1,
given the data provided by Lemmas 2] [Z2] and [Z4] and exploiting the Hilbert
space isomorphism (Z30]) in order to re-phrase the classification formulas in terms

_1
of the unitarily isomorphic version Hy,? (R?) of the deficiency subspace.

We shall customarily refer to each Ay as the ‘labeling operator’, or also the
‘(Visik—)Birman operator’, of the extension H4,. (Strictly speaking, the actual
labeling operator originally introduced by Visik [64] and Birman [8, [33] was rather
the inverse of the present Ay on ranAdy — see, e.g., [28, Sec. 3].)

Remark 2.10. The domain of each H A,, as indicated by (Z38]), is a suitable
restriction of the domain of H* obtained by selecting only those functions g whose
charges 1, and &, are constrained by the self-adjointness condition

Ng = -AAfg + Xg (2.45)

for some additional charge y, € D(Ax)**, whence
(g = Axég) € D(AS N H 73 (R?). (2.46)

Remark 2.11. Fixed a self-adjoint extension .57 of H and representing it as
H = H ,) for suitable labeling operators AE\%) for each A > 0 according to
A
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Theorem 2.9] one has
DAY =D(A)) VAN >0. (2.47)

That is, the explicit action of each labeling operator changes with A, but the domain
stays fixed. This is an obvious consequence of the identity

D(AY) = {feH-(R%

is the singular-part charge of
3 g geof g (2.48)
for some g € D(H)

that follows from the uniqueness of the charge ¢ for each g (Lemma [27]).

3. Two-Body Short-Scale Singularity

The domain of each self-adjoint extension H A, of H is a suitable restriction of the
domain of H*. Each restriction of self-adjointness must be a constraint of the form
246)) on the charges n and & (Remark [2ZI0)). As such two charges characterize
respectively the regular (¢*) and the singular (u2) part of a generic g € D(H*),
indirectly this constraint is a condition linking ¢* and ug‘ (which otherwise would
be independent). In practice this amounts to selecting those ¢’s from D(H *) which
display an admissible type of short-scale asymptotics as |y1| — 0, of |y2| — 0, or
|y2 —y1] — 0, that is, when two of the three particles of the trimer come on top of
each other.

In this section we elaborate on this perspective, as it is going to drive the
identification of physically meaningful self-adjoint extensions of H.

3.1. Short-scale structure

For the functions ¢ € L?(R? x R3, dy;dyz) of interest, let us highlight a convenient
way to monitor the behavior of ¥ (y1,y2) as |y2] — 0 at fixed y.

Let us write yo € R? in spherical coordinates as y2 = |y2|Qy,, with Qy, € S,
and for p > 0 and almost every y; € R3, let us define

Ve (Y13 p) = /¢mﬁlﬂ (3.1)

Thus, the function y1 — 9.y (y1;p) is the spherical average of the function y; —
¥(y1,y2) over the sphere with |ys| = p.

For later purposes, we are concerned with certain meaningful behaviors of
Yav(y1;p) as p — 0 at fixed y1, namely when it either approaches a finite value
or instead diverges as p~'. With no pretension of full generality, let us adopt the
following characterization: we shall say that a measurable function ¢ : [0, +00) — C
displays ‘Z-behavior’ (at zero) when ¢ € L2(R*, p?dp), ¢ is continuous in a neigh-
borhood (0,¢,,) for some €, > 0, and

f0+oodp sin pfpp cos p (p(%) Rstoo

# (%)

™
5 CSD (32)
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for some constant ¢, € C. In terms of the even extension ¢(p) := ¢(|p|), p € R,
B2) is equivalent to

JEg0s)ds —2RG(R)  n,yu
Jp e/ B o(s)ds
The request that ¢ € L%(R™,p?dp) is made precisely with the function p
Yay(y1; p) in mind, of course.

Observe that B2)-@3) is just a convenient way to characterize the behavior
of p(p) as p — 0. This is clear if one interprets separately the two summands
that emerge from the above expressions (but in general we do want to include the
possible effect of compensation between them). Thus, for instance, if ¢ is a Schwartz
function with ¢(0) = ¢(0) # 0, standard Riemann-Lebesgue and Fourier transform
arguments yield

T sinp P\ Ro+oo T sinp 7w
d — 0 d =—(0
/0 ppw(R)—Hp()/O r= 2@(),

“+o0
1% ™ -~ R—+o00
dpcospp|=)=4/=Ro(R) ——— 0,
/0 (R) V 2 (R)

therefore in this case (3.2)) is satisfied with ¢, = 1. More generally, the asymptotic
finiteness of the quantities

Cp- (3.3)

R — ~
Jog @(s)ds R¢(R)
Jee/Po(s)ds” o(x)
as R — +oo encodes a prescription on ¢(p) as p vanishes, including when ¢ (hence
) is singular at p = 0. In fact, (32)-(B.3) encode in general a possible compensation

among the above two summands. For instance, for the function ¢ = p*11(071) one
finds

fOJroodpw e(f) /Rd sinp —pcosp { sinp]R Rotoo,
o(¥) o T > 1o
meaning that in this case (32) is satisfied with ¢, = 2.
Clearly, the Z-behavior is not the most general behavior of p — 1., (y1; p) when
Y € L?(R3 x R3, dy;dy2) or even, for later applications, when v belongs to the
domain of self-adjoint operator of interest. It is generic enough, though, to comprise
both functions ¢ with sufficient regularity at p = 0 and integrability over [0, 4+00),
and functions with enough integrability and local p~!

)

-singularity.

Lemma 3.1. Let 1) € Hy, such that for almost every y1 the function p — ¥ay(y1; p)
has Z-behavior, for concreteness uniformly in y1 (thus, with the same constant in
the limit (32)). For R > 0 and a.e. p1 let

! / ¢(p1,p2) dp. (3.4)
pzeRs

(2m)
[p2|<R

Ay.r(p1) =
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Then, for a.e. y1, and for some constant cy, € C,

Ap r(Y1) =y Yay (yl; %) (I+0(1)) as R— +oo. (3.5)

Remark 3.2. In the assumption of the Lemma 1 may be singular at yo = 0, in
which case both sides of (1) diverge with R. If instead v is suitably regular at
y2 = 0, then the right-hand side converges to 1(y1,0), consistently with ZIT])—

ZI12) above.
Proof of Lemma [3.1. One has

1 o —~
Apr(Y1) = 753 // dp1dpz €Y 115, <ry (P2) ¥ (P1, P2)
(2m) R3 XR3
= // ledZQ 5(Z1 —|—yl)6R(Z2)¢(Z1,Z2)
R3xR3

= sz5R(Z2)¢(—y1;Z2)
R3

= dzq 5R(Z2)¢(Y17_Z2)7
R3

where

Ljps<ry ) 1 / -
6 = —_— e — 1p2 Z2d
r(z2) ( (27)2 (22) (2m)3 Jp,er® € P2
[p2|<R

2 R o
= _7r3/ drr2/ dte'"172It
(2m)* Jo -1

2R3 sin R|z3| — R|z2| cos R|zs|
(2m)? (Rlzz|)?

In fact, dg is a smooth, approximate delta-distribution in three dimensions. Thus,

2 sin|zg| — |z2| cos |z2| 1
Ay,r(y1) = W/R% dzo CAREER=2

|22[?

2 e sinp — pcosp 1
=), (Lo (v gen)

2 [T sinp—pcosp p
:—/ dp ———— Vay (yl,—)-

By assumption (see (3.2) above),

+ sin p—p cos
o “dpwwavbm 2y o
lim = —cy

R—+oo0 Vav (Y1, %) 2
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for some constant ¢y, € C. Therefore,

Ay, r(¥1)
2 [T sinp—pcosp P\ Rotoo 1
= — dp —M8M8M8M8 av ( ) _> = av 'O 1 1 )
= [ ap Ty (v 4 cutbor (175 ) (14 0(1)
which completes the proof. O

Remark 3.3. Should, more realistically, the function p — 9.y (y1, p) in the above
proof display Z-behavior non-uniformly in y;, the counterpart of the cy-constant
would be a function ¢y (y1). We are not really interested in pushing such generality
forward: we merely introduced the Z-behavior to visualize, in meaningful concrete
cases, the correspondence between the two expressions (3.4]) and 3] with explicit
dependence on the cut-off parameter R.

3.2. The T operator

In practice, the computation of (34 for elements of D(H*) produces a quantity
that for convenience we analyse separately in this subsection, before resuming the
discussion in the following Sec. [3.3]

For £ € H-2(R3) and A > 0 we define (for a.e. p)

To8)(p) = 3 o) — é(a)
TOp) =220 Ep) -2 [ ot da (39)

At least for £ € H-2T5(R3), £ > 0, (3.0) defines an almost-everywhere finite

quantity, for
- 1/2
£(q) / (@®+1)2°¢
da| < 1€l 1. arr g < 4oo.
/ e gy Sl | [ e .

Instead, the example & (q) = 1{q>2}(lallog |q|)~* shows that ([B6) may be infinite

for generic H ~2-functions.
The map ¢ — T\& is central in this work. It commutes with the rotations in R3
and therefore, upon densely defining it over H*(R3), s > —%, one has

=" (37)
£=0

in the sense of direct sum of operators on Hilbert space with respect to the canonical
decomposition

H*(R?)

12

(L*(RT, (1 +p?)®*p?dp) @ span{Yy, |n = —¢,...,(})

D 10

Hj(R?). (3.8)

~
I
o
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Here the Y;,,’s form the usual orthonormal basis of L?(S?) of spherical harmonics
and each £ € H*(R3) decomposes with respect to (B.8) as

ZZ SR Yen () = €0 (p)
£=0

=0 n=—¢
(3.9)

€0 (p Z £ (D) Y2 (2p)

n=—~

in polar coordinates p = |p|{2p. Explicitly,

=i£“) ) ZZ/ SO0 1) 0+ 52 pPdp. (3.10)
£=0

=0 n=—/
and
nEe=> 17¢0. (3.11)
=0

Let us denote by P, the Legendre polynomial of order £ =0,1,2,..., namely
1 at
2001 dt (
Lemma 3.4 (Decomposition Properties of T)). Let A > 0 and £, 7 €

H;(R3). Then, with respect to the representation ([3.9),

Pi(t) = t2 —1)% (3.12)

(1) T;\e) acts trivially (i.e. as the identity) on the angular components of 5(2)7 and
acts as

1
© 2 3 © / 2 £(6) / Py(t) dt
— 2124/ A dr| 4a
en(®) = 2GR A A ) —dmf 0T enla) [

(3.13)

on each radial component;
(ii) one has

/ ) (D) (p)dp = / cO(p) (TOnO)(p)dp  (3.14)
RS Z:O RS
and

[, €00) (1 n0) e ap

3
—27T/dpp (5) fgn()\/ZPQ‘F)‘

! Py(t)
—4 d d 2 2 (5) (77) / dt ¢ .
W//me pdapq” f,5,(p) fo (@) IS sy

(3.15)
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Proof. The triviality of the action of T;\e) on the angular components is due to
the invariance of T under rotations. All other formulas are then straightforwardly
derived from ([B.6]) by exploiting the following standard expansion in Legendre poly-
nomials and the addition formula for spherical harmonics:

1 Z%—i—l/ Py(t) Pe(cos(fp,q))
PP+’ +p-q+A P2 +q?+|plla/t+ A

00 1
Pyt

=5 277/ EYM ) Yer (92 3.16

— 2+01+|p||q|t+A W (316)

(see, e.g., 29, Eq. (8.814)]). O

Lemma 3.5 (Mapping Properties of T)). Let A > 0.
(i) For each s > 1 B0) defines an operator
Ty : D(Ty) C L*(R?) — L2(R?), D(Ty) := H*(R?)

that is densely defined and symmetric in L*(R3).
(ii) One has

. 13
el S helne Ve H®), se(-3.5). @D
i.e. B8) defines a bounded operator Ty : H*(R3) — H*~*(R3) for every s €

(_%7 %)
(iii) One has
s(M3 13
HT f”Hb 1 < HgHHg Ve HZ (R )7 s € _57 5 , LeN, (318)
i.e. (B:fﬂ) defines a bounded operator Ty : Hj(R®) — H; *(R3) for every s €
[—3. 3], provided that ¢ € N. In the sector { = 0 BIR) fails in general at the
endpoints in s and only (BI1) is valid.
(iv) For any other N > 0 one has

!
1T = TREN 3 S IV = Al s (3.19)
(v) For s> % and {,n € H*(R®) one has

Agﬁ(ﬁ)(P>dP=A T5é(p) 7(p) dp (sz %) (3.20)

and the quantity above is real and finite.

Proof. All claims (i)—(iii) are obvious for the multiplicative part of T, namely
the first summand in the right-hand side of ([3.4]), and need only be proved for the
integral part of T). The latter, apart from an irrelevant multiplicative prefactor, is
the same as the multiplicative part of the ‘fermionic’ counterpart of T, namely the
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analogous operator emerging in the analysis of a trimer consisting of two identical
fermions and a third different particle. All the claimed properties were already
demonstrated in that case in collaboration with Ottolini in [39, Propositions 3 and
4, Corollary 2].

Concerning part (iv),

(T — TA)S)A(P)
(N =)

\/ p2+)\’+\/ p2+ A

&(p)

;o é(a)
+201 )\)/Rg (PP+a*+p-a+A)(P?+a>+p-qa+ ) dd
whence
. , 272 |§
(@~ T ®)] S Y - L[ el

Thus, £ — (T —T»)¢ has the same behavior as Wy, and hence the same H 3 > H>
boundedness.

Concerning (v), the only non-trivial piece of the claim regards the integral part
of T, namely the identity

/dpf (/ dq 2+q77J(qu)) q+/\)
:/deq </dep p2+qf—(kpp)>-q+)\>ﬁ(q)'

The exchange of integration order above is indeed legitimate, as the assumptions
on &, 7 guarantee the applicability of Fubini—Tonelli theorem. More precisely,

[ o) (ot

2 ()]
S » dp [¢(p)] (/R3 de) < [I€ll ;3

1
Slel oty < lelanla: < +oo Vs> 3,

R
R3 p2 + q2 +1 Hi%
2

where we applied [2I7)) in the first inequality and ([BI7) in the third (estimate
(BI1) refers to the whole T}, but as commented above in the course of its proof it
is actually established by demonstrating the only non-trivial piece of the estimate,
namely the one involving the integral part of T}). O

Remark 3.6. T} fails to map H? (R3) into Hz (R3) as is the case, for instance, for
the action of T on the class of spherically symmetric functions in F~'Cg°(R?).
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Indeed, if £ has symmetry £ = 0 and EA e C§° (R?}’)), then the contribution from the
integral part of (ﬁ)(p) is of the order of (see ([B.I3]) above)

/ dgq® £ () / 1 <
supp f(&) -1 |p|2 +q2+ |p|qt+/\

1 2|plq
. dqq f©(q) log <1+ ,
1Pl Jsupp r© (@) IpI? +¢% — [plgt + A

which, both in the limit |p| — 0 and |p| — +o0 is of the order of

2
q ©) 1
d ~Y —_—.,
/suppf@ L P E sy s i o A s

The contribution from the multiplicative part of (ﬁ)(p) is obviously a compactly

supported function, the conclusion therefore is (ﬁ)(p) ~ (p? +1)7%, and the
latter is a HZ~*-function Ve > 0 not belonging to Hz (R3).

Remark 3.7. Parts (i) and (v) of Lemma present two regimes of validity of
the identity (320) when &, € H*(R?) for s > 1. In the regime s > 1, each side
of the (320) is a product of two L?-functions and such identity amounts to the
symmetry of Ty in L?(R®) with domain H*(R?). For &+ < s < 1, instead, T does
not make sense any longer as an operator on L?(R?), and yet (3.5) still expresses
the symmetry of the action of T on H*-functions, and hence also the reality of the
considered integrals.

Additional relevant properties Ty are discussed in Sec. .11

3.3. Large momentum asymptotics

Lemma 3.8. Let g € D(H*) and let A > 0. Then, decomposing g = & + ug‘ with

@ = }X +(P?+p2+p1-p2+A)! ﬂ% as demonstrated in Lemmal 24l in the limit
R — 400 one has the asymptotics

| anpam = €l + (5070 - BEw)) +o)  G21)

Ip2|<R

as well as the identity

[, rp2) o = (o). (3.22)

An immediate corollary of Lemma[3.8] obtained by means of Lemma [3I] taking
R = |y2|™! — +o0, is the following.

Corollary 3.9. Under the assumptions of Lemmas 3.8 and Bl one has

%(Ww)(yl) - (TAﬁ)(Y1)> +o(l)
(3.23)

ly2|—0 47

2m)}ey gun(y:lyal) 2L |y2|€(y1)+<
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for some constant c, € C, and

¢)\(}’1 ) O) =

3 (2m)? (Wan)(y1) (3.24)

for a.e. yi.

Remark 3.10. Not for all g € D(H*) are (32I) and (Z3) finite quantities, but
surely they are if the charge £ of g has at H ’%“—regularity for some € > 0 (as
argued right after the definition (B.0)).

Proof of Lemma [3.8l For what observed in Remark B.I0l we tacitly restrict
the computations to those ¢’s making the following integrals finite (e.g., all {’s
with H *%Jra—regularity% for otherwise the corresponding identities to prove are all
identities between infinites.
One has
dp2

/; o~

uz (p1, p2)dp2 =€(p1)/
/p26R3 ¢ p2cR3 pP; +P3+p1-P2+ A
|p2|<R [p2|<R

+/ _ 2€(p2) -
pock® PT T P53+ P1 P2+ A
[p2|<R

£(—p1 — p2)
dps.
+~/})2€R3 pz

P} +P3+Pp1-P2+ A
[p2|<R

Both last two summands in the right-hand side above converge as R — 400 to

£(p2)
2 2 dp2
g PT +P3+P1- P2+ A
(for the third one this follows after an obvious change of the integration variable).
Moreover,

/ dp>
pack? P+ P35+ P1-p2+ A
|p2|<R

R 1 dt
:27r/ drr2/ 5 3
0 1P 72+ part + A

o 24 p?+pilr+ A
5 5 dr
|p1| 5 +pi—Ipilr+A

R? +p? + |p1|R+/\>
=27rR 1+ 0
( 2[p1| S R2+p? — [pi|R + A

3 — 2R
+ 274/ Zp% + A |arctan ——= [p4] |p1| i
\/4p1+)\ \/4p1+)\
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p?+ A R?+p? +|p1i|R+ A

og 5
fippra P lpli
2 [3 5
=4nR — 27 Zp1+)\+o(1) as R — +o0.
Thus,

/ u}(P1, p2)dp2
p2€R3

|p2|<R

> 3 > £(p2)
=47R — 2%y [ Sp? + A +2/ dpa2 + o(1
mRE(py) — 277/ 7pT + AE(P1) B s o(1)

= 47RE&(py) — (ﬁf)(Pl) +o(1).
Next, we compute (using [5s f*(p1, p2)dp2 = 0)

-~ a(pl,p2)
oM (p1,p2) dp =/ ]
/Rg PrpP2)dp: = J o A

+ T

—iten) [ dp:
rs (P7+P3+p1-pP2+A)?

n(p2)
+ / dpg
rs (P71 +P3+p1-p2+A)?
n(=p1 —p2)
+ / dpg.
rs (P71 +P3+p1-p2+A)?
By an obvious change of variable one sees that the last two summands are the same.
Moreover,

/ dpo B w2
rs (P1+P3+p1-p2+2)? %p%—k)\.
Therefore,

/ @(Phpz)dpz = L + 2/ 3 zﬁ(pg) dp2

RS 3p2 4\ zs (P1+P3 +P1-P2+ )

1 —
= 5 (Wan)(p1)-

This proves (322]), and combining this with the above results for u/\g one proves
B.210. O

By exploiting the bosonic symmetry and repeating the above arguments with
respect the other coincidence hyperplanes, one finally obtains the following picture:

o

e a function f € D(H) vanishes by definition in a neighborhood of the coincidence
manifold T';
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e at each hyperplane, away from the configuration of triple coincidence, a function
¢ € D(Hp) is finite, as shown by (3:24));
e a generic g € D(H*) display the |y|~! singularity, as shown by (B3:23).

Actually, 23] and ([324) express the short-scale behavior counterpart of the large
momentum asymptotics (B2I) and B22]), respectively — and always with the
caveat that the asymptotics for g have finite coeflicients only for a subclass of
charges ¢ (which includes all charges with H ’%“—regularity).

The leading singularity of g is of order |y|~! in the relative variable with respect
to the considered coincidence hyperplane. Explicitly, in terms of the charges ¢ and

nof g,

Gav (13 y2l) YL Cgl\/g (§Ig');1|) +“£,n(y1)) +o(1), (3.25)

wenv) = 1= (M) — (BOE), (3.26)

point-wise almost-everywhere in y;. Analogous expressions hold with respect to the
other coincidence hyperplanes, with the same ¢ and wg .

¢ and we,, are interpreted in ([B:20) as functions supported on the coincidence
hyperplane ({y2 = 0} in this case). The leading singularity’s coefficient £ has some
H _%—regularity (in fact, more than that). The next-to-leading singularity’s coeffi-
cient we 5, in general, is not even H _%—regular, owing to the mapping properties of
Wy (Lemma [2.8)) and T (Lemma [35]). But if the charge £ is absent in g, and hence
g € H?(R? x R3,dy1dy2), then we, has the same regularity of Wyn, namely the
very H 3 (R3)-regularity prescribed by the trace theorem.

When a self-adjoint extension H A, is considered, and hence the subspace
D(H,, ) is selected out of D(H*) by means of the constraint (Z40) on the charges
& and 7, in practice one makes a choice in the class of leading coefficients £ and
subleading coefficients we ,, of the short-scale expansion ([B.25) which amounts to
taking

£ € D(Ay),
1 1 (3.27)
AT we y = §WA(AA£ +x) = Thé for some x € D(Ax)* N H 2 (R3).

4. Ter-Martirosyan Skornyakov Extensions
4.1. TMS and BP asymptotics

Given g € Hy, such that f‘p2‘<R§(p1,p2)dp2 < +oo for all R > 0, we shall say
that g satisfies the Ter-Martirosyan Skornyakov (TMS) condition with parameter
a € (R\{0}) U {oo} if there exists a function &, such that

[ amipap, 2 ar (R - 1) Ep1) +of1). (4.1)
p2€R3 a

|p2|<R
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An operator K on Hy, for which all g’s of D(K) with flp2|<R§(p1,p2)dp2 < 400
V R > 0 satisfy ([@I) shall be called a Ter-Martirosyan Skornyakov operator. (For
the time being this definition is kept deliberately general: K may or may not be
densely defined, symmetric, self-adjoint, etc., and nothing is said about the class &,
belongs to.)

For those ¢’s of D(K) for which it is possible to repeat the arguments of
Lemma BT (@I) amounts to

gav(y1; [y2]) Y0 cg—l\/g (@ - 2) §o(y1) +o(1) (4.2)

point-wise almost everywhere in y; € R3. (The numerical pre-factors appearing
in the right-hand side of (@Il) and (@2]) are merely prepared for the forthcoming
application to the analysis of the extensions of H 2

The case a = 0 in [@I)-(£2) would correspond to £ = 0 and hence to the fact
that the quantity fRs g(p1, p2)dp2 is finite. As the TMS condition is meant to pin-
point an actual singularity of g at each coincidence hyperplane, one conventionally
excludes a = 0 from the above definition.

In fact, [@I)—(#2) describe a short-scale structure of g in the vicinity of each
coincidence hyperplane (but away from the triple coincidence point) which in spatial
coordinates has precisely the form of the Bethe—Peierls contact condition (L)
expected on physical grounds for the eigenfunctions of a quantum trimer with zero-
range interaction: in this interpretation, a is the two-body s-wave scattering length
of the interaction.

We shall refer to ([@2]) too as the Bethe—Peierls (BP) condition and we shall
equivalently say that in the TMS condition ([&I]), respectively, the BP condition

(&2)), the quantity

o= An eR (4.3)
a
is the ‘inverse (negative) scattering length’ (in suitable units).

This indicates that within the huge variety of self-adjoint extensions of H (The-
orem [Z0)), the physically meaningful ones are those displaying the TMS condition
for functions of their domain.

De facto some arbitrariness in the modeling still remains, as we shall elabo-
rate further on in due time (Secs. 4] and [T3]), for one could deem an extension
‘physically meaningful’

e in the restrictive sense that all functions in the domain of the extension satisfy
the TMS asymptotics (meaning, all functions ¢ for which, at any R > 0, the
quantity flp2|<R§(p1,p2)dp2 is finite),

e in the milder sense that only some relevant functions do, for instance declar-
ing the physical asymptotics for functions with given symmetry, or for certain
etgenfunctions of the extension.
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Let us examine first the possibility that at least one function in the domain of
a self-adjoint extension of H satisfies the TMS condition.

Lemma 4.1. Let 7 be a self-adjoint extension offof and let o € R. Assume that
there exists g € D(I) satisfying the TMS condition [@I)) for the given o and for
some function &. One has the following.

(i) & must coincide with the charge & of (the singular part of) g (Lemma 21):
£=&. (4.4)

(ii) For every shift parameter A > 0 with respect to which the canonical representa-
tion Z39) of g is written, the charges € € D(Ay) and x € D(Ax)>NH ™2 (R3)
of g must satisfy

SWALAE +X) = Thé + o (45)
Tyé+ af € H2 (R?). (4.6)
(iii) For every shift parameter X > 0, g and its reqular part ™ must satisfy

[ ap1pa)dpa = (47 + @) &(p1) + o), (47)

‘1;))22|€§R
[, ®r.p)dps = BE) P +alp) (1.9
¢ (v1,0) = 7 (&) (y1) + aé(y1)), (4.9)

(2m)3

D) -@EQ) being equivalent.

Proof. Let A > 0 and write

A/\
—~ u —
~ Axé+x A
g=1r +u
P?+pPi+p1-p2tAr ©
according to (239). Comparing the asymptotics (321]) valid for such g with the
asymptotics (1)) assumed in the hypothesis, one deduces

ngo

%WA(M +x) — Thé = ak.

From the arbitrariness of A one concludes that the identity (5] holds true irrespec-
tive of A. Moreover, Th& + o€ must make sense as a function in ranWy = H %(R?’)
(Lemma [2.8]) irrespective of A. This completes the proof of parts (i) and (ii). Plug-
ging ([0 into B21) and B22)) yields (@) and (£8), and in fact one can be derived
one from the other, by comparison with the corresponding general identities (3.:21])
and (322). In turn, ([@8) and @3] correspond to each other via Fourier transform.
Parts (ii) and (iii) too are proved. m|
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Remark 4.2. Owing to Lemma EI\ii), @3) must be an identity in H? (R3). This
is indeed consistent with the H2(R3 x R3) — Hz (R3) trace properties.

Remark 4.3. The ‘lesson’ from Lemma [£T] is that TMS condition and self-
adjointness of the extension impose strong restrictions. A function ¢ fulfilling the
TMS condition inside the domain of a self-adjoint extension of H must satisfy the

restrictions (E4)—-(4) VA > 0.

4.2. Generalities on TMS extensions

There are two relevant types of operators related with H and compatible
with the emergence of large-momenta/short-scale asymptotics of Ter-Martirosyan
Skornyakov/Bethe-Peierls type:

an operator J€ on Hy, such that HC # =~ (respectively, HcC #C ) and
such that every g € D(J) satisfies the TMS condition (&) with the same given
a shall be called a Ter-Martirosyan Skornyakov self-adjoint extension (respectively,
Ter-Martirosyan Skornyakov symmetric extension) of H with parameter .

Remark 4.4. While the above definition in the self-adjoint case is self-explanatory,
based on the preceding analysis, as the self-adjoint extensions of H are classified in
Theorem 2.9 and the circumstance that g € D(#) satisfies the TMS condition is
analysed in Lemma [Tl a clarification is in order for the symmetric case. In fact,
formulas (239)-(240) above make sense also when Ay is simply symmetric (not
necessarily self-adjoint) in HV_V% (R?), in which case the operator H 4, thus defined
is evidently still an extension of H. Let us show that H A, is also symmetric. For
generic g € D(J€),

(g, (HAA + /\]l

¢ —|—u£ (Ha, + A1) (6™ —|—u£)>

(
(0", (Hr +A1)6*),, + (ug, (Hp +A1)0*),
(
(

¢)\, Hp + )‘1)¢ > Hy + <u2\’uj\4A£+X>Hb

O% (Hp + A1)6%), + (& ANE+x) 4

— <¢A, (Hr + A1)¢A>Hb + (5,AA§>H,% € R.

Wi

(We used (u, (H + AL)f*)4, = 0 in the third step, [Z35) in the fourth, and
X L & in the fifth.) For the reality of the above expression it indeed suffices Ay

1
to be symmetric in Hy,? (R3). The proof of Lemma ] can be just repeated for
the symmetric Ay and the same conclusions hold for the symmetric extension 7%
considered now.

TMS symmetric extensions of H will play a crucial role in Sec. [6l For the time
being, let us focus on TMS self-adjoint extensions, and comment on thelr symmetric
counterpart at the end of this section (Remark [A.g]).

2150010-33



Rev. Math. Phys. 2021.33. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 05/20/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Michelangeli

The requirement that a self-adjoint extension of H as a whole be a Ter-
Martirosyan Skornyakov operator imposes a precise choice of the corresponding
Birman operators Ay.

Lemma 4.5. Let A >0 and o € R. Let Ay € IC(HI;,% (R3)) and let H.4, be corre-

sponding self-adjoint extension of H. The following two conditions are equivalent.

(i) Bvery g € D(H,) satisfies the TMS condition [@X) with the given a.
(i) D(Ay) is dense in H=2(R3), (T + a1)D(Ay) C Hz(R3), and
Ay = 3W, Ty + al). (4.10)

Proof. The implication (ii) = (i) is obvious from Lemma[38 Conversely, if (L))
is to be satisfied by every g € D(H 4, ), then owing to Lemma [£]]

Thé+at € H2(R3)

VEED(AN), Vx € D(AN NH 3(R?).
X = 3W HTHE + af) — Axé

The first condition means precisely (Th + a1)D(Ay) C Hz(R3), and the second
condition can only be satisfied if D(Ay)-*NH =2 (R3) is trivial, namely when D(Ay)
is dense in H~2(R?) and Ay = 3W H(Ty + al). m|

Theorem 4.6. Let o € R and let S be an operator on Hy. The following two
possibilities are equivalent.

(i) S is a Ter-Martirosyan Skornyakov self-adjoint extension offof with inverse
scattering length o.
(ii) There exists a subspace D C H~z(R®) such that, for one and hence for all
A >0,
(1) D is dense in H™2(R3),
(2) (T + a1)D C Hz(R3),
(3) the operator
Ay = 3W (T + al)

(4.11)
D(A)) =D

is self-adjoint in HV_V% (R3),
(4) A = Ha,.
When (i) or (ii) are matched, for one and hence for all X > 0 one has

¢* € HZ(R® xR?), £ € D,
I RN o ~ 412
() 9= R3 P NP1, P2) dp2 = (ThE)(P1) + @ &(p1) e

2150010-34



Rev. Math. Phys. 2021.33. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 05/20/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Zero-range interaction for the bosonic trimer at unitarity

where for each \ the above decomposition of g in terms of ¢ and & is unique,
and

(A + Al)g = (Hp + A1) (4.13)

Proof. Assume that every g € D(.5) satisfies the TMS asymptotics (7)) with the
same «. Applying Lemma .5 one obtains all four conditions 1. through 4. listed in
part (ii), for every A > 0, except that D is replaced by D(A)) for each considered
A. But all such D(Ay)’s are in fact the same subspace (Remark [ZTT]). The proof of
(i) = (ii) is completed.

Conversely, assume that (ii) holds true for one A, > 0. Applying Lemma .5l one
deduces that 7 is a Ter-Martirosyan Skornyakov self-adjoint extension of H with
inverse scattering length o. Since we know already that (i) = (ii), then condition
(ii) holds true for any other A > 0 as well. This establishes the full implication (ii)
= (i).

Under condition (i), or equivalently (i), (@I2)-@I3) then follow from
239)-(240) of Theorem 29(i) and from @8] and @IT]). |

It is worth stressing that formulas (ZI2))-(#I3) alone, considered for some sub-
space D of H™3(R3), evidently define an extension # of H; however, they do not
necessarily make S a self-adjoint extension. We formulate this point in the form
of a separate corollary for later purposes.

Corollary 4.7. Let a € R, A > 0, let D be a subspace of H’%(RP’), and let 7 be
the operator defined by (@12)-@I3)). Then S is self-adjoint in Hy if and only if D
is dense in H*%(R?’), (Th+al)D C H%(R?’), and the operator [@II)) is self-adjoint
in Hy? (R3),

Thus, the quest of Ter-Martirosyan Skornyakov self-adjoint extensions of .7 in
Hy, is boiled down to the self-adjointness problem of W ' (Th+al) in H. ;Vé (R3) with
domain D, hence in practice to the problem of finding a domain of self-adjointness
for the formal action & — W;l(TA + al)¢. This task actually constitutes the hard
part of the rigorous modeling of physically meaningful Hamiltonians of zero-range
interactions for the considered bosonic trimer.

For an operator satisfying either condition of Theorem we shall use the nat-
ural notation %, so as to emphasize the only relevant parameter of the considered
Ter-Martirosyan Skornyakov (self-adjoint) extension of H. This must be done keep-
ing in mind that in principle for the same o € R there could be distinct operators
of the form %, that is, distinct domains of self-adjointness for Wy '(Ty + al)
in H;é (R?) (Corollary FET)), in analogy with the familiar existence of a variety of
distinct domains of self-adjointness in L?(0,1) for the same differential operator

a2
T dxZ
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Remark 4.8. The reasonings that led to Theorem L6l have an obvious counterpart
for Ter-Martirosyan Skornyakov symmetric extensions of H.

(i) Lemma is equally valid when A, is only assumed to be symmetric in
H‘,}f (R®) and the corresponding H. A, is a Ter-Martirosyan Skornyakov sym-
metric extension of H , based on the observations made in Remark {41

(ii) By means of such ‘symmetric version’ of Lemma 5] the proof of Theorem [1.0]

can be straightforwardly adjusted so as to establish that:
FC is a Ter-Martirosyan Skornyakov symmetric extension of H with inverse
scattering length o € R if and only if there exists a subspace D C H = (R3) such
that, for one and hence for all A > 0, D is dense in H_%(R:‘), (T + al)D C
H?=(R3), the operator Ay := 3Wy HTy + al) is symmetric in HI;,% (R3) on the
domain D, and 7 = POIAA.

4.3. Symmetry and self-adjointness of the TMS parameter

As emerged in Sec.[£2] the operator (LI]) is the correct Birman operator labeling
symmetric or self-adjoint TMS extensions of H in terms of the general parametriza-
tion provided by Theorem 9] (and Remarks [£4] and [L.F]).

The symmetry or self-adjointness, in the respective Hilbert spaces, of the aux-
iliary operators Ay and T on the domain D are closely related (albeit deceptively,
in a sense), as we shall now discuss.

To avoid ambiguities, let us reserve the standard notation T, T, etc., for the
adjoint of T, its operator closure, and so on, with respect to the underlying L?-space
(as done for H* as an operator on Hy,), which in this context shall be L2(R3), and

o — . -1
let us write instead A}, Ax", L, etc., with reference to Hy,? (R?).

Lemma 4.9. Let A > 0, a € R, and let D be a dense subspace of L?(R3) such that
(Tx + a1)D C H2(R3). Consider both Ay := 3Wy H(T + al) and Ty as operators
with domain D. Then

Ay Cc A e T CTy,

1
that is, the symmetry of Ax in Hy,? (R3) is equivalent to the symmetry of Ty in
L2(R3).

Proof. D is dense in L2(R?) and hence in H~#(R?) = H,, ? (R?). Owing to (235),
(6, ANE) 1 =3(, (Th+al)f): VE€D.

~2
HW/\

Therefore, the reality of the left-hand side is equivalent to the reality of the right-
hand side ]

Lemma 4.10. Let A > 0, a € R, and let D be a dense subspace of L2(R?) such that
(Tx + a1)D C H2(R3). Consider both Ay := 3Wy HTx + al) and Ty as operators
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with domain D. Assume that T\ = T5. Then,

(i) D(A}) N L*(R?) = D(A,) = D;
(ii) A\ = A} if and only if D(AY) C L*(R3).

Proof. Clearly (ii) follows from (i). Concerning (i), the inclusion D(A%)NL*(R?) D
D(A,) is obvious. Let now n € D(A%) N L?(R?). Then, for some ¢, > 0,

(A8 )

HWA

<c,lél3: VEED=D(A).

Equivalently, owing to (Z33)),
1
|(n, (Tx + @1)€) 12| < 36 I€]17: V& €D =D(Ty).
Therefore, n € D(T5) = D(Tx) = D(Ax). |

4.4. TMS extensions in sectors of definite angular momentum

As the maps £ — ThE, &€ — WHE, € — W;lﬁ all commute with the rotations
in R® (Sec. B2), and so too does therefore the map & + Wy 'T, then the TMS
parameter Ay = 3W, '(T\ + al) is naturally reduced in each sector of definite
angular momentum.

More precisely, with respect to the decomposition 3.8)—(39), and following the
same reasoning therein, one then has

W=y wihew, (4.14)
=0

where each WA(Z) is non-trivial only radially. Moreover,

I ~ [ = 0
<£7n>H;V§ = /Rs &(p) (Wan)(p) dp—;o/w §O(p) (W) n®)(p)dp,  (4.15)
where

[, €00) (775 () dp

¢ 2
-> |/ TR )

dpp2 T
n=—t \’B* V224 A

_ 1
Py(t)
+12 // dvda p2a? O () F0 / a
™ - pagpq fﬁm(p) Z,n(q) 1 (p2+q2—|—pqt—|—/\)2

1
= Y (S D we. (4.16)

n=—~
in complete analogy to (B.14)—315).
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As the scalar product (-, W) -
product, so is the scalar product (-,-),,« defined by ([LIG) equivalent to the ordi-
A

nary scalar product in L?(R*, (1 + p2)*% p?dp). The latter is therefore a Hilbert
space also when equipped with (-, ")

. . . 1
Loy ds equivalent to the ordinary H ™~ z-scalar

in which case we shall denote it with

W
L?/V“) (RT). One thus has the canonical Hilbert space isomorphism
A
LARY, (14 p?)~2p2dp) = L2 ) (RY), (4.17)
A

By means of ([@I7) one re-writes (3.8) as

o0

P (22, ®RY) @ span{ Ve [n=—(,....0})
¢ A

Hy2(RS) = H™#(RY)

I

I
=)

HWf,e(R3)~ (4.18)

O

~
Il
=)

The expansion [B3) of a generic £ € H —3 (R3) is equivalently referred to the ordi-
nary decomposition or the A-decomposition of the space ([@I8]).
With respect to ([LI8) A, is reduced as

> 4 > — 4
Ay =@ AV =@ 3w (1" +ad). (4.19)
=0 =0

The problem of finding a domain D of symmetry or of self-adjointness for Ay with
respect to H;[é (R?) is tantamount as finding a domain D, of symmetry or of self-
adjointness for Ag\g) with respect to Hv_viz(Rg) for each £ € Ny. This is the object
of Secs. Bl and

The subspace of D(A,) consisting of elements g with charge £ € Dy is sometimes
referred to as the charge domain of the TMS (symmetric or self-adjoint) extension

of H in the ¢th sector of definite angular momentum.

5. Sectors of Higher Angular Momenta

In the modeling of the bosonic trimer with zero-range interaction, all the rele-
vant physics is expected in the sector of zero angular momentum, since in each
two-body channel particles undergo a low-energy, and hence essentially an s-wave
scattering.

In this respect, the qualification of the quantum Hamiltonian is somewhat arbi-
trary in the sectors of higher (non-zero) angular momentum, as in practice exper-
imental observations do not involve states in such sectors. For instance one could
simply consider a Hamiltonian where for each ¢ € N the Birman parameter of for-
mula (2:39) has domain D, = {0} and value ‘A) = oo’ on it, namely the Friedrichs
extension of H in those sectors, whereas only the ¢ = 0 is defined non-trivially. This
would model a total absence of interaction at higher angular momenta.
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A more typical choice is to define a model that in all ¢-sectors, not only ¢ = 0,
is characterized by the physical TMS asymptotics with inverse scattering length,
and to do so by making a somewhat canonical construction for ¢ # 0, and a non-
trivial one for ¢ = 0. We present such programme in this section for non-zero £. The
analysis of £ = 0 is deferred to Sec.

5.1. T -estimates

We import here a set of useful estimates established in the already mentioned work
[12] by Correggi, Dell’ Antonio, Finco, Michelangeli, and Teta.
For given A > 0 and ¢ € N let us introduce the shorthands

Bfg =20 | o[ 07+ A T 0lo)

Py(t)
\IJ _2 2 2 /
relfs gl 7T//wadpdqpq fp) dtp T ipalin

and

A[f] = PaLS, f]
Ul f] = Unelf, f]
so that BI4)-(BI5) now read
[ &) @nerap= S (0710~ 2w 912 6

{=0n=—¢

(5.2)

Lemma 5.1. Let A > 0 and £ € N. Let f : R — C make the quantities below finite.
(i) One has
0< Waslf] < Waulf] for even ¢

(5.4)
ol f] < Uae[f] <0 for odd L.
(ii) One has
Bol) =7V3 [ ds| i)l
N (5.5)
= $Su(s) |f4(s)|?
Wolf] = [ dsSilo) 1F4(s)
where
fi(s) = \/LQ_WA daz e F 22 f (%) (5.6)
and

sinh(s arccos &)

Sg(s) = 272 /11 dtPg(t)

sin(arccos §) sinh s’
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(iii) Se: R — R is a smooth even function, strictly monotone on R, and such that
0 < Spia(s) < Se(s) < Se(0)  for even £

(5.8)
Se(0) < Sp(s) < Seya(s) <0 for odd ¢.

Proof. Part (i) follows from [12] Lemma 3.2]. Part (ii) from [I2, Lemma 3.3]. Part
(iii) from [12] Lemma 3.5]. |
The values of S¢(s) that will be relevant in the present analysis are
273

SO(O): T >0

S1(0) = —87 <1 - %) <0 (5.9)

S5(0) = %2(57r —9Vv3) >0,

as one easily computes from (7)) and BI2).
By means of the estimates above, one obtains the following important bounds.

Lemma 5.2. Let A > 0 and let £ € H=(R®). Then

[ @) @@ < nt2et [\ aEmPde  (510)
[ @) @@ = x 2wt [ (e a @l G

where
ot 105
™3 3
AT 1) i€ is non-trivial on HE, (R?
35~ if € is non-trivial on H}_,(R?) (5.12)
"o 10 T
™ 1
- — if ¢ € @ H?(R?).
In particular, if & L HEZO(H@), then k= > 0 and
[ &) @@= i, (¢ £0) (513

in the sense of equivalence of norms (with A-dependent multiplicative constants).

Proof. Expanding ¢ as in (3.9) and using (5.3) one has

- o ¢
L&) @@ap =3 3 (9alr5] - 2001155, *)

=0 n=—¢
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Owing to (1), (3), EF), and E3),
) L L L
PIDIRVIHED DR AV DI DR TN

=0 n=—¢ leNg n=—/¢ £eNg n=—4
£ odd £ odd
-Y Y [aselE Pz s0 XS ool
leNg n=—/ leNg n=—/¢
£ odd £ odd
8w SN 9]
- T ICEEND 30 8
”2‘[ g\;o n;e i ezgn;e ’
£ odd
4 2\/§ 00 4
>3 (5 )X X el
=0 n=—4¢

Plugging this into (¥ yields (5I0). Analogously,

o) 4 4

Z Z \I’)\,l[.f@(iz] < Z Z \IJA,e[fg Z Z o, (5)

=0 n——t LeNo n=—t L€No n=—t
Zz/dssg ZZ/ds (0
LeNg n=—/ leNg n=—¢
£ even £ even

_ .- 9] 7]

772\/— z%w:g n;e zz%nze 3\/— zz%n;e

{ even

which combined with (%) yields (5.I1) in the general case. In the particular case
when £ has no £ = 0 component the previous computation becomes

o] 1
SY [ ©] < 5,0 'y Z/ds (5)
l=1n=—¢ Zéeevlzlnn— 4
_ %(571’—9\/— o,
ZEZN ngé
¢ even
S 571'—9\/_ Z Z (I)
{=1n=—¢

and plugging the latter estimate into (%), where now the ¢ = 0 summands are
absent, one obtains (.I1)) for this case. O
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5.2. Self-adjointness for £ > 1

1
Let us discuss a domain of self-adjointness for the TMS parameter Ay in Hy,? , (R3)
when ¢ € N.
It is convenient to realize first A, as a symmetric operator and then construct
canonically a self-adjoint realization of it.
Let us set
0 if >0
Ag 1= 10 (5.14)
a?/(2m?k7)? if a <0 (Ii_ =7- —7T>
3v3
Lemma 5.3. For A >0, a € R, and ¢ € N, let
~ 3
D, = H} (R?) (5.15)
and

AD = 3w (10 1 a1)
(5.16)

D(A) =
One has the following.

(i) Ag\e) is a densely defined symmetric operator in HV_ViZ(Rg)'
(ii) If A > Aq, then m(A(f)) >0, ie. Ag\e) has strictly positive lower bound.

Proof. (i) Obviously Dy is dense in HV_V%,Z (R?). Moreover, (T)(\e)—i—al)ﬁg C Hz% (R3)
(Lemma[30l(iii)) and He% (R?) = ranW)(\e) (Lemma[Z8ii)), therefore (10 is a well-
posed definition for a densely defined operator in H;V%’E(RB). The map D; > &
T)(\e)f is densely defined and symmetric in L?(R3) (Lemma [35](i)). All assumptions
of Lemma are then satisfied in the ¢th sector: one then concludes that Af\g) is
symmetric in H‘,_Vil (R3).

(ii) For £ € D, we find

< “’f> L = (6@ +a1)),,

ENE -
> 92k /]R \/ 302+ A JE)? dp + €]

> 2r 5 VA QllEllF: > ea@r’hT VAt a)llflli_%

WX
for some ¢y > 0, having used (Z33]) in the first step, (511 in the second, and the
isomorphism H~2 (R?) H;[é (R3) in the last. Thus, m(A(f)) > 3ea(2m2k VA +
a) = 6m%cxk (VA — V/Aq) and the thesis follows. O
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Being densely defined, symmetric, and lower semi-bounded, Ag\g) has its
Friedrichs self-adjoint extension. That will be our final TMS parameter Ag\g).

Proposition 5.4. Let « € R, A > A, and ¢ € N. Define
1 1
D= {¢c HF (R®) | T\"¢ € H (R?)}. (5.17)
The operator

D(AY) == Dy
(5.18)
AY = 3w (T + a1).

1
is the Friedrichs extension of Ag\o with respect to HWi’g(]RB) and therefore is self-
adjoint in such space. Its sesquilinear form is

DIAY] = H (R)

O 4 (5.19)
A)\ [7775] = 3<n7 (T)\ + a1)€>H%,H_%

1
Proof. The definition (5.18) is well posed, as (T;\e) +al)Dy C Hf (R3) = ranW,.

Lemma[B.2and the fact that A(f) has strictly positive lower bound (Lemma [53](ii))
imply that the map

§ = lella = (6. AV, = (36 (T +a1)g) )

A

S

is a norm, and is actually equivalent to the H z-norm. Let us temporarily denote

1
by Ar the Friedrichs extension of Ag\e) with respect to Hy,? ,Z(R?’).
As prescribed by the Friedrichs construction, Ag has form domain

—

— .
DIAr] =D(AY) =H3(R?) 72 = Hi(R?)
and for £, € H? (R%)

Ar[n,€] = lim_ <nn,A&”5n>H;V§ =3 1im (i, (T{" + a1)&,) .

3
for any two sequences (&), and (1), in H? (R?) such that &, — £ and 5, — 7 in

the || ||.4-norm, namely in H, 2% (R?). Now, interpreting
(s (T3 + a1)&) 1o = s (T3 + 01)&0) g 1oy

and using the fact that Ty) + al is a bounded H, f —H, : map (Lemma [3.5](ii)),
_1
we see that (TA(Z) +al)é, — (TA(Z) +al)¢ in H, *(R?) and therefore

Ar[n,€] =3 lim (1, (T3 + a1)§n>H%7H7% = 3(n, (1" + aIL)§>H%7H,% )
Formula (519) is thus proved.

2150010-43



Rev. Math. Phys. 2021.33. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 05/20/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Michelangeli

Next, the operator Ap is derived from its quadratic form in the usual manner,
that is,

1
3¢ € Hy,? ,(R?) such that

DAr) = § € € DA (n:¢e) -3 = Arl[n,€] Vn € D[Ar]

Ar§ = Ce.
This means, owing to [230) and (BI9), that £ € D(Ap) if and only if € is a

1
H -function with

1
(W3¢ = 3(13 +ab)€) 3 1 =0 Ve HF(RY),

_1
for some (¢ € H, ?(R?), and therefore equivalently

¢ H)®RY and 3(T +al)e = W

1

1
The second condition, owing to the H, 2 — H/} bijectivity of WA(Z) (Lemmal[Z8(ii)),
1
is tantamount as (Ty) +al)¢ € HE (R3), and moreover (¢ = 3W;1(T§Z) +al)é.
Formula (5I8) is proved.

It is instructive to remark that whereas on the domain D, the operator AE\Z) =
_1
3wt (TA(Z) + al) is self-adjoint with respect to Hy,? ,(R3), and therefore T)(\e) on

the same domain is symmetric with respect to L?(R?) (Lemma ), however TA(Z)
is not self-adjoint in LZ(R3).
Lemma 5.5. Let A > 0,and £ € N. The operator
¢ 3 ¢ 3
D(TY) =Dy = {¢ € H (&%) | "¢ € H (&) 520
¢ ¢ '
TVe:=Te veeD(TV)
1s densely defined and symmetric with respect to the Hilbert space L% (R3). However,

it is not self-adjoint.

Proof. We already argued prior to stating the Lemma that Tg\e) is densely defined
and symmetric in LZ(R3). In fact, the symmetry property

¢ ¢
(. TVE) = (Ti0.6) . Ve Dy
also follows directly from Lemma BJ5(v), because £, 7 € H2 (R3) and T(f)f, Tg\é)n €
Hz(R3) C L2(R3).
With respect to LZ(R?) the quadratic form
¢ 1
D(¢\) == HZ (R?)
¢ ‘
6= (T s IR,
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is densely defined, coercive and hence lower semi-bounded with strictly positive
lower bound (as follows from Lemma[5.2]), and closed (because D(qge)) is obviously
closed with respect to the norm induced by the form, namely the H %—norm). As
such, ¢ is the quadratic form of the self-adjoint operator

3¢ € L2(R3) such that }

DY) = {5 e D(q"
g (o) ¢z = ¢\, €] Vn e D(e)

Q(f) § = Ce.

Equivalently, € € D(QE\Z)) if and only if £ is an H, f—function such that
(1,6 =T3€) 3 3 =0 Ve H} (RY)
for some (¢ € LZ(R?), and therefore equivalently
€cHRY and T¢ = ¢
The second condition above is tantamount as Ty)f € L?(R?). In conclusion,
D(QY) = {¢ ] (8| T{"¢ € Li(®")}

Q¢ = 1%
At this point it is clear that
(o) 0 (0)y*
TV cQy=(Q))"

The lack of self-adjointness of Tg\e) is then evident from the strict inclusion
‘ ‘
p(T{) & D(QY). O

6. Sector of Zero Angular Momentum

The problem of finding a domain Dy of self-adjointness in the Hilbert space
H‘,_Viezo(R?’) for the operator 3W, ! (T)(\EZO) +al) (in the following we shall shorten
the full 4 = 0’ superscript), is more subtle than the analogous problem for £ € N
(Sec. B2)), and so too is the quest for a domain 23(/) of sole symmetry.

This is related with the fact that no Sobolev space H ;:O(R?’) is entirely mapped
by Ty into H?(R3) (Remark [8), so Dy cannot be a standard Sobolev space (as
opposite to when £ # 0: Lemma [B3]). A related difficulty, that emerges indirectly
from the discussion of Lemma [5.2] is the fact that when ¢ = 0 the map

e~ [ ) (TE)@)ap

does not induce any longer an equivalent H 2-norm (see Remark [6.2 below). In fact,
we shall see that any reasonable choice of a domain Dy of symmetry for W5~ 1T§£:0)

makes it an unbounded below operator, unlike the lower semi-boundedness of Af\g)
when £ # 0 (Lemma [B3(ii)).
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These difficulties require an improved analysis that will be presented in this
section. They are also the source of various past mistakes leading to ill-posed models:
Section [§] discusses such perspective.

We shall follow the same conceptual path as in Sec. First we discuss the
symmetric case (symmetric realization of Wy~ 1T)(\£:0) and hence Ter-Martirosyan
Skornyakov symmetric extension of H ), then the self-adjoint case (self-adjoint
Wy 1TA(£:O) and hence self-adjoint TMS extension). For each two steps, an amount
of technical preparation is needed.

Here we opt to discuss explicitly only a special scenario, in fact the physi-
cally most relevant one: zero-range interaction with infinite scattering length, hence
a=0. This is the regime of unitarity that we presented in the introduction.

6.1. Mellin-like transformations
For fixed A > 0, to each charge of interest £ € H, fZO(R:)’), written according to

B3) as

5(p)=\/%—ﬂf(lpl), p=pl%. feIP®RY(1+p2)%%dp),  (6.1)

we shall associate an odd, measurable function 6 : R — C defined by

V3
—0(—x) ife<0 (6.2)

[ 3p? 3p?
ZCZ:lOg( E‘F K_Fl y p::|p|.

The inverse transformation is
F) = 0(10g (\/g—i— % + 1))
2v/A

p= sinhz for z > 0.

V3

The above change of variable p <+ x is a homeomorphism on RT, with also

/3 /3 2V
3 — — 2 — p— 2 =
sinhx = yLak vV Acoshz 1P + A, dp 7 coshx dz. (6.4)

It is for later convenience that the induced function 6 on Rt has been extended by
odd parity over the whole real line.

We shall refer to the function 8 defined by ([GI)-(G2) as the re-scaled radial
component associated with the charge & and with parameter \. When such corre-
spondence need be emphasized, we shall write ().

2
Af ﬂsinhx sinhzcoshz ifx>0
0(z) =
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Using (62)-(64) and the fact that 1+ p* ~ 3p? + A, in the sense that each
side is controlled from above and from below by the other with some A-dependent
constant, a straightforward computation gives

H€HH s(r3) [|(cosh z)® 29HL2(R) (6.5)

in the sense of equivalence of norms (with A-dependent multiplicative constants).
Let us introduce further definitions and properties that are going to be useful
in the course of the present discussion.
The function 6 having odd parity on R, one has the identities

2cosh(z +y) — 1 2cosh(z —y) +1
dz () (1 1
/R+ ©0(z) (Og 2cosh(z +y)+1 +log 2cosh(z —y) —1

2 cosh(z +y) — 1 / 2 cosh(z —y) + 1
= [ dx@ dz 6 .
/R zhlw)lo 2c05h(a:+y)+1 zblw)lo 2cosh(a:—y) -1

(6.6)

Moreover (see, e.g., [21], 1.1.9.(50))),

2coshx +1 - sinh T s
log ———— =v2or—C—. 6.7
(Og 2coshx—1> () i s cosh s (6.7)

By means of ([67]), taking the Fourier transform in the following convolution yields

(/ dz 0(y) log 20N —y) +1 ) (s) = 2mf(s) SBBES  (5g)
R

2cosh(z —y) — 1 s cosh §s

Here and in the following the s-dependence in 5(3) is only symbolic, to indicate
that the object 9 is a distribution on test functions of s € R. Of course in special
cases §(s) may well be an ordinary function.

Let v be the distribution on R defined by

8 sinh s

ﬁ s cosh Zs’

The function R 3 s — 7(s) is smooth, even, strictly monotone increabing (respec-
tively, decreasing) for s > 0 (respectively, s < 0), with values in [1— m, 1), asymp-

A(s) =1 (6.9)

totically approaching 1 as s — 400, and with absolute minimum 7(0) = (# —1).
The equation 7(s) = 0 has thus simple roots s = £sg, with so ~ 1.0062. We also
define

- 1

Y+(s) == mﬁ(s)- (6.10)

~+ is therefore strictly positive, smooth, even, monotone to zero decreasing for s > 0
with s2 decay, and with absolute maximum 7 (0) = s (2% 33 ) (Fig. ).
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Fig. 1. (Color online) Plot of the functions 7(s) (blue) and 74 (s) (orange), defined respectively

in (69) and (GI0).

Further quantities of interest involving & are conveniently expressed in terms of
the auxiliary function 6 or its (one-dimensional) Fourier transform 6.

Lemma 6.1. Let A >0, s € R, and £ be as in ([GI)). One has the identities

( A f)(p) \/E|p| 7
4 2cosh(z —y) +1
X (9(95) T3 /Rdy 0(y) log 2 cosh(z — y) — 1), (6.11)
HT)(\O)é.HHs(R?,) ~ /Rdx (COShl‘)1+25
2cosh(x —y)+1 2
x |0(x) — m/_ dy0(y)lo € cosh(z —y) —1| (6.12)

and

&®) (17€) (p) dp = dsA(s)0(s) (6.13)
[, & ey

with x and 0 given by [62), and v given by (IEQI) In (6I1) it is understood that © >
0, and ([GI12) is meant as an equivalence of norms (with A\-dependent multiplicative
constant).

Proof. Specializing formula (3I3]) of Lemma [3.4)(i) with the Legendre polynomial
Py =1 gives

(T9¢)(p)

1 /3 P +¢®+pg+ A
\/_ » ( m pf(p) 4p s - qqf(q) 0og p2+q2 _pq+)\
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With p = %sinhx and ¢ = %Sinhy one has
p?+q% +pg+ A B sinh2x+sinh2y—|—sinhx sinhy—|—%
P*+¢*—pg+ A sinh®z +sinh®y — sinhz sinhy + 3

2cosh(z +y) —1 2cosh(z —y) +1
~ 2cosh(z +y)+1 2cosh(z —y)—1"

Using the latter identity and (G3) one then finds

VI Ipl (T9)0) = T (060 - = [ o) (a0 + B.10) ).
where
Au(y) = log 2cosh(z +y) — 1 2cosh(z —y)+1

2cosh(z +y) + 17 =(y) :=log 2cosh(x —y) —1°

Combining this with (66l yields (611)).
Next, by means of (64) and (6I1]) we find

I75€ e o)

3 5|1 4 2cosh(z —y) + 1\ |?
~ dpp® (Sp* + ) ‘—(9 ——/d9 lo )
/]R+ pp (4p ) , () e (y) 8 Scosh(z —y) =1
oAz +s 4 2 cosh(z —y) + 1 |

= O(x) — ——= [ dyfb(y)l
V5 e 0= 75 JL oo SEm I

Owing to the odd parity of § and to (G.6]), the integrand function above is invariant
under change of variable x — —ux, therefore the last line can be re-written as

dx (cosh )2

A3 Fs 4 2cosh(x —y) +1 ?
dx (cosh 2)1 124 |0(x ——/d 0(y) lo
This gives ([G.12)).

Concerning (6.13)), specialising formulas (314)—(BI5) of Lemma[34(ii) with the
Legendre polynomial Py = 1 gives

o),
3z [, €0 (19 dp
- /]R+dp1/2p2+)\|pf(p)|2 - %//me dpdq (pf(p)) (af (q)) log

P2+ q% +pg+ A
PP+ —pet+ A

The first summand in the right-hand side above can be re-written as

[ vy [3r 2o f . |o<x>|2=3iﬁ4dx|o<x>2
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having used (63)—(@4) in the first step and the odd parity of € in the second.
Analogously, and using also (%)) and (6.8)), the second summand becomes

2 —— PP+ +pg+ A
- dpd 1
=[], e TG (af@) tog Lt S

- 373//]1“@ da dy 0(z) 0(y)

< (1 2cosh(z +y) — 1 Io 2cosh(z —y) + 1
& 2cosh(z +y) +1 & 2cosh(z —y) — 1

16 — 2cosh(z —y) +1
= — drdyb(z)0(y) L .
™ //RX]R ©dy () 6(y) log 2cosh(z —y) —1

Thus,
1 = 0.
57 |, €@ (1) () dp

4 . a:2—i v du Bl 2cosh(z —y) +1
=33 </Rd OO =275 [ Joe 4 0 P L) 60 Lo 2cosh<x—y>—1>'

Applying Parseval’s identity in both summands of the above right-hand side, and
using (G.8) in the second summand, one gets

). B sinh & s
27r2/ € T ( )dp = W(/ds|t9 /ds scosh s)

This, and the definition (6.9]), finally prove (G.I3)). O

Remark 6.2. As the function 7 attains both positive and negative values, formula

(6.I3) shows that the pairing ng (T(O €)(p)dp is not equivalent to the L?-
norm of the associated re-scaled radlal functlon 6 and therefore (owing to (6.5))
does not induce an equivalent H %—norm, in contrast with the analogous properties
in the sectors with ¢ # 0 (Lemma [5.2]).

Lemma 6.3. Let A > 0 and let £1,&2 be spherically symmetric functions with re-
scaled radial components 61,05 respectively, according to the definition (6.1)—(G.2]).
Then

—

&) (176) () dp

_ 472 01(x) 02(z) .

M3 Jr (coshz)?

+ 2 0,(2) 02(v)
//RxR 2 cosh(z + y) + 1) (2 cosh(x — y) — 1) dz dy (6.14)

2150010-50




Rev. Math. Phys. 2021.33. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 05/20/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Zero-range interaction for the bosonic trimer at unitarity

and also

—

& (p) (") (p) dp
272 s 7 0.
- W3k ( sinh §s * 01) (5) 2(s)ds
, 16n / / oy BRGS0 4y (615
RxR ) Snb (s +1) sinh 5(s — 1)

In the double integrals above the order of integration is not specified, tacitly under-
standing that 0165 (or 6102) is sufficiently integrable, depending on the applications.

R3

Proof. Specialising formula (£16) with the Legendre polynomial Py = 1 gives
o) (WO8) (p)d
. &i(p) (W) &) (p)dp

/ dp —— pfl ) (f2(p))
R+

2

- 2pq
+12¢ / /R L A ORD) (@b (@) o

The first summand in the right-hand side above can be re-written as

B 8?2 01 (x) b2 ()
‘/R_de o pfl ) (pfa(p)) = A3 Jar (coshz)? dz

(B
M3 Jg (coshz)2 7

having used ([@3)—-(64) in the first step and the odd parity of ¢, and 6, in the

second. Next, with p = \/‘/—_ sinhx and ¢ = \/‘/—_ sinh y, we re-write

2pq 1 1
P2+ +N2=(pg)? PP+ —-pg+Xr PP+ +pg+A

= ;(a(a:,y) - b($7y))a

where
1

(2cosh(z +y) + 1) (2cosh(z —y) — 1)
1

(2cosh(z +y) — 1) (2cosh(z —y) +1)°

a(x, y) =

b(x,y) =
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This and @3)—(64) then imply

Y 2pq
1%/ ~/]R+ xR+ dpda0fi(p)) (af2(a)) (P* +¢* + A)? — (pg)?

- //]R+><R+ da dy 01 (z) 02(y) (a(z,y) — b(z,y))

—32”/Adexdyel 2)65(y) alz,y)

3271’ 91( )92( )
B //RX]R 2 cosh(z + y) + 1) (2 cosh(z —y) — 1) dzdy

the second identity being due to the odd parity of #; and #; and to the obvious
relations a(—z, —y) = a(z,y), a(—z,y) = b(z,y) = a(z, —y). Adding up the two
summands we have thus worked out yields finally (@14]).

Concerning (GI5]),

472 01(z)02(x) | 27 s = ~
A3 Jrg (coshz)? dr = W3 snh Zs 01 ) (5)62(s) ds.

Moreover (see, e.g., 21}, 1.1.9.(6)]),
1 A(s) _ [ sinh s
2coshx — 1 3 sinhws
1 A( - [27 sinh Zs
2coshx +1 *) =\ 3 sinhrs’

whence

whence
1 e ity 1
_ 1sx 1 d d
27 //RX]R © (2cosh(z +y) + 1) (2cosh(z —y) — 1) vy
—t 1 1
i dzd
//RX]R E 2coshz +1 2coshx —1 vy
1 sinh & (s +t) sinh §(s —t)
6 sinh 5 (s +1t) sinh Z(s —t)’
and
2
rxr (2cosh(z +y) + ) (2 cosh(x —y)—1)
_ 16m // 3 blnh %(3 +1) s%nh %(8 —t) dsdt.
RxR Slnh Z(s+1t) sinh Z(s — 1)
Adding up all together yields ([G.15)). O
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6.2. Radial Ter-Martirosyan Skornyakov equation
The next technical tool is the solution formula for the equation
0
7 =1 (6.16)

in the unknown ¢ and with datum 7, spherically symmetric on R3. (G.I8]) is cus-

tomarily referred to as the Ter-Martirosyan Skornyakov equation for the sector

of zero angular momentum. It appeared for the first time in [60, Eq. (12)], the

already-mentioned work by Ter-Martirosyan and Skornyakov, whence the name.
Representing as usual (see ([39) and (E1]) above)

€)= <=/ b)) = <=/ (lp)

in terms of the corresponding radial components, switching to the re-scaled radial

components #€) and 6 defined in (62), and representing the left-hand side of

(6I6) by means of ([GI1)), Eq. (616) takes the form

4 2cosh(z —y) +1 1 00 (2)
(IL‘) 71'\/3 e Yy (y) og 2COSh($ — y) 1 27T2\/X cosh z ( )
as an identity for x > 0. Let us simply re-write
p=p0, 9= L 07
’ 2724/ coshz’
and hence
2 h(z — 1
o(z) dy(y)log 2ME =W HL 50 (6.18)

7r\/_ &9 cosh(z —y) — 1
in the unknown 6. Should one like to interpret (G.I8)) as an identity on the whole
real line, one has to assume for consistency that also ¥, as ("), is prolonged by odd
parity. We shall refer to (GI8)) as the radial Ter-Martirosyan Skornyakov equation
(for the £ = 0 sector).

Applying ([@8)-(@9) one sees that (GI8) is equivalently re-written in the
Fourier-transformed version

3(s)0(s) = I(s), (6.19)

understood in general as a distribution equation in the distribution unknown 0.
In (6I8) the functional space for the unknown 6 is determined by the space for
the original unknown £ through formula (63]). The same holds for the functional

) ) .
space for 9, recalling that ¢ = o 21 7 i;}g? for some datum n In our applications

(Secs. [6.3H6.4)) we shall need n € Hi_o(R?) for some s > —1, in which case (6.5)
implies that (" /(cosh x) 2 7% ig an L?-function and hence, by the Holder inequality,

1 g(n)
9~ : — € LP(R) Vpell,2].
(coshz)2T® (coshx)z~*

Therefore, as |z| — oo, the above ¥ has an L?-behavior dumped by a multiplicative
exponential decay.
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When ¢ is smooth and has rapid decrease, we can translate the solution to
(6139) back to the z-coordinate.

Lemma 6.4. The general solution to ([618)) when ¢ is smooth and with rapid
decrease s

A\ V
1
0(x) = ¢ sin spx — — sin(sol|x|) * (i) , ceC. (6.20)
250 T+

The function [G20) belongs to L>°(R) and is asymptotically cos-periodic as |z| —
+oo with period 27/ sg.

In the proof, as well as in the sequel, we shall make use of the identities

2i

(6(s —s0) —6(s + so))V(x) v sin so, (6.21)
1 1 v .
<PV8—80 _PV8—|—30> (¢) = —V2msinsola], (6.22)

where PV stands for the principal value distribution. ([622]) in particular follows
from (PV - )v(x) = elso® (PV%)v(x) =i,/F e sign .

S$—S8p

Proof of Lemma Let us consider the Fourier-transformed version (G.I9) of
(6I8]). This is the same as

5 0(s)
(s —s0)(s+s0)0(s) = 5 ) s €R,

owing to (6I0). Dividing by 74 (s) has not altered the set of solutions because
~+(s) > 0Vs € R. We observe that by construction @\(—s) = —A(s)7 5(—3) = —5(3)7
and 44 (—s) = 74 (s), thus in the identity above both sides change sign when s —
—s, consistently. Moreover, since 7, is smooth, 7, (s) ~ s72 as |s| — oo, and ¥ is
smooth and with rapid decrease, then so too is 9 /7+. Therefore, such distribution
equation has general solution

)

= —Sp) —0(s+ s 5(8) L ! - ! c
(s) =c(0(s —so) — (s + 0))+§+(8) o (va—so va—i—so)’ e C.

The linear combination of §(s—sg) and §(s+sg) had to be anti-symmetric, owing to
the odd parity of 6. Taking the inverse Fourier transform by means of (€21 (622]),
one obtains

V2 Y+

An obvious re-scaling of the arbitrary constant ¢ finally yields ([620]).

~ \4
2i 1 9
0(z) = —m= sinsow — =— sin(solz]) * (A_> ,
280
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The functions 9, 9, J /7+, and (5 /7+)Y are all functions of rapid decrease in the
respective variable. Young’s inequality then gives

{9\ \Y 1/5 \Y
T+ Loo(R) T+

The whole function (620)) is therefore bounded.
Next, let us set

< < +00.

L1 (Rz)

h= (0/3;)"
A :=sin(sg|z]) * h.

Since h is smooth and with rapid decrease, then A is differentiable at any order,
and a simple computation yields

A (x) = —s2A(x) + 2s0h(z).
Thus, using again the rapid decrease of h, asymptotically when |z| — 400 the
function A satisfies A”(z) + s2A(z) = 0, whence its asymptotic periodicity

A(x) el 2o (cgﬁ) COS SoT + cgﬁ) sin sox) (1 + 0(1))

for some constants cgﬁ)7 cgﬁ) € C that vanish when ¥ = 0. O

6.3. Symmetric, unbounded below, TMS extension
Let us introduce the subspace

¢ has re-scaled radial component

Doi={&€H HRY|  6=sinsolel) «(0/3:)  p.  (623)
for 9 € C(Cfodd(R$)

In [@23) the subscript ‘odd’ indicates functions with odd parity. The constant
s0 ~ 1.0062 is the unique positive root of 7(s) = 0 as defined in ([9), and 7 is
defined in ([G.I0). The correspondence between & and its re-scaled radial component
6 is given by (6.1)—([6.2)).

In the above definition of Dy it is tacitly understood that the re-scaled radial
components are all taken with the same parameter A > 0 in the definition (6.2). This
does not mean 50 is a A-dependent subspace, as one can easily convince oneself:
the choice of \ only fixes the convention for representing the element of Dy in terms
of the corresponding 6.

Lemma 6.5. (i) One has
£ eDy=090) =0. (6.24)

2150010-55



Rev. Math. Phys. 2021.33. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 05/20/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Michelangeli

(ii) One has

o~

€€ Dy=7(s) 9 (s) = —2s09(s) VseR. (6.25)

(iii) Dy is dense in HZ%;OE(R?’) for every e > 0.
~ 1
(iv) Do N HE ,(R?) = {0}. N
(v) For every A >0 and s € R, T)(\O)NDO C Hi_,(R?).
(vi) For A >0, T;\O) is injective on Dy, that is,
(€€ Dy and Tﬁ% =0)=¢=0. (6.26)
(vii) For every A > 0 one has

(&, T, = (T\V¢,n),, Y&mneDy. (6.27)

Proof. Part (i) follows from the fact that in 6(0) = [, Sin(80|y|)(5/ﬁ+)v(y) the
term (1/9\/§+)v has odd parity, whereas sin(sgly|) is even.

Part (ii) follows at once from the definition (G23]), by means of Lemma [G.4]

and (6.19). N
(iii) Let £ € Dy and € > 0. By means of (65) and Lemma [6.4] one gets

2 60(x)|? / dz
1_. ~ ————dx < ||0|| —_— .
€]l (R3) /]R (coshz)2 z < [|0]L . (coshz) < +oo

~ 1_
In fact, (G35 also implies that the density of the £’s of Dy in H, ;:06 (R3) is equivalent
to the density of the associated 6’s in L2 4(R, (cosh z)?¢dz). If in the latter Hilbert
space a function 6y was orthogonal to all such 6’s, then

- [ B sy = [ D (sinGsole) ¢ (3/7)") @) s
R R

(coshx)2e (coshz)

= /R (sin(so|x|) * (72‘5) (x) (3/ﬁ+)v(x)dx Vi € Cgoaa(Ra).

(The above change in the integration order is allowed, via Fubini-Tonelli, thanks
to the rapid decrease of the functions (coshx)~2¢ and (9/74)Y.) This would imply

o

/Rsin(xo|x —y[)ho(h)dy =0 foraec zeR, ho:= (cosh a)2e”

whence hg =0 and then 6y = 0.
(iv) Let & € Do\ {0}. Since 6 is not identically zero and is asymptotically cos-periodic
(Lemma [6.4]), then (G.5) implies
2
l€lFis o~ [ 0@ da = +oc.
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(v) Let € € Dy and A > 0. Owing to formula (612) of Lemma B.1]

2
[\

z/dx(coshx)lws
R

and owing to Lemma [6.4]

4 2cosh(z —y)+1 2
0(x) 7T\/g/Rclz/G(y) log Scosh(z —y)— 1|

2 cosh(z —y) + 1
2cosh(x —y)—1

0(x) — dy 6(y) lo = 250 Y(z).

W\/—

Therefore,

HT)(\O) ‘/]R(COth)lJr?sm(x)P dz < +o0,

ey S

because ¢ is smooth and has compact support.
(vi) Based on what argued for (G.I6)—(E.I8]), and on LemmaIBE_L it is straightforward
to see that if £ € Dy, and hence ) = sin(so|z|) * (19/’y+) for some ¥ € CF%,44(Rz),

then the re-scaled radial function #(" of the charge 1 := TA( )f is

0 = —4n?soV/X (cosh ) 9.
Therefore, if T)(\O)f =0, then 6 = 0, thus also ¥ = 0, implying that & = 0.
(vii) Owing to ([G.13)),

/E§3ﬁ(T/§J)\77)(p)d = ;\7} ds3(s) 9 (5) M (s)

- [ @ 9wt ap

as an identity between finite quantities. Indeed,

/dsﬁ(S)ef(g\)(S)ﬁf(”\)(s) = —230/ dx 19(5)(95) g(n)(x)
R R

~ 2 /R dz 9O () (sin(sola]) * (9 /74)") ()

(having applied part (ii) in the first identity and ([@23)) in the second), whence

< [[9€)] | sinGsola) * (20 /7)1

——\ Vv
(n)
< 9], (’i—") < too

[ 457069 5) 800s)
R

T+
(again by Young’s inequality). O
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Remark 6.6. Lemma supplements the picture previously emerged from
Lemma [B5[i) and (v), and discussed in Remark 37 concerning the validity of the
identity

/ &(p) (Ton) (p) dp = / Té(p) 7(p) dp.
R?’ R?’

Indeed, such a symmetry property was previously established for {,n € H %(Rf‘),
whereas Lemma [B5(v) now guarantees it also for £, € Dy, namely a non-H?z
domain (as shown by Lemma [6.5](iii)).

Remark 6.7. Along the same line of the previous Remark, Lemma also sup-
plements the analysis of the problem, considered in Lemma [B5](ii)—(iii) and Remark
B of finding charges & € H, 2 (R?) satisfying T\”'¢ € H3(R?), which is in turn
crucial to construct Wy 1T(0 As observed already, high regularity of £(y) (hence
fast decay of £ ( )) is of no avail in the sector £ = 0. Now Lemma [G.5] implies that
the good feature for having Th¢ € H 2 (R3) is a suitable oscillation of & (p) combined
with some |p|-decay compatible with H~2 -regularity (which, loosely speaking,
corresponds to some localization of £(y) close to y = 0). This is seen by the fact
that 6©) must satisfy (6.25), hence (Lemma [6.4) 0(€) () is cos-periodic in z, with
consequent (non-periodic) oscillation in £(p) via (61) and (6:3).

Lemma 6.8. Let A > 0. Then

e 610G _

f —00. (6.28)
een,  IEI7

1
2

Proof. Let ¢ € Dy, and let 6 be its re-scaled radial component ([GI)—(62). The
numerator in (28] is indeed finite and real (Lemma [G5(vii), Remark [6.6]). For
e > 0 let & be the element of Dy whose re-scaled radial component 6. is defined by
Oc(z) := f(ex). Then é\g(s) = 5’15(3/5) Therefore,

. 1 7Y
tip (6,76 ),. = - f lim =5 [ ds3(9) B(s/2)F

hm /ds*y €s |0 W=

3\/— cl0 €
having used (613) in the first identity, and the fact that fR ds|f(s)|2 = +oo (which
follows from Lemma[65iv) and (@3]) and 7(0) = 1 — V < 0. On the other hand,
2 [0c ()] / |0(z) > =10
~ ———dr= [ ———=dx 0,
||€€”H‘% /R (cosh z)? * r (coshz)? -

owing to (GH), (624, and dominated convergence. As a consequence,

lim <£€7T)(\O)£€>L2 -

BT |

which proves (G.25]). |
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For A > 0, let us now consider the operator
AY = 3wt
S (6.29)
D(.A&O)) = 50

_1
with respect to the Hilbert space HWie:O(R?’). The definition ([G29) is well-posed,

owing to Lemma [65v) and Lemma [Z8(ii). The operator A(AO) is the counterpart,

for the sector of angular momentum ¢ = 0, of the operator Ag\e) defined in (G.I6).

_1 )
Lemma 6.9. With respect to the Hilbert space HWi,Z:O(]RB)? the operator Ag\o) 18
densely defined, symmetric, and not semi-bounded.

Proof. The density of AE\O) follows from Lemma [6.5](iii) and the canonical Hilbert
—1
space isomorphism Hy,? —oR?) = H ~2(R3). Symmetry follows from the finiteness

and reality of

2 N _
%/Rdsa(s){m@(s)f Ve e Do,

having used ([629) and ([235]) in the first identity, and (EI3)) in the second. (The
finiteness of the above quantities is argued precisely as done in the proof of Lemma

[65(vii).) The unboundedness of AS\O) from above is obvious, and from below it

(&AVE) -y =HETVE) 1o =

Wi

I

_1
follows directly from Lemma [6.8, using again the isomorphism Hy,? ,_o(R?)
H~2(R3).

O

Analogously to the operator Ag\e) from (BI6) when ¢ € N, A(AO) is a well-defined
labeling (Birman) operator for a Ter-Martirosyan Skornyakov symmetric extension
of our original operator of interest H , with inverse scattering length a@ = 0, of
course only as far as the £ = 0 sector is concerned. Indeed, based onAIiemma 6.9

the considerations of Remark FL8|(ii) apply. Moreover, as found for A(f), we shall
0 1

see that AS\O) is not self-adjoint in Hy,” 7220(}1@3), and therefore it does not identify

a Ter-Martirosyan Skornyakov self-adjoint extension of H (with £ =0).

Unlike Ag\é), however, A(AO) is not bounded from below, hence does not admit a
Friedrichs extension: the identification of its self-adjoint extension(s), if any, requires
a different approach than Proposition [5.4] discussed in the following Sec.

Moreover, the Ter-Martirosyan Skornyakov symmetric extension of H identified

by Ag\o) for the sector ¢ = 0 is itself unbounded from below (and above) on the
bosonic space Hy,. This follows from the computation made in Remark 4] namely

(9, (H 0 +A1)g),, = (€,.A7€)

1
2
A
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for functions g = u? (with an innocent abuse of notation in writing H 4, as we
A

are only referring here to the Hamiltonian on functions with £-charge in the sector

£ =0): when ¢ € Dy the expectation

10
<97HA§°)9>HR) B (645 £>H;v%

lglze, Ml
b HWi

- A

can be made, at fixed A, arbitrarily negative, owing to ([G28]).

Remark 6.10. For the mere purpose of realising W, 1TA(O) as a densely defined

and symmetric operator in Hv_v% 1—o(IR?), one could have selected the larger domain
D), := Dy + span{&s, }, (6.30)

where &, has re-scaled radial component
Os, () := sin spx (6.31)

for some tacitly declared A > 0. All conclusions of Lemma remain straightfor-
wardly valid for Df, but for the injectivity of T)(\O) on Dy, for

7%, =0, (6.32)

as follows from (the proof of) Lemma [6:4l The conclusions of Lemma [6.8] apply to
Dy as well, and therefore one has a version of Lemma also for the operator

BY = 3wyt
N (6.33)
D(Bgo)) = 256

The issue with such Bg\o), as compared to AE\O), is that it is symmetric on a domain

that is too large for the problem of finding self-adjoint operators of Ter-Martirosyan

Skornyakov type: the operator H 2O (in the sector ¢ = 0) admits self-adjoint TMS
A

extensions on LZ(R3 x R3 dyy, dy2), the operator Hva does not. We shall complete

©)
A
this discussion in Remark [7.9]

6.4. Adjoint of the Birman parameter

Here we characterize the operator (A(AO))*. We recall that ‘x” indicates the adjoint

1
with respect to Hy,? ,_(R?), whereas ‘¥’ is reserved for the adjoint in L*(R?).

Lemma 6.11. Let A > 0. The densely defined and symmetric operator Ag\o) defined
1
in [@29) on the Hilbert space HWie:O(R?’) has deficiency indices (1,1). Thus, for
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_1
every (> 0 there exist two non-zero functions &, &—i, € Hy,? e:o(RB) such that

ker ((@)* — i,u]l) = span{&;,}

S (6.34)
ker ((.Ag\o))* + i,u]l) = span{{_i, }.
Moreover, (A&O))* acts on such eigenvectors as
( (0)) Eqip = 3W 1T(0 Exip = Eipbaiy. (6.35)
Corollary 6.12. Under the above assumptions,
D((AS\O))*) = D}y +span{&,,} +span{¢_i,} (6.36)

(A0 =,

~ _1
where D}, is the domain of the operator closure of Ag\o) with respect to Hsz:O(]RB),

that is, 756 is the closure of Dy in the graph norm of Ag\o)

In practice we do not need an explicit characterization of 56 This will be clear
in due time from the usage of Lemma in the proof of Theorem [(.4]

We also determine convenient asymptotics for the elements of (Ag\o))*'
Lemma 6.13. Let A > 0 and z € C\R (in practice z = ip for u € R\{0}, so as to
cover both deficiency subspaces [G34)). Let & € ker ((A(AO))* — zIL). Then,

A sin(so log |p|) + fo(z) cos(so log |p|) (14 0(1))
p (6.37)
as |p| = +o0, |z|/A =0
for two constants Ag, Wi ¢(z) € C with
Wie(2) = Wae(2). (6.38)
Here so = 1.0062 is the unique positive root of ¥(s) = 0 as defined in (G9]).

&(p) =

Proof of Lemma Let 4> 0. Let &1 € HV_Viezo(Rg) with

&y € ker ((Ag\o))* - iu]l) = ran(.Ag\O)) + iu]l)LA

and let 64 be the re-scaled radial component of ;. Then

O—<£+,( )—|—1u]l)§> it

WA

=3 T€) gy +in(&n W),y Ly VEE D (%)
Here we applied (235 as usual, together with (6:29) and Lemmas[2:8(ii) and [65(v).
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The two duality products appearing in the right-hand side above have been
computed in (the proof of) Lemma [61] and in Lemma [6:3}

2 (s 5 [ o

2cosh(z —y) +
d d
3 cosh(z —y) — 1 )

An? [ O5(2) 0z 327
w0y = + d+—//
(& Wy 5>H 2,H2 M3 Jr (coshz)? RxR

) 7o) 6)
(2cosh(z +y) + 1) (2cosh(z — y) — 1)

(6T, 1 1 =

dx dy.

Here 6 denotes the re-scaled radial component of £ € 250.
We can also re-write the above quantities after taking the Fourier transform, by

means of (GI3)) and (GIH):
2 ~ ~
(T4 s = 5 [ A6 T Dls)ds

(0) ) ) 272 S ~ ~
<§+7W)\ €>H_§,H5 - 23 (Sinh%s *0-0') (s)0(s)ds

167r i smh G(s+1t) sinh Z(s —1)
// - — dsdt.
RxR smh 5(s+1t) sinh §(s — 1)

_ Adding them up into the eigenvector equation (@), and using the density
Dy together with Fubini-Tonelli theorem, leads to the following equation in the
unknown 6 :

4 2cosh(z —y) +1
(00— 1= [ 00 10y S0 L)

_ip [ 6i(x)  8V3 0. (y)
_”((Coshw)” ™ /R<2cosh<x+y>+1><2cosh<x—y>—1> dy) (039

(for a.e. z € R), or, equivalently,

700 = 35 (s #2) ©

8 sinh (s +t) sinh $(s — 1) ~
. 4
* 73 Jg sinh 5 (s +t) sinh Z(s — ) 0. (t)dt (6.40)

The integration order’s exchange in the double integrals was possible thanks
to the fast decay of the integral kernels. This also demonstrates, unfolding (6.40])
backwards, that £ satisfies

3T\"¢, =iV,
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therefore TA(O)SJr € ranWA(O) = HE:O(R?’) (Lemma [28((ii)) and

sW Ty = ingy = (AY) ey
Thus, (A(AO))* acts on the eigenvector &4 precisely as 3W)\_1T)(\0).

Now, on the one hand it is well known that the dimension of the deficiency
subspace considered at the beginning of this proof is independent of g > 0, and
therefore the dimension of the space of solutions to (E39) (equivalently, (640I)
does not depend on p > 0. (In fact, owing to von Neumann’s conjugation criterion
[57, Theorem X.3], such dimension is the same even when one takes instead p < 0,
namely when one considers the other deficiency subspace.) On the other hand,
mirroring the reasoning of Lemma [64Ts proof, [6:40) can be re-written as

o~

. (s) = os) +1 5 LB (s)
with

0o(s) :=c(d(s — s0) — (s +s0)), ceC

and

8 sinh & (s +t) sinh
_|_
7v/3 Jr sinh 5 (s +t) sinh

X(PV L — PV L )

s — 8o s+ so
(so = 1.0062 being the unique positive root of ¥(s) = 0).

From this we see that the dimension of the space of solutions to (G40 is precisely
equal to one, namely it is dictated by the dimensionality of the solution space for the
pivot equation 7 §+ = 0. The previous formulas provide also an iterative expansion
of the form

. N—-1 i k . i N =R
= (%) £FG, + (X“) 0., NeN
k=0

in the regime p/A < 1, which does not alter the dimension of the space of
solutions.
In conclusion,

dim ker ((;tng))* — i) = dimker ((A)" +ip1) =1,

the analysis of the second deficiency subspace being clearly the same as above, upon

exchanging p with —p. This proves that Ag\o) has deficiency indices (1,1). O
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Proof of Corollary [6.12. Formula ([6.36]) is an immediate consequence of Lemma
61T and ([©.29), as an application of a standard formula by von Neumann (see,

e.g., [67, Lemma on p. 138]. For sure (Ag\o))* does act on 56 as 3W/\_1T§0) because

this is the action of (AE\O))* both on Dy (owing to the definition (6:29)) and on the
deficiency subspaces (owing to (G35])). m|

Proof of Lemma Let 0 be the re-scaled radial function associated with &£
through ([@I)—(62).

Continuing the discussion from Lemma [GITs proof (where the present 6 was
denoted by 6 ), 6 is the unique solution, up to complex multiplicative constant, to

~

(s) = Bo(s) + 5 LB(s). (i)

>

In the iteration
. PNV PN
0=>(5) o+ (3) £, New,
X ET
and in the considered regime |z|/A < 1, the leading expression for the solution is
=0+ §£§07 (ii)

up to O((z/X)?)-corrections as |z|/A — 0.
Let us work out () choosing explicitly ¢ = V2T for the convenience of having

2i
~ V2T
fols) = =5

(6(s —sp) —d(s+ sp)) and hence by(z) = sin soz

(see ([G.2I))). This will fix 6, and hence &, up to a complex multiplicative constant.
The computation for £6y then gives

L0y = —A(s) (PV LI )

s — 8o s+ so

with

8 sinh % (s +t) sinh Z (s — ) ~
: - Oo(t) dt
73 Jr sinh 5 (s +t) sinh (s — t)
B iy/m ( 5 — 80 3 s+ s
85074 (s)v/2 \ sinh 5(s —sg)  sinh Z(s+ so)
32 sinh 5o sinh §s )
/3 (1+2cosh Z(s —s0)) (1 +2coshZ(s+s0)) /"
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Fig. 2. (Color online) Plot of the imaginary part of the function A(s).

We observe that A is a smooth and rapidly decreasing function that is purely imag-
inary and has odd parity (Fig.2)). Then A is also smooth and rapidly decreasing,
and is real-valued and with odd parity. Thus (@) takes the form

0 =00 —

A(s) (PV L py ! ) (iii)

s — 8o S+ so

>

The inverse Fourier transform of () and ([G.21)-([6.22) then yield
0(x) = sin spx + % (sin(so| - [) x A) (). (iv)

For such expression we can repeat the very same reasoning of Lemma [6.4s proof
and deduce that asymptotically as |z| — +oo (and |z|/A — 0)

0(zx) = (sin Sox + ; ag cos(sox + ag)) (14 0(1)) (v)

for some constants a¢ € R and o¢ € [0,27) depending on . In particular ag is
surely real, because () expresses a real-valued function.

With the asymptotics (@) for the re-scaled radial function 6, we reconstruct the
asymptotics for £ by means of (6I)-(E2). Up to o(1)-corrections as |x| — 400
(hence |p| — +00),

sin spr = sin (so log ( \/— +1 ))
A~ sin (80 log|p|\/7>

3
= sin (30 log ) cos(so log |p|) + cos (30 log \/}) sin(sp log |p|)
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and

3p? 3p?
cos(sozx + 0¢) = cos (so log (\/% + \/% + 1) + 05>
A Cos (s log [pl4/ 3 )
~ 0 -
A
3 : 3\ .
= cos | solog 3 cos(so log|p|) —sin | sg log X sin(sp log |p|)-

Plugging the latter identities into (@) yields

0(z) = (cos (so log 4/ %) - §a§ sin (so log \/§>> sin(sg log |p|)
+ (Sin (s log \/§> + 2 ae cos (s log \/§>> cos(so log |pl)
0 N 3 Qe 0 3 0
A A A

up to o(1)-corrections as |p| — +oo and |z|/\ — 0. Inserting this into (1)) (G.2]),

that is,
- 9(log (\/%—l—\/%-i-l))

V3m[ply/§P% + A

é(p
yields finally ([6.37) with

sin (so log \/g) + $ ag cos (so log \/g)
W)\’g(z) =
cos (so log \/g) — 5 ag sin (so log % )

In ([637) we also re-instated the overall multiplicative constant.

The above expression for W ¢(z) shows that Wy ¢(z) = W) ¢(Z), thanks to the
fact that a¢e € R. Had one expressed the asymptotic periodicity (@) above in terms
of the sinus function, which amounts in practice to re-define the shift o¢, one would
have come up with an analogous expression for Wy ¢(z) with the same symmetry

property (6.38]). The proof is thus completed. |

Based on the discussion of this subsection, it is convenient to introduce the

following nomenclature for the charges belonging to the domain of (Ag\o))*. Fixed

TN\ K
@ > 0 and representing & € D(A(AO)) through (G30]) as

E=E+ ciéip e iy
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for some £ € 256 and ct € C, we shall refer to

freg = gv fsing = C+§iu + C,f,iu (641)

as, respectively, the reqular and the singular component of £. Regular and singular
parts are unambiguously defined because the sum in ([6.36]) is direct.

To visualize the actual difference in behavior, take for concreteness &y € 250:
then its re-scaled radial function 6., satisfies

~ 0 1 1
Breg(s) = — ) (Pv ~ PV )
F+(s) §— S0 S+ So
for some ¥ € Cgf’odd (Rz). On the contrary, &ing has the behavior of {4, and in the

course of the proof of Lemma [6.13] we showed that the associated re-scaled radial
functions 64;, satisfy

V2T
2i

§iip(3) a2 (5(8 —50) — (s + 80)) F %K(S) (PV r PV 1 )

s — 8o s+ sp

up to an overall multiplicative constant and up to O((z/\)?)-corrections as
|z|/A—0.

6.5. Multiplicity of TMS self-adjoint realizations

The operator Ag\o) defined in ([@29) admits a one-real-parameter family of self-

1
adjoint extensions with respect to the Hilbert space Hy,? ,_ (R?). They are qualified
as follows.

Proposition 6.14. Let A > 0. The self-adjoint extensions of A(AO) on H;Vizzo(Rg)
form the family

{AL) 18 € R} (6.42)
with
0
D(A}) == Do,
(6.43)
AL = 3w T,
where

*
¢ e D(Ag\o)) with singular part satisfying

. cos(s()loglpl);fsin(SOIOglpl) (1+0(1)) (- (644)

as |p| = +oo for some c € C

Each of the Ag\% is a legitimate TMS parameter in the sector of zero angular

momentum, according to the discussion of Sec. @l precisely as the operator Af\g)
defined in (BI8)) is a TMS parameter in the sector £ € N.
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Proof of Proposition 6.14. Let ;4 > 0. By a standard application of von Neu-
mann’s extension theory to the operator A(AO) with deficiency subspaces ([634]) and
adjoint ([6.35)—([G.30]), the self-adjoint extensions of AE\O) form the family

(AL, |velo,2m},

€ € D,
ceC

AL, €= 3w T = 3W TV + e(ingi — ipeE ).

where

D(AY),) = {5 =&+ &+ eV E )

We have tacitly and non-restrictively assumed that the functions £+, are normal-

ized in H;‘,%’ZZO(RI‘). The notation U, is to remind that the map &, — €&,
induces a unitary isomorphism U, between the two deficiency subspaces ([6.34)).

Let us now characterize the £’s in D(Ag\ogju) in terms of the large-|p| asymptotics
of the corresponding Esing = c(giu—i—ei” ftiu) (see definition (6.41])). Owing to Lemma
(©13), at the leading order as u/A — 0 and |p| — +oo, and up to an overall
multiplicative constant, one has

[Pl &ing(p) = sin(so log [p|) + we x5 cos(so log [p])
+ e (sin(so log |p|) + Wex, cos(solog [p|)),
having set
we = Wae(ip)
from formula (@37) and having used the property

Wi e(=ip) = Wi e(ip) = wWex
from (63])). Thus, within such approximation, and suitably re-defining the overall
multiplicative constant,

14 e
We e+ €V N

Ip| 2 Esing(p) = cos(sp log|p|) + sin(sg log |pl).

At fixed v, the above (asymptotic) condition selects all charges from D(AE\O))* that
constitute the domain of the ‘vth extension’.
As
1+e”
8= - € R,
We ap + €Y We A

one can switch from v-parametrization to the S-parametrization, re-defining
0) ._ 40
Ay =A\y, -
This leads to the final thesis. O
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Remark 6.15. It is worth underlying that the overall construction so far has
involved two distinct extension schemes: the Krein—Visik—Birman scheme for the
self-adjoint extensions of the operator H, classified in Theorem 2.9 and von Neu-

mann’s scheme for the self-adjoint extensions of the operator A(AO)7 classified in

Proposition [614 (As Ag\o) is not semi-bounded, the Krein—Visik-Birman scheme is
not applicable.) In either case one speaks of singular component of a generic ele-
ment of the adjoint as that component belonging to the deficiency subspaces, and
in either case each extension corresponds to a suitable restriction of the domain of
the adjoint. However, in the Krein—Visik—Birman scheme such a restriction selects a
subspace of the adjoint’s domain by means of a constraint between the singular and
the regular component of its elements (as commented at the beginning of Sec. [3]),
whereas in von Neumann’s scheme the restriction of self-adjointness is a constraint
within the singular components only (see (G.41]) and ([G-44]) above).

7. The Canonical Model and Other Well-Posed Variants

Merging the findings of Secs. [l and [6] within the general scheme of Sec. @] we can
finally present a class of models for the bosonic trimer which are mathematically
well-posed (i.e. self-adjoint) and physically meaningful (i.e. of Ter-Martirosyan Sko-
rnyakov type), and which in a sense are canonical, as we shall comment further.

7.1. Canonical model at unitarity and at given
three-body parameter

Let 8 € R and A > 0. With respect to the decomposition (£Ig]), namely
_1 > _1
Hy? (R%) = @ Hy? (R, (7.1)
£=0
let us consider the operator
0 ¢
Arg = AV o P AV (7.2)
=1

in the usual sense of direct sum of operators on an orthogonal direct sum of Hilbert
spaces. Ag\é), with ¢ € N, is defined in (EI8)), taking here a = 0, and Ag\% is defined
in (6.43)-([©.44). Observe that the condition A > A\, required in the definition (G.I8])
is automatically satisfied here, as a = 0.

The self-adjointness of each summand in ([Z2]) with respect to the correspond-
ing Hilbert space H;Vig(]R?’) is proved, respectively, in Propositions [£.4] and [6.141
Therefore, altogether A, s is self-adjoint on H;é (R3).

Upon setting

Dp := Do s BHH s, (7.3)
k=1
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the definition (Z2) is equivalent to

D(Axp) == Dg

(7.4)

./4)\75 = 3W;1TA.
Here we use ‘H’ instead of ‘@’ to indicate that the sum is orthogonal with respect
to the Hilbert space orthogonal direct sum (Z.I]), but the summands are non-closed

subspaces of H, ;Vé (R?). Actually (73] is nothing but the explicit expression for the
domain of the direct sum operator (.2]) (with respect to the decomposition ([1I)):
the domain Dy g of A(A(f)ﬂ is defined in (6.44]), and the Dy of A(f) is defined in (5I7)).
Observe that Dg is A-independent, because so are its /-components. The second line
of (4] is due to the fact that each of the summands in (Z2) is an operator acting
on the corresponding /-sector as WA(Z)T)(\E) (Propositions [54] and [614]), and in turn
Ty and W) are reduced with respect to the decomposition (1) with component,
respectively, TA(Z) and WA(Z) (as seen in (B7) and ([@I4).
It is instructive to re-cap what Dg altogether is:

oo oo 1 1
¢=> We P Hy? R = Hy 2 (RY)
£=0 £=0
such that

- ¢ e HE (R%) and TVe® € HY (R?) for L€ N, 5
8 = — ) .
¢ ¢ D(Ag\o))* with singular part satisfying
E' (p) = c cos(sp log |p|) + Bsin(sp log |p|)
sing =

p2

(1+0(1))

as |p| = +oo for some ¢ € C

0 _1
where the subspace D(AE\O))* C Hy,? ;—o(R?) is defined in (6.36). Moreover, follow-
ing from the analogous properties of each ¢-component,

_1
Dy is dense in Hy,?(R®) and ThDg C Hz(R®). (7.6)

Being self-adjoint on the deficiency subspace of H+ A1 (more precisely, on a
unitarily equivalent version of it), Ay g identifies a self-adjoint extension H Ay Of
H in the sense of the general classification of Theorem

In turn, since Ay g acts as 3W, T}, its domain Dg satisfies (Z6)), according to
Theorem the operator H Ay, 18 a Ter-Martirosyan Skornyakov extension of H,
namely a physical extension.

Such extension can be defined as follows.
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Theorem 7.1. Let 5 € R and A > 0. Define
L | 0 e HE(R® xR?), € € Dy,
g= ¢ + ’U;g A _3
¢ (y1,0) = (2m) "2 (Th&)(y1) (7.7)
(%ﬂ + )\]l)g = (_AY1 - AY2 - v}'1 . v}'2 + )‘]l)(b)\a

D(Hop) :

where the subspace Dy C H2 (R3) is given by (TH).
(i) The decomposition of g in terms of ¢* and & is unique, at fived \. The subspace
D(#4,5) is A-independent.
(ii) 4 is self-adjoint on LE(R3 x R3 dy,dy2) and extends H given in (7).
(iii) For each g € D(7,g) one has

$*(y1,0) = (2m) "2 (T2&) (y1),

o &(ph p2) dp2 = (ﬂ)(pm

/ , G(p1,p2) dpa = 47RE(p1) + 0(1)  as R — +oc.
p2€R

[p2|<R

All such conditions are equivalent, and each of them expresses the Bethe—
Peierls alias Ter-Martirosyan Skornyakov condition. In particular, the first
version of (TR) is an identity in Hz (R3).

(iv) J%G g is not semi-bounded.

Proof. As argued already, the operator H A, matches the conditions of Theorem
[£6ii) for the considered A, therefore it is a Ter-Martirosyan Skornyakov self-adjoint
extension of H with inverse scattering length a = 0. Renaming H Ang = B,
Theorem (6] guarantees that such 74 g is A-independent (only the explicit decom-
position of its domain’s elements g depends on \), with

o € HX(R® x R?), € € Dg,

D(AMp) =3 9=0"+ui| [ = Y
(%,) g=1¢ Ug /]RS & (p1, p2) dp2 = (Th&)(p1)

The various BP/TMS conditions for 7% g and their equivalence are then guaranteed
by Lemma [](iii), and the unboundedness from below (and above) of % s follows
from the fact that %) g extends, in the ¢ = 0 sector, a symmetric operator that is
not semi-bounded (see Lemma and the observations right after). m|

Remark 7.2. Owing to the bosonic symmetry, if ¢ € D(55 g), then (8] has
equivalent versions in the other variables, e.g.,

P (y.0) = ¢*(0,y) = ¢ Ny, y) = 2m) F(ThE)(y) (7.9)
(see (ZH)).
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Remark 7.3. In the sectors of definite angular momentum ¢ € N the Birman
operator Ay g labeling the Hamiltonian ﬁA/\,B = g is strictly positive, and
correspondingly 7% g is lower semi-bounded (Theorem [ZI(ii)). In this case we
can express the quadratic form of % g according to Theorem [Z9(iii). Explicitly,
combining (Z21)), (Z43)), and (&I9)), we find that for all ¢g’s of the form

g=0¢"+u}, ¢ €HL(R*xR?), ¢eHFR? (7.10)

for some A > 0 and some ¢ € N (thus, excluding ¢ = 0) the evaluation of the
quadratic form of %) g gives

1
%,ﬁ[g] = §(||(v}’1 + VY2)¢)\||i2 + ||VY1¢>\Hi2 + ||v}'2¢>\Hi2)
A1~ e+ ]5.) +3 [ Ep) (B @I (711)

(the L?-norms being norms in L?(R? x R?)). Of course, the above expression is
the same for all §’s, since the parameter 8 only qualifies the properties of the
Hamiltonian 7% g in the sector £ = 0. On the ¢’s of (ZI0)) one then has J% z[g] > 0,
and by self-adjointness the form (IT]) is closed. Through a quadratic form analysis,
the form (CIT) was proposed and proved to be closed and semi-bounded in the
recent work [4].

The double index in J%j g is to indicate that two parameters have been selected
in order to identify the operator within the general class of self-adjoint extensions
of H , namely the parameter a« = 0 in the Ter-Martirosyan Skornyakov condition,
and the parameter 8 € R in the choice of the charge domain Dg. (It is surely of
interest to repeat the same analysis for the analogous extensions J%, g: as said,
from this perspective we only focus here on the unitarity regime o = 0, which is
the physically relevant one.)

Explicitly, « = 0 and S select the following prescriptions:

/ P po)dps TET R4 Epy) +o(l) (TMSy) (7.12)
p2€R

|p2|<R

ES(lOn)g( ) ‘P‘—:H’OO c COS(SO 1Og |p|) _;f SIH(SO IOg |p|) (1 + 0(1)) (IIIB) (713)
As discussed in Secs. [6.3H6.4] and Proposition [6.14] the TMS condition alone, indi-
cated here with the shorthand TMS,—g, is not enough to qualify the self-adjointness
of the model: an additional S-driven condition is needed, present only for charges
in the ¢ = 0 sector.

The shorthand Il in (7I3]) is meant to express the following difference. (T12)
is a two-body condition, constraining the trimer’s wave-function when two of the
bosons come on top of each other, which is explicitly seen from the first version of
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([T8) or also from its consequence

ly2|—0 1
Gav (Y15 y2]) 7~ wf(YI)"‘O(l)

(see (£2) above). Instead, (ZI3)) is interpreted as a three-body condition, regulating
the behavior of the trimer’s wave-function in the vicinity of the triple coincidence
configuration. Some mathematical heuristics on such three-body interpretation is
presented in [I3) Remark 2.8] and [40, Sec. 8], and above all one can see from
the spectral analysis that follows (Sec.[.2]) chat such 8 has precisely the role of the
three-body parameter introduced by the physicists, on which we commented in the
introduction.

From this perspective, each J% 3 is a canonical Hamiltonian for the bosonic
trimer with zero-range interaction: it is defined by a canonical choice, namely the
Friedrichs extension of the TMS parameter, in all sectors £ # 0, and by a S-extension
of the TMS parameter in the sector £ = 0. In retrospect, also in the latter sector
the construction was canonical, in that the choice of the initial domain of symmetry
Dy (formula ([GZ3)) is the natural one guaranteeing the well-posedness condition

T;\O)ﬁo C Hg%:Q(RB) (Lemmas [6.4] and 6.5(v)).

7.2. Spectral analysis and Thomas collapse
For the Hamiltonian J#4 g, 8 € R, we now consider the eigenvalue problem
Hypg=FEg, E<O. (7.14)

As S5 is a non-trivial self-adjoint extension of the positive symmetric operator
H, we are thus concerned with the negative bound states of 4 g.

Theorem 7.4. Let € R and let 74 g the operator introduced in Theorem[T Il The
negative eigenvalues of 7 g relative to eigenfunctions with spherically symmetric

singular charge constitute the sequence (Eg p)nez with
2 2

Bppn=—3¢ w0 W esom, (7.15)

The constant so ~ 1.0062 is the unique positive root of 4(s) = 0 as defined in ([G3]).
Each such eigenvalue is simple and corresponds to an eigenfunction of the form

. 3p? 3p?
sin sq (1Og (\/ MEs ] T \/4‘E‘3~”| " 1)) (7.16)
[ply/3P? + [ Esnl

5.0 = 1) wih

€B,n (p) = CBn

with normalization factor cg,, € C.

We recall that the nomenclature ‘singular charge’ is reserved for the function &
uniquely associated to g in the general decomposition ([2:28]) (Lemmas[24] and 27]).

Corollary 7.5. (i) Each 4.5 admits an infinite sequence of negative bound states
with energies Eg ,, accumulating to —oo as n — 400, and accumulating to zero
from below as n — —oo.
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ii) Different realizations 6 and . p,, namely [ B2, have disjoint
B ,B2
sequences of negative bound states, but with the same universal geometric law

Esn 2
2Bt _ exp 2l ~515 YneZ
Egn 50

irrespective of 3.
(iii) Denoting by

o, (,5) = {Epsn|n €L}

the negative point spectrum of 4 g in the sector £ =0, one has

U O’;(%,g) =R".
BER

The presence of an infinite sequence of eigenvalues for the three-body Hamil-
tonian which accumulate to —oo is referred to as the ‘Thomas effect’, or ‘ Thomas
collapse’, with reference to the phenomenon that, as mentioned in the introduction,
was first discovered theoretically by Thomas in 1935 [63] through an analysis of
the three-body problem in which the Bethe—Peierls contact condition was formally
implemented in each two-body channel. The collapse, or ‘fall to the center’, refers
to the circumstance that the corresponding three-body wave-function was showed
to shrink around the triple coincidence point. This is precisely what can be seen
from the eigenfunctions (ZI6) (Remark [[77] below).

The presence of an infinite sequence of negative eigenvalues for the three-body
Hamiltonian which accumulate to zero is referred to as the ‘Efimov effect’, with
reference to the same phenomenon predicted theoretically in the early 1970’s by
Efimov [19,120] for three-body quantum systems with two-body resonant interaction
of finite range.

Each Hamiltonian ¢ g thus displays both the Thomas and the Efimov effect.

Moreover, the negative point spectra of the J¢ g’s fiber the whole negative half
line and their disjoint union fills R~. This is an indirect signature of the fact that the
), g’s are a one-parameter family of extensions of the same symmetric operator.

The above properties of the negative point spectra of the J#4) g’s, significantly
formula (ZIH]), coincide with those emerging from the formal diagonalization argu-
ment of physicists’ ‘zero-range methods’ [9] [56] we surveyed in the introduction,
where 3 is precisely the physically grounded ‘three-body parameter’ [56, Sec. 4]. On
this basis, as anticipated in the discussion of (TI2)-(TI3]), we too shall refer to
B as the three-body parameter in the Hamiltonian. In Remark [7.7] below we will
substantiate this nomenclature with rigorous mathematical arguments.

Prior to proving Theorem [(4] let us single out this simple fact.
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Lemma 7.6. Let A be a densely defined and symmetric operator on a Hilbert
space b and assume that A admits self-adjoint extensions, i.e. dimker(A* — z1) =
dimker(A*—Z1) > 0 for z € C\R. Let Ay be the generic self-adjoint extension of A
with the notation of von Neumann's extension scheme, that is, Ay = A*|p(a,) with

D(Ay) = D(A) + (1 + U) ker(A* — 21)

for some unitary U : ker(A* —z1) 5 ker(A* —z1). Decompose a generic £ € D(Ay)
accordingly as € = &g+ c(&, +UEL) for some & € D(A), &, € ker(A* —z1), c € C.
Assume in addition that A is injective and that for some non-zero & € D(Ay) one

has A*¢ = 0. Then & = 0.

Proof. By assumption 0 = A*¢ = A&y + c(2&€, + ZUE, ). Moreover,

(Ao, &4 )y = (AL, U4)y =0,

meaning that A& and c(z&y + ZUEL) are orthogonal in h. Therefore, both such
vectors must vanish, and in particular A&y = 0. By injectivity of A (and hence of

A) the conclusion follows. m|

Proof of Theorem [T.4l Let us decompose g € D(.# 3) according to (7)) with
decomposition parameter

A=—F,

that is, g = o™ + ug‘ Then (7)), combined with 7% gg = —Ag, implies ¢ =0 and
T\& = 0. The eigenfunctions have then necessarily the form g = ug‘ for £ € Dg such
that Th¢ = 0.

As Ty is reduced with respect to the decomposition ([.I]) with components T)(\e)
(as seen in (B1)), the latter equation is equivalent to the collection of equations
TA(Z)E(Z) =0, ¢ € Nyg. We are concerned with eigenfunctions relative to charges &
belonging to the sector £ = 0, namely the physically relevant ones.

Let us then focus on the problem

7% =0, ¢0eDyp,

henceforth expressing the unknown ¢ simply as & Such equation, owing to
Lemmal64] is solved by those &’s in the subspace Dy g such that the corresponding
re-scaled radial function 6’s, in the notation ([G.I)—([6.2]), have the form

0(z) = csinsox, ceC.

In this case (61) and (63)) give
R sinso(log(\/%+ %4—1))
p) =c :
V3T p|\/5p% + A

Now, in order for such £ to belong to Dy g, £ must only have singular component,
that is, £ = &ing in the notation (6.36) and (€4I). This follows from Lemma
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applied to the operator A(AO) defined in ([@29) and to its extension A(Ao)ﬂ defined
in ([©@43). For the former, injectivity is proved in Lemma [65](vi) (using also the

bijectivity property of Wy, Lemma [Z8(ii)). For the latter, (A&O))*g = Ag\%g =
3wy 1T>(\0)£ = 0. Lemma [T.6]is then applicable, and yields & — &sing = &reg = 0.

It then remains to impose that the above generic solution £ satisfy the asymp-
totics (CI3) for the considered 3.

With simple computations analogous to those made in the proof of Lemma [6.13]
we find

~ 3\ sin(solog|p|) . \/3 cos(so log |p|)
= / 1 \/j -7 1 — -~ -~ = - 7
é&(p)=c (cos (so og A) p? + sin | sg log 3 o2

x (1+o(1))

as |p| — +oo, for some ¢ € C. The comparison with ([CI3) then implies

cos <30 log \/§> = [ sin <50 log \/§> .

The latter condition selects the admissible values for A\, and hence ¥ = —\: explic-
itly, only the values Fg, = —\, with
A = 3¢ wg Arecots e%”, n € Z.

This establishes ([.I5]), and moreover it is clear from the above discussion that the

corresponding eigenfunctions are all of the form uég’\”) and that each eigenvalue

L3, is non-degenerate. O

Proof of Corollary Parts (i) and (iii), as well as the geometric formula of
part (ii), all follow at once from (T3] of Theorem [T4l The fact that

o, (Hop)Noy, (Hp) =0, B+,

can be seen as follows. If Eg,, = Eg/ s for some n,n’ € Z, then
1
— (arccots — arccot’) = k
™

for some k = n—m € Z, as follows straightforwardly from (ZI3]). For the properties
of the arccot-function, this is only possible when k& = 0, in which case 8 =3'. O

Remark 7.7. At given § € R, the eigenfunctions g, = ugfﬁ ) have charges

&s,n that tend more and more to be localized around y = 0 as Fg,, — —00, and
on the contrary more and more delocalized in space as Eg 5, 1 0. In the former case
98.n(y1,y2) is generated by a ‘charge distribution’

§p,n(y1)0(y2) +0(y1)6s.n(y2) +0(y1 — y2)s.n(—y2)

(up to a multiplicative constant, see (232])) that tends to concentrate at the
triple coincidence point y; = y» = 0 as Fg, — —oo. This is precisely the
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fall-to-the-center phenomenon associated with the Thomas effect. All this can be
seen from the explicit expression of the eigenfunctions (ZI6). To visualize it we may
consider the radial distribution g, of the charge £z, in momentum coordinate,
namely

p2 |fB,n(p)|2

+oo
/ App? | fo.n(p))?
0

Qﬂ,n(p) =

)

where
1

mfﬁ,n(IPIL

. 3 2 3 2
2 smsO(log (\/4‘;;’"' + \/4|Ep;,n\ T 1))
fB,n(p) =CB.n 3 .
V3Iply/ 3P + |Es.nl

Figure Bl shows indeed that the more negative Eg ,, (namely, the larger n > 0), the
more flattened 03 ,(p), meaning the more localized in space &g (y).

gﬁ,n(p) =

Remark 7.8. Whereas Theorem [[4] and Corollary[[5 focus on the negative point
spectrum of the Hamiltonian 75 g, it is not difficult to determine that its essential
spectrum is precisely

Gess (K ) = [0, +00). (7.17)

This can be obtained by suitably adjusting to the present setting the reasoning
developed in [B, Secs. [l and [f] in collaboration with Becker and Ottolini. That
[0, 4+00) C 0ess (55, 3) can be seen by means of a Weyl sequence of the same type as
the standard Weyl sequences in HZ(R3 x R3) used to show that Oess(Hp) = [0, +00),

5x1074

iy

0 10°

>p

Fig. 3. (Color online) Plot of the radial distribution profile gg , for the two charges of the
eigenfunctions of 7 g, with 8 = 1, relative to the quantum numbers n = 2 (blue curve) and n = 3
(orange curve: this has been multiplicatively magnified by a factor 10, for a clearer rendering).
Correspondingly, Eg 3 < Eg 2 < 0. The charge relative to the more negative eigenvalue is more
delocalized in momentum, hence more localized around zero in space. Discussion in Remark [T.7]
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suitably modified so as to vanish at the coincidence hyperplanes (see [5, Proposi-
tion 5.1]). For the opposite inclusion, one can reproduce a version of the Minlos—
Yoshitomi decomposition for the present T, as we did in [5l, Sec. 6] for the fermionic
T, based on which by compactness arguments one can show that the spectral
projection relative to each interval [a, b] C (—00,0) is finite-dimensional.

Remark 7.9. As a follow-up of Remark [6.10] in retrospect we can comment over
the choice (B:23) of the initial charge domain Dy used to realize AE\O) =Wy 1T§0)

1
as a densely defined and symmetric operator on Hy,* e:o(R3)~

(i)

(iii)

As observed already, also on the larger domain D}, from ([.30) could one make

1 ~0)
Wy 1TA(0) symmetric on HWie:O(R?’). In either case, the resulting AS\O) is an
admissible Birman parameter for a symmetric Ter-Martirosyan Skornyakov
extension % = H o of the initial operator H (in the sector ¢ = 0). The
A
difference is in the smaller (Dy) or larger (D}) domain of charges, with corre-
sponding re-scaled radial functions of the form

6 = sin(sg|x|) * (3/§+)v for charges in Dy,

0 = ¢ sin sz + sin(so|z|) * (5/”Ay+)v for charges in D},

with ¥ € C§%4q(Rz) and ¢ € C.
Choosing the larger domain, one solves the eigenvalue problem

JHg=—-Ng, A>0

(in the sector £ = 0) with the same reasoning as in the proof of Theorem [7-4]
and thus finds solutions g = ug‘A with

6(x) = sin spz,

E)\(p): sinso(log( %—i—\/%—l—l))
V3w Iply/3p? + A

up to an overall multiplicative constant. All such solutions are now admissible,
in that all the above £)’s belong to 25(') irrespective of A > 0. This proves that
%) has a continuum of eigenvalues, which is incompatible with self-adjointness.
In fact, a laborious but instructive computation (originally alluded to in [27]

Sec. IIL.3]) shows that imposing the orthogonality of any two such ug and

ug in L2(R? x R3, dy,dys) does partition R into the disjoint union

2
s

2 2m
R = |Jop, o0p:={Agn=3e 705" n ez},
BER
where each sequence (—Agn)nez is an admissible sequence of simple eigenval-

ues, with orthogonal eigenfunctions by construction, for a self-adjoint operator
on L(R? x R3,dy;dys) (precisely, for the operator 74 g from Theorem [7.1]).
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(iv) In connection to (ii), and in view of Theorems [[71] and [(-4] we see that the
inclusion

50 C Dy C 56

involves three distinct admissible choices for the singular charges domain (in
the sector ¢ = 0) for symmetric TMS extensions of H, only the second of which
produces a self-adjoint extension.

7.3. Variants

The canonical model(s) % g, f € R, have variants that do not alter the £ = 0
sector construction, where the essential physics takes place.

As already observed at the beginning of Sec. Bl there is an amount of arbi-
trariness in the definition of the trimer’s Hamiltonian in sectors of higher angular
momentum.

The construction developed in Sec. [l is canonical in that it provides the
Friedrichs realization of an operator of Ter-Martirosyan Skornyakov type with
inverse negative scattering length a. (It has of course also a considerable degree of
instructiveness, from the technical point of view.)

Such construction, combined with the analysis in the sector £ = 0 (Sec.[d) led to
the self-adjoint Ter-Martirosyan Skornyakov Hamiltonians of the form H Ay, With
Birman parameter Ay g given by (7.2)).

Equally admissible (self-adjoint and TMS) alternatives are given by modified
Birman parameters of the form

Asvp = AL & P ALY, (7.18)
=1

where

DAY ) =D, = {¢ € HF (R®) | T¢ € HE (R)}

(7.19)
AO = 3w (T + all),

A
thus on the same charge domain D, that guarantees self-adjointness (Proposition
B4), but with scattering lengths that depend on the angular sector.

In fact, it would be physically acceptable also to ignore in the first place the
interaction in sectors of non-zero angular momentum, thus focusing on the Hamil-
tonians of interest only as effective models in the sector £ = 0. This is obtained by
taking the trivial (Friedrichs) extension of H whenever £ # 0: particles in a three-
body state with charges that do not belong to the zero angular momentum sector
just move with free dynamics. In this case the final Birman parameter’s domain,
instead of ([Z3]), becomes

Do B é{o}. (7.20)
k=1

2150010-79



Rev. Math. Phys. 2021.33. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 05/20/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Michelangeli

The TMS condition remains only in the sector £ = 0. The Hamiltonian is just the
free kinetic operator on the other sectors.

8. Ill-Posed Models

The analysis developed in Secs. ZH7] is deeply inspired by many previous investiga-
tions we extensively referred to in the introduction, and yet it is novel in that a
number of crucial steps are performed here by thoroughly working out a rigorous
operator theoretic scheme.

In the introduction we argued that for three-body quantum systems with con-
tact interaction physical zero-range methods determine eigenfunctions and eigen-
values of a formal Hamiltonian that otherwise remains unqualified. We also argued
that mathematical approaches are aimed at constructing a self-adjoint Hamilto-
nian of Ter-Martirosyan Skornyakov type: first one declares the operator or its
quadratic form, then one performs the subsequent spectral analysis on it. Of course,
on the physical side there is the advantage of an ultimate agreement check with the
experiments.

As a matter of fact, one can track down, through the mathematical literature
on the subject, certain recurrent sources of ill-posed models, failing to provide
a three-body Hamiltonian that at the same time be self-adjoint and exhibit the
Bethe—Peierls/ Ter-Martirosyan Skornyakov contact condition.

On the mathematical technical level, the model’s well-posedness lies in the cor-
rect choice of the domain of self-adjointness, among those domains that in addition
reproduce the desired short-scale physical asymptotics. A wrong choice of the (oper-
ator or form) domain fails to yield self-adjointness and produces incorrect spectral
data. In this informal sense we speak of incomplete or ill-posed models.

In some circumstances an explicit signature of some sort of incompleteness of the
mathematical model is the quantitative discordance in the spectral analysis with
numerical and experimental evidence from physics. This has been the case signifi-
cantly for three-body systems with a pair of identical fermions: the recent works [13]
39, [40] mentioned already in the introduction were essentially aimed at clarifying
this perspective, on which we shall further comment in the course of this Section.

In other occurrences the ill-posedness of the model is more subtle and less evi-
dent, and the case of the bosonic trimer is typical in this sense.

For clarity of presentation, let us group such occurrences into two categories,
discussed, respectively, in Secs. Bl and

8.1. Ill-posed boundary condition

The operator-theoretic programme aims at realising a Hamiltonian of zero-range
interaction as a suitable self-adjoint extension of H , the free Hamiltonian initially
restricted to wave-functions that do not meet the coincidence configuration I' (see
@), by selecting an extension’s domain where instead the wave-functions behave
at " with a precise, physically grounded boundary condition (BP/TMS).
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As demonstrated in Sec. @l (Theorem [6]), such two-fold requirement is possible
if and only if one restricts H* to those fuIlCthIlb g€ D(H *) with singular charges £
from a distinguished subspace D ¢ H~z (R3):

(1) D must be dense in H 2 (R?) (for generic self-adjoint extensions of H the charge
domain need not be dense: Theorem [Z.9));

(2) D must be mapped by Ty +al into H 2 (R3) for some (and hence for all) A > 0;

(3) D must be a domain of self-adjointness for Wy '(T) + al) in the Hilbert
space given by H -3 (R?) equipped with the twisted (equivalent) scalar product

(-, W) (see (@2.30)).

There are no other possibilities (Theorem A.6]).

Condition 2. above makes W, *(Ty + a1) well-posed, because W) is a bijection
of H=2(R3) onto Hz(R3) (Lemma Z&(ii)), and eventually leads to the desired
boundary condition, namely

for every & € D there is ¢* € HZ(R? x R?) with
s (8.1)
oMy, 0) = (2m) "2 (Tx + al)é(y) for ae. y € R3,

or any of the equivalent versions (7)-(£9). From the perspective of (BI) the
requirement, (T +«1)D C Hz (R3) is needed because by standard trace arguments
(&) is a Hz-identity and would not have sense if (T +a1)¢ had strictly less than
H %—regularity.

In a number of past studies the choice of the charge domain D left instead the
boundary condition (&Il) ambiguous.

The first semi-rigorous mathematical treatment of the bosonic trimer was given
by Minlos and Faddeev in the work [50], and there the choice was (with our
current notation) D = F “1C°(R3). That is, a symmetric extension of H of
Ter-Martirosyan Skornyakov type was suggested as follows: the extension’s domain
consists of those functions whose singular charges £ are all those with smooth
and compactly supported Fourier transform 2 In fact, the first two seminal works
50, 5I] by Minlos and Faddeev had rather the form of very brief announcements
with only sketches of the main reasoning and proofs; yet the space of charges
was clearly declared therein and moreover, shortly after, Flamand [27] presented a
detailed review of [50] with the same explicit domain declaration.

We also mention the subsequent choices D = F~1Cg° (R3) in [43, 45, 48, [52],
D = HY(R®) in [25, A7, 49, 54], and D = H? =(R?), ¢ > 0, in [58]. (The above-
mentioned works [45] [47H49, 52] [54] 58] are actually focused on the fermionic coun-
terpart setting; yet, also in that case one has to face the very same technical problem
of providing a well-posed definition of W5~ YTy + 1) and of making the boundary
condition (81l unambiguous, up to non-essential changes of numerical coefficients
in T and W) from the bosonic to the fermionic analysis.)

Now, such proposals for D are problematic. In the case D=F 108 (R%L

hence D C H*(R®) Vs € R, the sectors ¢ € N are unambiguously described
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through analogues of our Lemma [5.3] and Proposition 5.4 (where our choice was
D=H ; (R3), namely the lowest Sobolev space that is entirely mapped with con-
tinuity by TA(Z) into the desired H, z% (R3)), and one realizes Wy~ 1(T)(\£) + al) self-
adjointly on the domain D, = {¢ € H7 (R®)|T{"¢ € H} (R*)} (Proposition E4).
On the contrary, choosing D = H}(R?), ¢ € N, poses the problem of whether
(Ty) +al)D C HE (R?), which is not true in general.

Moreover, even the most stringent choice D = F~'C§°(R3) does not guarantee

the well-posedness of the sector £ = 0. We already observed (Remark B6) that if
¢ € F'C5°(RY), then T;\O)f belongs to H2¢(R3) Ve > 0, but not to Hz(R3).

8.2. Incomplete criterion of self-adjointness

The next source~0f ill-posedness may be tracked down in the problem of determining
a domain D O D of self-adjointness for Wy ' (T + al) with respect to the Hilbert

_1 ~
space Hy,? (R?), once a domain D of symmetry is selected.

Because of the special form of the scalar product (235) in HV_V% (R3), it is
straightforward to see (Lemma 9] that, as long as D is dense in L?(R3), the
symmetry on D of W ' (Ty + al) with respect to H;é (R3) is equivalent to the
symmetry on D of Ty with respect to L2(R3).

Based on such a suggestive property, an amount of previous investigations [25]
27, 137, 138, 43H52], [58] adopted the claim that, for a dense subspace D of L?(R?),
W, ' (Ty + al) on D is self-adjoint with respect to HI;,% (R?) if and only if T) on D
is self-adjoint with respect to L?(R3).

In fact, this is not true (Lemma[5.3]) and the link between the two self-adjointness
problems is more subtle (Lemma [T0]).

That the emergent Hamiltonian obtained by realising the Birman parameter
W (Ty +al) self-adjointly on L?(R?) (instead of HI;,% (R?)) yields inconsistencies,
has been known for a few years with reference to the fermionic problem (a trimer
consisting of two identical fermions of mass m and a third particle of different type,
and with inter-particle zero-range interaction). In that setting, a quantitative differ-
ence emerges between the mass thresholds of self-adjointness in the various ¢-sectors
computed in [45] [47H49] by solving the self-adjointness problem in L?(R?), and cer-
tain spectral mass thresholds having the same conceptual meaning and obtained
by formal theoretical computations and numerics within the physicists’ zero-range
methods [10] B2} [65]. The work [I3] in collaboration with Correggi, Dell’Antonio,
Figari, and Teta gave a first mathematical explanation of the situation, in the
unitary regime o = 0, by means of a quadratic form construction of self-adjoint
Hamiltonians of Ter-Martirosyan Skornyakov type, showing that certain non-L2-
charges in H _%(R:‘) were needed for a correct domain of self-adjointness. Right
after, in our previous works [39] [40] in collaboration with Ottolini we addressed
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the same issue, recognising that indeed the correct self-adjointness problem for the
Birman parameter is only with respect to the Hilbert space H;é (R3).

For a three-body system of three identical bosons there is of course no mass
parameter, hence no counterpart of the type of inconsistencies described above for
the fermionic case.

Moreover, deceptively enough, the study of the self-adjoint extensions of T’
with respect to L?(R?), with initial domain, say, H!(R3), yields conclusions that
are qualitatively very similar to the correct analysis of the self-adjoint realizations
of W)\_lT)(\O) with respect to H;Viezo(Rg)~

More precisely, in analogy to our discussion of Lemma [6.11] we can easily check
that the L2-computation of the deficiency spaces, namely of the solutions & to
T;O)f =ip€ in L?(R3) for u > 0, yields

0, () — 4 / 0, (y) log 2cosh(z —y) + 1 )= i 0y(x)
3 Jr 2cosh(z —y) — 1 2724/ coshz
(see ([6I7) for a comparison). The above homogeneous equation replaces (G.39]),
and is equivalent to
PN ip 1 ~
9900 = o (ot = 0. ) (o)
which replaces (640). By the same reasoning of the proof of Lemma[6.11] the latter
equation has a unique solution, up to multiplicative prefactor, meaning that the
deficiency indices are (1,1). Then, mimicking the proof of Lemma [E13] one finds
a completely analogous large-momentum asymptotics for the singular elements of
the adjoint, which leads to a structure of L?-self-adjoint realizations of TA(O) that
mirrors that of Proposition

Nevertheless, each such domain of L2-self-adjointness for T is not enough to

guarantee that the corresponding three-body Hamiltonian is self-adjoint.

9. Regularized Models

The Hamiltonian .74 g constructed as canonical model in Theorem [1]is regarded
as instable, owing to its infinite sequence of bound state energy levels accumulating
to —oo (Thomas collapse).

In retrospect, this feature is due to the combination of the zero-range character
of the modeled interaction and the bosonic symmetry of the model. As a comparison,
the analogous construction for a three-body system with zero-range interaction
consisting of two identical fermions and a particle of different type produces a
Hamiltonian that is lower semi-bounded in a suitable regime of masses [12].

Thus, in order to have a stable model one hypothesis must be removed, among
the vanishing of the interaction range and the bosonic symmetry. Such an observa-
tion was made by Thomas himself in his work on the tritium [63], which is remark-
able if one considers that at the time of [63] neither the precise nature of the nuclear
interaction nor the connection between spin and statistics had been understood yet.
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This poses the problem of constructing regularized models for the bosonic trimer,
which do not display the spectral instability analyzed in Theorem [7.4] and yet
describe an interaction of zero range that retains certain spectral features such as
the continuous spectrum all above some threshold, or the occurrence of negative
eigenvalues accumulating at the continuum threshold (Efimof effect), or the typical
short-range profile of the wave-functions.

Abstractly speaking, one can perform a regularization with an ad hoc energy
cut-off on the canonical model J#) g, or also with a modified Hamiltonian in the
form of a proper Schrédinger operator with two-body potentials of small but finite
(i.e. non-zero) effective range.

Somewhat intermediate between such two directions, we discuss here a construc-
tion, formerly contemplated by Minlos and Faddeev with no further analysis, of
a contact interaction Hamiltonian similar to .75 g, but with a regularization that
has the overall effect of switching off the interaction in the vicinity of the triple
coincidence configuration. The three identical bosons are allowed by the statistics
to occupy that region, in which now the regularization make them asymptotically
free. This removes the instability of the canonical model. (Secs. [@IHI.2]).

Further types of regularizations have been proposed, which are conceptually
analogous to the idea of Minlos and Faddeev in that they introduce a non-constant,
effective scattering length that tends to be suppressed (meaning, no interaction,
particles are free) when the three bosons get close to the point of triple coincidence.
Whereas the Minlos—Faddeev regularization implements such idea in position coor-
dinates, one can analogously work in momentum coordinates, making the effective
scattering length vanish at large relative momenta. For comparison, we shall discuss
such high energy cut-off in Sec.

9.1. Minlos—Faddeev regularization

This is the ultra-violet regularization originally proposed in [50, Sec. 6] (see also
[27, Sec. V1.2] and [1]), and on which a number of results with the quadratic form
approach have been recently announced in [25].

We shall study it within the operator-theoretic scheme of the present analysis.

In practice, this is a modification of the canonical model (Theorem [ZI]) along
the following line: the ordinary Birman parameter 3W, ' (T +al), that selects (via
Theorems and [4.0) self-adjoint extensions of Ter-Martirosyan Skornyakov type
of the minimal operator H defined in @), is replaced by

3Wy Ty +al + K,), o >0, (9.1)
where, for generic o € R,
oo+ o0
(Ko8)(y) == ™ &(y)

00 = 21V/3 (34% B 1)' (9.2)

2150010-84



Rev. Math. Phys. 2021.33. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 05/20/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Zero-range interaction for the bosonic trimer at unitarity

The motivation is clear from the large momentum asymptotics [321) valid for

o

generic g € D(H ), namely

| aorpn)as = 15R &) + (T0e1) - GEw) +ol1)
p2€R3

Ip2|<R
as R — 4o00. Indeed, when a self-adjoint extension is selected, out of the family
(@37), labeled by the Birman parameter (@I) densely defined in H~2(R?), then
in the asymptotics above one has n = 3W,~ YT\ + al + K,)¢ (as prescribed by
formula (2:39) of Theorem [29]), whence

[ 801p2)dpo = 4xRE(p)) + E(p1) + (Ko E)(p1) + 0(1).
p2€

|p2|<R
and also (see Corollary [3.9])
3 ly2|—0 47 oo+o
(2m) 2y g (13 1y2l) Y v + (a4 ST )ely) +o(1).
|y2| |y1]

Thus, the new self-adjoint Hamiltonian has a domain of functions that display
a modified short-scale asymptotics, as compared to the zero-range Bethe—Peierls
condition: the modification consists of the inverse negative scattering length « being
replaced by a position-dependent value

ey ' = a+ (09 + 0)/|yl, (9.3)

where |y| is the distance of the third particle from the point towards which the other
two are getting closer and closer. Therefore, ceg — +00 when all three particles
collapse to the same spatial position, meaning that the scattering length vanishes in
such limit. As vanishing scattering length means absence of interaction, the overall
effect is a three-body regularization that prevents the collapse of the system along
an unbounded sequence of negative energy levels.

By construction, K, commutes with the rotations in R and therefore is
reduced as

K, =P K (9.4)

£eN

with respect to the orthogonal Hilbert space decomposition (£I8) of HV_V% (R3).
For all practical purposes (in view also of the discussion of Sec. [[3) it suffices
to implement the Minlos—Faddeev regularization in the sector ¢ = 0, thus only
inserting Kc(,o) in (@), as the canonical model is already stable in the sectors of
higher angular momentum. That is the version of the regularization that we shall
study here.

With definition (@.2)) and the above considerations in mind, the same conceptual
path of Sec. [0l can be now re-done, adapting it to the new Birman parameter ([@.1).

To this aim, we need updated expressions of the quantities of interest in terms
of the re-scaled radial components associated to the charges.
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First of all, taking the Fourier transform in ([@.2) yields
= oo t+o £(a)
K, = dq. 9.5
Fow) =550 [ s dq (95)
Let us also introduce two auxiliary functions, namely

4 2cosh(z —y) + 1
O)(2) = 0(z) — —+_
0, (z) == 0(x) 3 /Rdy 0(y) log 2cosh(z —y) — 1

oo + O’/ }c y
+ dy 6(y) lo oth 2—¥ 9.6
for given 6, and
~ 1 oo+o .. LT
+(s) =1+ sinh —s — 8sinh —s |. 9.7
Vo (5) \/§scosh§5< 2 2 6 ) (9.7)

Observe that 7_,, is precisely the function 7 defined in (G9]). It is easy to see that
s 18 a smooth even function of R, that converges asymptotically to 1 as |s| — +oo,
and that for o € [0,27/3) has absolute minimum at s = 0 of magnitude

~ o~ ooto o
7o (0) =7(0) + - Salbwy (9.8)

(see Fig. H). Indeed, o9 = —27v/375(0).
Lemma [6.]] has the following analogue.

Lemma 9.1. Let A >0, s,0 € R, and £ be as in ([GI)). One has the identities
2
L 4 e’

70 4 O _ .
(( + K 0 )f) (p) - \/E|p| \/g a ( )7 (99)
I (T(O) + K(O))EHHS(R3 R /Rdx (cosh z)'*2 }9((79)(96)}27 (9.10)

>p

Fig. 4. (Color online) Plot of the function 7, (s) defined in ([@7), with parameter o = 1 (blue)
and o = 10 (orange).
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—

0 (s) = 7,(s) B(s), (9.11)
[ @ (@0 + k0 wap = 2 [asqior. 012

with © and 0 given by ([62), e given by [@0) with respect to the present 0, and
Vo given by @). In @A) it is understood that x > 0, and (@I0) is meant as an
equivalence of norms (with \-dependent multiplicative constant).

Proof. Let us focus on the K,-term. From (@.3]), in complete analogy with (313),

o — ¥4
(o) _%oro / (5) / )
K¢ = E Yo n(Q2 d dt
( ¢9)(p) T =, en({2e) R+ ad’ 2+q — 2|plqt’

where for £ we took the expansion (39), namely

Z Z LD Yen () = 3 €O (p).

=0 n=—4¢ =0

Thus, for a spherically symmetric charge E(p) = #f(|p|),

(Ko 5)() Nzr i qqf(q) e =g ? p|.

Let 6 be the re-scaled radial function ([6.2]) associated with £ (and f) above. With

p= % sinhx and ¢ = % sinh y one has
: h z+y h asfy
p+q _ s?n ﬁ cos H B coth— h—y
lp—ql  |sinh 25¥ cosh y{ 2 2
which, together with (€3], gives
4 _
/ dgqf(q) log Pra _ —/ dy 6(y) <log tanhw—i_y’ + log cothuD
R+ lp — g 3 Jr+ 2

4
— 3 [ ave) o
R

the last identity following from the odd-parity extension of 8 over R. Therefore,

r—Yy
th —=
co 5 ’,

(/c(%)(p) = Vi—wﬁ 4(03: 7) /Rdw(y) log

Combining this with (GI1) yields (@9).

Formula (@I0) is proved from ([@9) with the very same reasoning used for the
analogous formula (6.12) in Lemma

Concerning ([@.IT]), we observe that the first two summands in the expression
@) of 0 have precisely Fourier transform ﬁ(s)é\(s), as determined already in the

T—y
th —=|.
CO B ’
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proof of Lemma [G.1] with 5 defined in (63). Let us focus on the third summand,
namely the one with the o-dependent pre-factor. One has

(log ’coth \/7/ dz cos sz log coth —
R+

= \/j dz cossz (log(1+ e ") —log(l — e ™)),
™ JR+
and (see, e.g., [21], I1.1.5.(13)—(14)])

1 T 1
d log(1+e®) = —= — &
/R+ @ cos sz log(l +e7) 252 2s sinh7s’
1
- dz cos sz log(l —e ™) = 95 % coth s,

whence

-~

(1og’coth§’) (s) = \/gtanThgs

Therefore, the Fourier transform of the last summand in the expression ([@.6]) of
0¥ i

AN
s
op+o oo +o tanh3s ~

5 (9*log‘cotth (s) = 3 . 0(s) .

Adding this term to ﬁ(s)é\(s) yields (@) and hence (@I1)).
Last, concerning (@I2]), in complete analogy with the proof of ([61I3)), we find

LT (@ K9 w)de = [ 0T 7 60 a()

_ 8”2 5@ 0 ()
_ 8r? s 9(s)|2
= 7 [asauts )

having applied @) in the first identity, (63)-([64) and the odd parity in the
second, and Parseval’s identity in the third. O

Corollary 9.2. For \,o > 0, the map
1
— N 2
ens ([ G + k)9 w)ap)
R

1
defines an equivalent norm in H?_,(R3).

Proof. Because of ([@I12) and the fact that 7, is uniformly bounded and strictly
positive when ¢ > 0, up to inessential pre-factors each ¢ is mapped to ||#(©) || L2(R)
and hence to ||£||H2 (25)’ , owing to (G.3)). O
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9.2. Regularization in the sector £ = 0

Let us now make the Birman parameter explicit for a self-adjoint extension of
H when the Minlos-Faddeev regularization is implemented with respect to the
canonical construction of extensions of Ter-Martirosyan Skornyakov type. As argued
in the previous subsection, we only need to replace the Birman parameter Ag\%

(defined in m,@) of the sector ¢ = 0 with a regularized version, that we
shall denote by R(AOJ.
Then, with such RE\OL at hand, and with all other canonical Birman parameters

Ag\é), £ € N, we construct the associated self-adjoint Hamiltonian by means of
Theorem [Z.91
To begin with, for ¢ > 0 we define (in analogy to ([6.23])) the subspace

& has re-scaled radial component

~ 1 ~

Do = { & € H, 2 (R?) 0= (6/3,)) . (9.13)

for © € Cgf’odd(Rw)

Here the subscript ‘odd’ indicates functions with odd parity and 7, is defined in
@). The correspondence between £ and its re-scaled radial component 6 is given
by ([€I)-([6.2). It is tacitly understood that the re-scaled radial components are all
taken with the same parameter A > 0 in the definition ([6.2)): this does not mean Dg

is a A-dependent subspace, as one can easily convince oneself, the choice of A only
fixes the convention for representing its elements in terms of the corresponding 6.

Lemma 9.3. Let A\,0 > 0.

(i) 5070 is densejn He%:o(R?’)-
(i) (TA(O) + K[(,O))DQ,U C Hj_,(R3) for every s € R.

Proof. (i) For ¢ € 6070, the identity ’Aygé\: © and (E3) imply
11 73 gy = 10112y = 101l2@) < 15 L@ 1O L2y
= (3(0) I8l z2(r) < +oo,

owing to ([@.8)) and to the fact that © is smooth and with compact support. Because
of (68, the density of the &’s of [~)0,g in H z%:o(RB ) is equivalent to the density of the
associated 0’s in L2, (R). If in the latter Hilbert space a function 6 was orthogonal
to all such #’s, then

(s)
(s)

for all © € Cg%,44(R): as 7, is uniformly bounded and strictly positive, this implies
90 =0.

0= /R Bo(@) () dz = /]R Bu(e) 2o ds = /R (B0/72) (x) O(z) da
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(ii) On the one hand %5 =0 by the assumption that £ € 60,07 on the other

hand 7,0 = @UG), owing to (@.I1l), whence o) = e ¢ C5%aa(R). Plugging this
information into (@.I0) yields the conclusion. |

Next, for A\, > 0 we define

D(RY)) = Do
(9.14)
R = 3w (T + K©).
Lemma [0.3] together with Corollary [@.2] guarantees that this is a well-posed def-
1
inition for a densely defined, symmetric, and coercive operator on HWi,Z:O(RB)'

As such, having a strictly positive lower bound, 7%5\037 has the Friedrichs extension.

That will be our final Birman parameter. In analogy with Proposition[5.4] we prove
the following.

Proposition 9.4. Let A\,o > 0. Define
1
Do, = {€ € HL (R | (T + K™)¢ € HE ,(R)}. (9.15)
The operator
D(RY)}) = Do,s

(9.16)
R = 3wy Y (T + KO

~ _1
is the Friedrichs extension of Rg\ozf with respect to wa,e:o(Rg)- Its sesquilinear
form is

D[R(Aoz)r] = He%:o(Rg)
(9.17)
R, €] = 3/ &p) (TS + K e) (p).

Proof. Let us temporarily denote by Rp the Friedrichs extension of 7%5\037 with

respect to H;vie:o(RS)a and let us set
~ L 1
l¢lle == (6 REE) 1) = (3(6 (1 + KP)8),0) .
Hy?

Owing to Corollary [02] the latter induces an equivalent HZ2-norm on 50,0. As
prescribed by the Friedrichs construction, Rr has form domain

= IR =—I 1 1
D[RF] = D(R(AO,L) L Do, s _ Hé (RB)
(the last identity following from Lemma [03(i)), and for &, € H, ; o(R?)

Rr [7775] = nlgr;o <nn7Rg\?()7§n>H;V§ =3 nhango <77n7 (T)EO) + KUO))£n>L2
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for any two sequences (&), and (9,), in [~)0,g such that &, — £ and 7, — 7 in
1
HP ,(R?). Since the pairing (1n, &) — (0, (TA(O) + K[(,O))§H>L2 is an Hz-pairing
(Corollary @.2)), one finds
Reln, € =3 lm (o, (T3 + K)&n) o = 3 (n, (117 + KO)) .

Formula (@17 is thus proved. The operator Rp is derived from its quadratic form
in the usual matter: a straightforward adaptation of the analogous argument used
in the proof of Proposition 5.4 shows that R is indeed the operator ([@.16]). O

With the new Birman parameter (3.16) for the sector ¢ = 0, the construction of
the canonical model 74 g is modified as follows (see the discussion of Sec. [Z).

Instead of the self-adjoint extension H A5 obtained by means of Theorem [Z9]
with Birman parameter

Axg = A&?)ﬂ @ @ A‘f)
=1

(see (2)), we consider another operator from the family (Z37), namely the self-
adjoint extension Hg, , with modified Birman parameter

Rao =R & P AV (9.18)
(=1

By definition, the domain of R , is
¢=> ¢Ye P H,? (R = Hy?(RY)
£=0 £=0

D(Ryo) = such that . (9.19)
€0 ¢ H(R?) and Te® € HE (R?) for (€N,
€0 e H2 (R?) and (T + KP)¢ € HE  (R?)

to be compared with the previous domain (7.3)).
For the sake of a more compact, unified notation, let us write

(Tro&)(y) = (T + KM)eD)(y) + 3 (13769 (v) (9.20)
/=1
for € = 200, €0 € @, H;Vié(m = Hy,2(R?). Thus,
D(Ryo) = {6 € HE(R®) | Ty & € H?(R®)}
(9.21)
Rao =3Wy T,
and

(Tro —Th)E = KWe©, (9.22)
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Theorem 9.5. Let o > 0 and A > 0. Define
¢ € HE(R® x R?),
D(Hy) = g =" +ud |€ € HE(R®) with Ty ,& € H?(R?),
6} (¥,0) = (2m) 2 (T 8)(y)

(‘% + )‘l)g = (_A)H - Ayz - vy1 : Vy2 + )‘1)¢)\ ’

(9.23)

(i) The decomposition of g in terms of ™ and & is unique, at fived X. The subspace
D() is A-independent.
(ii) % is self-adjoint on LE(R® x R® dyq,dys) and extends H given in (21).
(i) For each g € D(4¢,) one has

¢ (y1,0) = (27) 73 (Tx0€) (y1),

/ @(pl,pz)dpz = (T/A,a\f)(pl),
R3 (9.24)

/ (p1.pe) dps = 47RE(P1) + (KD EO) (p1) + o(1)
2€R3
pal<R

(where R — +00). All such conditions are equivalent. In particular, the first
version of (@24) is an identity in Hz (R3).
(iv) 4% is non-negative and with quadratic form

D] = {g =" +ui | € HY(R® x R?), € € H2(R")}
1
Hslo) = 5 (V3 + V3 )0 7e + [V 6222 + 95,01 72)

A2 = 0 + 2 [7) +3 | E0) (T8 ) dp. (020
the L?-norms being norms in L*(R3® x R3).

Proof. All claims follow from plugging ([@.21)-([@.22) (hence, in particular, (3.16)—
(@I7)) into the general classification formulas of Theorem 29l owing to the self-
adjointness of the Birman parameter guaranteed by Proposition O

Each of the asymptotics (@24]) for g € D(5%,) expresses an ultra-violet regu-
larized Bethe—Peierls alias Ter-Martirosyan Skornyakov condition, that in view of
Corollary B9 can be thought of as
lya|—0 4 oo+ 0

|y2l |y1]
As the simultaneous limit |y1| — 0, |y2] — 0 in the expression above suggests, the
regularization effectively amounts to distorting the ordinary Bethe—Peierls short-
scale asymptotics by means of a position-dependent scattering length

(27) % gav (y13 [y2]) £(y1) + &(y1) + o(1). (9.26)

drly
et (y) = oo J|F|U (9.27)
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(see ([@3) above) that vanishes when all three bosons come to occupy the same
point. At this effective level, a (small) three-body correction prevents the triple
collision.

In fact, this Minlos—Faddeev regularization is rather radical, because it com-
pletely eliminates the negative spectrum (see also Remark below). Yet, .7, is
not merely the reduced component of the canonical Hamiltonian .74 g onto the pos-
itive spectral subspace: the signature of the physical short-scale behavior is retained
in [@24) and ([@26), with the |ys|~! leading singularity as |y2| — 0 at fixed y1,
only with a distorted subleading singularity driven by an effective scattering length
that vanishes as |y;| — 0.

Remark 9.6. In contrast with the computation of the negative eigenvalues of the
Hamiltonian 4 g (proof of Theorem[T ), the analogous computation for .7 would
lead to the equation (TA(O) + K[(,O))f = 0 for some ¢ in the sector £ = 0. Owing to
(@) and (@11, this is the same as 5,0 = 0, where 6 is the re-scaled radial function
associated with &. The difference is thus

aéz 0 for the canonical eigenvalue problem
Yo =0 for the reqularized eigenvalue problem.

Because of the presence of roots of 7(s) = 0, the first equation turns out to have
non-trivial admissible solutions. Instead, 7,(s) > 75(0) > 0 and for the second
equation one necessarily has § = 0 (absence of negative eigenvalues).

Remark 9.7. The charge term in the quadratic form expression ([@.25)) is explicitly
given by

T = S [ T (T
[ o (Tgwiap =3 | ) (1)) ap

/ £0(p (T + K¢ (p) dp (9.28)

(as follows from (@I7) and (@20)). As S is self-adjoint and non-negative, its
quadratic form ([@.23)) is obviously closed and non-negative. An announcement that
the quadratic form ([@25) is closed and lower semi-bounded on LZ(R? x R?), and
thus induces a self-adjoint Hamiltonian for the regularized three-body interaction
in the bosonic trimer, has been recently made in [25].

9.3. High energy cut-off

As mentioned already, an alternative, conceptually equivalent way of making the
scattering length effectively vanish in the vicinity of the triple coincidence point is
to realize this effect at large relative momenta.

An example of this type of high energy cut-off has been recently proposed by
Basti, Figari, and Teta [3} Sec. 3] by means of quadratic form methods. We shall
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study this possibility in the general operator-theoretic framework of the present
analysis, working out more precisely a modification of [3] that allows for explicit
computations.

For a clearer readability and comparison with Secs. [@.IHI2] we shall keep the
same notation used therein for the counterpart regularized quantities, of course
re-defined them now in a different way.

The original proposal of [3] goes along the following line: the ordinary Birman
parameter 3W, *(T) + al), that selects (via Theorems 0 and E8) self-adjoint
extensions of Ter-Martirosyan Skornyakov type of the minimal operator H defined
in 27, is replaced by

3SWil(Th+al + K,,), o,p>0,

(Ko p©)(p) i= 0 1(ipj5py P> E(P).

This gives rise, via (321), to the modified large momentum asymptotics

/ 3(p1.p2)dps TE® 4rREDy) + aen(P)E(P1) + 0(1)
pzeRs

|p2|<R
— 2
eft (P) := @+ 0 1{jp|>p} P°,

for the elements g in the domain of the corresponding self-adjoint extension, again
with the interpretation of an effective parameter aeg(p) — +00 as |p| — +oo.

Reasoning in terms of quadratic forms, it is simple to check (as done in [3}, Sec.[])
that o and p can be adjusted on « and A so that the map

1
2

£ (/Rs £(p) (T + ol + Kg,p)f)A(p)>

is an equivalent H'-norm: in fact, the effect of the additional K, , is to rise the
multiplicative part of Ty with an H!-term (added to the original H %—term), which
controls the integral part of Ty. This way, a quadratic form on LZ(R3 x RS ) of
the same type of ([Z43) can be constructed, namely with regular functions from
HL(R3 xR3)) and charges from H'(R?), in which the charge term (the quadratic
form of the Birman parameter) is precisely

/RS £(p) ((Tx + al + K, ,)€) " (p).

Standard arguments then show that the form is closed and non-negative, hence it is
the energy form of a self-adjoint Hamiltonian for the bosonic trimer with zero-range
interactions.

The Friedrichs construction for the Birman parameter 3 W, (T + a1 + K, )
associated to the above form would lead to a somewhat implicit expression for
its operator domain. Furthermore, for the purpose of having a closed and semi-
bounded charge form it suffices to add to T’ an additional H %—term, instead of the
H'-term proposed in [3], which be large enough so as to shift the form up above
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zero. We shall study this version of the large momentum (high energy) cut-off, as
the computations within the operator-theoretic scheme are explicit.
For A\,o > 0 let us set

(Bne €)(p) == 2200 + o)1 312 + AE(p)

(9.29)

30) = 7

(o = - - = )
T
as well as (with z, s € R)
2 cosh(z —y) +1
0\ (z) == (1 + 00 +0)8 dy

)\,U(x) ( oo U) ( ) 7'('\/_ Y ( ) 2cosh(a: _y) 1 (930)

Yo (8) :=7(s) + oo + 0,

for given 6, where 7 is defined in (69). By construction 7, is the shifted version
of the J-curve from Fig. [[l thus a smooth even function on R that is uniformly
bounded and strictly positive, with absolute minimum 7, (0) = o.

Analogously to (@.4), Kxo = P,eny K A a ) with respect to the usual decomp0s1—
tion in sectors of definite angular momentum and arguing as in Secs. [7.3] and [0.1]
let us only implement the regularization in the meaningful sector ¢ = 0.

A straightforward modification of the reasoning for Lemmas [6.1] and and for
Corollary yields the following.

Lemma 9.8. Let \,0c >0, s € R, and £ be as in (IBE]) One has the identities

(17 + K2)e) (p) = o\ (x), (9.31)

||\/_

H (T)(\O) + Kg\()()j EHH (Rs) COth 142s !6(0) ( ) R (9.32)
0 (s) = F(s) (s), 9.33)
[ @ (@0 + k) erap = 2 [ asnber 0

with x and 6 given by ([6.2)), and @g\el and 7, given by (@30), where the definition of

9( . is now taken with respect to the present 6. In [@31)) it is understood that x > 0,
and @32) is meant as an equivalence of norms (with A-dependent multiplicative
constant). Moreover, the map

1

£ ( / o) (1 + K9)e) (p) dp)2 (9.35)

1
defines an equivalent norm in Hp_  (R?).
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We can now define, for o > 0,

& has re-scaled radial component
~ _1 ~
Do, := { € € H,3(R?) 6= (0/7,))" :

for © € €52 4(R.) (9.36)

1 1
Do.o = {€ € HZ o(RY) | (T\” + K))¢ € HE ((R®)},

with the same remarks made for (@.13)), and prove the following, based on Lemma
0.8l and easily mimicking the reasoning that let to Lemma[9.3] and Proposition [0.4]

Proposition 9.9. Let 0 > 0.

(i) [~)0,g is dense in HZ%ZO(RP’),

(i) (Tf\o) + K;?[),)ﬁotg C Hj_,(R3) for every s € R and A > 0.
(iii) Do,» C Do,o-
(iv) For every A > 0 the operator

D(RY)) = Bu.

)

~ (9.37)
R = 3w (T + K)).
1s densely defined, symmetric, and coercive on H;‘,%,Z:O(Rg’),
(v) For every A > 0 the operator
D(Rg\o,)o') = DO,G‘
(9.38)

RO = 3w (T + K

~ _1
is the Friedrichs extension of R(AO()T with respect to Hy,! e:o(Rg)' Its sesquilin-
ear form is

1
D [Rg\ol] =Hp, (RB)

(9.39)
0 = 0 0)\ o\~
R\ m,€] = 3/RB £p) (137 + K3)) ().
Proposition [3.9] finally shows that the operator
R =R\, & @AY (9.40)
=1

is an admissible Birman parameter labeling a self-adjoint extension ISIRA,U of H
according to the general classification and construction of Theorem 291 With a
more compact notation we can write
D(Raq) = {¢ € H(R®) | Ta o€ € H?(R%)}
(9.41)
Rae =3W; Ty,
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and
(Tro —Th)E = K0, (9.42)

where

(Trc6)(y) = (1” + K¢ )+ > (1O (y (9.43)
=1

for € = Y00 €0 € @, Hyy? (R?) = Hy 2 (RY),

All this leads to a new version of Theorem [@.5] with exactly the same state-
ment, of course now referred to the present T , defined in ([@43) (and not to its
counterpart (@.20) considered in the previous subsection).

We have thus identified two distinct classes of regularized self-adjoint Hamilto-
nians of zero-range interaction for the bosonic trimer:

e the operator sZMY¥, ¢ > 0, namely the Hamiltonian with the Minlos-Faddeev
reqularization, obtained as 7, from Theorem with the modified T , fixed
in ((€.20);

e the operator ¢, ¢ > 0, namely the Hamiltonian with high energy requlariza-
tion, obtained as /¢, from Theorem [I.5] with the modified T) , fixed in ([@.43)).

Both types of Hamiltonians are non-negative, with only essential spectrum given
by [0, +00), and both retain a physically meaningful short-scale structure. With the
Minlov-Faddeev regularization, each g € D(MF) and the corresponding regular
part ¢* of g (for fixed A > 0) satisfy

. £(0)
/ - 9(p1, p2) dp2 = 4mRE(p1) + 002:20 /R3 |f;1 _((31)|2 dq +o(1),
lpal<R (9.44)
2 (y1,0) = (2m)} ((m)(yn n %ém(yl)),

where ¢ is the singular charge of g, £(?) is the spherically symmetric component of
¢, and R — +oo. With the high energy regularization, each g € D(£"¢) and the
corresponding regular part ¢* of g satisfy

. ~ /3 =
/ g d(p1,p2) dpe = 4TRE(py) + 272 (00 + ) Zp% + 260 (py) +0(1),
p2€

[p2|<R

(b1, p2) b2 = (T8)(B1) +27(30 + )y 307 + A€ (pa).
R3
(9.45)
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