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Fusing defect for the N = 2 super sinh-Gordon model

N I Spano, A R Aguirre, J F Gomes and A H Zimerman

Rua Dr. Bento Teobaldo Ferraz 271, Block 2, 01140-070, São Paulo, Brazil

E-mail: natyspano@ift.unesp.br

Abstract. In this paper we derive the type-II integrable defect for the N = 2 supersymmetric
sinh-Gordon (sshG) model by using the fusing procedure. In particular, we show explicitly the
conservation of the modified energy, momentum and supercharges.

1. Introduction
An interesting topic in the study of integrable systems is the analysis of their integrability
properties in the presence of impurities or defects. Accordingly, defects are introduced in two-
dimensional integrable field theories as internal boundary conditions located at a fixed point in
the x-axis, which connect two different field theories of both sides of it. In particular, after the
introduction of the defect, the spatial translation invariance is broken since some constraints are
imposed to be satisfied at a particular space point, and hence it would be expected a violation
of momentum conservation. However, it was verified in [1]-[4], that in order to preserve the
integrability, the fields of the theory must satisfy a kind of Bäcklund transformation frozen at
the defect point.

This kind of integrable defects can be classified into two classes: type-I, if the fields on
both sides only interact with each other at the defect point, and type-II if they interact through
additional degrees of freedom present only at the defect point [5]. The type-II formulation proved

to be suitable not only for describing defects within the Tzitzéica-Bullough-Dodd (a
(2)
2 -Toda)

model, which had been excluded from the type-I setting, but it also provided additional types of
defects for the sine-Gordon (sG) and others affine Toda field theories (ATFT) [6]. Interestingly,

for the sG model [5, 7], and in general for a
(1)
r -ATFT [8] and the N = 1 sshG models [9], the

type-II defects can be regarded as fused pairs of type-I defects previously placed at different
points in space. However, the type-II defects can be allowed in models that cannot support

type-I defects, as it was shown for the a
(2)
2 -Toda model [5].

On the other hand, the presence of integrable defects in the N = 1 sshG model has been
already discussed in [10, 11]. However, the kind of defect introduced in those papers can be
regarded as a partial type-II defect since only auxiliary fermionic fields appear in the defect
Lagrangian, and consequently it reduces to type-I defect for sinh-Gordon model in the bosonic
limit. The proper supersymmetric extension of the type-II defect for the N = 1 sshG model
was recently proposed in [9], by using two methods: the generalization of the super-Bäcklund
transformations, and the fusing procedure.

The purpose of this paper is to derive type-II defects for the N = 2 sshG equation by
fusing defects of the kind already known in literature [12]. The explicit form of the type-II
Bäcklund transformations for the N = 2 sshG model will be presented. We will also compute its
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modified conserved energy, momentum and supercharges. Finally, by introducing appropriate
field transformations, the PT symmetry of the bulk and the defect theories will be discussed.

2. N = 2 super sinh-Gordon model
The action for the bulk N = 2 sshG model is given by,

Sbulk =

∫ ∞
−∞

dt

∫ ∞
−∞

dx Lbulk, (1)

with the bulk Lagrangian density,

Lbulk =
1

2
(∂xφ)2 − 1

2
(∂tφ)2 − 1

2
(∂xϕ)2 +

1

2
(∂tϕ)2 − iψ(∂x − ∂t)ψ + iψ̄(∂x + ∂t)ψ̄

+iχ(∂x − ∂t)χ− iχ̄(∂x + ∂t)χ̄+m2
[

cosh(2φ)− cosh(2ϕ)
]

+4im(ψ̄ψ + χ̄χ) coshφ coshϕ− 4im(ψ̄χ+ χ̄ψ) sinhφ sinhϕ, (2)

where φ, ϕ are bosonic fields, ψ, ψ̄, χ, χ̄ are fermionic fields. Then, the bulk field equations are,

(∂2
x − ∂2

t )φ = 2m2 sinh(2φ) + 4im(ψ̄ψ + χ̄χ) sinhφ coshϕ

−4im(ψ̄χ+ χ̄ψ) coshφ sinhϕ,

(∂2
x − ∂2

t )ϕ = 2m2 sinh(2ϕ)− 4im(ψ̄ψ + χ̄χ) coshφ sinhϕ

+4im(ψ̄χ+ χ̄ψ) sinhφ coshϕ,

(∂x − ∂t)ψ = −2m
[
ψ̄ coshφ coshϕ− χ̄ sinhφ sinhϕ

]
, (3)

(∂x + ∂t)ψ̄ = −2m [ψ coshφ coshϕ− χ sinhφ sinhϕ] ,

(∂x − ∂t)χ = 2m
[
χ̄ coshφ coshϕ− ψ̄ sinhφ sinhϕ

]
,

(∂x + ∂t)χ̄ = 2m [χ coshφ coshϕ− ψ sinhφ sinhϕ] ,

The bulk action and the equation of motion have on-shell N = 2 supersymmetry (susy). The
susy transformation is given by,

δφ = i(ε1ψ + ε̄1ψ̄)− i(ε2χ+ ε̄2χ̄),
δϕ = i(ε2ψ + ε̄2ψ̄)− i(ε1χ+ ε̄1χ̄),
δψ = (ε1∂+φ+ ε̄1m sinhφ coshϕ)− (ε2∂+ϕ+ ε̄2m sinhϕ coshφ),
δχ = (ε2∂+φ− ε̄2m sinhφ coshϕ)− (ε1∂+ϕ− ε̄1m sinhϕ coshφ),
δψ̄ = (ε̄2∂−ϕ+ ε2m sinhϕ coshφ)− (ε̄1∂−φ+ ε1m sinhφ coshϕ),
δχ̄ = (ε̄1∂−ϕ− ε1m sinhϕ coshφ)− (ε̄2∂−φ− ε2m sinhφ coshϕ),

(4)

where εk and ε̄k, with k = 1, 2, are fermionic parameters, and the light-cone notation x± = x± t,
and ∂± = 1

2(∂x ± ∂t) has been used. It can be easily verified that the equations of motions are
invariant under these transformations. For simplicity, we will focus on the ε1-projection of the
susy transformation (4), which will be denoted δ1, and then we will compute the associated
supercharge Qε1 ≡ Q1.

Under a not-rigid susy transformation, i.e with parameters ε(x, t) and ε̄(x, t), Lbulk changes
by a total derivative

δ1Lbulk = ∂x

[
iε1

(
ψ (∂−φ+ 2∂+φ) + χ (∂−ϕ+ 2∂+ϕ) +mψ̄ sinhφ coshϕ−mχ̄ sinhϕ coshφ

)]
+∂t

[
iε1

(
ψ (∂−φ− 2∂+φ) + χ (∂−ϕ+ 2∂+ϕ) +mψ̄ sinhφ coshϕ−mχ̄ sinhϕ coshφ

)]
+ε1

[
∂t

(
2iψ∂+φ+ 2iχ∂+ϕ− 2imψ̄ sinhφ coshϕ+ 2imχ̄ sinhϕ coshφ

)
−∂x

(
2iψ∂+φ+ 2iχ∂+ϕ+ 2imψ̄ sinhφ coshϕ− 2imχ̄ sinhϕ coshφ

)]
, (5)
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if the conservation law inside the last square-bracket in (5) is hold. Then, the associated bulk
supercharges Q1 is given by an integral of the fermionic density, namely

Q1 =

∫ ∞
−∞

dx
[
iψ(∂x + ∂t)φ+ iχ(∂x + ∂t)ϕ− 2imψ̄ sinhφ coshϕ+ 2imχ̄ sinhϕ coshφ

]
. (6)

The derivation of the remaining supercharges follows the same line of reasoning. Their explicit
form is given by the following expressions,

Q1 =

∫ ∞
−∞

dx
[
iψ̄(∂x − ∂t)φ+ iχ̄(∂x − ∂t)ϕ− 2imψ sinhφ coshϕ+ 2imχ sinhϕ coshφ

]
, (7)

Q2 =

∫ ∞
−∞

dx
[
iχ(∂x + ∂t)φ+ iψ(∂x + ∂t)ϕ+ 2imχ̄ sinhφ coshϕ− 2imψ̄ sinhϕ coshφ

]
, (8)

Q2 =

∫ ∞
−∞

dx
[
iψ̄(∂x − ∂t)ϕ+ iχ̄(∂x − ∂t)φ+ 2imχ sinhφ coshϕ− 2imψ sinhϕ coshφ

]
. (9)

In next section we introduce the Lagrangian description of type-I defects in N = 2 sshG model.

3. Type-I defect for N = 2 sshG model
We consider a defect placed in x = 0 connecting two field theories Φ1 in the region x < 0 and
Φ2 in the region x > 0, First of all, let us consider a Lagrangian density for the region x < 0

Figure 1. Defect Representation.

describing the set of fields Φ1(φ1, ψ1, ψ̄1, ϕ1, χ1, χ̄1) and correspondingly Φ2(φ2, ψ2, ψ̄2, ϕ2, χ2, χ̄2)
in the region x > 0, and a defect located at x = 0, in the following way

L = θ(−x)L1 + θ(x)L2 + δ(x)LD, (10)

where L1 and L2 are the bulk Lagrangian densities corresponding to x < 0 and x > 0 regions,
respectively, and the defect Lagrangian density LD is given by

LD =
1

2
(φ2∂tφ1 − φ1∂tφ2)− 1

2
(ϕ2∂tϕ1 − ϕ1∂tϕ2) +B0(φ1, φ2, ϕ1, ϕ2)

−i(ψ̄1ψ̄2 + ψ1ψ2) + i(χ̄1χ̄2 + χ1χ2) +
i

2
(f∂tg + g∂tf)

+B1(φ1, φ2, ϕ1, ϕ2, ψ1, ψ2, ψ̄1, ψ̄2, χ1, χ2, χ̄1, χ̄2, f, g) (11)

where f , g are fermionic auxiliary fields. For x = 0, we obtain the following defect conditions,

∂xφ1 − ∂tφ2 = −∂φ1(B0 +B1), ∂xϕ1 − ∂tϕ2 = ∂ϕ1(B0 +B1),
∂xφ2 − ∂tφ1 = ∂φ2(B0 +B1), ∂xϕ2 − ∂tϕ1 = −∂ϕ2(B0 +B1),
i(ψ1 − ψ2) = −∂ψ1B1 = −∂ψ2B1, i(χ1 − χ2) = ∂χ1B1 = ∂χ2B1,
i(ψ̄1 + ψ̄2) = ∂ψ̄1

B1 = −∂ψ̄2
B1, i(χ̄1 + χ̄2) = −∂χ̄1B1 = ∂χ̄2B1,

i∂tf = −∂gB1, i∂tg = −∂fB1,

(12)
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where the defect potentials B0 and B1 are given given by [12],

B0 = mσ [coshφ+ − coshϕ+] +
m

σ
[coshφ− − coshϕ−] , (13)

B1 = i

√
mσ

2

[
cosh

(
φ+ + ϕ+

2

)
f(ψ+ − χ+) + cosh

(
φ+ − ϕ+

2

)
g(ψ+ + χ+)

]
−i
√
m

2σ

[
cosh

(
φ− − ϕ−

2

)
f(ψ̄− + χ̄−) + cosh

(
φ− + ϕ−

2

)
g(ψ̄− − χ̄−)

]
, (14)

where we have denoted φ± = φ1 ± φ2, ψ± = ψ1 ± ψ2, χ± = χ1 ± χ2 for the others fields the
notation is similar, and σ is a free parameter associated with the defect.
In next section, we will perform the fusing of two type-I defects placed at different points in
order to construct a type-II defect for the N = 2 sshG model.

4. Fusing Defects
Let us introduce two type-I defects in the N = 2 sshG model, one located at x = 0, and a
second one located at x = x0 where Φ1(φ1, ψ1, ψ̄1, ϕ1, χ1, χ̄1) is a set of fields in the region

Figure 2. Fusing defects.

x < 0, Φ0(φ0, ψ0, ψ̄0, ϕ0, χ0, χ̄0) is the correspondingly set of fields for the region 0 < x < x0 and
Φ2(φ2, ψ2, ψ̄2, ϕ2, χ2, χ̄2) in the x > 0.
Then, the Lagrangian density describing this system can be written as,

L = θ(−x)L1 + δ(x)LD1 + θ(x)θ(x0 − x)L0 − δ(x− x0)LD2 + θ(x− x0)L2, (15)

where the two type-I defect Lagrangian densities LDk at x = 0 (k = 1), and x = x0 (k = 2), are
given by

LDk =
1

2
[φ0∂tφk − φk∂tφ0]− 1

2
[ϕ0∂tϕk − ϕk∂tϕ0] + i(χ̄kχ̄0 + χkχ0)

−i(ψ̄kψ̄0 + ψkψ0)− (−1)k
(
i

2
fk∂tgk +

i

2
gk∂tfk +B

(k)
1 +B

(k)
0

)
, (16)

with the defect potentials

B
(k)
0 = mσk [cosh(φ0 + φk)− cosh(ϕ0 + ϕk)] +

m

σk
[cosh(φ0 − φk)− cosh(ϕ0 − ϕk)] , (17)

B
(k)
1 = i

√
mσk

2
cosh

(
φk + φ0 + ϕ0 + ϕk

2

)
fk(ψ0 + ψk − χ0 − χk)

+i

√
mσk

2
cosh

(
φk + φ0 − ϕk − ϕ0

2

)
gk(ψk + ψ0 + χ0 + χk)

−i(−1)k
√

m

2σk
cosh

(
φ0 − φk + ϕk − ϕ0

2

)
fk(ψ̄0 − ψ̄k + χ̄0 − χ̄k)

−i(−1)k
√

m

2σk
cosh

(
φ0 − φk + ϕ0 − ϕk

2

)
gk(ψ̄0 − ψ̄k − χ̄0 + χ̄k), (18)
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where σk, with k = 1, 2 are two free parameters associated two each defect. Thus for each defect
we can write the following equations of motion
for x = 0 :

∂xφ1 − ∂tφ0 = −∂φ1(B
(1)
0 +B

(1)
1 ), ∂xϕ1 − ∂tϕ0 = ∂ϕ1(B

(1)
0 +B

(1)
1 ),

∂xφ0 − ∂tφ1 = ∂φ0(B
(1)
0 +B

(1)
1 ), ∂xϕ0 − ∂tϕ1 = −∂ϕ0(B

(1)
0 +B

(1)
1 ),

i(ψ1 − ψ0) = −∂ψ1B
(1)
1 = −∂ψ0B

(1)
1 , i(χ1 − χ0) = ∂χ1B

(1)
1 = ∂χ0B

(1)
1 ,

i(ψ̄1 + ψ̄0) = ∂ψ̄1
B

(1)
1 = −∂ψ̄0

B
(1)
1 , i(χ̄1 + χ̄0) = −∂χ̄1B

(1)
1 = ∂χ̄0B

(1)
1 ,

i∂tf1 = −∂g1B
(1)
1 , i∂tg1 = −∂f1B

(1)
1 ,

(19)
and for x = x0 :

∂xφ0 − ∂tφ2 = −∂φ0(B
(2)
0 +B

(2)
1 ), ∂xϕ0 − ∂tϕ2 = ∂ϕ0(B

(2)
0 +B

(2)
1 ),

∂xφ2 − ∂tφ0 = ∂φ2(B
(2)
0 +B

(2)
1 ), ∂xϕ2 − ∂tϕ0 = −∂ϕ2(B

(2)
0 +B

(2)
1 ),

i(ψ0 − ψ2) = −∂ψ0B
(2)
1 = −∂ψ2B

(2)
1 , i(χ0 − χ2) = ∂χ0B

(2)
1 = ∂χ2B

(2)
1 ,

i(ψ̄2 + ψ̄0) = ∂ψ̄0
B

(2)
1 = −∂ψ̄2

B
(2)
1 , i(χ̄2 + χ̄0) = −∂χ̄0B

(2)
1 = ∂χ̄2B

(2)
1 ,

i∂tf2 = −∂g2B
(2)
1 , i∂tg2 = −∂f2B

(2)
1 ,

(20)
Now taking the limit x0 → 0 in the Lagrangian density (15), the bulk Langrangian term L0

vanishes, and then the resulting Lagrangian density for fused defect becomes of the form of eq.
(10) with LD = LD1 − LD2, namely,

LD =
1

2
(φ0∂tφ− − φ−∂tφ0)− i(ψ̄−ψ̄0 + ψ−ψ0) +

i

2
(f1∂tg1 + f2∂tg2 + g1∂tf1 + g2∂tf2)

−1

2
(ϕ0∂tϕ− − ϕ−∂tϕ0) + i(χ̄−χ̄0 + χ−χ0) +B

(1)
0 +B

(2)
0 +B

(1)
1 +B

(2)
1 . (21)

We note that the fields of the bulk Langrangian term L0 only contribute to the total defect
Lagrangian at x = 0, and become auxiliary fields.

The fused bosonic potential forN = 2 sshG model B0 = B
(1)
0 +B

(2)
0 = B+

0 +B−0 , is a combination
of two N = 1 potentials previously obtained in [9], and it can be written explicitly as follows,

B+
0 =

m

2

[
e

(
φ+
2

+φ0
)(

σ1e
φ−
2 + σ2e

−φ−
2

)
+ e
−
(
φ+
2

+φ0
)(

σ1e
−φ−

2 + σ2e
φ−
2

)
− e(

ϕ+
2

+ϕ0)
(
σ1e

ϕ−
2 + σ2e

−ϕ−
2

)
− e−(

ϕ+
2

+ϕ0)
(
σ1e
−ϕ−

2 + σ2e
ϕ−
2

)]
, (22)

B−0 =
m

2

[
e

(
φ+
2
−φ0

)(
1

σ1
e
φ−
2 +

1

σ2
e−

φ−
2

)
+ e
−
(
φ+
2
−φ0

)(
1

σ1
e−

φ−
2 +

1

σ2
e
φ−
2

)
− e(

ϕ+
2
−ϕ0)

(
1

σ1
e
ϕ−
2 +

1

σ2
e−

ϕ−
2

)
− e−(

ϕ+
2
−ϕ0)

(
1

σ1
e−

ϕ−
2 +

1

σ2
e
ϕ−
2

)]
. (23)
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For the fermionic part we need to use the equations of motion (12) for each region, in order to
eliminate the auxiliary fields ψ̄0, ψ0, χ0, χ̄0, we get

ψ0 =
ψ+

2
−
√
mσ1

2

[
∂φ1u

+
1 f1 + ∂φ1u

−
1 g1

]
+

√
mσ2

2

[
∂φ2u

+
2 f2 + ∂φ2u

−
2 g2

]
(24)

χ0 =
χ+

2
−
√
mσ1

2

[
∂φ1u

+
1 f1 − ∂φ1u

−
1 g1

]
+

√
mσ2

2

[
∂φ2u

+
2 f2 − ∂φ2u

−
2 g2

]
(25)

ψ̄0 = − ψ̄+

2
+

√
m

2σ1

[
∂φ1v

−
1 f1 + ∂φ1v

+
1 g1

]
+

√
m

2σ2

[
∂φ2v

−
2 f2 + ∂φ2v

+
2 g2

]
(26)

χ̄0 = − χ̄+

2
−
√

m

2σ1

[
∂φ1v

−
1 f1 − ∂φ1v

+
1 g1

]
−
√

m

2σ2

[
∂φ2v

−
2 f2 − ∂φ2v

+
2 g2

]
(27)

where we define the functions

u±k = sinh

(
(φk + φ0)± (ϕk + ϕ0)

2

)
, v±k = sinh

(
(φk − φ0)± (ϕk − ϕ0)

2

)
(28)

Then noting that

i(χ−χ0 − ψ−ψ0) =
i

2
(χ−χ+ − ψ−ψ+)− im

√
σ1σ2

[
∂φ1u

+
1 ∂φ2u

−
2 f1g2 + ∂φ1u

−
1 ∂φ2u

+
2 g1f2

]
,

i(χ̄−χ̄0 − ψ̄−ψ̄0) = − i
2

(χ̄−χ̄+ − ψ̄−ψ̄+)− im
√
σ1σ2

[
∂φ1v

−
1 ∂φ2v

+
2 f1g2 + ∂φ1v

+
1 ∂φ2v

−
2 g1f2

]
,

(29)

we find that the fermionic part of the fused defect Lagrangian is given by,

LD
∣∣∣
fermion

= i(ψ̄1ψ̄2 − ψ1ψ2)− i(χ̄1χ̄2 − χ1χ2) +
i

2
(f1∂tg1 + f2∂tg2 + g1∂tf1 + g2∂tf2)

+B+
1 +B−1 , (30)

where

B+
1 =

i

2

√
m

2

[
e−
(
φ++ϕ+

4
+
φ0+ϕ0

2

)(√
σ2 e

φ−+ϕ−
4 f2 +

√
σ1 e

−
(
φ−+ϕ−

4

)
f1

)
+ e

(
φ++ϕ+

4
+
φ0+ϕ0

2

)(√
σ2 e

−
(
φ−+ϕ−

4

)
f2 +

√
σ1 e

φ−+ϕ−
4 f1

)]
(ψ+ − χ+)

+
i

2

√
m

2

[
e−
(
φ+−ϕ+

4
+
φ0−ϕ0

2

)(√
σ1 e

−
(
φ−−ϕ−

4

)
g1 +

√
σ2 e

φ−−ϕ−
4 g2

)
+ e

(
φ+−ϕ+

4
+
φ0−ϕ0

2

)(√
σ1 e

φ−−ϕ−
4 g1 +

√
σ2 e

−
(
φ−−ϕ−

4

)
g2

)]
(ψ+ + χ+)

+
im

2

√
σ1σ2

(
cosh

(
φ0 +

φ+

2
+
ϕ−
2

)
+ cosh

(
ϕ0 +

ϕ+

2
+
φ−
2

))
f1g2

+
im

2

√
σ1σ2

(
cosh

(
φ0 +

φ+

2
− ϕ−

2

)
+ cosh

(
ϕ0 +

ϕ+

2
− φ−

2

))
g1f2, (31)
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and

B−1 = − i
2

√
m

2

[
e−
(
φ++ϕ+

4
−φ0+ϕ0

2

)( 1
√
σ1
e−
(
φ−+ϕ−

4

)
g1 −

1
√
σ2
e
φ−+ϕ−

4 g2

)
+ e

(
φ++ϕ+

4
−φ0+ϕ0

2

)( 1
√
σ1
e
φ−+ϕ−

4 g1 −
1
√
σ2
e−
(
φ−+ϕ−

4

)
g2

)]
(ψ̄+ − χ̄+)

− i
2

√
m

2

[
e−
(
φ+−ϕ+

4
−φ0−ϕ0

2

)( 1
√
σ1
e−
(
φ−−ϕ−

4

)
f1 −

1
√
σ2
e
φ−−ϕ−

4 f2

)
+ e

(
φ+−ϕ+

4
−φ0−ϕ0

2

)( 1
√
σ1
e
φ−−ϕ−

4 f1 −
1
√
σ2
e−
(
φ−−ϕ−

4

)
f2

)]
(ψ̄+ + χ̄+)

+
im

2
√
σ1σ2

(
cosh

(
φ0 −

φ+

2
+
ϕ−
2

)
+ cosh

(
ϕ0 −

ϕ+

2
+
φ−
2

))
f1g2

+
im

2
√
σ1σ2

(
cosh

(
φ0 −

φ+

2
− ϕ−

2

)
+ cosh

(
ϕ0 −

ϕ+

2
− φ−

2

))
g1f2. (32)

Finally the type-II defect Lagrangian density can be expressed as follows,

LD =
1

2
(φ0∂tφ− − φ−∂tφ0)− 1

2
(ϕ0∂tϕ− − ϕ−∂tϕ0) + i(ψ̄1ψ̄2 − ψ1ψ2)− i(χ̄1χ̄2 − χ1χ2)

+
i

2
(f1∂tg1 + f2∂tg2 + g1∂tf1 + g2∂tf2) +B+

0 +B−0 +B+
1 +B−1 . (33)

Then, the corresponding type-II defects conditions for the N = 2 sshG model at x = 0 are,

∂xφ1 − ∂tφ0 = −∂φ1(B0 +B1), ∂xφ2 − ∂tφ0 = ∂φ2(B0 +B1),

∂xϕ1 − ∂tϕ0 = ∂ϕ1(B0 +B1), ∂xϕ2 − ∂tϕ0 = −∂ϕ2(B0 +B1),

∂t(φ1 − φ2) = −∂φ0(B0 +B1), ∂t(ϕ1 − ϕ2) = ∂ϕ0(B0 +B1),

i(ψ1 − ψ2) = −∂ψ1B1 = −∂ψ2B1, i(ψ̄1 − ψ̄2) = ∂ψ̄1
B1 = ∂ψ̄2

B1,

i(χ1 − χ2) = ∂χ1B1 = ∂χ2B1, i(χ̄1 − χ̄2) = −∂χ̄1B1 = −∂χ̄2B1,

i∂tg1 = −∂f1B1, i∂tf1 = −∂g1B1,

i∂tg2 = −∂f2B1, i∂tf2 = −∂g2B1.

(34)

The explicit form of the Bäcklund transformation for N = 2 sshG model is presented in
appendix A.

5. Conservation of the momentum and energy
In this section, we will discuss the modified conserved momentum and energy. Let us consider
first the total canonical momentum, which is given by the following contributions

P =

∫ 0

−∞
dxP1 +

∫ +∞

0
dxP2, (35)

with

Pp = ∂tφp∂xφp − ∂tϕp∂xϕp − i(ψp∂xψp + ψ̄p∂xψ̄p) + i(χp∂xχp + χ̄p∂xχ̄p), p = 1, 2. (36)

Using the bulk equations (3), we can write the time derivative of momentum as

dP

dt
=

[1

2
(∂xφ1)2 +

1

2
(∂tφ1)2 − 1

2
(∂xϕ1)2 − 1

2
(∂tϕ1)2 − i(ψ1∂tψ1 + ψ̄1∂tψ̄1)

+i(χ1∂tχ1 + χ̄1∂tχ̄1)− 1

2
(∂xφ2)2 − 1

2
(∂tφ2)2 +

1

2
(∂xϕ2)2 +

1

2
(∂tϕ2)2

+i(ψ2∂tψ2 + ψ̄2∂tψ̄2)− i(χ2∂tχ2 + χ̄2∂tχ̄2)− V1 + V2 −W1 +W2

]
x=0

. (37)
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Now, from the explicit form of the defect potentials B0 = B+
0 + B−0 , B1 = B+

1 + B−1 given in
eqs. (31)–(23), and the defect conditions (34), we find the following set of relations,

∂ψ−B1 = ∂ψ̄−B1 = ∂χ−B1 = ∂χ̄−B1 = 0,

∂ψ+B
−
1 = ∂ψ̄+

B+
1 = ∂χ+B

−
1 = ∂χ̄+B

+
1 = 0, (38)

and
∂φ0B

+
0 = 2∂φ+B

+
0 , ∂φ0B

+
1 = 2∂φ+B

+
1 ,

∂φ0B
−
0 = −2∂φ+B

−
0 , ∂φ0B

−
1 = −2∂φ+B

−
1 ,

∂ϕ0B
+
0 = 2∂ϕ+B

+
0 , ∂ϕ0B

+
1 = 2∂ϕ+B

+
1 ,

∂ϕ0B
−
0 = −2∂ϕ+B

−
0 , ∂ϕ0B

−
1 = −2∂ϕ+B

−
1 .

(39)

Then, by using the above relations and the defect conditions (34), the equation (37) takes the
following form,

dP

dt
=

[
2∂φ+B0∂φ−B0 − 2∂ϕ+B0∂ϕ−B0 + 2∂φ+B1∂φ−B1 − 2∂ϕ+B1∂ϕ−B1 + 2∂φ−B0∂φ+B1

+2∂φ+B0∂φ−B1 − 2∂ϕ−B0∂ϕ+B1 − 2∂ϕ+B0∂ϕ−B1 − 2∂tφ0∂φ+(B0 +B1)

−2∂tϕ0∂ϕ+(B0 +B1)− 1

2
∂tφ+∂φ0(B0 +B1)− 1

2
∂tϕ+∂ϕ0(B0 +B1)

−∂tψ+∂ψ+B1 + ∂tψ̄+∂ψ̄+
B1 − ∂tχ+∂χ+B1 + ∂tχ̄+∂χ̄+B1 − V1 + V2 −W1 +W2

+i∂t(ψ1ψ2 + ψ̄1ψ̄2 − χ1χ2 − χ̄1χ̄2)
]
x=0

, (40)

where the right-hand-side of the above equation becomes a total time derivative since the defect
potentials B±0 and B±1 satisfy the following Poisson-bracket-like relations,

V1 − V2 = 2(∂φ0B
+
0 ∂φ−B

−
0 − ∂φ0B

−
0 ∂φ−B

+
0 − ∂ϕ0B

+
0 ∂ϕ−B

−
0 + ∂ϕ0B

−
0 ∂ϕ−B

+
0 ), (41)

W1 −W2 = 2(∂φ0B
+
1 ∂φ−B

−
0 − ∂φ0B

−
1 ∂φ−B

+
0 + ∂φ0B

+
0 ∂φ−B

−
1 − ∂φ0B

−
0 ∂φ−B

+
1 )

−2(∂ϕ0B
+
1 ∂ϕ−B

−
0 − ∂ϕ0B

−
1 ∂ϕ−B

+
0 + ∂ϕ0B

+
0 ∂ϕ−B

−
1 − ∂ϕ0B

−
0 ∂ϕ−B

+
1 )

+2i(∂f1B
−
1 ∂g1B

+
1 − ∂f1B

+
1 ∂g1B

−
1 + ∂f2B

−
1 ∂g2B

+
1 − ∂f2B

+
1 ∂g2B

−
1 ), (42)

together with the constraint,

∂φ0B
+
1 ∂φ−B

−
1 − ∂φ0B

−
1 ∂φ−B

+
1 − ∂ϕ0B

+
1 ∂ϕ−B

−
1 + ∂ϕ0B

−
1 ∂ϕ−B

+
1 = 0. (43)

Then, we get that the modified conserved momentum can be written in a simple form,

P = P +
[
B+

1 +B+
0 −B

−
1 −B

−
0 + i(−ψ1ψ2 − ψ̄1ψ̄2 + χ1χ2 + χ̄1χ̄2)

]
x=0

. (44)

Now, let us consider the total energy

E =

∫ 0

−∞
dx E1 +

∫ +∞

0
dx E2, (45)

where

Ep =
1

2
(∂xφp)

2 +
1

2
(∂tφp)

2 − 1

2
(∂xϕp)

2 − 1

2
(∂tϕp)

2 − i(ψp∂xψp − ψ̄p∂xψ̄p)

+i(χp∂xχp − χ̄p∂xχ̄p) + Vp +Wp. (46)
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We can find its time-derivative in the same way as before by using the bulk equations (3). The
result reads

dE

dt
=

[
∂tφ1∂xφ1 − ∂tϕ1∂xϕ1 − i(ψ1∂tψ1 − ψ̄1∂tψ̄1) + i(χ1∂tχ1 − χ̄1∂tχ̄1)

−∂tφ2∂xφ2 + ∂tϕ2∂xϕ2 + i(ψ2∂tψ2 − ψ̄2∂tψ̄2)− i(χ2∂tχ2 − χ̄2∂tχ̄2)
]
x=0

. (47)

Then using the defect conditions (34) and the defect potentials (31)–(23), we find that the
modified conserved energy is given by

E = E +
[
B0 +B1 + i(ψ̄1ψ̄2 − ψ1ψ2 + χ1χ2 − χ̄1χ̄2)

]
x=0

. (48)

6. Modified conserved supercharges
We have seen that the bulk theory action is invariant under susy transformation (4), and it was
explicitly shown for δ1 projection. However, this is not necessarily true for the defect theory, and
therefore we should show that the presence of the defect will not destroy the supersymmetry of
the bulk theory. Let us compute the defect contribution for Q1. By introducing the defect at
x = 0, we have

Q1 =

∫ 0

−∞
dx
[
2iψ1∂+φ1 + 2iχ1∂+ϕ1 − 2imψ̄1 sinhφ1 coshϕ1 + 2imχ̄1 sinhϕ1 coshφ1

]
+

∫ ∞
0

dx
[
2iψ2∂+φ2 + iχ2∂+ϕ2 − 2imψ̄2 sinhφ2 coshϕ2 + 2imχ̄2 sinhϕ2 coshφ2

]
.(49)

Now, by taking the time-derivative respectively, we get

dQ1

dt
=

[
2iψ1∂+φ1 + 2iχ1∂+ϕ1 + 2imψ̄1 sinhφ1 coshϕ1 − 2imχ̄1 sinhϕ1 coshφ1

]
x=0

−
[
2iψ2∂+φ2 + 2iχ2∂+ϕ2 + 2imψ̄2 sinhφ2 coshϕ2 − 2imχ̄2 sinhϕ2 coshφ2

]
x=0

. (50)

Using the defect conditions (34), we get

dQ1

dt
=

[
iψ−∂t

(
φ+

2
+ φ0

)
− iψ− ∂φ−(B0 +B1)− iψ+ ∂φ0(B+

0 +B+
1 )

+iχ− ∂t

(ϕ+

2
+ ϕ0

)
+ iχ−∂ϕ−(B0 +B1) + iχ+ ∂ϕ0(B+

0 +B+
1 )

−im(ψ̄+ + ψ̄−) sinh
(φ+ + φ−

2

)
cosh

(ϕ+ + ϕ−
2

)
+im(ψ̄+ − ψ̄−) sinh

(φ+ − φ−
2

)
cosh

(ϕ+ − ϕ−
2

)
+im(χ̄+ + χ̄−) sinh

(ϕ+ + ϕ−
2

)
cosh

(φ+ + φ−
2

)
−im(χ̄+ − χ̄−) sinh

(ϕ+ − ϕ−
2

)
cosh

(φ+ − φ−
2

)]
x=0

. (51)

Now, by making use of the defect conditions intensively, we find after some algebra that the
right-hand-side of the equation becomes a total time-derivative, and then the modified conserved
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supercharge can be written inQ1 = Q1+QD1 , with the defect contribution given by the following
expression,

QD1 =
2∑

k=1

−i
√

2mσk

(
u+
k fk + u−k gk

)
x=0

. (52)

where we have introduced the function,

u±k = sinh

(
(φk + φ0)± (ϕk + ϕ0)

2

)
. (53)

Analogously, we can find the remaining modified conserved supercharges,

Q2 = Q2 +QD2 , Q1 = Q1 +QD1 , Q2 = Q2 +QD2 , (54)

with the corresponding defect contributions given by,

QD2 =
2∑

k=1

−i
√

2mσk

(
u+
k fk − u

−
k gk

)
x=0

, (55)

QD1
=

2∑
k=1

i
√

2m(−1)k
√
σk

(
v−k fk + v+

k gk

)
x=0

, (56)

QD2
=

2∑
k=1

i
√

2m(−1)k−1

√
σk

(
v−k fk − v

+
k gk

)
x=0

, (57)

where the functions v±k are defined to be,

v±k = sinh

(
(φk − φ0)± (ϕk − ϕ0)

2

)
. (58)

The derivation of the exact form of the all modified conserved, together with the modified
conserved energy and momentum, provides a strong evidence indicating the classical integrability
of the fused defect for the N = 2 sshG model. A more rigorous analysis should require the
derivation of the generating function of an infinite set of modified conserved quantities. That
can be done following the on-shell Lax approach to derive the corresponding type-II defect K-
matrix for the model. From its explicit form is possible to derive an infinite set of modified
conserved quantities. Alternative approaches can also be used in order to prove the involutivity
of the charges, for instance the off-shell r-matrix and the multisymplectic approach as well. Some
of these issues will be considered in future investigations.

7. PT symmetry
First of all, it can be shown that the bulk Lagrangian density and fields equations are invariant
under the simultaneous transformations of parity transformation (P), and time reversal (T),
namely (x, t)→ (−x,−t), if the fields transform as follows,

φ(x, t) −→ φ(−x,−t), ϕ(x, t) −→ ϕ(−x,−t),
ψ(x, t) ←→ −χ(−x,−t), ψ̄(x, t)←→ −χ̄(−x,−t),

In addition, we notice that applying this PT transformation, the ε1-projection of the susy
transformation maps to the ε2-projection. Then, as it can be verified, by applying the PT
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transformation over Q1 we get the second supercharge, namely Q2 = PTQ1. Analogously, it
happens with Q2 = PTQ1.

Now, in the presence of a type-I defect the PT transformation relates the fields on the left-
hand side to the ones on the right-hand side, and conversely. Then, to preserve the invariance
under PT symmetry the fields in the respective bulk Lagrangian densities Lp should transform
in the following way,

φ1(x, t) ←→ φ2(−x,−t), ϕ1(x, t)←→ ϕ2(−x,−t),
ψ1(x, t) ←→ −χ2(−x,−t), ψ̄1(x, t)←→ −χ̄2(−x,−t).

Consequently, the auxiliary fermionic fields f, g in the defect Lagrangian should transform as,

f(t) −→ f(−t), g(t) −→ −g(−t).

Under these field transformations it can be shown that the type-I defect equations are invariant.
On the other hand, the type-II defect Lagrangian density for the N = 2 sshG model is invariant
under PT transformation, if the corresponding auxiliary fields transform in the following way,

φ0(t) ←→ φ0(−t), ϕ0(t)←→ ϕ0(−t),
f1(t) ←→ f2(−t), g1(t)←→ −g2(−t). (59)

In this case, we can verified that if this PT transformation is applied over QD1 we obtain the
defect contribution to the second supercharge, namely QD2 = PTQD1 . The same is valid for
QD2 = PTQD1 .

The invariance of the N = 2 sshG model under PT symmetry is strongly related with the
description of the equation of motion in the superspace formalism. In such language, the fields
appear as components of two N = 2 superfields, one of them being a chiral superfield, while
the other one is anti-chiral (For more details see [12]). The fact that the PT symmetry is
preserved in the presence of the type-II defect, somehow suggests the possibility of describing
the defect conditions in terms of superfields. In other words, there should exists a type-II
Bäcklund transformation for the N = 2 sshG equation consistent with the defect conditions of
the fused defect. As it was shown for the N = 1 sshG equations, the type-II defect conditions
are equivalent to “frozen” type-II Bäcklund transformation of the model (see appendix A).

8. Final Remarks
In this paper, we have derived a type-II integrable defect for the N = 2 sshG model by using
the fusing procedure. At the Lagrangian level, we have shown that the type-II defect for this
supersymmetric model can be also obtained by fusing two type-I defects located initially at
different points in the x-axis. We have shown the conservation of the modified quantities of
the energy, momentum and supercharges. Moreover, the invariance under PT symmetry was
verified.

From the results obtained in this paper and those previously found in [9], it would be
interesting to explore the possibility of finding new integrable boundary conditions for the
N = 1 and N = 2 sshG models, by performing a consistent half-line limit, specially following
the reasoning of [13]–[15].

There are many others algebraic aspects related to type-II defects that have not been
addressed in this work, like the Lax representation, the involutivity of the charges via the
r-matrix approach, and the construction of the soliton solutions. These issues are expected to
be addressed in future investigations.
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Appendix A. Type-II Bäcklund transformations for N = 2 sshG model

ψ− =
√

2m
[√
σ1(∂φ0u

+
1 f1 + ∂φ0u

−
1 g1) +

√
σ2(∂φ0u

+
2 f2 + ∂φ0u

−
2 g2)

]
(A.1)

ψ̄− = −
√

2m

[
1
√
σ1

(∂φ0v
+
1 g1 + ∂φ0v

−
1 f1)− 1

√
σ2

(∂φ0v
+
2 g2 + ∂φ0v

−
2 f2)

]
(A.2)

χ− =
√

2m
[√
σ1(∂φ0u

+
1 f1 − ∂φ0u

−
1 g1) +

√
σ2(∂φ0u

+
2 f2 − ∂φ0u

−
2 g2)

]
(A.3)

χ̄− = −
√

2m

[
1
√
σ1

(∂φ0v
+
1 g1 − ∂φ0v

−
1 f1)− 1

√
σ2

(∂φ0v
+
2 g2 − ∂φ0v

−
2 f2)

]
(A.4)

∂−g1 =
m

2
√
σ1σ2

(
cosh

(
φ0 −

φ+

2
+
ϕ−
2

)
+ cosh

(
ϕ0 −

ϕ+

2
+
φ−
2

))
g2

+

√
2m

σ1
∂φ0v

−
1 (ψ̄+ + χ̄+) (A.5)

∂+g1 = −m
2

√
σ1σ2

(
cosh

(
φ0 +

φ+

2
+
ϕ−
2

)
+ cosh

(
ϕ0 +

ϕ+

2
+
φ−
2

))
g2

−
√

2mσ1∂φ0u
+
1 (ψ+ − χ+) (A.6)

∂−f1 =
m

2
√
σ1σ2

(
cosh

(
φ0 −

φ+

2
− ϕ−

2

)
+ cosh

(
ϕ0 −

ϕ+

2
− φ−

2

))
f2

+

√
2m

σ1
∂φ0v

+
1 (ψ̄+ − χ̄+) (A.7)

∂+f1 = −m
2

√
σ1σ2

(
cosh

(
φ0 +

φ+

2
− ϕ−

2

)
+ cosh

(
ϕ0 +

ϕ+

2
− φ−

2

))
f2

−
√

2mσ1∂φ0u
−
1 (ψ+ + χ+) (A.8)

∂−g2 = − m

2
√
σ1σ2

(
cosh

(
φ0 −

φ+

2
− ϕ−

2

)
+ cosh

(
ϕ0 −

ϕ+

2
− φ−

2

))
g1

−
√

2m

σ2
∂φ0v

−
2 (ψ̄+ + χ̄+) (A.9)

∂+g2 =
m

2

√
σ1σ2

(
cosh

(
φ0 +

φ+

2
− ϕ−

2

)
+ cosh

(
ϕ0 +

ϕ+

2
− φ−

2

))
g1

−
√

2mσ2∂φ0u
+
2 (ψ+ − χ+) (A.10)

∂−f2 = − m

2
√
σ1σ2

(
cosh

(
φ0 −

φ+

2
+
ϕ−
2

)
+ cosh

(
ϕ0 −

ϕ+

2
+
φ−
2

))
f1

−
√

2m

σ2
∂φ0v

+
2 (ψ̄+ − χ̄+) (A.11)

∂+f2 =
m

2

√
σ1σ2

(
cosh

(
φ0 +

φ+

2
+
ϕ−
2

)
+ cosh

(
ϕ0 +

ϕ+

2
+
φ−
2

))
f1

−
√

2mσ2∂φ0u
−
2 (ψ+ + χ+) (A.12)
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∂+φ− = −m
2

[
e

(
φ+
2

+φ0
)(

σ1e
φ−
2 + σ2e

−φ−
2

)
− e−

(
φ+
2

+φ0
)(

σ1e
−φ−

2 + σ2e
φ−
2

)]
− i

2

√
m

2

[
(
√
σ1u

+
1 f1 +

√
σ2u

+
2 f2)(ψ+ − χ+) + (

√
σ1u

−
1 g1 +

√
σ2u

−
2 g2)(ψ+ + χ+)

]
− im

2

√
σ1σ2

[
sinh

(
φ0 +

φ+

2
+
ϕ−
2

)
f1g2 + sinh

(
φ0 +

φ+

2
− ϕ−

2

)
g1f2

]
(A.13)

∂−φ− = −m
2

[
e

(
φ+
2
−φ0

)(
1

σ1
e
φ−
2 +

1

σ2
e−

φ−
2

)
− e−

(
φ+
2
−φ0

)(
1

σ1
e−

φ−
2 +

1

σ2
e
φ−
2

)]
+

i

2

√
m

2

[(
1
√
σ1
v+

1 g1 −
1
√
σ2
v+

2 g2

)
(ψ̄+ − χ̄+) +

(
1
√
σ1
v−1 f1 −

1
√
σ2
v−2 f2

)
(ψ̄+ + χ̄+)

]
+

im

2
√
σ1σ2

[
sinh

(
φ0 −
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(A.14)
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(A.16)
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(A.17)
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(A.18)
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(A.19)
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]
(A.20)

It was verified that these Bäcklund transformations correspond to the equations (3) for each
fields.
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