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Titulo en espaiiol

Tunelamiento en aproximacién semiclasica de la radiacién Hawking para Black Shells

Title in English

Tunneling in semiclassical approximation to Hawking's Radiation for Black Shells

Resumen: El propésito de este trabajo es intentar determinar la existencia de tunelamiento cuan-
tico en el proceso de radiacién de Hawking para agujeros negros, considerando la busqueda de un
potencial proveniente de algin fenémeno de la fisica establecida, que proporcione una analogia
al hipotético potencial que deberia estar presente en el horizonte de eventos, a través e cual las
particulas tunelarian. El decaimiento alfa nuclear podria ser un candidato ampliamente estudiado
en las desintegraciones, asi como su comprension experimental y tedrica. Otra opcién se refiere al
proceso de conversién de pares ante un campo electromagnético en el interior del nicleo con las
correspondientes probabilidades de emisién electrén positrén, que se asemeja al caso de interés.

A partir del principio holografico es posible establecer una zona en la cual los campos cuanticos
estan presentes en las vecindades de un agujero negro y por lo tanto las consideraciones termo-
dinamicas sobre la entropia de Bekenstein-Hawking estarian restringidas a esta zona en particular
representada por un cascarén negro (Black Shell) sin la necesidad de conocer el interior, pues
investigar qué hay en el interior de un agujero negro es una pregunta que no es posible responder
con la Relatividad General.

Abstract: The purpose of this work is trying to determinate the existence of quantum tunneling
for the Hawking's radiation process for black holes, considering to find a poten- tial coming from
some established physics phenomena that provides an analogy with an hypothetical potential that
should be on the event horizon, through which the particles would tunnel. Nuclear alpha decay
could be a widely studied case on the desintegrations, for its experimental and theoretical unders-
tanding. Another option refers to the pairs conversion process onto an electromagnetical field in
the interior of nuclei with its probabilities of emision of electrons and positrons that resembles to
the interest framework.

Starting by holographic principle is possible to establish a particular zone what the quantum fields
are present on the vicinity of a Black Hole and therefore, thermodynamical considerations through
Bekenstein's-Hawking entropy will be restricted to this zone in particular represented by a Black
Shell, without the necessity of recognize its interior, but investigate what's inside of a Black Hole
is a question that is not possible to answer with General Relativity.

Palabras claves: Agujeros negros, radiacion de Hawking, tunelamiento cuantico, conversién in-
terna, principio holografico, Black Shells.
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Introduccién

El fenémeno de radiacién Hawking postulado en [1]* plantea la posibilidad de la existencia de
un fenémeno de tunelamiento a través del horizonte de eventos, que generard una barrera de
potencial, a través de la cual las particulas como los electrones tunelarian. Esta perspectiva es
abordada por [2], [3].

Desde la perspectiva de la aproximacion semiclasica de WKB, desarrollada en el apéndice A, en
la cual se establece la posibilidad de la existencia de la barrera, pero no su localizacién se quisiera
pensar que ésta estuviese presente a una pequefia distancia k1 a partir de la frontera del horizonte
de eventos, y podria calcularse segtin el principio holografico®. Para tal fin es necesario esclarecer
de qué naturaleza es dicho potencial, esto en primera medida puede ser pensado al reconocer que
existen fenémenos en la naturaleza en los que se presenta tunelamiento, tales como los procesos
de decaimiento a« en un nacleo radiactivo. En este sucede la emisiéon de particulas a las cuales
corresponden a nucleos de Helio, y la subsecuente formacién de un nicleo hijo con los neutrones
y protones restantes que no han sido expulsados.

La revision de este mecanismo se ha realiza en el capitulo 2 y el apéndice B. En tal discusion se
verifica la existencia de potenciales y probabilidades de tunelamiento, que pueden ser contrastadas
con las expuestas en el mecanismo de Hawking, mediante la determinacion del coeficiente de
transmisién de particulas que atraviesan la barrera de potencial nuclear y contrastarlo con una
hipotética barrera de potencial presente en el horizonte de eventos, con el fin de verificar si éste
posee un potencial de naturaleza similar al presente en este fenémeno nuclear.

Segun [3] la particula tunelando al atravesar la barrera de potencial, para efectos de conservacién
de la energia, en el agujero negro hara que el horizonte se estreche ocasionando una contracién;
durante el proceso de radiacién, lo que llevaria a que el espectro de emisién no fuese estrictamente
planckiano, como lo predice el espectro térmico de la Radiacion de Hawking[4], [5].

La correccién al espectro hace necesario abordar el problema de preservacion de unitariedad de la
mecanica cuantica en el proceso y a su vez expresa el problema de la pérdida de informacion en los
agujeros negros. Se espera que las fluctuaciones de vacio cuantico en la regién préxima al horizonte,
justo adentro de éste, causen que la particula virtual de energia positiva creada, pueda tunelar y
materializarse en una particula real. En el caso de ser creada en las inmediaciones externas, una
particula virtual de energia negativa, tunelaria hacia adentro, decrementando la masa del agujero
negro, mientras su compafiera de energia positiva escaparia al infinito en forma de radiacién de
Hawking.

1Y que se encuentra descrito en el capitulo 1
2Este principio es discutido en el capitulo 3

XVII
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Otro mecanismo de emision seria similar al proceso nuclear de creacién de un par electrén-positrén
como el presente en el fenémeno de conversién interna, el cual se halla descrito en el capitulo 2.
En el que se estudia el proceso de conversién de pares a partir de un campo electromagnético,
determinandose el coeficiente de conversién de pares para encontrar la probabilidad de emisién
nuclear.

En el capitulo 1 se describe el mecanismo de radiaciéon Hawking, en el esquema por él desarrollado
en [1]. Mediante el uso de una teoria cuantica de campos canénica en espacios curvos se obtiene
la temperatura de Hawking como un proceso de tunelamiento.

En el capitulo 2 se discuten dos procesos de tunelamiento conocidos a nivel nuclear, la emisién de
particulas & a través de una barrera de potencial, con los subsecuentes desarrollos expresados en
el apéndice B. Al considerar el modelo de Gamow y sus subsiguientes refinamientos en los deno-
minados potenciales de Skarmee-Hartree-Fock, que se corresponden con modelos mas realistas de
potencial para el nacleo. Otro mecanismo plausible corresponde al fenémeno de conversién interna
para la creacién de pares electrén-positrén debido a transiciones electromagnéticas nucleares.

Los elementos conceptuales que rigen el Principio Holografico son esbozados en el capitulo 3,
al considerarse como una caracteristica a ser cumplida por una teoria de gravedad cuantica que
pueda ser construida en el futuro. Este principio expresa las cotas a la entropia de agujero negro
y las posibles configuraciones de estados cuanticos de los modos proyectados en el horizonte de
eventos y la estructura fisica del horizonte de eventos .

En el capitulo 4 se discute el modelo de Black Shell, como una hipersuperficie cerrada formada
por materia sin presién, (un gas de fotones) contrayéndose hasta el radio de Schwarzschild de un
agujero negro, en el cual las geodésicas seguidas por las particulas conformantes siguen trayectorias
como de luz. Esta construccién evita el problema de formular la pregunta sobre qué estructura
posee el interior de un agujero negro, pues basta solamente con analizar la frontera de dicho
cascardn, en la cual se encuentran confinados los campos cuanticos de materia y radiacién en su
superficie y se asume un espacio del tipo Friedmann-Robertson-Walker en su interior.




Chapter 1

Radiacién de Hawking

1.1. Cuantizaciéon candnica y produccién de particulas

En la mecanica clasica un oscilador arménico de masa m y constante elastica k esta descrito a
través de su energia potencial, que depende de su desplazamiento desde la posicién de equilibrio,
y su energia cinética que depende de su momentum. De manera tal que la energia total es la
suma de la energia cinética y la energia potencial, de acuerdo a

E=K+V = ymi*+ 3kx? = I + Jw?x?,

donde se ha considerado que p = mx y w = %

En el caso de un oscilador arménico cuantico al reemplazar el momentum p por el operador —ih%,
se obtiene una ecuacién de onda denominada Ecuacién de Schrodinger dada por

w92
<_%W + %w2x2) y=Ey

cuyas soluciones corresponden a funciones de la forma

il

Pal(8) = A (29)* Ha(@) exp (—5)

siendo H,({) los polinomios de Hermite y { = /=¥ x.

La ecuacién de Schrédinger es una ecuacién de valores propios, los cuales corresponden a los
valores discretos de la energia y ademas cumplen la condicién

E,= (n+3)hw

1
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El oscilador arménico cuantico puede ser descrito por un hamiltoniano dado en términos de los
operadores de posicién £ y momentum p! de acuerdo a

A 1
a=r Ema_)zyez. (1.1)

Si se considera una factorizacién del hamiltoniano? en la ecuacién (1.1) es notable la aparicién
del término —%hw que corresponde a la energia del punto cero. En dicha factorizacién es posible
definir los operadores de creacién @' y destruccién 4~ a partir de los operadores de posicién y
momentum y una constante multiplicativa funcién de la frecuencia, en la forma

mw i
A =\ — | £+ —P 1.2
g 2h <x—i— mwp> (12)
N LN P 1
a 7 (x mwp> . (1.3)
Los operadores £ y p, pueden ser escritos al invertir las expresiones (1.2) y (1.3) de manera que
R=4/7—(a"+a") (1.4)

p= —i\/hmTw (a= —a) (1.5)

entonces, se observa que el hamiltoniano se factoriza en

1| os operadores £ vy P no conmutan, esto es

[%,p] = 2 — pt = in

2En donde
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H=hw @ a"+3). (1.6)

El operador N = 4~ 4% en (1.6) tiene un estado propio |n) con valor propio 13 y por lo tanto el
hamiltoniano posee este mismo autovalor y autoestado que el operador N*. De manera que |1)
es una notacién equivalente a (&) y cuyo conmutador corresponde a

am,a%] = e (=i (% 0) + 5 [P, 2))
= 52 (e (ih) + 5 (—ih)
= me (L b
= (%)

[a-,at] = 1.

Un campo clasico en el espacio tridimensional puede expresarse como una funcién escalar de las
tres coordenadas espaciales y del tiempo como ¢(x, t). De acuerdo a [6], el campo escalar clasico
puede ser considerado como un conjunto de osciladores arménicos desacoplados colocado cada
uno de ellos en cada punto del espacio.

A partir de las relaciones de conmutacién de la teoria cuantica, en la cual las variables canénicas
clasicas x = g y p son ahora los operadores § y p, que corresponden a

[4,p] =ih =i (1.7)

si se consideran unidades naturales en las cuales i = 1 y ademas osciladores de masa unitaria,
entonces los operadores de creacién y destruccion para todo tiempo ¢, en las ecuaciones (1.2) y
(1.3) quedan

- = 8 A i 2] + — g A _ i A
c0=yslo+ o] o= Slo-Sm]  as
y las correspondientes relaciones de conmutacion

[a=(t),a" ()] =1 (1.9)

Para construir el espacio de Hilbert de los estados cuanticos en un oscilador no perturbado ex-
ternamente, a partir de un estado de vacio dado por un vector normalizado |0), y ademas debe
satisfacerse la condicion de que a—|0) = 0. Luego de estos es necesario determinar los estados
excitados, |1), construidos a partir de la aplicacién sucesiva del operador a™ sobre este estado de

vacio 1 .
’Tl> = ﬁ(ﬂ ) |0>/

3Denominado también numero de ocupacion.
4N es el denominado operador nimero de particulas tal que

= hw(NJr%)

Hn) = <n + %) fiw|n)
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o bien, con lo cual es posible escribir todos los estados cuanticos del oscilador arménico como

[¥) = Zoavn\m, ;"”"‘2 —1.

Al considerar el campo cuantico como formado por un nimero infinito de osciladores arménicos,
se tiene en cuenta que los modos normales de oscilacion g,(t) estaran cuantizados y satisfaran las
relaciones de conmutacién (1.7)

[Gar Pl = 10up, Gar ] = [Pas Pp] = 0 (1.10)

y los correspondientes operadores de creacion y destruccion, junto con las relaciones de con-
mutacién, seran
Wy

4 (1) =[5 | dal) + )

a, (t) = \/? -thx(t) - a;p}c(t)- (1.11)

a7, 35)= b
Asi que en este caso el espacio de Hilbert estara determinado a partir de la accién de los operadores

anteriores expresados en las ecuaciones (1.11) sobre el estado de vacio a,10,0,0,..,0) = 0.
Entonces, para un namero de ocupacién n,, los estados excitados seran

N [ s4+\n,
a (14
’1’11,1’12,...,71]\]> = H ( IX)

a=1

0,0, ...,0) (1.12)
Ny!

En el caso continuo, en el cual se consideraria que en cada punto del espacio x se colocase
un oscilador para cada tiempo t, se requerian un conjunto infinito de ellos®. Las coordenadas
asociadas a los operadores ¢, (t) seran reemplazadas por una funcién escalar ¢(x,t) = ¢x(t) que
indique en ese punto e instante la intensidad del campo.

El mas simple de los campos cuanticos corresponde a un campo escalar,[7] y [8]el cual se puede
expresar como ¢(x,t). Este satisface la ecuacion de Klein-Gordon

%P & 02 .
a—g—za—ﬁ+m2¢z¢—vz¢+m2¢. (1.13)
j=1 %%

Es necesario imponer condiciones iniciales sobre el campo ¢ y su derivada temporal, ¢(x,ty) y
¢(x,to), para todo t > to; de manera tal que sea posible expresar a ¢(x,t) como un conjunto
de osciladores arménicos desacoplados en un espacio finito de volumen V = L3 y al imponerse
condiciones de frontera periédicas de la forma

Pp(x=0,y,2,t)

p(x=1L,y,zt)
$p(x,y=0,z,t) =¢p(x,y=L,zt)
$(x,y,z=0,t) =¢p(x,y,z =L, t)

5A esto se le denomina campo clasico, es decir a una funcién ¢(x,t), que caracteriza la intensidad del campo
en cada momento f y en cada punto x del espacio. Es posible interpretar un campo clasico, como un conjunto
infinito de osciladores que anteriormente se habian denotado por la coordenada generalizada g;(t), ahora en este
contexto, dado por ¢x(t).
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hace que la descomposicién de Fourier pueda expresarse como

P(x,t) = \% Zk:¢k(t)eik'x (1.14)

con 5
mn

_ Y

ky —

_ 27tny r — 27N,

L7 L’ L

Al sustituir en la ecuacién de Klein-Gordon dada por (1.13) se tiene que ésta ahora corresponde
a un conjunto infinito de ecuaciones diferenciales ordinarias desacopladas

kx

P + (K +m?)pr =0
i + Wi =0, (1.15)

con una correspondiente frecuencia
wi(t) = VK2 +m?,

de manera que cada oscilador indexado con el indice k contribuye a la energia total del campo ¢,
asi que se cumple que

1,.2 1 2
E= ;(2\%} +§wi\¢k| ) (1.16)
Al extender el volumen V al infinito en el indice k continuo, la ecuacién (1.14) corresponde a
3 .
plot) = [ K g, (L.17)
(277)2

El mecanismo de cuantizacién involucra el hecho de que el lagrangiano clasico, que determina la
accién del sistema, puede ser obtenido a partir de una densidad lagrangiana £, segin

Lig] = / Ldx
= / (;;77“’(]),”([),]/ — ;m2¢2>d3x. (1.18)

Dado que esta densidad lagrangiana corresponde a la estructura matematica denominada un
funcional, entonces, se hace necesario efectuar la derivada funcional del campo respecto a las

velocidades generalizadas, ¢ = %q: para obtener los correspondientes momentos generalizados
SL[¢p] .
) = — = ). 1.19
Tl ) = st = bl (119)

A partir del lagrangiano es posible obtener el hamiltoniano clasico, el cual posee una expresién
H= / 7(x, D(x, )dx — L[]
1
=5 /d3x(7r2 + (V¢)* + m2¢>2>. (1.20)
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El hamiltoniano de la ecuacién (1.20) lleva a que las ecuaciones de movimiento de Hamilton, que
involucran las derivadas funcionales del hamiltoniano, sean

op(x,t)  6H
ot  om(xt) (% t)
= ‘54:21;9 = V29(x, 1) — P (x, ). (1.21)

Cuando las variables ¢ y 7T se consideran operadores, con sus respectivas relaciones de conmutacién

[p(x,1), 7y, 1)] = id(x —y)
[p(x, 1), p(y, )] = [#(x,t), (y,1)]=0, (1.22)

es posible expresarlos mediante la ecuacién (1.17), como

31,
t(y,t) :/ d ksel" Yt (t). (1.23)
2

Al sustituir las ecuaciones (1.23) en las relaciones de conmutacién dadas en (1.22), entonces se
tiene que

A

[(t), A ()] = i6(k+K'),

lo que indica que la variable conjugada a ¢y es A_j = (ﬁk)+.

Al reemplazar las ecuaciones (1.23) en las ecuaciones de Hamilton® dadas en (1.21), se tiene que

i
ar -k
i .
T
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Al definir los operadores de creacién y destruccién hermiticos en términos de ¢ y 7 en la forma

[UN

o (1) = “;"<<i>k+ ”T")

Wy

b0 =% (6= %), (1.24)

[ (1), 8, (H)] = 6(k — k')

a3 (1),35(H)] = 0

47 (6),25(0)] =0 (1.25)
Los operadores a4, y ﬁ,‘f cumplen las ecuaciones de movimiento

d (.. .t

77 \ % (t) | = Fiweay (t) (1.26)
cuyas soluciones son de la forma .

B (t) = ace™ o, (1.27)

Si se construye el espacio de Hilbert a partir del estado de vacio |0), sobre el que el operador
de destruccioén actiia, de manera que se cumpla 4, |0) = 0 y ademas el estado con niimeros de
ocupacién ng en cada modo ks, generados a partir de la accién del operador creacién sobre el
mismo estado de vacio, en donde se tiene que 17 particulas poseen momentum ky; n, particulas
tienen momentum k, etc.
(@)™
ng!

|n1,n2,13,...) = []:[ nd ]\0). (1.28)

A partir de (1.27) y teniendo en cuenta los operadores construccién y destruccion (1.24), el campo

queda descrito por
1

Pr(t) = N (ﬁkei“’kt - &J_“kei“’kt>.

Se denomina expansion del operador de campo cuéantico en modos, a la expresion resultante de
insertar la funcién ¢y () anterior en la ecuacién (1.23)

2 Kk 1 —iwyt+ik-x 5— iwit—ik-x 5+
P(x,t) :/(2 )3 G k a, +e'“x a; |, (1.29)
7T )2 k

en donde se ha reemplazado —k por k, en el segundo término.

Si se tiene en cuenta que las funciones

v (t) = ——=e'“H!, (1.30)
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et (1.31)

g

son los denominados modos de frecuencia negativa y positiva, que expresan las soluciones de
energia negativa y positiva respectivamente; entonces, el operador de campo en la ecuacién (1.29)
queda descrito en la forma

2 _ d?)k L oF eik’xﬁ_ v e_ik'xﬁ
i) = [ 55 (kg o) (1.3)

con las usuales reglas de conmutacién dadas en (1.25).

En el evento de realizar una descripcién del campo involucrando los efectos de la gravedad sobre el
espacio-tiempo, se hace necesario tener en cuenta que el campo escalar interactuara con el campo
gravitacional clasico y por lo tanto para describir adecuadamente este fenémeno, se considerara
una accién en el cuadriespacio, de la forma

S[‘P] = /d4x£(¢i/a;t‘,bi)/ (1.33)

aqui, la densidad lagrangiana £ depende de la intensidad del campo y de sus derivadas de orden
superior; ademas que el campo gravitacional ¢; = g,p(x”) depende fuertemente de la métrica.

Se considerara una funcién de valor real para la accién, con el fin de que la probabilidad se
conserve en los respectivos campos cuanticos. Ademas, es importante especificar condiciones
iniciales sobre el campo y sus primeras derivadas, para que su evolucién esté bien definida, con lo
que las ecuaciones de movimiento tendran a lo sumo segundas derivadas de ¢.

Otra caracteristica importante a tener en cuenta es que en un espacio-tiempo curvado la accién
debera ser invariante ante transformaciones generales de coordenadas; pues las propiedades fisicas
de los sistemas satisfaran el principio de covariancia y asi seran independientes del sistema coor-
denado empleado. Esto lleva a que la accién ya no sea invariante ante el grupo de Poincaré y
por lo tanto no se preserve la invarianza traslacional, asi que la densidad lagrangiana ya no puede
depender explicitamente de x ni de ¢.

El procedimiento de generalizacién del lagrangiano dado en la ecuacién (1.18) a un espacio-tiempo
curvo, involucra el hecho de que la métrica 7, debera ser reemplazada por g, asi como cambiar
las derivadas parciales por derivadas covariantes y modificar el elemento de volumen d®xdt por su
correspondiente versién covariante d*x/—g, siendo ¢ el determinante de la métrica. En tal caso
la accién tendra la forma

1 1
S = / d4x\/—g[2g’”¢;y¢,-v—2m2¢2 : (1.34)

Dado que la accién depende explicitamente de la métrica, corresponde a un campo escalar débil-
mente acoplado a la gravedad.

Si se considera una métrica de la forma

ds? = dt* — a®(t)dydx‘dxk, (1.35)
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en la cual las superficies para cada tiempo constante son planas, pues corresponden a un universo
plano de Friedmann.

A partir de la definicion de tiempo conforme 7, en vez del tiempo fisico ¢

n(t) = /t ;Z), (1.36)

la ecuacién (1.35) quedaria
ds* = a*() {dzyz - 5ikdxidxk} = a? (1) dpdxtdx". (1.37)
Si se realizan la sustituciones ¢V = a—2y"’ y \/—¢ = a* en (1.34), se tiene que la accién es

S = %dsxdmzz [47’2 —(V¢)? - mzachz] : (1.38)

Si se define un campo ) dependiente de a(t) y del campo ¢, de acuerdo a

x =a(n)¢,

y su correspondiente momento canénicamente conjugado 71 = X/, entonces

Jogmg? = mPay?
V88" by = a*(¢7— (Vo))
! / 2
a2¢/2 _ X/z — 2oy <%) +X2 (%)
292 = x4 (%’) _ (Xz%’) .
La accién (1.38) puede escribirse como

"
S = ;/d3xd17 [}(’2 —(Vx)? - <m2a2 — a>x2], (1.39)

cuya variacién lleva a la ecuacién de movimiento

" 2 2.2 a’ —
X —Vox+ meat— - Jx = 0,

en donde se verifica la existencia de una masa efectiva dependiente del tiempo:

2 2 ﬂ/,

Mefectiva (77) =ma — 7
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La dependencia temporal de la masa efectiva corresponde a la interaccién del campo escalar con
el background gravitacional, pero ahora reduciendo el procedimiento de cuantizacién del espacio-
tiempo de Friedmann al de Minkowski. Asi entonces, dado que la masa efectiva es funcién explicita
del tiempo, la energia del campo escalar x no se conserva. Lo que es equivalente a que deba existir
creacion de particulas a partir de la energia proporcionada por el campo gravitacional.

La expansién de x en modos de Fourier (1.17) quedaria

3 .
x(x,m) = / (jnl;g e**xi(n). (1.40)

Al sustituir (1.40) en la ecuacién de movimiento, se tiene que los modos xi(7),satisfacen el
conjunto de ecuaciones diferenciales desacopladas

Xi+wi(mxe = 0, (1.41)

con una correspondiente frecuencia

"
CU,%(I’]) = kz + Mefectiva = k2 + m2a2(1’]) — ;

Debido a que w? sélo depende de k = |k|, la solucién general a (1.41) puede ser escrita a partir
de las funciones complejas conjugadas vk (17) y v; (7). las cuales son dos soluciones linealmente
independientes, denominadas modos del campo, en la forma

xe(n) = 75 [agop(n) +aoe(n)], (1.42)

en donde se ha generado la combinacién lineal de soluciones a partir de dos constantes de inte-
gracién complejas a, y afk, de tal manera que al ser x un campo escalar real, estas constantes

satisfagan que a = (a,)".

Sustituyendo (1.42) en (1.40) se tiene que

X)) = / (”p’;;ﬁ{akvz<n>+a+kvk<n>}el‘“w).

o (7)™ + af ve(i)e ] (1.43)

Para cuantizar el campo x en la ecuacién (1.43), se imponen las relaciones de conmutacion,
elevandolo a la categoria de operador { y su momento canénicamente conjugado & = %/, de
acuerdo a

)] = ib(x—y)
), k(x )] = [f(xt),A(x1)] = 0. (1.44)

El hamiltoniano del campo cuantico { corresponde a

L[ @x [+ (VR + ()R]
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La expansion en modos del operador de campo X toma la forma

o _ L d3k oF eik'xﬁ_ v e_ik'xﬁ
w0 = 75 [ s (e ope g ), (1.45)

donde las funciones modo vi(7) satisfacen las ecuaciones diferenciales

of +wi(n)vy = 0, (1.46)

siendo wy(17) = \/k2 +m2_ . (7).
Al sustituir (1.45) en (1.44) se cumple que
[a;,a;] = S(k—K)

[a,:,a,:,] = [a;{,aﬂzo. (1.47)

Los operadores a, y a,f pueden ser empleados para construir la base de estados del espacio de
Hilbert, si se forman los modos a partir de las funciones vy (77) las ecuaciones de movimiento no
quedan completamente determinadas’, es asi que se hace necesario establecer una combinacién
lineal de éstas, de manera que

ug(n) = axor(n7) + Brog (n), (1.48)

en la que ay y By son coeficientes complejos independientes del tiempo, que a su vez cumplen la
condicién de compatibilidad de que

o — 1Bl = 1. (1.49)

Si se define un nuevo conjunto de operadores de creacién y destruccién lA);f que cumplan las mismas
relaciones de conmutacién dadas en (1.47) que actlen sobre el estado de vacio, de manera que
igual que los ﬁ,f puedan ser usados para construir una base ortonormal de estados en el espacio
de Hilbert, entonces existirian dos estados diferentes de vacio, pues

|(0) = 0
](b)O) = 0.

S
[l R

Por lo tanto, en términos de estas nuevas funciones los operadores de campo quedan

wen == |

"Esto sucede pues el wronskiano de vj es degenerado para todo tiempo ¢

Bk [ L e s
27 <Mk(17)€”‘ b + u(ip)e™™* b,f>, (1.50)

Wlog,vf] = ohof —opof = 2illm{v'v*}
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La expansion del campo x en términos de los dos conjuntos de operadores ﬁ,jf y B,jf dada en las
ecuaciones (1.45) y (1.50) sera equivalente, si se tiene que

e )b+ )b = e o +ouln)a | (151)
La ecuacién (1.51) al ser sustituida en (1.48) lleva a que

by = by + by
af = b + B, (1.52)
Las expresiones (1.52) se denominan transformaciones de Bogoliubov y los correspondientes oy y

B son los coeficientes de Bogoliubov, las cuales al ser invertidas dan lugar a las transformaciones
de Bogoliubov inversas

+ _ -
bl = wfa) — Bra~, (1.53)
De manera tal que las funciones de modos, estén relacionadas de acuerdo a

uk(17) = axor(n) + Brog (n)
u () = axvy(n) + Broy (1), (1.54)

estando los coeficientes aj y B dados en términos del wronskiano

« — W(uk,U;:)
k 2i
W (v, u
B = (Zklk) (1.55)

Los conjuntos de estados excitados que describen las particulas de los tipos a y b, surgen de la
aplicacién de los operadores de construccién en los respectivos vacios en la forma:

oy )= W[(“ﬂ (3)" ] lwO (1.56)
y también

o) = e [(80)" (60)" - Tlo0 s

Un estado cuantico arbitrario ) puede ser escrito como combinacién lineal de estados excitados
de manera que

lp) = Z Cr(f;z---|mk1,7lk2,- Sy = Z C,Sf,z...|mkl,nk2,- ),

mn, - mn, -
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luego la probalidad de encontrar m particulas del tipo (a) en el modo kqes |C,§f,)l % y por lo tanto,

probalidad de encontrar m particulas del tipo (b) en el modo kyes |C,Sf,)l|2

Los estados de particulas (a) y (b) son en general diferentes, pues corresponden a definiciones
diferentes del vacio, si por ejemplo B # 0, entonces el vacio (b) contiene particulas (a) y viceversa.

Esto puede verse al calcular el operador namero de particulas del tipo (a) en el estado de vacio
(b), de acuerdo a

<(b)0’N1£a)‘(b)0> = {)0lag a0

(OIRD])0) = |Br[26@)(0) (1.58)

La ecuacién (1.58) muestra que para un volumen espacial infinito la densidad de particulas del
tipo (a) en el modo k es

ng = |ﬁk|2r

y por lo tanto la densidad media total de todas las particulas

no= [ @K,

sera finita s6lo si |Bx|*> decae mas rapido que k=3 para k grande.

El vacio de (b) particulas puede expresarse como una superposicién de estados excitados de
particulas (a) al tener en cuenta un estado cuéantico de un sélo modo ¢ y expandir el vacio de
(b) particulas como una combinacién lineal de la forma

[ee]

’(b)ok,fk> = Z Cmn|(u)mk/n7k> (1.59)
m,n=0
) an™ (gt \"
= ) Cmn—( 0) () | (@) Ok, —k)- (1.60)

1,710 vm!n!

A partir de las transformaciones de Bogoliubov inversas, dadas en (1.53) aplicadas al estado de
vacio de (b) particulas

b l@)Ok—k) = (axdy — Br™y) |()Ok—k) =0, (1.61)

y también

bl @) Ok, —k) = (“kﬁ:k - ﬁk@f) |(2)0k,—x) = 0. (1.62)
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Dado que el estado de vacio de (b) particulas es una combinacién de operadores de creacién en el
vacio de (a) particulas, entonces esa combinacién puede considerarse por una funcién f (4, a",),
entonces se deben cumplir que el conmutador [ﬁ;,f} es la derivada de f respecto a ﬁ;8 . Entonces

la ecuacién (1.61) expresa que

of A
<’Xkaﬁf;(+ — ﬁkafk) |(a)0k,—k> = 0. (1.63)

Dado que f contiene sélo operadores de creacion, se debe satisfacer la ecuacién diferencial

la cual tiene como solucién

flag,at) = c(aty)exp (Bafat,). (1.64)

Analogamente, a partir de la ecuacién (1.62) se determina la relacion para ai%' siendo C una
—k

constante de integracién a determinar a partir de la normalizacién.

El (b) vacio puede ser expresado entonces como

O n
|0k, k) = CZ(%) | ()1 k)

(@00 ~kl@)0k—k) = {((@)0k-kIC Y (%’I) |y n-k) =1

n=0
2
c - J1- \5k\2
|k
c_ 1
|k
Entonces, el estado de (b) vacio
1 & n
|0k, k) = el Y. (%) | ()1 k) (1.65)
n=0

El estado de vacio |;)0) es el producto tensorial de los estados de vacio |(,)0x, k) en todos los
modos y dado que cada par ¢y y ¢xse han contado dos veces en el producto sobre todos los k, se

8Para operadores § y f(p,§) se cumple que el conmutador

4 fe.0] = ngfpa
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debe tomar la raiz cuadrada a la expresion (1.65)

N

_ (@ar)"”
[)0) [ Z( L) [@0)
- el
- H |0¢k|1/2 (; (%) ‘(a)nk/”k>) . (1.66)

|0¢k|

El (b) vacio quedé definido por una exponencial de combinaciones cuadraticas de operadores de
creacion, asi que estos estados se denominan comprimidos. Entonces el estado de (b) vacio esta
comprimido por el estado del (a) vacio y viceversa.

1.2. Efecto Hawking

Si se considera la métrica para un espacio de Minkowski bidimensional
ds? = d? —dx® = iya/gdx”‘dxﬁ, (1.67)

y si se tiene en cuenta el tiempo propio para parametrizar la trayectoria de un observador x*(T),
entonces su velocidad corresponderia a

la correspondiente aceleracién seria
at(t) = u*(7).

La aceleracién es ortogonal a la velocidad, de acuerdo a
NupauP =0, (1.68)

habiéndose empleado la condicién de normalizacién

Haptt“uP = 153" (1)%P (1) = 1. (1.69)

En este espacio, la trayectoria seguida por un observador acelerado verificara que los modos
de frecuencia positiva, que darian lugar a la existencia de particulas, deberian ser determinados
respecto al tiempo propio del detector llevado consigo. Sin lugar a dudas, los correspondientes
modos medidos por un observador inercial, deben ser obtenidos respecto al tiempo coordenado ¢.
En definitiva, el nimero de particulas detectado por ambos observadores no es el mismo. Al tener
en cuenta coordenadas como de luz inerciales en el espacio de Minkowski

u=t—x
v=t+x. (1.70)
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La métrica asocida a este fendmeno seria Sup €N vez de Nap, CON 20 =u y xl = v, en (1.67),
entonces el elemento de linea

ds? = gaﬁdx"‘dxﬁ = dudv, (1.71)
o 1L
e[t
ap % 0
Respecto al observador acelerado, su trayectoria en estas coordenadas como de luz, sera
x*(1) = (u(1),0(7)), (1.72)

entonces al sustituir la ecuacién (1.72) en la condicién de ortogonalidad (1.68) y de normalizacién
(1.69) se obtiene

u(t)o(r) =1 (1.73)
i(1)(t) = —a’. (1.74)

En virtud de que (1) = ﬁ en la ecuacién (1.73) al sustituir en (1.74), se tienen las ecuaciones
diferenciales del movimiento estaran dadas por

<Z>2: a. (1.75)

Al integrar la expresién (1.75) se obtiene la trayectoria de un observador acelerado®

u(t) = —%e“” (1.76)
v(T) = %e‘”. (1.77)

Al sustituir en las coordenadas nulas en el espacio de Minkowski dadas en las ecuaciones (1.70)

tH(t) = v —; v %senh(ar)
x(t) = ¢ ; - %cosh(ar). (1.78)

Asi que para un observador acelerado la linea de mundo que describe, corresponde a una rama de
hipérbola con ecuacién
222

4

en el plano x — y, que se aproxima asintéticamente a las lineas nulas para |t| — oco. Este observador
se acerca a X — oo, desacelera y se detiene en x = %; luego acelera y regresa hacia el infinito.

Si ahora, el observador establece un sistema coordenado comévil (¢%,&1) = (7,0), en el cual éste
se encuentra en reposo respecto a su propio marco de referencia, entonces, el tiempo medido por
él correspondera al tiempo propio a lo largo de su trayectoria o linea de mundo.

Si se define la métrica conformalmente plana por

i = e [y - (4] (1.79)

9Estas son las coordenadas del efecto Unruh
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en la cual se pueda establecer la relacién entre las coordenadas coméviles &0, ¢! y las del espacio
de Minkowski t, x y facilite la cuantizacién de los campos.

Las coordenadas como de luz en este sistema poseen la estructura de (1.70) del espacio de
Minkowski, para el observador acelerado, de acuerdo a

g -
5=+ ¢, (1.80)

=2
I

por lo tanto la métrica (1.67) de acuerdo a (1.80) toma la forma

ds* = dudv = O? (i1, 3)dido. (1.81)

En este tipo de coordenadas la linea de mundo de un observador acelerado corresponden a
) = 1
g'r) = 0, (1.82)
por lo tanto 9(7) = i(7) = 7.

Debido a que &°(T) = T corresponde al tiempo propio en la ubicacién del observador, entonces,
el factor conforme Q2 (ii, %), debe cumplir que

Qz(ﬁ =1,0=1) = 1,
de manera que las ecuaciones (1.81) y (1.71) describen el mismo espacio de Minkowski en diferentes
sistemas de coordenadas.

Si se permite que las funciones u y v solamente puedan depender de uno de los parametros i
y ¥ respectivamente, con el fin de evitar términos cuadraticos en los diferenciales dii?y d@?en la
métrica, entonces se escoge

(9).

Al considerar coordenadas como de luz, la linea de mundo del observador, cumple que ((;‘0, (;*'1) =
(7,0) y por lo tanto en la ecuacién (1.80)

y por la ecuacién (1.76)

_1311T> =e " = —qu(7) (1.83)
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Teniendo en cuenta los dos sistemas coordenados para la trayectoria del observador y la regla de
la cadena, se obtiene

dt dii — dt
du (i)
—ail = 1). 1.84
an(z) = 0 1) (1.80)
La ecuacién (1.83) corresponde a una EDO de primer orden separable, cuya solucién es
u(t) = Cre ™. (1.85)

Para la coordenada v se efecttian los calculos de la misma manera, con lo que se obtiene
o(T) = Cpe”, (1.86)
por lo tanto al comparar (1.85) y (1.86) con (1.76) se tiene que

u(t) = —%e‘”ﬁ (1.87)

o(T) = —e", (1.88)

y al ser sustituidas en la métrica (1.81), llevan a que

ds? = dudv
= e " diido
ds? = "1 dqdyp. (1.89)

Si se tiene en cuenta las ecuaciones de transformacién dadas por (1.70) y (1.80) entre los sistemas
inercial y acelerado, entonces es posible escribir las ecuaciones (1.87) y (1.88), en la forma

1
t=1(%¢") = _e senh(ag?)
1
x=x(&0,¢) = ;e“glcosh(aéo), (1.90)
de tal manera que la métrica en el sistema coordenado acelerado quede escrita como
2 2af! 0\2 1)2
ds* = e* | (dg”)"—(dg")"|, (1.91)
y corresponde a un espacio con curvatura cero, localmente como el de Minkowski,'° pero cuya

descripcion es incompleta, pues describe solamente un cuarto de aquél; es decir la respectiva regién
comprendida por x > |¢|. 1!

Dado que el espacio-tiempo exterior a un agujero negro sin carga, no rotante en unidades naturales
se encuentra descrito por la métrica de Schwarzschild

-1
ds? = — <1 — erw> dr? + <1 — erw> ar® + 2 <d92 + sen20d¢2>,

10Denominado espacio de Rindler.
1En algunas ocasiones denominada la cufia de Rindler.
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y al asumir que la métrica de un agujero bidimensional posee la misma estructura de la de

Schwarzschild, sin dependencia angular, entonces, ésta sera
r ro\ 1
ds? = gupdx"dx® = — <1 — f)dtz + <1 — f) dr?,

siendo el radio gravitacional ry = 2M.12

Ademas al definir la coordenada tortuga r*(r), a partir de

dr

T
1 r

dr* =

entonces,
.
* 8
r"r)=r—ro+r,In| =>—-1],
1) =r=retrin( 5 1)

permite escribir la métrica (1.92), de modo que

= (- w7,

y por lo tanto las coordenadas (1.70) tortuga como de luz tendran la forma

=t—7r"

i
o=t+7r",

que a su vez llevan a que la métrica (1.92) se exprese como

ds? = <1 - - 's )dﬁdﬁ.

(1.92)

(1.93)

(1.94)

(1.95)

(1.96)

Las coordenadas tortuga (i, ) dadas en la ecuacién (1.95) asi como las de Schwarzschild (1.92)
son singulares sobre el horizonte de eventos en r = rg, como se observa en (1.96), pues la métrica
esta indefinida. Asi que se hace necesario describir las coordenadas de Kruskal-Szekeres, de modo
que la variedad espaciotemporal sea completa, para lo cual es posible aplicar la transformacién

r

Bajo este esquema la métrica (1.96) corresponde a
r _r _ 0
ds? = —ge<1 ’g>e( ZYX)e(Z'R)dﬁdﬁ,
y por lo tanto en las coordenadas de Kruskal-Szekeres como de luz

u= —2rge(_%)

U= nge(%),

2GM

2 =2M,siseusa G=c=1.

L2Estrictamente seria rg =

(1.97)

(1.98)
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la métrica queda escrita en la forma en la cual ya es regular sobre el horizonte

r(u,v)
ds? = r(;gve(l_'g)dudv. (1.99)

Teniendo en cuenta las ecuaciones (1.98), (1.93) y (1.95), es posible relacionar las coordenadas
de Kruskal-Szekeres (1,v) con las coordenadas de Schwarzschild (¢,7) por

uv = —4r§e(%) = —4r§<:)e({91) (1.100)
8

y también

% _ (%), (1.101)

Definiendo las coordenadas como de tiempo y como de espacio T y R a partir de u y v, por

u=T—-R
v=T+R, (1.102)

que llevan a que las hipersuperficies de nivel constante sean hipérbolas uv = T> — R? = cte y las
geodésicas nulas u = cte, v = cte, sean lineas rectas a 45 .

La cuantizacién de un campo escalar sin masa en este espacio-tiempo de dos dimensiones, a partir
de la ecuacién (1.34), es realizable si se define la accién

1
SIg) = 5 [ #xv/=g ¥ 0at (1.103)

La accion (1.103) al ser escrita en términos de las coordenadas del cono de luz, se expresa como

S[‘P] = z/au‘,bav(l)d?/idv =2 /8a¢8ﬁ¢dﬁdﬁ,
de manera que las correspondientes ecuaciones de campo seran

9updop =0 33d5¢p = 0. (1.104)

Si se consideran funciones arbitrarias, suficientemente suaves A(u), A(ii), B(v), B(?), las ecua-
ciones de campo (1.104) presentan soluciones de la forma

¢(u,v) = A(u) + B(v)
o(i1,9) = A(it) + B(9). (1.105)

El campo ¢ dado por la ecuacion (1.95), posee la forma

¢ piwit efiw(tfr*)

7

corresponde a un modo de frecuencia positiva moviéndose hacia la derecha alejandose del agujero
negro, respecto a un observador asintéticamente lejano quien mide el tiempo £, pues en virtud de
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las ecuaciones (1.67) y (1.95), el tiempo propio medido por este observador Minkowskiano y el
tiempo global t, coinciden cuando r — oo.

Considerando la transformacién de la métrica
ds? — diido = dt* — (dr*)?

entonces, un observador asintético en infinito define como particulas a los modos de frecuencia
positiva w asociada a su tiempo coordenado 3. Respecto al tiempo propio de un observador en
reposo fuera del agujero negro sera T = &0 estos modos de frecuencia Q) positival* propagandose

a |a derecha serian
ey (01
P e Qi e i0(g’-¢ )

Asi mismo, los modos de frecuencia positiva correspondientes, propagandose a la izquierda para
ambos observadores serian
L » .
poce iwd _ , iw(t+r*)

¢ o0 _ =i+

Un observador estacionario observa particulas con modos de frecuencia positiva con respecto a ¢
y la expansion del operador de campo en modos, de la ecuacién (1.32) en el caso bidimensional,
para el observador asintético, esta dado por!®

¢ = (modos moviéndose a la derecha) + (modos moviéndose a la izquierda)

® dw 1 [ Ciwiiae et /°° do 1 [ —iwd A iwz%+]
= | ———le My +eval| + | ————|e %A, +¢e“%a|, (1.106)
/0 (2w)z V2w “© ] 0 (2w)? V2w ¢ ¢

y la correspondiente expansién en modos para un observador frente al agujero

o>

A © dQ 1 it — QL | © 40 1 Q7 — Tl
= —— e *Mps Mt | 4 / —— e + bt . (1.107
’ /o (20)? \/ﬁ{ o 1 20): V20 o a|- (1107)

En la cufia de Rindler x > |t|, en el espacio tiempo ambos sistemas coordenados se traslapan,
de manera que las dos representaciones del campo coinciden, a frecuencias w y ), en cuyo caso
deben satisfacerse las relaciones de conmutacién para los operadores 47 y b*, dadas por
A— A /
[ag, a1 ] = 6(w— ')
) /
[bQ,bJ’/] =6(Q0—-Q)
A A= 1 _ A+ A+t ]—
[aw’aw’] - [aw’aw’] =0

(b, bey] = [b4, 08, ]=0. (1.108)

13Estos modos se alejan del agujero negro y corresponden a modos moviéndose a la derecha.
L4E| factor conforme Q) deja invariante la métrica bajo transformaciones conformes

8ap — Zup = Qz(xv)gaﬁ
El determinante \/—g y la métrica contravariante transforman como
V=8 = J/g=0%/=g
grxﬁ N gtxﬁ _ Q—Zgocﬂ,

de manera que los factores 02 y (172 se cancelan en la accién y el espacio se trabajarfa como si fuera plano.
15Dado que se esta considerando un espacio 1+ 1, el factor de normalizacién corresponde a (277)'/2
paracion con el caso tridimensional en el cual es (277)3/2.

, €n com-
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Se denomina estado de vacio de Boulware a aquél que es definido por la accién de los operadores
135 de manera tal que b,|0g) = 0. Este estado se considera que no contiene particulas desde
el punto de vista del observador asintético alejado hasta infinito. Este vacio es singular sobre el
horizonte de eventos del agujero negro, por lo que no es fisicamente aceptable y dado que el vacio
de Minkowski si esta fisicamente bien definido, para preparar el vacio de Boulware se requeriria
una energia inifinita.[9] Esta divergencia en la energia sobre el horizonte cause fluctuaciones de la
métrica.

Para evitar las divergencias del vacio sobre el horizonte de eventos se hace necesario invocar
las coordenadas de Kruskal (1.102), que no son singulares y cubren toda el espacio-tiempo de
Schwarzschild, lo que las hace unas coordenadas inerciales similares a las de Minkowski, con las
cuales definir adecuadamente el vacio. Para definir el vacio de Kruskal |0g), sobre el cual el
campo es regular sobre el horizonte se considera el operador destruccién a_, que aniquila el vacio
de Kruskal a_,|0x) = 0, en el mismo esquema como aniquilaria el vacio de Minkowski, a,,|0x) = 0
y todo estaria bien definido para establecer la teoria de campos, de manera que el vacio de Kruskal
es un candidato natural para un vacio fisico verdadero en presencia de un agujero negro.[10]

En contraste con la ecuacién (1.52) para las transformaciones de Bogoliubov que son diagonales,
en el esquema de cuantizacion en variedades curvas, se hace necesario extender el concepto para
que los modos no sean independientes, es decir, ahora todos los modos de frecuencia positiva y
negativa con respecto al tiempo ¢, contribuyen a los modos de frecuencia positiva para el tiempo
T.

Entonces de acuerdo a las relaciones de conmutacién dadas en (1.108) los nuevos coeficientes de
Bogoliubov en el vacio de Boulware

Q- = [155,195,]
_ [ / dw (twniy — Poadl) , / dw' (0 yeyit, — Blyeyith)
= [ dwde (runiiued (@ = @) ~ BuaBlod (@~ @),
0 -0) = [dw(@ennio —PunBin) (1.109)

que es la condicién de compatibilidad equivalente a la presentada en la ecuacién (1.49) para
espacio-tiempo plano

b, = /0 dew [aowiy — Bawil]. (1.110)

Al sustituir la condicién (1.110) en la ecuacién (1.107) de la descripcion del operador de campo,
se tiene que

1 —iwu /OO dqy’ ( —iQ0)ii * +iQ’ﬁ>
—¢ = — | aqy € — bBoy,,,€ , 1.111
— 0 /*Q/ Q'w .BQw ( )
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al multiplicar por exp(£iQif)

+iQi 1 —iwu dQ peaie —iQ)'a * +iQYVii
e — = X0y € — Boywe
v w 0 vQ
ieouiO © dqy O 406 +i0) O
e iwutiOin Xyl i a+iQa 56%066

- Bl
ﬁ

iwnkion _ [© 4 <0¢ e OFEOT _ gr (00 ) (1.112)

A través de la transformada de Fourier de una exponencial 1©, se tiene que

/ Mgy — 275(Q0— Q).

Si se define la funcién auxiliar que facilita la integracion sobre la variable i

® du o
Flw,Q) = an Ui / Z—exp{lﬂu—klw e™},

y bajo el cambio de variable x = e~ se transforma en una funcién I' de Euler'”, de manera que
« d w au
Flw,Q) = z—exp{zﬂu—kz }

0 1£x
= 27m/ dxx a ‘ea”. (1.113)

Si se realizan las sustituciones b = — = ys = — = 2y dado que en la ecuacién (1.113), Re{s} = 0
y la integral diverge para x = 0, entonces

Inb = limIn(—%+e) =In|%|—iZsign (%),

e—0t

. . . . . i
161 a transformada de Fourier de la exponencial imaginaria pura f(t) = ¢/, corresponde a

FURwy = [
O iwtyiw't
[t
= 21m6(w — ')
171 a funcién T de Euler esta dada por
[o]
I'(x) = / Lty
0

la cual converge para todo namero real x > 0 y para todo x complejo tal que Re{x} > 0. Algunas integrales
trascendentes de tipo exponencial pueden ser abordadas por transformacién a la funcién I', como por ejemplo:

o
/0 lembr gy = %F(s).
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entonces la solucién de (1.113) esta dada por

Fw,Q) = st exp (i2In|9|+ Msign (2))T (—9). (1.114)

Las expresiones para los coeficientes de Bogoliubov, quedan

_ +ee —zwzt+10ud~ -1 —zwud
KO = = +— —au)” @ u
—0o0

Q iQ
:—l—L Qe+75aelbzln[c;]r( ZQ>

2ma NV w
+o0 . o 1
5Qw — / e+zwu+10udﬁ _ / —au a +lwudu
1 QO 0 Q) [w
= —— (/] —e 2ae¢a 1“[41]1"(—) (1.115)
2ma V w a

Al tomar la norma cuadrada en cada uno de los coeficientes

O i —i0 :
ool = (o[PS ml S () (L \/ﬁe+7§?eé m[§ ] (12
2ma V w a 27ma a
. 2
0 (1)
a
Bawl? = 1 /Qe 7;96?1 [w]r e _1\/5e7§?e§)m[ﬂl” i)
2ma V w a 2ma V w a

47202 w
0B ()]
a

T o’
Y ademas entonces a partir de la identidad para el producto de funciones Gamma T'(ix)I'(—ix) =
IT'(ix)|?, de las ecuaciones (1.116) y (1.117) se concluye que

(1.116)

20
|"‘Qw|2 = ¢ a ’,BQw|2 (1.118)

Desde el punto de vista de un observador lejano el vacio de Kruskal |0x) contiene particulas y para
determinar su densidad se emplearan los operadores de creacion y destruccién de los respectivos
vacios, los a; para el vacio de Kruskal y los b con el fin de operar sobre el vacio de Boulware.
Entonces segiin lo establecido en la seccidn anterior sobre la cuantizacién canénica, el vacio de
Kruskal corresponderia a un vacio de (a) particulas y el de Boulware a un vacio de (b) particulas.
Se requiere calcular el nimero de (b) particulas en el estado de (a) vacio. El valor esperado del
operador nimero de (b) particulas N = 3536 en el vacio de Kruskal |Ok) corresponderia a
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(Na) = (0k|bhbg |0k)
= (0| ( [ dwlazatt — Brots)) ([ delawat,  fuadl]) |ox)
(Na) = /Ooo dw|Buol?, (1.119)

que expresa el namero de particulas con frecuencia () detectadas por un observador en las in-
mediaciones exteriores del agujero negro.

En la condicién de normalizacién de los coeficientes de Bogoliubov dada en la ecuacién (1.109) si
Q' = O, entonces

[ e (auatin — BunBie) = 8O-
[ de (wuntisn — PunPin) = 8(Q-0Q)

[ (lawnl - |pual?) = 5(0)
dw(‘“w0’2_|ﬁw0|2) - 1 (1.120)

entonces, al sustituir (1.118) en la ecuacién (1.120), se tiene que

|“w0|2 - |,Bw0|2 =1
2mQ)
et a ‘ﬁﬂw‘z_ ’5w0’2 =1

210
<e+ a —1> Boal> = 1

2
Bual™ = %
G

a

De manera tal que si se identifica la constante a con la gravedad superficial x del agujero negro'®,
entonces, el nimero de particulas corresponde a

~ S 2 21Q) -1
() :/ N (1.121)
0
que corresponde a una distribucién planckiana de cuerpo negro, a una temperatura'®
K
Ty = —, 1.122
H=on ( )

denominada Temperatura de Hawking.

18En el caso del efecto Unruh, la constante a corresponde a la aceleracién mantenida por el observador acelerado.
191 a expresion de la temperatura de Hawking se obtiene al recuperar las constantes ¢, G, kg y % en la ecuacién
(1.122) de acuerdo a ([11]) la gravedad superficial de un agujero negro de Schwarzschild esta dada por

4
. C
K = MG
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1.2.1. Radiacién de Hawking como tunelamiento cuantico

Dados los efectos cuanticos de fluctuaciones del vacio es posible, con alta probabilidad, la creacién
de pares particula-antiparticula en las inmediaciones del interior del horizonte de eventos.

Bajo la discusién realizada de los modos entrantes y salientes, se asocia al modo entrante la
antiparticula del par que ingresa al agujero negro, con energia negativa y su correspondiente
particula, dotada de energia positiva, se asocia con el modo saliente que emigraria hacia la regién
externa del agujero negro. Este fenémeno es prohibido clasicamente por la Relatividad General,
la que establece que el horizonte de eventos es el limite Gltimo desde el cual cualquier sefial puede
escapar de la fuerte atraccién gravitacional ejercida por un cuerpo, luego de haber ocurrido un
colapso gravitacional.

En realidad, si se incorpora el esquema de tunelamiento cuantico, la particula escaparia con una
probabilidad distinta de cero hacia el exterior. Este efecto sucede en virtud de que la accién clasica
para ésta se hace compleja y su amplitud esta generalmente influenciada por su parte imaginaria®®
y es un fenémeno netamente radial. 2!

La derivacion desarrollada en la seccién (1.2) de la radiacion Hawking que involucraba un back-
ground gravitacional fijo en el cual los campos cuanticos libres se propagasen [12], poseia una
dificultad inherente al hecho de que hay varias maneras no todas equivalentes de definir las esco-
gencias de tiempo dado. El caracter covariante de las leyes fisicas exige que hay que escoger un
sistema coordenado suficientemente regular en el horizonte que permita definir un vacio dependi-
ente del observador y por lo tanto efectuar una definicién rigurosa del significado de particula.

El tunelamiento cuantico sucede cuando particulas a las que clasicamente se les haria imposible so-
brepasar una barrera de potencial, desde una perspectiva cuantica presenten probabilidad diferente
de cero de hacerlo.

Al considerar la métrica de Schwarzschild sin sus componentes angulares (1.92) y teniendo en
cuenta la necesidad de cubrir la regién cercana al radio gravitacional » ~ r, mediante coorde-
nadas regulares denominadas coordenadas de Painlevé-Gullstrand®?, para observadores cayendo

Y al considerar la frecuencia de los modos dada por

o = 5

2mc’

entonces a partir de reconocer que la energia de los modos del campo depende de su frecuencia y de su temperatura,
de acuerdo a

ksT= E= hQ

K

kT = h(5)
C4

_ yviel
kT = h<27rc>
N
87GMkg

20Debido a que la tasa de emisién del agujero negro posee una parte imaginaria, la accién para una particula
cuyo movimiento es prohibido clasicamente se hace compleja.

21Dado que cerca al horizonte las componentes angulares de la solucién, denominada de onda s, para la ecuacién
de onda pueden ser despreciadas y éstas serian las asociadas a un nimero cuéantico angular [ = 0.

22Correspondientes a (tp,1,0,¢).
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libremente, cuyas geodésicas son descritas por g—; < 0. Siendo T el tiempo propio y E la energia
conservada por unidad de masa de los mismos, entonces

a5
dtr  1-%

r

2 2
dr T E
— 1-2)=(=). 1.123
Esta energia E esta relacionada con la velocidad fisica de los observadores a través del vector de
Killing C?t) generador de la simetria temporal, de acuerdo a

E

m
en el caso en que poseean una velocidad inicial cero en el infinito y una energia por unidad de
masa igual a 1, entonces, para dichos observadores, existe un tiempo ¢, 23 tal que Viuty = —uy.
Ademas de acuerdo a las ecuaciones (1.123) queda expresado por

-1
r r r
— 8 8
tp_t+/ dr’,/r,< —r,>

ty =t + 2, /T 1n<m>. (1.124)

Al sustituir en la ecuacién (1.92) para la métrica, se tiene que

ds? = —(1— 8 Va2 +2,/"8 dt,dr +dr?, (1.125)
r P ro P

la cual es no-singular en el horizonte, y queda asociada a t, con el cual los observadores en caida
libre alcanzan la singularidad r = 0 en un tiempo finito y a partir de la cual las geodésicas entrantes
y salientes, para una onda s nula corresponden a

LN § (1.126)
dty r

La ecuacién (1.126) de acuerdo a [2] describiria el movimiento de un cascarén de energia w,

delgado, nulo y radial emitido por tunelamiento desde el interior del agujero negro de masa M
para 7 > 0 y uno entrante de energia negativa para 7 < 0.

En un campo cuantico de tipo exponencial en acople débil a la gravedad, que satisface las ecua-
ciones de movimiento de Hamilton dadas por (1.20) y (1.21), luego de ser recuperada la constante
fi con el fin de efectuar una aproximacién semiclasica®®, es decir, al considerarlo separable en su
parte real T(x), correspondiente con la amplitud y su parte imaginaria T(x), con su fase y ex-
pandirlas en términos de series de potencias de 1, a

¢(x) _ eT(x)wLiS(x).

23Denominado tiempo de Painlevé.
24Denominada también aproximacién WKB, discutida con mas detalle en el Apéndice A.
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A partir de lo obtenido en el Apéndice (A) se tiene que

‘ 2
V2 (eT-HS) _ _%eT-HS
2
V(T +iS) + (VT +iVS)? = —%
2
m
V2T + (VT)* — (VS)? = 7
V25 +2(VS-VT) =0. (1.127)

Y teniendo en cuenta la expansién citada, la amplitud y la fase del campo cuando F tiende a cero
estarian dados por

T(x) = hil (TO(X) + th(X) + hZTz(x) + h3T3(x) + .. )
S(X) =nt (SO(X) + h51(x) + h252<x) + h353<x> + ... )’ (1.128)
llevan a que la ecuacién (1.127) a primer orden para Ty y So®° se reduzca a

(VT())Z — (VSO)Z = —m2
VTy-VSy = 0. (1.129)

Si se asume que la amplitud del campo Ty varia suficientemente lento respecto a la fase Sy,
entonces, la primera ecuacién en (1.129) se reduce a

(VSp)? = —m?. (1.130)

Si se considera un campo cuantico escalar sin masa, entonces su métrica estarad dada por

(1M M
8w = <1 r> \/T

7

2M
5 1
0 en componentes contravariantes
-1 @
Hv —
8 w (. 2M
r T

Al sustituir en la métrica la ecuacién (1.130) entonces
o (20) (% _ [2M3S0\’
-\ or ot roor
RN 2MY 95
0= T <i1_\/r>8r

- r
So = +w <t—/ d:) (1.131)

25Los términos de orden superior se corresponden con las correcciones cuafiticas sobre el valor semiclasico S.
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en donde fue necesario emplear la ecuacién (1.126) para las geodésicas nulas radiales, de tal
manera que el coeficiente de transmisidén para esta accién corresponda a

_2 =2
. ﬂm$”ﬁ.

r= (1.132)

Dado que el interés estard centrado en la parte imaginaria de la accién respecto a la regién
clasicamente prohibida®®, la cual corresponde a
Yo

Im{S} =1m [ " drp

Tin

Yout p
=Im / dr / dp’
Yin 0

Yout M—w 1
~Im / dr / dH~
T JM r

Tou w
Im{S} = lm/r, tdr/o (—dw’)lf. (1.133)

7

En la ecuacién (1.133) se han usado las ecuaciones de Hamilton # = ‘2—1; y que H = M — w sera

la energia perdida por el agujero luego de que el proceso de tunelamiento se ha efectuado para el
canal particula del sistema.

En la ecuacion (1.126) si se tiene en cuenta que el cascarén de energia autogravita, las geodésicas
para la onda s nula saliente, son

7
R . Z(Mr‘”) (1.134)

con tyy =2M — €y 1o = 2M + €. Por lo tanto, al sustituir en la ecuacién (1.133)

2(M—w) w , 1
Im{S} = —Im/2 dr/o dw

M @
= n/ow dw’ [4(M — w’)}
Im{S} = 4w (M— ‘;) (1.135)

Un calculo similar se aplicaria al proceso de tunelamiento por produccién de pares en una localidad
externa al horizonte de eventos en el cual la antiparticula ingresase a éste, lo cual implicaria que el
proceso se efectuaria hacia atras en el tiempo. 27 Y causaria que el valor para la parte imaginaria de

26Por ejemplo cuando se considera un vacio cuantico presente en el interior del agujero negro en el que sucediera
la creacién de un par particula-antiparticula y que por tunelamiento escapara una de ellas atravesando el horizonte
de eventos, venciendo una barrera de potencial clasicamente prohibida.

27Este caso se denomina tunelamiento por medio del canal antiparticula, y causa un encogimiento del agujero
negro y las geodésicas entrantes dadas por la ecuacién (1.134), corresponden a

2(m+ ')
-

F=—1+
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la accion fuera idénticamente igual al obtenido para la ecuacién (1.135). Segin [2] la contribucién
de ambos canales aplicadas a la ecuacién (1.132) lleva a un factor de Boltzmann de

r X e_ZIm{STotal}

o o8 (M%)

2
o e*ST[Mw+47TM(U

[ o e 8Mw o =PE (1.136)

en el caso que w sea pequefio y se desprecie el término cuadratico.?®

Es asi que si B = % corresponde al inverso de la temperatura, entonces la temperatura esta dada

por

B =8rM
%: 8ntM
1 K
Ty = —— = — 1.1
H=8aM ~ 27’ (1.137)

que es la temperatura Hawking obtenida en (1.122).

28Considerar términos de orden superior en la aproximacién semiclasica de WKB, que expresan dependencias de
orden superior en w son tratados en [13].




Capitulo 2

Tunelamiento nuclear

2.1. EIl decaimiento «

De acuerdo a [14], la teoria de Gamow([15] predice la existencia de tunelamiento cuantico a través
de un pozo de potencial en el cual sucede el confinamiento de los hadrones dentro del nicleo
atémico.

Considerar la ecuacion de Schrédinger para resolver el problema nuclear, respecto al caso atémico
lleva a la necesidad de verificar varias diferencias entre estas dos situaciones, dado que en el primero
no existe una estructura central que proporcione el potencial de enlace; sino es el efecto colectivo
de varios nucleones moviéndose en algiin potencial efectivo medio dentro de éste. Para tal fin es
conveniente uno de naturaleza central en una primera aproximacion, para el cual la ecuacién de
movimiento corresponde a

<_2’iv2 V() )9) = Ey(r)

(v2+2h’f(15—v<r))>¢(r) =0, (2.1)

siendo E el valor propio de la energia, los cuales también son autoestados del operador momentum
angular, que se conserva, en el caso de simetria esférica; de tal manera que se tiene invarianza
rotacional. Dado que los autoestados de éste son los arménicos esféricos Yl,m,(G,cp)l

LE| laplaciano en coordenadas cartesianas es un operador diferencial espacial de segundo orden dado por:

C -
2_ 9 - _
V=gt Tz

y en coordenadas esféricas tiene la estructura:

210,90 1 0,

T r2or or R

de tal manera que:

1 9 ) 1

L2Y), (0,0) = 12| —— —senf~ + —
Ly (0, 9) sen6 96" "0 T sen2f d¢?

. 0
LZYl,m,(91¢) = _lh%Yl,m, (9' 4’) = hlel,m,(GI (P)

31
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\ o a
—_—
q0

Figura 2.1: Dos barreras de potencial simétricas en el modelo de Gamow. Tomado de [15].

Al asumir una funcién de onda separable en su parte radial y angular, respectivamente en la forma

l/JTllm[ (1‘) = unl(r) Yl,m, (G/ (P)/ (22)

r

Con lo que la ecuacién (2.1) adquiere la forma radial

(;}i + Z—TZ (Enl —V(r)— W))unl =0. (2.3)

7 2mr?

Se hace necesario asumir una forma particular del potencial V(r) para inferir acerca de los niveles
de energia. Dos expresiones de potencial que llevan a soluciones cerradas o exactas, corresponden
al pozo de potencial cuadrado infinito y el de oscilador arménico, pero no brindan informacién
acerca del proceso de tunelamiento a través de la barrera.

El primer caso es el potencial
oo, >R,
V(r) = { -

0  otro caso,

siendo R el radio nuclear. Entonces la ecuacién (2.3). toma la forma

2 2m n21(141)
(drz + hz(Enl - W))”nl =0,

cuyas soluciones regulares en el origen, corresponden a las funciones de Bessel esféricas oscilatorias
un(r) = ji(kmr) =0, n>1,

pues los nucleones no pueden escapar ante la presencia del pozo de potencial infinito y por lo
tanto las funciones de onda radial se anulan en la frontera. Siendo

2mE
ki = 1/ hz”l.
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V=22,¢1r

R R,

Figura 2.2: Barrera de potencial para el decaimiento o con un potencial mas realista dado por la linea
punteada. Tomado de [16].

El siguiente potencial tedrico a considerar es el de oscilador arménico tridimensional dado por:

1
V(r) = Emwer,

de manera que la ecuacién de Schrddinger radial es

2 2m 1 ., RII+1)
<dr2+hz<Enl—2mw T _2]711"2)>unl:0/

cuya solucién son los polinomios asociados de Laguerre, tal que la funcién de onda es de la forma:

w2 &l mw
Uy ~e 2h 1’Z+1 n+£71 ?1’ ,

con valores propios de la energia para los estados ligados correspondientes con

Em:hw<2n+l—;>, n>1.

Siguiendo a [16] el decaimiento a nuclear corresponde a la emisién de particulas a? ante la accién
de un potencial como el mostrado en la figura (2.2), en donde R es el radio del nicleo hijo cuando
r > R corresponde a un proceso de repulsién y cuando r < R ésta es atraida por un potencial
considerado de pozo rectangular por facilidad, cuya profundidad esta dada por (B.10).

De manera que el coeficiente de transmisién esta dado por

T = exp(_th Jit s V_Edr), (2.4)

2Estas particulas corresponden a nacleos de Helio con carga eléctrica Z; = 2, cuya energia es del orden de los
MeV, las cuales son apreciablemente menores que las correspondientes a la repulsién coulombiana entre ésta y el
nicleo hijo con carga Z, = Z — 2 y siendo Z la carga del nicleo que se desintegra.
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para un potencial

Z17Z56?
Z1Z2€2
V= =E
Ry
siendo Ry el punto de retorno clasico, en el cual se cumple la condicién V(Ry) = E para E

correspondiente con la energia de expulsion. De acuerdo a la sustitucion

T 2 5 _ 2
R, = sen”(¢), R, sen“(¢o),

el coeficiente de transmisién queda

de manera que los parametros a y ¢, estan dados por

27re
——V2MZ,

8e7r
c= Zr>MR
R
Si se considera que v es la velocidad de impacto de la particula « sobre la pared interna de la
barrera, que puede ser estimada a partir de la relacion energia cinética clasica v = v/2E/M a la
cual ésta escaparia.

Si se asume que la particula esta confinada en una caja de ancho R y ésta tiene la minima energia,
de manera que se acomode solamente media longitud de onda de De Broglie, tal que
h h h
Re~Ap=—~— =R~ —.
P p Mo MR




Capitulo 2. Tunelamiento nuclear 35

Asi que la constante de decaimiento A3 esta dada por

v h/MR
A= ﬁT_ 2R T
h
A re T

con
h 8e h
b=c+In(— |= —VZ2MR+In| — ).
hY o MR?

Esto muestra que en el decaimiento & la constante b varia muy lentamente con el namero atémico
Z> y puede considerarse una constante, mientras que varia con éste linealmente, es decir en una
grafica del logaritmo de la vida media

11’1(2) (8]

Tip=—t=—c+-27,
A VE

Por ejemplo, para el atomo de Polonio 210, se predice una vida media de desintegracion del orden
de 138,76 dias [17]. En tal esquema para dicho 4tomo los valores involucrados en la ecuacién para
el coeficiente de transmision T, en el que se considera la atraccién coulombiana entre el nucleo
hijo Z, = 84 — 2 = 82, una particula alfa Z; = 2 y un nicleo padre Z = 84; para un potencial

VAV
V=k 1r2€’

calculado en el punto de retorno clasico Ry, en el cual la energia E = 5,304 MeV, se corresponde
con el valor del potencial

2
———— = 5,304 MeV,

3Esta expresién se obtiene en la ecuacién (B.25) del apéndice B
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entonces, el valor de Ry, se correspondera con

Vc(R1) — F— Rl _ keZ1Z2€2 _ k321Z2€2
E E
o keZ1Z2€2
5,304 MeV
. 9 x 109Z1Z262
" 5,304 MeV
9 % 10°N22 (2 x 82) (1,602 x 1019)* ¢2

5304 x 100 (1,602 x 10-19Nm)
9 x2x82x1,602
N 5,304

Ry = 4,4580503 x 10~ m.

x 107 x 107 m

Al considerar la distancia de confinamiento del pozo de potencial R al radio nuclear de acuerdo a
la férmula empirica

R = 1’0A1/3
=12 x 10 Pm x 210'/3
R =713 x 10" ®m.

La energia del proceso, segiin [17] corresponde a

E = 5,304MeV = 5,304 x 10V

— 5,304 x 10° (1,602 % 10719 ])

= 5,304 x 1,602 x 107 13] = 8,497008 x 10~ 3]
E = 0,8497008 x 10~ 2],

y el término que acompafia la integral

2V2M  2./2 x4 x (1,673)10~7kg
o 1,0546 x 10-34] - s
2/2 x 4 x (1,673)10-27 kg'/?
- 1,0546 x 1034 J-s
_24/2x4x(1,673)10% kg'/2
- 1,0546 x 1034 J-s

1/2
2v th ~ 2,19 x 1021k]gs,

Al calcular entre R y Ry esta integral numéricamente, entonces, la tasa de transmisién en el
modelo de Gamow (2.4) corresponde a

Ty, = 71,4 dias
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cuyo orden de magnitud estd en perfecto acuerdo con las medidas experimentales.

De acuerdo a [18], el potencial entre un proyectil y un objetivo para la I-ésima onda parcial es

2
Vilr) = Vi) + Ve) + s () +

n(1+1)

2urz (2.6)

en donde V(7) y Vc(r) son los potenciales nuclear y de Coulomb, respectivamente, siendo la
barrera de Coulomb el caso I = 0.

Teniendo en cuenta a [19], al emplear la aproximacién WKB, la probabilidad de transmisién, esta
dada por

T)(E) = (1 +e251(5>>1. (2.7)

La integral de accion asociada a la penetracion de la barrera de potencial esta dada por

r2

Si(E)= [ pdr
"
2 Rii+1) Y2
= ? - |:V0(1’) + 7 — E:| d?’, (28)

en donde rq; y 79 corresponden a los puntos clasicos de retorno para la [-ésima onda parcial de la
barrera de potencial.

En el caso en el cual se considere una barrera de potencial de estructura parabdlica
1 22 2
Vo(r) = Vo — M Q*(r—rn)", (2.9)

en donde Vg = Vj(7¢) es la altura de la barrera de potencial para la onda s y () sea su curvatura.
Por lo tanto la probabilidad de transmisién, esta dada por la férmula de Hill-Wheeler*, presentada
en [20]

-1
2
To(E) = [1 +e—hg(5—v30)} . (2.10)

Para verificar cémo es la distribucién de las barreras, dada por la expresion Eo, y sus segundas
derivadas. La determinacién de las probabilidades de penetracién para las diferentes ondas parcia-
les, en el caso de un sistema unidimensional.®

La dependencia de la probabilidad de transmisién con [ a una energia dada, esta dada por

(2.11)

2
TI:TO{E hl(l+1)]’

~ 2uR(E)

4En el caso de considerarse energias por debajo de la barrera de potencial parabélica existen desviaciones
significativas, con lo cual la férmula de Hill-Wheeler no se cumple.

5Esto significa que no se consideran acoples a un sistema interno, por lo tanto son despreciados, lo cual favorece
la utilizacién de este modelo en la barrera de potencial supuestamente presente en el horizonte de eventos. En el
caso de asumirse un nicleo con estructura interna y asociar a ésta grados de libertad internos intrinsecos sobre la
seccion transversal eficaz de fusion, es necesario resolver ecuaciones para varios canales acoplados, que determinan
las funciones de onda del movimiento relativo, como se expresa en [18].
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en donde uR?(E), corresponde al momento de inercia efectivo y R?(E), es una funcién suave de
la energia.® Dado que en el estudio de reacciones nucleares por debajo de la barrera de Coulomb,
uno de los observables experimentales es

denominada la seccién eficaz; cuando muchos valores de [ son importantes en el fenémeno, esta
suma se aproxima a una integral, de manera que

E
Ec(E) = nRz(E)/ To(E') dE'. (2.12)
Esta expresion aproxima a un nivel bastante preciso los datos experimentales para la seccién
transversal de fusién total, lo cual se evidencia en [21], [22] y [23]. Al derivar dos veces la ecuacién
(2.12), se tiene que la derivada respecto de la energia de la probabilidad de transmisién de la onda
S es mas o menos proporcional a la segunda derivada de Eco respecto a la energia, o lo que es

equivalente a que
dTy(E) 1 d? dR
B~ RE) aE Eo(E) | +O( = ). (2.13)

La ecuacién (2.13) puede ser empleada para aproximar la primera derivada de la probabilidad de
tunelamiento para la onda s. En un sistema netamente clasico Ty es igual a la unidad por encima
de la barrera de potencial y cero por debajo de ésta; asi que dicha cantidad corresponde a una
distribucion delta cuyo pico aparece para un valor de la energia que es igual a la altura de la
barrera. Al combinar las ecuaciones (2.11) y (2.12) y al hacer la asociacién R(E) — 7, es posible
obtener una conexién directa entre la seccién transversal de fusion y la distribucién de momentum

angular
1 /d(E'o(E))
T)(E) = m’%(dE’)' (2.14)
en donde )
E’:E—h l(l—zl)‘
2urg

Para los casos en los cuales la energia esta por encima de la barrera de potencial, se puede emplear
un potencial parabdlico como el presentado en la ecuacién (2.9), ademas al realizar la asignacion
R(E) — rg y sustituir (2.10) en (2.12). Se obtiene la expresién para la seccién transversal

2M,2
o(E) =" 2?;0 In {1 + e F(E=Vin) ] (2.15)

la cual en el limite clasico, cuando la curvatura del potencial es casi nula, O — 0, o equivalente-
mente, E > Vg, la ecuacién (2.15) se reduce a

o(E) = nrd <1 - VEBO> (2.16)

Un potencial que mas se ajusta al nuclear, corresponde al potencial efectivo para el decaimiento en
cluster en el modelo autoconsistente de Skyrme-Hartree-Fock (SHF) [24]. Usado particularmente

6Para aplicaciones en fisica nuclear R(E), se reemplaza por la posicién de la barrera de onda s, a una distancia
ro-
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en el calculo del decaimiento & y determinacién de espectros de vida media, asi como a la investi-
gacion de los anchos de decaimiento de estados moleculares en isétopos de Berilio y Carbono.” En
tal esquema un nicleo padre estad compuesto por una particula a y un nicleo hijo, interactuando
a través de un potencial

2 2
V) = W) + Ve + 503 (143 )

que tiene una estructura funcional similar al modelo de Gamow, siendo Vi (7) el potencial nuclear,
Ve (r) el potencial de Coulomb y la barrera centrifuga modificada por el denominado potencial
centrifugo modificado de Langer, en el cual I y u son respectivamente, el momentum angular del
cluster y la masa reducida del sistema claster-nucleo.

2.2. Conversion interna

Otro fenémeno nuclear de importancia en el cual se analiza la conversién de pares electrén-positrén,
a partir de la emisién de un fotén por medio de una transicién nuclear, conociendo sélo sus
funciones de onda para una distribucién de carga nuclear y es independiente de la funcién de onda
del niicleo, es el proceso de conversién interna. Este esta fuertemente conectado con la conversién
de estados electrénicos ligados, dado que la energia de excitacién de un nicleo es transferida a
un estado ligado de un electrén, asi que es excitado a un continuo de energia positiva.[25] Para
ejemplificar esta situacion se seguira la perspectiva de [26], en la que se considera las probabilidades
de transicién P,+,- electrén-positrén y del fotén P,. Los cuales se encuentran relacionados por el
coeficiente de conversion de pares (PCC), dado por

Pe‘*’e‘
= — 2.17
b="5 (2.17)

que corresponde a la razén de las probabilidades de produccién de pares respecto a la de emision
de un fotén para una transicién nuclear con energia w. Dado que la energia del electrén y el
positrén toma valores continuos, entonces, 3 se puede expresar como una integral del espectro del

positrén 2—58 con respecto a la energia del positrén E

B(w) = /;H d[jl(?dls. (2.18)

Esta teoria se halla fuertemente vinculada con la conversién de electrones estados ligados, en la
cual la energia de excitacién de un nicleo excitado es transferida a un electrén de estado ligado y a
su vez éste es excitado a un continuo de energia, de manera que la razén de probabilidades de una
vacante en el cascarén interno electrénico y la subsecuente emisién de un fotén, es el coeficiente
de conversion a

o= I;T (2.19)

v

Dicho electron creado puede ocupar un estado ligado con energia Ej,, de manera que positrones
monoenergéticos cuya energia cinética es E’e‘i” = w + E, — 2. Para tal fin se hace necesario un

"El cual es una modificacién del potencial nuclear de Woods-Saxon
8Denominado coeficiente diferencial de conversién de pares (DPCC).




40 Tunelamiento en aproximacién semiclasica de la radiacion Hawking para Black Shells

hamiltoniano no perturbado Hy que describe electrones moviéndose en un campo externo V(r)
correspondiente con el generado por el nicleo y los fotones libres, mientras que la interaccién entre
los nucleones y los electrones moviéndose en el campo del fotén esta representado por el operador
Ait(t) = [ d3xU(x); de manera tal que la ecuacién de movimiento para un vector de estado |¢)
tiene Ia forma

d yint
i |¢) = H™(1)[(t)) (2.20)

La matriz S hace referencia a aquel operador que transforma el sistema desde un estado inicial
|p(t = —c0)) a un estado final |¢(t = +00)), los cuales son vectores propios del hamiltoniano
sin perturbar H%, de manera que

[p(t = +00)) = S|gp(t = —0)), (2.21)

en donde la matriz S9 tiene la forma

[Vp N
Il

(9%
Il

g
Lo

xl/d4x2 /d X, T[U () U (x2) - - - U(x)], (2.22)

en la imagen de interaccion el operador U(x) se obtiene a partir de los operadores de corriente
j(x) y el de campo electromagnético A(x), de acuerdo a

A

U(x) = ej(x)A(x), (2.23)
entonces para los estados inicial |i) y final |f),

= (FIS"1i), (224)
permiten calcular las probabilidades de transicion.

En el caso de la emisién de un fotén, al considerar expansién perturbativa a primer orden en la
matriz S dada en (2.22)

M = —ie/d4x j(x) - A(x)

::_ie/}#x<$ (x) ) [6A 4—@*@4”())]), (2.25)

9En este contexto se hace uso del operador ordenamiento temporal dado por:

(x1)
(x2)

(x2), parat; >t
(x1), parat] <ty

o

TWmmLM@mk{ g
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en donde se ha considerado un operador de campo electromagnético descrito en términos de los
operadores de creacién éT y destruccion ¢ del campo electromagnético, AY sus funciones propias
y siendo 7y las matrices de Dirac.

Al invocar el gauge de Coulomb V - A = 0, para funciones de onda transversas con paridad (—1)%
son denominadas potenciales vectoriales magnéticos y los que (—1):*1 son los eléctricos. El indice
s hace referencia a la energia w, el momentum angular L, el nimero cuantico magnético M vy la
paridad T, ya sea eléctrica o magnética. Las funciones de onda normalizadas sobre la esfera de
radio nuclear wRy > 1, son respectivamente

A " (x) =\ = @ A gt (2.26)
AM elec — / w A —iwt (2-27)
A% M98 (x) = AO Mg (e (2.28)

Estos potenciales estan normalizados de acuerdo a la escala de energia del fenémeno, en escala

H _ s
discreta w = (g-)n.

En la ecuacién (2.25) se permite construir los elementos de matriz entre los estados inicial y final
del nicleo con estados de energia €; y €f respectivamente. El nicleo se halla descrito en términos
de funciones propias del momentum angular y la paridad, cuyos valores propios son (J;, M;),
(]f, Mf), TCn; Y Tln- El Gnico cambio de paridad de importancia es 71, = TCn, TUn - En el estado
final hay un sélo fotén presente con nimeros cuanticos L, M, T, o T;; de manera que la ecuacién
(2.25), en virtud de la ecuacion (2.23)

SE}) = —ie\/g/d%c jn (%) .AQA*(T)(wx)efi(e,'fef)teiwt
- —z/d4x jn(x —i(ei—ef)t o \/T'A]L\/I*(T)(wx)ei“’t
RN
= —i/d4x e / <f‘]n‘ > ( )(wx)ei“’t
:—ij dtdre\/7<f]]n‘ i) A M (z )(wx)ei‘”t
= /dt e \/7 ele (ei=ep)t / dTn ] l‘n) ’ AQ/I(T) (wrn)

Sty = —2millPs(ei — e — w), (2:29)

donde se ha considerado que si el integrando de (2.29) es una funcién impar, la integral se hace
cero; de manera que sélo las transiciones

T, = (=1)E1A, (2.30)

con:

(2.31)
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pueden contribuir a la transicién. La ecuacién (2.31) es una regla de seleccién que implica que para
un momentum angular L dado, sélo una de dos clases de fotones puede ser emitido. El simbolo

fab dt, indica una integracién sobre un shell esférico de radio a y b. La probabilidad de emisién
por unidad de tiempo corresponde a la norma de la ecuacién (2.29) y esta dada por

Wy = 27T|Uif|26(ei—ef—w). (2.32)

El calculo de P, involucra una suma sobre todos los estados del fotén y de todos los substratos
magnéticos nucleares finales. La suma sobre la energia del fotén es reemplazada por una integral

Yy — /dn = Iz\l/dw, (2.33)

con lo que
+Ji T e 4L

8w (1)2
P’Y = 2], +1 Z Z Z Z Z }V'Y ’ (2'34)
! Mi=—J; My=—]f L=1 M=—L 7=¢,m
con una energia de transicién de
w =€ —€f (2.35)

En la determinacion de coeficiente de conversion de pares, en el numerador de la ecuacion (2.19),
se considera que no hay fotones presentes en los estados inicial ni final y por lo tanto la contribucién
es a segundo orden, en la expansién (2.22), asi que

. 1 R,
8 = —3@ | dixdly T[ju(x) A" (0L (A ()], (236)
en donde la corriente!® consiste de una parte electrénica y una parte nuclear, de acuerdo a

j(x) = Ju(x) = Je(x). (2.37)

Si se expresa la corriente electrénica como

~

Jen = ¥, (2.38)
entonces los operadores de campo seran

¥(x) = ;am(x), ¥(x) = ;at\?t(x), (2.39)

en donde ¥; es la funcién de onda de Dirac del electrén en el campo externo y 4} y 4; son los
operadores de creacién y destruccién, respectivamente!!. En tal caso los elementos matriciales
seran

S = (fufef al S linicia), (2.40)

10E| signo menos entre las dos corrientes corresponde a la diferencia de signo de la carga entre el nicleo y los
electrones.
1 Estas relaciones de anticonmutacién fermiénicas estan dadas por

{ap, 85"} = {b}, b5} = (2m)°5° (p — §)0"
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siendo i, y f, los estados inicial y final del nicleo y los correspondientes i, y f. para el electrén
cuyas energias son —E y E’, el namero cuantico k y k/, y la proyeccién del momentum angular
en la direccién z, p y p’. Aqui se considera +E como la energia del positrén emitido, is e fa

representan los estados de vacio del fotén. El propagador del fotén, esta dado por

(fa=0

con el propagador del fotén

T[A!(x)A"(y)]|ia = 0) = ig"'D(x —y),

_ 1 . 7k-x
D(x)__(ZH)/dk k-k+i0

De manera que

<fnf6|T[;u (X)]AH(Y)] linie) =
= <fnfe|fu(x)fy (y) line)

- []n(x) : je(Y)e_thxe+i(E+E,)ty + jn(Y) : je(x)e_thye+i(E+E/)tx]/

donde se ha usado la definicién de la corriente de transicién nuclear, dada por

jn(x)eil et = (fljnli),

y w, dada por (2.35), de manera que la corriente electrénica, sea

je(x) HE+EDE <f6|]e( )ie)
=¥s(x) v ¥i(x).

Entonces, la ecuacién (2.40) toma la forma
SE? - <fnfefA|§(2)|inieiA>

Tn/ P, Jn(y) ]e(l‘e)/ A3k ek (mn—re) o

E-‘rE +ko w“"ko)tn
/ ko - k2 = / dt, ¢ [t e
Tn/ 3, Jn(n) -jg(re)/ Bk ek (rn—re)

x (27m)d(k* — w? —i0)

o
K-k —i0

162 e ) -l (2i) “" S(E+E —w)
_(271')2/ / Te]n Iy ]e ) o Zﬂm w
iez . . . eiw‘rn7r3|
= _(27_[)2/0 dTn/O dTe ju(tn) - je(te) (Zlﬂ)m S(E+E —w)
uf

Sl(?) = —271i Ul(f) (E+E —w).

@m)d(E+E — w) / dty ety

(2.41)

(2.42)

(2.43)

(2.44)

1k (rp—re)
Tn/ AT, ju(rn) - jo(re / dk wz_oé(E—i—E’—w)

(2.45)
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La norma de la ecuacién (2.45) corresponde a la densidad de probabilidad de emisién de un par
positrén, electrén, por unidad de tiempo

Wer o = 27| U "O(E+ E' — w). (2.46)

La probabilidad de produccién de pares corresponde a la suma y el promedio sobre todos los
subestados del nicleo y sobre todos los estados electrénicos iniciales y finales. Nuevamente de

acuerdo a los reemplazos,
R
Y — /dn = —N/dw,
- T

+/i +Jy +oo oo i

Pro 211+1 oy Y YR Y e (2.47)

Mi=—]; Mf——]f k=—ook/=—co y=—j /' =—j’

se llega a que

en donde se ha tenido en cuenta que

w—1
Wer oo = / u?|? ak, (2.48)
1

para
E'=w—E. (2.49)




Capitulo 3

El principio holografico

Siguiendo a Bousso [27], se dice que un principio de la Fisica es una clave reconocible para
establecer una ley subyacente atin no manifestada, pero que brinda pistas cercanas de la estructura
que ésta debe tener. En la segunda ley generalizada de |la termodinamica, el Principio Holografico
se encuentra en esta direccion, al pretender establecer un patrén ain no explicado acerca del
contenido de informacién que es posible contener en ciertas regiones del espaciotiempo. Asi que
se espera que una teoria que involucre este principio debe unificar materia, gravedad y Mecanica
Cuéntica, en un esquema que trascienda a la Relatividad General y a la Teoria Cuantica de Campos.
Esto tiene que ver con que aquéllas teorias son locales y asi que al proponer la existencia de grados
de libertad en cada punto del espacio, pareciera que el contenido de informacién en una regién
espacial determinada creceria con el volumen. En su contraparte, el Principio Holografico establece
que éstos estan mas bien relacionados con el area de las superficies en el espaciotiempo y a su vez
llama la atencién sobre la nocién de localidad, tan importante en la unitariedad de la Mecanica
Cuéntica.

Por lo tanto, los acercamientos mas sustanciales en esa direccién se espera lo posean como una
de sus caracteristicas, es decir, éste sea un elemento que puede ayudar a esclarecer los pormenores
que una eventual teoria cuantica de la gravedad deberia tener, pues exhibe una correspondencia
entre las areas y la informacién.

Asumir esta relacién, con el fin de definir un analogo con la segunda ley, debe llevar a la conside-
racion de una segunda ley generalizada de la termodinamica a partir de que el establecimiento de
la entropia de un sistema, dependiente de sus N grados de libertad. ! Dicha nocién de entropia
asociada a un agujero negro, se debe primordialmente a Bekenstein [28], quien determiné una cota
sobre los sistemas de materia, al asumir una simetria esférica y gravedad débil; base sobre la cual
't Hooft y Susskind formulan el Principio Holografico.

Es necesario realizar varias reformulaciones a esta cota y otras que se desprenden de suyo,? con el
fin de acercarse a la cota mas general sobre la entropia maximal de los sistemas de materia, pues el
razonamiento de que el area de las superficies acota la entropia encerrada en volimenes espaciales
no es siempre cierta; dado que las teorias actuales no imponen una cota inferior fundamental

1Que resultara correspondiente con el logaritmo de la dimensién de su espacio de Hilbert 'y que ademas se
corresponde con el namero de bits de informacién, multiplicado por In2.
2Por ejemplo la cota de entropia como de espacio de Susskind y la cota de entropia covariante de Bousso.

45
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sobre ésta. Se espera que la cota de entropia covariante sea la clave necesaria, ya que daria al
principio holografico un caracter de universalidad independiente de suposiciones a priori sobre
la estructura de la gravedad cuantica® o el requerimiento de la unitariedad, relacionada con la
pérdida de informacién en agujeros negros; pues su validez puede ser probada empleando Teoria
Cuéantica de Campos y Relatividad General.[29], [30] Esta consideracién de las cotas de entropia,
por ejemplo el empleo de la cota de entropia esférica aplicada a un sistema de materia ordinaria,
en vez de agujeros negros, lleva a una saturacién de esta*, por ejemplo al analizar un sistema
correspondiente con un gas de radiacién a temperatura T y energia E, en un recipiente esférico
de radio R > 2E; con el fin de que el sistema no se transforme en un agujero negro, para el cual
se desprecian los efectos de autogravitacion. En condiciones semiclasicas y al considerar la ley de
Stefan Boltzmann® para una esfera de energia, se tiene que

E ~ ZR3T#, (3.1)

siendo Z la constante de proporcionalidad correspondiéndose con el niimero de especies de parti-
culas en el gas®, ademas

T4

%

RE, (3.2)

luego la entropia asociada es

3, 93
~ ZZ 4R°R1E1
133

~ ZiR1E1

(3.3)

3Como si se requiere en la Teoria de Cuerdas.

4Esta saturacién es asociada al denominado problema de las especies.

5La cual establece la proporcionalidad entre la potencia de emisién y la temperatura de la superficie emisora,
E=o0T%

8En el contexto de una teoria holografica, la dualidad AdS/CFT, (AdS(5) ® S(5)) en diez dimensiones[31],
Susskind[32] muestra que dichos agujeros poseen un radio de Schwarzschild por lo menos mayor o del tamafio del
radio de curvatura R, éstos son estables y al decaer no se evaporan. En este contexto las ecuaciones de campo
de Einstein 5—dimensionales con constante cosmolégica negativa y una constante G de Newton gravitacional
10—dimensional; obtiene una ley de Stefan-Boltzmann en una teoria de Yang-Mills supersimétrica:

_ R¥pa 24
Esym = CﬁTsym =cN Tsyrn/

en donde la constante de proporcionalidad se corresponderia con ~ N2 campos cuénticos en la teoria gauge
U(N), asociados a un gas térmico de cuerpo negro con N2 especies de cuantos propagandose en la frontera de un
holograma.[33]
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Y de acuerdo a la condicién de estabilidad

R>2E = E<

N[ >

por lo tanto de la ecuacién (3.4)
1
SSZiAs, (3.4)

y al considerar que el tamario del sistema debe ser mucho mayor que la escala de Planck, A > 1.
Lo cual puede fallarsi Z > A.7

Bajo la suposicién adicional de autogravitacion muy pequefia (E < R), los argumentos de la
cota de Bekenstein serian aplicables a la cota esférica, y dado que en aquélla la constante de
Newton aparece implicitamente, en cambio en la cota esférica no hay un equivalente cuando la
gravedad "se apaga",® Ademas a menos que se asuma (3.19), la cota esférica no hace referencia a
la energia contenida dentro de la regidn, lo que hace dificil definir energia en espaciotiempo curvo,
sin afectar dicha cota. Sobre todo cuando su existencia es necesaria para la validez de la segunda

ley generalizada de la termodinamica®.

Entonces, la cuestién radica en conocer cuantos grados de libertad existen en la naturaleza a nivel
fundamental'®, asi que siguiendo a Susskind [37] y 't Hooft [38], [39], [40]; se requiere de un
mundo tridimensional para combinar la Mecanica Cuantica y la gravedad, asi que éste sea una
imagen de informacién almacenada en una proyeccién bidimensional. En dicha perspectiva sélo se
precisa de un grado de libertad discreto por area de Planck.

Que el nimero de particulas crezca con relacién al momentum, se corresponde con el despliegue
de informacién cerca de horizontes de agujeros negros.!! Si se supone que el mundo es una red
tridimensional de grados de libertad como de spin, con un parametro de red a del orden de la
longitud de Planck, para la cual en cada sitio de red existe un spin con uno de dos estados posibles
y con un namero de estados ortogonales distintos N = N(V') en una regién V del espacio dado
por

N = 2", (3.5)

“En el caso de un protén, se necesitarian Z > 1040 para violar la cota esférica [34]. Para el caso de la cota de
Bekenstein se espera que la cota falle con un niimero de especies N ~ 10 [35], [36].

8Es decir para espaciotiempo plano.

9Pues por ejemplo si se asume un sistema esféricamente simétrico distinto a un agujero negro (R > 2E) viola

la cota esférica pues S > % = 71R2. Al colapsar un shell esférico de masa M = % — E dentro del sistema con

lo que deberia resultar un agujero negro de Schwarzschild de radio R, pero la entropia de éste seria %, con lo
que se tendria que la entropia generalizada decreceria, pero eso no es tan importante pues, el agujero se haria
catastréficamente inestable dado que su tiempo de evaporacién seria mas pequefio que el tiempo de colapso.

10por ejemplo, si se define el nimero de grados de libertad de un sistema mecanocuantico N correspondiente
con el logaritmo de la dimensién de su espacio de Hilbert #, es decir:

N = In(dim(H)).

1 Esta aseveracion surge en el contexto de la teoria de cuerdas.[41]
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en donde n es cada uno de los sitios en V. Por lo que

In(N) = In(2")
=nln2
1%

P

In2, (3.6)

Si se piensa una teoria de campo en el continuo, formada por osciladores arménicos, claramente,
el nimero de estados cuanticos es divergente, lo que obliga a limitarlos a partir de cierta cota
en la densidad de energia o0y, que lleva a que la densidad de entropia termodinamical? s como

funcion de p:

S=s(p)V, (3.7)
con lo que el nimero total de estados es
Nestados ~ ES = eS(Pmax)V’ (3.8)
asi que
In(Nestados) ~ In(e®) = SIn(e) = S, (3.9)
entonces, al comparar (3.6) y (3.9), se tiene que la entropia maxima es
1%
Smax = 5 In2=nln2, (3.10)
Ip

la cual es proporcional al volumen, o mejor decir proporcional al namero de grados de libertad
simple que describen el sistema. Si se supone que el sistema considera la gravedad y se piensa
contenido en una regién I' con frontera dI' cuya area es A. Este sistema termodinamico no puede
exceder la masa del agujero negro de la misma area A, pues sino seria mas grande que la regién.
Ahora, si se colapsa un shell esféricamente simétrico de materia con justo la cantidad de energia
que junto con la masa original forman un agujero negro que llena la regién I'.[42] El resultado de
dicho proceso es un sistema de entropia conocida S = %. Pero que al emplear la segunda ley
generalizada de la termodinamica, se asegura que la entropia original dentro de I' es menor o igual
que %. De modo que el nimero de grados de libertad con un bit de informacién en cada celda,
(ver figura 3.1) de acuerdo a la ecuacién (3.10), seran

s 4 .

In2 In2 4In2’ '

En otras palabras la entropia maxima de una regién del espacio es proporcional a su area medida
en unidades de Planck, tales cotas son llamadas holograficas.

Esto muestra la sospecha de que no hay mas grados de libertad de los cuales hablar, mas que los
que se pueden dibujar en la superficie. La situacién puede ser comparada con un holograma de
una imagen tridimensional proyectado sobre una superficie bidimensional.

12| conteo de estados involucra la entropia que es a su vez el logaritmo del namero de estados accesibles del
sistema.
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Figura 3.1: Informacion de un bit por celda de Planck sobre el horizonte de un agujero negro. Tomado
de [38].

Dado que la entropia de un agujero negro también se refiere a todos los campos fisicos fuera del
horizonte, los mismos grados de libertad determinan lo que ocurre en ese lado. De hecho, esto
deberfa tenerse para cualquier superficie bidimensional que se extienda hasta el infinito.!3

3.1. Cotas a la entropia

3.1.1. La cota de Bekenstein

Para considerar la entropia [43], [28], [44] de un agujero negro es importante hacer referencia al
hecho de que el area del horizonte de eventos de un agujero negro nunca decrece con el tiempo,*
ademas si éste es estacionario estara caracterizado solamente por su masa, momentum angular y
carga, de manera que después de un proceso de colapso el estado final es tnico.!® Esto permite
establecer que la suma de la entropia comiin de los alrededores en las vecindades de un agujero
negro y la de éste nunca decrece. Por lo tanto la entropia de Bekenstein-Hawking debe ser del
orden de

Spn =~ nkplp? A, (3.12)

13Esto sugiere que los grados de libertad en el espacio tridimensional no son independientes sino que si son
considerados a una escala planckiana, éstos deben estar infinitamente correlacionados.

14Es decir dA > 0, es el denominado Teorema del area de [45]

15Es el teorema de no pelo de Carter [46]
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siendo Ip'® la longitud de Planck, kg la constante de Boltzmann y A el area del agujero negro,
constantes adicionadas por consideraciones dimensionales, pues si se considera que la entropia
debe ser una funcién monétona no decreciente del rea; la eleccién mas simple es Spyy = A,

Para un agujero negro de Kerr, se tienen los parametros masa M, carga Q y momentum angular
J relacionados de acuerdo a

. 47t(r c® — GM)

A
4]
Q=—
MA
_ AnQry
d = A (3.13)
donde
rp =c?2 [GM + (GPM?% — JPM2c* — GQZ)%]
y

A= 47Ge? [2(31\42 — Q¥+ 2(GEM* — A — GMZQZ)%},

asi que la conexién entre la diferencia en energia de dos estados de equilibrio de agujero negro,
las diferencias de areas de los horizontes de eventos, asi como el momentum angular y la carga,
seran

2
dA + Qd] + PdQ. (3.14)

d(Mc?) = c

KC
87

Del mismo modo como en la segunda ley de la termodinamica se relacionan el volumen la entropia
y la energia

dU = TdS — pdV, (3.15)

(A.3) y (A5), ademas de la expresion para la temperatura de Hawking dada en (1.122) o en
(1.135); entonces

2
KC
dA = TdS
8tG
2
KC K
dA = —dS
8tG 27
C2
— A = Spy. 3.16
4G BH (3.16)
161, = hCTG =1,6 X 10733 cm. Es decir que en unidades naturales, 1132 =h

In2

17Para lo que Bekenstein establece 17 = 12
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La anterior relacién es equivalentemente a'®

1
Sgy = EA, (3.17)

cuando G = ¢ = 1. Esto muestra que el valor de # = 1/4 difiere del inicialmente establecido
por Bekenstein. La segunda ley generalizada estableceria que al incrementar Sgpy en una cantidad
de entropia comin de materia y radiacién cayendo al agujero S., esta suma no decrece con el
tiempo!®. Ademas si se considera un rayo estrecho de radiacién de cuerpo negro a temperatura
T, el cual se dirige hacia un agujero negro de masa M y asumiéndose que la 6ptica geométrica es
aplicable, pues las longitudes de onda caracteristicas de la radiaciéon deben ser mas pequefia que
M, entonces T > ,{BLM luego % < kBTM y para una energia dada la entropia es S = %; entonces

la entropia sera

1 kg ME
S—fE<< 7

De modo que para un sistema termodindmicamente estable de radio R gravitando débilmente
circunscrito a la esfera mas pequefia que lo contiene, se tiene que

(3.18)

Suat < 27ER, (3.19)

que es la cota de Bekenstein.

3.1.2. La cota de entropia esférica

Otra manera de encontrar una cota adecuada a la entropia es dejar caer el sistema de materia en
el agujero negro®®, para posteriormente convertirlo en el agujero negro mismo, suponiendo que
la estructura asintética de la variedad espacio-tiempo M lo permita. Y si A corresponde al area
de la esfera que circunscribe el sistema, el cual debe poseer una masa M, mucho menor que la
del agujero negro asociado a la misma area, de manera que dicho sistema sea gravitacionalmente
estable.?!

Se espera que dicho agujero sea formado al colapsar un shell de masa M — E sin esperar que radie
o eyecte masa, se deja que inicialmente esté bastante separado del sistema. Dado que su entropia
Ssherl NO €s negativa, entonces, la entropia inicial del sistema termodinamico es

Sini—total = Smat + Sshell, (3.20)
asi como el estado final
A
Sfinftotal = Spy = Z (3-21)

18En este procedimiento de integracién se ha asumido que la constante de integracién es cero si se asume que
la entropia tiende a cero cuando la masa tiende a cero

190 equivalentemente ASgp + AS; = A(Spy +Sc) > 0

20Es el proceso de Geroch.

21Es el proceso de Susskind.
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Por la segunda ley generalizada de la termodinamica tiene que cumplirse que la entropia de la
ecuacion (3.20) no debe exceder la entropia final, entonces Sgj.;; no puede ser negativa.[36] Del
hecho de asumir que el sistema gravitacionalmente estable, se tiene que 2M < R,?? entonces de
acuerdo a la ecuacion 3,19 para la cota de Bekenstein

S <2nMR < 27r<§>R = nR* = % (3.22)

de manera que se muestra que la cota de entropia esférica es mas débil que la cota de Bekenstein.?3

Ahora, siguiendo a 't Hooft [47], si se consideran un campos cuanticos escalares en coordenadas
esféricas cuadridimensionales ®;(7,6,¢,t) en un punto fijo r1 en las vecindades de un horizonte
de eventos y tal que r1 = r4h, para una distancia 1 > 0; los cuales interactian con un campo
gravitacional; sometidos a las condiciones de frontera

<I>i(r,9,¢,t) :0, 1"§1"1, 121,2N, (323)

Se supone que estos campos se encuentran a una temperatura de Hawking Ty asociada a una
entropia de Bekenstein-Hawking Sgy, para una densidad de estados cuanticos con un corte a una
distancia & a determinar, en una caja de radio L, y la condicién

(r,0,6,t) =0, r>L, i=12---N, (3.24)

En este sistema en particular, para particulas bosénicas, la densidad lagrangiana en la métrica de
Schwarzschild es

-1
2M 2M
L(x,t) = (1 — r) 9y D? — <1 - r>arq>$ — 17297 (3.25)
El lagrangiano esta dado por

/r ' / A0 L(r,Q, 1), (3.26)

de manera tal que la ecuacién de movimiento para los modos del campo con energia E(n,1,13),
tiene la forma

-1
1M g larr(r —2M)9,P — WD 2o =0 (3.27)
r r? r?

En la condicién r = 2M, se suaviza la singularidad en el término del medio en la ecuacién (3.27),
para la cual r —2M = €“, entonces

1 I(1+1
rE? + 500100 — ¢ <(r+2) + m2> ©=0, r=2M+¢". (3.28)

La solucién para el campo ® en (3.28) en términos de la coordenada o posee un comportamiento
oscilatorio, el cual puede ser aproximado por

e:l:if k(o)do _ e:l:i.f k(r)dr, (3-29)
22 : . 2GM .
Pues su radio de Schwarzschild rs = R = 2 = 2M = 2E, en unidades naturales.

23Sin embargo aunque ésta se encuentra mas cercanamente relacionada al principio holografico, puede ser mol-
deada en una forma mas general y covariante, al considerar la cota de entropia covariante de Bousso.
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siendo k(o) determinada por

rE? — %k(a)z —e’ (l(l; ) + m2> =0, (3.30)

de modo que

k(r)? = e 27k(0)? = <1 — 2M) 72152 — (1 — 2M> B (l(l; D + m2>. (3.31)

(e (o
(-2 = (-2 (452
(2

o)
E(n,l,13) = i\/<1 — r> (l(l;l) + m2>. (3.32)

Asi que en (3.28) el espectro de energia, estara dado por

L
o :/ dr k(r,1, E), (3.33)
"
en la cual n > 0, [ y I3 son enteros.

Si se considera el namero total v de soluciones de onda con energia que no excede E

g(E) = 1/7'(/ nin(21 +1)dl

_/ (1—)1/(214—1)011\/(1—2]7\4) (W;” +m2>. (3.34)
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La energia libre de Helmholtz, esta dada por

—BF _ Ze—p’E H H nll3)

i= 1nll3
In( ln( >
Hnll—!sl—e BE
w1 —e ~PE A 4 ~PE n,l,l31_e_BE
N wveces
_ , N
:BF— _ln_(gl_e—ﬁE) :|
B = Nin| (TT 1) |
L a0l 1—e FbE
BF = NIn (Hl—eﬁE)}
- f’l,l,l3
BF=NY In (1 - e—ﬁE>, (3.35)
v

y en virtud de la ecuacién (3.34), se tiene que en funcién del nimero de estados

7BF = N/dg (E 1n(1—e*ﬂE)
N/ dE eﬁE—1
nﬁp——ﬁN/ dE/ (1—)1><
X /dl(21+1)(eﬁ5—1)_1\/<1—2]r\4> (’“;1) +m2>, rp =2M+h.

(3.36)

Teniendo en cuenta la aproximacion

2M
2

entonces las principales contribuciones a (3.36), para la energia libre de Helmholtz, llevan a que

2N (2M\Y 2 4 o dE(E?—m?)?
~- N (2R) 2 e m s .
45H < B ) 97 N/m ePE—1 7 (3.38)

Dado que se quiere poner en manifiesto la contribucién del horizonte a la energia libre de Helmholtz,
entonces, el segundo término en (3.38) se despreciara, pues hace referencia a la contribucién del
vacio circundante al agujero negro a grandes distancias, m — oo. Por lo tanto, queda

273N /2M\*
Fn 20N <ﬁ) (3.39)
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asi que las propiedades termodinamicas energia total U y entropia S, pueden determinarse de
acuerdo a

-5 (5 () )
- eMPN ()
= 2T oMy N (-3p)
= ig}j <22/I>4N, (3.40)
luego la entropia queda
S — (U~ P
4 4
{5 %) - [P () 1)
4
~o{5 () M55+ sl
4
-o{% (%) v[is]}
S ig;(ZM) 224)31\1 (3.41)

Por lo tanto, segin la ecuacién (1.122) para la temperatura Hawking, se tiene que al comparar
con las ecuaciones de la termodinamica de agujeros negros (3.4), el parametro de corte esta dado
por

NG

=~ 720mM

(3.42)
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Capitulo 4

La dindmica de los Black Shells

Para realizar la discusion del Black Shell se seguira el enfoque proporcionado por Israel [48] y
Poisson [11], en los cuales se lo considera como una hipersuperficie que modela el colapso de
Snyder-Oppenheimer, a partir del enlace de dos campos frontera, interno y externo, en el colapso
gravitacional de una estrella respecto al campo exterior vacio de Schwarzschild. Este proceso puede
asemejarse a una nube de polvo que se contrae desde infinito hasta su radio gravitacional, presenta
una métrica regular y sus lineas de flujo son geodésicas.

Se dice que una hipersuperficie sera ortogonal si toda congruencialde geodésicas es ortogonal, en
todo punto a una familia de hipersuperficies como de espacio, esto es, segiin se aprecia en la figura
(4.1).

Ademas si el cuadrivector u® es proporcional a la normal n”, exterior a la hipersuperficie dirigida

hacia el futuro; entonces, ésta se supone queda dada por un conjunto de ecuaciones de la forma

d(x") =c¢, (4.1)

en donde ¢, es una constante que especifica cada una de las correspondientes hipersuperficies y a
su vez indica la proporcionalidad entre la normal y la derivada covariante de éstas, es decir

u* = —uV,®, (4.2)

asi como la condicién de normalizacién u*u, = —1, cuando la hipersuperficie es como de espacio.

El campo vectorial {* serad normal a la hipersuperficie ¥ si es ortogonal a todos sus vectores en su
espacio tangente T,X., el cual es un subespacio del espacio tangente de una variedad diferencible
M, esto es

1Se denomina congruencia geodésica a un sistema de geodésicas que no interactan, cuya ecuacién de evolucién
se denomina ecuacién de Raychaudhuri que involucra los tensores de cortante o®f, de rotacién w*f y de Ricci Rup
y estd dada por:

do 1.,
== —59 — a“ﬂtr,xﬂ + w"‘ﬁwaﬁ - R,X/gu"‘uﬁ

57
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14! V3

14

Figura 4.1: Familias de hipersuperficies ortogonales a una congruencia de geodésicas como de tiempo.
Tomado de [11]

or = g"v,®. (4.3)

En el caso en el cual {# sea un vector como de tiempo, su hipersuperficie asociada se denomina
como de espacio y viceversa. Si el vector es nulo, ésta también lo es. De manera tal que el vector
normal unitario exterior viene dado por

K eV, P
Mp =+ : 72 = T oy B2 (4.4)
[#<d 8"V, PV, D|
en donde se cumple que
e iy — —1, Si X es como de espacio, (4.5)
- “7 141, SiX escomode tiempo. '

La obtencion de la métrica intrinseca a una hipersuperficie X, surge a través de determinar des-

plazamientos en ésta, los cuales quedan determinados en funcién de las ecuaciones paramétricas

. o . .
x* = x*(y") y los correspondientes vectores tangentes e = % a las curvas contenidas alli y por

lo tanto son ortogonales a sus vectores normales. Dicho desplazamientos estan dados por

dsz‘Z = gal;dx”‘dxﬁ

ox* .\ [oxP
o))

ox*axP\ ..,
= (g o o

dsz‘Z = habdy”dyb, (4.6)
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siendo N, la métrica inducida o primera forma fundamental.

Con el propédsito de extender el calculo vectorial a variedades e hipersuperficies se describe el
elemento de superficie a partir del determinante i = Det|h,,|, el cual es un elemento de volumen
invariante? sobre ¥, que esta dado por

dz. = |n|Y%d%. (4.7)

Ahora, al considerar un campo tensorial y la derivada covariante, respecto a la conexién compatible
con la métrica g,5 y a la métrica inducida, de manera que, por ejemplo para un campo vectorial
A, se tendria

Aa\b = VﬁA“egef
= Vp(Auet) — AuVp(et)el
= VﬁAaef - Vﬁe,wAce?

0A, oxP
Agp = Agp — Teap A° (4.8)

siendo I3 la conexién métrica compatible con la métrica inducida® y corresponde a las componentes
tangenciales del vector VﬁA“ef. Ademas al subir el indice covariante, empleando el tensor métrico
mixto, se tiene que la componente normal de éste es

V,;A“ef = g;‘[VﬁA”egef
= (en"ny +h™egen,)VpAle,
= s(nyvﬁA”ef)n"‘ + h" (VﬁAyeﬁlef)eg
= —s(nyvﬁA”eg)n“ +h" Aypen
= A"eq — sA“(Vﬁnyegeg)n"‘
VﬁAgef = A”‘beg‘ —eA"Kypn”, (4.9)

2Al combinarlo con la normal exterior se genera el vector d¥, = en,dX dirigido en la direccién de maximo
incremento del campo ®.
3rcab = %(vbhca + vuhcb - vchgb)
4La descomposicién de la métrica inversa g”‘/5 en sus componentes tangencial y normal, en términos de la métrica
inducida h? tiene la forma:
%= = en*nf + h“be;’,‘e’s
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Figura 4.2: Esquema de un espacio-tiempo unido por una frontera coman. Tomado de [11]

en donde el término K, = Vﬁnaeg‘ef, se denomina curvatura extrinseca o segunda forma fun-
damental y corresponde a un tensor de segundo rango simétrico. Ademas si el vector A% es
reeemplazado en la ecuacién (4.9) por €5, entonces

Vi (eg) 65 =T{er —eKgpn®, (4.10)

se denominan ecuaciones de Gauss-Weingarten y dan cuenta de los aspectos intrinsecos y extrin-
secos de la hipersuperficie X.

Si se asume una hipersuperficie ¥ que divide el espacio-tiempo en dos regiones ¥+ y ¥, como
se muestra en la figura (4.2), de manera que las métricas g;tﬁ estan dadas en términos de los
sistemas coordenados x*, es necesario obtener las condiciones para las cuales éstas dos regiones
se junten suavemente en X y a su vez dichas métricas sean validas en las ecuaciones de campo de
Einstein.

Esta situacion lleva a las dos condiciones de juntura, que hacen referencia a que la métrica
inducida a ambos lados de la hipersuperficie debe ser la misma, y la segunda, establece que
la curvatura extrinseca lo debe ser también en ambos lados. Esto presupone la idea de que siempre
es posible dotar a los dos lados de la hipersuperficie del mismo sistema coordenado y” y unas
normales exteriores n* desde los #*. También es importante sefialar que la discontinuidad entre
las cantidades tensoriales que yacen en X, son el reflejo de su salto a través de ésta. Asi que se
requiere un enfoque en el sentido distribucional de aquéllas y la notacién

[A] = A(P )| =AY )]s (4.11)

Es asi que por ejemplo la métrica distribucional estara dada por

8up = O(1)g5 + O(—1)8,5 (4.12)
en donde se ha hecho uso de la distribucién paso unitario de Heaviside®para tener en cuenta la
discontinuidad. Asi que al tomar la derivada de (4.12) e imponer la condicién de que la métrica

5Esta distribucién esta dada por:

o(l) = +1, S!l>0,
0, Sil<0

y posee las propiedades:

o' =e(), ewme(-n=0, 4 @©n)=s0

ademas se esta considerando [ la distancia propia o el tiempo propio a lo largo de una geodésica.
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es continua a través de X

0= [gup]= [gap]eiel = [gupelel] = [Itap)

se tiene que:®

Vy (8ap) = OV, (8;55) +O(-)V, (8@) +ed(1) [gap] ny-
(4.13)

Lo que muestra que la condicién necesaria es que la métrica inducida sea igual en #*, es decir

[hap] = | —hap 5= 0, (4.14)

que es la primera condicién de juntura en el formalismo de Darmois-Israel.

Para la segunda condicién de juntura’ se hace necesario obtener los simbolos de Christoffel y
el tensor de Riemann, el tensor de Ricci y el escalar de Ricci, como derivadas de la métrica y
su sentido distribucional, asi como las correspondientes ecuaciones de Einstein, y por lo tanto el
tensor esfuerzo energia T,g que presenta una discontinuidad en la superficie; la cual esta asociada
a una capa delgada de materia correspondiente al black shell, pues aquél es obtenido a partir del
tensor de energia superficial el cual es simétrico. De manera tal que

€

S = — ([Kab] K] hab>. (4.15)

Para que exista suavidad a través de X, se requiere que la curvatura extrinseca sea la misma a
ambos lados y a su vez depende de que el tensor de Riemann no sea singular en esta, de modo
que

T*F| = 6(1)S™eteb. (4.16)

A partir de consideraciones que involucran el colapso gravitacional de una estrella, asumiéndola
como una esfera de materia sin presiéon, Oppenheimer y Snyder resolvieron satisfactoriamente
las ecuaciones de campo de Einstein para las regiones interna y externa, correspondientes con las
métricas de Friedmann-Robertson-Walker (FRW) en ¥~ y Schwarzschild #'* en respectivamente,
como puede verse en la figura (4.3), ademas aplicando las condiciones de juntura antedichas en
la superficie de la estrella.

SEl ultimo término debe anularse dado que Sap €s proporcional a (1) en la interfaz y dado que 5(1)@(!) no
esta definido, este término presentaria una singularidad en £
"Esta condicién pretende evitar una posible singularidad de curvatura en X.
8Cuya expresion es:
S — gyt

y siendo ¢ la densidad superficial.
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¥+ : Schwarzschild

Figura 4.3: El espacio-tiempo en el colapso gravitacional de Oppenheimer-Snyder. Tomado de [11]

De acuerdo a [49], esta solucién considera un espacio R X X% asociado a una (3) variedad ma-
ximalmente simétrica cuya métrica espacio-temporal con t es una coordenada como de tiempo,
R(t) un factor de escala y do? la métrica sobre ¥, entonces dicha métrica esta dada por

ds* = —dt* + R*(t)do?
= —dt* + R*(t)y;j(u)du'du/ (4.17)

con las u; siendo coordenadas coméviles, para las cuales el tri-tensor® de Riemann esta dado por

Rijt| (5= k('Yik'le - %‘l’ij) (4.18)

en donde k = %R‘(a)' depende del escalar de Ricci R‘(3) de manera que el tri-tensor de Ricci en
este esquema seria

de manera tal que para un espacio esféricamente simétrico, la métrica espacial a partir de (4.17),
posee la estructura

ds? = —dt* + R*(t)y;; (u)du'du/
= —df? + R(t) (2P + 74 0?)
ds? = —di? + R(t) (XD 1 46> + sen?(0)dg?) (4.20)

De manera tal que las componentes del tri-tensor de Ricci serian entonces

)
)

9Esto hace referencia al tensor de Riemann de la variedad tridimensional y no del espacio-tiempo.
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2
Ryp = %al,B
Ry = e 2P (781ﬁ — 1)+1

Ry = |e 2P (7018 — 1)+1|sen?(6), (4.21)

de manera que por la ecuacién (4.19), se tiene que

B=—3In(1—kr). (4.22)
La métrica de la tri-superficie X sera
dr?
2= PdO>. 4.2
do T +7°dQ) (4.23)

Dado que se piensa en un espacio cerrado, la curvatura escalar k = +1.1° Y al realizar la sustitucién
por una nueva coordenada radial

dy = —2 4.4
Y= Ao (4:24)

se tiene que

do? = dx + sen®(x)dQ)?, (4.25)

de manera que la métrica de (FRW) (4.20) posee la forma

2 _ 2 p2 r 52 10)2
ds® = —d* + R (t)[l_kﬁ—i—r dQ}
ar
_ 2 2 210)?
= —dt*+a (t)[l_w2 +r dﬂ}
ds? = —dt2 + a%(7) (dx2+sen2(x)d02> (4.26)

10En virtud de la curvatura k, puede ser integrada la ecuacién
dr
dx = =
V1—kr

llevando a las soluciones:

sen(x), Sik=+41 espacio cerrado,
X, Si k=0 espacio plano,

senh(x), Sik= —1 espacio abierto,
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en donde se han hecho las convenciones a(t) = R(t)/Rg, r = Ro7 y x = k/R3 y se emplea el
tiempo propio T. A partir de la métrica (FRW), los simbolos de Christoffel que no se hacen cero
estan dados por

r(l)l 1 —m:ch 1"%1 1 —K:ch

9, = aar? Y, = aar? sen®(6)

r(1)1 = I%z 1%3 = g

Il =—r(1—xr?) Il = —r(1—xr?)sen?(0)

I =T = %

I3, = —sen(8) cos(f) I3, = cot(f). (4.27)

Desde luego que las componentes del tensor de Ricci distintas de cero son

Ry = —32
a
Ry — ai + 24> + 2«
1 — «r2
Rop = r*(aii + 24> + 2x)
Rs3 = r*(aid + 24* + 2k) sen?(6), (4.28)

y el escalar de Ricci, queda dado por

N .\ 2
il a K
R=6|- - 1. 4.29
i (6) (2
A partir de las ecuaciones de campo de Einstein sin constante cosmolégica A = 0, y con unidades
naturales G = ¢ = 1, y el escalar de Ricci R = —(87G)T, se tiene que
8tG
G;u/ = 7C4 Tyv

1 871G
Ry = SR8 + A = — T

1
RV’V = 87TT]41/ + ERgVV

1
Ryy = 81Ty — ETgW

1
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Respecto al tensor momento energia para un fluido perfecto, el cual es isotrépico y se considera
en reposo en coordenada coméviles, de manera que su cuadrivelocidad

u* = (1,0,0,0), (4.31)

y su tensor momento energia esta dado por

T}‘V = (P + p)uﬂuv + Pg;w
T} = diag(—p, p, p, p), (4.32)

y su traza

T=T, =—p+3p. (4.33)

A partir de las ecuaciones (4.28), (4.32) y (4.33) al sustituir en la ecuacién (4.30), se tiene que
para la componente 00

1
R‘uv = 87T<Tw/ — ZTgyl/>
1
Roo = 87T<T00 — ZTg00>
a

—3; =4m(p +3p). (4.34)

Y las ecuaciones para uv = ij, se tiene que

. .\ 2
i a K
2 +2 <a) —1—2;2 =4m(p — p). (4.35)

Sustituyendo (4.34) en (4.35) y dado que debido a la isotropia del espacio, solamente hay una
ecuacion distinta para pv = ij; entonces, se tiene que

a 2 87T K

y también

i 4
_=——(p+3p) (4.37)
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que son la primera y segunda ecuaciones de Friedmann-Robertson-Walker, dadas por (4.36) y
(4.37), respectivamente.

Bajo la condicién de espacio cerrado k¥ = 1, entonces la ecuacién (4.36) corresponde a

2 _st 1
a2 3p a?
a2 1 8r

A
> +1 8w
2 3f
2 81 5
ac+1= = (4.38)

En ausencia de presion, la densidad de masa del shell corresponde a

3
pa3 =cte = S—Haméx. (4.39)

Entonces, las ecuaciones paramétricas'! de la solucién de la ecuacién (4.38) tienen la forma

a(n) = 2amax (1 + cos(7))
T(17) = Samax (17 + sen(n)). (4.40)

Para un observador co-mévil a la superficie de la estrella colapsante, la cual se encuentra en x = xo.
Las coordenadas son r = R(T) y t = T(7) y al escoger las nuevas coordenadas y* = (7,6, ¢)
sobre ésta y en virtud de la métrica obtenida en (4.26), entonces la métrica inducida sobre X,
vista desde ¥~ corresponde a un espacio plano de Minkowski

ds: = —dt* + a*(7) sen?(x0)dO>%. (4.41)
Si se hace la identificacién oM
F=1-2",
R

la métrica vista desde ¥, la cual es la métrica de Schwarzschild, esta dada por

dsg, = —(FT*> — F'R?)d* + R*(1)dQ>. (4.42)

Debido a que por las condiciones de juntura las métricas inducidas a ambos lados de la hipersu-
perficie son iguales, entonces al comparar los coeficientes de

1 Estas expresiones muestran el hecho de que el colapso inicia cuando 7 = 0y termina cuando = 7.
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dt? y dO¥ en las ecuaciones (4.41) y (4.42), se deben tener las condiciones

R(7) = a(7) sen(xo)
1=FT? - F 1R (4.43)

A partir de la la segunda ecuacion en (4.43), se tiene que

1=FT? - F1R?
FT? =1+ F1R?

RZ
FT? =14+ —
+ F
F?T? = F + R?
= VR2+F = B(R,R). (4.44)
Teniendo en cuenta la relacién de ortogonalidad n,u® = 0 y de normalizacién n,n* = —1 para

la cuadrivelocidad, en términos de las coordenadas x* de la variedad; entonces la solucién interior
del shell, la cual corresponde a un espacio-tiempo plano, expresa que

u* = (T(t),R(7),0,0)
« = (=R(1),T(7),0,0). (4.45)

Similarmente para la solucién externa al shell, que corresponde a un espacio-tiempo de Schwarzs-
child, se tiene que

=
I

wh =t = 2 () = 2 (T(0), R(1),0,9)
wt = ((x),R(r),0,0)
nt = (—=R(t),T(1),0,0). (4.46)

En la regiones ¥~ y ¥ T, se tiene que la curvatura extrinseca, o segunda forma fundamental, de

acuerdo K, = V'Bnaefz‘ef y la ecuacién (4.44) puede ser obtenida a partir de los vectores normales
obtenidos en (4.45) y (4.46), de manera que en ¥~

Ky = Vengege, = TR oo = Voligese 5) = TR sen?(6)
e B B
geeKee = K R ngzp(p =K, o = - R

Kip = Vingefer = 0. (4.47)
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De la misma forma para la regién ¥, se tiene que

Kjy = Vengele) = TRF Kf, = Vongelel = TR sen? ()
66 _ o B _ o _ Bt
K =K = §MKpp =K' =%
K = Venee el = —F'T
§UKL = 5% (4.48)

Los coeficientes de la métrica inducida h% = 1, para la curvatura extrinseca inducida y el escalar
de Ricci inducido esta dado por

[K] = habKub = Vang
= (K" —K_)ht
= (KFT =K )+ (K =K + (K, " = K, 7)
K] = [KT] + [K§] + [KJ). (4.49)

Por lo tanto la ecuacién (4.15)

S = g ([ = (K1)
— 5180 = — g [81Kin] ~ [KIghhr

Suv = g (1KE) — K ). (4.50)

De acuerdo a (4.49) y los valores para las respectivas curvaturas extrinsecas, dados por (4.47) y
(4.48)

o (1 = [+ (k8] + (91
_ _é(—z) <1<;;9 - K¢¢)

ST=— <[5R+ - ﬂﬁ) (4.51)

y a partir del tensor esfuerzo-energia para un shell de materia sin presiéon y de la condicién de
normalizacién de cuadrivectores,

St =

b

S = cuub = ogtu"u® = §¢ = 0,

entonces, la ecuacién (4.51) toma la forma
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= <ﬁR+ _ /3R> S (452)

Similarmente a partir de la (4.49)

[K] = h"K,p = Vg
= (K" —K_)K} (4.53)

y de la ecuacién (4.50), el tensor esfuerzo-energia para la componente angular y dada la condicién
de ortogonalidad, que ngu’ = 0 de la métrica

58 = — g (IK6] = (k8] + 8]+ (K] )

__ < +6 —¢
_ SH(K K¢>

S§ = —8671(—[31.; - 'B;;%—'L;_):(meug =0(0)=0
B B B,
R R R
R = (B- — B+)R. (4.54)

Si se consideran las ecuaciones (4.47) y (4.48) y asumiendo que K;e =0, de manera que f_ =
entonces,

Br= (- +5), (4.55)

de manera que la ecuacién (4.54), queda

RB+ = (B- —B+)R
d d
RE(—/L +B+) = (B+ — /37)%
—Rd(py —p-) = (B+ —B-)dR. (4.56)

La ecuacién (4.56) es una EDO separable, por lo tanto

d[(B+ —B-)] dR
) =%
In(B+ — [3_) =—-InR+InC
in(p.. — p-) =1n( )
n(Bi—p-) — ,(Ing)
(5+ -p-)=C (4.57)
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A partir de la ecuacién (4.52) con € = 1y siendo ¢ la densidad superficial del shell esférico, se
tiene que

C=R(p- —Ppy) =4mo

por lo tanto la masa p = C de éste estara dada por

__H
77 mR?
i = 4o R?
p=R(p-—pB+)
_ K
Pr=P-—%
_ B2
(B+)* = (B-— %)
2
(B+)2 = (B —2(8-) (&) + (%) (4.58)

Ahora, teniendo en cuenta las ecuaciones (4.47) y (4.48), la ecuacién (4.58), lleva a que

2
(B+)? = (B 28+ L5
5 _ 7\ 22U 5211/2 W
K4 F=(1+R) LR 5
2 . 2
1-F=Fa+ry2- L
2M 2 . 2
TR

2MR + p = 2uR(1 + R*)!/?
172 _ 2MR +pi?

(1+R?) 2R
()
Z—Ij = \/(ﬂ + ;:;)2—1, (4.59)
en donde el parametro @ = M se corresponde con la energias potencial gravitacional y cinética del

shell. Bajo la condicién de que la ecuacidn (4.59) posea raices reales, se considera que la cantidad
bajo la raiz debe ser positiva. Esto lleva a que para p = M, cuando R = Rpmax
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2
HY) s
<a+2aR> >1

2
20°R + >1
2aR —
2a°R —2aR > —pu

_ 1
R= 2a(1—a)
M

Rimax = 2a(1—a)

(4.60)

La ecuacién (4.60) al ser sustiuida en (1.133) lleva a que

mis} = m [“ar [ (—dw’)%

2(M—w) w 1
= —Im/ dr/ dw'’ (4.61)
2 Jo

M o 2
<a—|—2aR> -1

Y a partir de lo que se obtiene una tasa de emisién del orden de 103" afios.
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Conclusiones

A pesar que histéricamente la controversia sobre la existencia de tunelamiento cuantico en el
fenémeno de radiacion Hawking se ha centrado en la basqueda de evidencias teéricas que soporten
la suposicién de la existencia de un potencial, el cual no se especifica en el modelo. Intentos de
vislumbrar este esquema se cuentan entre otros a [50], y [3]. En sus analisis se considera la
existencia de una accién cuya parte imaginaria es la responsable de la anulacién de la parte
imaginaria asociada a la variable temporal en el tiempo imaginario [2]. Esto llevaria a que el efecto
tanel, en el cual existe una fuerte dependencia de la componente imaginaria de la accién, como
se mostré en la ecuacién (A.18) y por lo tanto segin la aproximacion WKB, como se muestra
en el capitulo 2 la requiere. Por lo tanto se hace necesario ubicar la barrera de potencial que se
encargue de definir la zona de tunelamiento clasicamente prohibida para un potencial prefijado,
requeriria a su vez establecer la naturaleza fisica de éste.

Intentos mediante la aplicacion del potencial de tunelamiento nuclear de Gamow, para el decai-
miento & que corresponde a la superposicion de potenciales de pozo cuadrado y coulombiano,
llevé a una ecuacién para el coeficiente de transmisién a través de la barrera de potencial que
indicaban tiempos de decaimiento del orden de 10%° afios, lo cual es mayor que la edad del uni-
verso. Cuestiones de indole similar surgieron al refinar el potencial con el dado en la correccién
de barrera parabdlica cuyo coeficiente de transmision dado en la ecuacién (2.10) y (2.11); en los
que se hacen ademas correciones por momento angular del potencial o en el caso de la ecuacion
(2.15) en la que se considera la curvatura de la barrera y se intenté correlacionar con la curvatura
de agujero negro x dada por la temperatura de Hawking en la ecuacién (1.121) para un agujero
negro de Schwarzschild de M = 1,44M), segiin establece el limite de Chandrasekhar.

Otra posibilidad explorada de encontrar un espectro planckiano para la radiacién de Hawking
correspondié a asumir el vacio en las inmediaciones de un agujero negro como formado por la
presencia de un campo electromagnético débilmente acoplado a la gravedad, bajo la premisa de
mediante el fenémeno de conversidn interna de estructura nuclear, evidenciar la tasa de emision
de particulas &« como se expresé en la ecuacién (2.34), bajo la suposicién de los antedichos po-
tenciales. En este esquema se encontraron divergencias infinitas en la probabilidad de emisién
que comprueban que este mecanismo tampoco es el apropiado para dirimir la discusion acerca de
la existencia de tunelamiento similar a los de indole nuclear. Esto no resta interés a la eventual
basqueda, quiza en potenciales de tipo atémico.

La situacién ademas pone de manifiesto la necesidad de evidenciar en un proceso de formacién
de agujero negro cémo a partir de un shell desprendido de la estrella colapsante, cuya ecuacion
de movimiento quedd expresada en (4.59) y en aras de definir el fenémeno de tunelamiento fue
comparada con la ecuacién para las geodésicas de onda saliente dadas en (1.126) y que fue
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contrastada con en el instante de formacién del horizonte de eventos el contenido de materia que
lo cruza puede estar a una distancia finita antes de la singularidad o correlacionado con los modos
cuanticos del vacio en el horizonte. Para este fin se intentd vincular el parametro de corte de los
campos cuanticos para evitar las divergencias infrarojas asumiendo que el parametro h, dado por
la ecuacién (3.42) con alguna dimensién fisica de las barreras de potencial de indole nuclear, pero
esto llevé a divergencias mayores que violarian las cotas entrépicas dadas en la seccién (3.1).

Para tal fin se evidencia la estrategia de reconocer que los campos cuanticos se hallen restringidos
a una zona particular en las vecindades del agujero negro, segiin predice el principio holografico,
no sélo evita la necesidad de buscar un "bulk" de agujero negro, sino solamente la atencién debe
ser dispuesta al analisis de las correlaciones cuanticas entre la radiacién remanente y los campos
de materia presentes. Esto aunque lleva a fuertes divergencias en la energia, permite definir una
teoria cuantica de campos a temperatura finita, generalmente muy alta, que hace que los métodos
semiclasicos de cuantizaciéon no aporten un panorama general acerca de la localizacién y caracter
cuantico de los modos alli presentes, segiin se presenta en el capitulo 3. Para tal fin se hace
necesario visualizar una posible estructura matematica que libere el formalismo de las divergencias
por cortes ultravioletas en los campos. En esa direccion la expresion del principio holografico como
un requerimiento de analisis del espacio a distancias muy cercanas a la escala de Planck, permitiria
hacer uso de las cotas holograficas sobre la entropia, con el fin de advertir las localizacién de los
modos y su configuraciéon termodinamica, asi como las caracteristicas de los miltiples vacios
presentes en las vecindades del agujero negro.

En este sentido este principio puede ser un candidato a mostrar las necesidades en la teoria
que especifiquen la posibilidad de eliminar las divergencias, en la energia. Una posibilidad de
esta naturaleza podria ser el modelo de plasma de quarks y gluones que posee caracteristicas
holograficas y permite considerar las vecindades de agujero negro como un fluido viscoso de alta
temperatura, sin la obligatoriedad de que el horizonte de eventos funja como una barrera de
potencial a ser tunelada por las particulas.




Trabajo futuro

= Implementar el proceso de tunelamiento cuantico a través de horizontes de eventos con-
siderando potenciales diferentes a los de decaimiento alfa y conversién interna, buscando
primordialmente en fenémenos de tunelamiento atémico.

= Aplicar una modelizacién de la region cercana al horizonte de eventos como un plasma de
quarks y gluones, como una hipétesis surgida del principio holografico en este esquema se
consideraria el Black Shell como el objeto cosmoldgico restringido sélo a su superficie sin
necesidad de considerar el interior. Esta determinacién no implicaria necesariamente asumir
una estructura en el bulk de agujero negro, como si lo asume la constituciéon nuclear, en
la que los nucleones se encuentran confinados en un volumen finito interactuante con una
estructura interdependiente con los alrededores mediante la existencia de un potencial.
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Appendix A

Apéndice A La aproximacion WKB

El método WKB'surge de la necesidad de estudiar la mecanica cuantica de problemas reales en
los cuales el potencial V tiene una estructura que hace que no sea posible determinar la solucién
exacta de la ecuacién de Schrédinger desde una perspectiva analitica sino que se hace necesario
buscar una solucién aproximada.

Al considerar la ecuacién de Schrodinger estacionaria para la amplitud ¥ sin tener en cuenta el
factor temporal e~ '¢*

hZ

2 _
~ oV ¥ VY = Ey, (A.1)

al suponer una solucién de la estructura eikonal de la forma

¢ = eﬁsl (A2)

asumiendo que la funcién S(x) posee dimensiones de accién. Y al aplicar el operador laplaciano a
la funcién de onda 2

1Es una solucién de la ecuacién de onda clasica estacionaria de la forma eS®) | donde S es el denominado

eikonal. El método fue desarrollado en 1926 por G. Wentzel, H. A. Kramers y L. Brillouin.
2Que para un campo escalar f definicién en coordenadas cartesianas corresponde a la divergencia del gradiente

V2f=V-(Vf),
ademas de la identidad vectorial para la divergencia del producto de un campo escalar f y un campo vectorial A

V- (fA) = (Vf)-A+f(V-A)
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V= |v(e)]
=V [;(eés)vs]

i

-]

— 2|08+ (V- (75

= % [;(WS) -(VS) + vaS] (A-3)
Vi = —;(vsw + %(VZS)IIJ (A.4)

al sustituir (A.4) en (A.1), se tiene que

o,
—o VoW VY =Ep

o S
i (VS = 53 (V3S) +V =E, (A.5)

se requiere asumir que el sistema se encuentre en un estado en el que se cumpla la condicién

h|V?s)? < (VS)?, (A.6)
por lo tanto la ecuacién (A.5) queda

L vsryv—E (A7)

2M - '

La expresion (A.7) es una ecuacién de Hamilton-Jacobi para la accién S(x), en la cual VS
corresponde al momento clasico de la particula.3

De manera que la aproximacién semiclasica consiste en que de cumplirse la condicién (A.6), los
problemas cuanticos son susceptibles de ser abordados encontrando correcciones cuanticas a la
accion clasica y emplear esta accion corregida para obtener la funcién de onda.

3Dado que la corriente de particulas esta dada por
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V(x)
I ﬁ I 7 /E/ ﬁ
7 7
g. %
758 7z
Ny )

Figura A.1: Esquema de las regiones I, Il y III del potencial donde la aproximacién WKB es aplicable.
Tomado de [16]

PV =j
wwv—m@w —y W)
_ih <V¢*_Vzp)
“ml o~

y si se considera una funcién de onda de la forma ¢ = Re'S, siendo R y S dos funciones de valor real, entonces se
cumple que la densidad de particulas p = i* = (Re'®)(Re™*) = R?, de manera que la magnitud de la funcién
de onda serd R = ,/p de manera que su gradiente

Vi = V(Re'®)
= (VR)e'S + RV (&%)
= (VR)e'S +iRe™*(VS)
9= (TR 1wy

por lo tanto la velocidad tiene la forma

v ﬂ(w* _ @)
oM\ gty
i (VTR) —z(VS))lp* (VTR) +1(VS)>1/J
- m[ P ¥ }
_ % [@ —ivS— @ —i(VS)}
— i -2i(VS)
v = EVS,
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Al efectuar una expansion en series de potencias de 71 para S en la ecuacién (A.5)

S(in) = i Si(ih)* = So + Sy (ih) + Sy (ih)? + S5 (ih)* + - - -,

= So+ihS; — 1*Sy — k%S5 + - - -

S(ih) = So + ihSy — W*Sy — inS3 + - - - (A.8)

en cuyo caso se supone que las funciones S; no dependen de .

Al calcular el gradiente de S, al ser un operador lineal, se obtiene?

2
(VS = (VSo+ihVS) — VS, — iUy + - )

2
= (Z(ih)kvsk>

k=0
_ Ii(;)(ih) (VSy) +2]§<< (ih) kVSk> ((ih)fVSj>

= (VS0)* + (ih)* (VS1)* + (ih) (VS2)* +
+2 (i)' VSy - VSo + 2 (ih) + 2 (ih)* VS, - VSg + - - -
+2 (ih)2 VS, - (ih) VS1 + 2 (ih)> VS5 - (i) VSy + - - -
+2 (i) VSs - (ih)* VSy + 2 (ih)* VSy - (ih)* VSy + - - -
(VS)? = (VSo)?+2ihVSy- VS — 21>V S - VS, — 1 (VS1)2.

El laplaciano de S corresponde a

V23S = Y (in)* Vs,
k=0
= V2S)+ihV2S; — *V2S, + - - -

Al sustituir las expresiones para el gradiente y el laplaciano de S en la ecuacién (A.5) queda

es decir que

h
p=Mv= MMVS =hVS.

Es de notar que al sustituir la expresién para el momento en la ecuacién (A.7) se retoma nuevamente la expresion
clasica para la energia de un sistema conservativo.
4Donde se ha hecho empleo identidad

k=0 j<i
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if

1 2 2 _
(V8P =53 (V2S) +V =E
1
i [(vso)2 +2ihV Sy - VS — 202V Sy - VSy — h*(VS1)* + - - -
- % [vzso + V28 — VS, + -+ |+V —E =0, (A.9)

de modo tal que al comparar los coeficientes de cada potencia de 7, se llega a un sistema de
ecuaciones diferenciales para cada una de las Sy

(VSo)? _
M +V=E
VSy- VS — %vzso =0
2V Sy - VS, — (VS1)* + V25, =0, (A.10)

al comparar la primera de las ecuaciones en (A.10) con la ecuacién de Hamilton-Jacobi dada en
(A.7), se verifica que

p = VSo. (A.11)

Al sustituir (A.10) en la segunda ecuacién del sistema (A.9) se obtiene la expresion para Sj.
Con estas expresiones es posible determinar S, a partir de la tercera ecuacion. Asi iterativamente
en consecuencia es posible determinar los demas términos Ss, Sy, etcétera. Para las aplicaciones
convencionales es suficiente resolver las dos primeras ecuaciones del sistema. Si se tiene en cuenta
la expresion para el momento clasico de la particula

p=1/2M(E-V),

entonces, esta aproximacién semiclasica funcionaria si se cumple

h2
LIl (A12)

Al estudiar el caso unidimensional para la expresién del momento, respecto a su derivada espacial

dj_ m dv._ mF

dx — \2(E-V)dx — dx’

lo cual al sustituir en la ecuacién (A.12), se tiene que
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hmF

— K1,
p3

(A.13)

dicha expresion sélo se cumple en las regiones en que la fuerza clasica F es pequefia y el momento
p es grande, de manera que los efectos cuanticos son apreciables en las regiones en que el potencial
V varia abruptamente, o en las zonas cercanas a los puntos clasicos de retorno, en los que se da el
caso de que V = E, en los cuales las particulas clasicas se detienen y no pueden pasar a regiones
en las que V > E, en las que no es valida la aproximacion semiclasica.

Continuando con el caso unidimensional a lo largo del eje x, entonces las dos primeras ecuaciones
de la aproximacion WKB dadas por (A.10) quedan al emplear (A.11) en la forma

y también

1
vso-vsl—ivzs() = 0

1
VSy- VS — EVZSO =0

2
0 (060) = 5. (50D
d

La resolucién de S; en términos de Sy se efectiia de acuerdo a las sustituciones

u= dx 7

d(So(x)) du

GETEIPN

(A.14)

(A.15)

(A.16)
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por lo tanto

£ ((50))
/(;{(SQ) dx = ;/‘Edi(sso()))dx

1 rdu
=g
S = ‘mful+c
L=
1 d

En el caso en el cual el momentum de la particula corresponda a py, entonces, por la ecuacién
(A.11)

p = VSy = 4L(So) = px

luego

Si = In|\yp| :—Mﬁ‘.

De manera que al tomar los términos lineales en % y de primer orden, que corresponden a la
solucién clasica mas la primera correccién cuantica en la aproximacién semiclasica, la funcion de
onda esta dada por

p = ef (S0+n81) _ ofiso=si o[5S arin(J5)] (A.17)
es decir

P = ﬁei%f"iﬂ dx (A.18)
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Appendix B

Apéndice B Tunelamiento en pozos
de potencial

De acuerdo a [16], en el caso estacionario, si se considera a partir de la ecuacién de onda’ para la
amplitud de probabilidad 1 que describa el comportamiento de un ensamble de particulas cuanticas
en la forma de una onda estacionaria monocromatica de frecuencia angular w, puede escribirse
como

Pp(rt) = e o(r), (B.1)

que al sustituir en la ecuacién de onda lleva a que

2
w
472
Vz(;H—?qo:O. (B.2)
Si se aplica la condicién de cuantizacién de de Broglie A = ﬁ = %, entonces la ecuacién (B.2)
toma la forma
Vip+ P, 0 (B.3)
@ . ¢ =0. :

Dado que se ha considerado la condicién idealizada de monocromaticidad, se considera que el
2
ensamble de electrones posee la misma energia E = 7 + V(r)hiw, entonces el momento clasico,

1La ecuacién de onda es una ecuacién diferencial, del tipo hiperbélico, en derivadas parciales, lineal de segundo
orden que describe la propagacién de una variedad de ondas como las ondas de sonido, las ondas de luz y tiene la
forma:

1
Vip— S =0,
v2¢
en donde v corresponde a la velocidad de propagacién de la onda en el medio y satisface la relacién de dispersion
v=Av = é—‘%’ siendo A la longitud de onda y v la frecuencia.
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117

5 E>0

\
plg - - - - - - -
e

E' =V, |E| |E] <V

A

Figure B.1: Pozo de potencial rectangular unidimensional. Tomado de [16].

sera p2 = 2m(E — V), luego la ecuacién estacionaria® de Schrédinger queda

2M
Vz(p%—?(E—V)(p =0. (B.4)

Si se considera el caso de un pozo de potencial unidimensional, como el mostrado en la figura
(B.1) en el cual los electrones descritos por la funcién de onda estacionaria® ¢ se encuentran
atrapados en un potencial V tal que —V < E < 0, de manera que

7

Vo 0, si x € (—oo,a/2)U(a/2,00)
] =V, si x€(—a/2,a/2)

asi que la ecuacién de Schrodinger unidimensional toma la forma

2M

i i

'+ ?(E - V)p =0,
y al definir los parametros
2M 2M 2M 2M
K =-"5E="5|E| 22?(V0—|E|)=?E/ (B.5)

2En el caso no estacionario, en el cual se considera el factor temporal en la funcién de onda, la ecuacién de
Schrédinger tiene la forma:

oy W,

3Para que la solucién sea una solucién fisicamente admisible para la ecuacion estacionaria de Schrédinger debe
cumplir que:
i. Py sus derivadas espaciales deben ser funciones continuas.
ii. 1 debe ser una funcién univaluada en todo punto.
iii. ¢ debe ser finita y de cuadrado integrable en todo punto.

iv. ¢ debe satisfacer las condiciones de frontera propias del problema.




Chapter B. Apéndice B Tunelamiento en pozos de potencial 91

entonces es posible dividir la ecuaciéon de Schrédinger en las tres regiones mostradas en la figura
(B.1) posee las soluciones

Region I. (x < —a/2)
W —g*pr =0; 1 = A1 + Bre ™™
Region Il. (—a/2 <x < a/2)
W+ K =0; P11 = Azsen(qx) + Bacos(gx) (B.6)
Region llI. (x > a/2)
Wi — i = 0; Wi = Azel™ + Bze ™,

Para que se satisfagan las condiciones necesarias para que 1* sea solucién acotada en las regiones
Iy III se debe cumplir que B; = A3 = 0, ademas de las condiciones de continuidad de la funcién
de onda y su derivada®,

p1(—a/2) = ¢ (—a/2) $rr(a/2) = ¥i(a/2)
Pi(—a/2) = ¢y (—a/2) P (a/2) = ¢i(al/2),

entonces, las expresiones (B.6) llevan al sistema de ecuaciones

Ae 1k = Bycos(5q) —Azsen(4q)
Bse 2k = Bycos(5q)+Azsen(4q)

kAre 3k =g [Azcos(gq)Jrsten(%)}

—kBse 2k =4 [Azcos(;q) —sten(gq)} (B.7)

4Si se interpreta 1 como una amplitud de probabilidad debe cumplirse que:
p=lpP =y =9 9=l

5Que a su vez son las condiciones de continuidad sobre la densidad de particulas p vy la corriente de particulas

j = pv. Estas dos cantidades se hallan relacionadas de acuerdo a la ecuacién de continuidad g—‘; = V -j, entonces,
se cumple que al hacer uso de la ecuacién de Schrédinger dependiente del tiempo:

9P _ lP oy*

- (¢ ¢) Yot

, v —ih_y . V.,

=y ( Vot w)w(mvw —ﬁw)
7(¢*v2¢_¢v2¢*)

-ty (ww* - w*w)

1 * * _ 3
==V {m(ww -9 W)}—fv j
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De la primera y tercera ecuaciones en (B.7) se tiene que

I [AZC"S(ZQ) +B2S€”(5‘7)] =k {32005(361) —Agsen (36/)] :

y a partir de la segunda y cuarta ecuaciones se obtiene

q [Azcos(gq) —sten(gq)] =k [—Bzcos(gq) — Apsen (gq)] :

Este sistema de dos ecuaciones y dos incégnitas lleva a que al multiplicarsen los términos se
obtenga A;B, = 0. Si se asume que A, = 0, entonces al sustituir en el sistema de ecuaciones
(B.6), se obtiene 11 = Bycos(5q) y si se toma By = 0, entonces, ;; = Apsen(qx). Ademas
para el primer caso, si se considera que la constante de normalizacién es By, entonces se llega a
la condicién de cuantizacion

gsen(5q)= kcos(5q), (B.8)
lo que lleva a la ecuacién trascendente®
ytan(y) = \/y5 — v (B.9)

en donde se ha hecho uso de las sustituciones

1 [2Ma2V,

a
k= - ;o Y=54 Yo

a, 1 [2Ma?(Vy+ |E| — Vo)
2" 2

En el caso en el cual se tenga un pozo muy ancho y profundo, en cuyo caso se cumpla que yo > 1,
entonces, se tiene que los valores propios de la energia en virtud de la condicién para g dada por
la ecuacién (B.5), corresponden a

¥y=21=3 n = 2

ﬁ 2ME, = n+1 2
4\ 7 o 2

. AT <2n+1>2
E = i

2Ma? 4
h? 2
E = i (2n +1)? (B.10)

con E/, = Vp — |E|, correspondiéndose con la energia medida desde la base del pozo.

Si se realiza una modificacién al potencial considerando que en las regiones I y III existiese una
barrera de potencial finita, como puede verse en la figura (B.2) de manera que las ondas presentes
en el pozo en la region 11 son transmitidas a la region I1I, pero no a la region I. En tal situacién

6La ecuacién (B.9) es soluble por aproximacién computacional o al verificar las intersecciones de las graficas
que surgen en miltiplos impares de +7, asi por pequefio que sea el valor de yg, existe al menos una solucién. Esto
expresa el hecho de que los niveles de energia discretos dentro del pozo y por lo tanto estados ligados, sin importar
el ancho o la profundidad, siempre y cuando el potencial se anule asintéticamente en infinito.
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I I IIT

E <V

0 l L

Figure B.2: E/ escape de particulas confinadas en un potencial de barrera finita y su decaimiento expo-
nencial con el tiempo. [16].

existiran, en la interfaz entre ellas ondas reflejadas y transmitidas que no satisfaran las relaciones
clasicas R+ T = 17 entre los coeficientes de reflexion R y de transmisién T8, dado que en ésta
se tiene que E < V| la reflexion sera total, pues R =1y por lo tanto T = 0; cuando E > Vj la
reflexién es parcial, entonces, algunas particulas pueden transmitirse, pues R — 0 asi que T — 1.
Esto difiere del resultado clasico.

Si se considera el caso en el cual E < Vi y un haz de particulas incidiendo contra la barrera entre
(0,a) presentada en la figura (B.2), entonces se presentara tunelamiento de una fraccién apreciable
de ellas a través de ésta, si se considera que a la izquierda existe una pared infinitamente rigida
que impide la transmisiéon hacia la izquierda hacia x < 0. Teniendo en cuenta esto, la ecuacién
de Schrédinger para esta situacién tiene como soluciones

Pr = Aisen(kx)
l/)II — Aze_q(x_l) + BZeq(x_l)

Prrp = Ageh) 4 Bgeiklx=h) (B.11)
en donde
2 _ 2ME 2 2M(Vo —E)

7Clasicamente las particulas al llegar a un escalén de potencial se desaceleran y todas se transmiten si E < Vj,
pues se tiecneque T =0y R=1ysi E > Vj, entonces, T =1y R =0.

8Estos coeficientes surgen de la relacién entre las corrientes reflejadas y transmitidas respecto a la incidente en
la barrera, respectivamente:

R — |].ref‘ T = ‘]'tnms‘

- . 7 - . .
|]inc| |]inc|
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Por continuidad de la funcién de onda y su derivada en las interfaces x =y x =4
1 k
Ay = §A1 sen(kl) — acos(kl)

B, = %Al (sen(kl) + Scos(kl))

_1 9 1 gaf,_1q
A3—2 <1—|—k)A2+26 < I B>

1 _ q 1 q
_ ~,—qa qa
B3 = ¢ ( k)Az—I—ze <1+ k)B (B.12)

Dado que estos coeficientes son combinacién de funciones continuas, por corresponder a funciones
exponenciales y trigonométricas, que son continuas en todos los nimeros reales, se tiene que el
espectro de energia es continuo. Bajo la condicién de que las particulas escapan del pozo de
potencial de la region II a la 111, se requiere que B3 = 0, en la dltima de las ecuaciones (B.12),

entonces L . 2k
it XM ,~2a q
<tan(kl) + 6]> [1 + k+iqe } ; k+zq , (B.13)

que es una ecuacién de variable compleja con soluciones complejas para la regién I, es decir,
dentro del pozo, asi que debe ser de la forma

i
—LEt
b =1 17,
de tal manera que la densidad de particulas adentro corresponda a
_ *
= ¢y

_ <W;Et> (lﬁﬁ;m)

_ lpﬂp}ke—%Ete-‘r%E*t

— e H
_ |¢I|2€_2Hm(E)
= [prPe, (B.14)

en donde se ha definido el parametro A, dado por

2
A= —FIm(E). (B.15)
Las ecuaciones (B.14) y (B.15) evidencian que dentro del pozo la poblaciéon decrece exponen-
cialmente con el tiempo si A # 0, o lo que es equivalente, si la energia es compleja. Esto es,
correspondiente con el hecho de que, la fraccién de la poblacién que decae es independiente del
tamafio de la poblacién. Con lo que se tiene una ecuacién diferencial similar a la decaimiento

radiactivo p
?” — _Adt, (B.16)

cuya solucién es una exponencial de la forma dada por la ecuacién (B.16). Esto se da en virtud
de que la parte real de la ecuacién (B.13) cuando el pozo es rectangular, es decir, a — oo, se
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presenta un corrimiento de los niveles de energia de éste y la parte imaginaria de la correccién hace
referencia a que los estados ya no son estacionarios y se produce el decaimiento; que bien pueden
ser electrones o nicleos de Helio en el caso del decaimiento «. La constante A se corresponde con
la tasa de fuga de particulas, que a su vez esta relacionada con el coeficiente de transmisién T.
La solucién aproximada de la ecuacidn puede darse si se asume la aproximacién a — oo, entonces

e=24% — 0, con lo que la ecuacién (B.13) se reduce a
k Zq —an 2k k — 2qu
(mn(kl) q) [Hkﬂq ] q k+zq
tan(kl) + 7 = (B.17)

Ahora, dado que se busca una correccién a la energia, entonces, denominando JE la correccién
compleja a la energia y 6k, de manera que E = Eg+ 0E y k = ko + 0k, entonces, la aproximacion
a primer orden

K = Zhj\fE
2M
(ko + 5k)2 2 (Eo + 5E)
2M 2M
(ko)? 4 2(ko) (k) + (6k)* = ?Eo + ?(m
2(ko) (5K) ~ 2;4513
ok~ sE, (B.18)
I*ko
por lo tanto la aproximacion en serie de Taylor alrededor de Ey y ko, lleva a que
k = ko + 6k ~ ko + ——6E, (B.19)
hko

ademas reorganizando y al derivar la ecuacién (B.13) respecto a k, y evaluar a primer orden, se
tiene que

k k—iq 5] 2kk k—ig o240
(tan(kl) q) [1+k+zq 1= k+zq
(q tan(kl) —|—k> [k+ iq+ (k —ig)e=217] _ 2kk—iq o200
q k+iq | q k+zq
<q tan(kl) + k) [(k +iq) + (k —iq)e 21" | = (2k)(k — ig)e 21"
2 k— iq —2qa
gl sec”(kl) +1 )0k = 2k K+ig e 11, (B.20)

y al evaluar en k = kg, entonces 0k, queda
2kg (kO - Zq) equa,

ok =
(ko +19) (1 + qlsecz(kol)>

(B.21)
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al considerar la aproximacion® kgl < 1, entonces, sec(kol) ~ 1. Ademas si el potencial es bastante
grande, de manera que gl > 1, la ecuacién (B.21) queda

Sk — 2ko (ko — 1q) o240
(ko + iq) <1 + qlsecz(kol)>
Mefzqa

(ko +1iq)(q!)

2ko (ko —iq) (ko — ”7)8—2%

(ko +iq)(ql) (ko —iq)
2ky K3 — 2ikog + q2e,2qa

gl K+
= % <1 — Zk()ﬁ] l) e_zqa
gl kg + 42
2 ,—2qa
ok = %E_an — 4]{36721 (822)
ql (kg +4?)
Teniendo en cuenta la ecuacién (B.18) y (B.22) el corrimiento de la energia E = Eo + JE, entonces
ko
E=—+
0 i ok
_ T’ko 2o 20 4kZe— 21 l,
M\ ql LG + %)
203 .. AWky K
— —2qa __ ; 0 —2qa B.2
OB = N ¢ MR+t (B.23)
de modo que
E =Ey+JE
£ n2k3 zrszge,zqa B i4h2k0 K o
2M Mgl Ml k% + ¢?
nky 20k .. Aky K3
= — —2qa __ 4 0 —2qa
Im(E) =1Im T Mqle = k%+q2€
4i’ky k3 )
= —=qa
Im(E) Vi k%—que . (B.24)
Asi que la constante de decaimiento dada por (B.15) sera
A= —%Hm(E)
L2 B
h Ml kg + g?
_ 8£ k% —2qa
LK+ q?
v
==T B.2
A o (B.25)

9Esta aproximacion corresponde a bajas energias y pozo angosto.
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en donde se tuvo en cuenta la expresion para la velocidad de las particulas en el pozo v = % = %
y si se asume la aproximacion
2
T
2 2
ko+4q

entonces, se obtiene la expresion para el coeficiente de transmisién a través de la barrera y la vida
media de las particulas, si se considera que 7; es el nimero promedio de veces que la particula
choca contra la barrera por unidad de tiempo. Si este valor se multiplica por la probabilidad T de
que la particula escape en cada intento, se obtiene la probabilidad total de escape por unidad de
tiempo.
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