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A Andrómeda,

la estrella más refulgente que apareciera un día, para
iluminar mi camino y mi vida,
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Título en español

Tunelamiento en aproximación semiclásica de la radiación Hawking para Black Shells

Title in English

Tunneling in semiclassical approximation to Hawking’s Radiation for Black Shells

Resumen: El propósito de este trabajo es intentar determinar la existencia de tunelamiento cuán-
tico en el proceso de radiación de Hawking para agujeros negros, considerando la búsqueda de un
potencial proveniente de algún fenómeno de la física establecida, que proporcione una analogía
al hipotético potencial que debería estar presente en el horizonte de eventos, a través e cual las
partículas tunelarían. El decaimiento alfa nuclear podría ser un candidato ampliamente estudiado
en las desintegraciones, así como su comprensión experimental y teórica. Otra opción se refiere al
proceso de conversión de pares ante un campo electromagnético en el interior del núcleo con las
correspondientes probabilidades de emisión electrón positrón, que se asemeja al caso de interés.

A partir del principio holográfico es posible establecer una zona en la cual los campos cuánticos
están presentes en las vecindades de un agujero negro y por lo tanto las consideraciones termo-
dinámicas sobre la entropía de Bekenstein-Hawking estarían restringidas a esta zona en particular
representada por un cascarón negro (Black Shell) sin la necesidad de conocer el interior, pues
investigar qué hay en el interior de un agujero negro es una pregunta que no es posible responder
con la Relatividad General.

Abstract: The purpose of this work is trying to determinate the existence of quantum tunneling
for the Hawking’s radiation process for black holes, considering to find a poten- tial coming from
some established physics phenomena that provides an analogy with an hypothetical potential that
should be on the event horizon, through which the particles would tunnel. Nuclear alpha decay
could be a widely studied case on the desintegrations, for its experimental and theoretical unders-
tanding. Another option refers to the pairs conversion process onto an electromagnetical field in
the interior of nuclei with its probabilities of emision of electrons and positrons that resembles to
the interest framework.

Starting by holographic principle is possible to establish a particular zone what the quantum fields
are present on the vicinity of a Black Hole and therefore, thermodynamical considerations through
Bekenstein’s-Hawking entropy will be restricted to this zone in particular represented by a Black
Shell, without the necessity of recognize its interior, but investigate what’s inside of a Black Hole
is a question that is not possible to answer with General Relativity.

Palabras claves: Agujeros negros, radiación de Hawking, tunelamiento cuántico, conversión in-
terna, principio holográfico, Black Shells.
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Introducción

El fenómeno de radiación Hawking postulado en [1]1 plantea la posibilidad de la existencia de
un fenómeno de tunelamiento a través del horizonte de eventos, que generará una barrera de
potencial, a través de la cual las partículas como los electrones tunelarían. Esta perspectiva es
abordada por [2], [3].

Desde la perspectiva de la aproximación semiclásica de WKB, desarrollada en el apéndice A, en
la cual se establece la posibilidad de la existencia de la barrera, pero no su localización se quisiera
pensar que ésta estuviese presente a una pequeña distancia h a partir de la frontera del horizonte
de eventos, y podría calcularse según el principio holográfico2. Para tal fin es necesario esclarecer
de qué naturaleza es dicho potencial, esto en primera medida puede ser pensado al reconocer que
existen fenómenos en la naturaleza en los que se presenta tunelamiento, tales como los procesos
de decaimiento α en un núcleo radiactivo. En este sucede la emisión de partículas α las cuales
corresponden a núcleos de Helio, y la subsecuente formación de un núcleo hijo con los neutrones
y protones restantes que no han sido expulsados.

La revisión de este mecanismo se ha realiza en el capítulo 2 y el apéndice B. En tal discusión se
verifica la existencia de potenciales y probabilidades de tunelamiento, que pueden ser contrastadas
con las expuestas en el mecanismo de Hawking, mediante la determinación del coeficiente de
transmisión de partículas que atraviesan la barrera de potencial nuclear y contrastarlo con una
hipotética barrera de potencial presente en el horizonte de eventos, con el fin de verificar si éste
posee un potencial de naturaleza similar al presente en este fenómeno nuclear.

Según [3] la partícula tunelando al atravesar la barrera de potencial, para efectos de conservación
de la energía, en el agujero negro hará que el horizonte se estreche ocasionando una contración;
durante el proceso de radiación, lo que llevaría a que el espectro de emisión no fuese estrictamente
planckiano, como lo predice el espectro térmico de la Radiación de Hawking[4], [5].

La corrección al espectro hace necesario abordar el problema de preservación de unitariedad de la
mecánica cuántica en el proceso y a su vez expresa el problema de la pérdida de información en los
agujeros negros. Se espera que las fluctuaciones de vacío cuántico en la región próxima al horizonte,
justo adentro de éste, causen que la partícula virtual de energía positiva creada, pueda tunelar y
materializarse en una partícula real. En el caso de ser creada en las inmediaciones externas, una
partícula virtual de energía negativa, tunelaría hacia adentro, decrementando la masa del agujero
negro, mientras su compañera de energía positiva escaparía al infinito en forma de radiación de
Hawking.

1Y que se encuentra descrito en el capítulo 1
2Este principio es discutido en el capítulo 3
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Otro mecanismo de emisión sería similar al proceso nuclear de creación de un par electrón-positrón
como el presente en el fenómeno de conversión interna, el cual se halla descrito en el capítulo 2.
En el que se estudia el proceso de conversión de pares a partir de un campo electromagnético,
determinándose el coeficiente de conversión de pares para encontrar la probabilidad de emisión
nuclear.

En el capítulo 1 se describe el mecanismo de radiación Hawking, en el esquema por él desarrollado
en [1]. Mediante el uso de una teoría cuántica de campos canónica en espacios curvos se obtiene
la temperatura de Hawking como un proceso de tunelamiento.

En el capítulo 2 se discuten dos procesos de tunelamiento conocidos a nivel nuclear, la emisión de
partículas α a través de una barrera de potencial, con los subsecuentes desarrollos expresados en
el apéndice B. Al considerar el modelo de Gamow y sus subsiguientes refinamientos en los deno-
minados potenciales de Skarmee-Hartree-Fock, que se corresponden con modelos más realistas de
potencial para el núcleo. Otro mecanismo plausible corresponde al fenómeno de conversión interna
para la creación de pares electrón-positrón debido a transiciones electromagnéticas nucleares.

Los elementos conceptuales que rigen el Principio Holográfico son esbozados en el capítulo 3,
al considerarse como una característica a ser cumplida por una teoría de gravedad cuántica que
pueda ser construida en el futuro. Este principio expresa las cotas a la entropía de agujero negro
y las posibles configuraciones de estados cuánticos de los modos proyectados en el horizonte de
eventos y la estructura física del horizonte de eventos .

En el capítulo 4 se discute el modelo de Black Shell, como una hipersuperficie cerrada formada
por materia sin presión, (un gas de fotones) contrayéndose hasta el radio de Schwarzschild de un
agujero negro, en el cual las geodésicas seguidas por las partículas conformantes siguen trayectorias
como de luz. Esta construcción evita el problema de formular la pregunta sobre qué estructura
posee el interior de un agujero negro, pues basta solamente con analizar la frontera de dicho
cascarón, en la cual se encuentran confinados los campos cuánticos de materia y radiación en su
superficie y se asume un espacio del tipo Friedmann-Robertson-Walker en su interior.



Chapter 1

Radiación de Hawking

1.1. Cuantización canónica y producción de partículas

En la mecánica clásica un oscilador armónico de masa m y constante elástica k está descrito a
través de su energía potencial, que depende de su desplazamiento desde la posición de equilibrio,
y su energía cinética que depende de su momentum. De manera tal que la energía total es la
suma de la energía cinética y la energía potencial, de acuerdo a

E = K + V = 1
2 mẋ2 + 1

2 kx2 = p2

2m + 1
2 ω2x2,

donde se ha considerado que p = mẋ y ω =
√

k
m .

En el caso de un oscilador armónico cuántico al reemplazar el momentum p por el operador −ih̄ ∂
∂x ,

se obtiene una ecuación de onda denominada Ecuación de Schrödinger dada por

(
− h̄2

2m
∂2

∂x2 +
1
2 ω2x2

)
ψ = Eψ

cuyas soluciones corresponden a funciones de la forma

ψn(ξ) =
1√
2nn!

(mω
πh̄

) 1
4 Hn(ξ) exp

(
− ξ2

2

)
siendo Hn(ξ) los polinomios de Hermite y ξ =

√mω
πh̄ x.

La ecuación de Schrödinger es una ecuación de valores propios, los cuales corresponden a los
valores discretos de la energía y además cumplen la condición

En =
(
n + 1

2

)
h̄ω

1
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El oscilador armónico cuántico puede ser descrito por un hamiltoniano dado en términos de los
operadores de posición x̂ y momentum p̂1 de acuerdo a

Ĥ =
p̂2

2m
+

1
2

mω2 x̂2. (1.1)

Si se considera una factorización del hamiltoniano2 en la ecuación (1.1) es notable la aparición
del término − 1

2 h̄ω que corresponde a la energía del punto cero. En dicha factorización es posible
definir los operadores de creación â+ y destrucción â− a partir de los operadores de posición y
momentum y una constante multiplicativa función de la frecuencia, en la forma

â− =

√
mω

2h̄

(
x̂ +

i
mω

p̂
)

(1.2)

â+ =

√
mω

2h̄

(
x̂− i

mω
p̂
)

. (1.3)

Los operadores x̂ y p̂, pueden ser escritos al invertir las expresiones (1.2) y (1.3) de manera que

x̂ =

√
h̄

2mω

(
â− + â+

)
(1.4)

p̂ = −i

√
h̄mω

2
(
â− − â+

)
(1.5)

entonces, se observa que el hamiltoniano se factoriza en

1Los operadores x̂ y p̂ no conmutan, esto es

[x̂, p̂] = x̂ p̂− p̂x̂ = ih̄

2En donde

1
2 mω2

(
x̂− i

mω
p̂
)(

x̂ +
i

mω
p̂
)

= 1
2 mω2

(
x̂x̂ +

i
mω

x̂ p̂− 1
mω

p̂x̂− i2

(mω)2 p̂ p̂
)

= 1
2 mω2

(
x̂2 +

i
mω

x̂ p̂− 1
mω

p̂x̂ +
1

(mω)2 p̂2
)

= 1
2mω2

(
x̂2 +

i
mω

[x̂, p̂] +
1

(mω)2 p̂2
)

= 1
2 mω2

(
x̂2 +

i
mω

(ih̄) +
1

(mω)2 p̂2
)

= 1
2 mω2 x̂2 − 1

2 h̄ω +
p̂2

2m
= Ĥ − 1

2 h̄ω
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Ĥ = h̄ω
(
â− â+ + 1

2

)
. (1.6)

El operador N̂ = â− â+ en (1.6) tiene un estado propio |n〉 con valor propio n3 y por lo tanto el
hamiltoniano posee este mismo autovalor y autoestado que el operador N̂4. De manera que |n〉
es una notación equivalente a ψn(ξ) y cuyo conmutador corresponde a[

â−, â+
]

= mω
2h̄

(
− i

mω [x̂, p̂] + i
mω [ p̂, x̂]

)
= mω

2h̄

(
− i

mω (ih̄) + i
mω (−ih̄)

)
= mω

2h̄

(
h̄

mω + h̄
mω

)
= mω

2h̄

(
2h̄

mω

)
[
â−, â+

]
= 1.

Un campo clásico en el espacio tridimensional puede expresarse como una función escalar de las
tres coordenadas espaciales y del tiempo como φ(x, t). De acuerdo a [6], el campo escalar clásico
puede ser considerado como un conjunto de osciladores armónicos desacoplados colocado cada
uno de ellos en cada punto del espacio.

A partir de las relaciones de conmutación de la teoría cuántica, en la cual las variables canónicas
clásicas x = q y p son ahora los operadores q̂ y p̂, que corresponden a

[q̂, p̂] = ih̄ = i (1.7)

si se consideran unidades naturales en las cuales h̄ = 1 y además osciladores de masa unitaria,
entonces los operadores de creación y destrucción para todo tiempo t, en las ecuaciones (1.2) y
(1.3) quedan

a−(t) ≡
√

ω

2

[
q̂(t) +

i
ω

p̂(t)
]

, a+(t) ≡
√

ω

2

[
q̂(t)− i

ω
p̂(t)

]
(1.8)

y las correspondientes relaciones de conmutación

[a−(t), a+(t)] = 1 (1.9)

Para construir el espacio de Hilbert de los estados cuánticos en un oscilador no perturbado ex-
ternamente, a partir de un estado de vacío dado por un vector normalizado |0〉, y además debe
satisfacerse la condición de que a−|0〉 = 0. Luego de estos es necesario determinar los estados
excitados, |n〉, construidos a partir de la aplicación sucesiva del operador a+ sobre este estado de
vacío

|n〉 = 1√
n!
(a+)n|0〉,

3Denominado también número de ocupación.
4N̂ es el denominado operador número de partículas tal que

Ĥ = h̄ω
(

N̂ + 1
2

)
Ĥ|n〉 =

(
n + 1

2

)
h̄ω|n〉
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o bien, con lo cual es posible escribir todos los estados cuánticos del oscilador armónico como

|ψ〉 =
∞

∑
n=0

ψn|n〉,
∞

∑
n=0
|ψn|2 = 1.

Al considerar el campo cuántico como formado por un número infinito de osciladores armónicos,
se tiene en cuenta que los modos normales de oscilación qα(t) estarán cuantizados y satisfarán las
relaciones de conmutación (1.7)

[q̂α, p̂β] = iδαβ, [q̂α, q̂β] = [ p̂α, p̂β] = 0 (1.10)

y los correspondientes operadores de creación y destrucción, junto con las relaciones de con-
mutación, serán

a−α (t) =
√

ωα

2

[
q̂α(t) +

i
ωα

p̂α(t)
]

a+α (t) =
√

ωα

2

[
q̂α(t)−

i
ωα

p̂α(t)
]

(1.11)[
â−α , â+β

]
= δαβ

Así que en este caso el espacio de Hilbert estará determinado a partir de la acción de los operadores
anteriores expresados en las ecuaciones (1.11) sobre el estado de vacío a−α |0, 0, 0, ..., 0〉 = 0.
Entonces, para un número de ocupación nα, los estados excitados serán

|n1, n2, ..., nN〉 =
[

N

∏
α=1

(â+α )nα

√
nα!

]
|0, 0, ..., 0〉 (1.12)

En el caso continuo, en el cual se consideraría que en cada punto del espacio x se colocase
un oscilador para cada tiempo t, se requerían un conjunto infinito de ellos5. Las coordenadas
asociadas a los operadores q̂α(t) serán reemplazadas por una función escalar φ(x, t) = φx(t) que
indique en ese punto e instante la intensidad del campo.

El más simple de los campos cuánticos corresponde a un campo escalar,[7] y [8]el cual se puede
expresar como φ(x, t). Éste satisface la ecuación de Klein-Gordon

∂2φ

∂t2 −
3

∑
j=1

∂2φ

∂x2
j
+ m2φ ≡ φ̈−∇2φ + m2φ. (1.13)

Es necesario imponer condiciones iniciales sobre el campo φ y su derivada temporal, φ(x, t0) y
φ̇(x, t0), para todo t > t0; de manera tal que sea posible expresar a φ(x, t) como un conjunto
de osciladores armónicos desacoplados en un espacio finito de volumen V = L3 y al imponerse
condiciones de frontera periódicas de la forma

φ(x = 0, y, z, t) = φ(x = L, y, z, t)
φ(x, y = 0, z, t) = φ(x, y = L, z, t)
φ(x, y, z = 0, t) = φ(x, y, z = L, t)

5A esto se le denomina campo clásico, es decir a una función φ(x, t), que caracteriza la intensidad del campo
en cada momento t y en cada punto x del espacio. Es posible interpretar un campo clásico, como un conjunto
infinito de osciladores que anteriormente se habían denotado por la coordenada generalizada qi(t), ahora en este
contexto, dado por φx(t).
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hace que la descomposición de Fourier pueda expresarse como

φ(x, t) =
1√
V

∑
k

φk(t)eik·x (1.14)

con
kx =

2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
Al sustituir en la ecuación de Klein-Gordon dada por (1.13) se tiene que ésta ahora corresponde
a un conjunto infinito de ecuaciones diferenciales ordinarias desacopladas

φ̈k + (k2 + m2)φk = 0

φ̈k + ω2
k φk = 0, (1.15)

con una correspondiente frecuencia

ωk(t) =
√

k2 + m2,

de manera que cada oscilador indexado con el índice k contribuye a la energía total del campo φ,
así que se cumple que

E = ∑
k

(
1
2

∣∣φ̇k
∣∣2+1

2
ω2

k

∣∣φk
∣∣2). (1.16)

Al extender el volumen V al infinito en el índice k continuo, la ecuación (1.14) corresponde a

φ(x, t) =
∫ d3k

(2π)
3
2

eik·xφk. (1.17)

El mecanismo de cuantización involucra el hecho de que el lagrangiano clásico, que determina la
acción del sistema, puede ser obtenido a partir de una densidad lagrangiana L, según

L[φ] =
∫
Ld3x

=
∫ (1

2
ηµνφ,µφ,ν −

1
2

m2φ2
)

d3x. (1.18)

Dado que esta densidad lagrangiana corresponde a la estructura matemática denominada un
funcional, entonces, se hace necesario efectuar la derivada funcional del campo respecto a las

velocidades generalizadas, φ̇ =
∂φ

∂t
para obtener los correspondientes momentos generalizados

π(x, t) =
δL[φ]

δφ̇(x, t)
= φ̇(x, t). (1.19)

A partir del lagrangiano es posible obtener el hamiltoniano clásico, el cual posee una expresión

H =
∫

π(x, t)φ̇(x, t)d3x− L[φ]

=
1
2

∫
d3x
(

π2 + (∇φ)2 + m2φ2
)

. (1.20)
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El hamiltoniano de la ecuación (1.20) lleva a que las ecuaciones de movimiento de Hamilton, que
involucran las derivadas funcionales del hamiltoniano, sean

∂φ(x, t)
∂t

=
δH

δπ(x, t)
= π(x, t)

∂π(x, t)
∂t

= − δH
δφ(x, t)

= ∇2φ(x, t)−m2φ(x, t). (1.21)

Cuando las variables φ y π se consideran operadores, con sus respectivas relaciones de conmutación[
φ̂(x, t), π̂(y, t)

]
= iδ(x− y)[

φ̂(x, t), φ̂(y, t)
]
=
[
π̂(x, t), π̂(y, t)

]
= 0, (1.22)

es posible expresarlos mediante la ecuación (1.17), como

φ̂(x, t) =
∫ d3k

(2π)
3
2

eik·xφ̂k(t)

π̂(y, t) =
∫ d3k′

(2π)
3
2

eik′·yπ̂k′(t). (1.23)

Al sustituir las ecuaciones (1.23) en las relaciones de conmutación dadas en (1.22), entonces se
tiene que

[
φ̂k(t), π̂k′(t)

]
= iδ(k + k′),

lo que indica que la variable conjugada a φ̂k es π̂−k = (π̂k)
†.

Al reemplazar las ecuaciones (1.23) en las ecuaciones de Hamilton6 dadas en (1.21), se tiene que

dφ̂k

dt
= π̂k

dπ̂k

dt
= −ω2φ̂k

6De acuerdo a las ecuaciones de movimiento de Heisenberg

dφ̂
dt = − i

h̄
[
φ̂, Ĥ

]
dπ̂
dt = − i

h̄
[
π̂, Ĥ

]
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Al definir los operadores de creación y destrucción hermíticos en términos de φ̂ y π̂ en la forma

â−k (t) =
√

ωk

2

(
φ̂k +

iπ̂k

ωk

)
â+k (t) =

√
ωk

2

(
φ̂−k −

iπ̂−k

ωk

)
, (1.24)

que satisfacen las relaciones de conmutación

[â−k (t), â+k′(t)] = δ(k− k′)

[â−k (t), â−k′(t)] = 0

[â+k (t), â+k′(t)] = 0. (1.25)

Los operadores â−k y â+k cumplen las ecuaciones de movimiento

d
dt

(
â±k (t)

)
= ±iωk â±k (t) (1.26)

cuyas soluciones son de la forma
â±k (t) = â±k e±iωkt. (1.27)

Si se construye el espacio de Hilbert a partir del estado de vacío |0〉, sobre el que el operador
de destrucción actúa, de manera que se cumpla â−k |0〉 = 0 y además el estado con números de
ocupación ns en cada modo ks, generados a partir de la acción del operador creación sobre el
mismo estado de vacío, en donde se tiene que n1 partículas poseen momentum k1; n2 partículas
tienen momentum k2, etc.

|n1, n2, n3, ...〉 =
[
∏

s

(â+ks
)ns

√
ns!

]
|0〉. (1.28)

A partir de (1.27) y teniendo en cuenta los operadores construcción y destrucción (1.24), el campo
queda descrito por

φ̂k(t) =
1√
2ωk

(
â−k e−iωkt + â+−keiωkt

)
.

Se denomina expansión del operador de campo cuántico en modos, a la expresión resultante de
insertar la función φk(t) anterior en la ecuación (1.23)

φ̂(x, t) =
∫ d3k

(2π)
3
2

1√
2ωk

(
e−iωkt+ik·x â−k + eiωkt−ik·x â+k

)
, (1.29)

en donde se ha reemplazado −k por k, en el segundo término.

Si se tiene en cuenta que las funciones

vk(t) =
1√
ωk

eiωkt, (1.30)
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y

v∗k (t) =
1√
ωk

e−iωkt, (1.31)

son los denominados modos de frecuencia negativa y positiva, que expresan las soluciones de
energía negativa y positiva respectivamente; entonces, el operador de campo en la ecuación (1.29)
queda descrito en la forma

φ̂(x, t) =
∫ d3k

(2π)
3
2

1√
2

(
v∗k(t)e

ik·x â−k + vk(t)e−ik·x â+k

)
(1.32)

con las usuales reglas de conmutación dadas en (1.25).

En el evento de realizar una descripción del campo involucrando los efectos de la gravedad sobre el
espacio-tiempo, se hace necesario tener en cuenta que el campo escalar interactuará con el campo
gravitacional clásico y por lo tanto para describir adecuadamente este fenómeno, se considerará
una acción en el cuadriespacio, de la forma

S[φ] =
∫

d4xL(φi, ∂µφi), (1.33)

aquí, la densidad lagrangiana L depende de la intensidad del campo y de sus derivadas de orden
superior; además que el campo gravitacional φi = gαβ(xγ) depende fuertemente de la métrica.

Se considerará una función de valor real para la acción, con el fin de que la probabilidad se
conserve en los respectivos campos cuánticos. Además, es importante especificar condiciones
iniciales sobre el campo y sus primeras derivadas, para que su evolución esté bien definida, con lo
que las ecuaciones de movimiento tendrán a lo sumo segundas derivadas de φ.

Otra característica importante a tener en cuenta es que en un espacio-tiempo curvado la acción
deberá ser invariante ante transformaciones generales de coordenadas; pues las propiedades físicas
de los sistemas satisfarán el principio de covariancia y así serán independientes del sistema coor-
denado empleado. Esto lleva a que la acción ya no sea invariante ante el grupo de Poincaré y
por lo tanto no se preserve la invarianza traslacional, así que la densidad lagrangiana ya no puede
depender explícitamente de x ni de t.

El procedimiento de generalización del lagrangiano dado en la ecuación (1.18) a un espacio-tiempo
curvo, involucra el hecho de que la métrica ηµν deberá ser reemplazada por gµν, así como cambiar
las derivadas parciales por derivadas covariantes y modificar el elemento de volumen d3xdt por su
correspondiente versión covariante d4x

√−g, siendo g el determinante de la métrica. En tal caso
la acción tendrá la forma

S =
∫

d4x
√
−g
[

1
2

gµνφ;µφ;ν −
1
2

m2φ2
]

. (1.34)

Dado que la acción depende explícitamente de la métrica, corresponde a un campo escalar débil-
mente acoplado a la gravedad.

Si se considera una métrica de la forma

ds2 = dt2 − a2(t)δikdxidxk, (1.35)
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en la cual las superficies para cada tiempo constante son planas, pues corresponden a un universo
plano de Friedmann.

A partir de la definición de tiempo conforme η, en vez del tiempo físico t

η(t) =
∫ t dt

a(t)
, (1.36)

la ecuación (1.35) quedaría

ds2 = a2(η)

[
dη2 − δikdxidxk

]
= a2(η)δµνdxµdxν. (1.37)

Si se realizan la sustituciones gµν = a−2ηµν y
√−g = a4 en (1.34), se tiene que la acción es

S =
1
2

d3xdηa2
[

φ′2 − (∇φ)2 −m2a2φ2
]

. (1.38)

Si se define un campo χ dependiente de a(t) y del campo φ, de acuerdo a

χ = a(η)φ,

y su correspondiente momento canónicamente conjugado π = χ′, entonces

√
−gm2φ2 = m2a2χ2√

−ggµνφ,µφ,ν = a2
(

φ′2 − (∇φ)2
)

a2φ′2 = χ′2 − 2χχ′
(

a′
a

)
+ χ2

(
a′
a

)2

a2φ′2 = χ′2 + χ2
(

a′′
a

)
−
(

χ2 a′
a

)′
.

La acción (1.38) puede escribirse como

S =
1
2

∫
d3xdη

[
χ′2 − (∇χ)2 −

(
m2a2 − a′′

a

)
χ2
]

, (1.39)

cuya variación lleva a la ecuación de movimiento

χ′′ −∇2χ +

(
m2a2 − a′′

a

)
χ = 0,

en donde se verifica la existencia de una masa efectiva dependiente del tiempo:

mefectiva(η) = m2a2 − a′′

a
.
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La dependencia temporal de la masa efectiva corresponde a la interacción del campo escalar con
el background gravitacional, pero ahora reduciendo el procedimiento de cuantización del espacio-
tiempo de Friedmann al de Minkowski. Así entonces, dado que la masa efectiva es función explícita
del tiempo, la energía del campo escalar χ no se conserva. Lo que es equivalente a que deba existir
creación de partículas a partir de la energía proporcionada por el campo gravitacional.

La expansión de χ en modos de Fourier (1.17) quedaría

χ(x, η) =
∫ d3k

(2π)
3
2

eik·xχk(η). (1.40)

Al sustituir (1.40) en la ecuación de movimiento, se tiene que los modos χk(η),satisfacen el
conjunto de ecuaciones diferenciales desacopladas

χ′′k + ω2
k(η)χk = 0, (1.41)

con una correspondiente frecuencia

ω2
k(η) = k2 + mefectiva = k2 + m2a2(η)− a′′

a
.

Debido a que ω2
k sólo depende de k ≡ |k|, la solución general a (1.41) puede ser escrita a partir

de las funciones complejas conjugadas vk(η) y v∗k (η), las cuales son dos soluciones linealmente
independientes, denominadas modos del campo, en la forma

χk(η) = 1√
2

[
a−k v∗k (η) + a+−kvk(η)

]
, (1.42)

en donde se ha generado la combinación lineal de soluciones a partir de dos constantes de inte-
gración complejas a−k y a+−k, de tal manera que al ser χ un campo escalar real, estas constantes
satisfagan que a+k =

(
a−k
)∗.

Sustituyendo (1.42) en (1.40) se tiene que

χ(x, η) =
∫ d3k

(2π)
3
2

1√
2

[
a−k v∗k (η) + a+−kvk(η)

]
eik·x(η).

= 1√
2

∫ d3k

(2π)
3
2

[
a−k v∗k (η)e

ik·x + a+k vk(η)e−ik·x
]

. (1.43)

Para cuantizar el campo χ en la ecuación (1.43), se imponen las relaciones de conmutación,
elevándolo a la categoría de operador χ̂ y su momento canónicamente conjugado π̂ = χ̂′, de
acuerdo a

[χ̂(x, η), π̂(x, η)] = iδ(x− y)
[χ̂(x, t), χ̂(x, t)] = [π̂(x, t), π̂(x, t)] = 0. (1.44)

El hamiltoniano del campo cuántico χ̂ corresponde a

Ĥ(η) = 1
2

∫
d3x

[
π̂2 + (∇χ̂)2 + m2

efectiva(η)χ̂
2
]

.
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La expansión en modos del operador de campo χ̂ toma la forma

χ̂(x, η) =
1√
2

∫ d3k

(2π)
3
2

(
v∗k (η)e

ik·x â−k + vk(η)e−ik·x â+k

)
, (1.45)

donde las funciones modo vk(η) satisfacen las ecuaciones diferenciales

v′′k + ω2
k(η)vk = 0, (1.46)

siendo ωk(η) =
√

k2 + m2
efectiva(η).

Al sustituir (1.45) en (1.44) se cumple que[
a−k , a+k′

]
= δ(k− k′)[

a−k , a−k′
]

=
[

a+k , a+k′
]
= 0. (1.47)

Los operadores a−k y a+k pueden ser empleados para construir la base de estados del espacio de
Hilbert, si se forman los modos a partir de las funciones vk(η) las ecuaciones de movimiento no
quedan completamente determinadas7, es así que se hace necesario establecer una combinación
lineal de éstas, de manera que

uk(η) = αkvk(η) + βkv∗k (η), (1.48)

en la que αk y βk son coeficientes complejos independientes del tiempo, que a su vez cumplen la
condición de compatibilidad de que

|αk|2 − |βk|2 = 1. (1.49)

Si se define un nuevo conjunto de operadores de creación y destrucción b̂±k , que cumplan las mismas
relaciones de conmutación dadas en (1.47) que actúen sobre el estado de vacío, de manera que
igual que los â±k puedan ser usados para construir una base ortonormal de estados en el espacio
de Hilbert, entonces existirían dos estados diferentes de vacío, pues

â−k |(a)0〉 = 0

b̂−k |(b)0〉 = 0.

Por lo tanto, en términos de estas nuevas funciones los operadores de campo quedan

χ̂(x, η) =
1√
2

∫ d3k

(2π)
3
2

(
u∗k (η)e

ik·xb̂−k + uk(η)e−ik·xb̂+k

)
, (1.50)

7Esto sucede pues el wronskiano de vk es degenerado para todo tiempo t

W [vk, v∗k ] = v′kv∗k − vkv∗
′

k = 2iIm{v′v∗}
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La expansión del campo χ en términos de los dos conjuntos de operadores â±k y b̂±k dada en las
ecuaciones (1.45) y (1.50) será equivalente, si se tiene que

eik·x
[

u∗k (η)b̂
−
k + uk(η)b̂+−k

]
= eik·x

[
v∗k (η)â−k + vk(η)â+−k

]
. (1.51)

La ecuación (1.51) al ser sustituida en (1.48) lleva a que

â−k = α∗k b̂−k + βk b̂+−k

â+k = αk b̂+k + β∗k b̂−−k. (1.52)

Las expresiones (1.52) se denominan transformaciones de Bogoliubov y los correspondientes αk y
βk son los coeficientes de Bogoliubov, las cuales al ser invertidas dan lugar a las transformaciones
de Bogoliubov inversas

b̂−k = αk â−k − βk â+−k

b̂+k = α∗k â+k − β∗k â−−k (1.53)

De manera tal que las funciones de modos, estén relacionadas de acuerdo a

uk(η) = αkvk(η) + βkv∗k (η)
u′k(η) = αkv′k(η) + βkv′∗k (η), (1.54)

estando los coeficientes αk y βk dados en términos del wronskiano

αk =
W(uk, v∗k )

2i

βk =
W(vk, uk)

2i
. (1.55)

Los conjuntos de estados excitados que describen las partículas de los tipos a y b, surgen de la
aplicación de los operadores de construcción en los respectivos vacíos en la forma:

|(a)mk1 , nk2 , · · · 〉 =
1√

m!n! · · ·

[(
â+k1

)m (
â+k2

)n
· · ·
] ∣∣

(a)0〉, (1.56)

y también

|(b)mk1 , nk2 , · · · 〉 =
1√

m!n! · · ·

[(
b̂+k1

)m (
b̂+k2

)n
· · ·
] ∣∣

(b)0〉. (1.57)

Un estado cuántico arbitrario |ψ〉 puede ser escrito como combinación lineal de estados excitados
de manera que

|ψ〉 = ∑
m,n,···

C(a)
mn···|mk1 , nk2 , · · · 〉 = ∑

m,n,···
C(b)

mn···|mk1 , nk2 , · · · 〉,
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luego la probalidad de encontrar m partículas del tipo (a) en el modo k1es |C(a)
mn···|2 y por lo tanto,

probalidad de encontrar m partículas del tipo (b) en el modo k1es |C(b)
mn···|2.

Los estados de partículas (a) y (b) son en general diferentes, pues corresponden a definiciones
diferentes del vacío, si por ejemplo βk 6= 0, entonces el vacío (b) contiene partículas (a) y viceversa.
Esto puede verse al calcular el operador número de particulas del tipo (a) en el estado de vacío
(b), de acuerdo a

〈(b)0|N̂
(a)
k |(b)0〉 = 〈(b)0|â+k â−k |(b)0〉

= 〈(b)0
∣∣(αk b̂+k + β∗k b̂−−k

) (
α∗k b̂−k + βk b̂+−k

) ∣∣
(b)0〉

= 〈(b)0
∣∣(β∗k b̂−−k

) (
βk b̂+−k

) ∣∣
(b)0〉

〈(b)0|N̂
(a)
k |(b)0〉 = |βk|2δ(3)(0) (1.58)

La ecuación (1.58) muestra que para un volumen espacial infinito la densidad de partículas del
tipo (a) en el modo k es

nk = |βk|2,

y por lo tanto la densidad media total de todas las partículas

n =
∫

d3k|βk|2,

será finita sólo si |βk|2 decae más rápido que k−3 para k grande.

El vacío de (b) partículas puede expresarse como una superposición de estados excitados de
partículas (a) al tener en cuenta un estado cuántico de un sólo modo φ̂k y expandir el vacío de
(b) partículas como una combinación lineal de la forma

|(b)0k,−k〉 =
∞

∑
m,n=0

cmn|(a)mk, n−k〉 (1.59)

=
∞

∑
m,n=0

cmn

(
â+k
)m (â+−k

)n

√
m!n!

|(a)0k,−k〉. (1.60)

A partir de las transformaciones de Bogoliubov inversas, dadas en (1.53) aplicadas al estado de
vacío de (b) partículas

b̂−k |(a)0k,−k〉 =
(
αk â−k − βk â+−k

)
|(a)0k,−k〉 = 0, (1.61)

y también

b̂+−k|(a)0k,−k〉 =
(

αk â−−k − βk â+k
)
|(a)0k,−k〉 = 0. (1.62)
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Dado que el estado de vacío de (b) partículas es una combinación de operadores de creación en el
vacío de (a) partículas, entonces esa combinación puede considerarse por una función f̂ (â+k , â+−k),

entonces se deben cumplir que el conmutador
[

â−k , f̂
]
es la derivada de f̂ respecto a â+k

8 . Entonces
la ecuación (1.61) expresa que(

αk
∂ f̂

∂â+k
− βk â+−k

)
|(a)0k,−k〉 = 0. (1.63)

Dado que f̂ contiene sólo operadores de creación, se debe satisfacer la ecuación diferencial

αk
∂ f̂

∂â+k
− βk â+−k = 0,

la cual tiene como solución

f̂ (â+k , â+−k) = C
(
â+−k

)
exp

(
βk
αk

â+k â+−k

)
. (1.64)

Análogamente, a partir de la ecuación (1.62) se determina la relación para ∂ f̂
∂â+−k

, siendo C una

constante de integración a determinar a partir de la normalización.

El (b) vacío puede ser expresado entonces como

|(a)0k,−k〉 = C
∞

∑
n=0

(
βk
αk

)n
|(a)nk, n−k〉

〈(a)0k,−k|(a)0k,−k〉 = 〈(a)0k,−k|C
∞

∑
n=0

(
βk
αk

)n
|(a)nk, n−k〉 = 1

C =

√
1− |βk|2
|αk|2

C =
1
|αk|

.

Entonces, el estado de (b) vacío

|(a)0k,−k〉 =
1
|αk|

∞

∑
n=0

(
βk
αk

)n
|(a)nk, n−k〉. (1.65)

El estado de vacío |(b)0〉 es el producto tensorial de los estados de vacío |(a)0k,−k〉 en todos los
modos y dado que cada par φ̂k y φ̂kse han contado dos veces en el producto sobre todos los k, se

8Para operadores q̂ y f̂ ( p̂, q̂) se cumple que el conmutador[
q̂, f̂ ( p̂, q̂)

]
= ih̄ ∂

∂ p̂ f̂ ( p̂, q̂)
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debe tomar la raíz cuadrada a la expresión (1.65)

|(b)0〉 =

[
∏

k

1
|αk|

∞

∑
n=0

(
βk
αk

)n
(
â+k â+−k

)n

n!

]1/2

|(a)0〉

= ∏
k

1√
|αk|

exp
(

βk
2αk

â+k â+−k

)
|0〉

= ∏
k

1
|αk|1/2

(
∞

∑
n=0

(
βk
αk

)n
|(a)nk, n−k〉

)
. (1.66)

El (b) vacío quedó definido por una exponencial de combinaciones cuadráticas de operadores de
creación, así que estos estados se denominan comprimidos. Entonces el estado de (b) vacío está
comprimido por el estado del (a) vacío y viceversa.

1.2. Efecto Hawking

Si se considera la métrica para un espacio de Minkowski bidimensional

ds2 = dt2 − dx2 = ηαβdxαdxβ, (1.67)

y si se tiene en cuenta el tiempo propio para parametrizar la trayectoria de un observador xα(τ),
entonces su velocidad correspondería a

uα(τ) =
dxα(τ)

dτ
=
(
ṫ(τ), ẋ(τ)

)
,

la correspondiente aceleración sería
aα(τ) = u̇α(τ).

La aceleración es ortogonal a la velocidad, de acuerdo a

ηαβaαuβ = 0, (1.68)

habiéndose empleado la condición de normalización

ηαβuαuβ = ηαβ ẋα(τ)ẋβ(τ) = 1. (1.69)

En este espacio, la trayectoria seguida por un observador acelerado verificará que los modos
de frecuencia positiva, que darían lugar a la existencia de partículas, deberían ser determinados
respecto al tiempo propio del detector llevado consigo. Sin lugar a dudas, los correspondientes
modos medidos por un observador inercial, deben ser obtenidos respecto al tiempo coordenado t.
En definitiva, el número de partículas detectado por ambos observadores no es el mismo. Al tener
en cuenta coordenadas como de luz inerciales en el espacio de Minkowski

u = t− x
v = t + x. (1.70)
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La métrica asocida a este fenómeno sería gαβ en vez de ηαβ, con x0 = u y x1 = v, en (1.67),
entonces el elemento de línea

ds2 = gαβdxαdxβ = dudv, (1.71)

gαβ =

[
0 1

2
1
2 0

]
.

Respecto al observador acelerado, su trayectoria en estas coordenadas como de luz, será

xα(τ) =
(
u(τ), v(τ)

)
, (1.72)

entonces al sustituir la ecuación (1.72) en la condición de ortogonalidad (1.68) y de normalización
(1.69) se obtiene

u̇(τ)v̇(τ) = 1 (1.73)

ü(τ)v̈(τ) = −a2. (1.74)

En virtud de que u̇(τ) = 1
v̇(τ) en la ecuación (1.73) al sustituir en (1.74), se tienen las ecuaciones

diferenciales del movimiento estarán dadas por(
v̈
v̇

)2

= a2. (1.75)

Al integrar la expresión (1.75) se obtiene la trayectoria de un observador acelerado9

u(τ) = −1
a

e−aτ (1.76)

v(τ) =
1
a

eaτ. (1.77)

Al sustituir en las coordenadas nulas en el espacio de Minkowski dadas en las ecuaciones (1.70)

t(τ) =
v + u

2
=

1
2

senh(aτ)

x(τ) =
v− u

2
=

1
a

cosh(aτ). (1.78)

Así que para un observador acelerado la línea de mundo que describe, corresponde a una rama de
hipérbola con ecuación

x2 − t2 = a−2,

en el plano x− y, que se aproxima asintóticamente a las líneas nulas para |t| → ∞. Este observador
se acerca a x → ∞, desacelera y se detiene en x = 1

a ; luego acelera y regresa hacia el infinito.

Si ahora, el observador establece un sistema coordenado comóvil (ξ0, ξ1) = (τ, 0), en el cual éste
se encuentra en reposo respecto a su propio marco de referencia, entonces, el tiempo medido por
él corresponderá al tiempo propio a lo largo de su trayectoria o línea de mundo.

Si se define la métrica conformalmente plana por

ds2 = Ω2(ξ0, ξ1)

[(
dξ0)2 −

(
dξ1
)2
]

, (1.79)

9Estas son las coordenadas del efecto Unruh
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en la cual se pueda establecer la relación entre las coordenadas comóviles ξ0, ξ1 y las del espacio
de Minkowski t, x y facilite la cuantización de los campos.

Las coordenadas como de luz en este sistema poseen la estructura de (1.70) del espacio de
Minkowski, para el observador acelerado, de acuerdo a

ũ = ξ0 − ξ1

ṽ = ξ0 + ξ1, (1.80)

por lo tanto la métrica (1.67) de acuerdo a (1.80) toma la forma

ds2 = dudv = Ω2(ũ, ṽ)dũdṽ. (1.81)

En este tipo de coordenadas la línea de mundo de un observador acelerado corresponden a

ξ0(τ) = τ

ξ1(τ) = 0, (1.82)

por lo tanto ṽ(τ) = ũ(τ) = τ.

Debido a que ξ0(τ) = τ corresponde al tiempo propio en la ubicación del observador, entonces,
el factor conforme Ω2(ũ, ṽ), debe cumplir que

Ω2(ũ = τ, ṽ = τ) = 1,

de manera que las ecuaciones (1.81) y (1.71) describen el mismo espacio de Minkowski en diferentes
sistemas de coordenadas.

Si se permite que las funciones u y v solamente puedan depender de uno de los parámetros ũ
y ṽ respectivamente, con el fin de evitar términos cuadráticos en los diferenciales dũ2y dṽ2en la
métrica, entonces se escoge

u(ũ, ṽ) = u(ũ)
v(ũ, ṽ) = v(ṽ).

Al considerar coordenadas como de luz, la línea de mundo del observador, cumple que (ξ0, ξ1) =
(τ, 0) y por lo tanto en la ecuación (1.80)

ũ = τ − 0 = τ

ṽ = τ + 0 = τ,

y por la ecuación (1.76)

du(τ)
dτ

=
d

dτ

(
−1

a
e−aτ

)
= e−aτ = −au(τ) (1.83)

dũ
dτ

=
d

dτ

(
τ

)
= 1.
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Teniendo en cuenta los dos sistemas coordenados para la trayectoria del observador y la regla de
la cadena, se obtiene

du(τ)
dτ

=
du(ũ)

dũ
dũ(τ)

dτ

−aũ(τ) =
du(ũ)

dũ
(1). (1.84)

La ecuación (1.83) corresponde a una EDO de primer orden separable, cuya solución es

u(τ) = C1e−aũ. (1.85)

Para la coordenada v se efectúan los cálculos de la misma manera, con lo que se obtiene

v(τ) = C2eaṽ, (1.86)

por lo tanto al comparar (1.85) y (1.86) con (1.76) se tiene que

u(τ) = −1
a

e−aũ (1.87)

v(τ) =
1
a

eaṽ, (1.88)

y al ser sustituidas en la métrica (1.81), llevan a que

ds2 = dudv

= e−aũeaṽdũdṽ

ds2 = ea(ṽ−ũ)dũdṽ. (1.89)

Si se tiene en cuenta las ecuaciones de transformación dadas por (1.70) y (1.80) entre los sistemas
inercial y acelerado, entonces es posible escribir las ecuaciones (1.87) y (1.88), en la forma

t = t(ξ0, ξ1) =
1
a

eaξ1
senh(aξ0)

x = x(ξ0, ξ1) =
1
a

eaξ1
cosh(aξ0), (1.90)

de tal manera que la métrica en el sistema coordenado acelerado quede escrita como

ds2 = e2aξ1
[(

dξ0)2−
(
dξ1)2

]
, (1.91)

y corresponde a un espacio con curvatura cero, localmente como el de Minkowski,10 pero cuya
descripción es incompleta, pues describe solamente un cuarto de aquél; es decir la respectiva región
comprendida por x > |t|. 11

Dado que el espacio-tiempo exterior a un agujero negro sin carga, no rotante en unidades naturales
se encuentra descrito por la métrica de Schwarzschild

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(

dθ2 + sen2θdφ2
)

,

10Denominado espacio de Rindler.
11En algunas ocasiones denominada la cuña de Rindler.
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y al asumir que la métrica de un agujero bidimensional posee la misma estructura de la de
Schwarzschild, sin dependencia angular, entonces, ésta será

ds2 = gabdxadxb = −
(

1−
rg

r

)
dt2 +

(
1−

rg

r

)−1

dr2, (1.92)

siendo el radio gravitacional rg = 2M.12

Además al definir la coordenada tortuga r∗(r), a partir de

dr∗ =
dr

1− rg
r

,

entonces,

r∗(r) = r− rg + rg ln
(

rg

r
− 1
)

, (1.93)

permite escribir la métrica (1.92), de modo que

ds2 =

(
1−

rg

r(r∗)

)[
(dt)2 − (dr∗)2

]
, (1.94)

y por lo tanto las coordenadas (1.70) tortuga como de luz tendrán la forma

ũ = t− r∗

ṽ = t + r∗, (1.95)

que a su vez llevan a que la métrica (1.92) se exprese como

ds2 =

(
1−

rg

r(ũ, ṽ)

)
dũdṽ. (1.96)

Las coordenadas tortuga (ũ, ṽ) dadas en la ecuación (1.95) así como las de Schwarzschild (1.92)
son singulares sobre el horizonte de eventos en r = rg, como se observa en (1.96), pues la métrica
está indefinida. Así que se hace necesario describir las coordenadas de Kruskal-Szekeres, de modo
que la variedad espaciotemporal sea completa, para lo cual es posible aplicar la transformación

1−
rg

r
= e
(

1− r
rg

)
e
(

ṽ−ũ
2rg

)
.

Bajo este esquema la métrica (1.96) corresponde a

ds2 =
rg

r
e
(

1− r
rg

)
e
(
− ũ

2rg

)
e
(

ṽ
2rg

)
dũdṽ, (1.97)

y por lo tanto en las coordenadas de Kruskal-Szekeres como de luz

u = −2rge
(
− ũ

2rg

)
v = 2rge

(
ṽ

2rg

)
, (1.98)

12Estrictamente sería rg =
2GM

c2 = 2M, si se usa G = c = 1.
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la métrica queda escrita en la forma en la cual ya es regular sobre el horizonte

ds2 =
rg

r(u, v)
e
(

1− r(u,v)
rg

)
dudv. (1.99)

Teniendo en cuenta las ecuaciones (1.98), (1.93) y (1.95), es posible relacionar las coordenadas
de Kruskal-Szekeres (u, v) con las coordenadas de Schwarzschild (t, r) por

uv = −4r2
ge
(

r∗
rg

)
= −4r2

g

(
r
rg

)
e
(

r
rg−1

)
(1.100)

y también
v
u
= e

(
2t
rg

)
. (1.101)

Definiendo las coordenadas como de tiempo y como de espacio T y R a partir de u y v, por

u = T − R
v = T + R, (1.102)

que llevan a que las hipersuperficies de nivel constante sean hipérbolas uv = T2 − R2 = cte y las
geodésicas nulas u = cte, v = cte, sean líneas rectas a 45°.

La cuantización de un campo escalar sin masa en este espacio-tiempo de dos dimensiones, a partir
de la ecuación (1.34), es realizable si se define la acción

S[φ] =
1
2

∫
d2x
√
−g gαβφ,αφ,β. (1.103)

La acción (1.103) al ser escrita en términos de las coordenadas del cono de luz, se expresa como

S[φ] = 2
∫

∂uφ∂vφdudv = 2
∫

∂ũφ∂ṽφdũdṽ,

de manera que las correspondientes ecuaciones de campo serán

∂uφ∂vφ = 0 ∂ũφ∂ṽφ = 0. (1.104)

Si se consideran funciones arbitrarias, suficientemente suaves A(u), Ã(ũ), B(v), B̃(ṽ), las ecua-
ciones de campo (1.104) presentan soluciones de la forma

φ(u, v) = A(u) + B(v)

φ(ũ, ṽ) = Ã(ũ) + B̃(ṽ). (1.105)

El campo φ dado por la ecuación (1.95), posee la forma

φ ∝ e−iωũ = e−iω(t−r∗),

corresponde a un modo de frecuencia positiva moviéndose hacia la derecha alejándose del agujero
negro, respecto a un observador asintóticamente lejano quien mide el tiempo t, pues en virtud de
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las ecuaciones (1.67) y (1.95), el tiempo propio medido por este observador Minkowskiano y el
tiempo global t, coinciden cuando r → ∞.

Considerando la transformación de la métrica

ds2 → dũdṽ = dt2 − (dr∗)2

entonces, un observador asintótico en infinito define como partículas a los modos de frecuencia
positiva ω asociada a su tiempo coordenado t13. Respecto al tiempo propio de un observador en
reposo fuera del agujero negro será τ = ξ0 estos modos de frecuencia Ω positiva14 propagándose
a la derecha serían

φ ∝ e−iΩũ = e−iΩ(ξ0−ξ1).

Así mismo, los modos de frecuencia positiva correspondientes, propagándose a la izquierda para
ambos observadores serían

φ ∝ e−iωṽ = e−iω(t+r∗)

φ ∝ e−iΩṽ = e−iΩ(ξ0+ξ1).

Un observador estacionario observa partículas con modos de frecuencia positiva con respecto a t
y la expansión del operador de campo en modos, de la ecuación (1.32) en el caso bidimensional,
para el observador asintótico, está dado por15

φ̂ = (modos moviéndose a la derecha)+ (modos moviéndose a la izquierda)

φ̂ =
∫ ∞

0

dω

(2ω)
1
2

1√
2ω

[
e−iωũ â−ω + eiωũ â+ω

]
+
∫ ∞

0

dω

(2ω)
1
2

1√
2ω

[
e−iωṽ â−ω + eiωṽ â+ω

]
, (1.106)

y la correspondiente expansión en modos para un observador frente al agujero

φ̂ =
∫ ∞

0

dΩ

(2Ω)
1
2

1√
2Ω

[
e−iΩũb̂−Ω + eiΩũb̂+Ω

]
+
∫ ∞

0

dΩ

(2Ω)
1
2

1√
2Ω

[
e−iΩṽb̂−Ω + eiΩṽb̂+Ω

]
. (1.107)

En la cuña de Rindler x > |t|, en el espacio tiempo ambos sistemas coordenados se traslapan,
de manera que las dos representaciones del campo coinciden, a frecuencias ω y Ω, en cuyo caso
deben satisfacerse las relaciones de conmutación para los operadores â±ω y b̂±Ω, dadas por[

â−ω , â+ω′
]
= δ(ω−ω′)[

b̂−Ω, b̂+Ω′
]
= δ(Ω−Ω′)[

â−ω , â−ω′
]
=
[
â+ω , â+ω′

]
= 0[

b̂−Ω, b̂−Ω′
]
=
[
b̂+Ω, b̂+Ω′

]
= 0. (1.108)

13Estos modos se alejan del agujero negro y corresponden a modos moviéndose a la derecha.
14El factor conforme Ω deja invariante la métrica bajo transformaciones conformes

gαβ → g̃αβ = Ω2(xγ)gαβ

El determinante
√−g y la métrica contravariante transforman como√

−g →
√
−g̃ = Ω2√−g

gαβ → g̃αβ = Ω−2gαβ,

de manera que los factores Ω2 y Ω−2 se cancelan en la acción y el espacio se trabajaría como si fuera plano.
15Dado que se está considerando un espacio 1 + 1, el factor de normalización corresponde a (2π)1/2, en com-

paración con el caso tridimensional en el cual es (2π)3/2.
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Se denomina estado de vacío de Boulware a aquél que es definido por la acción de los operadores
b̂−Ω de manera tal que b−Ω|0B〉 = 0. Este estado se considera que no contiene partículas desde
el punto de vista del observador asintótico alejado hasta infinito. Este vacío es singular sobre el
horizonte de eventos del agujero negro, por lo que no es físicamente aceptable y dado que el vacío
de Minkowski si está físicamente bien definido, para preparar el vacío de Boulware se requeriría
una energía inifinita.[9] Esta divergencia en la energía sobre el horizonte cause fluctuaciones de la
métrica.

Para evitar las divergencias del vacío sobre el horizonte de eventos se hace necesario invocar
las coordenadas de Kruskal (1.102), que no son singulares y cubren toda el espacio-tiempo de
Schwarzschild, lo que las hace unas coordenadas inerciales similares a las de Minkowski, con las
cuales definir adecuadamente el vacío. Para definir el vacío de Kruskal |0K〉, sobre el cual el
campo es regular sobre el horizonte se considera el operador destrucción a−ω que aniquila el vacío
de Kruskal a−ω |0K〉 = 0, en el mismo esquema como aniquilaría el vacío de Minkowski, a−ω |0M〉 = 0
y todo estaría bien definido para establecer la teoría de campos, de manera que el vacío de Kruskal
es un candidato natural para un vacío físico verdadero en presencia de un agujero negro.[10]

En contraste con la ecuación (1.52) para las transformaciones de Bogoliubov que son diagonales,
en el esquema de cuantización en variedades curvas, se hace necesario extender el concepto para
que los modos no sean independientes, es decir, ahora todos los modos de frecuencia positiva y
negativa con respecto al tiempo t, contribuyen a los modos de frecuencia positiva para el tiempo
τ.

Entonces de acuerdo a las relaciones de conmutación dadas en (1.108) los nuevos coeficientes de
Bogoliubov en el vacío de Boulware

δ(Ω−Ω′) =
[
b̂−Ω, b̂+

Ω′

]
=

[∫
dω
(
αωΩ â−ω − βωΩ â+ω

)
,
∫

dω′
(
α∗ω′Ω′ â

+
ω′ − β∗ω′Ω′ â

+
ω′
)]

=
∫

dωdω′
(
αωΩα∗ω′Ω′δ

(
ω−ω′

)
− βωΩβ∗ω′Ω′δ

(
ω−ω′

))
,

δ(Ω−Ω′) =
∫

dω (αωΩα∗ωΩ′ − βωΩβ∗ωΩ′) (1.109)

que es la condición de compatibilidad equivalente a la presentada en la ecuación (1.49) para
espacio-tiempo plano

b̂−Ω =
∫ ∞

0
dω
[
αΩω â−ω − βΩω â+ω

]
. (1.110)

Al sustituir la condición (1.110) en la ecuación (1.107) de la descripción del operador de campo,
se tiene que

1√
ω

e−iωu =
∫ ∞

0

dΩ′√
Ω′

(
αΩ′ωe−iΩ′ ũ − β∗Ω′ωe+iΩ′ ũ

)
, (1.111)
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al multiplicar por exp(±iΩũ)

e±iΩũ 1√
ω

e−iωu =
∫ ∞

0

dΩ′√
Ω′

e±iΩũ
(

αΩ′ωe−iΩ′ ũ − β∗Ω′ωe+iΩ′ ũ
)

1√
ω

e−iωu±iΩũ =
∫ ∞

0

dΩ′√
Ω′

(
αΩ′ωe−iΩ′ ũ±iΩũ − β∗Ω′ωee+iΩ′ ũ±iΩũ

)
1√
ω

e−iωu±iΩũ =
∫ ∞

0

dΩ′√
Ω′

(
αΩ′ωe−i(Ω′±Ω)ũ − β∗Ω′ωe+i(Ω′±Ω)ũ

)
. (1.112)

A través de la transformada de Fourier de una exponencial 16, se tiene que∫ ∞

−∞
ei(Ω−Ω′)ũdũ = 2πδ(Ω−Ω′).

Si se define la función auxiliar que facilita la integración sobre la variable ũ

F(ω, Ω) =
∫ ∞

−∞

du
2π

eiΩu−iωũ =
∫ ∞

−∞

du
2π

exp
{

iΩu + i ω
a eau} ,

y bajo el cambio de variable x = e−au, se transforma en una función Γ de Euler17, de manera que

F(ω, Ω) =
∫ ∞

−∞

du
2π

exp
{

iΩu + i ω
a eau}

= 1
2πa

∫ ∞

0
dx x−

iΩ
a −1e

iω
a x. (1.113)

Si se realizan las sustituciones b = − iω
a y s = − iΩ

a y dado que en la ecuación (1.113), Re{s} = 0
y la integral diverge para x = 0, entonces

ln b = lim
ε→0+

ln
(
− iω

a + ε
)
= ln |ωa | − i π

2 sign
(

ω
a

)
,

16La transformada de Fourier de la exponencial imaginaria pura f (t) = eiω′t, corresponde a

F{ f (t)} =
∫ ∞

−∞
eiωt( f (t))dt

=
∫ ∞

−∞
eiωt(eiω′t)dt

= 2πδ(ω−ω′)

17La función Γ de Euler está dada por

Γ(x) =
∫ ∞

0
tx−1e−tdt,

la cual converge para todo número real x > 0 y para todo x complejo tal que Re{x} > 0. Algunas integrales
trascendentes de tipo exponencial pueden ser abordadas por transformación a la función Γ, como por ejemplo:

∫ ∞

0
xs−1e−bxdx = 1

bs Γ(s).
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entonces la solución de (1.113) está dada por

F(ω, Ω) = 1
2πa exp

(
i Ω

a ln |ωa |+
πΩ
2a sign

(
ω
a

))
Γ
(
− iΩ

a

)
. (1.114)

Las expresiones para los coeficientes de Bogoliubov, quedan

αΩω =
∫ +∞

−∞
e−iωu+iΩũdũ = +

1
2π

√
Ω
ω

∫ 0

−∞
(−au)−

iΩ
a −1e−iωudu

= +
1

2πa

√
Ω
ω

e+
πΩ
2a e

iΩ
a ln
[

ω
a

]
Γ
(
− iΩ

a

)
βΩω =

∫ +∞

−∞
e+iωu+iΩũdũ = − 1

2π

√
Ω
ω

∫ 0

−∞
(−au)−

iΩ
a −1e+iωudu

= − 1
2πa

√
Ω
ω

e−
πΩ
2a e

iΩ
a ln
[

ω
a

]
Γ
(
− iΩ

a

)
. (1.115)

Al tomar la norma cuadrada en cada uno de los coeficientes

|αΩω|2 =

(
+

1
2πa

√
Ω
ω

e+
πΩ
2a e

iΩ
a ln
[

ω
a

]
Γ
(
− iΩ

a

))(
+

1
2πa

√
Ω
ω

e+
πΩ
2a e

−iΩ
a ln

[
ω
a

]
Γ
(

iΩ
a

))

=
1

4π2a2
Ω
ω

e+
πΩ

a

∣∣∣∣Γ( iΩ
a

)∣∣∣∣2 (1.116)

|βΩω|2 =

(
− 1

2πa

√
Ω
ω

e−
πΩ
2a e

iΩ
a ln
[

ω
a

]
Γ
(
− iΩ

a

))(
− 1

2πa

√
Ω
ω

e−
πΩ
2a e

−iΩ
a ln

[
ω
a

]
Γ
(

iΩ
a

))

=
1

4π2a2
Ω
ω

e+
πΩ

a

∣∣∣∣Γ( iΩ
a

)∣∣∣∣2 . (1.117)

Y además entonces a partir de la identidad para el producto de funciones Gamma Γ(ix)Γ(−ix) =
|Γ(ix)|2, de las ecuaciones (1.116) y (1.117) se concluye que

|αΩω|2 = e+
2πΩ

a |βΩω|2 (1.118)

Desde el punto de vista de un observador lejano el vacío de Kruskal |0K〉 contiene partículas y para
determinar su densidad se emplearán los operadores de creación y destrucción de los respectivos
vacíos, los a±ω para el vacío de Kruskal y los b̂±Ω con el fin de operar sobre el vacío de Boulware.
Entonces según lo establecido en la sección anterior sobre la cuantización canónica, el vacío de
Kruskal correspondería a un vacío de (a) partículas y el de Boulware a un vacío de (b) partículas.
Se requiere calcular el número de (b) partículas en el estado de (a) vacío. El valor esperado del
operador número de (b) partículas N̂Ω = b̂+Ωb̂−Ω en el vacío de Kruskal |0K〉 correspondería a
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〈
N̂Ω〉 ≡ 〈0K|b̂+Ωb̂−Ω|0K〉

=
〈

0K

∣∣∣(∫ dω[α∗ωΩ â+ω − β∗ωΩ â−ω ]
)(∫ ∞

0
dω′[αω′Ω â−ω′ − βω′Ω â+ω′ ]

)∣∣∣0K

〉
〈

N̂Ω〉 =
∫ ∞

0
dω|βωΩ|2, (1.119)

que expresa el número de partículas con frecuencia Ω detectadas por un observador en las in-
mediaciones exteriores del agujero negro.

En la condición de normalización de los coeficientes de Bogoliubov dada en la ecuación (1.109) si
Ω′ = Ω, entonces ∫

dω (αωΩα∗ωΩ′ − βωΩβ∗ωΩ′) = δ(Ω−Ω′)∫
dω (αωΩα∗ωΩ − βωΩβ∗ωΩ) = δ(Ω−Ω)∫

dω
(
|αωΩ|2 − |βωΩ|2

)
= δ(0)

dω
(
|αωΩ|2 − |βωΩ|2

)
= 1 (1.120)

entonces, al sustituir (1.118) en la ecuación (1.120), se tiene que

|αωΩ|2 − |βωΩ|2 = 1

e+
2πΩ

a |βΩω|2 − |βωΩ|2 = 1(
e+

2πΩ
a − 1

)
|βωΩ|2 = 1

|βωΩ|2 = 1(
e+

2πΩ
a −1

)

De manera tal que si se identifica la constante a con la gravedad superficial κ del agujero negro18,
entonces, el número de partículas corresponde a

〈N̂ω〉 =
∫ ∞

0
dω
∣∣βΩω

∣∣2= [e 2πΩ
κ − 1

]−1
, (1.121)

que corresponde a una distribución planckiana de cuerpo negro, a una temperatura19

TH =
κ

2π
, (1.122)

denominada Temperatura de Hawking.
18En el caso del efecto Unruh, la constante a corresponde a la aceleración mantenida por el observador acelerado.
19La expresión de la temperatura de Hawking se obtiene al recuperar las constantes c, G, kB y h̄ en la ecuación

(1.122) de acuerdo a ([11]) la gravedad superficial de un agujero negro de Schwarzschild está dada por

κ = c4

4MG .
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1.2.1. Radiación de Hawking como tunelamiento cuántico

Dados los efectos cuánticos de fluctuaciones del vacío es posible, con alta probabilidad, la creación
de pares partícula-antipartícula en las inmediaciones del interior del horizonte de eventos.

Bajo la discusión realizada de los modos entrantes y salientes, se asocia al modo entrante la
antipartícula del par que ingresa al agujero negro, con energía negativa y su correspondiente
partícula, dotada de energía positiva, se asocia con el modo saliente que emigraría hacia la región
externa del agujero negro. Este fenómeno es prohibido clásicamente por la Relatividad General,
la que establece que el horizonte de eventos es el límite último desde el cual cualquier señal puede
escapar de la fuerte atracción gravitacional ejercida por un cuerpo, luego de haber ocurrido un
colapso gravitacional.

En realidad, si se incorpora el esquema de tunelamiento cuántico, la partícula escaparía con una
probabilidad distinta de cero hacia el exterior. Este efecto sucede en virtud de que la acción clásica
para ésta se hace compleja y su amplitud está generalmente influenciada por su parte imaginaria20

y es un fenómeno netamente radial. 21

La derivación desarrollada en la sección (1.2) de la radiación Hawking que involucraba un back-
ground gravitacional fijo en el cual los campos cuánticos libres se propagasen [12], poseía una
dificultad inherente al hecho de que hay varias maneras no todas equivalentes de definir las esco-
gencias de tiempo dado. El carácter covariante de las leyes físicas exige que hay que escoger un
sistema coordenado suficientemente regular en el horizonte que permita definir un vacío dependi-
ente del observador y por lo tanto efectuar una definición rigurosa del significado de partícula.

El tunelamiento cuántico sucede cuando partículas a las que clásicamente se les haría imposible so-
brepasar una barrera de potencial, desde una perspectiva cuántica presenten probabilidad diferente
de cero de hacerlo.

Al considerar la métrica de Schwarzschild sin sus componentes angulares (1.92) y teniendo en
cuenta la necesidad de cubrir la región cercana al radio gravitacional r ∼ rg mediante coorde-
nadas regulares denominadas coordenadas de Painlevé-Gullstrand22, para observadores cayendo

Y al considerar la frecuencia de los modos dada por

Ω = κ
2πc ,

entonces a partir de reconocer que la energía de los modos del campo depende de su frecuencia y de su temperatura,
de acuerdo a

kBT = E = h̄Ω

kBT = h̄
( κ

2πc

)
kBT = h̄

(
c4

4MG
2πc

)

T =
h̄c3

8πGMkB

20Debido a que la tasa de emisión del agujero negro posee una parte imaginaria, la acción para una partícula
cuyo movimiento es prohibido clásicamente se hace compleja.

21Dado que cerca al horizonte las componentes angulares de la solución, denominada de onda s, para la ecuación
de onda pueden ser despreciadas y éstas serían las asociadas a un número cuántico angular l = 0.

22Correspondientes a (tp, r, θ, φ).
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libremente, cuyas geodésicas son descritas por dr
dτ < 0. Siendo τ el tiempo propio y E la energía

conservada por unidad de masa de los mismos, entonces

dt
dτ

=
E
m

1− rg
r(

dr
dτ

)2

+

(
1−

rg

r

)
=

(
E
m

)2

. (1.123)

Esta energía E está relacionada con la velocidad física de los observadores a través del vector de
Killing ξ

µ

(t) generador de la simetría temporal, de acuerdo a

E
m

= −uµξ
µ

(t) = −u0,

en el caso en que poseean una velocidad inicial cero en el infinito y una energía por unidad de
masa igual a 1, entonces, para dichos observadores, existe un tiempo tp

23 tal que ∇µtp = −uµ.
Además de acuerdo a las ecuaciones (1.123) queda expresado por

tp = t +
∫ r

dr′
√

rg

r′

(
1−

rg

r′

)−1

tp = t + 2
√

rgr ln
(√r−√rg√

r +√rg

)
. (1.124)

Al sustituir en la ecuación (1.92) para la métrica, se tiene que

ds2 = −
(

1−
rg

r

)
dt2

p + 2
√

rg

r
dtpdr + dr2, (1.125)

la cual es no-singular en el horizonte, y queda asociada a tp con el cual los observadores en caída
libre alcanzan la singularidad r = 0 en un tiempo finito y a partir de la cual las geodésicas entrantes
y salientes, para una onda s nula corresponden a

ṙ =
dr
dtp

= ±1−
√

rg

r
. (1.126)

La ecuación (1.126) de acuerdo a [2] describiría el movimiento de un cascarón de energía ω,
delgado, nulo y radial emitido por tunelamiento desde el interior del agujero negro de masa M
para ṙ > 0 y uno entrante de energía negativa para ṙ < 0.

En un campo cuántico de tipo exponencial en acople débil a la gravedad, que satisface las ecua-
ciones de movimiento de Hamilton dadas por (1.20) y (1.21), luego de ser recuperada la constante
h̄ con el fin de efectuar una aproximación semiclásica24, es decir, al considerarlo separable en su
parte real T(x), correspondiente con la amplitud y su parte imaginaria T(x), con su fase y ex-
pandirlas en términos de series de potencias de h̄, a

φ(x) = eT(x)+iS(x).

23Denominado tiempo de Painlevé.
24Denominada también aproximación WKB, discutida con más detalle en el Apéndice A.
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A partir de lo obtenido en el Apéndice (A) se tiene que

h̄2∇2φ = −m2φ

∇2
(

eT+iS
)
= −m2

h̄2 eT+iS

∇2(T + iS) + (∇T + i∇S)2 = −m2

h̄2

∇2T + (∇T)2 − (∇S)2 = −m2

h̄2

∇2S + 2
(
∇S · ∇T

)
= 0. (1.127)

Y teniendo en cuenta la expansión citada, la amplitud y la fase del campo cuando h̄ tiende a cero
estarían dados por

T(x) = h̄−1(T0(x) + h̄T1(x) + h̄2T2(x) + h̄3T3(x) + · · ·
)

S(x) = h̄−1(S0(x) + h̄S1(x) + h̄2S2(x) + h̄3S3(x) + · · ·
)
, (1.128)

llevan a que la ecuación (1.127) a primer orden para T0 y S0
25 se reduzca a

(∇T0)
2 − (∇S0)

2 = −m2

∇T0 · ∇S0 = 0. (1.129)

Si se asume que la amplitud del campo T0 varía suficientemente lento respecto a la fase S0,
entonces, la primera ecuación en (1.129) se reduce a

(∇S0)
2 = −m2. (1.130)

Si se considera un campo cuántico escalar sin masa, entonces su métrica estará dada por

gµν =

−
(

1− 2M
r

) √
2M

r√
2M

r 1

 ,

o en componentes contravariantes

gµν =

 −1
√

2M
r√

2M
r

(
1− 2M

r

) .

Al sustituir en la métrica la ecuación (1.130) entonces

0 =

(
∂S0

∂r

)2

−
(

∂S0

∂t
−
√

2M
r

∂S0

∂r

)2

0 =
∂S0

∂t
+

(
±1−

√
2M

r

)
∂S0

∂r

0 =
∂S0

∂t
+ ṙ

∂S0

∂r

S0 = ±ω

(
t−

∫ r dr
r

)
, (1.131)

25Los términos de orden superior se corresponden con las correcciones cuańticas sobre el valor semiclásico S0.
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en donde fue necesario emplear la ecuación (1.126) para las geodésicas nulas radiales, de tal
manera que el coeficiente de transmisión para esta acción corresponda a

Γ = e
− 2

h̄ Im{S}
∣∣x2

x1 . (1.132)

Dado que el interés estará centrado en la parte imaginaria de la acción respecto a la región
clásicamente prohibida26, la cual corresponde a

Im{S} = Im
∫ rout

rin

dr p

= Im
∫ rout

rin

dr
∫ p

0
dp′

= Im
∫ rout

rin

dr
∫ M−ω

M
dH

1
ṙ

Im{S} = Im
∫ rout

rin

dr
∫ ω

0
(−dω′)

1
ṙ

. (1.133)

En la ecuación (1.133) se han usado las ecuaciones de Hamilton ṙ = dH
dp y que H = M−ω será

la energía perdida por el agujero luego de que el proceso de tunelamiento se ha efectuado para el
canal partícula del sistema.

En la ecuación (1.126) si se tiene en cuenta que el cascarón de energía autogravita, las geodésicas
para la onda s nula saliente, son

ṙ = +1−
√

2(M−ω′)

r
, (1.134)

con rin = 2M− ε y rout = 2M + ε. Por lo tanto, al sustituir en la ecuación (1.133)

Im{S} = −Im
∫ 2(M−ω)

2M
dr
∫ ω

0
dω′

1

1−
√

2(M−ω′)
r

= π
∫ ω

0
dω′

[
4(M−ω′)

]
Im{S} = 4πω

(
M− ω

2

)
. (1.135)

Un cálculo similar se aplicaría al proceso de tunelamiento por producción de pares en una localidad
externa al horizonte de eventos en el cual la antipartícula ingresase a éste, lo cual implicaría que el
proceso se efectuaría hacia atrás en el tiempo. 27 Y causaría que el valor para la parte imaginaria de

26Por ejemplo cuando se considera un vacío cuántico presente en el interior del agujero negro en el que sucediera
la creación de un par partícula-antipartícula y que por tunelamiento escapara una de ellas atravesando el horizonte
de eventos, venciendo una barrera de potencial clásicamente prohibida.

27Este caso se denomina tunelamiento por medio del canal antipartícula, y causa un encogimiento del agujero
negro y las geodésicas entrantes dadas por la ecuación (1.134), corresponden a

ṙ = −1 +

√
2(m + ω′)

r
.



30 Tunelamiento en aproximación semiclásica de la radiación Hawking para Black Shells

la acción fuera idénticamente igual al obtenido para la ecuación (1.135). Según [2] la contribución
de ambos canales aplicadas a la ecuación (1.132) lleva a un factor de Boltzmann de

Γ ∝ e−2Im{STotal}

∝ e−8πω
(

M− ω
2

)
∝ e−8πMω+4πMω2

Γ ∝ e−8πMω ≈ e−βE, (1.136)

en el caso que ω sea pequeño y se desprecie el término cuadrático.28

Es así que si β = 1
T corresponde al inverso de la temperatura, entonces la temperatura está dada

por

β = 8πM
1
T

= 8πM

TH =
1

8πM
=

κ

2π
, (1.137)

que es la temperatura Hawking obtenida en (1.122).

28Considerar términos de orden superior en la aproximación semiclásica de WKB, que expresan dependencias de
orden superior en ω son tratados en [13].



Capítulo 2

Tunelamiento nuclear

2.1. El decaimiento α

De acuerdo a [14], la teoría de Gamow[15] predice la existencia de tunelamiento cuántico a través
de un pozo de potencial en el cual sucede el confinamiento de los hadrones dentro del núcleo
atómico.

Considerar la ecuación de Schrödinger para resolver el problema nuclear, respecto al caso atómico
lleva a la necesidad de verificar varias diferencias entre estas dos situaciones, dado que en el primero
no existe una estructura central que proporcione el potencial de enlace; sino es el efecto colectivo
de varios nucleones moviéndose en algún potencial efectivo medio dentro de éste. Para tal fin es
conveniente uno de naturaleza central en una primera aproximación, para el cual la ecuación de
movimiento corresponde a (

− h̄2

2m
∇2 + V(r)

)
ψ(r) = Eψ(r)(

∇2 +
2m
h̄2

(
E−V(r)

))
ψ(r) = 0, (2.1)

siendo E el valor propio de la energía, los cuales también son autoestados del operador momentum
angular, que se conserva, en el caso de simetría esférica; de tal manera que se tiene invarianza
rotacional. Dado que los autoestados de éste son los armónicos esféricos Yl,ml (θ, φ)1

1El laplaciano en coordenadas cartesianas es un operador diferencial espacial de segundo orden dado por:

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

y en coordenadas esféricas tiene la estructura:

∇2 =
1
r2

∂

∂r
r2 ∂

∂r
− 1

h̄2r2
L2,

de tal manera que:

L2Yl,ml
(θ, φ) = −h̄2

[
1

senθ

∂

∂θ
senθ

∂

∂θ
+

1
sen2θ

∂2

∂φ2

]
LzYl,ml

(θ, φ) = −ih̄
∂

∂φ
Yl,ml

(θ, φ) = h̄mlYl,ml
(θ, φ).

31
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Figura 2.1: Dos barreras de potencial simétricas en el modelo de Gamow. Tomado de [15].

Al asumir una función de onda separable en su parte radial y angular, respectivamente en la forma

ψnlml (r) =
unl(r)

r
Yl,ml (θ, φ), (2.2)

Con lo que la ecuación (2.1) adquiere la forma radial(
d2

dr2 +
2m
h̄2

(
Enl −V(r)− h̄2 l(l + 1)

2mr2

))
unl = 0. (2.3)

Se hace necesario asumir una forma particular del potencial V(r) para inferir acerca de los niveles
de energía. Dos expresiones de potencial que llevan a soluciones cerradas o exactas, corresponden
al pozo de potencial cuadrado infinito y el de oscilador armónico, pero no brindan información
acerca del proceso de tunelamiento a través de la barrera.
El primer caso es el potencial

V(r) =

{
∞, r ≥ R,
0 otro caso,

siendo R el radio nuclear. Entonces la ecuación (2.3). toma la forma(
d2

dr2 +
2m
h̄2

(
Enl −

h̄2 l(l + 1)
2mr2

))
unl = 0,

cuyas soluciones regulares en el origen, corresponden a las funciones de Bessel esféricas oscilatorias

unl(r) = jl(knlr) = 0, n ≥ 1,

pues los nucleones no pueden escapar ante la presencia del pozo de potencial infinito y por lo
tanto las funciones de onda radial se anulan en la frontera. Siendo

knl =

√
2mEnl

h̄2 .
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Figura 2.2: Barrera de potencial para el decaimiento α con un potencial más realista dado por la línea
punteada. Tomado de [16].

El siguiente potencial teórico a considerar es el de oscilador armónico tridimensional dado por:

V(r) =
1
2

mω2r2,

de manera que la ecuación de Schrödinger radial es(
d2

dr2 +
2m
h̄2

(
Enl −

1
2

mω2r2 − h̄2 l(l + 1)
2mr2

))
unl = 0,

cuya solución son los polinomios asociados de Laguerre, tal que la función de onda es de la forma:

unl ≈ e−
mω2r2

2h̄ rl+1L
l+1

2
n+l−1

2

(√
mω

h̄
r
)

,

con valores propios de la energía para los estados ligados correspondientes con

Enl = h̄ω

(
2n + l − 1

2

)
, n ≥ 1.

Siguiendo a [16] el decaimiento α nuclear corresponde a la emisión de partículas α2 ante la acción
de un potencial como el mostrado en la figura (2.2), en donde R es el radio del núcleo hijo cuando
r > R corresponde a un proceso de repulsión y cuando r < R ésta es atraída por un potencial
considerado de pozo rectangular por facilidad, cuya profundidad está dada por (B.10).

De manera que el coeficiente de transmisión está dado por

T = exp
(
− 2
√

2M
h̄

∫ R1
R
√

V−Edr
)

, (2.4)

2Estas partículas corresponden a núcleos de Helio con carga eléctrica Z1 = 2, cuya energía es del orden de los
MeV, las cuales son apreciablemente menores que las correspondientes a la repulsión coulombiana entre ésta y el
núcleo hijo con carga Z2 = Z− 2 y siendo Z la carga del núcleo que se desintegra.
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para un potencial

V =
Z1Z2e2

r
R < r < R1,

V =
Z1Z2e2

R1
= E

siendo R1 el punto de retorno clásico, en el cual se cumple la condición V(R1) = E para E
correspondiente con la energía de expulsión. De acuerdo a la sustitución

r
R1

= sen2(ϕ),
R
R1

= sen2(ϕ0),

el coeficiente de transmisión queda

T = exp
(
− 2
√

2M
h̄

∫ R1
R
√

V−Edr
)

= exp
(
− 2
√

2M
h̄

∫ R1
R

√
Z1Z2e2

R1
−Edr

)
= exp

[
− 2
√

2M
h̄

√
E 1

2 R1

(
π−2ϕ0−sen(2ϕ0)

)]
T = exp

[
− 2
√

2M
h̄

√
ER1

(
π
2 −2

√
R

R1

)]
ln(T) = ln

(
exp

[
− 2
√

2M
h̄

√
ER1

(
π
2 −2

√
R

R1

)])

ln(T) = −2
√

2M
h̄

√
ER1

(
π

2
− 2

√
R
R1

)
ln(T) = −2πe2

h̄

√
2M
E

Z2 +
8e
h̄
√

Z2MR

ln(T) = c− a√
E

,

de manera que los parámetros a y c, están dados por

a =
2πe2

h̄

√
2MZ2

c =
8eπ

h̄
√

Z2MR

Si se considera que v es la velocidad de impacto de la partícula α sobre la pared interna de la
barrera, que puede ser estimada a partir de la relación energía cinética clásica v =

√
2E/M a la

cual ésta escaparía.

Si se asume que la partícula está confinada en una caja de ancho R y ésta tiene la mínima energía,
de manera que se acomode solamente media longitud de onda de De Broglie, tal que

R ∼ λB =
h
p
∼ h

Mv
=⇒ R ∼ h

MR
.
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Así que la constante de decaimiento λ3 está dada por

λ =
v

2R
T =

h/MR
2R

T

λ ≈ h̄
MR2 T

ln(λ) = ln
(

h̄
MR2 T

)
ln(λ) = ln

(
h̄

MR2

)
+ ln(T)

− ln(λ) = − ln
(

h̄
MR2

)
− ln(T) (2.5)

ln
(

1
λ

)
= − ln

(
h̄

MR2

)
− ln(T)

ln
(

1
λ

)
= − ln

(
h̄

MR2

)
−
(

c− a√
E

)
ln
(

1
λ

)
= − ln

(
h̄

MR2

)
−c +

a√
E

ln
(

1
λ

)
= −b +

a√
E

,

con

b = c + ln
(

h̄
MR2

)
=

8e
h̄
√

Z2MR + ln
(

h̄
MR2

)
.

Esto muestra que en el decaimiento α la constante b varía muy lentamente con el número atómico
Z2 y puede considerarse una constante, mientras que varía con éste linealmente, es decir en una
gráfica del logaritmo de la vida media

T1/2 ≡
ln(2)

λ
= −c1 +

c2√
E

Z2

Por ejemplo, para el átomo de Polonio 210, se predice una vida media de desintegración del orden
de 138,76 días [17]. En tal esquema para dicho átomo los valores involucrados en la ecuación para
el coeficiente de transmisión T, en el que se considera la atracción coulombiana entre el nucleo
hijo Z2 = 84− 2 = 82, una partícula alfa Z1 = 2 y un núcleo padre Z = 84; para un potencial

V = ke
Z1Z2e2

r
,

calculado en el punto de retorno clásico R1, en el cual la energía E = 5,304 MeV, se corresponde
con el valor del potencial

VC(R1) = E =
keZ1Z2e2

R1
= 5,304 MeV,

3Esta expresión se obtiene en la ecuación (B.25) del apéndice B
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entonces, el valor de R1, se corresponderá con

VC(R1) = E =⇒ R1 =
keZ1Z2e2

E
=

keZ1Z2e2

E

=
keZ1Z2e2

5,304 MeV

=
9× 109Z1Z2e2

5,304 MeV

=
9× 109 Nm2

c2 (2× 82)
(
1,602× 10−19)2 c2

5,304× 106 (1,602× 10−19Nm)

=
9× 2× 82× 1,602

5,304
× 10−6 × 10−10m

R1 = 4,4580503× 10−14 m.

Al considerar la distancia de confinamiento del pozo de potencial R al radio nuclear de acuerdo a
la fórmula empírica

R = r0A1/3

= 1,2× 10−15m× 2101/3

R = 7,13× 10−15m.

La energía del proceso, según [17] corresponde a

E = 5,304MeV = 5,304× 106eV

= 5,304× 106
(

1,602× 10−19 J
)

= 5,304× 1,602× 10−13 J = 8,497008× 10−13 J

E = 0,8497008× 10−12 J,

y el término que acompaña la integral

2
√

2M
h̄

=
2
√

2× 4× (1,673)10−27kg
1,0546× 10−34 J · s

=
2
√

2× 4× (1,673)10−27

1,0546× 10−34
kg1/2

J · s

=
2
√

2× 4× (1,673)10−27

1,0546× 10−34
kg1/2

J · s
2
√

2M
h̄

≈ 2,19× 1021 kg1/2

J · s ,

Al calcular entre R y R1 esta integral numéricamente, entonces, la tasa de transmisión en el
modelo de Gamow (2.4) corresponde a

T1/2 ≈ 71, 4 días
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cuyo orden de magnitud está en perfecto acuerdo con las medidas experimentales.

De acuerdo a [18], el potencial entre un proyectil y un objetivo para la l-ésima onda parcial es

Vl(r) = VN(r) + VC(r) +
h̄2l(l + 1)

2µr2 = V0(r) +
h̄2l(l + 1)

2µr2 , (2.6)

en donde VN(r) y VC(r) son los potenciales nuclear y de Coulomb, respectivamente, siendo la
barrera de Coulomb el caso l = 0.

Teniendo en cuenta a [19], al emplear la aproximación WKB, la probabilidad de transmisión, está
dada por

Tl(E) =
(

1 + e2Sl(E)
)−1

. (2.7)

La integral de acción asociada a la penetración de la barrera de potencial está dada por

Sl(E) =
∫ r2

r1

p dr

=

√
2µ

h̄2

∫ r2l

r1l

[
V0(r) +

h̄2l(l + 1)
2µr2 − E

]1/2

dr, (2.8)

en donde r1l y r2l corresponden a los puntos clásicos de retorno para la l-ésima onda parcial de la
barrera de potencial.

En el caso en el cual se considere una barrera de potencial de estructura parabólica

V0(r) = VB0 −
1
2

µ2Ω2(r− r0
)2, (2.9)

en donde VB0 = Vl(r0) es la altura de la barrera de potencial para la onda s y Ω sea su curvatura.
Por lo tanto la probabilidad de transmisión, está dada por la fórmula de Hill-Wheeler4, presentada
en [20]

T0(E) =
[

1 + e−
2π
h̄Ω (E−VB0)

]−1

. (2.10)

Para verificar cómo es la distribución de las barreras, dada por la expresión Eσ, y sus segundas
derivadas. La determinación de las probabilidades de penetración para las diferentes ondas parcia-
les, en el caso de un sistema unidimensional.5

La dependencia de la probabilidad de transmisión con l a una energía dada, está dada por

Tl ' T0

[
E− h̄2l(l + 1)

2µR2(E)

]
, (2.11)

4En el caso de considerarse energías por debajo de la barrera de potencial parabólica existen desviaciones
significativas, con lo cual la fórmula de Hill-Wheeler no se cumple.

5Esto significa que no se consideran acoples a un sistema interno, por lo tanto son despreciados, lo cual favorece
la utilización de este modelo en la barrera de potencial supuestamente presente en el horizonte de eventos. En el
caso de asumirse un núcleo con estructura interna y asociar a ésta grados de libertad internos intrínsecos sobre la
sección transversal eficaz de fusión, es necesario resolver ecuaciones para varios canales acoplados, que determinan
las funciones de onda del movimiento relativo, como se expresa en [18].
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en donde µR2(E), corresponde al momento de inercia efectivo y R2(E), es una función suave de
la energía.6 Dado que en el estudio de reacciones nucleares por debajo de la barrera de Coulomb,
uno de los observables experimentales es

σ(E) =
∞

∑
l=0

σl(E),

denominada la sección eficaz; cuando muchos valores de l son importantes en el fenómeno, esta
suma se aproxima a una integral, de manera que

Eσ(E) = πR2(E)
∫ E

−∞
T0(E′) dE′. (2.12)

Esta expresión aproxima a un nivel bastante preciso los datos experimentales para la sección
transversal de fusión total, lo cual se evidencia en [21], [22] y [23]. Al derivar dos veces la ecuación
(2.12), se tiene que la derivada respecto de la energía de la probabilidad de transmisión de la onda
s es más o menos proporcional a la segunda derivada de Eσ respecto a la energía, o lo que es
equivalente a que

dT0(E)
dE

∼ 1
πR2(E)

d2

dE2

(
Eσ(E)

)
+O

(
dR
dE

)
. (2.13)

La ecuación (2.13) puede ser empleada para aproximar la primera derivada de la probabilidad de
tunelamiento para la onda s. En un sistema netamente clásico T0 es igual a la unidad por encima
de la barrera de potencial y cero por debajo de ésta; así que dicha cantidad corresponde a una
distribución delta cuyo pico aparece para un valor de la energía que es igual a la altura de la
barrera. Al combinar las ecuaciones (2.11) y (2.12) y al hacer la asociación R(E)→ r0, es posible
obtener una conexión directa entre la sección transversal de fusión y la distribución de momentum
angular

Tl(E) =
1

πr2
0

(
d
(
E′σ(E′)

)
dE′

)
, (2.14)

en donde

E′ = E− h̄2l(l + 1)
2µr2

0
.

Para los casos en los cuales la energía está por encima de la barrera de potencial, se puede emplear
un potencial parabólico como el presentado en la ecuación (2.9), además al realizar la asignación
R(E)→ r0 y sustituir (2.10) en (2.12). Se obtiene la expresión para la sección transversal

σ(E) =
h̄2Ωr2

0
2E

ln
[

1 + e
[

2π
h̄Ω (E−VB0)

]]
, (2.15)

la cual en el límite clásico, cuando la curvatura del potencial es casi nula, Ω→ 0, o equivalente-
mente, E ≥ VB0, la ecuación (2.15) se reduce a

σ(E) = πr2
0

(
1− VB0

E

)
. (2.16)

Un potencial que más se ajusta al nuclear, corresponde al potencial efectivo para el decaimiento en
clúster en el modelo autoconsistente de Skyrme-Hartree-Fock (SHF) [24]. Usado particularmente

6Para aplicaciones en física nuclear R(E), se reemplaza por la posición de la barrera de onda s, a una distancia
r0.
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en el cálculo del decaimiento α y determinación de espectros de vida media, así como a la investi-
gación de los anchos de decaimiento de estados moleculares en isótopos de Berilio y Carbono.7 En
tal esquema un núcleo padre está compuesto por una partícula α y un núcleo hijo, interactuando
a través de un potencial

V(r) = VN(r) + VC(r) +
h̄2

2µr2

(
l +

1
2

)2

,

que tiene una estructura funcional similar al modelo de Gamow, siendo VN(r) el potencial nuclear,
VC(r) el potencial de Coulomb y la barrera centrífuga modificada por el denominado potencial
centrífugo modificado de Langer, en el cual l y µ son respectivamente, el momentum angular del
clúster y la masa reducida del sistema clúster-núcleo.

2.2. Conversión interna

Otro fenómeno nuclear de importancia en el cual se analiza la conversión de pares electrón-positrón,
a partir de la emisión de un fotón por medio de una transición nuclear, conociendo sólo sus
funciones de onda para una distribución de carga nuclear y es independiente de la función de onda
del núcleo, es el proceso de conversión interna. Éste está fuertemente conectado con la conversión
de estados electrónicos ligados, dado que la energía de excitación de un núcleo es transferida a
un estado ligado de un electrón, así que es excitado a un continuo de energía positiva.[25] Para
ejemplificar esta situación se seguirá la perspectiva de [26], en la que se considera las probabilidades
de transición Pe+e− electrón-positrón y del fotón Pγ. Los cuales se encuentran relacionados por el
coeficiente de conversión de pares (PCC), dado por

β =
Pe+e−

Pγ
, (2.17)

que corresponde a la razón de las probabilidades de producción de pares respecto a la de emisión
de un fotón para una transición nuclear con energía ω. Dado que la energía del electrón y el
positrón toma valores continuos, entonces, β se puede expresar como una integral del espectro del
positrón dβ

dE
8 con respecto a la energía del positrón E

β(ω) =
∫ ω−1

1

dβ(E)
dE

dE. (2.18)

Esta teoría se halla fuertemente vinculada con la conversión de electrones estados ligados, en la
cual la energía de excitación de un núcleo excitado es transferida a un electrón de estado ligado y a
su vez éste es excitado a un continuo de energía, de manera que la razón de probabilidades de una
vacante en el cascarón interno electrónico y la subsecuente emisión de un fotón, es el coeficiente
de conversión α

α =
Pe−

Pγ
. (2.19)

Dicho electrón creado puede ocupar un estado ligado con energía Eb, de manera que positrones
monoenergéticos cuya energía cinética es Ekin

e+ = ω + Eb − 2. Para tal fin se hace necesario un

7El cual es una modificación del potencial nuclear de Woods-Saxon
8Denominado coeficiente diferencial de conversión de pares (DPCC).
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hamiltoniano no perturbado Ĥ0 que describe electrones moviéndose en un campo externo V(r)
correspondiente con el generado por el núcleo y los fotones libres, mientras que la interacción entre
los nucleones y los electrones moviéndose en el campo del fotón está representado por el operador
Ĥint(t) =

∫
d3xÛ(x); de manera tal que la ecuación de movimiento para un vector de estado |φ〉

tiene la forma

i
d
dt
|φ〉 = Ĥint(t)|φ(t)〉 (2.20)

La matriz Ŝ hace referencia a aquel operador que transforma el sistema desde un estado inicial
|φ(t = −∞)〉 a un estado final |φ(t = +∞)〉, los cuales son vectores propios del hamiltoniano
sin perturbar Ĥ0, de manera que

|φ(t = +∞)〉 = Ŝ|φ(t = −∞)〉, (2.21)

en donde la matriz Ŝ9 tiene la forma

Ŝ =
∞

∑
n=0

Ŝn

Ŝ =
∞

∑
n=0

(−1)n

n!

∫
d4x1

∫
d4x2 · · ·

∫
d4xnT̂[Û(x1)Û(x2) · · · Û(xn)], (2.22)

en la imagen de interacción el operador Û(x) se obtiene a partir de los operadores de corriente
ĵ(x) y el de campo electromagnético Â(x), de acuerdo a

Û(x) = eĵ(x)Â(x), (2.23)

entonces para los estados inicial |i〉 y final | f 〉,

S(n)
i f = 〈 f |Ŝ(n)|i〉, (2.24)

permiten calcular las probabilidades de transición.

En el caso de la emisión de un fotón, al considerar expansión perturbativa a primer orden en la
matriz Ŝ dada en (2.22)

Ŝ(1) = −ie
∫

d4x ĵ(x) · Â(x)

= −ie
∫

d4x
(

ˆ̄φ(x)γφ̂(x) · Â(x)
)

= −ie
∫

d4x
(

ˆ̄φν(x)γφ̂ν(x)Âµ(x)
)

= −ie
∫

d4x
(

ˆ̄φν(x) γ φ̂ν(x)∑
s

[
ĉs Aµ

s (x) + ĉs
†(Aµ

s (x))∗
])

, (2.25)

9En este contexto se hace uso del operador ordenamiento temporal dado por:

T̂
[
Û(t1, x1), Û(t2, x2)

]
=

{
Û(x1)Û(x2), para t1 > t2

Û(x2)Û(x1), para t1 < t2.
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en donde se ha considerado un operador de campo electromagnético descrito en términos de los
operadores de creación ĉs

† y destrucción ĉs del campo electromagnético, Aµ
s sus funciones propias

y siendo γ las matrices de Dirac.

Al invocar el gauge de Coulomb ∇ ·A = 0, para funciones de onda transversas con paridad (−1)L

son denominadas potenciales vectoriales magnéticos y los que (−1)L+1 son los eléctricos. El índice
s hace referencia a la energía ω, el momentum angular L, el número cuántico magnético M y la
paridad τ, ya sea eléctrica o magnética. Las funciones de onda normalizadas sobre la esfera de
radio nuclear ωRN � 1, son respectivamente

AM mag
L (x) =

√
ω

RN
AM (m)

L (ωx)e−iωt (2.26)

AM elec
L (x) =

√
ω

RN
AM (e)

L (ωx)e−iωt (2.27)

A0 mag(ωx) = A0 mag(ωx) = 0. (2.28)

Estos potenciales están normalizados de acuerdo a la escala de energía del fenómeno, en escala
discreta ω = ( π

RN
)n.

En la ecuación (2.25) se permite construir los elementos de matriz entre los estados inicial y final
del núcleo con estados de energía εi y ε f respectivamente. El núcleo se halla descrito en términos
de funciones propias del momentum angular y la paridad, cuyos valores propios son (Ji, Mi),
(J f , M f ), πni y πn f . El único cambio de paridad de importancia es πn = πni πn f . En el estado
final hay un sólo fotón presente con números cuánticos L, M, τe o τm de manera que la ecuación
(2.25), en virtud de la ecuación (2.23)

S(1)
i f = −ie

√
ω

RN

∫
d4x jn(x) ·AM∗(τ)

L (ωx)e−i(εi−ε f )teiωt

= −i
∫

d4x jn(x)e−i(εi−ε f )t e
√

ω

RN
·AM∗(τ)

L (ωx)eiωt

= −i
∫

d4x e
√

ω

RN
〈 f | ĵn|i〉 ·AM∗(τ)

L (ωx)eiωt

= −i
∞x

0

dtdr e
√

ω

RN
〈 f | ĵn|i〉 ·AM∗(τ)

L (ωx)eiωt

= −
∫

dt e
√

ω

RN
eiωte−i(εi−ε f )t

∫ ∞

0
dτn j(rn) · AM(τ)

L (ωrn)

S(1)
i f = −2πiU(1)

i f δ(εi − ε f −ω), (2.29)

donde se ha considerado que si el integrando de (2.29) es una función impar, la integral se hace
cero; de manera que sólo las transiciones

πn = (−1)L+1−λ, (2.30)

con:

λ =

{
0, para τ = m
1, para τ = e,

(2.31)
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pueden contribuir a la transición. La ecuación (2.31) es una regla de selección que implica que para
un momentum angular L dado, sólo una de dos clases de fotones puede ser emitido. El símbolo∫ b

a dτn indica una integración sobre un shell esférico de radio a y b. La probabilidad de emisión
por unidad de tiempo corresponde a la norma de la ecuación (2.29) y está dada por

wγ = 2π|Ui f |2δ(εi − ε f −ω). (2.32)

El cálculo de Pγ involucra una suma sobre todos los estados del fotón y de todos los substratos
magnéticos nucleares finales. La suma sobre la energía del fotón es reemplazada por una integral

∑
ω

→
∫

dn =
RN

π

∫
dω, (2.33)

con lo que

Pγ =
8παω

2Ji + 1

+Ji

∑
Mi=−Ji

+J f

∑
M f =−J f

∞

∑
L=1

+L

∑
M=−L

∑
τ=e,m

∣∣V(τ)
γ

∣∣2, (2.34)

con una energía de transición de
ω = εi − ε f (2.35)

En la determinación de coeficiente de conversión de pares, en el numerador de la ecuación (2.19),
se considera que no hay fotones presentes en los estados inicial ni final y por lo tanto la contribución
es a segundo orden, en la expansión (2.22), así que

Ŝ2 = −1
2

e2
x

d4xd4y T̂
[
ĵµ(x)Âµ(x) ĵν(y)Âν(y)

]
, (2.36)

en donde la corriente10 consiste de una parte electrónica y una parte nuclear, de acuerdo a

ĵ(x) = ĵn(x)− ĵe(x). (2.37)

Si se expresa la corriente electrónica como

ĵeµ = Ψ̂∗γΨ̂, (2.38)

entonces los operadores de campo serán

Ψ̂(x) = ∑
t

âtΨt(x), ˆ̄Ψ(x) = ∑
t

âtΨ̄t(x), (2.39)

en donde Ψt es la función de onda de Dirac del electrón en el campo externo y â†
t y ât son los

operadores de creación y destrucción, respectivamente11. En tal caso los elementos matriciales
serán

S(2)
i f = 〈 fn fe fA|Ŝ(2)|inieiA〉, (2.40)

10El signo menos entre las dos corrientes corresponde a la diferencia de signo de la carga entre el núcleo y los
electrones.

11Estas relaciones de anticonmutación fermiónicas están dadas por

{âr
p, âs†

q } = {b̂r
p, b̂s†

q } = (2π)3δ3( p̂− q̂)δrs
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siendo in y fn los estados inicial y final del núcleo y los correspondientes ie y fe para el electrón
cuyas energías son −E y E′, el número cuántico k y k′, y la proyección del momentum angular
en la dirección z, µ y µ′. Aquí se considera +E como la energía del positrón emitido, iA e fA
representan los estados de vacío del fotón. El propagador del fotón, está dado por

〈 fA = 0
∣∣T̂[Âµ(x)Âν(y)]

∣∣iA = 0〉 = igµνD(x− y), (2.41)

con el propagador del fotón

D(x) = − 1
(2π4)

∫
d4k

e−k·x

k · k + i0
(2.42)

De manera que

〈 fn fe|T̂[ ĵµ(x) ĵµ(y)]|inie〉 =
= 〈 fn fe| ĵµ(x) ĵµ(y)|inie〉
= −[jn(x) · je(y)e−iωtx e+i(E+E′)ty + jn(y) · je(x)e−iωty e+i(E+E′)tx ], (2.43)

donde se ha usado la definición de la corriente de transición nuclear, dada por

jn(x)e−i(εi−ε f )t = 〈 f | ĵn|i〉,

y ω, dada por (2.35), de manera que la corriente electrónica, sea

je(x)ei(E+E′)t = 〈 fe| ĵe(x)|ie〉
= Ψ̄ f (x) γ Ψi(x). (2.44)

Entonces, la ecuación (2.40) toma la forma

S(2)
i f = 〈 fn fe fA|Ŝ(2)|inieiA〉

=
ie2

(2π)4

∫ ∞

−∞
d3τn

∫ ∞

−∞
d3τe jn(rn) · je(re)

∫ ∞

−∞
d3k eik·(rn−re)×

×
∫ ∞

−∞
dk0

1
k2 − k2

0 − i0

∫ ∞

−∞
dte ei(E+E′+k0)te

∫
dtn e−i(ω+k0)tn

=
ie2

(2π)4

∫ ∞

−∞
d3τn

∫ ∞

−∞
d3τe jn(rn) · je(re)

∫ ∞

−∞
d3k eik·(rn−re)×

× (2π)δ(k2 −ω2 − i0)
1

k2 − k2
0 − i0

(2π)δ(E + E′ −ω)
∫ ∞

−∞
dtn e−i(ω+k0)tn

=
ie2

(2π)2

∫ ∞

−∞
d3τn

∫ ∞

−∞
d3τe jn(rn) · je(re)

∫ ∞

−∞
d3k

eik·(rn−re)

k2 −ω2 − i0
δ(E + E′ −ω)

=
ie2

(2π)2

∫ ∞

0
dτn

∫ ∞

0
dτe jn(rn) · je(re) (2iπ)

eiω|rn−re|

|rn − re|
δ(E + E′ −ω)

= − ie2

(2π)2

∫ ∞

0
dτn

∫ ∞

0
dτe jn(rn) · je(re) (2iπ)

eiω|rn−re|

|rn − re|︸ ︷︷ ︸
U(2)

i f

δ(E + E′ −ω)

S(2)
i f = −2πi U(2)

i f δ(E + E′ −ω). (2.45)
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La norma de la ecuación (2.45) corresponde a la densidad de probabilidad de emisión de un par
positrón, electrón, por unidad de tiempo

we+,e− = 2π
∣∣U(2)

i f

∣∣2δ(E + E′ −ω). (2.46)

La probabilidad de producción de pares corresponde a la suma y el promedio sobre todos los
subestados del núcleo y sobre todos los estados electrónicos iniciales y finales. Nuevamente de
acuerdo a los reemplazos,

∑
ω

→
∫

dn =
RN

π

∫
dω,

se llega a que

Pe+e− =
2π

2Ji + 1

+Ji

∑
Mi=−Ji

+J f

∑
M f =−J f

+∞

∑
k=−∞

+∞

∑
k′=−∞

+j

∑
µ=−j

+j′

∑
µ′=−j′

we+,e− , (2.47)

en donde se ha tenido en cuenta que

we+,e− =
∫ ω−1

1

∣∣U(2)
i f

∣∣2 dE, (2.48)

para
E′ = ω− E. (2.49)



Capítulo 3

El principio holográfico

Siguiendo a Bousso [27], se dice que un principio de la Física es una clave reconocible para
establecer una ley subyacente aún no manifestada, pero que brinda pistas cercanas de la estructura
que ésta debe tener. En la segunda ley generalizada de la termodinámica, el Principio Holográfico
se encuentra en esta dirección, al pretender establecer un patrón aún no explicado acerca del
contenido de información que es posible contener en ciertas regiones del espaciotiempo. Así que
se espera que una teoría que involucre este principio debe unificar materia, gravedad y Mecánica
Cuántica, en un esquema que trascienda a la Relatividad General y a la Teoría Cuántica de Campos.
Esto tiene que ver con que aquéllas teorías son locales y así que al proponer la existencia de grados
de libertad en cada punto del espacio, pareciera que el contenido de información en una región
espacial determinada crecería con el volumen. En su contraparte, el Principio Holográfico establece
que éstos están más bien relacionados con el área de las superficies en el espaciotiempo y a su vez
llama la atención sobre la noción de localidad, tan importante en la unitariedad de la Mecánica
Cuántica.
Por lo tanto, los acercamientos más sustanciales en esa dirección se espera lo posean como una
de sus características, es decir, éste sea un elemento que puede ayudar a esclarecer los pormenores
que una eventual teoría cuántica de la gravedad debería tener, pues exhibe una correspondencia
entre las áreas y la información.

Asumir esta relación, con el fin de definir un análogo con la segunda ley, debe llevar a la conside-
ración de una segunda ley generalizada de la termodinámica a partir de que el establecimiento de
la entropía de un sistema, dependiente de sus N grados de libertad. 1 Dicha noción de entropía
asociada a un agujero negro, se debe primordialmente a Bekenstein [28], quien determinó una cota
sobre los sistemas de materia, al asumir una simetría esférica y gravedad débil; base sobre la cual
’t Hooft y Susskind formulan el Principio Holográfico.

Es necesario realizar varias reformulaciones a esta cota y otras que se desprenden de suyo,2 con el
fin de acercarse a la cota más general sobre la entropía maximal de los sistemas de materia, pues el
razonamiento de que el área de las superficies acota la entropía encerrada en volúmenes espaciales
no es siempre cierta; dado que las teorías actuales no imponen una cota inferior fundamental

1Que resultará correspondiente con el logaritmo de la dimensión de su espacio de Hilbert N y que además se
corresponde con el número de bits de información, multiplicado por ln 2.

2Por ejemplo la cota de entropía como de espacio de Susskind y la cota de entropía covariante de Bousso.
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sobre ésta. Se espera que la cota de entropía covariante sea la clave necesaria, ya que daría al
principio holográfico un carácter de universalidad independiente de suposiciones a priori sobre
la estructura de la gravedad cuántica3 o el requerimiento de la unitariedad, relacionada con la
pérdida de información en agujeros negros; pues su validez puede ser probada empleando Teoría
Cuántica de Campos y Relatividad General.[29], [30] Esta consideración de las cotas de entropía,
por ejemplo el empleo de la cota de entropía esférica aplicada a un sistema de materia ordinaria,
en vez de agujeros negros, lleva a una saturación de esta4, por ejemplo al analizar un sistema
correspondiente con un gas de radiación a temperatura T y energía E, en un recipiente esférico
de radio R ≥ 2E; con el fin de que el sistema no se transforme en un agujero negro, para el cual
se desprecian los efectos de autogravitación. En condiciones semiclásicas y al considerar la ley de
Stefan Boltzmann5 para una esfera de energía, se tiene que

E
V

= σT4

E ≈ ZVT4

E ≈ ZR3T4, (3.1)

siendo Z la constante de proporcionalidad correspondiéndose con el número de especies de partí-
culas en el gas6, además

T4 ≈ E
ZR3

T ≈ 4

√
E

ZR3

T ≈ E
1
4 Z−

1
4 R−

3
4 , (3.2)

luego la entropía asociada es

S ≈ ZR3T3

≈ ZR3
(

E
1
4 Z−

1
4 R−

3
4

)3

≈ ZZ−
3
4 R3R−

9
4 E

3
4

≈ Z
1
4 R

3
4 E

3
4

S ≈ Z
1
4 (RE)

3
4 . (3.3)

3Como sí se requiere en la Teoría de Cuerdas.
4Esta saturación es asociada al denominado problema de las especies.
5La cual establece la proporcionalidad entre la potencia de emisión y la temperatura de la superficie emisora,

E = σT4.
6En el contexto de una teoría holográfica, la dualidad AdS/CFT, (AdS(5)

⊗
S(5)) en diez dimensiones[31],

Susskind[32] muestra que dichos agujeros poseen un radio de Schwarzschild por lo menos mayor o del tamaño del
radio de curvatura R, éstos son estables y al decaer no se evaporan. En este contexto las ecuaciones de campo
de Einstein 5−dimensionales con constante cosmológica negativa y una constante G de Newton gravitacional
10−dimensional; obtiene una ley de Stefan-Boltzmann en una teoría de Yang-Mills supersimétrica:

Esym = c R8

G T4
sym = cN2T4

sym,

en donde la constante de proporcionalidad se correspondería con ∼ N2 campos cuánticos en la teoría gauge
U(N), asociados a un gas térmico de cuerpo negro con N2 especies de cuantos propagándose en la frontera de un
holograma.[33]
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Y de acuerdo a la condición de estabilidad

R ≥ 2E ⇒ E ≤ R
2
⇒ E

3
4 ≤ R

3
4

(2)
3
4

, ⇒ E
3
4 > R

3
4 ,

por lo tanto de la ecuación (3.4)

S > Z
1
4 A

3
4 , (3.4)

y al considerar que el tamaño del sistema debe ser mucho mayor que la escala de Planck, A� 1.
Lo cual puede fallar si Z ? A.7

Bajo la suposición adicional de autogravitación muy pequeña (E > R), los argumentos de la
cota de Bekenstein serían aplicables a la cota esférica, y dado que en aquélla la constante de
Newton aparece implícitamente, en cambio en la cota esférica no hay un equivalente cuando la
gravedad "se apaga",8 Además a menos que se asuma (3.19), la cota esférica no hace referencia a
la energía contenida dentro de la región, lo que hace difícil definir energía en espaciotiempo curvo,
sin afectar dicha cota. Sobre todo cuando su existencia es necesaria para la validez de la segunda
ley generalizada de la termodinámica9.

Entonces, la cuestión radica en conocer cuántos grados de libertad existen en la naturaleza a nivel
fundamental10, así que siguiendo a Susskind [37] y ’t Hooft [38], [39], [40]; se requiere de un
mundo tridimensional para combinar la Mecánica Cuántica y la gravedad, así que éste sea una
imagen de información almacenada en una proyección bidimensional. En dicha perspectiva sólo se
precisa de un grado de libertad discreto por área de Planck.

Que el número de partículas crezca con relación al momentum, se corresponde con el despliegue
de información cerca de horizontes de agujeros negros.11 Si se supone que el mundo es una red
tridimensional de grados de libertad como de spin, con un parámetro de red a del orden de la
longitud de Planck, para la cual en cada sitio de red existe un spin con uno de dos estados posibles
y con un número de estados ortogonales distintos N = N(V) en una región V del espacio dado
por

N = 2n, (3.5)

7En el caso de un protón, se necesitarían Z ? 1040 para violar la cota esférica [34]. Para el caso de la cota de
Bekenstein se espera que la cota falle con un número de especies N ∼ 109 [35], [36].

8Es decir para espaciotiempo plano.
9Pues por ejemplo si se asume un sistema esféricamente simétrico distinto a un agujero negro (R > 2E) viola

la cota esférica pues S > A
4 = πR2. Al colapsar un shell esférico de masa M = R

2 − E dentro del sistema con
lo que debería resultar un agujero negro de Schwarzschild de radio R, pero la entropía de éste sería A

4 , con lo
que se tendría que la entropía generalizada decrecería, pero eso no es tan importante pues, el agujero se haría
catastróficamente inestable dado que su tiempo de evaporación sería más pequeño que el tiempo de colapso.

10Por ejemplo, si se define el número de grados de libertad de un sistema mecanocuántico N correspondiente
con el logaritmo de la dimensión de su espacio de Hilbert H, es decir:

N = ln(dim(H)).

11Esta aseveración surge en el contexto de la teoría de cuerdas.[41]
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en donde n es cada uno de los sitios en V. Por lo que

ln(N) = ln(2n)

= n ln 2

=
V
a3 ln 2

ln(N) =
V
l3
P

ln 2, (3.6)

Si se piensa una teoría de campo en el continuo, formada por osciladores armónicos, claramente,
el número de estados cuánticos es divergente, lo que obliga a limitarlos a partir de cierta cota
en la densidad de energía ρmax, que lleva a que la densidad de entropía termodinámica12 s como
función de ρ:

S = s(ρ)V, (3.7)

con lo que el número total de estados es

Nestados ∼ eS = es(ρmax)V , (3.8)

así que
ln(Nestados) ∼ ln(eS) = S ln(e) = S, (3.9)

entonces, al comparar (3.6) y (3.9), se tiene que la entropía máxima es

Smax =
V
l3
P

ln 2 = n ln 2, (3.10)

la cual es proporcional al volumen, o mejor decir proporcional al número de grados de libertad
simple que describen el sistema. Si se supone que el sistema considera la gravedad y se piensa
contenido en una región Γ con frontera ∂Γ cuya área es A. Este sistema termodinámico no puede
exceder la masa del agujero negro de la misma área A, pues sino sería más grande que la región.
Ahora, si se colapsa un shell esféricamente simétrico de materia con justo la cantidad de energía
que junto con la masa original forman un agujero negro que llena la región Γ.[42] El resultado de
dicho proceso es un sistema de entropía conocida S = A

4G . Pero que al emplear la segunda ley
generalizada de la termodinámica, se asegura que la entropía original dentro de Γ es menor o igual
que A

4G . De modo que el número de grados de libertad con un bit de información en cada celda,
(ver figura 3.1) de acuerdo a la ecuación (3.10), serán

n =
Smax

ln 2
=

A
4

ln 2
=

A
4 ln 2

. (3.11)

En otras palabras la entropía máxima de una región del espacio es proporcional a su área medida
en unidades de Planck, tales cotas son llamadas holográficas.

Esto muestra la sospecha de que no hay más grados de libertad de los cuales hablar, más que los
que se pueden dibujar en la superficie. La situación puede ser comparada con un holograma de
una imagen tridimensional proyectado sobre una superficie bidimensional.

12El conteo de estados involucra la entropía que es a su vez el logaritmo del número de estados accesibles del
sistema.
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Figura 3.1: Información de un bit por celda de Planck sobre el horizonte de un agujero negro. Tomado
de [38].

Dado que la entropía de un agujero negro también se refiere a todos los campos físicos fuera del
horizonte, los mismos grados de libertad determinan lo que ocurre en ese lado. De hecho, esto
debería tenerse para cualquier superficie bidimensional que se extienda hasta el infinito.13

3.1. Cotas a la entropía

3.1.1. La cota de Bekenstein

Para considerar la entropía [43], [28], [44] de un agujero negro es importante hacer referencia al
hecho de que el área del horizonte de eventos de un agujero negro nunca decrece con el tiempo,14

además si éste es estacionario estará caracterizado solamente por su masa, momentum angular y
carga, de manera que después de un proceso de colapso el estado final es único.15 Esto permite
establecer que la suma de la entropía común de los alrededores en las vecindades de un agujero
negro y la de éste nunca decrece. Por lo tanto la entropía de Bekenstein-Hawking debe ser del
orden de

SBH ≈ ηkBl−2
P A, (3.12)

13Esto sugiere que los grados de libertad en el espacio tridimensional no son independientes sino que si son
considerados a una escala planckiana, éstos deben estar infinitamente correlacionados.

14Es decir dA ≥ 0, es el denominado Teorema del área de [45]
15Es el teorema de no pelo de Carter [46]
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siendo lP
16 la longitud de Planck, kB la constante de Boltzmann y A el área del agujero negro,

constantes adicionadas por consideraciones dimensionales, pues si se considera que la entropía
debe ser una función monótona no decreciente del área; la elección más simple es SBH = ηA17.

Para un agujero negro de Kerr, se tienen los parámetros masa M, carga Q y momentum angular
J relacionados de acuerdo a

κ =
4π(r+c2 − GM)

A

Ω =
4π J
MA

Φ =
4πQr+

A
(3.13)

donde

r+ = c−2
[

GM + (G2M2 − J2M−2c2 − GQ2)
1
2

]
y

A = 4πGc−4
[

2GM2 −Q2 + 2(G2M4 − J2c2 − GM2Q2)
1
2

]
,

así que la conexión entre la diferencia en energía de dos estados de equilibrio de agujero negro,
las diferencias de áreas de los horizontes de eventos, así como el momentum angular y la carga,
serán

d(Mc2) =
κc2

8πG
dA + ΩdJ + ΦdQ. (3.14)

Del mismo modo como en la segunda ley de la termodinámica se relacionan el volumen la entropía
y la energía

dU = TdS− pdV, (3.15)

(A.3) y (A.5), además de la expresión para la temperatura de Hawking dada en (1.122) o en
(1.135); entonces

κc2

8πG
dA = TdS

κc2

8πG
dA =

κ

2π
dS

c2

4G
A = SBH. (3.16)

16lP =

√
h̄ G
c3 = 1,6 X 10−33 cm. Es decir que en unidades naturales, l−2

P = h̄
17Para lo que Bekenstein establece η = ln 2

8π
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La anterior relación es equivalentemente a18

SBH =
1
4

A, (3.17)

cuando G = c = 1. Esto muestra que el valor de η = 1/4 difiere del inicialmente establecido
por Bekenstein. La segunda ley generalizada establecería que al incrementar SBH en una cantidad
de entropía común de materia y radiación cayendo al agujero Sc, esta suma no decrece con el
tiempo19. Además si se considera un rayo estrecho de radiación de cuerpo negro a temperatura
T, el cual se dirige hacia un agujero negro de masa M y asumiéndose que la óptica geométrica es
aplicable, pues las longitudes de onda características de la radiación deben ser más pequeña que
M, entonces T � h̄

kB M , luego 1
T �

kB M
h̄ y para una energía dada la entropía es S = E

T ; entonces
la entropía será

S =
1
T

E� kB ME
h̄

(3.18)

De modo que para un sistema termodinámicamente estable de radio R gravitando débilmente
circunscrito a la esfera más pequeña que lo contiene, se tiene que

Smat ≤ 2πER, (3.19)

que es la cota de Bekenstein.

3.1.2. La cota de entropía esférica

Otra manera de encontrar una cota adecuada a la entropía es dejar caer el sistema de materia en
el agujero negro20, para posteriormente convertirlo en el agujero negro mismo, suponiendo que
la estructura asintótica de la variedad espacio-tiempoM lo permita. Y si A corresponde al área
de la esfera que circunscribe el sistema, el cual debe poseer una masa M, mucho menor que la
del agujero negro asociado a la misma área, de manera que dicho sistema sea gravitacionalmente
estable.21

Se espera que dicho agujero sea formado al colapsar un shell de masa M− E sin esperar que radíe
o eyecte masa, se deja que inicialmente esté bastante separado del sistema. Dado que su entropía
Sshell no es negativa, entonces, la entropía inicial del sistema termodinámico es

Sini−total = Smat + Sshell , (3.20)

así como el estado final

S f in−total = SBH =
A
4

. (3.21)

18En este procedimiento de integración se ha asumido que la constante de integración es cero si se asume que
la entropía tiende a cero cuando la masa tiende a cero

19O equivalentemente ∆SBH + ∆Sc = ∆(SBH + Sc) > 0
20Es el proceso de Geroch.
21Es el proceso de Susskind.
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Por la segunda ley generalizada de la termodinámica tiene que cumplirse que la entropía de la
ecuación (3.20) no debe exceder la entropía final, entonces Sshell no puede ser negativa.[36] Del
hecho de asumir que el sistema gravitacionalmente estable, se tiene que 2M ≤ R,22 entonces de
acuerdo a la ecuación 3,19 para la cota de Bekenstein

S ≤ 2πMR ≤ 2π

(
R
2

)
R = πR2 =

A
4

, (3.22)

de manera que se muestra que la cota de entropía esférica es más débil que la cota de Bekenstein.23

Ahora, siguiendo a ’t Hooft [47], si se consideran un campos cuánticos escalares en coordenadas
esféricas cuadridimensionales Φi(r, θ, φ, t) en un punto fijo r1 en las vecindades de un horizonte
de eventos y tal que r1 = r+h, para una distancia h > 0; los cuales interactúan con un campo
gravitacional; sometidos a las condiciones de frontera

Φi(r, θ, φ, t) = 0, r ≤ r1, i = 1, 2 · · ·N, (3.23)

Se supone que estos campos se encuentran a una temperatura de Hawking TH asociada a una
entropía de Bekenstein-Hawking SBH, para una densidad de estados cuánticos con un corte a una
distancia h a determinar, en una caja de radio L, y la condición

Φi(r, θ, φ, t) = 0, r ≥ L, i = 1, 2 · · ·N, (3.24)

En este sistema en particular, para partículas bosónicas, la densidad lagrangiana en la métrica de
Schwarzschild es

L(x, t) =
(

1− 2M
r

)−1

∂tΦ2
i −

(
1− 2M

r

)
∂rΦ2

i − r−2∂ΩΦ2
i . (3.25)

El lagrangiano está dado por ∫ L

r1

∫
dΩr2L(r, Ω, t), (3.26)

de manera tal que la ecuación de movimiento para los modos del campo con energía E(n, l, l3),
tiene la forma(

1− 2M
r

)−1

E2Φ2 +
1
r2 ∂rr

(
r− 2M

)
∂rΦ−

(
l(l + 1)

r2 + m2
)

Φ = 0. (3.27)

En la condición r = 2M, se suaviza la singularidad en el término del medio en la ecuación (3.27),
para la cual r− 2M = eσ, entonces[

rE2 +
1
r2 ∂σr∂σ − eσ

(
l(l + 1)

r2 + m2
)]

Φ = 0, r = 2M + eσ. (3.28)

La solución para el campo Φ en (3.28) en términos de la coordenada σ posee un comportamiento
oscilatorio, el cual puede ser aproximado por

e±i
∫

k(σ)dσ = e±i
∫

k(r)dr, (3.29)

22Pues su radio de Schwarzschild rs = R =
2GM

c2 = 2M = 2E, en unidades naturales.
23Sin embargo aunque ésta se encuentra más cercanamente relacionada al principio holográfico, puede ser mol-

deada en una forma más general y covariante, al considerar la cota de entropía covariante de Bousso.
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siendo k(σ) determinada por

rE2 − 1
r

k(σ)2 − eσ

(
l(l + 1)

r2 + m2
)
= 0, (3.30)

de modo que

k(r)2 = e−2σk(σ)2 =

(
1− 2M

r

)−2

E2 −
(

1− 2M
r

)−1( l(l + 1)
r2 + m2

)
. (3.31)

Si se toma k(r)2 = 0 en la ecuación (3.31), entonces

0 =

(
1− 2M

r

)−2

E2 −
(

1− 2M
r

)−1( l(l + 1)
r2 + m2

)
(

1− 2M
r

)−2

E2 =

(
1− 2M

r

)−1( l(l + 1)
r2 + m2

)
E2 =

(
1− 2M

r

)(
l(l + 1)

r2 + m2
)

E(n, l, l3) = ±

√(
1− 2M

r

)(
l(l + 1)

r2 + m2

)
. (3.32)

Así que en (3.28) el espectro de energía, estará dado por

πn =
∫ L

r1

dr k(r, l, E), (3.33)

en la cual n > 0, l y l3 son enteros.

Si se considera el número total ν de soluciones de onda con energía que no excede E

g(E) = νπ
∫

πn(2l + 1)dl

=
∫ L

r1

dr
(

1− 2M
r

)−1∫
(2l + 1)dl

√(
1− 2M

r

)(
l(l + 1)

r2 + m2

)
. (3.34)
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La energía libre de Helmholtz, está dada por

e−βF = ∑ e−βE =
N

∏
i=1

∏
n,l,l3

1
1− e−βE(n,l,l3)

ln(e−βF) = ln
( N

∏
i=1

∏
n,l,l3

1
1− e−βE

)
−βF = ln

(
∏
n,l,l3

1
1− e−βE ∏

n,l,l3

1
1− e−βE · · ·∏

n,l,l3

1
1− e−βE︸ ︷︷ ︸

N veces

)

βF = − ln
[(

∏
n,l,l3

1
1− e−βE

)N
]

βF = N ln
[(

∏
n,l,l3

1
1− e−βE

)−1
]

βF = N ln
[(

∏
n,l,l3

1− e−βE)]
βF = N ∑

ν

ln
(

1− e−βE
)

, (3.35)

y en virtud de la ecuación (3.34), se tiene que en función del número de estados

πβF = N
∫

dg(E) ln
(
1− e−βE)

πβF = −N
∫ ∞

0
dE

βg(E)
eβE − 1

πβF = −βN
∫ ∞

0
dE
∫ L

r1

dr
(

1− 2M
r

)−1

×

×
∫

dl(2l + 1)(eβE − 1)−1

√(
1− 2M

r

)(
l(l + 1)

r2 + m2

)
, r1 = 2M + h.

(3.36)

Teniendo en cuenta la aproximación

m2 � 2M
β2h

, L� 2M, (3.37)

entonces las principales contribuciones a (3.36), para la energía libre de Helmholtz, llevan a que

F ≈ −2π3N
45h

(
2M

β

)4

− 2
9π

L3N
∫ ∞

m

dE(E2 −m2)
3
2

eβE − 1
, (3.38)

Dado que se quiere poner en manifiesto la contribución del horizonte a la energía libre de Helmholtz,
entonces, el segundo término en (3.38) se despreciará, pues hace referencia a la contribución del
vacío circundante al agujero negro a grandes distancias, m→ ∞. Por lo tanto, queda

F ≈ −2π3N
45h

(
2M

β

)4

, (3.39)
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así que las propiedades termodinámicas energía total U y entropía S, pueden determinarse de
acuerdo a

U =
∂(βF)

∂β

=
∂

∂β

(
−2π3

45h

(
2M

β

)4

Nβ

)
= −2π3

45h
(2M)4N

∂

∂β
(β−3)

= −2π3

45h
(2M)4N(−3β−4)

U =
2π3

15h

(
2M

β

)4

N, (3.40)

luego la entropía queda

S = β(U − F)

= β

{
2π3

15h

(
2M

β

)4

N −
[
−2π3N

45h

(
2M

β

)4]}
= β

{
2π3

h

(
2M

β

)4

N
[

1
15

+
1

45

]}
= β

{
2π3

h

(
2M

β

)4

N
[

4
45

]}
S =

8π3

45h
(2M)

(
2M

β

)3

N. (3.41)

Por lo tanto, según la ecuación (1.122) para la temperatura Hawking, se tiene que al comparar
con las ecuaciones de la termodinámica de agujeros negros (3.4), el parámetro de corte está dado
por

h =
NG

720πM
(3.42)
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Capítulo 4

La dinámica de los Black Shells

Para realizar la discusión del Black Shell se seguirá el enfoque proporcionado por Israel [48] y
Poisson [11], en los cuales se lo considera como una hipersuperficie que modela el colapso de
Snyder-Oppenheimer, a partir del enlace de dos campos frontera, interno y externo, en el colapso
gravitacional de una estrella respecto al campo exterior vacío de Schwarzschild. Este proceso puede
asemejarse a una nube de polvo que se contrae desde infinito hasta su radio gravitacional, presenta
una métrica regular y sus líneas de flujo son geodésicas.

Se dice que una hipersuperficie será ortogonal si toda congruencia1de geodésicas es ortogonal, en
todo punto a una familia de hipersuperficies como de espacio, esto es, según se aprecia en la figura
(4.1).

Además si el cuadrivector uα es proporcional a la normal nα, exterior a la hipersuperficie dirigida
hacia el futuro; entonces, ésta se supone queda dada por un conjunto de ecuaciones de la forma

Φ(xα) = c, (4.1)

en donde c, es una constante que especifica cada una de las correspondientes hipersuperficies y a
su vez indica la proporcionalidad entre la normal y la derivada covariante de éstas, es decir

uα = −µ∇αΦ, (4.2)

así como la condición de normalización uαuα = −1, cuando la hipersuperficie es como de espacio.

El campo vectorial ζµ será normal a la hipersuperficie Σ si es ortogonal a todos sus vectores en su
espacio tangente TpΣ, el cual es un subespacio del espacio tangente de una variedad diferencible
M, esto es

1Se denomina congruencia geodésica a un sistema de geodésicas que no interactúan, cuya ecuación de evolución
se denomina ecuación de Raychaudhuri que involucra los tensores de cortante σαβ, de rotación ωαβ y de Ricci Rαβ

y está dada por:
dθ

dτ
= −1

3
θ2 − σαβσαβ + ωαβωαβ − Rαβuαuβ

57
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Figura 4.1: Familias de hipersuperficies ortogonales a una congruencia de geodésicas como de tiempo.
Tomado de [11]

ζµ = gµν∇µΦ. (4.3)

En el caso en el cual ζµ sea un vector como de tiempo, su hipersuperficie asociada se denomina
como de espacio y viceversa. Si el vector es nulo, ésta también lo es. De manera tal que el vector
normal unitario exterior viene dado por

nµ = +
ζµ∣∣ζµζµ
∣∣1/2 =

ε∇αΦ∣∣gµν∇µΦ∇νΦ|1/2
, (4.4)

en donde se cumple que

ε = nαnα =

{
−1, Si Σ es como de espacio,
+1, Si Σ es como de tiempo.

(4.5)

La obtención de la métrica intrínseca a una hipersuperficie Σ, surge a través de determinar des-
plazamientos en ésta, los cuales quedan determinados en función de las ecuaciones paramétricas
xα = xα(ya) y los correspondientes vectores tangentes eα

a = ∂xα

∂ya a las curvas contenidas allí y por
lo tanto son ortogonales a sus vectores normales. Dicho desplazamientos están dados por

ds2∣∣
Σ = gαβdxαdxβ

= gαβ

(
∂xα

∂ya dya
)(

∂xβ

∂yb dyb
)

=

(
gαβ

∂xα

∂ya
∂xβ

∂yb

)
dyadyb

ds2∣∣
Σ = habdyadyb, (4.6)
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siendo hab la métrica inducida o primera forma fundamental.

Con el propósito de extender el cálculo vectorial a variedades e hipersuperficies se describe el
elemento de superficie a partir del determinante h = Det|hab|, el cual es un elemento de volumen
invariante2 sobre Σ, que está dado por

dΣ = |h|1/2d3y. (4.7)

Ahora, al considerar un campo tensorial y la derivada covariante, respecto a la conexión compatible
con la métrica gαβ y a la métrica inducida, de manera que, por ejemplo para un campo vectorial
Aα, se tendría

Aa|b = ∇β Aαeα
a eβ

b

= ∇β(Aαeα
a )− Aα∇β(eα

a )e
β
b

= ∇β Aaeβ
b −∇βeαγ Aceα

c

=
∂Aa

∂xβ

∂xβ

∂yb − eγ
c∇βeaγeβ

b Ac

Aa|b = Aa,b − Γcab Ac (4.8)

siendo Γ3 la conexión métrica compatible con la métrica inducida4 y corresponde a las componentes
tangenciales del vector ∇β Aαeβ

b . Además al subir el índice covariante, empleando el tensor métrico
mixto, se tiene que la componente normal de éste es

∇β Aαeβ
b = gα

µ∇β Aµeα
a eβ

b

= (εnαnµ + hameα
a emµ)∇β Aµeα

b

= ε
(
nµ∇β Aµeβ

b

)
nα + ham(∇β Aµeµ

meβ
b

)
eα

a

= −ε(nµ∇β Aµeβ
b )n

α + ham Am|beα
a

= Aa
|beα

a − εAa(∇βnµeµ
a eβ

b )n
α

∇β Aα
βeβ

b = Aa
|beα

a − εAaKabnα, (4.9)

2Al combinarlo con la normal exterior se genera el vector dΣα = εnαdΣ dirigido en la dirección de máximo
incremento del campo Φ.

3Γcab = 1
2
(
∇bhca +∇ahcb −∇chab

)
4La descomposición de la métrica inversa gαβ en sus componentes tangencial y normal, en términos de la métrica

inducida hab tiene la forma:
gαβ= = εnαnβ + habeα

a eβ
b
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Figura 4.2: Esquema de un espacio-tiempo unido por una frontera común. Tomado de [11]

en donde el término Kab = ∇βnαeα
a eβ

b , se denomina curvatura extrínseca o segunda forma fun-
damental y corresponde a un tensor de segundo rango simétrico. Además si el vector Aα es
reeemplazado en la ecuación (4.9) por eα

a , entonces

∇β (eα
a ) eβ

b = Γc
abeα

c − εKabnα, (4.10)

se denominan ecuaciones de Gauss-Weingarten y dan cuenta de los aspectos intrínsecos y extrín-
secos de la hipersuperficie Σ.

Si se asume una hipersuperficie Σ que divide el espacio-tiempo en dos regiones V + y V −, como
se muestra en la figura (4.2), de manera que las métricas g±αβ están dadas en términos de los
sistemas coordenados xα

±, es necesario obtener las condiciones para las cuales éstas dos regiones
se junten suavemente en Σ y a su vez dichas métricas sean válidas en las ecuaciones de campo de
Einstein.

Esta situación lleva a las dos condiciones de juntura, que hacen referencia a que la métrica
inducida a ambos lados de la hipersuperficie debe ser la misma, y la segunda, establece que
la curvatura extrínseca lo debe ser también en ambos lados. Esto presupone la idea de que siempre
es posible dotar a los dos lados de la hipersuperficie del mismo sistema coordenado ya y unas
normales exteriores n± desde los V ±. También es importante señalar que la discontinuidad entre
las cantidades tensoriales que yacen en Σ, son el reflejo de su salto a través de ésta. Así que se
requiere un enfoque en el sentido distribucional de aquéllas y la notación

[A] ≡ A(V +)
∣∣
Σ−A(V −)

∣∣
Σ. (4.11)

Es así que por ejemplo la métrica distribucional estará dada por

gαβ = Θ(l)g+αβ + Θ(−l)g−αβ, (4.12)

en donde se ha hecho uso de la distribución paso unitario de Heaviside5para tener en cuenta la
discontinuidad. Así que al tomar la derivada de (4.12) e imponer la condición de que la métrica

5Esta distribución está dada por:

Θ(l) =

{
+1, Si l > 0,
0, Si l < 0

y posee las propiedades:

Θ2(l) = Θ(l), Θ(l)Θ(−l) = 0,
d
dl
(
Θ(l)

)
= δ(l)

además se está considerando l la distancia propia o el tiempo propio a lo largo de una geodésica.
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es continua a través de Σ

0 =
[
gαβ

]
=
[
gαβ

]
eα

a eβ
b = [gαβeα

a eβ
b ] =

[
hab
]

se tiene que:6

∇γ

(
gαβ

)
= Θ(l)∇γ

(
g+αβ

)
+ Θ(−l)∇γ

(
g−αβ

)
+ εδ(l)

[
gαβ

]
nγ.

(4.13)

Lo que muestra que la condición necesaria es que la métrica inducida sea igual en V ±, es decir

[
hab
]
= h+ab

∣∣
Σ−h−ab

∣∣
Σ= 0, (4.14)

que es la primera condición de juntura en el formalismo de Darmois-Israel.

Para la segunda condición de juntura7 se hace necesario obtener los símbolos de Christoffel y
el tensor de Riemann, el tensor de Ricci y el escalar de Ricci, como derivadas de la métrica y
su sentido distribucional, así como las correspondientes ecuaciones de Einstein, y por lo tanto el
tensor esfuerzo energía Tαβ que presenta una discontinuidad en la superficie; la cual está asociada
a una capa delgada de materia correspondiente al black shell, pues aquél es obtenido a partir del
tensor de energía superficial,8el cual es simétrico. De manera tal que

Sab = −
ε

8π

([
Kab
]
−
[
K
]
hab

)
. (4.15)

Para que exista suavidad a través de Σ, se requiere que la curvatura extrínseca sea la misma a
ambos lados y a su vez depende de que el tensor de Riemann no sea singular en esta, de modo
que

Tαβ
∣∣
Σ= δ(l)Sabeα

a eβ
b . (4.16)

A partir de consideraciones que involucran el colapso gravitacional de una estrella, asumiéndola
como una esfera de materia sin presión, Oppenheimer y Snyder resolvieron satisfactoriamente
las ecuaciones de campo de Einstein para las regiones interna y externa, correspondientes con las
métricas de Friedmann-Robertson-Walker (FRW) en V − y Schwarzschild V + en respectivamente,
como puede verse en la figura (4.3), además aplicando las condiciones de juntura antedichas en
la superficie de la estrella.

6El último término debe anularse dado que gαβ es proporcional a θ(l) en la interfaz y dado que δ(l)Θ(l) no
está definido, este término presentaría una singularidad en Σ

7Esta condición pretende evitar una posible singularidad de curvatura en Σ.
8Cuya expresión es:

Sab = σuaub,

y siendo σ la densidad superficial.
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Figura 4.3: El espacio-tiempo en el colapso gravitacional de Oppenheimer-Snyder. Tomado de [11]

De acuerdo a [49], esta solución considera un espacio R× Σ asociado a una (3) variedad ma-
ximalmente simétrica cuya métrica espacio-temporal con t es una coordenada como de tiempo,
R(t) un factor de escala y dσ2 la métrica sobre Σ, entonces dicha métrica está dada por

ds2 = −dt2 + R2(t)dσ2

= −dt2 + R2(t)γij(u)duiduj (4.17)

con las ui siendo coordenadas comóviles, para las cuales el tri-tensor9 de Riemann está dado por

Rijkl
∣∣
(3)= k

(
γikγjl − γilγjk

)
(4.18)

en donde k = 1
6 R
∣∣
(3), depende del escalar de Ricci R

∣∣
(3) de manera que el tri-tensor de Ricci en

este esquema sería

Rjl = 2kγjl (4.19)

de manera tal que para un espacio esféricamente simétrico, la métrica espacial a partir de (4.17),
posee la estructura

ds2 = −dt2 + R2(t)γij(u)duiduj

= −dt2 + R(t)
(
e2β(r̄)dr̄2

+ r̄dΩ2)
ds2 = −dt2 + R(t)

(
e2β(r̄)dr̄2

+ dθ2 + sen2(θ)dφ2) (4.20)

De manera tal que las componentes del tri-tensor de Ricci serían entonces

9Esto hace referencia al tensor de Riemann de la variedad tridimensional y no del espacio-tiempo.
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R11 =
2
r̄

∂1β

R22 = e−2β
(
r̄∂1β− 1

)
+1

R33 =

[
e−2β

(
r̄∂1β− 1

)
+1
]

sen2(θ), (4.21)

de manera que por la ecuación (4.19), se tiene que

β = − 1
2 ln
(
1− kr̄2). (4.22)

La métrica de la tri-superficie Σ será

dσ2 =
dr̄2

1− kr̄2 + r̄2dΩ2. (4.23)

Dado que se piensa en un espacio cerrado, la curvatura escalar k = +1.10 Y al realizar la sustitución
por una nueva coordenada radial χ

dχ =
dr̄√

1− kr̄2
, (4.24)

se tiene que

dσ2 = dχ + sen2(χ)dΩ2, (4.25)

de manera que la métrica de (FRW) (4.20) posee la forma

ds2 = −dt2 + R2(t)
[

dr̄2

1− kr̄2 + r̄2dΩ2
]

= −dt2 + a2(t)
[

dr̄2

1− κr2 + r2dΩ2
]

ds2 = −dτ2 + a2(τ)

(
dχ2 + sen2(χ)dΩ2

)
(4.26)

10En virtud de la curvatura k, puede ser integrada la ecuación

dχ =
dr̄√

1− kr̄2
,

llevando a las soluciones:

r̄ =


sen(χ), Si k = +1 espacio cerrado,
χ, Si k = 0 espacio plano,
senh(χ), Si k = −1 espacio abierto,
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en donde se han hecho las convenciones a(t) = R(t)/R0, r = R0r̄ y κ = k/R2
0 y se emplea el

tiempo propio τ. A partir de la métrica (FRW), los símbolos de Christoffel que no se hacen cero
están dados por

Γ0
11 =

aȧ
1− κr2 Γ1

11 =
κr

1− κr2

Γ0
22 = aȧr2 Γ0

33 = aȧr2 sen2(θ)

Γ1
01 = Γ2

02 Γ3
03 =

ȧ
a

Γ1
22 = −r(1− κr2) Γ1

33 = −r(1− κr2) sen2(θ)

Γ2
12 = Γ3

13 =
1
r

Γ2
33 = − sen(θ) cos(θ) Γ3

23 = cot(θ). (4.27)

Desde luego que las componentes del tensor de Ricci distintas de cero son

R00 = −3
ä
a

R11 =
aä + 2ȧ2 + 2κ

1− κr2

R22 = r2(aä + 2ȧ2 + 2κ)

R33 = r2(aä + 2ȧ2 + 2κ) sen2(θ), (4.28)

y el escalar de Ricci, queda dado por

R = 6
[

ä
a
+

(
ȧ
a

)2

+
κ

a2

]
. (4.29)

A partir de las ecuaciones de campo de Einstein sin constante cosmológica Λ = 0, y con unidades
naturales G = c = 1, y el escalar de Ricci R = −(8πG)T, se tiene que

Gµν =
8πG

c4 Tµν

Rµν −
1
2

Rgµν + Λgµν =
8πG

c4 Tµν

Rµν = 8πTµν +
1
2

Rgµν

Rµν = 8πTµν −
1
2

Tgµν

Rµν = 8π

(
Tµν −

1
2

Tgµν

)
(4.30)
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Respecto al tensor momento energía para un fluido perfecto, el cual es isotrópico y se considera
en reposo en coordenada comóviles, de manera que su cuadrivelocidad

Uµ = (1, 0, 0, 0), (4.31)

y su tensor momento energía está dado por

Tµν = (ρ + p)UµUν + pgµν

Tµ
ν = diag(−ρ, p, p, p), (4.32)

y su traza

T = Tµ
µ = −ρ + 3p. (4.33)

A partir de las ecuaciones (4.28), (4.32) y (4.33) al sustituir en la ecuación (4.30), se tiene que
para la componente 00

Rµν = 8π

(
Tµν −

1
2

Tgµν

)
R00 = 8π

(
T00 −

1
2

Tg00

)
−3

ä
a
= 4π(ρ + 3p). (4.34)

Y las ecuaciones para µν = ij, se tiene que

ä
a
+ 2
(

ȧ
a

)2

+2
κ

a2 = 4π(ρ− p). (4.35)

Sustituyendo (4.34) en (4.35) y dado que debido a la isotropía del espacio, solamente hay una
ecuación distinta para µν = ij; entonces, se tiene que

(
ȧ
a

)2

=
8π

3
ρ− κ

a2 , (4.36)

y también

ä
a
= −4π

3
(ρ + 3p) (4.37)
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que son la primera y segunda ecuaciones de Friedmann-Robertson-Walker, dadas por (4.36) y
(4.37), respectivamente.

Bajo la condición de espacio cerrado κ = 1, entonces la ecuación (4.36) corresponde a

ȧ2

a2 =
8π

3
ρ− 1

a2

ȧ2

a2 +
1
a2 =

8π

3
ρ

ȧ2 + 1
a2 =

8π

3
ρ

ȧ2 + 1 =
8π

3
a2. (4.38)

En ausencia de presión, la densidad de masa del shell corresponde a

ρa3 = cte =
3

8π
amáx. (4.39)

Entonces, las ecuaciones paramétricas11 de la solución de la ecuación (4.38) tienen la forma

a(η) = 1
2 amáx

(
1 + cos(η)

)
τ(η) = 1

2 amáx
(
η + sen(η)

)
. (4.40)

Para un observador co-móvil a la superficie de la estrella colapsante, la cual se encuentra en χ = χ0.
Las coordenadas son r = R(τ) y t = T(τ) y al escoger las nuevas coordenadas ya = (τ, θ, φ)
sobre ésta y en virtud de la métrica obtenida en (4.26), entonces la métrica inducida sobre Σ,
vista desde V −, corresponde a un espacio plano de Minkowski

ds2
Σ− = −dτ2 + a2(τ) sen2(χ0)dΩ2. (4.41)

Si se hace la identificación
F = 1− 2M

R
,

la métrica vista desde V +, la cual es la métrica de Schwarzschild, está dada por

ds2
Σ+

= −
(

FṪ2 − F−1Ṙ2)dτ2 + R2(τ)dΩ2. (4.42)

Debido a que por las condiciones de juntura las métricas inducidas a ambos lados de la hipersu-
perficie son iguales, entonces al comparar los coeficientes de

11Estas expresiones muestran el hecho de que el colapso inicia cuando η = 0 y termina cuando η = π.
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dτ2 y dΩ2 en las ecuaciones (4.41) y (4.42), se deben tener las condiciones

R(τ) = a(τ) sen(χ0)

1 = FṪ2 − F−1Ṙ2. (4.43)

A partir de la la segunda ecuación en (4.43), se tiene que

1 = FṪ2 − F−1Ṙ2

FṪ2 = 1 + F−1Ṙ2

FṪ2 = 1 +
Ṙ2

F
F2Ṫ2 = F + Ṙ2

FṪ =
√

Ṙ2 + F ≡ β(R, Ṙ). (4.44)

Teniendo en cuenta la relación de ortogonalidad nαuα = 0 y de normalización nαnα = −1 para
la cuadrivelocidad, en términos de las coordenadas xα de la variedad; entonces la solución interior
del shell, la cual corresponde a un espacio-tiempo plano, expresa que

xα
− =

(
T(τ), R(τ), θ, φ

)
uα
− = eα

τ =
∂

∂τ
(xα
−) =

∂

∂τ

[(
T(τ), R(τ), 0, 0

)]
uα
− = (Ṫ(τ), Ṙ(τ), 0, 0

)
n−α =

(
−Ṙ(τ), Ṫ(τ), 0, 0

)
. (4.45)

Similarmente para la solución externa al shell, que corresponde a un espacio-tiempo de Schwarzs-
child, se tiene que

xα
+ =

(
T(τ), R(τ), θ, φ

)
uα
+ = eα

τ =
∂

∂τ
(xα

+) =
∂

∂τ

[(
T(τ), R(τ), θ, φ

)]
uα
+ = (Ṫ(τ), Ṙ(τ), 0, 0

)
n+

α =
(
−Ṙ(τ), Ṫ(τ), 0, 0

)
. (4.46)

En la regiones V − y V +, se tiene que la curvatura extrínseca, o segunda forma fundamental, de
acuerdo Kab = ∇βnαeα

a eβ
b y la ecuación (4.44) puede ser obtenida a partir de los vectores normales

obtenidos en (4.45) y (4.46), de manera que en V −

K−θθ = ∇θnθeα
θ eβ

θ = ṪR K−φφ = ∇φnφeα
φeβ

φ = T̈R sen2(θ)

gθθK−θθ = K−θ
θ =

β−
R

gφφK−φφ = K−φ
φ =

β−
R

K−ττ = ∇τnτeα
τeβ

τ = 0. (4.47)
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De la misma forma para la región V +, se tiene que

K+
θθ = ∇θnθeα

θ eβ
θ = ṪRF K+

φφ = ∇φnφeα
φeβ

φ = ṪRF sen2(θ)

gθθK+
θθ = K+θ

θ =
β+

F
gφφK+

φφ = K+φ
φ =

β+

R
K+

ττ = ∇τnτeα
τeβ

τ = −F′Ṫ

gττK+
ττ =

˙β+

F
(4.48)

Los coeficientes de la métrica inducida ha
a = 1, para la curvatura extrínseca inducida y el escalar

de Ricci inducido está dado por

[K] = habKab = ∇αnα

= (K+ − K−)hτ
τ

= (K+τ
τ − K−τ

τ ) + (K+θ
θ − K−θ

θ ) + (K+φ
φ − K−φ

φ )

[K] = [Kτ
τ ] + [Kθ

θ ] + [Kφ
φ ]. (4.49)

Por lo tanto la ecuación (4.15)

Sab = −
ε

8π

([
Kab
]
−
[
K
]
hab

)
= ga

bSab = −
ε

8π

(
[ga

bKab]− [K]ga
bhab

)
Sab = −

ε

8π

(
[Ka

b]− [K]ha
b

)
. (4.50)

De acuerdo a (4.49) y los valores para las respectivas curvaturas extrínsecas, dados por (4.47) y
(4.48)

Sτ
τ = − ε

8π

(
[Kτ

τ ]− [Kτ
τ ] + [Kθ

θ ] + [Kφ
φ ]

)
= − ε

8π
(−2)

(
K+θ

θ − K−φ
φ

)
Sτ

τ =
ε

4π

(
β+

R
− β−

R

)
, (4.51)

y a partir del tensor esfuerzo-energía para un shell de materia sin presión y de la condición de
normalización de cuadrivectores,

Sab = σuaub = σga
buaub = Sa

b = −σ,

entonces, la ecuación (4.51) toma la forma
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ε

4π

(
β+

R
− β−

R

)
= −σ. (4.52)

Similarmente a partir de la (4.49)

[K] = habKab = ∇αnα

= (K+ − K−)hθ
θ (4.53)

y de la ecuación (4.50), el tensor esfuerzo-energía para la componente angular y dada la condición
de ortogonalidad, que nθuθ = 0 de la métrica

Sθ
θ = − ε

8π

(
[Kθ

θ ]− [Kθ
θ ] + [Kθ

θ ] + [Kφ
φ ]

)
= − ε

8π

(
K+θ

θ − K−φ
φ

)
Sθ

θ = − ε

8π

(
−

˙β+

Ṙ
− β+

R
+

β−
R

)
= σnθuθ = σ(0) = 0

−
˙β+

Ṙ
− β+

R
+

β−
R

= 0

R ˙β+ = (β− − β+)Ṙ. (4.54)

Si se consideran las ecuaciones (4.47) y (4.48) y asumiendo que K−θ
θ = 0, de manera que ˙β− = 0;

entonces,
˙β+ =

d
dτ

(
−β− + β+

)
, (4.55)

de manera que la ecuación (4.54), queda

R ˙β+ = (β− − β+)Ṙ

R
d

dτ

(
−β− + β+

)
=
(

β+ − β−
)dR

dτ
−Rd

(
β+ − β−

)
=
(

β+ − β−
)
dR. (4.56)

La ecuación (4.56) es una EDO separable, por lo tanto

−
∫ d

[
(β+ − β−)

]
d
(

β+ − β−
) =

∫ dR
R

ln(β+ − β−) = − ln R + ln C

ln(β+ − β−) = ln
(

C
R

)
eln(β+−β−) = e(ln C

R )

R(β+ − β−) = C (4.57)
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A partir de la ecuación (4.52) con ε = 1 y siendo σ la densidad superficial del shell esférico, se
tiene que

C = R(β− − β+) = 4πσ

por lo tanto la masa µ = C de éste estará dada por

σ =
µ

4πR2

µ = 4πσR2

µ = R(β− − β+)

β+ = β− −
µ

R
(β+)

2 =
(

β− −
µ

R
)2

(β+)
2 = (β−)

2 − 2(β−)
( µ

R

)
+
( µ

R

)2
. (4.58)

Ahora, teniendo en cuenta las ecuaciones (4.47) y (4.48), la ecuación (4.58), lleva a que

(β+)
2 = (β−)

2 − 2
µ

R
β− +

µ2

R2

��̇R2 + F = (1 +��̇R2)− 2µ

R
(1 + Ṙ2)1/2 +

µ2

R2

1− F =
2µ

R
(1 + Ṙ2)1/2 − µ2

R2

2M
R

=
2µ

R
(1 + Ṙ2)1/2 +

µ2

R2

2MR + µ = 2µR(1 + Ṙ2)1/2

(1 + Ṙ2)1/2 =
2MR + µ2

2µR

dR
dτ

= Ṙ =

√(
M
R

+
µ

2R

)2

−1

dR
dτ

=

√(
a +

M
2aR

)2

−1, (4.59)

en donde el parámetro a = M
µ se corresponde con la energías potencial gravitacional y cinética del

shell. Bajo la condición de que la ecuación (4.59) posea raíces reales, se considera que la cantidad
bajo la raíz debe ser positiva. Esto lleva a que para µ = M, cuando R = Rmáx
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(
a +

µ

2aR

)2

≥ 1

2a2R + µ

2aR
≥ 1

2a2R− 2aR ≥ −µ

R =
µ

2a(1− a)

Rmáx =
M

2a(1− a)
(4.60)

La ecuación (4.60) al ser sustiuida en (1.133) lleva a que

Im{S} = Im
∫ rout

rin

dr
∫ ω

0
(−dω′)

1
ṙ

= −Im
∫ 2(M−ω)

2M
dr
∫ ω

0
dω′

1√(
a + M

2aR

)2

−1

(4.61)

Y a partir de lo que se obtiene una tasa de emisión del orden de 1030 años.
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Conclusiones

A pesar que históricamente la controversia sobre la existencia de tunelamiento cuántico en el
fenómeno de radiación Hawking se ha centrado en la búsqueda de evidencias teóricas que soporten
la suposición de la existencia de un potencial, el cual no se especifica en el modelo. Intentos de
vislumbrar este esquema se cuentan entre otros a [50], y [3]. En sus análisis se considera la
existencia de una acción cuya parte imaginaria es la responsable de la anulación de la parte
imaginaria asociada a la variable temporal en el tiempo imaginario [2]. Esto llevaría a que el efecto
túnel, en el cual existe una fuerte dependencia de la componente imaginaria de la acción, como
se mostró en la ecuación (A.18) y por lo tanto según la aproximación WKB, como se muestra
en el capítulo 2 la requiere. Por lo tanto se hace necesario ubicar la barrera de potencial que se
encargue de definir la zona de tunelamiento clásicamente prohibida para un potencial prefijado,
requeriría a su vez establecer la naturaleza física de éste.

Intentos mediante la aplicación del potencial de tunelamiento nuclear de Gamow, para el decai-
miento α que corresponde a la superposición de potenciales de pozo cuadrado y coulombiano,
llevó a una ecuación para el coeficiente de transmisión a través de la barrera de potencial que
indicaban tiempos de decaimiento del orden de 1030 años, lo cual es mayor que la edad del uni-
verso. Cuestiones de índole similar surgieron al refinar el potencial con el dado en la corrección
de barrera parabólica cuyo coeficiente de transmisión dado en la ecuación (2.10) y (2.11); en los
que se hacen además correciones por momento angular del potencial o en el caso de la ecuación
(2.15) en la que se considera la curvatura de la barrera y se intentó correlacionar con la curvatura
de agujero negro κ dada por la temperatura de Hawking en la ecuación (1.121) para un agujero
negro de Schwarzschild de M = 1,44M�, según establece el límite de Chandrasekhar.

Otra posibilidad explorada de encontrar un espectro planckiano para la radiación de Hawking
correspondió a asumir el vacío en las inmediaciones de un agujero negro como formado por la
presencia de un campo electromagnético débilmente acoplado a la gravedad, bajo la premisa de
mediante el fenómeno de conversión interna de estructura nuclear, evidenciar la tasa de emisión
de partículas α como se expresó en la ecuación (2.34), bajo la suposición de los antedichos po-
tenciales. En este esquema se encontraron divergencias infinitas en la probabilidad de emisión
que comprueban que este mecanismo tampoco es el apropiado para dirimir la discusión acerca de
la existencia de tunelamiento similar a los de índole nuclear. Esto no resta interés a la eventual
búsqueda, quizá en potenciales de tipo atómico.

La situación además pone de manifiesto la necesidad de evidenciar en un proceso de formación
de agujero negro cómo a partir de un shell desprendido de la estrella colapsante, cuya ecuación
de movimiento quedó expresada en (4.59) y en aras de definir el fenómeno de tunelamiento fue
comparada con la ecuación para las geodésicas de onda saliente dadas en (1.126) y que fue
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contrastada con en el instante de formación del horizonte de eventos el contenido de materia que
lo cruza puede estar a una distancia finita antes de la singularidad o correlacionado con los modos
cuánticos del vacío en el horizonte. Para este fin se intentó vincular el parámetro de corte de los
campos cuánticos para evitar las divergencias infrarojas asumiendo que el parámetro h, dado por
la ecuación (3.42) con alguna dimensión física de las barreras de potencial de índole nuclear, pero
esto llevó a divergencias mayores que violarían las cotas entrópicas dadas en la sección (3.1).

Para tal fin se evidencia la estrategia de reconocer que los campos cuánticos se hallen restringidos
a una zona particular en las vecindades del agujero negro, según predice el principio holográfico,
no sólo evita la necesidad de buscar un "bulk" de agujero negro, sino solamente la atención debe
ser dispuesta al análisis de las correlaciones cuánticas entre la radiación remanente y los campos
de materia presentes. Esto aunque lleva a fuertes divergencias en la energía, permite definir una
teoría cuántica de campos a temperatura finita, generalmente muy alta, que hace que los métodos
semiclásicos de cuantización no aporten un panorama general acerca de la localización y carácter
cuántico de los modos allí presentes, según se presenta en el capítulo 3. Para tal fin se hace
necesario visualizar una posible estructura matemática que libere el formalismo de las divergencias
por cortes ultravioletas en los campos. En esa dirección la expresión del principio holográfico como
un requerimiento de análisis del espacio a distancias muy cercanas a la escala de Planck, permitiría
hacer uso de las cotas holográficas sobre la entropía, con el fin de advertir las localización de los
modos y su configuración termodinámica, así como las características de los múltiples vacíos
presentes en las vecindades del agujero negro.

En este sentido este principio puede ser un candidato a mostrar las necesidades en la teoría
que especifiquen la posibilidad de eliminar las divergencias, en la energía. Una posibilidad de
esta naturaleza podría ser el modelo de plasma de quarks y gluones que posee características
holográficas y permite considerar las vecindades de agujero negro como un fluido viscoso de alta
temperatura, sin la obligatoriedad de que el horizonte de eventos funja como una barrera de
potencial a ser tunelada por las partículas.



Trabajo futuro

Implementar el proceso de tunelamiento cuántico a través de horizontes de eventos con-
siderando potenciales diferentes a los de decaimiento alfa y conversión interna, buscando
primordialmente en fenómenos de tunelamiento atómico.

Aplicar una modelización de la región cercana al horizonte de eventos como un plasma de
quarks y gluones, como una hipótesis surgida del principio holográfico en este esquema se
consideraría el Black Shell como el objeto cosmológico restringido sólo a su superficie sin
necesidad de considerar el interior. Esta determinación no implicaría necesariamente asumir
una estructura en el bulk de agujero negro, como si lo asume la constitución nuclear, en
la que los nucleones se encuentran confinados en un volumen finito interactuante con una
estructura interdependiente con los alrededores mediante la existencia de un potencial.
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Appendix A

Apéndice A La aproximación WKB

El método WKB1surge de la necesidad de estudiar la mecánica cuántica de problemas reales en
los cuales el potencial V tiene una estructura que hace que no sea posible determinar la solución
exacta de la ecuación de Schrödinger desde una perspectiva analítica sino que se hace necesario
buscar una solución aproximada.

Al considerar la ecuación de Schrödinger estacionaria para la amplitud ψ sin tener en cuenta el
factor temporal e−iωt

− h̄2

2M
∇2ψ + Vψ = Eψ, (A.1)

al suponer una solución de la estructura eikonal de la forma

ψ = e
i
h̄ S, (A.2)

asumiendo que la función S(x) posee dimensiones de acción. Y al aplicar el operador laplaciano a
la función de onda 2

1Es una solución de la ecuación de onda clásica estacionaria de la forma eiS(x) , donde S es el denominado
eikonal. El método fue desarrollado en 1926 por G. Wentzel, H. A. Kramers y L. Brillouin.

2Que para un campo escalar f definición en coordenadas cartesianas corresponde a la divergencia del gradiente

∇2 f = ∇ · (∇ f ),

además de la identidad vectorial para la divergencia del producto de un campo escalar f y un campo vectorial A

∇ · ( f A) = (∇ f ) ·A + f (∇ ·A)
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∇2ψ = ∇ ·
[
∇
(
e

i
h̄ S)]

= ∇ ·
[

i
h̄
(e

i
h̄ S)∇S

]
=

i
h̄
∇ ·

[
ψ∇S

]
=

i
h̄

[
(∇ψ) · (∇S) + ψ

(
∇ · (∇S)

)]
=

i
h̄

[
i
h̄
(ψ∇S) · (∇S) + ψ∇2S

]
(A.3)

∇2ψ = − 1
h̄2 (∇S)2ψ +

i
h̄
(∇2S)ψ (A.4)

al sustituir (A.4) en (A.1), se tiene que

− h̄2

2M
∇2ψ + Vψ = Eψ

− h̄2

2M

[
− 1

h̄2 (∇S)2ψ +
i
h̄
(∇2S)ψ

]
+Vψ = Eψ

1
2M

(∇S)2 − ih̄
2M

(∇2S) + V = E, (A.5)

se requiere asumir que el sistema se encuentre en un estado en el que se cumpla la condición

h̄|∇2S|2 � (∇S)2, (A.6)

por lo tanto la ecuación (A.5) queda

1
2M

(∇S)2 + V = E. (A.7)

La expresión (A.7) es una ecuación de Hamilton-Jacobi para la acción S(x), en la cual ∇S
corresponde al momento clásico de la partícula.3

De manera que la aproximación semiclásica consiste en que de cumplirse la condición (A.6), los
problemas cuánticos son susceptibles de ser abordados encontrando correcciones cuánticas a la
acción clásica y emplear esta acción corregida para obtener la función de onda.

3Dado que la corriente de partículas está dada por
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Figura A.1: Esquema de las regiones I, I I y I I I del potencial donde la aproximación WKB es aplicable.
Tomado de [16]

ρv = j

ψψ∗v =
ih̄

2M

(
ψ∇ψ∗ − ψ∗∇ψ

)
v =

ih̄
2M

(
∇ψ∗

ψ∗
− ∇ψ

ψ

)
y si se considera una función de onda de la forma ψ = ReiS, siendo R y S dos funciones de valor real, entonces se
cumple que la densidad de partículas ρ = ψψ∗ = (ReiS)(Re−iS) = R2, de manera que la magnitud de la función
de onda será R =

√
ρ de manera que su gradiente

∇ψ = ∇(ReiS)

= (∇R)eiS + R∇(eiS)

= (∇R)eiS + iReiS(∇S)

∇ψ =

(
(∇R)

R
+ i(∇S)

)
ψ

por lo tanto la velocidad tiene la forma

v =
ih̄

2M

(
∇ψ∗

ψ∗
− ∇ψ

ψ

)

=
ih̄

2M

[( (∇R)
R − i(∇S)

)
ψ∗

ψ∗
−

(
(∇R)

R + i(∇S)
)

ψ

ψ

]
=

ih̄
2M

[
(∇R)

R
− i∇S− (∇R)

R
− i(∇S)

]
=

ih̄
2M

[−2i(∇S)]

v =
h̄
M
∇S,
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Al efectuar una expansión en series de potencias de h̄ para S en la ecuación (A.5)

S(ih̄) =
∞

∑
k=0

Sk(ih̄)k = S0 + S1 (ih̄) + S2(ih̄)2 + S3 (ih̄)
3 + · · · ,

= S0 + ih̄S1 − h̄2S2 − ih̄3S3 + · · ·

S(ih̄) = S0 + ih̄S1 − h̄2S2 − ih̄3S3 + · · · (A.8)

en cuyo caso se supone que las funciones Sk no dependen de h̄.

Al calcular el gradiente de S, al ser un operador lineal, se obtiene4

(∇S)2 =
(
∇S0 + ih̄∇S1 − h̄2∇S2 − ih̄3∇S3 + · · ·

)2

=

(
∞

∑
k=0

(ih̄)k∇Sk

)2

=
∞

∑
k=0

(ih̄)k (∇Sk)
2 + 2

∞

∑
j<k

(
(ih̄)k∇Sk

)
·
(
(ih̄)j∇Sj

)
= (∇S0)

2 + (ih̄)2 (∇S1)
2 + (ih̄) (∇S2)

2 + · · ·
+2 (ih̄)1∇S1 · ∇S0 + 2 (ih̄) + 2 (ih̄)2∇S2 · ∇S0 + · · ·
+2 (ih̄)2∇S2 · (ih̄)∇S1 + 2 (ih̄)3∇S3 · (ih̄)∇S1 + · · ·
+2 (ih̄)3∇S3 · (ih̄)2∇S2 + 2 (ih̄)4∇S4 · (ih̄)2∇S2 + · · ·

(∇S)2 = (∇S0)
2 + 2ih̄∇S0 · ∇S1 − 2h̄2∇S0 · ∇S2 − h̄2 (∇S1)

2 .

El laplaciano de S corresponde a

∇2S =
∞

∑
k=0

(ih̄)k∇2Sk

= ∇2S0 + ih̄∇2S1 − h̄2∇2S2 + · · ·

Al sustituir las expresiones para el gradiente y el laplaciano de S en la ecuación (A.5) queda

es decir que

p = Mv = M
h̄
M
∇S = h̄∇S.

Es de notar que al sustituir la expresión para el momento en la ecuación (A.7) se retoma nuevamente la expresión
clásica para la energía de un sistema conservativo.

4Donde se ha hecho empleo identidad(
∞

∑
k=0

)2

=
∞

∑
k=0

(ak)
2 + 2

∞

∑
j<i

aiaj
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1
2M

(∇S)2 − ih̄
2M

(∇2S) + V = E

1
2M

[
(∇S0)

2 + 2ih̄∇S0 · ∇S1 − 2h̄2∇S0 · ∇S2 − h̄2(∇S1)
2 + · · ·

]
− ih̄

2M

[
∇2S0 + ih̄∇2S1 − h̄2∇2S2 + · · ·

]
+V − E = 0, (A.9)

de modo tal que al comparar los coeficientes de cada potencia de h̄, se llega a un sistema de
ecuaciones diferenciales para cada una de las Sk

(∇S0)2

2M
+ V = E

∇S0 · ∇S1 −
1
2
∇2S0 = 0

2∇S0 · ∇S2 − (∇S1)
2 +∇2S1 = 0, (A.10)

al comparar la primera de las ecuaciones en (A.10) con la ecuación de Hamilton-Jacobi dada en
(A.7), se verifica que

p = ∇S0. (A.11)

Al sustituir (A.10) en la segunda ecuación del sistema (A.9) se obtiene la expresión para S1.
Con estas expresiones es posible determinar S2 a partir de la tercera ecuación. Así iterativamente
en consecuencia es posible determinar los demás términos S3, S4, etcétera. Para las aplicaciones
convencionales es suficiente resolver las dos primeras ecuaciones del sistema. Si se tiene en cuenta
la expresión para el momento clásico de la partícula

p =
√

2M(E−V),

entonces, esta aproximación semiclásica funcionaría si se cumple

h̄2

p2

∣∣∇ · p∣∣� 1. (A.12)

Al estudiar el caso unidimensional para la expresión del momento, respecto a su derivada espacial

dp
dx

= −
√

m
2(E−V)

dV
dx

=
mF
dx

,

lo cual al sustituir en la ecuación (A.12), se tiene que
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∣∣∣∣ h̄mF
p3

∣∣∣∣� 1, (A.13)

dicha expresión sólo se cumple en las regiones en que la fuerza clásica F es pequeña y el momento
p es grande, de manera que los efectos cuánticos son apreciables en las regiones en que el potencial
V varía abruptamente, o en las zonas cercanas a los puntos clásicos de retorno, en los que se da el
caso de que V = E, en los cuales las partículas clásicas se detienen y no pueden pasar a regiones
en las que V > E, en las que no es válida la aproximación semiclásica.

Continuando con el caso unidimensional a lo largo del eje x, entonces las dos primeras ecuaciones
de la aproximación WKB dadas por (A.10) quedan al emplear (A.11) en la forma

(∇S0)2

2M
+ V = E(

d
dx

S0

)2

= 2M(E−V) = p2

d(S0) = ±pdx

S0 = ±
∫ x

p dx (A.14)

y también

∇S0 · ∇S1 −
1
2
∇2S0 = 0

∇S0 · ∇S1 −
1
2
∇2S0 = 0(

d
dx

(S0)

)(
d

dx
(S1)

)
=

1
2

d2

dx2 ((S0))(
d

dx
(S1)

)
=

1
2

d2

dx2 ((S0))(
d

dx (S0)
) (A.15)

∫ ( d
dx

(S1)

)
dx =

1
2

∫ d2

dx2 ((S0))(
d

dx (S0)
) dx (A.16)

La resolución de S1 en términos de S0 se efectúa de acuerdo a las sustituciones

u = d(S0(x))
dx , du = d2(S0(x))

dx2 dx
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por lo tanto

∫ ( d
dx

(S1)

)
dx =

1
2

∫ d2

dx2 ((S0))(
d

dx (S0)
) dx

S1 =
1
2

∫ du
u

S1 =
1
2

ln |u|+ C

S1 =
1
2

ln
∣∣∣∣ d
dx

(S0)

∣∣∣∣+ C.

En el caso en el cual el momentum de la partícula corresponda a px, entonces, por la ecuación
(A.11)

p = ∇S0 = d
dx (S0) = px

luego

S1 = ln |√p| = − ln
∣∣∣ 1√

p

∣∣∣ .

De manera que al tomar los términos lineales en h̄ y de primer orden, que corresponden a la
solución clásica más la primera corrección cuántica en la aproximación semiclásica, la función de
onda está dada por

ψ = e
i
h̄

(
S0+ih̄S1

)
= e

i
h̄ S0−S1 = e

[
± i

h̄

∫ x p dx+ln
(

1√
p

)]
, (A.17)

es decir

ψ = 1√
p e±

i
h̄

∫ x p dx (A.18)
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Appendix B

Apéndice B Tunelamiento en pozos
de potencial

De acuerdo a [16], en el caso estacionario, si se considera a partir de la ecuación de onda1 para la
amplitud de probabilidad ψ que describa el comportamiento de un ensamble de partículas cuánticas
en la forma de una onda estacionaria monocromática de frecuencia angular ω, puede escribirse
como

ψ(r, t) = e−iωt ϕ(r), (B.1)

que al sustituir en la ecuación de onda lleva a que

∇2ϕ +
ω2

v2 ϕ = 0

∇2ϕ +
4π2

λ2 ϕ = 0. (B.2)

Si se aplica la condición de cuantización de de Broglie λ = h
|p| =

2πh̄
p , entonces la ecuación (B.2)

toma la forma

∇2ϕ +
p2

h̄2 ϕ = 0. (B.3)

Dado que se ha considerado la condición idealizada de monocromaticidad, se considera que el
ensamble de electrones posee la misma energía E = p2

2M + V(r)h̄ω, entonces el momento clásico,

1La ecuación de onda es una ecuación diferencial, del tipo hiperbólico, en derivadas parciales, lineal de segundo
orden que describe la propagación de una variedad de ondas como las ondas de sonido, las ondas de luz y tiene la
forma:

∇2ψ− 1
v2 ψ = 0,

en donde v corresponde a la velocidad de propagación de la onda en el medio y satisface la relación de dispersión
v = λν = λω

2π , siendo λ la longitud de onda y ν la frecuencia.

89
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Figure B.1: Pozo de potencial rectangular unidimensional. Tomado de [16].

será p2 = 2m(E−V), luego la ecuación estacionaria2 de Schrödinger queda

∇2ϕ +
2M
h̄2 (E−V)ϕ = 0. (B.4)

Si se considera el caso de un pozo de potencial unidimensional, como el mostrado en la figura
(B.1) en el cual los electrones descritos por la función de onda estacionaria3 ϕ se encuentran
atrapados en un potencial V tal que −V0 < E < 0, de manera que

V =

{
0, si x ∈ (−∞, a/2) ∪ (a/2, ∞)

−V0, si x ∈ (−a/2, a/2)
,

así que la ecuación de Schrödinger unidimensional toma la forma

ψ′′ +
2M
h̄2 (E−V)ψ = 0,

y al definir los parámetros

k2 = −2M
h̄2 E =

2M
h̄2 |E|, q2 =

2M
h̄2 (V0 − |E|) =

2M
h̄2 E′ (B.5)

2En el caso no estacionario, en el cual se considera el factor temporal en la función de onda, la ecuación de
Schrödinger tiene la forma:

ih̄
∂ψ

∂t
= − h̄2

2M
∇2ψ + Vψ

3Para que la solución sea una solución físicamente admisible para la ecuación estacionaria de Schrödinger debe
cumplir que:

i. ψ y sus derivadas espaciales deben ser funciones continuas.

ii. ψ debe ser una función univaluada en todo punto.

iii. ψ debe ser finita y de cuadrado integrable en todo punto.

iv. ψ debe satisfacer las condiciones de frontera propias del problema.
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entonces es posible dividir la ecuación de Schrödinger en las tres regiones mostradas en la figura
(B.1) posee las soluciones

Región I. (x ≤ −a/2)

ψ′′I − q2ψI = 0; ψI = A1ekx + B1e−kx

Región II. (−a/2 < x < a/2)

ψ′′I I + k2ψI I = 0; ψI I = A2sen(qx) + B2cos(qx) (B.6)

Región III. (x ≥ a/2)

ψ′′I I I − q2ψI I I = 0; ψI I I = A3ekx + B3e−kx.

Para que se satisfagan las condiciones necesarias para que ψ4 sea solución acotada en las regiones
I y I I I se debe cumplir que B1 = A3 = 0, además de las condiciones de continuidad de la función
de onda y su derivada5,

ψI(−a/2) = ψI I(−a/2) ψI I(a/2) = ψI I I(a/2)
ψ′I(−a/2) = ψ′I I(−a/2) ψ′I I(a/2) = ψ′I I I(a/2),

entonces, las expresiones (B.6) llevan al sistema de ecuaciones

A1e−
a
2 k = B2cos

( a
2 q
)
−A2sen

( a
2 q
)

B3e−
a
2 k = B2cos

( a
2 q
)
+A2sen

( a
2 q
)

kA1e−
a
2 k = q

[
A2cos

( a
2 q
)
+B2sen

( a
2 q
)]

−kB3e−
a
2 k = q

[
A2cos

( a
2 q
)
−B2sen

( a
2 q
)]

(B.7)

4Si se interpreta ψ como una amplitud de probabilidad debe cumplirse que:

ρ = |ψ|2 = ψ∗ψ = ϕ∗ϕ = |ϕ|2

5Que a su vez son las condiciones de continuidad sobre la densidad de partículas ρ y la corriente de partículas
j = ρv. Estas dos cantidades se hallan relacionadas de acuerdo a la ecuación de continuidad ∂ρ

∂t = ∇ · j, entonces,
se cumple que al hacer uso de la ecuación de Schrödinger dependiente del tiempo:

∂ρ

∂t
=

∂

∂t

(
ψ∗ψ

)
= ψ∗

∂ψ

∂t
+ ψ

∂ψ∗

∂t

= ψ∗
(

ih̄
2M
∇2ψ +

V
ih̄

ψ

)
+ψ

(
−ih̄
2M
∇2ψ∗ − V

ih̄
ψ∗
)

=
ih̄

2M

(
ψ∗∇2ψ− ψ∇2ψ∗

)
= − ih̄

2M
∇ ·

(
ψ∇ψ∗ − ψ∗∇ψ

)
= −∇ ·

[
ih̄

2M
(
ψ∇ψ∗ − ψ∗∇ψ

)]
= −∇ · j
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De la primera y tercera ecuaciones en (B.7) se tiene que

q
[

A2cos
( a

2 q
)
+B2sen

( a
2 q
)]
= k

[
B2cos

( a
2 q
)
−A2sen

( a
2 q
)]

,

y a partir de la segunda y cuarta ecuaciones se obtiene

q
[

A2cos
( a

2 q
)
−B2sen

( a
2 q
)]
= k

[
−B2cos

( a
2 q
)
−A2sen

( a
2 q
)]

.

Este sistema de dos ecuaciones y dos incógnitas lleva a que al multiplicarsen los términos se
obtenga A2B2 = 0. Si se asume que A2 = 0, entonces al sustituir en el sistema de ecuaciones
(B.6), se obtiene ψI I = B2cos

( a
2 q
)
y si se toma B2 = 0, entonces, ψI I = A2sen(qx). Además

para el primer caso, si se considera que la constante de normalización es B2, entonces se llega a
la condición de cuantización

qsen
( a

2 q
)
= kcos

( a
2 q
)
, (B.8)

lo que lleva a la ecuación trascendente6

ytan(y) =
√

y2
0 − y2 (B.9)

en donde se ha hecho uso de las sustituciones

a
2

k =
1
2

√
2Ma2(V0 + |E| −V0)

h̄2 , y =
a
2

q, y0 =
1
2

√
2Ma2VO

h̄2 .

En el caso en el cual se tenga un pozo muy ancho y profundo, en cuyo caso se cumpla que y0 � 1,
entonces, se tiene que los valores propios de la energía en virtud de la condición para q dada por
la ecuación (B.5), corresponden a

y =
a
2

q =
a
2

√
2M
h̄2 E′n = π

(
n +

1
2

)
a2

4

(
2ME′n

h̄2

)
= π2

(
n +

1
2

)2

E′n =
4π2h̄2

2Ma2

(
2n + 1

4

)2

E′n =
h̄2π2

2Ma2 (2n + 1)2 (B.10)

con E′n = V0 − |E|, correspondiéndose con la energía medida desde la base del pozo.

Si se realiza una modificación al potencial considerando que en las regiones I y I I I existiese una
barrera de potencial finita, como puede verse en la figura (B.2) de manera que las ondas presentes
en el pozo en la región I I son transmitidas a la región I I I, pero no a la región I. En tal situación

6La ecuación (B.9) es soluble por aproximación computacional o al verificar las intersecciones de las gráficas
que surgen en múltiplos impares de ±π

2 , así por pequeño que sea el valor de y0, existe al menos una solución. Esto
expresa el hecho de que los niveles de energía discretos dentro del pozo y por lo tanto estados ligados, sin importar
el ancho o la profundidad, siempre y cuando el potencial se anule asintóticamente en infinito.
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Figure B.2: El escape de partículas confinadas en un potencial de barrera finita y su decaimiento expo-
nencial con el tiempo. [16].

existirán, en la interfaz entre ellas ondas reflejadas y transmitidas que no satisfarán las relaciones
clásicas R + T = 17 entre los coeficientes de reflexión R y de transmisión T8, dado que en ésta
se tiene que E < V0 la reflexión será total, pues R = 1 y por lo tanto T = 0; cuando E � V0 la
reflexión es parcial, entonces, algunas partículas pueden transmitirse, pues R→ 0 así que T → 1.
Esto difiere del resultado clásico.

Si se considera el caso en el cual E < V0 y un haz de partículas incidiendo contra la barrera entre
(0, a) presentada en la figura (B.2), entonces se presentará tunelamiento de una fracción apreciable
de ellas a través de ésta, si se considera que a la izquierda existe una pared infinitamente rígida
que impide la transmisión hacia la izquierda hacia x < 0. Teniendo en cuenta esto, la ecuación
de Schrödinger para esta situación tiene como soluciones

ψI = A1sen(kx)

ψI I = A2e−q(x−l) + B2eq(x−l)

ψI I I = A3eik(x−l1) + B3e−ik(x−l1), (B.11)

en donde

k2 =
2ME

h̄2 , q2 =
2M(V0 − E)

h̄2 .

7Clásicamente las partículas al llegar a un escalón de potencial se desaceleran y todas se transmiten si E < V0,
pues se tiene que T = 0 y R = 1 y si E > V0, entonces, T = 1 y R = 0.

8Estos coeficientes surgen de la relación entre las corrientes reflejadas y transmitidas respecto a la incidente en
la barrera, respectivamente:

R =
|jre f |
|jinc|

, T =
|jtrans|
|jinc|

.



94 Tunelamiento en aproximación semiclásica de la radiación Hawking para Black Shells

Por continuidad de la función de onda y su derivada en las interfaces x = l y x = l1

A2 =
1
2

A1

(
sen(kl)− k

q
cos(kl)

)
B2 =

1
2

A1

(
sen(kl) +

k
q

cos(kl)
)

A3 =
1
2

e−qa
(

1 +
iq
k

)
A2 +

1
2

eqa
(

1− iq
k

)
B2

B3 =
1
2

e−qa
(

1− iq
k

)
A2 +

1
2

eqa
(

1 +
iq
k

)
B2. (B.12)

Dado que estos coeficientes son combinación de funciones continuas, por corresponder a funciones
exponenciales y trigonométricas, que son continuas en todos los números reales, se tiene que el
espectro de energía es continuo. Bajo la condición de que las partículas escapan del pozo de
potencial de la región I I a la I I I, se requiere que B3 = 0, en la última de las ecuaciones (B.12),
entonces (

tan(kl) +
k
q

)[
1 +

k− iq
k + iq

e−2qa
]
=

2k
q

k− iq
k + iq

e−2qa, (B.13)

que es una ecuación de variable compleja con soluciones complejas para la región I, es decir,
dentro del pozo, así que debe ser de la forma

ψ = ψIe−
i
h̄ Et,

de tal manera que la densidad de partículas adentro corresponda a

ρI = ψψ∗

=

(
ψIe−

i
h̄ Et
)(

ψ∗I e+
i
h̄ E∗t

)
= ψIψ

∗
I e−

i
h̄ Ete+

i
h̄ E∗t

= |ψI |2e−
i
h̄ (E−E∗)t

= |ψI |2e−
2Im(E)

h̄ t

ρI = |ψI |2e−λt, (B.14)

en donde se ha definido el parámetro λ, dado por

λ = −2
h̄

Im(E). (B.15)

Las ecuaciones (B.14) y (B.15) evidencian que dentro del pozo la población decrece exponen-
cialmente con el tiempo si λ 6= 0, o lo que es equivalente, si la energía es compleja. Esto es,
correspondiente con el hecho de que, la fracción de la población que decae es independiente del
tamaño de la población. Con lo que se tiene una ecuación diferencial similar a la decaimiento
radiactivo

dn
n

= −λdt, (B.16)

cuya solución es una exponencial de la forma dada por la ecuación (B.16). Esto se da en virtud
de que la parte real de la ecuación (B.13) cuando el pozo es rectangular, es decir, a → ∞, se



Chapter B. Apéndice B Tunelamiento en pozos de potencial 95

presenta un corrimiento de los niveles de energía de éste y la parte imaginaria de la corrección hace
referencia a que los estados ya no son estacionarios y se produce el decaimiento; que bien pueden
ser electrones o núcleos de Helio en el caso del decaimiento α. La constante λ se corresponde con
la tasa de fuga de partículas, que a su vez está relacionada con el coeficiente de transmisión T.
La solución aproximada de la ecuación puede darse si se asume la aproximación a→ ∞, entonces
e−2qa → 0, con lo que la ecuación (B.13) se reduce a(

tan(kl) +
k
q

)[
1 +

k− iq
k + iq

e−2qa
]
=

2k
q

k− iq
k + iq

e−2qa

tan(kl) +
k
q
= 0. (B.17)

Ahora, dado que se busca una corrección a la energía, entonces, denominando δE la corrección
compleja a la energía y δk, de manera que E = E0 + δE y k = k0 + δk, entonces, la aproximación
a primer orden

k2 =
2M
h̄2 E

(k0 + δk)2 =
2M
h̄2 (E0 + δE)

(k0)
2 + 2(k0)(δk) + (δk)2 =

2M
h̄2 E0 +

2M
h̄2 δE

2(k0)(δk) ≈ 2M
h̄2 δE

δk ≈ M
h̄2k0

δE, (B.18)

por lo tanto la aproximación en serie de Taylor alrededor de E0 y k0, lleva a que

k = k0 + δk ≈ k0 +
m

h̄2k0
δE, (B.19)

además reorganizando y al derivar la ecuación (B.13) respecto a k, y evaluar a primer orden, se
tiene que

(
tan(kl) +

k
q

)[
1 +

k− iq
k + iq

e−2qa
]
=

2k
q

k− iq
k + iq

e−2qa

(
q tan(kl) + k

q

)[
k + iq + (k− iq)e−2qa

k + iq

]
=

2k
q

k− iq
k + iq

e−2qa

(
q tan(kl) + k

)[
(k + iq) + (k− iq)e−2qa

]
= (2k)(k− iq)e−2qa

(
ql sec2(kl) + 1

)
δk = 2k

(
k− iq
k + iq

)
e−2qa, (B.20)

y al evaluar en k = k0, entonces δk, queda

δk =
2k0(k0 − iq)(

k0 + iq
)(

1 + qlsec2(k0l)
) e−2qa, (B.21)
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al considerar la aproximación9 k0l � 1, entonces, sec(k0l) ≈ 1. Además si el potencial es bastante
grande, de manera que ql � 1, la ecuación (B.21) queda

δk =
2k0(k0 − iq)(

k0 + iq
)(

1 + qlsec2(k0l)
) e−2qa

=
2k0(k0 − iq)
(k0 + iq)(ql)

e−2qa

=
2k0(k0 − iq)
(k0 + iq)(ql)

(k0 − iq)
(k0 − iq)

e−2qa

=
2k0

ql
k2

0 − 2ik0q + q2

k2
0 + q2

e−2qa

=
2k0

ql

(
1− 2k0q

k2
0 + q2

i
)

e−2qa

δk =
2k0

ql
e−2qa − 4k2

0e−2qa

l(k2
0 + q2)

i. (B.22)

Teniendo en cuenta la ecuación (B.18) y (B.22) el corrimiento de la energía E = E0 + δE, entonces

δE =
h̄2k0

M
δk

=
h̄2k0

M

(
2k0

ql
e−2qa − 4k2

0e−2qa

l(k2
0 + q2)

i
)

δE =
2h̄2k2

0
Mql

e−2qa − i
4h̄2k0

Ml
k2

0

k2
0 + q2

e−2qa, (B.23)

de modo que

E = E0 + δE

E =
h̄2k2

0
2M

+
2h̄2k2

0
Mql

e−2qa − i
4h̄2k0

Ml
k2

0

k2
0 + q2

e−2qa

Im(E) = Im
[

h̄2k2
0

2M
+

2h̄2k2
0

Mql
e−2qa − i

4h̄2k0

Ml
k2

0

k2
0 + q2

e−2qa
]

Im(E) =
4h̄2k0

Ml
k2

0

k2
0 + q2

e−2qa. (B.24)

Así que la constante de decaimiento dada por (B.15) será

λ = −2
h̄

Im(E)

= −2
h̄

(
−4h̄2k0

Ml
k2

0

k2
0 + q2

e−2qa
)

λ =
8v
l

k2
0

k2
0 + q2

e−2qa

λ =
v
2l

T (B.25)

9Esta aproximación corresponde a bajas energías y pozo angosto.
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en donde se tuvo en cuenta la expresión para la velocidad de las partículas en el pozo v = p
M = h̄k0

M
y si se asume la aproximación

q2

k2
0 + q2

≈ 1,

entonces, se obtiene la expresión para el coeficiente de transmisión a través de la barrera y la vida
media de las partículas, si se considera que v

2l es el número promedio de veces que la partícula
choca contra la barrera por unidad de tiempo. Si este valor se multiplica por la probabilidad T de
que la partícula escape en cada intento, se obtiene la probabilidad total de escape por unidad de
tiempo.
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