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Semiconductor quantum dot arrays, a key platform for spin-based quantum computing, face scalability challenges due to the time-consuming
manual tuning of potential landscapes. This paper proposes that combining minimal one-dimensional voltage sweeps with machine learning offers
a practical method for automating the tuning of four separate single quantum dots, inspired by the Ray-based Classification framework. Our
method successfully tunes single quantum dots in a GaAs quadruple quantum dot device, while reducing the complexity of data acquisition and
simplifying the tuning process. © 2025 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd

1. Introduction

Arrays of gate-defined quantum dots (QDs) are emerging as a
promising candidate for storing spin qubits and serve as a
platform for quantum computing applications.1–3) Their
promising potential arises from the ease of controlling key
parameters,4–7) the ability to rapidly measure spin and charge
states,8) and the long decoherence times they offer.9–11)

Previous advancements, including the demonstration of
two-qubit gates and quantum algorithms,12–14) have further
strengthened their potential as a building block for solid-state
quantum computers.
However, one of the primary challenges in using gate-defined

QDs for large-scale quantum computing is the complex and
time-consuming process of tuning these dots for QD array
formation.15–18) In this paper, tuning refers to the adjustment of
the voltages applied to the electrostatic gates, which must be
precisely controlled to trap individual electrons within the QDs.
This process is crucial because each qubit must be in a well-
defined quantum state to perform reliable quantum operations.
Typically, the manual tuning process involves scanning the
parameter space of gate voltages and observing the behavior of
the QDs to identify the desired operating regime. However, this
process is highly time-intensive, especially as the number of
qubits in a system increases.
Several automated methods have been developed to tackle

the challenges of tuning in quantum dot (QD) devices, aiming
to simplify various steps in the tuning process. The choice of
automation often depends on the device design, as each
tuning step requires specific techniques. Some methods focus
on the initial stages of tuning, transitioning the device from
its starting configuration to a voltage regime where QDs can
form.16) Others concentrate on more complex tasks, such as
configuring quantum dots—for instance, transitioning from
two single quantum dots to coupled double quantum dots.19)

These methods aim to control the number of electrons within

each QD or fine-tune the couplings in multi-QD
systems.20–23) They utilize a range of tools, including
convolutional neural networks (CNNs),24) deep generative
modeling,25) and classical feature extraction methods like the
Hough transformation.26)

Among the automated tuning methods developed for
optimizing quantum dot devices, the Ray-Based
Classification (RBC) framework offers a novel approach to
reduce the measurement time and complexity involved in
quantum dot tuning.27) Traditional tuning methods often rely
on exhaustive two-dimensional (2D) voltage scans, where
gate voltages are varied systematically across a grid. This
process is time-consuming and inefficient because the
number of measurements increases significantly with the
resolution of the scan. While 2D scans provide comprehen-
sive information about the system, the RBC framework
minimizes the number of measurements required by per-
forming one-dimensional (1D) voltage sweeps along various
directions, known as “rays.” These rays exploit the freedom
of angle in the multidimensional voltage space, allowing for
efficient exploration with significantly fewer measurements.
By strategically selecting the angles of these rays, the RBC
framework balances the need for valuable system information
with the practical constraints of time and resource efficiency.
By focusing on distinguishing between different charge

states during quantum dot tuning, these rays provide quali-
tative information about the boundaries that separate various
operational regimes of the quantum dots. This targeted
approach enables a more efficient exploration of the para-
meter space and a faster identification of the desired charge
configuration. In this way, the RBC framework complements
existing methods by offering a more practical and time-
effective means of achieving precise control over quantum
dot charge states.
In this paper, operating within the RBC framework, we

employ a Long Short-Term Memory (LSTM) neural network
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to create a closed-loop system for achieving single-dot
formation in a GaAs/AlGaAs device.28) LSTM networks
are well-suited for handling sequential data and have proven
effective in identifying patterns in time-series data.29–31) By
integrating the RBC framework’s minimal one-dimensional
sweeps with the LSTM neural network’s pattern recognition
capabilities, we develop a closed-loop system for automati-
cally tuning independent single quantum dots in a quadruple
dot device.
Our autotuning algorithm operates with minimal prior

knowledge, specifically the gate design parameters and the
measured depletion value of a central gate shared by all
quantum dots. We detail the algorithm and validate it by
successfully tuning each of four independent single quantum
dots within a quadruple dot array. The algorithm autono-
mously identifies the appropriate gate voltages needed to tune
each quantum dot into a separate single-dot regime, one at a
time, as confirmed by experimental results.

2. Experimental methods

2.1. Experimental setup
Figure 1 shows a scanning electron micrograph of the device
capable of forming up to four QDs.32) The QD is electro-
statically defined in a two-dimensional electron gas, situated
90 nm beneath the surface of a GaAs/AlGaAs heterostruc-
ture, using Ti/Au gate electrodes.
The operation of the QDs is controlled by several gates:

the center gate (C), which separates the QD array from the
sensor QD; the barrier gates (B1, B2, B3, B4, B5), which
primarily adjust the tunnel rates between the dots and the
reservoirs or between the dots themselves; and the plunger
gates (P1, P2, P3, P4), which mainly regulate the chemical
potential of each individual QD. The sensor dot gates (SB 1,
SB 2, SP1) configure a sensitive charge sensor based on a
conventional QD setup. All measurements were conducted at
a temperature of 8 millikelvin.
The key transport feature indicating single-electron trans-

port is the presence of Coulomb peaks, which manifest as

peaks in the current flowing through the device as a function
of a single plunger gate voltage. To reliably detect these
Coulomb peaks and achieve single-electron transport, a
classifier capable of differentiating between traces with and
without these peaks is required. For this purpose, a Long
Short-Term Memory (LSTM) neural network was trained
using current traces obtained from the QD device, both with
and without FFT preprocessing.
2.2. Experimental data acquisition
The training dataset consisted of 500 current traces collected
from four distinct quantum dots, each sampled in 1 mV steps
from −200 mV to 0 mV, resulting in a consistent length of
200 data points. A 1 mV step was chosen to provide
sufficient resolution of Coulomb features without making
measurements prohibitively long. Of these traces, 250 con-
tained Coulomb peaks, serving as positive examples
(Coulomb Peak Traces), and 250 lacked peaks, serving as
negative examples (Non-Peak Traces). The fixed sweep
length was selected to meet the LSTM’s requirement for
uniform input lengths, ensuring seamless integration with the
neural network architecture. Out of these, 400 traces were
used to train the LSTM model, while the remaining 100
traces were allocated for accuracy evaluation during the test
phase. While 200 points effectively captured the necessary
features for our GaAs/AlGaAs device, other quantum dot
devices may necessitate shorter or longer sweeps. Figure 2
illustrates the data collection process, highlighting the
distinction between Coulomb peak and non-peak traces.
During preprocessing, the current data were subjected to

two distinct processing techniques. First, the raw current
traces were used without any transformation. Second, a Fast
Fourier Transform was applied to each current trace, and the
resulting frequency-domain data were truncated to retain the
first 200 frequency components. This truncation ensured that
the raw and frequency-domain data had the same dimension-
ality, a necessary condition since both were used as input to
the same LSTM model. To augment the training dataset and
enhance the model’s capacity to extract meaningful features

Fig. 1. A scanning electron microscope image of the GaAs/(Al,Ga)As sample. The circles indicate the positions of the four QDs that can be formed. The
crossed boxes indicate ohmic contacts.
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from the signal data, a data augmentation strategy was
employed. Specifically, each current trace was segmented
into overlapping windows, with each segment consisting of
100 data points and an overlap of 90 data points. This process
transformed the original 200-point trace into 11 overlapping
windows of 100 data points each. This data augmentation
technique was applied to both the raw and FFT-transformed
data, effectively increasing the size of the dataset available
for model training.
After data augmentation, normalization was performed to

scale all input values to a standard range before being passed
to the LSTM neural network. This normalization process was
conducted separately for the raw data and the FFT-trans-
formed data. For each data type, the mean and standard
deviation were calculated exclusively from the training
dataset, ensuring that no information from the test dataset
influenced the training process. These mean and standard
deviation values were then applied to normalize the corre-
sponding test datasets. By basing the normalization solely on
the training data and treating raw and FFT-transformed data
independently, we ensured that the model’s performance
evaluation remained unbiased.
The model architecture comprised a single LSTM layer

with 128 hidden units, followed by a fully connected layer to

classify traces as containing Coulomb peaks or not as
depicted in Fig. 3. Training was conducted separately on
the original and FFT-transformed datasets using the Adam
optimizer, with a learning rate of 0.001 over 50 epochs.
Cross-entropy loss was used to monitor both training and
validation performance during each epoch to mitigate over-
fitting. The inclusion of FFT preprocessing resulted in
significant improvements in classification performance, as
summarized in Table I. Accuracy, which measures the
proportion of correctly classified instances among all in-
stances, increased from 64.0% to 94.0%. Precision, defined
as the proportion of true positive predictions among all
positive predictions made by the model, improved from
56.6% to 95.5%. Recall, the proportion of true positive
predictions among all actual positive cases in the dataset,
experienced a slight reduction from 93.5% to 91.3%. The F1
score, which is the harmonic mean of precision and recall and
provides a balance between them, increased from 70.5% to
93.3%, demonstrating the efficacy of FFT in enhancing
model performance.
It is important to note that precision and recall often have a

trade-off relationship; improving one can sometimes lead to a
decrease in the other. In our case, while precision signifi-
cantly improved, indicating fewer false positives, recall

Fig. 2. Training dataset of 500 current traces (250 with Coulomb peaks and 250 without) used for LSTM model training (400 traces) and accuracy evaluation
(100 traces).

Fig. 3. Schematic of the LSTM model for Coulomb peak classification. The input, a current response from the plunger gate sweep, undergoes data
augmentation and is processed by the LSTM network to classify the presence or absence of a Coulomb peak.
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decreased slightly, suggesting a minor increase in false
negatives. However, the substantial rise in the F1 score
indicates that the FFT preprocessing contributed to a better
overall balance between precision and recall, leading to more
reliable classification results.
Figure 4(a) presents the confusion matrix for the model

trained without FFT preprocessing, showing reduced classi-
fication accuracy. Significant misclassifications occur in both
the “No QD” and “QD” categories, with 33 “No QD”
instances misclassified as “QD” and 3 “QD” instances
misclassified as “No QD.” This reflects the model’s difficulty
in distinguishing between the two classes without the benefit
of FFT preprocessing.
Figure 4(b) illustrates the training and validation accuracy

curves over 50 epochs for the model without FFT preproces-
sing. The model reaches a plateau of around 62% accuracy;

however, noticeable fluctuations indicate that it has not
achieved robust convergence. While it does appear to
stabilize around this level, the instability and variation
between training and validation suggest that the model
struggles to generalize well, showing signs of overfitting or
underfitting.
Figure 4(c), on the other hand, displays the confusion

matrix for the model trained with FFT preprocessing,
demonstrating a marked improvement. Only 2 “No QD”
instances and 4 “QD” instances are misclassified, high-
lighting the model’s enhanced ability to differentiate between
the two classes when FFT preprocessing is applied.
Figure 4(d) shows the training and validation accuracy

curves with FFT preprocessing applied. These curves exhibit
faster convergence, reaching higher accuracy levels and
demonstrating more stability across epochs. This indicates
better generalization and performance compared to the model
without FFT, as the FFT preprocessing enables the model to
achieve a more stable and higher level of accuracy.
Including the FFT preprocessing step increased the

model’s accuracy by transforming the current-versus-voltage
(I-V ) data into the frequency domain, thereby revealing
underlying patterns and features that are not easily discern-
ible in the original voltage domain. Although the data
represents current as a function of voltage (I(V)) rather than
time, applying FFT to this data allows us to analyze the

Table I. Performance metrics of the LSTM model without and with FFT
preprocessing applied to current–voltage (I–V ) traces. The application of
FFT preprocessing significantly improves accuracy, precision, and F1 score.

Metric Without FFT (%) With FFT (%)

Accuracy 64.0 94.0
Precision 56.6 95.5
Recall 93.5 91.3
F1 Score 70.5 93.3

(a) (b)

(c) (d)

Fig. 4. (a) The confusion matrix for the model trained without FFT preprocessing shows lower classification accuracy, with high misclassification rates for
both “No QD” and “QD” labels. (b) The corresponding training and validation accuracy curves over 50 epochs indicate slower convergence and fluctuations in
performance when FFT preprocessing is not applied. (c) The confusion matrix for the model trained with FFT preprocessing shows higher classification
accuracy, with significantly reduced misclassification rates for both “No QD” and “QD” labels. (d) The training and validation accuracy curves with FFT
preprocessing exhibit faster convergence and more stable performance, ultimately reaching higher accuracy levels.
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signal’s frequency components with respect to voltage
changes.
Coulomb peaks in the I-V characteristics are associated

with quantum effects that can introduce periodic variations in
the current as the voltage is varied. These variations may
be subtle and obscured by noise or other non-relevant
fluctuations in the raw data. By performing FFT on the
I-V data, we decompose the signal into its constituent
frequency components, effectively highlighting these peri-
odic features.
The first 200 frequency components extracted from the

FFT provide a rich set of features that capture essential
information about the presence of Coulomb peaks. These
frequency-domain features can amplify the distinguishing
characteristics between traces that contain Coulomb peaks
and those that do not. In the frequency domain, the Coulomb
peaks manifest as distinct frequency patterns or spikes,
making them more detectable by the LSTM classification
model. This benefits the LSTM neural network by providing
inputs that emphasize frequency-based relationships within
the data.
2.3. Automated tuning algorithm
Before the autotuning procedure begins, the user manually
adjusts the center gate (C) to its depletion point, identified as
the gate voltage at which current flow between the upper and
lower channels is completely suppressed. To ensure effective
isolation of the QD, a slightly more negative voltage than this
depletion point is applied. While this step is currently
performed manually, it could be automated in future im-
plementations.
The autotuning process requires the user to specify the

barrier and plunger gates that define the target QD (e.g., B2,

P2, B3 for “QD2”). These gates will be actively adjusted by
the algorithm, while all other gates are kept at zero voltage
throughout the process. In addition, the user must define the
voltage boundaries for the relevant barrier gates (e.g.,
−400 mV on one gate and −500 mV on another). This
ensures that all measurements and voltage sweeps are
conducted within a range where the operational “pinch-off”
is guaranteed to occur.
With all relevant gate definitions and voltage boundaries

established, the autotuning algorithm begins with an initi-
alization stage where the user selects a small voltage bias
(e.g., ∼200 μV) to be applied to the Ohmic contact (O1).
Following this, the algorithm draws a ray at a randomly
selected angle θ (0° < θ < 90°) from the origin of the barrier
voltage space. The intersection of this ray with the user-
defined voltage boundaries is then calculated, and the
algorithm uniformly samples a user-specified number of
points (e.g., 50) along the resulting line segment.
After measuring the current at all sampled points, the

data is smoothed using a moving average with a window
size of five to reduce noise. Based on the smoothed current,
the algorithm identifies the maximum measured current
(Imax) and sets a threshold of 0.2×Imax. The “pinch-off”
voltage is defined as the first point along the ray where
the smoothed current drops below this threshold. A user-
defined voltage window around the pinch-off is then used
to focus on this region in greater detail and is divided into
a user-specified number of barrier-voltage setpoints (e.g.,
ten).
Figure 5(a) illustrates this process for two example rays,

drawn at 30° and 60° in the VB3-VB4 space. For each ray, 50
sampling points are used along each ray, and a ±20 mV

(a)

(c)(b)

Fig. 5. (a) Rays at 30° and 60° in VB3-VB4 space with pinch-off points identified by black crosses. A 40-mV interval around each pinch-off point (±20 mV)
is selected for analysis. (b, c) Plunger gate voltage sweeps at 30° and 60° rays, respectively, showing the current responses at 10 points along each ray in the
barrier voltage space.
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window (total of 40 mV) around pinch-off is highlighted. The
pinch-off points for each ray are marked with crosses, and the
corresponding windows are indicated.
For each setpoint, the barrier voltages are held constant

while the plunger gate is swept from −200 mV to 0 mV in
1 mV increments, producing 200 data points per sweep—
precisely the input dimension required for the Long Short-
Term Memory (LSTM) neural network.
For some rays, as shown in Fig. 5(b) for the 30° ray, clear

Coulomb peaks are observed at each of the points along the
ray, indicating the formation of a single dot. In contrast,
Fig. 5(c) illustrates the current response along the 60° ray,
where only weak Coulomb peaks are visible, highlighting the
variability in the formation of the quantum dot across
different rays. This variability underscores the need for
automation in the tuning process. While the pinch-off point
is consistently defined at 20% of the maximum current, the
presence of Coulomb peaks during the plunger gate sweep is
not guaranteed for all rays.
Each plunger sweep (current trace) is analyzed by a trained

LSTM that determines whether Coulomb peaks are present.
For each ray, the algorithm tests all equally spaced barrier-
voltage setpoints within the user-defined window around the
pinch-off voltage. If the LSTM classifies at least one setpoint
as “QD,” the quantum dot is considered successfully tuned
into the single-dot regime, and the process ends.
If the LSTM identifies Coulomb peaks at any setpoint

within the specified voltage range, the algorithm verifies the
single-dot regime formation and applies the final gate
voltages, concluding the successful tuning process.
However, if every setpoint in the user-defined window is
classified as “No QD,” the ray is discarded, and the algorithm
selects a new random angle in the barrier voltage space to
measure the pinch-off and repeat the plunger gate sweeps.
This iterative process continues until the LSTM network
confirms that the single-dot regime has been achieved, at
which point the final gate voltages are applied.
By systematically iterating over random ray angles,

identifying the pinch-off voltage, defining a precise voltage
window centered around the pinch-off for focused analysis,
and conducting plunger gate sweeps within this targeted
region, our method significantly reduces the need for
exhaustive two-dimensional voltage scans. Furthermore,
users retain control over key parameters, such as the number
of points initially sampled along each ray to locate the pinch-
off, the size of the voltage window around the pinch-off for
detailed analysis, and the number of barrier-voltage setpoints
sampled within this window—all of which can be defined
based on prior experimental knowledge. This flexibility
ensures adaptability to varying experimental conditions while
leveraging domain expertise to optimize the process.
The LSTM’s classification plays a critical role in the

autotuning algorithm, enabling accurate identification of
Coulomb peaks, which are indicative of single-dot regime
formation. Its ability to reliably detect Coulomb peaks in current
traces ensures robust tuning in the autotuning procedure.
The entire autotuning procedure is summarized in Fig. 6,

which illustrates how the system automates ray selection,
plunger gate sweeps, and state detection by the LSTM to
achieve a single-dot regime.

Fig. 6. Flowchart of the automated quantum dot tuning algorithm. The
process begins with initialization, followed by random ray selection and
sampling in the barrier voltage space. Pinch-off voltages are determined from
the measured current, and a voltage window around the pinch-off is defined
for further analysis. Plunger gate sweeps are performed at setpoints within
this window, and the resulting current traces are analyzed using FFT and an
LSTM neural network. If Coulomb peaks are detected, confirming the single-
dot regime, final gate voltages are applied. If no Coulomb peaks are detected,
the process iterates with a new ray until successful tuning is achieved.
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3. Results and discussion

3.1. Automated tuning results
We successfully automated the tuning of a GaAs quadruple
quantum dot into single-dot regimes using one-dimensional
voltage sweeps combined with an LSTM neural network for
classification. The LSTM model was trained on current traces
exhibiting both the presence and absence of Coulomb peaks
to effectively detect quantum dot formation.
During each trial, voltage sweeps were performed at three

distinct points in the barrier voltage space. The LSTM model
evaluated the probabilities of “No Quantum Dot” (No QD)
and “Quantum Dot” (QD) formation at each point, denoted as
[PNo QD,PQD]. The configuration with the highest probability
for QD formation was selected for subsequent analysis.
As an example, we present the tuning process for Quantum

Dot 1 (QD1). In the first trial with a ray angle of 54°, the
LSTM model did not detect Coulomb peaks at any of the
three points, yielding high probabilities for “No QD” forma-
tion: [0.998,0.002], [0.993,0.007], and [0.987,0.013] for each
respective point. This indicates that the initial configurations
were not conducive to quantum dot formation.
In the second trial, the ray angle was selected as 23°, which

resulted in successful QD formation. The LSTM model’s
evaluations for this trial were [0.999,0.001], [0.000,1.000],
and [0.193,0.807]. The second point, with the highest QD
probability of [0.000,1.000] was selected. This selection was
confirmed by the presence of Coulomb peaks in the current
trace, as depicted in Fig. 7(a).

This procedure was applied to each quantum dot in the
array. By employing our method, we successfully formed
four independent single quantum dots within the quadruple
dot array. The presence of Coulomb peaks in each case
confirmed successful single-dot formation.
Figure 7 presents the automated tuning results for the four

single QD formations. The four plots (QD1, QD2, QD3,
QD4) display current responses from gate voltage sweeps at
angles of 23°, 83°, 49°, and 53°, respectively. The distinct
Coulomb peaks observed in each trace confirm the successful
formation of single quantum dots.
3.2. Discussion
In this work, we demonstrated a practical method for the
automatic tuning of individual quantum dots in a GaAs/
AlGaAs quadruple dot device by combining one-dimensional
voltage sweeps with machine learning-based approaches. Our
autotuning algorithm circumvents the conventional practice
of measuring two-dimensional stability diagrams, which can
be time-consuming and resource-intensive. By combining 1D
sweeps with an LSTM-based classification of Coulomb
peaks, we showed that it is possible to form single-dot states
without exhaustive 2D parameter scans. While our method
demonstrated the potential for reducing tuning overhead,
several key steps in the preparation process remain manual.
Initial gate adjustments, such as setting the center gate to its
depletion point and conducting leakage tests, require user
intervention. As the complexity of QD devices grows,
manual tuning becomes increasingly infeasible, necessitating
robust and scalable autotuning solutions. These steps are

(a) (b)

(c) (d)

Fig. 7. Automated tuning results for GaAs quadruple quantum dot formation. The four plots (QD1, QD2, QD3, QD4) show current responses from gate
voltage sweeps at angles of 23°, 83°, 49°, and 53°. Successful single quantum dot formation is confirmed by the presence of Coulomb peaks in the current
traces.
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critical for ensuring the device’s functionality could benefit
significantly from automation.
Recent advancements provide frameworks to address these

challenges. The Autonomous Bootstrapping Algorithm33)

offers a method for initializing a depletion mode QD device
in preparation for subsequent phases of tuning. Similarly,
BATIS34) navigates high-dimensional gate voltage spaces,
automating essential pre-tuning steps necessary such as
leakage testing and gate characterization while offering
platform agnostic adaptability for deployment across dif-
ferent QD devices. Together, these methods provide auto-
matic “bootstrapping,” a pre-tuning process that brings the
device to an operational regime where the tuning stage can be
initiated, serving as a baseline for the development of a fully
autonomous QD device initialization and calibration process.
In our autotuning procedure, we relied solely on measuring

current through the dot to identify Coulomb peaks and verify
the single-dot regime. While effective in this work, this
approach is not ideal for large-scale qubit tuning, where
scalability and time efficiency are critical. For larger quantum
dot arrays, RF-based tuning approaches may offer better
functionality due to their high bandwidth and scalability
through frequency multiplexing. An all-RF-based automated
tuning method has already been proposed, eliminating the
need for transport current measurements.35)

In our algorithm, rays are drawn from the origin, and
intersections with user-defined voltage boundaries are used
to define line segments. Sampling is performed along these
line segments, measuring current and defining pinch-off
based on a fraction of the maximum current within the
segment. While this approach effectively identifies pinch-
off points, it requires sampling along the entire ray, which
can be time-intensive and less efficient for large-scale
applications.
To address this limitation, a hardware-triggered detection

method based on reflectometry has been proposed, which
identifies peaks along rays and terminates measurements as
soon as a peak is detected. By eliminating the need to sample
the entire ray, this method significantly reduces measurement
time and enhances efficiency, making it highly suitable for
scaling to larger quantum dot arrays.36)

A key benefit of reducing the voltage space to a one-
dimensional “ray” is that the number of required measure-
ments grows only with the sampling resolution and the
number of rays, rather than increasing quadratically as in
traditional two-dimensional scans. However, relying on
random ray angles has a drawback: not every angle success-
fully forms a single-dot state. In such cases, the autotuning
algorithm abandons that ray and tests another, iterating until a
single-dot regime is verified by the LSTM model. While this
approach reduces measurement complexity, it does not fully
leverage the feedback from rays that fail to produce Coulomb
peaks, which could inform subsequent ray selections.
To address these limitations, we propose refining the ray-

based strategy through adaptive sampling and feedback. Rays
that fail to show strong Coulomb peaks still reveal valuable
insights about the voltage space, which can guide future ray
selections. A reinforcement learning (RL) framework could
incorporate this feedback, enabling real-time adjustments to
both the sweep angle and the sweep range to focus on more
promising regions.

In conclusion, our method demonstrates that one-dimen-
sional sweeps combined with machine learning provide a
practical and efficient approach for automatic quantum dot
tuning. By integrating recent advancements for automating
initialization and gate characterization, hardware-triggered
reflectometry to detect current peaks efficiently, and reinfor-
cement learning to optimize sweep angles and ranges through
adaptive sampling and real-time feedback, the tuning process
could be further streamlined, enabling efficient, scalable
tuning for large quantum dot arrays in practical quantum
computing applications.

4. Conclusions

We have presented a procedure for automatically tuning four
single QDs in a GaAs/AlGaAs quadruple QD device using
one-dimensional voltage sweeps combined with an LSTM
neural network. By building within the RBC framework and
employing FFT preprocessing, our autotuning algorithm
demonstrated high classification performance by accurately
detecting the presence of Coulomb peaks in current traces.
This enabled the successful formation of four independent
single quantum dots within the quadruple dot device, as
confirmed by experimental results. Our method requires
minimal prior knowledge—specifically, the gate design and
the measured pinch-off value of a central gate.
In conclusion, our work demonstrates that combining

minimal one-dimensional voltage sweeps with machine
learning provides a practical method for automating the
tuning of quantum dots into single-dot regimes. While this
approach simplifies the tuning process, further research is
needed to fully explore its potential and to understand how
it might be applied to larger quantum dot systems in the
future.
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