
LCIO: A Persistency Framework and Event Data
Model for HEP

Steve Aplin, Jan Engels, Frank Gaede, Norman A. Graf∗, Tony Johnson, Jeremy McCormick

Abstract—LCIO is a persistency framework and event data
model which was originally developed for the next linear collider
physics and detector response simulation studies. Since then,
the data model has been extended to also incorporate raw data
formats to support testbeam and real experimental data as well
as reconstructed object classes for use in physics analyses. LCIO
defines a common abstract programming interface (API) and
is designed to be lightweight and flexible without introducing
additional dependencies on other software packages. Concrete
implementations are provided in several programming languages,
providing end users the flexibility of using multiple simulation,
reconstruction and analysis frameworks. Persistence is provided
by a simple binary format that supports data compression and
random event access. LCIO is being used by the ILC and CLiC
physics and detector communities to conduct performance bench-
marking studies such as the recently completed CLiC CDR and
the ILC Detailed Baseline Design (DBD) study to be completed
in 2012. Detector studies for the Muon Collider are also being
conducted using LCIO as the event data model and persistency.
Multiple test-beam collaborations have used LCIO to store and
process hundreds of millions of events, providing experience with
real data. Recently the Heavy Photon Search collaboration also
adopted LCIO as its event data model and offline persistency
format. In this talk we present details of its use in these
various applications, and discuss the successful cooperation and
collaboration LCIO has enabled. We will also present the design
and implementation of new features introduced in LCIO2.0.

I. INTRODUCTION

LCIO is an event data model and persistency framework
originally developed for simulation and test beam studies

for the International Linear Collider (ILC). LCIO was devel-
oped to allow the exchange of data and algorithms among
Linear Collider working groups and thus provide a basis for
common software development.

A. Guiding Philosophy

The guiding philosophy behind the development of LCIO
was to identify the key elements for an event data model appro-
priate to a colliding detector experiment. These would be the
objects common to essentially every high-energy accelerator-
based particle physics experiment. Having done that, it was
important to target a simple persistency format, provide refer-
ence implementations in several languages, document it well
enough to ensure future readability, and have no external

Manuscript received November 19, 2012. This work was supported in part
by the U.S. Department of Energy.

N. A. Graf∗, T. Johnson and Jeremy McCormick are with the SLAC Na-
tional Accelerator Laboratory, Menlo Park, CA 94025 USA (∗ corresponding
author, telephone: 650-926-5317, e-mail: Norman.Graf@slac.stanford.edu).
S. Aplin, J. Engels and F. Gaede are with the DESY National Laboratory,
Notkestraße 85, 22607 Hamburg, Germany.

dependencies. Having a common event data model and a
common persistency format would allow the exchange of
software and data, freeing up physicists to concentrate on the
science and not the computing.

B. Requirements

LCIO has to define a data model that fulfills the current
needs of the global linear collider community for ongoing
simulation and test beam studies. As Java, C++ and some
legacy Fortran are used in ILC software, LCIO has to provide
user interfaces in all three languages. It also has to provide a
performant persistency format, one which is both compact and
fast. In order to make it easy for existing frameworks to adopt
LCIO it has to be lightweight and flexible without introducing
additional dependencies on other software packages.

C. Implementation and Design

LCIO defines a common API for Java and C++ using the
AID [3] tool. Two independent implementations exist for Java
and C++ in order to benefit from either languages advantages.
As is common practice today, user code is completely sepa-
rated from the actual I/O format and code, so more advanced
formats (such as hdf5 [4] or root [5]) can be incorporated in
the future. In order to support legacy software a Fortran API
to LCIO is provided through a set of wrapper functions to the
C++ implementation. Details of the design and implementation
are described in reference [1]. A schematic overview of the
software architecture is shown in Figure 1.

D. I/O Format

SIO (Simple Input Output) has been chosen as a first I/O
format for LCIO. It offers on-the-fly data compression and
pointer retrieval. Random access to the events in the file is
provided by an embedded catalog of pointers.

E. Users

LCIO has become the de-facto standard for ILC software
development both within the detector concept groups for
physics and detector response simulations as well as by the
detector R&D collaborations such as the TPC and Calorimeter
test beam groups.

Work supported by US Department of Energy contract DE-AC02-76SF00515.

SLAC-PUB-15296

Presented at IEEE 2012 Nuclear Science Symposium, Medical Imaging Conference
Anaheim, California, October 29 - November 3, 2012

1

Monte Carlo

SimCalorimeterHit

SimTrackerHit

MCParticle

 Reconstruction
&

Analysis

Track

Cluster

 Digitization

TrackerHit

CalorimeterHit

LCIO Event Data Model

 Raw Data

TrackerRawData

RawCalorimeter
Hit

TrackerData

TrackerPulse

Vertex

LCRelation

LCRelation

Reconstructed
Particle LCRelation

Fig. 1. The LCIO event data model showing the relationship between the main data classes. The full API can be found on the LCIO web site [2].

II. EVENT DATA MODEL

Central to the event data model design is the class LCEvent
that serves as a container for all data that are related to one
event. It holds an arbitrary number of named collections (class
LCCollection) of data objects (class LCObject). Run-related
information is stored in LCRunHeader. Run-headers, events
and collections have an instance of LCParameters that allows
one to store arbitrary metadata. In figure 1 the major LCIO
data entities are shown with the implemented relationships
between the objects. In the following sections we describe
the entities that are defined at every processing level from the
Monte Carlo generator to analysis.

A. Monte Carlo
The main class at the Monte Carlo level is MCParticle.

There will be exactly one collection with name MCParticle
in every event that holds the Monte Carlo truth particles
as created by the generator program. Particles that are cre-
ated during simulation will be added to the existing list of
MCParticles. By default, adding particles with their correct
lineage ceases when a particle decays or interacts in a non-
tracking region. Otherwise the number of MCParticles would

explode in calorimeter shower development. Two generic hit
classes, one for tracker and one for calorimeter hits are used to
store the simulated detector response. All energy depositions
are assigned to particles in the list, i.e. particles seen in the
tracking region or that entered the calorimeter and started a
shower. If a particle from a calorimeter shower is scattered
back into the tracking region it is also added to the list with the
resulting tracker hits assigned. A simulator status word is used
to store the details about creation, interaction and decay of
the particle. For the MCParticle, only parent relationships are
stored. When reading the data back from the file the daughter
relationships are reconstructed from the parents. This is to
ensure consistency. Care has to be taken when analyzing the
particle tree. Because a particle can have more than one parent
the particle list in fact does not consist of a set of trees (one
for each mother particle) but forms a directed acyclic graph.
Thus the user has to avoid double counting in his code. Of
course this only matters at the parton level as real particles do
not have more than one parent.

Generator

geometry

Analysis
Recon-

struction
Simulation

Java, C++, Fortran

Geant3, Geant4

Java, C++, Fortran
Java, C++, Fortran

LCIO Persistency Framework

Fig. 2. Schematic showing how LCIO enables interaction between high-energy physics software written in different languages or frameworks.

B. Raw Data

The classes at the raw data level have been introduced to
make LCIO also suitable for storing real data from test beam
prototypes or running experiments. For calorimeters there is
the class RawCalorimeterHit that consists of an ID, an integer
amplitude and a time stamp. It is suitable for most calorimeter
type detectors which integrate the energy deposition and do not
record the full time evolution of the signal. This is different
from the situation for the tracking subdetectors. There the
data formats will vary considerably with the particular type
of the tracking device, but in general more time information
is recorded. Therefore the TrackerRawData class contains an
array of integer measurements corresponding to the digitized
time spectrum of energy deposits. If needed the raw data
classes can also be used in simulation where one can link back
to the Monte Carlo hits through special LCRelation objects.

C. Digitization

At the digitization level there are again two generic types of
classes for tracker and calorimeter type subdetectors respec-
tively. These classes will contain hit data after digitization and

feature extraction. CalorimeterHit and TrackerHit are the types
to be used in reconstruction and analysis code for Monte Carlo
and test beam data. Support for one-dimensional (e.g. silicon
microstrip or scintillating fiber detectors), two-dimensional
(e.g. silicon pixel detectors) or full three-dimensional hits (e.g.
TPC) is provided. If needed, users can access the correspond-
ing original information for either data type.

D. Reconstruction and Analysis

Four main classes are defined at the reconstruction and
analysis level. Hits are combined into Clusters and Tracks
by pattern recognition and reconstruction algorithms. Both
classes point back to the contributing hits. Clusters can also
be combined from other clusters allowing a tree-like structure,
e.g. one could build clusters with a geometrical algorithm and
then combine some of these clusters to particles applying some
track-match criterion. Due to the imaging capabilities of the
planned Linear Collider calorimeters, clusters have an intrinsic
direction assigned to them. Tracks are meant to represent
the trajectories of charged particles and contain an ordered
list of hits, along with an arbitrary number of TrackStates,
which represent the best estimate for the track fit at those

TrackState locations. ReconstructedParticle is the class to be
used for every object that is reconstructed. This can be a single
particle like a track identified as a pion or a compound object
like a jet made from many particles. ReconstructedParticle has
lists of Tracks, Clusters and ReconstructedParticles that have
been combined to form this particle. Besides the kinematics
including the corresponding covariance matrix any number
of hypotheses describing the particle’s identity (PID) can be
stored. ReconstructedParticle is intended to be basis for most
physics analyses, where only rarely the need arises to go back
to tracks, clusters or even hits.

E. Relation Objects
In order to be able to relate objects with each other that

do not have a built-in relation in the LCIO data model the
LCRelation is used. Typically LCRelation objects are used
to store the links between raw data and the Monte Carlo
truth information. This ensures that there is a clear separation
between data classes that are to be used in analysis and
reconstruction and the Monte Carlo classes that are used for
developing and checking algorithms. LCRelation objects can
also be used to relate reconstructed objects back to the Monte
Carlo truth, e.g. if the hits are dropped from the files in order to
save disk space. LCRelations can also be used to store transient
links between objects at runtime. The relations are completely
generic, and support one-to-one, one-to-many and many-to-
one mappings in a way which is completely transparent to the
end user.

F. User Extensions
The LCIO data model as described above has been designed

in a way that it should fulfill all the current needs for ongoing
Linear Collider studies. Care has been taken to make the
data model flexible enough so that it can be used for a
variety of different subdetector types. Nevertheless users will
occasionally need to store information that is specific to a
detailed aspect of their ongoing work and that is not foreseen
in the data model. This can be done by using collections
of LCIntVec, LCFloatVec and LCStringVec objects, i.e. ar-
bitrary vectors of type int, float and string. Even though
this mechanism is fairly generic it can be become somewhat
cumbersome to handle user extensions, in particular if the
information at hand involves more than one data type. For
such cases, LCGenericObject allows users to store any self-
defined class with LCIO that implements that interface. Every
LCGenericObject has an arbitrary number of int, float and
double attributes, where the numbers might be fixed among
one collection or vary from object to object. Data stored in
LCGenericObjects can be retrieved from an LCIO file either
by using the user class implementation or through the generic
interface. Thus to read an arbitrary LCIO file no additional
knowledge or library is needed. This is different from other
persistency systems, where typically a dictionary with the class
definition is needed.

G. Transient Collections
The LCIO data model has been designed such that it can

also serve as the transient data model in an application.

Listener objects support a modular design of such applications,
where every module gets an LCEvent with all the collections
existing at that point and adds one or more collections with its
result to the event. Typically anything added to the event will
be made persistent. However some intermediate collections
might only serve as input to a computation performed by a
subsequent module. These LCCollections can be flagged as
transient and will not show up in the output stream.

H. Default Collections

The LCEvent allows one to store an arbitrary number of
named collections of the same data type. For example there
can be several lists of Track objects available in one event.
Typically there will be a collection of tracks or track segments
for every tracking subdetector and one collection that holds
all combined track fits. This collection is the one that will be
used for most analyses. In order to make it simple for the
end user, this collection can be flagged as being the default
list for Tracks. In general there should be exactly one default
collection for every type. This list should be complete in the
sense that all known information has been taken into account
and unique in the sense that it does not double count energy.

I. Metadata

LCIO is being used by a number of groups to store data
for detectors with different features and capabilities. Thus it
is necessary to describe the data that is stored in LCIO in
a way that it can be interpreted by users from other groups
without additional documentation and ideally even without
modifying existing code. This metadata description can now
be stored as arbitrary named parameters of types int, float
and string attached to run-headers, events or collections. A
number of predefined attribute names exist that are used to
describe and interpret type information in LCObjects, such as
the type of ReconstructedParticles or Clusters. These attributes
can be parsed and interpreted by applications whereas other -
user defined - attributes can at least be printed and interpreted
by another user, making additional sources of documentation
unnecessary.

J. Use with root

Many high-energy physicists have become accustomed to
using root [5] for their analysis needs. Although some effort
has been devoted to providing an LCIO persistency binding
using native root classes, the resulting files were found to be
larger and less performant than those based on SIO. Therefore,
the recommended way to access LCIO files via root is to use
the class dictionary which is provided as part of the LCIO
release.

III. LCIO AND CODE RE-USE

The Linear Collider user community is broad and diverse,
and it should come as no surprise that multiple software
frameworks have been developed to support the simulation,
reconstruction and analysis efforts. Normally, such a disjoint

architecture would preclude close cooperation and collabo-
ration. But having both a common event data model and a
common persistency format has allowed the community to
use the best tools from each toolkit without consideration of
language or platform. Figure 2 illustrates how LCIO provides
a backbone for various applications. For instance, events can
be generated in FORTRAN, simulated in C++, reconstructed
in Java, and analyzed with root, all because of the common
event data model and persistency.

IV. OTHER USERS

A. HPS

The Heavy Photon Search (HPS) [6] is a fixed-target exper-
iment at Jefferson Lab aimed at discovering a hidden-sector,
heavy photon. Electron-positron pairs produced in the decay
of such a particle are momentum-analyzed using silicon strip
detectors inside a dipole magnetic field and their energy is
measured in a crystal calorimeter array. The time to design and
optimize the detector via simulations was extremely short, yet
the need to precisely model the very high backgrounds very
close to the beam was critical to the success of the recently
completed test run. Although the detector is a fixed target
configuration, the event data model still maps very well onto
the detector elements and reconstruction needs. By adopting
LCIO as the event data model and persistency format, the
experiment was able to immediately benefit from the large
amount of simulation and reconstruction software developed
by the Linear Collider community.

B. Whizard Monte Carlo Event Generator

Whizard [7] is a Monte Carlo event generator for the LHC,
ILC, CLIC, and other high-energy physics experiments. The
events can be written to file in standard formats, including
ASCII, STDHEP, the Les Houches event format (LHEF) or
HepMC. However, although there is a standard persistency
format defined for the STDHEP files, the LHEF and HepMC
standards define only the in-memory API. It is left up to
individual experiments to define their own persistency format,
which severely limits the exchange of generated events, or
forces the adoption of unwanted external dependencies. The
developers are therefore considering LCIO as the default
persistency format.

C. Data Preservation and Archiving

The field of high-energy physics does a very poor job
of preserving its data beyond the publications which arise
out of analyses internal to individual collaborations. One of
the stumbling blocks is the custom persistency format (often
undocumented beyond the code which actually writes the
data), and the difficulty maintaining very large code bases to
read the data and access the information. We believe that the
simplicity and completeness of the design and implementation
of LCIO makes it a good candidate for a common solution to
common archival requirements in the accelerator-based high-
energy physics community.

V. SUMMARY AND OUTLOOK

Since its first public release in November 2003 LCIO has
been adopted by a number of groups and has become a de
facto standard for Linear Collider software. The current release
provides the complete data model including reconstruction
objects and user extensions. Having a common event data
model has enabled an unprecedented level of cooperation and
collaboration across disparate, and sometimes competing de-
tector concepts, across languages (Fortran, Java, C++, python),
across platforms (Linux, Mac, Windows) and across regions
(America, Europe, Asia). The use of well-defined interfaces
for data exchange has been more important than imposing a
single framework, language or platform. As such, LCIO has
been very successful in the Linear Collider community, both
for Monte Carlo simulations and real data applications. It is
beginning to attract users in other communities (such as HPS,
the Whizard Monte Carlo program) and would be an excellent
candidate for data preservation and archival projects.

REFERENCES

[1] F.Gaede, T.Behnke, N. Graf, T. Johnson CHEP03 March24- 28, 2003 La
Jolla, USA Conference proceedings, TUKT001, arXiv:physics/0306114.

[2] LCIO Homepage: http://lcio.desy.de/
[3] AID Homepage: http://java.freehep.org/aid/index.html
[4] http://www.hdfgroup.org/HDF5/
[5] http://root.cern.ch
[6] https://confluence.slac.stanford.edu/display/hpsg/Heavy+Photon+Search+Experiment
[7] http://whizard.hepforge.org/

