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Resumo en galego

O obxectivo da investigación presentada nesta tese é estudar distintas teorías de gravidade con
derivadas de orde superior, poñendo o foco nas súas aplicacións nos ámbitos da holografía e a
astrofísica. Este tipo de modelos foron considerados dende fai décadas como posibles vías para
unha futura unificación da gravidade coa mecánica cuántica, mais é importante antes de nada
ter clara a súa orixe e relevancia.

Proposta por Einstein en 1915, a teoría da relatividade xeral describe as interaccións gravita-
torias como consecuencia da xeometría do espazotempo, que á súa vez depende das distribucións
de materia e enerxía no mesmo. Como sucesora da lei da gravitación universal de Newton,
foi capaz de superar multitude de probas experimentais dende o seu nacemento, destacando
por exemplo as predicións clásicas da precesión do perihelio de Mercurio ou a deflexión das
traxectorias da luz, así como as recentes deteccións de ondas gravitacionais.

Pero esta non deixa de ser unha teoría clásica, e de algún xeito debería ser posible reconciliala
co outro grande logro da física teórica durante o século pasado: a teoría cuántica de campos.
Esta é capaz de describir cunha precisión extrema todas as interaccións microscópicas que
observamos, e polo tanto é de agardar que a estas escalas a gravidade sexa gobernada polas
mesmas normas. Porén, se un intenta cuantizala na súa forma actual atopa que non é posible,
posto que a teoría non é renormalizable, indicando a necesidade de atopar unha descrición
alternativa para a gravidade cuántica. Unha posibilidade extensamente considerada é a teoría de
cordas, que predí a aparición a baixas enerxías dunha serie de termos con derivadas superiores
na acción, pero cuxa forma exacta non é coñecida.

Esta tese trata o problema descrito cun enfoque “de abaixo cara arriba”, construíndo a
forma dos termos adicionais que suplementan a acción de Einstein-Hilbert, a correspondente
á relatividade xeral, en base a certos requirimentos físicos. Estas contribucións serán máis
relevantes a enerxías altas, ou distancias pequenas, e van conter derivadas de orde superior dos
campos da teoría. Durante a maior parte deste traballo consideramos unicamente correccións
construídas con derivadas da métrica, o cal se traduce en contraccións de tensores de curvatura,
aínda que na Parte II incluiremos tamén contribucións de campos adicionais.

A construción destas teorías trátase en certo detalle no Capítulo 1. Como primeiro exemplo
podemos mencionar as teorías de Lovelock [1, 2], que son os Lagranxianos máis xerais que
posúen ecuacións do movemento de segunda orde en calquera métrica, de forma similar á
relatividade xeral. Porén, en catro dimensións redúcense trivialmente á acción de Einstein-
Hilbert, e polo tanto non producen modificacións na dinámica gravitacional. Debido a isto,
neste traballo estamos máis interesados na familia das “Generalized Quasitopological gravities”,
identificada máis recentemente [3–11]. Estas manteñen certas características desexables das
teorías de Lovelock, como a existencia de ecuacións do movemento de segunda orde ou a
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propagación só do gravitón sen masa de relatividade xeral, aínda que en principio só en espazos
maximamente simétricos. En calquera caso, isto é suficiente para permitir a construción,
polo xeral de forma numérica, de solucións de buraco negro con propiedades termodinámicas
accesibles de forma exacta, o cal será importante para os estudos expostos nesta tese. Estes
modelos poden ser construídos para calquera orde nas derivadas [10, 11], e de feito calquera
teoría de orde superior pode ser escrita como un Lagranxiano desta familia [9], polo que
serven como base para estudar os efectos de correccións cuánticas xerais. Aparte disto, son de
particular interese debido a que producen modificacións non triviais tamén en 4 dimensións.
En concreto, estaremos interesados na teoría máis simple con estas características, “Einteinian
cubic gravity”, formada por contraccións cúbicas dos tensores de curvatura e orixinalmente
identificada en [3].

Ademais disto, o outro tema fundamental dunha porción importante deste traballo é a
dualidade holográfica [12–14], que tamén introducimos no Capítulo 1. Esta é unha conxectura
inicialmente derivada da teoría de cordas, pero que foi estendida ata ser considerada unha
dualidade máis xeral entre certas teorías cuánticas e de gravidade, polo que habitualmente
se denomina “dualidade gauge/gravidade”. Na súa forma máis habitual, a correspondencia
AdS/CFT, propón unha descrición dunha teoría cuántica de campos con simetría conforme
(CFT) en termos dun modelo de gravidade cuántica nun espazotempo anti de-Sitter (AdS)
cunha dimensión adicional, de xeito que a CFT estaría localizada na fronteira asintótica deste
espazo AdS. Isto apóiase no principio holográfico, proposto a partir do resultado da entropía
dun buraco negro, que en relatividade xeral é proporcional á área do horizonte, en lugar do
volume encerrado como cabería agardar. Isto implicaría que de algún xeito en gravidade a
información dos graos de liberdade contidos nunha rexión estaría codificada na fronteira da
mesma. Ademais, a correspondencia resulta particularmente interesante no límite en que a CFT
ten acoplamento forte e moitos graos de liberdade, que é imposible de tratar coas ferramentas
habituais da mecánica cuántica. Na teoría de gravidade dual isto corresponde ao límite de baixas
enerxías, que en principio está descrito pola relatividade xeral. Polo tanto, esta construción
permite calcular magnitudes da CFT estudando campos clásicos na teoría gravitatoria, poñendo
por medio un “dicionario holográfico” que relaciona certas cantidades a cada lado.

Volvendo ao tema anterior, podemos pensar en incluír correccións cuánticas na acción da
gravidade clásica, na forma de termos con derivadas superiores, o cal permitiría desprazarse
deste réxime altamente cuántico da CFT. De novo, non coñecemos a forma exacta das correccións
axeitadas na acción da gravidade, pero podemos considerar diversas teorías como modelos de
xoguete con constantes de acoplamento libres, que producen modificacións en certas cantidades
da CFT en función destes parámetros. Polo tanto, estas teorías de orde superior permiten
estudar CFTs con propiedades distintas ás descritas pola gravidade de Einstein, incrementando
o rango de aplicacións da dualidade holográfica.

Este punto é estudado na Parte I, onde consideramos unicamente a adición de termos con
contraccións dos tensores de curvatura na teoría gravitatoria, e analizamos a súa influencia en
distintos aspectos da dualidade holográfica.

O Capítulo 2 trata a cuestión da renormalización e regularización da acción da gravidade
en holografía. En concreto, hai dous problemas a resolver. Por unha banda, a acción é infinita
preto da fronteira de AdS debido ao volume deste espazotempo. Isto corresponde a diverxencias
a distancias pequenas na teoría de campos dual, e é necesario eliminalas para poder identificar
os valores de distintas cantidades na CFT. En relatividade xeral, isto conséguese mediante
a prescrición da renormalización holográfica [15–17], que consiste en eliminar os infinitos
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que aparecen sumando os contratermos necesarios. Porén, estes non se poden escribir de
forma pechada, senon que hai que calculalos explicitamente identificando as diverxencias
en cada dimensión. Pola outra banda, é necesario formular un problema variacional ben
definido, no sentido de que a variación da acción produza as ecuacións do movemento para
a métrica coa única condición de que o valor desta estea fixo na fronteira. Para relatividade
xeral, o termo de Gibbons-Hawking-York logra precisamente isto. En teorías con correccións
de orde superior na curvatura as diverxencias presentes serán distintas, co cal os contratermos
anteriores non funcionarán. Propoñemos polo tanto empregar unha extensión da prescrición
dos Kounterterms [18, 19], que son termos obtidos a partir dunha expresión pechada para
dimensións xerais que involucra as curvaturas extrínseca e intrínseca da fronteira. Estes
reproducen a forma dos contratermos habituais, incluíndo a contribución deGHY, en dimensións
baixas, e polo tanto resolven de forma natural os dous problemas explicados anteriormente.
Para teorías xerais de gravidade, propoñemos sumar estes Kounterterms multiplicados por
unha constante global, que dependerá dos parámetros de acoplamento da propia teoría. Ao
longo do Capítulo mostramos explicitamente que estes termos son capaces de eliminar as
diverxencias e proporcionar un problema variacional ben definido en dimensión igual ou menor
a 5. O razoamento é válido para teorías xerais que admitan solucións AdS, exceptuando un
subconxunto para o cal a asintótica do espazotempo difire da obtida en relatividade xeral, e que
tipicamente corresponden con teorías críticas de algunha forma. Ademais, para o problema
variacional requirimos que a métrica da fronteira sexa conformalmente plana, o cal se satisfai
automaticamente para dimensións menores a 5.

No Capítulo 3 exploramos os efectos de termos de orde superior na curvatura nun sis-
tema de materia condensada que pode ser descrito a través da correspondencia AdS/CFT: o
“supercondutor holográfico” [20–22]. Un material supercondutor pódese caracterizar pola
existencia dunha transición de fase a unha temperatura crítica, baixo a cal un parámetro de
orde toma un valor non nulo producindo unha ruptura espontánea de simetría. Nas teorías
de materia condensada habituais este parámetro de orde corresponde coa densidade de por-
tadores de carga supercondutores, co cal o sistema pasa a opoñer unha resistencia nula ao
transporte de corrente eléctrica continua. Na descrición holográfica modelamos este sistema
introducindo un campo escalar na teoría gravitatoria, cargado baixo unha simetría gauge U(1).
A temperatura do sistema, pola súa parte, é proporcionada por un buraco negro no interior
do espazotempo, que actúa como un baño térmico como é habitual na dualidade holográfica.
Ademais, consideramos un espazotempo de catro dimensións na teoría de gravidade, co cal
a teoría de campos ten tres, é dicir, dúas espaciais. Polo tanto o modelo sería axeitado para
describir materiais cunha estrutura cristalina laminar, de modo que a interacción entre os
graos de liberdade dentro de cada lámina se produza cun acoplamento forte. Este sistema está
ben estudado na literatura, pero interésanos explorar o efecto que as correccións cuánticas
na dinámica gravitatoria poden ter no mesmo. Para isto, incluímos na acción gravitatoria
os termos de Einsteinian cubic gravity, pois son as correccións máis simples coñecidas que
admiten ecuacións do movemento de segunda orde e non son triviais en 4 dimensións, polo
que modificarán a métrica de AdS co buraco negro. De feito, esta é a primeira ocasión en
que se consideran correccións de orde superior para un supercondutor holográfico con esta
dimensión. Empregando técnicas numéricas estudamos tanto o réxime no que a métrica do
espazotempo está fixa, como aquel no cal os campos de materia a modifican. Podemos estudar
como cambian cantidades como a magnitude deste condensado ou a temperatura crítica co
parámetro de acoplamento das correccións cúbicas, e tamén coa resposta desta métrica aos
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valores dos campos. Introducindo unha perturbación nunha compoñente espacial do potencial
electromagnético calculamos tamén a condutividade, atopando igualmente un valor infinito
cando a frecuencia desta perturbación é cero, correspondente coa resistividade infinita para
corrente continua. O principal efecto dos termos cúbicos que podemos identificar é unha
diminución da temperatura crítica, mais a interpretación disto dende o punto de vista da teoría
de materia condensada non está clara. En calquera caso, observamos que a tendencia coincide
coa observada en estudos anteriores, que inclúen termos correspondentes a teorías de Lovelock
en dimensións superiores.

Ata este punto consideramos unicamente correccións construídas a partir dos tensores de
curvatura, mentres que a dinámica dos demais campos que introducimos é a habitual, coa única
diferenza de que a métrica do espazotempo no que viven vese modificada. Pero é natural pensar
que estes campos tamén poden contribuír ás correccións con derivadas de orde superior. Este é
o punto central da Parte II, onde engadimos certos termos deste tipo na acción gravitatoria,
que en última instancia corresponderán a un potencial químico con acoplamento non minimal
na teoría dual.

Comezamos construíndo estas teorías no Capítulo 4, onde estendemos a familia das denom-
inadas “Electromagnetic Quasitopological gravities”, introducidas para 4 dimensións en [23], a
dimensión xeral. Estes son modelos de gravidade cunha (d − 2)-forma diferencial, sendo d a di-
mensión da fronteira. Para construír as teorías requirimos que teñan solucións de buraco negro
accesibles de forma analítica, considerando que o valor da forma diferencial é o correspondente
a unha solución magnética. Mediante unha transformación de dualidade este modelo describe
un campo electrostático na teoría de gravidade, que será equivalente a un potencial químico na
fronteira. Con estes requisitos, obtemos a forma dos Lagranxianos para calquera potencia da
curvatura e da forma diferencial, e en dimensión arbitraria.

A partir de aquí, no resto do Capítulo só nos centramos nas teorías de orde máis baixa, para
as cales realizamos unha serie de cálculos de relevancia en AdS/CFT. Empezamos establecendo
varias entradas do dicionario holográfico, primeiro atopando os valores das cargas centrais que
gobernan distintas funcións de correlación na teoría dual, e que difiren das correspondentes á
gravidade de Einstein. Calculamos tamén a distribución angular do fluxo de enerxía resultante
de introducir unha perturbación da corrente electromagnética localizada na CFT, determinada
unicamente por un parámetro que depende da teoría. Nos dous casos obtemos expresións
exactas en termos das constantes de acoplamento, é dicir, non perturbativas. Ademais, como a
forma destas cantidades difire das obtidas coa gravidade de Einstein, vemos que estas teorías
son útiles para describir CFTs que pertencen a clases de universalidades distintas ás descritas
pola relatividade xeral. Estes resultados tamén serven para acoutar os parámetros dos termos
de orde superior, ao considerar requirimentos de unitariedade e positividade do fluxo de enerxía
na CFT, e comprobamos que isto é equivalente a impoñer a propagación causal de perturbacións
dos campos na teoría de gravidade. Continuamos cun estudo das propiedades termodinámicas
da CFT dual, que son equivalentes ás dos buracos negros que coloquemos no espazo AdS.
Atopamos que estas teorías posúen un espazo de fases máis rico que o correspondente á
gravidade de Einstein, pero estas fases adicionais son desfavorecidas ao considerar as cotas
anteriores nas constantes de acoplamento. Rematamos obtendo o cociente entre a viscosidade
de cizalladura e a densidade de entropía correspondentes a un plasma na teoría dual. Este é un
cálculo habitual na correspondencia AdS/CFT, que orixinalmente levou a propoñer a famosa
“cota KSS” como un valor mínimo que esta cantidade podía tomar para calquera fluído. Coas
teorías desta familia atopamos que non só non se cumpre esta cota, coma en moitas outras
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gravidades de orde superior, senón que é posible conseguir que esta cantidade sexa menor que
cero respectando as restricións coñecidas nas constantes de acoplamento.

Continuamos co estudo destas teorías no Capítulo 5, neste caso calculando entropías de
entretecemento e de Rényi. A entropía de entretecemento é unha medida da cantidade de
entretecemento cuántico que hai entre unha rexión espacial da CFT e o seu complementario,
mentres que a entropía de Rényi é unha xeneralización deste concepto. Ámbalas dúas se definen
en mecánica cuántica en termos da matriz densidade, pero para as teorías que nos interesan
pódense obter de forma máis sinxela empregando as ferramentas da holografía. Isto reduce o
cálculo a un problema xeométrico na teoría de gravidade, de xeito similar a como a entropía
dun buraco negro é proporcional á área do horizonte en relatividade xeral. Desta maneira
calculamos as entropías de Rényi para as teorías introducidas no Capítulo anterior, considerando
unha superficie de entretecemento esférica na CFT. Observamos que o potencial químico tende
a aumentar o valor desta entropía, sempre que se cumpran os requirimentos físicos obtidos
previamente para os valores dos parámetros de acoplamento. Os resultados atopados permiten
confirmar que estes modelos cumpren unhas relacións universais previamente enunciadas para
teorías xerais, apoiando así o seu estudo. Do mesmo xeito, calculamos a dimensión conforme e
a resposta magnética dos twist operators asociados a estas entropías, e comprobamos que tamén
verifican certas relacións con distintos correladores da CFT anteriormente coñecidas. A partir
do resultado obtido, propoñemos unha expresión universal para a entropía de entretecemento
dunha rexión esférica en teorías cun potencial químico pequeno, en termos de constantes que
caracterizan as correspondentes funcións de correlación. Probamos que esta identidade é certa
en xeral, en base ás relacións coñecidas para os twist operators, e apoiamos a proposta cun
cálculo explícito para as Electromagnetic Quasitopological gravities de orde xeral que atopamos
no Capítulo anterior.

Se ben todo o traballo previo se centrou en considerar correccións con derivadas superiores
en aplicacións holográficas, é lóxico pensar en estudar tamén o efecto das mesmas noutros
escenarios. Este é o tema central da Parte III, a última do traballo, onde poremos o foco no seu
papel en astrofísica.

No Capítulo 6 estudamos distintos problemas de acreción de materia por un buraco negro,
engadindo á acción gravitatoria o escalar de Einsteinian cubic gravity. Isto modifica a forma da
solución de buraco negro en catro dimensións, cambiando tanto o radio do horizonte como a
xeometría no exterior, o cal influirá no comportamento da materia nas súas inmediacións. Coma
sempre, os termos cúbicos aparecen multiplicados por unha constante de acoplamento, cuxo
valor non coñecemos, e aínda que existen cotas experimentais estas non son moi restritivas.
En calquera caso agardariamos que o parámetro fose pequeno, pois estas teorías só están ben
fundamentadas no límite perturbativo, mais para ilustrar o efecto destes termos consideramos
valores relativamente grandes. As correccións de orde superior son sempre máis importantes
en rexións de curvatura alta. Isto fai que sexa interesante estudar o escenario de acreción, no
cal o buraco negro absorbe continuamente materia da rexión preto do horizonte. Consideramos
xeneralizacións relativistas de dous modelos clásicos de acreción, analizando a influencia
dos termos cúbicos nos mesmos. O primeiro deles considera o escenario en que existe un
movemento relativo entre o buraco negro e a materia, habitualmente coñecido como acreción
de vento, mentres que no segundo están en repouso un con respecto ao outro, o cal se denomina
acreción esférica. Nos dous casos realizamos cálculos semianalíticos, empregando a solución
de buraco negro obtida de forma numérica para a teoría cúbica. Esta é sempre a xeneralización
da solución de Schwarzschild, por simplicidade, xa que non é posible construír solucións
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con rotación para Einsteinian cubic gravity fóra dalgúns límites concretos. Os resultados do
primeiro modelo, que considera a materia como un conxunto de partículas masivas que non
interactúan entre si, son respaldados por outros obtidos a partir de simulacións numéricas de
hidrodinámica relativista. Nos dous casos atopamos que os termos cúbicos producen de forma
consistente un aumento da taxa de acreción. De feito, o efecto é maior que o incremento do
radio do horizonte, co cal este cambio non é suficiente para explicar o resultado, indicando que
o comportamento da solución fóra do buraco negro posúe relevancia. Ademais, as diferenzas
son maiores en réximes de enerxías altas, nos cales as correccións relativistas tenden a ser
máis importantes. En calquera caso, o cambio non é relevante para buracos negros de tamaño
astrofísico, pero si para outros de tamaño máis pequeno. Isto permite especular coa aplicación
deste estudo aos hipotéticos buracos negros primordiais, propostos como unha contribución á
densidade de materia escura, pois podería influír nas cotas existentes sobre a súa presenza no
Universo.

Finalmente, a tese pecha cun Capítulo breve no que expoñemos unhas conclusións xerais so-
bre o traballo, así como posibles futuras direccións. Isto serve como complemento ás discusións
incluídas ao final de cada un dos Capítulos principais.
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Overview of the thesis

This thesis is a compilation of the results obtained during the last four years of work, in
collaboration with the supervisor, José Edelstein, and several other authors: Ignacio Araya,
Pablo Bueno, Pablo Cano, Nicolás Grandi, Ángel Murcia, Gabriel Rodríguez, Emilio Tejeda,
David Vázquez, Alejandro Vilar and Xuao Zhang. This document incorporates material from
the works [24–28], and an additional, related article has been authored separately [29].

The purpose of the current Chapter is to provide a concise overview of the contents within
this thesis. We commence by clarifying the motivations and objectives that drive the research,
which might get diluted as we dig into more intricate details in the following Chapters, as well
as a general description of the methodology and tools employed to attain the desired results.
Afterwards, we provide a preview of the reserach presented here, with the aim to assist the
reader by offering a brief insight into the topics and problems covered in each Chapter.

Motivation and objectives

The main goal of this work is to explore the consequences that incorporating higher-derivative
terms in the gravitational action can have in different physical scenarios. The appearance of
these terms is a general feature of proposals for a quantum theory of gravity, and in this work
they are obtained from a bottom-up approach. This considers the Einstein-Hilbert action as the
lowest-energy contribution in an infinite series of terms, where higher-derivative corrections
become important in regimes of large curvature. We are primarily interested in theories
belonging to the Generalized Quasitopological class, which provide non-trivial corrections in 4

dimensions while retaining some of the desirable features of former models such as Lovelock
gravity. Originally, these theories are built by supplementing the action of general relativity
with certain combinations of higher-order contractions of the curvature tensors, and their
actual form can be known to arbitrary orders.

Among their wide range of applications we must highlight their role in holography, since
they serve as toy models to study dual quantum theories with features that can not be described
with Einstein gravity alone. This will be the main focus during a significant portion of this
work. In particular, we intend to propose an extension for general theories of the holographic
renormalization procedure, which produces some counterterms for the action that are able to
cancel divergences while providing a well-posed variational problem in the bulk theory. The
AdS/CFT correspondence is also known to be a powerful tool to study problems in condensed
matter physics, and it is interesting to investigate the role of higher-derivative terms in this
setup, which are traditionally assumed to correspond to finite N or finite coupling effects in
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the dual theory. We will do so by studying the addition of such corrections in what is perhaps
the most famous example: the holographic superconductor.

Beside the pure gravity corrections, it is reasonable to think about higher-derivative correc-
tions built with contractions of other fields, which can provide even richer holographic toy
models. In this regard, we can wonder about the effects of a non-minimally coupled chemical
potential in the boundary CFT. We will model this by adding to the bulk action contractions of
the curvature tensors with a differential form, that can be related to an electromagnetic field by
means of a duality transformation. Therefore, this will provide a description for more general
setups involving a chemical potential in the CFT, and in particular can be useful to check and
propose universal features of such models.

Lastly, it is possible to depart from the holographic framework and study the implications
of these corrections in other contexts. A well-established scenario where higher-curvature
terms can play a significant role is that of cosmology, and in fact some of these theories are
known to provide useful models for inflation. Given this, it is reasonable to examine the impact
of these corrections on astrophysical systems and processes as well. A specific objective of this
thesis is to delve into the interaction between matter and black holes, which leads us to the
study of problems of accretion.

Methodology

Similarly to any work in theoretical high-energy physics, carrying out this thesis involved
delving into an extensive body of existing literature. This is essential in order to gain knowledge
about the current status of the field, enabling the identification of relevant open questions,
but also serves as a valuable resource for acquiring concepts and techniques that aid in the
actual computations. Additionally, the procedure of work is further supported by engaging
in discussions with fellow researches, which can prove useful to find intuition about the
interpretation of the results, as well as decide what avenues are worth pursuing.

With respect to tools used for the actual computations, aside from the traditional pen and
paper the problems pursued often require the help of different pieces of computer software.
Wolfram’s Mathematica plays a pivotal role in this regard, as we use it extensively for both
symbolic and numerical computations. Its capabilities are further enhanced by the suite
of packages for tensor computer algebra xAct [30], which is able to manipulate complex
expressions involving contractions of tensors in an efficient manner. For a specific part of the
thesis we also rely on the GPL software aztekas [31,32], to simulate the dynamics of relativistic
fluids on a fixed background. Finally, custom implementations of numerical algorithms, for
problems such as integrating differential equations or finding roots, are at times indispensable.
For these cases we chose to work with the programming language C++, due to its performance.

Outline

All the work presented here revolves around incorporating higher-derivative corrections into
the gravity action, and examining their implications in various scenarios. Therefore, before
delving into the results, it is crucial to establish the necessary background by presenting this
kind of gravitational theories, and in particular those that hold our primary interest: the
family of Generalized Quasitopological gravities. This is treated in Chapter 1, where we also
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Overview of the thesis

provide an explanation of some relevant concepts in black hole thermodynamics, as well as an
introduction to the gauge/gravity duality, which is another central topic that will be explored
throughout a significant portion of the thesis.

The different results of the research carried out are presented after this, grouping the
main Chapters of the text in three distinct Parts according to the topics that they address.
Each individual Chapter features its own introduction and conclusions, but we present a brief
overview of their contents in what follows.

First, in Part I we study the consequences of adding higher-curvature corrections to the
gravity action in the context of the AdS/CFT duality. In Chapter 2 we treat the problem
of holographic renormalization for this kind of theories. We propose a method based on
the Kounterterms introduced in [18, 19], and we show that it is enough to cancel the near-
boundary divergences, while also providing a well-posed variational problem, for generic
higher-curvature theories of gravity in an AdS bulk with 5 dimensions or less.

Following that, in Chapter 3 we consider one of the most celebrated applications of the
AdS/CFT correspondence in the realm of condensed matter physics: the holographic supercon-
ductor. Again, we are interested in the role that higher-curvature terms in the bulk action can
play in this description, so we add to the action the contribution of Einsteinian cubic gravity,
which is the simplest extension to Einstein gravity in 4 dimensions that fulfills certain physical
requirements. We perform the usual computations of the condensation and conductivity in the
superconducting phase, which requires us to implement some complex numerical methods, and
find that the net effect of the cubic terms is to decrease the critical temperature, thus making
the superconducting phase harder to reach. The results are compared with similar studies
performed for higher-dimensional supercondutors with Lovelock corrections.

After that wemove to Part II, wherewe extend the previous construction of higher-derivative
theories of gravity to include also certain matter fields. In particular, we introduce the family
of “Electromagnetic Quasitopological gravities” for arbitrary dimension in Chapter 4. These
involve contractions of the curvature tensors with a (d − 2)-form field, which can be dualized
to form a theory with a non-minimally coupled electromagnetic field, that corresponds to a
chemical potential in the holographic dual theory. We provide the form of these Lagrangians
for any power of the curvature and the differential form, and study extensively the lowest
order representatives in the holographic setup. We carry out different calculations, such as
computing correlators or the thermodynamic phase space of the boundary theory, that allow
us to characterize the dual CFT as well as place bounds on the couplings of the gravity theory.

This study of holographic models with a non-minimally coupled chemical potential is
continued in Chapter 5, focusing on the study of Rényi and entanglement entropies for a
spherical entangling region. We prove that the theories considered respect a set of relations
involving their Rényi entropies and the corresponding twist operators, which were previously
known to be universal. The results obtained allow us to propose, and also prove, another
relation about the dependence of this entanglement entropy on the chemical potential for
general theories.

Finally, in Part III, we shift our focus towards a rather different topic: the role of higher-
curvature corrections in astrophysics. This is composed only of Chapter 6, where we consider
the problem of accretion of matter by a black hole. Since we want to characterize the qualitative
effects that the higher-curvature terms can have in this setup, we again supplement the 4-
dimensional action with the relatively simple scalar of Einsteinian cubic gravity. We study
different settings in the background of the black hole, most importantly those of wind and

xvii



Alberto Rivadulla Sánchez

spherical accretion, and find that all the results obtained point towards an increase in the rate
of accretion due to the quantum corrections, whose effect becomes more important in the
higher-energy regimes.

The main body of this thesis is closed with a short Chapter where we provide some global
conclusions about this work, and mention possible future directions. Finally, we include several
Appendices to complete different discussions in the main text.
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Notation and conventions

Throughout this thesis we will include some very technical computations and discussions. The
text intends to be self-consistent, and while most conventions used are more or less standard
in the literature, it can be useful for the reader to find them collected here.

As is usual in the field of high-energy theoretical physics, we will in natural units where
the speed of light is c = 1, and when required we also set the reduced Planck constant to be
ℏ = 1. Newton’s gravitational constant GN is written explicitly in most of our expressions, and
its value will be clear otherwise.

Dimensions, indices and curvature

We always consider the spacetime described by our gravity theories to be D-dimensional. In
most cases however this is an anti-de Sitter spacetime, which has a boundary where the dual
CFT resides. The dimension of this boundary, and thus of the dual theory, is d = D − 1. The
coordinates of the total D-dimensional manifold are always denoted by Greek indices, �, �, ….
In Chapter 2 we will split the coordinates between those normal and tangent to the boundary,
labeling the latter with Latin indices i, j , …, but this will be emphasized again when necessary.

As is customary in this area of research, we use the “mostly plus” signature, meaning for
example that the Minkowski metric takes the form

��� = diag(−1, +1, +1, … , +1) . (1)

We follow also the usual prescription for the components of the Riemann tensor,

R
�

���
= )�Γ

�

��
− )�Γ

�

��
+ Γ

�

��
Γ
�

��
− Γ

�

��
Γ
�

��
, (2)

and the Ricci tensor and curvature scalar are computed from these as

R�� = R
�

���
, R = g

��
R�� . (3)

Differential forms and the generalized Kronecker delta

In Part II (this is, Chapters 4 and 5) we will introduce a (d − 2)-form field that generalizes the
electromagnetic potential to higher dimensions. Therefore, we need to establish some notions
and conventions on differential forms, for which we follow [33].
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Let us start by defining the completely antisymmetric Levi-Civita symbol on aD-dimensional
manifold, as

�̃�1�2…�D
∶=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

+1 if �1�2 …�D is an even permutation of 01… (D − 1),

−1 if �1�2 …�D is an odd permutation of 01… (D − 1),

0 otherwise.

(4)

The components of this symbol are defined in this way for any right-handed coordinate system,
but from this we can construct the Levi-Civita tensor, which does transform as a tensor. Its
covariant and contravariant components are given by

��1�2…�D
∶=

√

|g|�̃�1�2…�D
, �

�1�2…�D
∶=

1

√

|g|

�̃�1�2…�D
, (5)

where g is the determinant of the metric of the manifold. Note that the position of the indices
(upstairs or downstairs) in the Levi-Civita symbol �̃ is irrelevant.

We can sometimes find expressions with contractions of Levi-Civita tensors, which can be
simplified using the identity

�
�1…�p�p+1…�D

��1…�p�p+1…�D
= (−1)

s
p!(D − p)!�

�1

[�1
⋯�

�p

�p]
, (6)

where s = 0 if the manifold is Euclidean, and s = 1 if it is Lorentzian.

Differential forms

We can define a p-form �, which is a (0, p)-tensor that is totally antisymmetric. In general, it
can be expressed in terms of the basis vectors of the co-tangent space of the manifold, dx�, as

� ∶=

1

p!

��1…�p
dx

�1
∧ ⋯ ∧ dx

�p
, (7)

where ∧ denotes the wedge product, an antisymmetrized product of differential forms. In
particular, given a p-form � and a q-form �, the wedge product � ∧ � is a (p + q)-form whose
components are given by

(� ∧ �)�1…�p+q
=

(p + q)!

p!q!

�[�1…�p
��p+1…�p+q]

, (8)

where as usual indices between brackets are antisymmetrized.
The exterior derivative d is the natural extension of the derivative operator to differential

forms. For a p-form �, it is defined as

d� ∶=

1

p!

)���1…�p
dx

�
∧ dx

�1
∧ ⋯ ∧ dx

�p
, (9)

so d� is a (p + 1)-form whose components are given by

(d�)��1…�p = (p + 1))[���1…�p]
. (10)
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Notation and conventions

Notice that, because of commutativity of partial derivatives, it follows that

d(d�) = 0 . (11)

The final operator that we need to introduce is the Hodge star ⋆, which acts as a map from
p-forms to (D − p)-forms, as

⋆� ∶=

1

p!(D − p)!

��1…�p
�
�1…�p

�p+1…�D
dx

�p+1
∧ ⋯ ∧ dx

�D
, (12)

or in components

(⋆�)�1…�D−p
=

1

p!

�
�1…�p

�1…�D−p
��1…�p

. (13)

One can also apply this operator twice, recovering the original form � with an additional sign,
as

⋆ ⋆ � = (−1)
s+p(D−p)

� , (14)

where again s = 0 or s = 1 for Euclidean or Lorentzian signature, respectively. This identity can
be checked by applying the Hodge star operator twice and replacing products of the Levi-Civita
symbol using Eq. (6).

Of course, differential forms play a role in many problems, and they fulfill some other
relations that could be useful in different contexts. However, the ones reviewed here should
be enough for our purposes, and we refer the reader to [33] for a more in-depth but also
pedagogical introduction that follows our same notation.

The generalized Kronecker delta

Both in Chapter 2 and in Part II of this thesis, although in different contexts, we will come upon
expressions with contractions of antisymmetrized indices. These can lead to some cumbersome
computations, which are greatly simplified if one introduces the generalized Kronecker delta.
Following the conventions of [34], this is defined as the antisymmetrized product of p Kronecker
deltas,

�
�1…�p

�1…�p
= det [�

�1

�1
⋯�

�p

�p ] = p!�
�1

[�1
⋯�

�p

�p]
. (15)

Some useful properties of this object in D dimensions are the following:

�
�1…�p�p+1…�q

�1…�p�p+1…�q
�
�p+1…�q

�p+1…�q
= (q − p)!

(D − p)!

(D − q)!

�
�1…�p

�1…�p
, (16a)

�
�1…�p�p+1…�q

�1…�p�p+1…�q
=

(D − p)!

(D − q)!

�
�1…�p

�1…�p
, (16b)

�
�1…�p

�1…�p
�
�1…�p

�1…�p
= p!�

�1…�p

�1…�p
. (16c)
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1
Introduction

Our fundamental understanding of Nature rests upon two cornerstone theories developed
during the 20th century: the Standard Model of particle physics and Einstein’s general relativity.
The former is based on the postulates of quantum mechanics, and describes accurately the
behavior of particles and their interactions on microscopic distances, providing unparalleled
precision in its predictions. In contrast, general relativity is an elegant explanation of gravity
in terms of curvature of spacetime, excelling on cosmic scales.

However, when attempting to rejoin these two descriptions we have to face several chal-
lenges. The Standard Model unifies in a robust manner the electromagnetic, weak and strong
nuclear forces, but gravity lies completely outside its domain. In fact, trying to describe the
gravitational interaction with the language of quantum mechanics one finds that it is non-
renormalizable [35–40], which implies that it does not admit a quantization in its current
form.

Another puzzle posed by the current understanding of the large-scale structure of the
Universe is the ΛCDM model. This is built on the foundations of GR, but relies on the presence
of two cryptic components dubbed “dark energy” and “dark matter” to match experimental
measurements of the accelerated expansion of the Universe, the cosmic microwave background
and dynamics of galaxies. The first of these is a constant vacuum energy density with negative
pressure, and the second is believed to be some kind of matter that is only subject to gravitational
interaction, and thus can not be observed directly. The existence of these two entities cannot
be accounted for by the field content of the Standard Model, and several alternatives for their
origin have been proposed throughout the years [41–45], each with its own perspective on the
cosmic puzzle. However, ideally we would expect a corrected theory of gravity to provide a
better description for these empirical observations, perhaps without the need to include such
components.

Lastly let us turn out attention to black holes, whose existence is one of the most successful
predictions of general relativity and for which there is extensive experimental evidence. Still,
these objects bring some fundamental puzzles on their own, such as the curvature singularity
behind the horizon and the unknown microscopic nature of their entropy. Besides, the issue of
black hole evaporation deserves special mention. While black holes are predicted to behave
as thermal objects and emit radiation, from a semiclassical treatment it is not clear how these
outgoing particles can account for the information encoded in matter that could have been
absorbed before, which would lead to a loss of information that is forbidden in a quantum
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theory that respects unitarity. This is known as the “information paradox” (a review can be
found in [46]), and is tightly related to the problem of the nature of the black hole entropy.

The fact that all the issues mentioned arise at the intersection of gravity and quantum field
theory points towards the need to join both descriptions in a theory of “quantum gravity.”
This has occupied many theoretical physicists during the last few decades, and among the
most promising approaches we should mention loop quantum gravity [47–50] and string
theory [51–54]. This thesis, however, fits into a distinct but not unrelated line of research.
We will consider a bottom-up approach, which consists on adding corrections to the action
of gravity that become relevant only at high enough energies, and that must fulfill certain
physical requirements. These higher-order terms are agnostic about the actual form of the
UV-complete theory, and thus allow us to perform computations and identify behaviors that
should be expected from a quantum description of gravity.

In what follows, we offer some background knowledge that is crucial for motivating and
comprehending the findings presented throughout the rest of the thesis. Each subsequent
Chapter is featured with its own introduction, that delves into more specific and technical
concepts. We begin by reviewing general relativity and higher-derivative extensions to it,
which pose the underlying theme of this thesis, placing particular emphasis on the family of
Generalized Quasitopological gravities. Then we move on to some general notions on black
holes and their thermodynamic properties, and finish with a short overview of the AdS/CFT
correspondence and the role of higher-derivative corrections in this duality.

1.1 General relativity and higher-derivative extensions

Since its original proposal more than a century ago, Einstein’s general relativity has stood
out as one of the most remarkable achievements in the history of physics. It provides a novel
description for the gravitational interaction that departs from the classical notion of it as a
force between masses. Instead, it emerges as a consequence of the geometry of the cosmos,
with massive entities inducing curvature which shapes the trajectories of other objects that
move in this landscape.

Originally,1 the theory is formulated in terms of a symmetric tensor g��, which is to be
interpreted as the metric of a torsion-free D-dimensional manifold. The dynamics of this
field is determined by the Einstein-Hilbert action

SEH =

1

16�GN
∫

d
D
x
√
−gR , (1.1)

where R is the Ricci scalar associated with g��. This is in fact the simplest non-trivial covariant
action that can be constructed from the metric tensor. The Einstein-Hilbert action is usually
supplemented by a cosmological constant term, Λ, which is interpreted as a vacuum energy
density. Also, there can be matter fields in the system, and in this case the entire action reads

S =

1

16�GN
∫

d
D
x
√
−g (R − 2Λ) + Smatter . (1.2)

1 An alternative approach to general relativity is the Palatini formulation, which considers the metric and the
affine connection to be independent fields, thus obtaining first order equations of motion. A review of this
formalism can be found in [55].
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Chapter 1. Introduction

The equations of motion are obtained by varying this total action with respect to the metric
tensor, finding Einstein’s field equations

�� ≡ R�� −

1

2

g��R + Λg�� = 8�GNT�� , (1.3)

where T�� ≡ −
2

√
−g

�Smatter
�g��

is the stress-energy tensor associated with the matter distribution.
Besides, due to diffeomorphism invariance these equations fulfill the Bianchi identity ∇���

= 0,
which is consistent with the conservation of the stress-energy tensor, ∇�T �� = 0.

If the manifold  has a boundary, however, it is necessary to specify certain boundary
conditions in the metric when performing the variation. For that, one fixes the value of the
metric there with Dirichlet boundary conditions,

�g��|) = 0 . (1.4)

However, taking this into account when computing the variation of Eq. (1.2) one is left with an
undesirable boundary term, that should be cancelled. This is achieved by supplementing the
action with the Gibbons-Hawking-York term

SGHY =
�

8�GN
∫
)

d
D−1
x

√

−ℎK , (1.5)

where ℎij is the induced metric on the boundary ), � is the norm of the unit vector normal
to that boundary and K is the trace of the extrinsic curvature of ℎij , given by Eq. (A.9).

Einstein’s theory of gravity has undergone rigorous scrutiny through a multitude of ex-
periments, each supporting its accuracy as a description for the gravitational dynamics of
the Universe. Among the classical tests, we should mention the prediction of the perihelion
precession of Mercury’s orbit, the deflection of light by the Sun, gravitational redshift, and the
Shapiro time delay. However, one of its most outstanding predictions are black holes, whose
thermodynamic properties are reviewed in Section 1.2. While at the beginning they were
believed to be mere mathematical constructs, substantial evidence for their existence has been
accumulated over time. This is in fact a very promising area of research, particularly with
recent breakthroughs such as the direct measurement of gravitational waves produced during
mergers [56–67], which are actually another striking prediction of the theory, and the images
obtained by the Event Horizon Telescope collaboration [68–71].

However, all these tests prove that general relativity is accurate at cosmological scales,
since the available experiments are only able to measure regimes of small curvature. In fact,
trying to extrapolate the results of this theory to shorter distances one is faced with the issues
mentioned before, such as the non-renormalizability and the appearance of singularities. One
possible approach to this problem, and the one that we are interested in, is to consider the
Einstein-Hilbert Lagrangian (1.1) as the first term in an effective field theory expansion of an
(unknown) UV-complete theory of gravity. Therefore, it would be natural to include terms in
the action that become relevant at higher energies, and in order to respect the symmetries of
the theory they must be made of scalar contractions of the curvature tensors. Schematically,
this action would read

S =

1

16�GN
∫

d
D
x
√
−g

(
R − 2Λ +

�2

M
2

∗

(2)
+

�3

M
4

∗

(3)
+ …

)
, (1.6)
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where {�i} are coupling constants of  (1), and the new scale M∗ determines when these new
terms become relevant. The object (n) represents a term with contractions of n tensors of
curvature, but whose actual form is not known. The series would continue to infinity, but in
practice it needs to be truncated.

The appearance of such higher-curvature corrections is motivated by string theory, as
they appear in the low-energy expansion of the action of different models weighted by the
string length �′ [72, 73], which would be proportional to M−2

∗
in our notation. But this is not

the only reason why such terms are desirable from a theoretical point of view. Indeed, it has
been known for some time that adding contributions that are quadratic in the curvature to
the Einstein-Hilbert action is sufficient to obtain a renormalizable theory [74], although at the
expense of producing ghost excitations in general.

Following a more phenomenological approach, higher-curvature models have been con-
sidered in different physical scenarios. One of these is cosmology, and we should mention
Starobinsky’s model [75], which improves the Big Bang singularity by introducing a R2 term
in the action. In the same line, it was recently shown that certain higher-curvature gravities
can produce an inflationary behavior without the need to introduce the hypothetical inflaton
field [76–82]. Finally, these models are relevant in holography, since they provide descriptions
for dual field theories with properties that are not achievable with Einstein gravity, as we will
see later.

1.1.1 General notions on higher-curvature gravities

As mentioned above, in this thesis we are mostly interested in theories of gravity whose
Lagrangian contains corrections made of different contractions of the curvature tensors.2 In
the case of pure models of gravity, the action can be written in general as

S =
∫

d
D
x
√
−g(g��, R����) , (1.7)

and they are typically dubbed “higher-curvature” theories. In Part II of this thesis we will
consider also corrections made with contractions of the curvature tensors and an additional
field, and we will refer to these generically as “higher-derivative” gravities. However, for now
we stick to theories of the form (1.7), assuming in particular that they admit an expansion as
that given in Eq. (1.6). Also, in this work we will be concerned about the first few terms of the
series, since contributions of higher order would become relevant only at increasingly large
energy scales.

The variation of a general action of this form was first performed in [83], and it results in

�S =
∫

d
D
x
√
−g���g�� + ∫

)
d
D−1
x
√
−g∇��v

�
, (1.8)

where the first term produces the equations of motion

�� ≡ P
���

�
R���� −

1

2

g�� − 2∇
�
∇
�
P���� =

1

2

T�� , (1.9)

2 It is possible to consider also terms with explicit covariant derivatives of the curvature tensors. In fact, we treat
them in [29], where we show that they generally suffer from the appearance of ghost excitations. However,
since these corrections are not relevant for the work presented in this document we do not mention them
explicitly.
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while the boundary term is

�v
�
≡ 2P

����
∇��g�� − 2�g��∇�P

����
. (1.10)

These expressions are written in terms of the tensor

P
����

≡

)
)R����

|
|
|
|g��

, (1.11)

which by definition inherits the symmetries of the Riemann tensor. Also, the equations of
motion (1.9) also fulfill the Bianchi identity ∇���

= 0 [83]. This is not straightforward to see
from the form of the equations, but it is a consequence of diffeomorphism invariance.

In principle, if the manifold has a border one should add a boundary term that cancels the
one produced in the variation of the action (1.8), provided that suitable boundary conditions are
imposed. For Einstein gravity this is achieved by supplementing the action with the Gibbons-
Hawking-York term, written in Eq. (1.5), but this will not be valid for most higher-curvature
theories. While the equivalent term is known for some particular models, for generic theories
it is still an open problem, and indeed it is one of the main questions treated in Chapter 2 of
this thesis.

We will deal mostly with spacetimes that have a large amount of symmetries. These are
typically counted in terms of the Killing vectors ��, which represent directions on the manifold
along which the metric remains unchanged, and fulfill the Killing equation

∇(���) = 0 . (1.12)

Of particular interest are vacuum solutions with the maximum number of isometries or inde-
pendent Killing vectors, which for a D-dimensional manifold is D(D + 1)/2. These are known
as maximally symmetric spacetimes (MSS), and their Riemann tensor is given by

R���� =

�

L
2
(g��g�� − g��g��) , (1.13)

where L and � are related to the cosmological constant in Einstein gravity as

Λ = �

(D − 1)(D − 2)

L
2

. (1.14)

Here, L has units of length, while � determines the global topology of the manifold. In particular,
if � = 0 the spacetime is said to be flat or Minkowski, while � = 1 or � = −1 correspond to
de Sitter and anti-de Sitter solutions, respectively. Hence, L is usually known as the (A)dS
radius. Notice that this fulfills the field equations of Einstein gravity, Eq. (1.3), with T�� = 0.
However, when higher-curvature terms are taken into account this is not exactly true, but it is
enough to replace the length scale L in Eq. (1.13) with a new one, L̃, which will be related to
that appearing in the cosmological constant with a proportionality factor that is obtained by
plugging it into Eq. (1.9).

When classifying higher-curvature theories of gravity, we will be concerned primarily
about static and spherically symmetric (SSS) configurations. The metric of a static spacetime
does not change in time3 and is also irrotational. In this case we want it to admit also a spherical

3 This means that the manifold has an asymptotically timelike Killing vector, which is the defining property of a
stationary spacetime. Hence, it is a special case of a stationary metric.
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symmetry, and thus the metric can be written in general as

ds
2

SSS = −N
2
(r)f (r)dt

2
+

dr
2

f (r)

+ r
2
dΩ

2

(D−2)
, (1.15)

where dΩ2

(D−2)
is the line element of a (D − 2)-sphere of unit radius. This also describes black

hole solutions, in which case there is some value of r for which f (r) = 0, which is known as
the event horizon. It is possible to consider also spacetimes with different topologies, for which
one would replace this by dΣ2

k, (D−2)
, where k = −1, 0 or +1 corresponding to a hyperbolic, flat

or spherical horizon, respectively. General relativity has solutions of this form with N(r) = 1,
or in other words gttgrr = −1, which are usually known as single-function black holes, since
the entire solution is determined by f (r). Therefore, it is possible to classify higher-curvature
theories of gravity depending on whether they admit such solutions or not.

A general higher-curvature theory will not admit single-function solutions of this form
(this is, with constant N(r)). Even if it does, it might happen that the equation of motion of f (r)
is up to fourth order in derivatives, due to the term ∇

�
∇
�
P���� in Eq. (1.9), which would mean

that it is impossible to obtain the solution for f (r) without specifying additional boundary
conditions. Besides, that same term in the general equations of motion (1.9) points to another
important problem that higher-curvature gravities typically possess: they propagate ghost
excitations on MSS backgrounds. This is a consequence of Ostrogradsky’s theorem [84, 85],
which implies that the Hamiltonian of any system whose equations of motion are more than
second order in derivatives will present instabilities, which in this case manifest as these
negative-energy modes. Indeed, for any theory of the form (1.7) these can be found explicitly
using the linearization procedure for MSS backgrounds introduced in [3, 86].

While these are generic features of such theories, they can be avoided for certain combina-
tions of the higher-curvature corrections. In this thesis we will focus on those belonging to the
recently proposed family known as ”Generalized Quasitopological gravities” [3, 6], which we
will introduce shortly. However, before that let us discuss a few other models that are relevant
in this regard.

1.1.2 Early examples of higher-curvature theories

1.1.2.1 f (R) gravity

The simplest possible corrections to the Einstein-Hilbert model are those given by f (R) theories
(see the reviews [87–89]). In this case, the gravitational part of the action takes the form

Sf (R) =

1

16�GN
∫

d
D
x
√
−gf (R) , (1.16)

where f (R) is some smooth scalar function involving only the scalar curvature R. The equations
of motion of such a theory can be obtained explicitly, and read [87]

f
′
(R)R�� −

1

2

f (R)g�� − [∇�∇� − g��□] f
′
(R) = 8�GNT�� , (1.17)

where T�� is the stress-energy tensor associated with some matter fields that could appear in
the action. Due to the derivative operators between brackets, it is clear that this equation
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is fourth order in derivatives of the metric, which in principle implies the appearance of the
negative-energy excitations.

In this case, however, it is possible to get rid of these instabilities. For that let us introduce
a new scalar field �, and rewrite the action in terms of it as [89]

Sf (R) =

1

16�GN
∫

d
D
x
√
−g [�R − V (�)] , V (�) =  (�)� − f ( (�)) , (1.18)

where  is given implicitly by � = f
′
( ). The transformation is valid as long as f ′′

(R) ≠ 0, and
leaves us with a scalar-tensor theory of the Brans-Dicke type [90]. This means that the pure
gravity action (1.16) can be translated into an equivalent model containing the usual massless
graviton of GR, plus an additional scalar field  , thus avoiding the appearance of the ghost
excitations in the gravitational sector.

Because of this, f (R) models have been extensively considered in particular for studies of
cosmology, for example for explaining inflation or the current accelerated expansion of the
Universe (see again [87, 88] for reviews of the topic). The counterpart of this is that, since
the modified behavior is “absorbed” by the scalar degree of freedom, these theories do not
introduce new gravitational dynamics, and in fact, all vacuum solutions of the equations of
general relativity also solve the equations of motion of f (R) gravities. Therefore, while these
theories are simple to study and can be useful for certain setups, they are not interesting for
our purposes.

1.1.2.2 Lanczos-Lovelock theories

The other extension of Einstein gravity that we would like to talk about are the Lanczos-
Lovelock, or simply Lovelock, theories [1, 2] (see also [91]). For a spacetime with dimension D,
the action is given by

SLovelock =
1

16�GN
∫

d
D
x
√
−g

⌊D/2⌋

∑

k=0

�n�
2n−2

�2n , (1.19)

where {�n} are some coupling constants, � is a length scale and ⌊x⌋ is the floor operator,
which produces the largest integer that is smaller than or equal to x . The scalars �2n are the
dimensionally continued Euler densities, given by

�2n =

1

2
n
�
�1⋯�2n

�1⋯�2n
R
�1�2

�1�2
⋯R

�2n−1�2n

�2n−1�2n
. (1.20)

Due to the antisymmetry in the generalized Kronecker delta, it is clear that �2n vanishes trivially
for D < 2n, while at the particular dimension D = 2n it is a topological quantity by virtue of
the Chern-Gauss-Bonnet theorem, which does not modify the equations of motion. This is
manifest in the upper limit of the sum in Eq. (1.19).

This theory is a direct generalization of general relativity, in the sense that the lowest order
terms produce the Einstein-Hilbert Lagrangian. In fact, by convention we consider �0 = 1,
corresponding to the cosmological constant term in Eq. (1.2), and it is possible to compute
�2 = R. The next term in the series is quadratic in the curvature, and reads

�4 = R
2
− 4R��R

��
+ R����R

����
. (1.21)
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This is usually known as the Gauss-Bonnet density, and has been extensively studied in the
literature. However, as mentioned above it is topological in D = 4, and one would have to
consider spacetimes with more dimensions in order for it to become non-trivial.

The equations of motion obtained from the action (1.19) read

⌊D/2⌋

∑

n=0

�n�
2n−2 (n)

��
= 0 ,  (n)

��
= −

1

2
n+1

g���
��1⋯�2n

��1⋯�2n
R
�1�2

�1�2
⋯R

�2n−1�2n

�2n−1�2n
, (1.22)

where we can see clearly that the term of order 2n = D, whose action is topological, does not
contribute to the equations of motion. However, the most important aspect of these expressionw
is that they are algebraic in the curvature tensors, and thus these theories produce second
order equations of motion for any metric. From the discussion before, this means that these
models do not suffer from the Ostrogradsky instability, and thus propagate the same degrees
of freedom as GR. In fact, Lovelock’s theorem states that these are the most general theories
with this feature that can be constructed, implying that Einstein gravity is the only non-trivial
theory of gravity in 4 dimensions with second order equations of motion for any background.

Finally, let us mention that the equivalent to the Gibbons-Hawking-York boundary term
is known for these particular theories [92, 93]. Also, contrary to what we discussed for f (R)
models, Lovelock gravities do modify the solutions of the field equations of GR, and the form
of different metrics such as black holes have been obtained (see e.g. [94–97]). Besides, certain
Lovelock terms have been found explicitly in EFT expansions of string theory (as is the case for
Gauss-Bonnet [98, 99]), which makes them interesting from the point of view of the AdS/CFT
correspondence [100–106].

1.1.3 (Generalized) Quasitopological gravities

One consequence of Lovelock’s theorem [1, 2], as already stated, is the fact that the only
non-trivial theory of gravity that has second order equations of motion in D = 4 is Einstein’s
general relativity. This means that we need to drop that requirement if we want to find a
higher-curvature theory that modifies the gravitational dynamics in four spacetime dimensions,
but we can still think about enforcing it only in some particular setups.

This reasoning led to the discovery of Quasitopological gravity [107, 108], which is a cubic
theory in D ≥ 5 that has second order traced field equations and propagates only the massless
graviton around maximally symmetric backgrounds. For general D, its Lagrangian is given by
the combination

D = R
� �

� �
R

� �

� �
R

� �

� �
+

1

(2D − 3)(D − 4)(

3(3D − 8)

8

R����R
����

R − 3(D − 2)R����R
���

�R
��

+ 3DR����R
��
R
��
+ 6(D − 2)R

�

�
R

�

�
R

�

�
−

3(3D − 4)

2

R
�

�
R

�

�
R +

3D

8

R
3

)
.

(1.23)
Besides those mentioned above, the most important feature of this theory is that it admits static
black hole solutions with different horizon topologies characterized by one single function,
whose equation of motion is algebraic. The same construction has been generalized to quartic
[109] and quintic [110] orders in the curvature, thus it is natural to define the family of
“Quasitopological gravities” (QTGs) as those satisfying the same set of properties. However, as
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appealing as they might be, QTGs have the same problem as Lovelock theories for our purposes:
they do not modify the gravitational dynamics in D = 4.

More recently, a new type of theories sharing some of the same features have been identified.
These are dubbed “Generalized Quasitopological gravities” (GQGs), and the main difference
with QTGs is that the equation of motion for the function f (r) in the black hole metric can be of
second order instead of algebraic. Also, they provide non-trivial corrections in four dimensions.
This is therefore a much broader family than that of Lovelock or GQG theories, which are of
course contained within it.

The first Lagrangian belonging to this class was found in [3] through the analysis of
metric perturbations on a maximally symmetric background. Indeed, the authors developed a
procedure to compute the spectrum of propagating modes for any (R��

��
) theory on such a

background (see also [86]), and applied it to themost general theory built with cubic contractions
of the Riemann tensor. Alongside the usual massless graviton, this unveiled the existence
of two massive modes: a ghost graviton and a scalar, whose masses depend on the relative
couplings of the cubic scalars. Therefore, it is possible to fine-tune these constants to make the
masses of the undesired additional modes infinitely large, which prevents their propagation.
This results in six different linearly independent combinations, which reduce to only two after
imposing that their coefficients do not depend on the spacetime dimension. One of these is
cubic Lovelock (which results from setting n = 3 in Eq. (1.20), and is trivial for D < 7), while
the other is a novel Lagrangian, dubbed “Einsteinian cubic gravity,” that reads

 = 8R
�

�
R

�

�
R

�

�
− 12R

��
R
��
R���� + 12R

� �

� �
R

� �

� �
R

� �

� �
+ R

��

��
R

��

��
R

��

��
. (1.24)

The main attractive of this theory is the fact that it produces non-trivial contributions in the
equations of motion in D = 4, while preserving the spectrum of Einstein gravity. Shortly
after the discovery of this theory it was found that it admits simple generalizations of the
Schwarzschild black hole, and also static solutions with planar and hyperbolic horizons [4, 5].
These are determined by a single function f (r) whose form is given by a second order equation
of motion, while the thermodynamic properties of the solution are accessible by solving a
system of algebraic equations.

Later, it was proved that the requirements that the theory admits single-function black hole
solutions and has Einstein spectrum are equivalent [7]. This results in a more powerful and
straightforward procedure to identify theories of this kind, which we outline now. For this
it is necessary to introduce the reduced Lagrangian LN , f , which is nothing but the original
higher-curvature Lagrangian multiplied by √

−g and evaluated on the SSS metric (1.15),

LN , f (r, f , N , f
′
, N

′
, …) ≡ N(r)r

D−2|N , f . (1.25)

Also, we will denote by Lf this reduced Lagrangian after setting N(r) = 1. Using the chain rule,
it is possible to show that the equations of motion (1.9) on the background (1.15) are equal to
combinations of the Euler-Lagrange equations of LN , f with respect to each function, as4

1

r
D−2

�N , f

�N

=

2tt
N

2
f

,

1

r
D−2

�N , f

�f

=

tt
Nf

2
+ Nrr . (1.27)

4 As usual, the equations of motion for a general gravitational theory are defined as

�� =
1

√
−g

� (

√
−g)

�g
��

. (1.26)
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The fact that these relations hold is a consequence of the symmetries of the spacetime, and this
procedure is not valid for general metrics. In this case we only have two unknown functions,
N(r) and f (r), so the solution must be determined by two equations of motion. In fact, using
the Bianchi identity ∇

��� = 0 it can be shown that the angular components of �� are satisfied
whenever tt = rr = 0, while the off-diagonal components of �� are identically zero due to
the symmetries of the metric.5

As shown in [7], the condition for the theory to belong to the GQG class is simply

�Lf

�f

≡

)Lf

)f

−

d

dr

)Lf

)f
′
+

d
2

dr
2

)Lf

)f
′′
− … = 0 , ∀ f (r) . (1.28)

This means that the Euler-Lagrange equation for Lf vanishes identically for any form of f (r),
implying that Lf is a total derivative, Lf = L

′

1
. Therefore, the reduced Lagrangian can be

expanded as [7]
LN , f = N(r)L

′

1
+ N

′
(r)L2 + N

′′
(r)L3 +  (N

′2
/N) , (1.29)

where L1, L2 and L3 depend only on the function f (r) and its derivatives. After integrating by
parts, the corresponding action reads

SN , f = ΩD−2 ∫
dt
∫

dr
[
N (r) (L1 − L2 + L

′

3)

′

+  (N
′2
/N)]

, (1.30)

in addition to some boundary terms. The equation of motion for f (r) is obtained by taking the
variation of this with respect to N(r) and then setting N(r) = 1. From the current form of the
action it is clear that this equation is a total derivative, which after integrating once reads

L1 − L2 + L
′

3
= C , (1.31)

where C is a constant that turns out to be proportional to the ADM mass of the solution
[111–114]. Therefore, obtaining the equation of motion for f (r) in a GQG is greatly simplified
by this formalism, since it is enough to evaluate the reduced Lagrangian LN , f and then identify
L1, L2 and L3 through Eq. (1.29).

As argued in [7], Eq. (1.31) will involve at most the first two derivatives of f (r). This
is indeed the defining property of the Generalized Quasitopological gravities,6 and means
that it admits black hole solutions that are characterized only by the ADM mass. The actual
form of f (r) can be obtained by employing numerical methods, and it is always a continuous
deformation of the equivalent solution in GR, which means that the theory has a well-defined
Einstein gravity limit (this is, the limit in which the couplings of the higher-curvature terms are
set to zero). Besides, the thermodynamic properties of these metrics are accessible through a
system of algebraic equations [4–8,115], whichmake these GQGs very appealing for holographic
setups.

5 A discussion of this point for D = 4, but that can easily be extended to general dimensions, can be found at
Appendix B of [23].

6 Quasitopological gravity theories also belong to the Generalized Quasitopological family, and they correspond
to the limiting case in which Eq. (1.31) is algebraic in f (r), this is, it does not involve derivatives of this function.
It is conjectured [7] that for these theories the reduced Lagrangian takes the exact form

LN , f = N(r)L
′

1
+ N

′
(r)L2 + N

′′
(r)L3 , (1.32)

following the same notation as before.
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Based on this construction, theories belonging to this class can be obtained for any order
and dimension [10, 11]. In fact, for D ≥ 5 there exist n − 1 inequivalent densities of order n in
the curvature, and only one for D = 4. It was also shown [9, 10] that any higher-curvature
gravity theory can be mapped to a GQG via field redefinitions of the metric tensor, which
means that these models are able to capture the effects of general higher-curvature terms in
gravitational dynamics.

Throughout much of this work we will focus on this kind of theories, or extensions thereof.
In particular, we will be interested mostly in the simplest non-trivial correction of Einstein
gravity in D = 4. This is given by Einsteinian cubic gravity, whose Lagrangian density is
written in Eq. (1.24), but also the cubic scalars  and ′ identified later in [6]. These also belong
to the GQG family, and read

 = R
����

R
���

�
R
��

−

1

4

R
����

R
����

R − 2R
����

R
��
R
��
+

1

2

R
�

�
R

�

�
R , (1.33)

′
= R

�

�
R

�

�
R

�

�
−

3

4

R
�

�
R

�

�
R +

1

8

R
3
, (1.34)

and it can be checked that they fulfill the relation

4 ( − 2′

) = �
�����

�
�
���

R
� �

� 

R
� �

� �
R
�

�
. (1.35)

Notice that for D = 4 the Levi-Civita tensor with five indices is identically zero, so  = 2′,
meaning that in this particular case it is enough to consider only one of these Lagrangian
densities.

The scalars  and ′ were not studied at first, since they do not modify the equations of
motion of the SSS metric given in Eq. (1.15). However, they gained relevance when these
theories were considered in the cosmological setup. This was treated for the first time in [76],
where it was found that the particular combination  − 8 produces second order equations
of motion also when evaluated on the Friedmann-Lemaître-Robertson-Walker metric, which
is time-dependent and thus not stationary. Therefore, the evolution of the scale factor of the
universe can be computed without supplying any additional initial condition at the Big Bang,
and indeed it was found that this model can produce an exponential expansion of the universe
without the need to introduce the inflaton field. Another point in favor of considering the
density  − 8 is the fact that it can be derived from 5-dimensional Quasitopological gravity,
as shown in [77]. The construction was generalized afterwards by including corrections with
arbitrary powers of the curvature tensors [78, 80], and the inflaton field was reintroduced
in [81, 82]. This, however, suffers from a series of problems, the most important being those
arising in the study of perturbations [82, 116]. In any case, for consistency with these results,
and even though this will not affect most of our results, in this work we will work with the
cosmological version of ECG,  − 8.

Due to their interesting properties, Generalized Quasitopological gravities attracted a lot
of attention in the last few years, and have been considered in the study of a wide array of
problems, most of them related to holography and black holes [117–140]. However, in a recent
paper [141] it was argued that these theories should only be trusted in the EFT regime, which is
the setup in which they were originally proposed. In any case, they provide very useful models
to study the effects of higher-curvature corrections to different problems.
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1.2 Black hole thermodynamics

Black holes are one of the most remarkable and intriguing predictions of general relativity.
They are asymptotically flat solutions7 that contain an “event horizon,” a null hypersurface
which encloses a region that is not in the backward-directed lightcone of future timelike infinity.
In more layman terms, no causal signal can come out from behind the horizon and reach an
observer sitting infinitely far away.

Let us introduce also the concept of the Killing horizon, which is a null hypersurface Σℎ
whose normal vector � is also a Killing vector of the spacetime. This is interesting for us, since
the event horizon of a stationary and asymptotically symmetric black hole is typically also a
Killing horizon.8 Since ���� = 0 on the hypersurface, its gradient ∇�(� ⋅ �) must be normal to it,
and thus proportional to �� itself. Taking into account the Killing equation (1.12), this can be
stated as

�
�
∇��

�
= ��

�
|Σℎ
, (1.36)

where the proportionality factor � is known as the surface gravity, and is constant at the
horizon (a proof can be found in Section 12.5 of [142]). Its value is equal to the acceleration that
an observer would experience while falling through the horizon of a static and asymptotically
flat black hole, assuming that the Killing vector is normalized as ���� = −1 at infinity. Also, we
will see later that this quantity is proportional to the Hawking temperature of the black hole.

A black hole in general relativity is fully characterized by only three conserved quantities:
mass, electric charge and angular momentum, and also magnetic charge if it were found to
exist. This idea is commonly referred to as the “no-hair conjecture,” and poses quite a few
challenges when viewing the black hole as a quantum object, as it implies that the information
of the matter that formed it was somehow lost. However, this is very advantageous when
constructing the actual solutions in GR, as they are fairly simple. Particularly relevant are the
static and spherically symmetric neutral solutions of the field equations, which is given for
general dimensions by Eq. (1.15) with N(r) = N0 (N0 = 1 for asymptotically flat spacetimes)
and

f (r) = 1 −

16�GNM

(D − 2)Ω(D−2)r
D−3

−

2Λr
2

(D − 1)(D − 2)

, where Ω(D−2) =

2�
(D−1)/2

Γ [(D − 1)/2]

. (1.37)

This is known as the Schwarzschild-Tangherlini solution, and is fully determined by the ADM
mass M . Besides, it will have different asymptotics depending on the sign of the cosmological
constant Λ, as explained below Eq. (1.14).

The form of this solution will change due to the higher-curvature corrections that we are
interested in, and indeed in order to find the form of f (r) for Generalized Quasitopological
theories one generally needs to rely on numerical techniques. Trying to add a non-vanishing
angular momentum for theories of this kind is usually a rather complex task, and such solutions
could only be found in some approximate regimes, such as slow rotation and small coupling
constants [125, 127, 131]. Therefore, in this thesis we will stick to static solutions, which should
be enough to identify different effects of higher-curvature terms.

7 Although not trivial, most of the intuition and results presented here can be extended to (A)dS black holes,
which are actually of relevance in a large part of this thesis.

8 We should stress out the fact that the Killing and event horizon are two different concepts, and they are not
equal for general metrics. A discussion on this point can be found at Section 6.3 of [33].
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Chapter 1. Introduction

1.2.1 The laws of black hole mechanics

Black holes are now understood as thermodynamic systems that have a macroscopic tempera-
ture and thus radiate part of their mass away. While this is by no means measured or observed,
it is widely accepted due to the amount of theoretical clues and arguments in this regard. In
order to understand where this association comes from, let us start by summing up the four
laws of black hole mechanics [143].

• Zeroth law: The surface gravity � is constant over the event horizon of a stationary
black hole.

• First law: If a stationary black hole of mass M , charge Q and angular momentum J is
perturbed and settles down in such a way that these quantities change respectively in
�M , �Q and �J , then the change in the mass must be given by

�M =

�

8�GN
�AH + ΦH�Q + ΩH�J , (1.38)

where AH , ΦH and ΩH are respectively the area, electrostatic potential and angular
velocity of the horizon.

• Second law: The area of the event horizon can not decrease in any physical process,

ΔAH ≥ 0 . (1.39)

• Third law: It is not possible, by any physical process, to reduce � to zero in a finite
sequence of operations.9

These resemble very closely the usual four laws of thermodynamics, and in particular point
towards the identification of the surface gravity with a temperature, and the area of the horizon
with some notion of entropy.

The actual expression of the former was derived by Hawking, who studied semiclassically
the behavior of quantum fields in the vicinity of an event horizon [144]. It reads

TBH =

�

2�

, (1.40)

and corresponds to the thermal distribution of particles emitted by the black hole that an
asymptotic observer would measure. This expression is valid for any metric, with the only
unknown parameter being the surface gravity �. For a SSS solution as the one given in Eq.
(1.15) this takes the value � = f

′
(rℎ)/2, where rℎ is the horizon radius, f (rℎ) = 0. Then the

temperature can be obtained simply by evaluating

TBH =

f
′
(rℎ)

4�

, (1.41)

which will prove useful throughout the following Chapters.
The first law of black hole mechanics, as written in Eq. (1.38), can be very easily compared to

the first law of thermodynamics dE = TdS + …. This is consistent with the identification of the

9 This law is only proposed as a conjecture in [143].
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horizon area with an entropy, and the actual proportionality constant can be obtained by taking
into account Eq. (1.40), thus finding the formula for the Bekenstein-Hawking entropy [145,146],

SBH =

AH

4GN
. (1.42)

While it might seem surprising at first, the fact that black holes themselves carry entropy is
required in order for the second law of thermodynamics to not be violated as external matter
falls through the horizon. However, this poses an interesting problem, since we do not know
what set of microscopic states can provide this entropy. This has been an open question for a
few decades now, and one would expect a full quantum theory of gravity to answer this, which
is another argument in favor of studying black holes with higher-curvature corrections.

Let us make one final comment about the Bekenstein-Hawking entropy formula. Since
the entropy is a measure of the degrees of freedom in a given region, one would expect it to
scale with its volume, as usually happens in quantum field theory. In this case, however, it
is proportional to the area of the horizon, suggesting that the dynamics inside the horizon
should be described in terms of some degrees of freedom located at the boundary, which might
actually be a general feature of gravity theories [147, 148]. This is known as the “holographic
principle” (see e.g. [149] for a review), and we will come back to it in Section 1.3, as it is one of
the foundations on which the AdS/CFT correspondence stands.

1.2.2 Black hole thermodynamics in higher-derivative gravities

A natural question that arises when considering higher-curvature terms is whether the laws
of black hole mechanics are satisfied. It turns out that the first law is not directly fulfilled as
written in Eq. (1.38), since the derivation of that expression relies on the particular form of
Einstein’s equations [150, 151]. Therefore, in order to reformulate it we need to find more
general expressions for the thermodynamics quantities.

The horizon temperature can be computed in different theory-agnostic manners, which
only require the existence of the horizon, and one always arrives at Hawking’s result given in
Eq. (1.40). Besides, it has been shown that the surface gravity is constant on the horizon of
any static or axisymmetric black hole with purely geometrical arguments [151–153], so we
conclude that the zeroth law of black hole mechanics holds in general HCGs, at least for this
kind of solutions.

Therefore, the only way to obtain a relation equal to the first law of thermodynamics is that
the entropy is not proportional to the area of the horizon in general, but a more complicated
function of the parameters of the black hole. The existence of such a first law was shown by
Wald [154], and it is a consequence of the diffeomorphism invariance of the theory. It replaces
Eq. (1.38) by

�M =

�

2�

�SWald + ΦH�Q + ΩH�J , (1.43)

and SWald is given by [150, 154, 155]

SWald = −2�
∫
Σℎ

d
D−2
x

√

ℎ

�
�R����

������ , (1.44)

where ℎ is the determinant of the induced metric at the bifurcation surface of the horizon, Σℎ,
and ��� is its binormal, which is antisymmetric and normalized as ������ = −2. The functional
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Chapter 1. Introduction

derivative is computed by considering the Riemann tensor as a field independent to the metric.
For a general Lagrangian that can contain also explicit covariant derivatives of the curvature,
it is computed as

�
�R����

=

)
)R����

− ∇�
(

)
)(∇�R����))

+ … , (1.45)

but for our purposes only the first term is relevant. Of course, if we plugged in the Einstein-
Hilbert Lagrangian  = R/(16�GN) we would recover the Bekenstein-Hawking result given in
Eq. (1.42).

Let us close this discussion with a short comment on the second law. In general relativity
it states that the area of the horizon is monotonically increasing, which is a consequence
of Hawking’s area theorem [156]. This however does not take into account the process of
evaporation, and in that case one should formulate the second law in terms of a generalized
entropy Sgen = SBH + Sout, where Sout is the contribution corresponding to the quantum fields
outside the horizon (see [157] for a review). For higher-curvature theories we would expect
a modification of the first law, also implying the monotonicity of some entropy evaluated
at the bifurcation surface of the horizon. One possibility is that proposed by [158–160],
which considers the Camps-Dong functional introduced in [161, 162] to construct Sgen =

SCamps-Dong + Sout. This quantity is shown to be monotonically increasing, ΔSgen > 0, for
small perturbations of the metric around stationary black holes. Therefore, since we are only
interested on this type of solutions, we can conclude that Wald’s formula (1.44) is enough for
our purposes.

1.3 Holography and higher-derivative gravities

The other foundational pillar upon which a significant portion of this thesis is built is the
gauge/gravity duality, which is a relation between the dynamics of a strongly-correlated
quantum system and a classical theory of gravity with one dimension more [12–14]. This
is perhaps the most fruitful manifestation within the vast net of dualities inherent to string
theory, and has focused the efforts of many theoretical physicists since it was first proposed
more than two decades ago.

Moreover, since the degrees of freedom of the quantum theory are localized at the boundary
of some manifold in the gravity side, this duality aligns with the holographic principle men-
tioned at the end of Section 1.2.1. Because of this, it is often called the “holographic duality.” In
this Section we will introduce some basic concepts behind it,10 and comment on the expected
consequences of adding higher-derivative terms in the gravitational action.

1.3.1 The gauge/gravity duality

The most important embodiment of the gauge/gravity duality is known as the “AdS/CFT
correspondence,” which establishes connections between the dynamics of a theory of quantum
gravity in a (d + 1)-dimensional anti-de Sitter spacetime and those of a conformal field theory
that resides in its d-dimensional boundary. Nonetheless, this duality is believed to be more

10 Some detailed reviews of the holographic duality can be found at [163–169], while other references focusing
on its application to condensed matter physics are [170–172].
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general, linking different pairs of theories that might not necessarily come from string theory,
and hence both denominations of the correspondence are often used interchangeably.

The original formulation of the duality was proposed by Maldacena in [12], and it states
an equivalence between Type IIB string theory on an AdS5 × S5 spacetime and 4-dimensional
Super Yang-Mills theory with  = 4 supersymmetry and gauge group SU(N ).11 In the string
theory side, N is the number of units of flux of a 5-form on the S5, we denote by L the radius
of both the AdS5 and S5 spacetimes, and there are two additional constants: the string length
ls =

√

�
′ and the coupling gs. On the other hand, in the QFT side the only free parameters are

the coupling gYM and the degree of the gauge group N . While N appears explicitly in both
theories, the different constants are related as12

g
2

YM = 2�gs , 2g
2

YMN =

L
4

�
′2
. (1.46)

The backbone of the duality is the equality between the two partition functions,

CFT = string , (1.47)

which is conjectured to hold independently of the values of the parameters. However, we
intend to focus on a regime that is actually tractable. For that, let us start by defining the ’t
Hooft coupling � = g

2

YMN . As a first step we choose gs → 0 to suppress contributions from
string diagrams with loops. In view of Eq. (1.46) this implies that gYM → 0, but we do so
keeping the ’t Hooft coupling � constant, so N ≫ 1 and the SYM theory has a large number
of degrees of freedom. Then we go to the strong-coupling limit of the gauge theory, � → ∞,
which means that the length of the string becomes negligible, as L4/�′2

→ ∞. Therefore, the
string theory reduces to classical gravity in an AdS5 background, which is under control.

The partition function of the string theory is greatly simplified in this case by means of
the saddle-point approximation, which takes into account the fact that in the classical regime
quantum corrections are fully suppressed in the path integral. Therefore, the equality between
path integrals reads

CFT|N→∞, �→∞ ≃ e
−SE, gravity

, (1.48)

where SE, gravity is the Euclidean action of classical (super)gravity evaluated on the solution of
its equations of motion.

For our purposes, the original duality presented until now serves as a motivation for a
more ambitious form of the AdS/CFT correspondence. Indeed, the holographic duality between
classical gravity in AdS spaces and highly-quantum field theories, in the form written in Eq.
(1.48), is now regarded as a general feature of these theories. Therefore, it is possible to consider
theories with different dimensions, field content, black holes in the bulk of AdS, etc. In general
cases we do not know the exact form of the dual QFT, but as before we expect it to be strongly
coupled and have a large number of degrees of freedom, and we can learn about it by studying
the dynamics of the fields in the AdS spacetime. This is in fact the philosophy followed in this
thesis and a large variety of other works, and is interesting for several reasons. For instance,

11 In this case we are relating a 4-dimensional QFT to a gravity theory in 10 dimensions. This contrasts with
the previous description of the AdS/CFT correspondence, which implies that the gravitational theory should
have only one additional dimension. However, the 5 compact dimensions on the sphere are reduced via a
Kaluza-Klein procedure, producing an infinite tower of massive modes, and thus the dual spacetime is effectively
AdS5.

12 A pedagogical review of the two theories involved in this duality can be found in [167].
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Chapter 1. Introduction

the gauge/gravity duality is a powerful computational tool, since it allows us to easily compute
quantities in the CFT in a regime that is not accessible through the standard perturbative
methods, and it can also be used to capture generic features of such conformal field theories.

In order to actually perform computations using the gauge/gravity duality, we need to
establish a set of equivalences between quantities in both sides, which is commonly known as
the “holographic dictionary.” These are derived from the equivalence of the partition functions,
Eq. (1.48), and in order to illustrate this we outline now the computation of expectation values
and correlators of fields in the boundary.

We denote collectively by '(x) the fields in the CFT, while  (x)|)AdS are those living in
the bulk of AdS. These are integrated subject to certain conditions at the boundary, which
are identified with the values of the fields of the dual CFT. According to the saddle-point
approximation, the partition function of the CFT in the large-N and strong coupling limits is
given by

CFT['(x)]
|
|N→∞, �→∞

≃ exp

{

− S
ren
E [ 0(x)|)AdS]

}

, (1.49)

where SrenE [ (x)|)AdS] is the classical action of Euclidean gravity, properly renormalized in
order to cancel the divergences due to the infinite volume of the bulk near the boundary,
which correspond to short-distance divergences in the dual CFT (see e.g. [173] for a review
on holographic renormalization). The action is evaluated on the field configuration  0(x)|)AdS,
which is a solution of the classical equations of motion with the boundary behavior13

lim
z→0

z
Δ−d

 0(z, x) = '(x) , (1.50)

for some constant Δ. So we see explicitly how the CFT field '(x) is related to the asymptotic
value of the bulk fields at the conformal boundary. In the CFT action, '(x) would appear
together with an operator (x), in the schematic form ∫ d

d
x'(x)(x). Hence, '(x) can be

interpreted as the source for that operator, and Δ corresponds to its mass scaling dimension.
Let us consider now a general n-point function of the operator (x). As usual, this can

be computed by taking functional derivatives of its corresponding generating functional with
respect to the source and then setting said source to zero. By virtue of Eq. (1.49), for a
holographic theory this becomes

⟨(x1)⋯(xn)⟩ = −

�
n
S
on-shell
E, ren [ 0|)AdS]

�'(x1)⋯ �'(xn)

|
|
|
|'=0

. (1.51)

But '(x) is nothing but the (regularized) boundary value of a bulk field, as given in Eq. (1.50).
Thus, we see how this CFT correlator can be computed uniquely from quantities in the bulk, and
by considering different field contents in the bulk (such as scalars, vectors or even perturbations
of the metric), it is possible to compute correlators of the corresponding fields in the CFT side.

We can also think about modifying the metric in the gravity theory, and particularly
interesting is the case of an asymptotically AdS spacetime containing an event horizon. As
we argued in Section 1.2, black holes are thermodynamic systems, in the sense that they have
an associated temperature and entropy that fulfill the usual laws of thermodynamics. In the
holographic setup, this spacetime is dual to a thermal state in the boundary theory, whose
temperature is given by Hawking’s result in Eq. (1.40), while its von Neumann entropy is equal
to the Bekenstein-Hawking (or Wald, in HCGs) entropy of the horizon.
13 Customarily, z is the coordinate corresponding to the direction normal to the asymptotic boundary of AdS, and

it is defined in such a way that this boundary is located at z = 0.
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This last identification is intimately related to the proposal by Ryu and Takayanagi to
compute entanglement entropies of holographic CFTs [174, 175]. Loosely speaking, the entan-
glement entropy of a region A in a QFT, SEE(A), is a measure of the amount of entanglement
between that region and its complementary Ā. In the language of quantum mechanics this
could, in principle, be computed in terms of the matrix density of the system. However, for
holographic theories in the highly-quantum regimes, it can be evaluated by means of the
Ryu-Takayanagi formula14

SEE(A) =
Area(ΓA)

4GN
, (1.52)

where ΓA is a hypersurface with a minimal area that penetrates into the bulk and ends in )A. If
we choose A to cover the entire boundary, then the homologous surface ΓA would be nothing
but the event horizon of the black hole, thus recovering the result for the Bekenstein-Hawking
entropy given in Eq. (1.42).

The Ryu-Takayanagi proposal is considered to be one of the most important achievements
of the gauge/gravity duality, as it directly relates concepts of quantum information to the
geometry of a spacetime in a rather unexpected manner. The prescription has been extended to
take into account also the entropy of quantum fields that may be present in the bulk [176, 177],
and this in turn has been explored to tackle the problem of loss of information during black hole
evaporation [178, 179], which has attracted a lot of attention in the recent years. Furthermore,
this intuition has led to the suggestion that gravity and geometry in the bulk could appear
as a consequence of entanglement in the dual theory [180, 181]. All in all, while some of
these proposals might be speculative, it is clear that this all points to the existence of a deeper
relation between gravity and quantum entanglement, which is one of the most groundbreaking
outcomes the gauge/gravity duality.

1.3.2 Higher-derivative corrections in holography

In the holographic setup, we are typically interested in the strong-coupling and large-N regime
of the boundary theory, and we know this to be equivalent to the low-energy limit of the
dual string theory, which reduces to Einstein gravity. However, as mentioned in Section 1.1,
this effective action can be expanded with terms of higher orders in the curvature, weighted
by powers of the string length

√

�
′. Thus, it is legitimate to consider the higher-curvature

corrections in the gravity action that we introduced earlier, which following this logic would
correspond to finite � and N effects in the dual CFT.

In general, we do not know the actual quantum model dual to a given higher-curvature
gravity. An interesting approach therefore is to consider the corrected theories of gravity as
toy models, that allow us to describe CFTs that are not dual to general relativity, and thus
belong to different universality classes. In this thesis we will follow this philosophy, by consid-
ering higher-curvature corrections with desirable physical properties, such as the Generalized
Quasitopological gravities reviewed in Section 1.1.3, and compute different quantities of their
corresponding dual theories.

14 This formula is valid assuming the CFT is dual to Einstein gravity, and if we were to consider higher-curvature
corrections it should be replaced, in the same spirit that the Wald entropy (1.44) generalizes the Bekenstein-
Hawking result. For general (R����) theories one should consider the Camps-Dong functional [161,162], which
is equal to the Wald functional evaluated on the minimal surface ΓA plus an anomaly term, that vanishes on a
Killing horizon.
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The first thing that one must study when considering higher-curvature terms in holography
is the existence of an AdS vacuum. This is a MSS solution of the equations of motion with a
negative cosmological constant, given by Eq. (1.14) with � = −1. In Einstein gravity, the metric
of this spacetime can be written in Poincare coordinates simply as

ds
2

AdS =
L
2

z
2
(dz

2
+ ���dx

�
dx

�

) , (1.53)

where z is the coordinate that penetrates into the bulk, in such a way that the asymptotic
boundary is located at z = 0. For a general higher-curvature gravity this solution is not
guaranteed to exist, and if it does the length scale will not necessarily be equal to the one
appearing in the cosmological constant. Then, in Eq. (1.53) we would change

L ⟶ L̃ =

L

√

f∞

, (1.54)

and similarly in the corresponding Riemann tensor, given by Eq. (1.13). Here, f∞ is a constant
whose value can be computed from a polynomial equation obtained from the corresponding
equations of motion. In principle this will have several solutions, depending on the order of the
higher-curvature theory considered, and some of them (or all) might be complex or negative.
Among the positive solutions, we are always interested in the one that connects smoothly with
the value obtained in Einstein gravity, f∞ = 1, when the couplings of the higher-curvature
terms are taken to zero.

Once the existence of a well-behaved AdS vacuum is ensured, we can move on to the
characterization of the dual CFTs through the computation of different quantities, and see how
these differ from those dual to Einstein gravity. As an example of this, let us comment on
the coefficients a and c of the trace anomaly in 4 dimensions. Indeed, while the stress-energy
tensor of a CFT should be traceless due to conformal symmetry, this might not be the case in
the presence of anomalies that arise due to placing the theory in a curved background. In d = 4

we write in general [117]
⟨T

a

a
⟩ =

c

16�
2
I4 −

a

16�
2
�4 , (1.55)

where �4 is the Gauss-Bonnet scalar written in Eq. (1.21) and I4 is the square of the Weyl tensor,
I4 = W����W

����, both evaluated in the 4-dimensional metric of the CFT. a and c are known
as the central charges, and for a theory that is dual to Einstein gravity they take the same
value [15, 16, 182],

a = c =

�L
3

8GN
. (1.56)

But it is possible to break this degeneracy in the central charges by adding higher-curvature
terms on the gravity side of the duality. Indeed, supplementing the action on the 5-dimensional
bulk by the Gauss-Bonnet term, as  = R − 2Λ + �L

2
�4/2, one finds [117]

a =

�L̃
3

8GN
(1 − 6�f∞) , c =

�L̃
3

8GN
(1 − 2�f∞) , (1.57)

where L̃ = L/

√

f∞, with f∞ given by

f∞ =

1

2�
(1 −

√

1 − 4�) . (1.58)
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Thus, we see clearly how higher-derivative theories can be used to explore holographic CFTs
that would not be possible to access with Einstein gravity alone. A similar conclusion would
be reached by studying other quantities of the dual CFT that can be computed holographically,
such as the parameters t2 and t4 that characterize the angular distribution of the energy flux
after a local insertion of the stress-energy tensor [183], and are also related to the 2- and
3-point functions of the stress-energy tensor. These constants are zero for theories dual to
Einstein gravity, but a non-vanishing value can be achieved by introducing higher-curvature
corrections [100–102, 117], thus describing theories that belong to wider universality classes.

Based on this, one can think on using higher-curvature theories to propose or check
universal relations that can not be tested with Einstein gravity alone, and whose determination
from first principles is sometimes not possible. The paradigmatic example of this is the
computation of the ratio between the shear viscosity and the thermal entropy density of a
plasma, which for a CFT dual to Einstein gravity takes the constant value [184–186]

�

s

|
|
|
|GR

=

1

4�

, (1.59)

independently of the dimension. Based on experimental results, this was conjectured to be
the minimum value of this quantity that any fluid in nature could achieve, which is known
as the Kovtun-Son-Starinets (KSS) bound [186]. However, computations of the ratio �/s in
different higher-curvature extensions of Einstein gravity have proved that this value can in
fact be lowered [100, 105, 117, 119, 122, 123, 187–196], so it might not be a universal bound after
all. We will come back to this in Section 4.6 of this work, where we compute it explicitly for a
certain family of higher-derivative theories.

There are other universal relations that have been proposed following this approach, such as
the c-theorem established in [197,198], the behavior of corner contributions to the entanglement
entropy [199, 200], or the universal relation between the free energy of a CFT in a squashed
sphere and the coefficients of the 3-point function ⟨T T T ⟩ [121, 128], to name a few. Some other
interesting examples of relations obtained with this procedure can be found in [201–204]. We
see therefore that, even without knowing the actual form of the dual theory, the gauge/gravity
duality proves to be a powerful tool to inspect whether different features of holographic CFTs
dual to Einstein gravity are general or not.
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Holographic applications of
higher-curvature gravity
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2
Renormalization in
higher-curvature gravities with
D ≤ 5

The AdS/CFT correspondence provides a method for computing correlation functions in a
quantum field theory, using the action of a dual gravity theory in an asymptotically AdS
spacetime as a generating functional. These correlators in a QFT will typically suffer from
UV divergences, due to the infinite number of degrees of freedom present. On the gravity
side, due to the UV/IR relation [205], these manifest as IR divergences in the action that are
produced by the infinite volume of AdS near the boundary. So in order to make sense of the
holographic duality one needs to get rid of these divergences appearing on both sides in a
consistent manner, and identify the remaining results. Apart from this one also requires that
the variational problem is well posed, in the sense that the variation of the action produces
the Einstein equations subject only to the condition that the metric (and not its derivatives) is
fixed at the boundary.

In standard GR and Lovelock gravity, both requirements are achieved through the holo-
graphic renormalization prescription, first introduced in [15, 16], and further developed in [17]
(see also [173, 206–209]). A similar method for Lovelock gravity theories has been proposed
in [210]. The basic idea is to first supplement the action with the standard Gibbons-Hawking-
York term (or the Myers term for Lovelock [211]), and then expand the on-shell action in a
series of powers of a regulator near the boundary in order to identify and isolate the diverging
terms. Finally, these divergences are removed by adding boundary terms that depend only on
the induced metric at the boundary and its curvature, while preserving the well-posedness of
the variational principle. We will review this procedure for GR in Section 2.1.

Being it the central topic of this thesis, we are interested in exploring these ideas of holo-
graphic renormalization in theories of gravity with higher-derivative corrections. For arbitrary
HCGs, the boundary terms required for fixing the variational problem and renormalizing the
action on AlAdS spacetimes are not known. However, it has been suggested that the action
of GR with the corrections of Einsteinian cubic gravity can be rendered finite with the same
combination of the GHY and the HR counterterms used in GR, up to a coupling-dependent
overall factor [119]. Hence, it is worthwile to consider the possibility of formulating in a similar
manner a universal prescription for renormalization, that would work for arbitrary HCGs and
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in any dimension, allowing to cancel the divergences of the action and pose the variational
principle properly.

In this Chapter, we will propose such a renormalization scheme for generic HCGs, in
spacetimes with dimension D ≤ 5. In order to achieve this, we study the radial decomposition
of the equations of motion for an arbitrary higher-order theory of gravity, expanded in the
Poincare coordinate z by means of the Fefferman-Graham expansion of the metric [212], which
is standard for AlAdS manifolds. From these we will find that the coefficients of order z and z3

in this expansion are zero in general, while the third coefficient (of order z2) has a universal
form. Also, we will see that the terms which contribute to the divergences of the on-shell
action at the boundary, for bulks with D ≤ 5, depend only on the first four FG coefficients of
the metric. Using these facts, we will be able to show that the extrinsic curvature counterterms
introduced in [18, 19], with theory-dependent overall constants, successfully implement the
renormalization and fix the variational principle1 at the asymptotic boundary.

The research presented in this Chapter has been published previously in [24]. The informa-
tion of this article can be found in page 210.

2.1 Holographic renormalization in general relativity

Before getting into the more general prescription, we review in this Chapter the standard
holographic renormalization procedure valid for general relativity. Let us start by considering
the Einstein-Hilbert action in D dimensions, supplemented by the standard Gibbons-Hawking-
York term

SEH + SGHY =
1

16�GN
∫

d
D
x

√

−G
(
R +

(D − 1)(D − 2)

L
2 )

+

�

8�GN
∫
)

d
d
x

√

−ℎK . (2.1)

The D-dimensional global manifold has AdS asymptotics, hence the value Λ = −(D−1)(D−

2)/(2L
2
) for the cosmological constant. We denote its metric by2 G�� and its coordinates X �,

while its boundary )M has d = D − 1 dimensions and an induced metric ℎij . K is the extrinsic
curvature of the boundary, which can be computed from ℎij using Eq. (A.9). The constant � is
the norm of the vector normal to the submanifold ), as defined in Eq. (A.3). In this case,
since the boundary of AdS is spacelike, � = 1.

The GHY boundary term in (2.1) is enough to make the variational problem well posed
when subject to Dirichlet boundary conditions, but we still need to identify and cancel out the
divergences that appear when expanding the bulk action close to the boundary. For this, let us
write the AlAdS metric in the Fefferman-Graham form, as [15, 16, 212]

ds
2
= G��dX

�
dX

�
=

L
2

4�
2
d�

2
+ ℎij(x, �)dx

i
dx

j
, (2.2)

where � is the holographic radial coordinate, defined in such a way that the boundary is located
at � = 0, and the coordinates x i, i = 0 , … , d, correspond to the directions tangent to the
1 In the particular case D = 5 the well-posedness of the variational principle will require the boundary to

be conformally (or Weyl-) flat, as will be made clear later on. For lower dimensions this requirement is
automatically fulfilled, since any manifold with d ≤ 3 has a vanishing Weyl tensor. In general relativity the
prescription is valid regardless of this.

2 Although the notation of the metric of the total spacetime by G�� can conflict with the rest of the thesis, we
make this choice to be consistent with the standard literature on holographic renormalization. gij is reserved
for the conformally rescaled version of the induced metric at the boundary, as will be clear later.
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boundary. ℎij is the tangent part of the metric, and it can be rescaled and expanded in a power
series in � as

� ℎij(x, �) ≡ gij(x, �) = g
(0)

ij
(x) + �g

(2)

ij
(x) + … + �

d/2
g
(d)

ij
+ �

d/2
log �

̃
ℎ
(d)

ij
(x) + … , (2.3)

where the term proportional to �d/2 log � only appears if d is even, and ultimately corresponds
to the metric variation of the holographic conformal anomaly [15]. The term g

(0)

ij
is the metric

at the conformal boundary, and by expanding Einstein’s equations order by order in � it is
possible to compute the coefficients g (2)

ij
, … , g

(d−2)

ij
,
̃
ℎ
(d)

ij
, and the trace and covariant divergence

of g (d)
ij

as algebraic expressions of the first coefficient (explicit expressions for some of these
can be found in Appendix A of [17]). Also, Einstein’s equations forbid terms with non-integer
powers of � from appearing in the expansion (2.3). Whether or not this is the case for more
general theories of gravity will be a central point in the discussion presented in this Chapter.

The renormalization procedure requires the identification of the divergent terms of the
gravitational action (2.1) close to the boundary. For this, we restrict the integration range to
� > �, where � > 0 is a cutoff, and expand the action in powers of this. Schematically, it takes
the form [15–17]

SEH + SGHY =
1

16�GN
∫
�=�

d
d
x

√

−g
(0)

(�
d/2
a(0) + �

−d/2+1
a(2) + … + �

−1
a(d−2) + log �a(d) + (�)) ,

(2.4)
where the coefficients a(n) are local covariant expressions involving the boundary metric g (0)

ij

and its curvatures, whose explicit forms can be found in Appendix B of [17].
The renormalized action is obtained by subtracting these divergent terms explicitly, whcih

is achieved through the addition of some counterterms. The actual form of these depend on
the dimension of the spacetime, but for d ≤ 6 it is given by [207]

Sct =
1

16�GN
∫
�=�

d
d
x

√

−ℎ
[

d − 1

L

+ Θ(d − 3)

L

d − 2



+ Θ(d − 5)

L
3

(d − 4)(d − 2)
2 (

ijij
−

d

4(d − 1)

2

)
+ …

]
,

(2.5)

where Θ(x) is the Heaviside step function, which is equal to one for x > 0 and zero otherwise,
and is introduced to make sure that the higher order terms only appear for large enough
dimensions. In other words, the amount of divergent terms in (2.4) depends on the dimension,
and therefore the series of counterterms in Sct needs to be truncated correspondingly. This
action is written in terms of the curvature of the induced metric,  = (ℎ) ∼ �(g

(0)
), and

this combined with the determinant factor ℎ produce the different divergent powers of the
regulator that are found in Eq. (2.4). The renormalized action is finally computed as

Sren = SEH + SGHY + Sct . (2.6)

The counterterm action (2.5) depends only on the boundary geometry, in the sense that all
the relevant contributions of the FG expansion (2.3), and thus the curvature ijkl(ℎ), can be
written in terms of g (0)

ij
and its derivatives with respect to the tangent coordinates. Therefore,

the well-posedness of the variational principle achieved by adding the GHY term in Eq. (2.1) is
preserved.
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Even though the procedure for computing the counterterms (2.5) can be more or less sys-
tematized, they can not be written in a closed form for arbitrary dimensions. However, an
alternative proposal for the regularization appeared in [18, 19, 213–216], and it requires the ad-
dition of the so-called Koutnerterms. These are topological quantities that can be written in any
arbitrary dimension as expressions involving the extrinsic curvature of the boundary, and have
the advantage that they cancel the divergences and provide a well-posed variational principle
for the EH action at the same time. These will be the main ingredient of the renormalization
procedure for general HCGs proposed in this Chapter, and we will introduce them explicitly in
Section 2.3.

2.2 Projected equations of motion in HCGs

In order to be able to test the method for renormalization of the action that we will propose
later for a general higher-curvature theory of gravity, we need to understand whether or not
our theory admits a Fefferman-Graham expression equivalent to that given in Eqs. (2.2) and
(2.3), which is the goal of the current Section.

Let us start by considering a HCG in D ≤ 5, whose action that can contain any possible
term constructed from arbitrary contractions of the Riemann tensor and the metric, with the
only condition that it admits vacuum AdS solutions. We denote this as

S =
∫

d
D
X

√

−G (R
��

�� ) . (2.7)

As already written in Eq. (1.9), the equations of motion for such a theory are given in general
by [83]

 �

�
= P

�


��
R
��

�

−

1

2

�
�

�
 − 2∇

�
∇�P

��

��
, (2.8)

where the tensor P��
��

is defined as

P
��

��
=

)L

)R
��

��

. (2.9)

Since we are interested in asymptotically locally AdS (AlAdS) backgrounds, we consider that
the Riemann tensor near the boundary behaves as

R
��

��
⟶ −

1

L
2
(�

�

�
�
�

�
− �

�

�
�
�

� ) , (2.10)

where L is the effective AdS length scale, related to the one appearing in the cosmological
constant, Λ0 = −(D − 1)(D − 2)/(2L

2

0
), through a relation L = L(L0) that depends on the

particular theory. Notice that by construction P��
��

has the same symmetries as the Riemann
tensor, and therefore close to the boundary it becomes

P
��

��
⟶

1

2

C(L) (�
�

�
�
�

�
− �

�

�
�
�

� ) . (2.11)

The constant C(L) introduced here can be obtained by replacing these expressions in the field
equations, and it is given by [86]

C(L) = −

L
2

2(D − 1)

|AdS =
L
3

2D(D − 1)

)|AdS
)L

, (2.12)
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where |AdS is the Lagrangian evaluated in the AdS vacuum solution. In the case of Einstein-
Hilbert gravity, this constant is nothing but 1/(16�GN).

Our goal is to identify and cancel the divergences of the general action (2.7), similarly to the
standard HR procedure described in Section 2.1. For this we need to consider the FG expansion
of the bulk metric, which requires splitting the coordinates into those normal and tangent to
the boundary, as X �

= (x
i
, z), where z is the holographic coordinate. The line element in the

D-dimensional manifold is

ds
2
= G��dX

�
dX

�
=

L
2

z
2
dz

2
+ ℎij(x, z)dx

i
dx

j
. (2.13)

The induced metric ℎij can be expanded in powers of z as

ℎij(x, z) =

1

z
2
gij(x, z) =

1

z
2
(g

(0)

ij
(x) + zg

(1)

ij
(x) + z

2
g
(2)

ij
(x) + z

3
g
(3)

ij
(x) + …) , (2.14)

where we are omitting the logarithmic term that would appear for even dimensions of the
boundary, since it is unimportant for our purpose. The Poincare coordinate z is related to �
introduced in Eq. (2.2) as � = z

2. While the odd terms in the expansion (2.14) vanish in GR,
g
(1)

ij
= g

(3)

ij
= 0, in more general higher-curvature gravities this might not be true, so it makes

sense to write our expressions in terms of z.
The coefficients g (n)

ij
(x) with n < D − 1 are determined completely in GR as expressions of

g
(0)

ij
(x), by means of the projected equations of motion  z

z
= 0,  i

j
= 0 and  z

i
= 0. Since we

are considering D ≤ 5, we want to scrutinize the terms in the FG expansion up to order z3, in
particular to see whether they are the same as those in Einstein’s gravity,

g
(1)

ij
= 0 , (2.15a)

g
(2)

ij
= −

L
2

D − 3 (
ij (g

(0)

) −

1

2(D − 2)

 (g
(0)

) g
(0)

ij
)
, (2.15b)

g
(3)

ij
= 0 , (2.15c)

or not. In these expressions,ij(g
(0)
) and(g

(0)
) are respectively the Ricci tensor and curvature

scalar computed from g
(0)

ij
, the metric at the conformal boundary, and thus do not depend on

z. In the form (2.13) the metric is naturally decomposed in the parts that are normal (zz
component) and tangent (ij components) to the boundary. The tangent indices are raised with
the inverse metric ℎij(x, z) = z

2
g
ij
(x, z), which has an expansion in z such that ℎijℎjk = �

j

i
.

The vector normal to the boundary, n, is defined as

n = n
�
)� = n

z
)z = −

z

L

)z , n
�
n� = 1 , (2.16)

where the minus sign appears due to the fact that the boundary is located at the lowest limit
of the range of values of the radial coordinate z, and the norm being positive means that the
boundary is a spacelike hypersurface. We can also define a covariant derivative compatible
with the tangent part of the metric, ∇̃i, such that

∇̃iℎjk = ∇̃igjk = 0 , (2.17)

since ℎjk = gjk/z
2, and ∇̃iz = 0 by definition. As ℎij and gij depend on z, the tangent covariant

derivative will also admit an expansion in this normal coordinate. Apart from this, the usual
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covariant derivative is compatible with the global metric, ∇�G�� = 0. For completeness, we
write the explicit form of the different non-vanishing Christoffel symbols obtained from the
metric (2.13),

Γ
z

zz
(∇) = −

1

z

, Γ
i

zj
(∇) = Γ

i

jz
(∇) =

1

2

ℎ
ik
)zℎjk , Γ

z

ij
(∇) = −

1

2

z
2

L
2
)zℎij , (2.18)

whereas Γk
ij
(∇) = Γ

k

ij
(∇̃) + (z). Again, since ℎij = ℎij(x, z), most of these can be written as

an expansion in powers of z, in terms of the different coefficients in (2.14). We further need
to know the form of the extrinsic curvature of the induced metric at the boundary. It can be
computed using Eq. (A.9), and in this case it reads

Kij =

1

2

nℎij =

1

2

n
z
)zℎij = −

1

2

z

L

)z
(

1

z
2
gij
)
. (2.19)

We can now use the Gauss-Codazzi equations presented in Appendix A (with � = 1, since the
normal vector is spacelike) to write the different components of the Riemann tensor of the bulk
metric in terms of the induced metric,

Rizjz =

L
2

z
2
(−nKij + KikK

k

j
− aiaj + ∇̃(iaj)) , (2.20a)

Rijkz = −nz (∇̃iKjk − ∇̃jKik) , (2.20b)

Rijkl = ijkl(ℎ) + KilKjk − KikKj l . (2.20c)

In these expressions, a� = n
�
∇�n�, and ijkl(ℎ) is the usual Riemann tensor of the tangent

metric ℎij(x, z), which can be expanded also in powers of z,

ijkl(ℎ) =

1

z
2
ijkl(g) =

1

z
2
(ijkl (g

(0)

) + (z)) . (2.21)

Notice that the indices of ijkl(ℎ) are raised with the inverse tangent metric ℎij , while those of
ijkl(g) must be raised with g ij . This implies, for example, the relations

ij

kl
(ℎ) = z

2ij

kl (
g
(0)

) + (z) , ijkl
(ℎ) = z

4ijkl

(g
(0)

) + (z3) , (2.22)

which one needs to take into account in the computations.
With these ingredients, we are now in position to project and evaluate the equations of

motion (2.8), in order to compute the form of the coefficients of the FG expansion for a general
higher-curvature theory of gravity. In what follows we will do so order by order in z, up to the
third power required for D ≤ 5.

2.2.1 Vanishing of g (1)
ij

in a general HCG

First, let us expand the equations of motion to next-to-leading order in the holographic coordi-
nate, to see whether or not g (1)

ij
= 0. By explicitly computing the different components of the

Riemann tensor, we find that they match the expression

R
��

��
= −

2

L
2
�
[�

�
�
�]

�
+ z

2

L
2
�
[�

�
g
(1)

�]

�
+ (z2) , (2.23)
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where by definition only the components of g (1)�
�
with both indices in the tangent directions

can be non-zero. Regarding P��
��
, we can use its definition (2.9) together with the expression of

the Riemann tensor (2.23) to constrain its tensorial form,

P
��

��
= C(L)�

[�

�
�
�]

�
+ z

(
A

(1)
(L)�

[�

�
g
(1)

�]

�
+ B

(1)
(L)�

[�

�
�
�]

�
Tr g (1)

)
+ (z2) , (2.24)

where C(L) was given in Eq. (2.12), whereas A(1)
(L) and B(1)

(L) are scalar functions depending
on the couplings of the particular theory and the effective AdS radius L. Also, Tr g (1) ∶= g

(1)
i

i
.

The Lagrangian itself also appears in the general expression of the equations of motion
(2.8), so we expand it symbolically to first order in z as

 = (0)
+ P

��

��
�R

��

��
+ … = (0)

+ z(1)
+ (z2) , (2.25)

where (0)
∶= |AdS is the Lagrangian evaluated in the background solution (2.10), and we

denoted by �R��
��

the deviation of the Riemann tensor with respect to this background. Therefore,
by taking into account Eq. (2.23) we see that �R��

��
∼ z, which allows us to compute

(1)
=

D − 1

L
2
C(L)Tr g (1) . (2.26)

Using these expressions, the equations of motion decomposed in their radial and tangential
components and expanded in powers of z read

 z

z
=
(

(1 − D)C(L)

L
2

−

(1)

2 )
+

z

2L
2
(a

(1)
(L) + (D − 1)b

(1)
(L))Tr g (1) + (z2) , (2.27)

 i

j
=
(

(1 − D)C(L)

L
2

−

(1)

2 )
�
i

j
+

z(D − 2)

2L
2 (

a
(1)
(L)g

(1)
i

j
+ b

(1)
(L)�

i

j
Tr g (1)

)
+ (z2) , (2.28)

 z

i
=

1

2(D − 2)L
2 (

a
(1)
(L)∇̃jg

(1)
j

i
+ b

(1)
(L)∇̃iTr g (1)

)
+ (z3) , (2.29)

where
a
(1)
(L) ∶= C(L) − A

(1)
(L) ,

b
(1)
(L) ∶= −C(L) − A

(1)
(L) − 4B

(1)
(L) .

(2.30)

The zeroth order gives the aforementioned result for C(L), Eq. (2.12), and all the information
of the equations at the next lowest order is encoded in a(1)(L) and b(1)(L). The main feature of
these is that, except in some particular cases, they imply

g
(1)

ij
= 0 . (2.31)

More specifically, the equations of motion fix the (z) coefficient of the FG expansion to be
zero, as found in GR, except in some particular cases:

• If a(1)(L) ≠ 0 and b(1)(L) = −a
(1)
(L)/(D − 1), the off-diagonal components of g (1)

ij
are fixed

to zero and the elements in the diagonal are fixed to be equal to each other, but their
actual value is free.

• If a(1)(L) = 0 and b(1)(L) ≠ 0, Tr g (1) is fixed to zero, but the rest of the components of g (1)
ij

are free.
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• And finally, if both a(1)(L) = 0 and b(1)(L) = 0, g (1)
ij

is completely free and not restricted
by the equations of motion.

This is interesting as it means that, for a generic HCG theory, the equations of motion require
the (z) coefficient in the FG expansion of the metric to vanish, just like for Einstein-AdS
gravity. This is analogous to the universality of the (z2) coefficient as implied by the PBH
transformation [217], which will be reviewed in the next subsection, and both are central to
the applicability of the generic renormalization procedure presented in this work.

An example: quadratic curvature gravity

Let us illustrate this further by working out explicitly the case of quadratic curvature gravity.
Its action can be written as

S =
∫

d
D
X

√

−G
[

1

16�GN
(R − 2Λ0) + �1R��R

��
+ �2R

2
+ �3�4

]
, (2.32)

where �4 is the Gauss-Bonnet combination written in Eq. (1.21). By explicitly computing P��
��

for this theory we can obtain the values of C(L), a(1)(L) and b(1)(L), which read

C(L) =

1

16�GN
−

2(D − 1)

L
2 [

�1 + D�2 +

(D − 2)(D − 3)

D − 1

�3
]
, (2.33)

a
(1)
(L) =

1

16�GN
−

1

L
2
[(3D − 4)�1 + 2D(D − 1)�2 + 2(D − 3)(D − 4)�3] , (2.34)

b
(1)
(L) = −

1

16�GN
+

1

L
2
[(D − 4)�1 + 2(D − 1)(D − 4)�2 + 2(D − 3)(D − 4)�3] . (2.35)

The equations of motion imply g (1)
ij

= 0 unless one of the conditions discussed after Eq. (2.31) is
met. Some examples of quadratic curvature gravity theories where a(1)(L) = b

(1)
(L) = 0, such

that g (1)
ij

is not fixed by the equations of motion, include:

• Einstein-Lanczos-Gauss-Bonnet gravity at the (dimensionally continued) Chern-Simons
point. In [218], the authors find that in this theory the coefficients of the FG expansion
are not fixed by the equations of motion, which vanish identically.

• Conformal gravity in 4 dimensions [219–221], where it is found again that the equations
of motion at the lowest orders vanish for any form of the coefficients in the expansion.

• New massive gravity [222, 223] at the special point (in the language of [222]).

A feature all these cases share is that their AdS vacua are degenerate. Indeed, we checked that
this is true for any quadratic or cubic gravity fulfilling a(1)(L) = b

(1)
(L) = 0, but not the other

way around. However, while these particular cases allow for g (1)
ij

≠ 0, they do not enforce it. In
particular, g (1)

ij
cannot be given as an expression in terms of g (0)

ij
, thereby its value must be fixed

as a boundary condition [221]. Therefore, in general we could pick g (1)
ij

= 0 for any theory in
vacuum, and build the rest of our discussion on top of this assumption.

We have also repeated this analysis for general theories of gravity with cubic contractions
of the curvature tensors. The results are written in Appendix B.
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2.2.2 Universality of g (2)
ij

from the PBH transformations

We now turn to the term of second order in the FG expansion, g (2)
ij
. In general relativity it takes

the value given in Eq. (2.15b), which is fixed by symmetry under a certain type of conformal
transformations [217]. As will be shown, and was already assumed in [217], these arguments
carry on with minimal modifications to a general higher-curvature theory. While it should
be possible to perform a similar analysis to what is shown in Section 2.2.1 for g (1)

ij
, expanding

the equations of motion �

�
to order z2, the current approach is simpler and produces a more

robust result.
The argument is based on the invariance of the bulk metric under PBH (Penrose-Brown-

Henneaux) transformations, which are a subset of the bulk diffeomorphisms that act as Weyl
transformations on the boundary, while leaving the form of the bulk metric unchanged [217].
In particular, these act on the first coefficient of the FG expansion (2.14) as

g
(0)

ij
(x) ⟶ e

2�(x)/L
g
(0)

ij
(x) . (2.36)

Let us consider the ansatz for the transformation of the coordinates

z = z
′
e
−�(x

′
)
≃ z

′

(1 − �(x
′
)) , x

i
= x

′i
+ a

i
(x

′
, z

′
) , (2.37)

where primes denote the transformed coordinates and the ai(x′, z′) are infinitesimal and will
be restricted by requiring that the form of the metric is invariant. Working to the lowest order
in the parameters of the transformation � and ai, the line element becomes

ds
2
=

L
2

z
′2
(dz

′2
− 2�dz

′2
− 2z

′
)k�dz

′
dx

′k

) (1 + 2�)

+

1

z
′2
(1 + 2�) (g

′

ij
− z

′
�)zgij + a

k
)kgij) (dx

′i
dx

′j
+ 2)la

i
dx

′j
dx

′l
+ 2)za

i
dx

′j
dz

′

) .

(2.38)
Comparing this expression with the original form of the metric (2.13) and combining some
terms, we find the change of the tangent metric

�gij = �(2 − z)z)gij + ∇̃iaj + ∇̃jai . (2.39)

As we said, these transformations should leave the form of the bulk metric unchanged, and in
particular the off-diagonal components dx′idz′ in Eq. (2.38) must vanish in the FG gauge. This
relates the parameters of the diffeomorphisms as

)za
i
= L

2
zg

ij
)j� . (2.40)

It is also possible to integrate the given expression, subject to the boundary condition ai(x, z =
0) = 0, but the differential form is enough for our computation. a

i
(x, z) admits its own

expansion in powers of z near the boundary,

ai(x, z) =

∞

∑

n=1

z
n
a
(n)

i
(x) , (2.41)

where the term at order (z0) does not appear due to the mentioned boundary condition.
Replacing this and the FG expansion of the tangent metric (2.14) in Eq. (2.40), and studying
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separately the terms with different powers in z, we find

a
i

(1)
= 0 ,

a
i

(2)
=

L
2

2

g
(0)ij

)j� ,

a
i

(3)
= −

L
3

3

g
(1)ij

)j� ,

(2.42)

and equivalent relations at higher orders, which are irrelevant for us. Applying the same
procedure on the expression of �gij , Eq. (2.39), we find the variation of the different coefficients
in the transverse metric due to the Weyl transformation of the boundary metric (2.36),

�g
(0)

ij
= 2�g

(0)

ij
,

�g
(1)

ij
= �g

(1)

ij
,

�g
(2)

ij
= ∇̃

(0)

i
a
(2)

j
+ ∇̃

(0)

j
a
(2)

i
,

�g
(3)

ij
= − �g

(3)

ij
+ ∇̃

(0)

i
a
(3)

j
+ ∇̃

(0)

j
a
(3)

i
+ g

(0)

jk
∇̃
(1)

i
a
(2)k

+ g
(0)

ik
∇̃
(1)

j
a
(2)k

+ g
(1)

jk
∇̃
(0)

i
a
(2)k

+ g
(1)

ik
∇̃
(0)

j
a
(2)k

.

(2.43)

In these expressions, ∇̃(n)

i
refer to the term of order zn that appear when expanding the covariant

derivatives of the tangent space, ∇̃j , being ∇̃
(0)

i
the one compatible with g (1)

ij
.

We want expressions for the coefficients g (n)
ij

that depend covariantly only on the data at
the boundary. The transformations under study do not fix the coefficient g (1)

ij
in terms of g (0)

ij
, so

in principle it could be left as free data, and all odd coefficients in the series can be constructed
with contractions of g (1)

ij
with tensors of the boundary metric. However, as we have seen before,

most theories require g (1)
ij

= 0, which we will assume from now on.
However, the variation �g (2)

ij
is independent of g (1)

ij
, which means that it takes the same form

in any theory. In particular, it contains terms with two derivatives in the transverse coordinates
x , as can be seen more clearly replacing a(2)

i
using Eq. (2.42). Therefore, g (2)

ij
must be a linear

combination of terms proportional to the Riemann tensor of the boundary metric g (0)
ij
, the most

general form being
g
(2)

ij
= �ij (g

(0)

) + � (g
(0)

) g
(0)

ij
. (2.44)

If we compute �g (2)
ij
, taking into account the form of the Weyl transformation of the curvature

tensors, and compare it with Eq. (2.43), we can read off the values of the constants � and � and
thus the form of g (2)

ij
, which matches that found in Einstein gravity,

g
(2)

ij
= −

L
2

D − 3 (
ij (g

(0)

) −

1

2(D − 2)

 (g
(0)

) g
(0)

ij
)
. (2.45)

Following the same procedure it is possible to obtain the form of the coefficients that appear
at higher even orders in z, as done in [217], although for our purposes it is enough to stop at
quadratic order.

We should note that, since this procedure builds upon invariance under the boundary
Weyl transformations (2.36), it fails to capture further contributions made of contractions
of the Weyl tensor of the boundary that might appear.3 However, for 2- and 3-dimensional
3 Of course,  ij

ik
(g

(0)
) vanishes identically due to symmetry, so this term is ruled out. However, at this order

there could appear contractions with two free indices, for example with the schematic form
√

 (0) (0), as
seen for the case of Chern-Simons gravity in [218].
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boundaries, which correspond respectively to D = 3 and D = 4 bulk dimensions, the Weyl
tensor is identically zero and thus these contributions do not occur. While this is not true for
D = 5, when treating the well-posedness of the variational problem we will need to assume
Asymptotic Conformal Flatness [224], which implies that the Weyl tensor of the boundary
metric must be zero. Therefore, we see that under these assumptions the coefficient g (2)

ij
takes

the same form in a general HCG as in Einstein gravity.

2.2.3 Vanishing of g (3)
ij

in a general HCG

As a final step before getting into the problem of renormalization of the gravity action, we
should discuss the term of third order in z in the FG expansion (2.14). In particular, we will see
that in general it should take the same value as in Einstein gravity, which is g (3)

ij
= 0. This is

the last relevant coefficient for the dimensions that we are interested in, since terms of higher
order do not contribute to the divergent part of the action for D ≤ 5, which will be clear later
on when analyzing the cancellation of these divergences.

Following the same logic as in Section 2.2.1, we expect the coefficient g (3)
ij

to be fixed, in
general, by the contributions of the equations of motion multiplied by z3. In order to obtain
this we need to expand the different objects that appear in �

�
as written in Eq. (2.8), and in

particular we use symbolic expansions for both  and P��
��
. Since we have already fixed g (1)

ij
= 0,

and we know the form of the zeroth order coefficients in these two objects through Eqs. (2.11)
and (2.12), these can be written as

 = −

2(D − 1)

L
2

C(L) + z
2(2)

+ z
3(3)

+ … , (2.46)

P
��

��
= C(L)�

[�

�
�
�]

�
+ z

2
P
(2)

��

��
+ z

3
P
(3)

��

��
+ … . (2.47)

We are interested only on the third order terms in the equations of motion, so we should
understand the form of P (3)

��

��
. This will depend on the theory, of course, but we can follow

the same reasoning as before and use its tensorial structure to write the components P (3)
ij

kl
and

P
(3)

iz

jz
as the combinations

P
(3)

ij

kl
= A

(3)
(L)�

[i

[k
g
(3)

j]

l]
+ B

(3)
(L)�

[i

[k
�
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l]
Tr g (3) ,

P
(3)

iz

jz
= D

(3)
(L)g

(3)
i

j
+ E

(3)
(L)�

i

j
Tr g (3) ,

(2.48)

where the constants A(3)
(L), B(3)

(L), D(3)
(L) and E(3)

(L) depend on the effective AdS radius L
and the higher-curvature couplings. Since we already assume that g (1)

ij
= 0, terms of the form

g
(1)

i

j
g
(2)

k

l
will not appear in these general expressions. Also, the components with one index in

the normal direction, such as P (3)
ij

zk
, could have terms proportional to ∇̃g (2), but these appear in

the equations of motion at higher orders in z, since they must be contracted with nz = z/L.
Regarding the expansion of the Lagrangian, (3) can not have contributions of the form

∇̃jg
(2)

j

k
, as there are no objects with an odd number of tangent indices to contract it producing

a term of order z3. Therefore, it can only contain terms that are proportional to Tr g (3), and if
we expand it as in Eq. (2.25) we see that they can only be produced by P (0)

��

��
R
(3)

��

��
. Plugging in

the third order terms of the components of the Riemann tensor, which for the metric (2.13) are

R
(3)

ij

kl
=

6

L
2
�
[i

[k
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(3)
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l]
, R

(3)
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zj
= −

3

2L
2
g
(3)

i

j
, (2.49)
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we find exactly

(3)
=

3(D − 3)

L
2

C(L)Tr g (3) . (2.50)

With all of this, we can compute the terms of third order in the projections of the equations of
motion, which read

 (3)
z

z
=

1

2L
2
(a

(3)
(L) + (D − 1)b

(3)
(L))Tr g (3) , (2.51)

 (3)
i

j
=

D − 4

2L
2 (

a
(3)
(L)g

(3)
i

j
+ b

(3)
(L)�

i

j
Tr g (3)

)
, (2.52)

where the constants a(3)(L) and b(3)(L) are related to those introduced in Eq. (2.48) as

a
(3)
(L) = 3C(L) + 4(D − 6)D

(3)
(L) − (D − 3)A

(3)
(L) ,

b
(3)
(L) = −3C(L) − A

(3)
(L) − 2(D − 2)B

(3)
(L) + 4(D − 6)E

(3)
(L) .

(2.53)

For completeness, we give the values of the constants a(3)(L) and b(3)(L) for general quadratic
and cubic theories of gravity in Appendix B.

From the discussion above on the different contributions to (3) and P (3)
��

��
, it is clear that

the equations  (3)
z

z
= 0 fixes, for general HCGs,4 Tr g (3) = 0. This in turn means, when we

consider the equation  (3)
i

j
= 0, that

g
(3)

ij
= 0 . (2.54)

As we commented when fixing g (1)
ij

= 0, there are families of theories for which the value of
g
(3)

ij
is not determined by the equations of motion. In particular, the same analysis discussed

after Eq. (2.31) applies in this case as well, but considering the coefficients a(3)(L) and b(3)(L)
instead. All the quadratic and cubic theories considered in Section 2.2.1 and Appendix B, at
the particular points mentioned, allow for g (3)

ij
≠ 0 even when choosing g (1)

ij
= 0 as a boundary

condition.5 However, the conditions that leave g (3)
ij

undetermined do not imply degeneracy of
the different AdS vacua for the quadratic and cubic theories considered in the Appendix.

2.3 Counterterms for generic HCGs in D ≤ 5

Now that we understand the behavior of the bulk metric near the AdS boundary, by means of
the Fefferman-Graham expansion (2.13) and (2.14), we are in position to tackle the problem of
regularization of the action.

It was suggested in [119], for Einsteinian cubic gravity, that one can renormalize the action
using the same boundary terms that are used in the holographic renormalization of Einstein-
AdS gravity, reviewed in Section 2.1, multiplied by a coupling-dependent overall coefficient.
This was introduced with the objective of the cancellation of divergences of the gravity action,
leaving aside the well-posedness of the variational principle, since for higher-curvature gravities

4 Notice that Tr g (3) must vanish for D = 4, while g (3)
ij

is left undetermined. This is expected, given that in three
boundary dimensions g (3)

ij
is dual to the stress-energy tensor and there is no conformal anomaly.

5 Except for new massive gravity, since it is a 3-dimensional theory, ant therefore the coefficient g (3)
ij

is sub-
normalizable and should not be considered in the expansion (2.14).
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(except for Lovelock theories [211]) this is an open problem. As explained in what follows,
this idea for generating counterterms based on the Einstein-AdS case can be generalized to
arbitrary HCGs considering the asymptotic behavior of AlAdS spaces.

When considering pure AdS vacua, a minimal requirement for the renormalization pro-
cedure is to render the Euclidean on-shell action equal to either zero or the vacuum energy
of the maximally-symmetric configuration. The vacuum energy appears if the bulk is odd-
dimensional, and in the context of AdS/CFT it is related to the Casimir energy of the CFT side.
One can then assume that the boundary term for HCGs is equal to the one for Einstein gravity
with a coupling-dependent overall factor, that can then be fixed by requiring the cancellation
of divergences in the action for the maximally-symmetric solution. Said action evaluated in
the vacuum solution is proportional to the AdS volume, with an overall constant that depends
on the couplings of the theory, and one can then check if the same boundary term works for
other AlAdS solutions besides the pure AdS configuration. This will be performed explicitly in
Section 2.4, making use of the FG expansion reviewed above.

A similar approach was pursued in [225] and [226], where the authors considered some
countertermswith amultiplicative constant —that matches the prescription in [119]— in order to
compute the Noether-Wald charges for quadratic curvature gravities in even-dimensional AlAdS
spacetimes. In [227] the same additional terms are introduced to obtain finite entanglement
entropies.

The counterterms considered in these last three references are, however, different from
the usual HR proposal. The latter prescription produces a series of terms, whose complexity
depends on the dimension and can not be expressed in any closed form. The alternative
approach consists on adding to the action some topological quantities dubbed Kounterterms,
because they can be naturally written in terms of the extrinsic curvature of the boundary.
They were originally proposed in [18, 19, 213–216] to renormalize the Einstein-Hilbert action
and obtain a well-posed variational principle, which then allows to compute finite conserved
charges in AdS gravity. Moreover, this method has been considered also for the computation
of renormalized entanglement entropies [224, 228, 229].

In the present work, we aim to expand this prescription to more general theories of gravity
admitting AlAdS solutions in up to 5 dimensions, whose metric can be expanded in terms of the
radial coordinate as in Eqs. (2.13) and (2.14), with the coefficients written in Eq. (2.15). In this
Section we will simply introduce the form of the Kounterterms for even and odd dimensional
bulks, as given in the literature. The only modification that we propose is to multiply these
boundary terms by the constant C(L) defined in Eq. (2.12), which is the only theory-dependent
part of the entire expression. In Sections 2.4 and 2.5 we will see that this constant appears
naturally in the terms that need to be cancelled, thus motivating our prescription.

2.3.1 Kounterterms for even bulk dimensions

The Kounterterms for D = 2n dimensions are given by [18]

SKt = c2n−1 ∫
)

d
2n−1

x B2n−1[ℎ, K , ] , (2.55)
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where B2n−1 is the n-th Chern form6

B2n−1 = −2n

√

−ℎ
∫

1

0

dt �
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j1…j2n−1
K
j1

i1
(

1

2

j2j3

i2i3
− t

2
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i2
K
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i3
)

× ⋯ ×
(

1

2

j2n−2j2n−1

i2n−2i2n−1
− t

2
K
j2n−2

i2n−2
K
j2n−1

i2n−1
)
,

(2.56)

and we write the constant c2n−1 as

c2n−1 = −
(−L

2

)

n−1

n(2n − 2)!

C(L) . (2.57)

This recovers the usual value of the constant for Einstein gravity, presented for example
in [230], since in that case C(L) = 1/ (16�GN) with our conventions. However, we claim that
this boundary term is suitable for more general theories of gravity whose Lagrangian is made
of arbitrary contractions of the Riemann tensor, in particular, whose bulk is 4-dimensional.

As shown in [230], for Einstein gravity the Kounterterm (2.55) is exactly equivalent to the
usual HR prescription in D = 4 and, at least, in D = 6 as long as the boundary is conformally
flat. We will see this explicitly in Section 2.4, when we show that it cancels the divergences of
the on-shell action in 4 dimensions.

Besides, let us mention that bymeans of Euler’s theorem this even-dimensional Kounterterm
can be written also as a bulk integral. In particular,

∫
2n

d
2n
x2n = (4�)

n
n!� (2n) + ∫

)2n

d
2n−1

xB2n−1 , (2.58)

where � (2n) is the Euler characteristic of the manifold2n, and 2n is the 2n-dimensional
Euler density

2n =

√

−G

2
n
�
�1…�2n

�1…�2n
R
�1�2

�1�2
⋯R

�2n−1�2n

�2n−1�2n
. (2.59)

This alternative form, albeit interesting, will not be necessary for our purposes.

2.3.2 Kounterterms for odd bulk dimensions

For D = 2n + 1 bulk dimensions, the Kounterterm reads [19]

SKt = c2n ∫
)

d
2n
x B2n[ℎ, K , ] , (2.60)

where the integrand B2n is given by

B2n = −2n
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(2.61)

6 In these expressions, �i1…in
j1…jn

is the generalized Kronecker delta defined in Eq. (15).
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and the overall constant c2n is

c2n = −
(−L

2

)

n−1

2
2n−2

n(n − 1!
2
)

C(L) . (2.62)

As in the even-dimensional case, we recover the values of this constant presented in [230] if
we set C(L) = 1/ (16�GN), as corresponds to Einstein gravity. Also, this is equivalent to the
counterterms derived with the HR proposal, up to logarithmic divergent terms, in D = 3, 5 and
7, as long as the boundary is conformally flat [230].

In this case, B2n can not be written as the pullback of a topological quantity in theD = 2n+1

manifold, contrasting with what is found for even dimensions. Also, the fact that B2n depends
on the AdS radius L, while B2n−1 does not, is an indicative of the topological origin of the latter.

2.4 Divergence cancellation in HCGs up to D = 5

We now address the problem of renormalizing the action of a general higher-curvature gravity
when evaluated on an AlAdS background. For this matter, we will first find the form of the
divergent terms at the boundary, with a general expression valid for D ≤ 5. This restriction is
motivated by the fact that we are interested on holographic applications in realistic situations,
with strongly coupled gauge theories in at most four dimensions. Then, we will analyze the
divergent terms explicitly for D = 3, 4 and 5, and show that they are indeed cancelled by the
Kounterterm presented in Section 2.3.

2.4.1 Divergent terms in the on-shell action

Let us consider the action of a general higher-curvature theory of gravity in D ≤ 5,

S =
∫

d
D
X

√

−G (R
��

�� ) , (2.63)

and evaluate it on an asymptotically locally AdS spacetime. We want to find the divergent terms
that appear in each dimension, so we write the metric as in Eq. (2.13), with the coefficients of
the FG expansion given by Eq. (2.15). Since in these coordinates the asymptotic boundary is
located at z → 0, we can identify the divergences in this region simply by looking at the terms
with negative powers of z in the expansion of the action. Given the form of the metric (2.13),
to leading order near z = 0 the square root of the determinant behaves as

√

−G ∼

1

z
D
, (2.64)

plus additional higher-order contributions that decay faster near the boundary. However,
this leading behavior is enough to identify the terms in the Lagrangian that will produce
divergences. As shown in Section 2.2, the odd coefficients in the FG expansion of the tangent
metric (2.14) up to the order that we are interested in vanish, so the on-shell Lagrangian can
only have terms of the form z

2i with i ∈ Z+. In the action, these result in

∫
dz

√

−Gz
2i
∼
∫

dz z
2i−D

∼ z
2i−(D−1)

. (2.65)

So such a term can produce three different behaviors as z → 0:
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• If i < (D − 1)/2 the term is divergent, and it needs to be subtracted.

• If i > (D − 1)/2 the term vanishes at the boundary.

• For odd spacetime dimensions, there can be contributions with i = (D−1)/2. In this case
the integral above is not correct, as it produces a logarithmic divergence at the boundary.
This is universal and related to the conformal anomaly of the dual CFT [223, 230], and it
is not cancelled by the topological Kounterterms.

Therefore, depending on the dimensionality of the spacetime the last term that produces
divergences will be different. In our case, for up to 5 dimensions we will have to look at
terms with i ≤ 2. This is the reason why the higher-order contributions in the counterterm of
standard HR, given in Eq. (2.5), only appear for large enough D.

In order to isolate the divergent terms, first of all we have to obtain an expansion of the
Lagrangian  (R

��

�� ) close to the boundary. This can be written as

 = (0)
+ P

��

��
�R

��

��
+ …

= (0)
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ij

kl
�R

kl

ij
+ 4P

zi

jk
�R
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zi
+ 4P

zj

zi
�R

zi

zj
+ … ,

(2.66)

where �R��
��

denotes the terms in the components of the Riemann tensor that are different from
the background value (2.10), this is, those that depend on z. They can be computed using the
Gauss-Codazzi equations (2.20), finding
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=
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(2.67)

where we introduced the shorthand notation ∇̃
(0)

≡ ∇̃ (g
(0)

) and (0)
≡  (g

(0)

). Therefore,
since P (0)

zi

jk
= 0, the lowest order contributions in the expansion of the Lagrangian are

 = (0)
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(0)
ij

kl
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ij
+  (z

4

) , (2.68)

where  (z
4

) includes terms coming from P
zi

jk
�R

jk

zi
, and others with higher powers of z from

the expansion of P��
��
.

Also, although we are not writing them explicitly, in this expression there should be
terms with higher derivatives of the Lagrangian with respect to the Riemann tensor. How-
ever, since any such derivative is, to the lowest possible order, constant in z, a term of the
form ()

n/()R)n) (�R)n will be at least  (z
2n

). Therefore, second or higher derivatives are
unimportant when looking for the divergences in low dimensions.

If we now compute P (0)
ij

kl
�R

kl

ij
explicitly with the expressions above for �R��

��
and P (0)

��

��
given

by Eq. (2.11), we find that it vanishes to the lowest order in z. So we conclude that the only
divergent part of  (R

��

�� ) is
 = (0)

+ z
4(4)

, (2.69)
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where the term (4) will contribute only to the logarithmic divergence in D = 5. This contains
all the terms of order z4 mentioned in the paragraph above, but its particular form is not
relevant for our computations, since we assume that our method of renormalization will not
cancel divergences of this type.

Now that we have expanded the Lagrangian in the coordinate z, we need to do the same
with the determinant factor that appears in the action (2.63). Using again the FG expansion of
the metric given by Eqs. (2.13) and (2.14), this is

√

−G =

L

z

√

−ℎ =

L

√

−g
(0)

z
D (

1 +

z
2

2

Tr g (2) +  (z
4

)
)
. (2.70)

Plugging everything in, the divergent terms of the general action (2.63) for D ≤ 5 are

Sdiver = ∫

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D
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−G ((0)
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4(4)

)

= L
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(0)Tr g (0) +  (z
4−D

)
)
,

(2.71)

where we introduced the cutoff z0 in the lower limit of integration, which must be taken to zero
once the divergences have been cancelled. The actual form of these divergent contributions
once integrated in z depend on the dimension of the spacetime, and in particular the second
and third terms produce the aforementioned logarithmic divergences at D = 3 and D = 5,
respectively. However, the terms that we want to cancel, the power-law divergences, always
appear multiplied by (0) at these low dimensions. This is proportional to the constant C(L)
appearing at the lowest order in P��

��
through Eq. (2.12), or equivalently

(0)
= −

2(D − 1)

L
2

C(L) . (2.72)

Therefore, this supports our claim that the Kounterterms which cancel these divergences are
the same as those introduced for Einstein gravity, with the general prefactor C(L).

2.4.2 Explicit analysis in different dimensions

We will now show how the Kounterterms introduced in Section 2.3 are able to cancel the
divergences in Eq. (2.71), explicitly in 3-, 4- and 5-dimensional spacetimes. Notice that the
computations carried out here were already done in Section 3.4 of [230], and the only difference
in our results is the generic constant C(L) that multiplies both the Kounterterms and the
divergent terms in the on-shell action. In order to see that, we will have to write the objects in
(2.55) and (2.60) in terms of the intrinsic curvature of the boundary metric g (0)

ij
.

In particular, provided the coefficients of the FG expansion are given by Eq. (2.15), the
extrinsic curvature reads

K
i

j
= ℎ
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Kkj =
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+
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−
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�
i

j
)
+  (z

4

) .

(2.73)
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The determinant of the tangent metric also needs to be expanded in powers of the radial
coordinate, and by means of Eq. (2.15b) it can be written as

√

−ℎ =

√

−g
(0)

z
D−1 (

1 − z
2

L
2

4(D − 2)

(0)
+  (z

4

)
)
. (2.74)

2.4.2.1 3 bulk dimensions

In D = 3, the divergent terms in (2.71) become, after integrating in z,

Sdiver = −C(L)
∫

d
2
x

√

−g
(0)

[

2

Lz
2

0

+ L log z0(0)

]
, (2.75)

where we used Eq. (2.15b) to rewrite Tr g (2), and Eq. (2.72) for (0). We need to find whether
the Kounterterm (2.60), particularized for D = 2n + 1 = 3, cancels the divergences found here.
In this case, the constant c2 and the function B2 are equal to

c2 = −C(L) , B2 = −

√

−ℎK . (2.76)

Therefore, replacing the determinant ℎ and the extrinsic curvature K in terms of the intrinsic
curvature of g (0)

ij
, we find that the total Kounterterm for D = 3 dimensions reads

SKt = c2 ∫
d
2
x B2 = C(L)

∫
d
2
x

√

−g
(0)

[

2

Lz
2

0

+  (z
2

0)
]
, (2.77)

which cancels the power-law divergence found in Eq. (2.75), but not the logarithmic one, as we
had anticipated in Section 2.3.

2.4.2.2 4 bulk dimensions

The divergent terms (2.71) in d bulk dimensions become

Sdiver = −C(L)
∫

d
3
x

√

−g
(0)

[

2

Lz
3

0

−

3L

4z0

(0)

]
. (2.78)

The coupling of the Kounterterm that should cancel this and the second Chern form read

c3 =

L
2

4

C(L) , B3 = −4

√

−ℎ�
i1i2i3

j1j2j3
K
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(

1
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j2j3

i2i3
−

1

3

K
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i2
K
j3
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)
. (2.79)

Writing it all together, the Kounterterm for a general theory in D = 4 is

SKt = C(L)
∫

d
3
x

√

−g
(0)

[

2

Lz
3

0

−

3L

4z0

(0)
+  (z0)

]
, (2.80)

which cancels exactly the divergent terms as written in Eq. (2.78).
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2.4.2.3 5 bulk dimensions

In this case, the divergent part of the action will have an additional logarithmic term, which
depends on Tr g (4) and (4),

Sdiver = −C(L)
∫

d
4
x

√

−g
(0)

[

2

Lz
4

0

−

L

3z
2

0

(0)
+  (log z0)

]
. (2.81)

As before, this should be regularized by the Kounterterm (2.60) particularized forD = 2n+1 = 5.
The value of the constant c4 and the function B4 are

c4 =

L
2

8

C(L) , B4 = −

√

−ℎ�
i1i2i3

j1j2j3
K
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1
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2
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�
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)
. (2.82)

Then the total Kounterterm in this dimension is

SKt = C(L)
∫

d
4
x

√

−g
(0)

[

2

Lz
4

0

−

L

3z
2

0

(0)
+  (1)

]
, (2.83)

which cancels the divergences (2.81) except for the logarithmic one, as in the case D = 3.
As mentioned before, these divergences are universal terms, proportional to the conformal
anomaly of the dual field theory, and therefore they were not expected to be cancelled out by
this renormalization procedure.

2.5 Variational principle in HCGs up to D = 5

The other problem that we need to take into account is that of the well-posedness of the
variational principle, which ensures that the equations of motion for the metric are obtained
with the condition that the value of the metric, and not its derivatives, is fixed at the boundary.
In practice, this requires that the boundary terms that appear when varying the action depend
only on the variation of the metric of the conformal boundary, g (0)

ij
.

We will show here that the Kounterterms presented in Section 2.3 are also able to achieve
this in the dimensions that we are interested in. First we will obtain the form of the boundary
terms that we need to cancel for general dimensions up to 5, and then particularize the analysis
to D = 3, 4 and 5 as done in the previous Section to treat the divergences of the on-shell action.

2.5.1 Divergences in the boundary term of the variation of a general HCG

Let us consider again the action (2.63) for a general theory of gravity with higher-order
contractions of the Riemann tensor. Its variation produces two contributions [83, 86],

�S =
∫

d
D
X

√

−G���G��
+ �

∫
)

d
D−1

x

√

−ℎn��v
�
. (2.84)

The first of these is proportional to the equations of motion (2.8), and thus vanishes on-shell,
while the second one is a contraction of the vector normal to the boundary ) (normalized
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such that n�n� = � = ±1) and the quantity7

�v
�
= −2P

���

�
�Γ

�

��
− 2∇�P

����
�G�� . (2.86)

We want to evaluate the boundary term in a solution of the equations of motion with AdS
asymptotics, so we consider the metric to be given by the usual FG expansion given by Eqs.
(2.13), (2.14) and (2.15). The vector normal to the boundary is given in Eq. (2.16), and therefore
� = 1 from now on.

In order to evaluate the boundary term in �S we need expressions for the variation of the
Christoffel symbols. In particular, the ones we need can be written in terms of variations of the
extrinsic curvature (2.19) as

�Γ
i

jk
=

1

2

ℎ
il
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j
. (2.87)

Also, we expand the tensor P��
��

asymptotically as

P
��

��
=
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2
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�

�
�
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�
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�

�
�
�

�) + �P
��

��
, (2.88)

where �P��
��

is not a variation, but a symbolic way of writing all the terms in P��
��

that contain
powers of z (see Eq. (2.90) below). As explained, when evaluated on-shell the variation of
the action is equal to the boundary term proportional to (2.86), which after replacing the
expressions above for �Γ�

��
and P��

��
becomes

�S = −
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(2.89)

where (ℎ−1�ℎ)
i

j

≡ ℎ
ik
�ℎkj , and the variation �ℎij = �gij/z

2 can be written as a variation of the

metric on the conformal boundary �g (0)
ij

on-shell, due to the relations (2.14) and (2.15). If we
restricted the analysis to Einstein gravity, we would have C(L) = 1/ (16�GN) and �P

��

��
= 0,

independently of the background. Therefore, only the first term in these expressions would
contribute, recovering the results in Appendix D of [224].

The expressions above are written in terms of variations of the metric and the extrinsic
curvature. However, they are related on-shell through Eqs. (2.15) and (2.19), and therefore the
variations of Kij can be written as variations of the metric g (0)

ij
, thus leading to a well-posed

Dirichlet problem once we get rid of the divergences. The next step is to expand �P��
��

in (2.89)
in powers of z. We are not interested in more than D = 5 bulk dimensions, so it is enough to
keep only the terms with powers up to z4, as the behavior of the determinant in the integrand
to leading order is

√

−ℎ ∼ z
−(D−1). Knowing that g (1)

ij
= 0, we can expand �P��

��
as
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��
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≡ z
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4
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��
+ … . (2.90)

7 Notice that this is equal to the boundary term written in Eq. (1.10), which can be checked if one takes into
account that the variation of the affine connection is given by

�Γ
�

��
=

1

2

G
��

(∇��G�� + ∇��G�� − ∇��G��) . (2.85)
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Plugging this into (2.89) and evaluating the covariant derivatives explicitly yields

�S = −
∫
)

d
D−1

x

√

−ℎ
[
C(L)

(
2�K

i

i
+ (ℎ

−1
�ℎ)

i

j

K
j

i )

+ 2

z
2

0

L
(
−(2D − 7)P

(2)
zk

zi
+ 2P

(2)
lk

li ) (ℎ
−1
�ℎ)

i

k

+ 4

z
3

0

L
(
−(D − 4)P

(3)
zk

zi
+ P

(3)
lk

li ) (ℎ
−1
�ℎ)

i

k

+ z
4

0
 (�g

(0)

ij ) + …
]
.

(2.91)

The term of order z3
0
inside the brackets contains the contractions P (3)

zk

zi
and P (3)

lk

li
, which can be

seen to vanish8 provided g (3)
ij

= 0, following the reasoning of Section 2.2.3. So these divergences
do not appear in the general theories that we are interested in.9

The contribution at order z2
0
requires some attention, but we will see that the two contrac-

tions of P (2)
��

��
appearing here vanish when evaluated on-shell. The tensor P��

��
is defined as the

derivative of the Lagrangian  (R
��

��) with respect to the Riemann tensor, so its components
will be given by contractions of the curvatures with four free indices that fulfill the symmetries
of the Riemann tensor itself. Since we are interested in the form of the terms at order z2 in this
tensor, P (2)

��

��
, we need to study the components of the Riemann up to this order, which are

given on-shell by
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(2.92)

As said, also contractions of the curvature can contribute to P��
��

in a general theory, and in
particular in this case it is enough to consider Rik

jk
and Rzi

zi
. If we impose that the equations of

motion are fulfilled, g (2)
ij

is given by Eq. (2.15b) and thus the form of these contractions is found
to be

R
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Thereby we see that the uncontracted components Rij
kl
are the only ones that can contribute to

P
��

��
on-shell at order z2. This means that we can write
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where C(2) is a constant depending upon the parameters of the particular theory that we
consider. However, these expressions are enough to see that, once g (2)

ij
is replaced by its form

8 As seen before, in D = 4 only Tr g (3) = 0 is fixed, while the other components of g (3)
ij

(the off-trace part) are
free and correspond to the holographic stress-energy tensor of the dual CFT. In this case it can happen that
P
(3)

lk

li
≠ 0, thus inducing a constant term at the boundary, which is standard.

9 The expansion of P (3)
��

��
also contains terms of the form ∇g

(2). However, these are only present in the components

P
(3)

zi

jk
or P (3)

ij

zk
, which are absent at this order, although they might appear at higher orders in the expansion of

the boundary term of the variation (2.89).
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given in Eq. (2.15b),
P
(2)

zk

zi
= P

(2)
lk

li
= 0 , (2.95)

and thus the terms at order z2 in the boundary term of the variation of the action, written in
Eq. (2.91), are zero on-shell in general.

Gathering everything up, we see that the boundary term of the variation relevant for D ≤ 5

reads
�S = −
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. (2.96)

By simple inspection, we observe that the only divergent part in up to 5 bulk dimensions is the
same as that of Einstein gravity, presented for example in [224], multiplied by the constant
C(L) which depends on the particular details of the theory. Therefore, we will assume that
the divergences in this object can be regularized by adding to the original action (2.63) the
usual boundary Kounterterms that are known to work for Einstein gravity, multiplied by the
constant C(L) as given in Section 2.3, and which we already know that are enough to cancel
the divergences of the on-shell action in these dimensions.

2.5.2 Explicit analysis in different dimensions

We will now see how the Kounterterms presented in Section 2.3 can be used to cancel the
divergences in the boundary term that appears when varying the action on-shell, given by Eq.
(2.96). Although the following computations are carried out more generally in Appendix D
of [224], here we will show them more explicitly in up to 5 bulk dimensions.

2.5.2.1 3 bulk dimensions

In this case the determinant factor is
√

−ℎ ∼ z
−2, so the only non-vanishing terms of the

variation (2.96) are simply
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In order to regularize this, we add the Kounterterm (2.60) particularized to D = 3, which reads

SKt = C(L)
∫
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It is straightforward to compute its variation, finding
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Then, adding this to �S above we get the variation of the regularized action in D = 3,

�Sreg = �S + �SKt = C(L)
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To the lowest orders in z, the extrinsic curvature behaves as given in Eq. (2.73), which can be
written as

K
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j
=

1

L
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) + … , (2.101)
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where  i

j (g
(0)

) is the Schouten tensor of the boundary metric g (0)
ij
,
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Using this, we see that the terms in the parenthesis start at order z2, which is finite when
multiplied by the determinant factor. Therefore the Kounterterm cancels the divergences in the
variation for this dimension of the spacetime, and it also allows the variation to be written only
in terms of variations with respect to g (0)

ij
, thus leading to a well-posed variational problem.

2.5.2.2 4 bulk dimensions

The divergent boundary terms of the variation of the action in D = 4 are
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These should be cancelled by the Kounterterm (2.55) with n = 2, which is
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Its variation can be evaluated explicitly term by term, and the final result reads [224]
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(2.105)

The first term in this expression cancels exactly the divergent terms in the variation (2.103).
The second integral in �SKt is finite if we assume Asymptotic Conformal Flatness. Indeed, in
this case the relevant components of the bulk Weyl tensor behave as10 W il

j l
∼ z

D−1
= z

3, and
since �K i

j
∼ z

2 due to Eq. (2.101), only the first term in that parenthesis contributes. The last
term of Eq. (2.105) can also be shown to vanish for this number of dimensions. Assuming that
the boundary submanifold is infinite, we can integrate by parts without adding a boundary
term,
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But since ∇̃lK
j1

i2
∼ z

2 at least (to zeroth order of K i

j
is proportional to �i

j
) and the indices of the

covariant derivative are raised with the metric ℎij = z
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ij , we have
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10 The Asymptotic Conformal Flatness (ACF) condition [224] implies that the leading behavior of the bulk Weyl
tensor with all indices in the directions tangent to the boundary is that of a normalizable mode, W ij

kl
∼ z

D−1. As
shown in Appendix C of [224], ACF is equivalent to the boundary being conformally flat. In the case D = 4

this is fulfilled directly, since any 3-dimensional manifold is conformally flat, but in higher dimensions it is
necessary to specifically require the Weyl tensor of the boundary metric to vanish.
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so this term vanishes as z → 0. Therefore, the boundary term of the variation of the regularized
action in D = 4 reads
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which is finite and can be written as depending only on the variations �g (0)
ij
, thus leading to a

well-posed variational problem with Dirichlet boundary conditions and no divergences.

2.5.2.3 5 bulk dimensions

In 5 bulk dimensions the form of the divergent terms is the same as before, with the difference
that now also the terms of order z4

0
contribute,
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In this case only the first term inside the brackets produces divergences, and the second one is
constant in z0, so it does not need to be subtracted and its actual form will not be relevant for
our purposes. The boundary Kounterterm that should cancel these divergences is (2.60) with
n = 2,
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Obtaining the variation of this Kounterterm entails a rather involved computation, which again
can be carried out following Appendix D of [224]. The final result reads

�SKt = C(L)
∫
)

d
4
x

√

−ℎ
(
2�K

i

i
+ (ℎ

−1
�ℎ)

i

j

K
j

i )
+ �S

(W )
+ �S

(0)
+ �S

(∇̃)
, (2.111)

where the first term cancels exactly the divergent part of (2.109), and we have defined
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�S
(∇̃)

=

L
2

4

C(L)
∫
)

d
4
x

√

−ℎ �
i1i2i3

j1j2j3 (
ℎ
−1
�ℎ)

j2

i3

∇̃i2∇̃
j3
K
j1

i1
. (2.114)

With this, the variation of the total regularized action is

�Sreg = �S
(W )

+ �S
(0)

+ �S
(∇̃)

+ �S
(z

4

0) , (2.115)

where �S(z
4

0) corresponds to the terms of order z4
0
in �S that produce a constant in the integrand,

and whose particular form depends on the theory. In order to show that this variation of the
regularized action is finite we should count the powers of z appearing in each of the terms,
which we do now.
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• The variation �S(W ) can be rewritten by expanding the sum in the indices of the antisym-
metric delta, and using W ij

ij
= 0, which follows from W

��

��
= W

�i

�i
= 0. We find
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=
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But now recall that Eq. (2.101) implies that �K j

i
∼ z

2, and under the assumption of
conformal flatness W il

j l
∼ z

D−1
= z

4. Then, since
√
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−4, the term with �K j
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in the

parenthesis does not contribute, and we can simply write
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• The first parenthesis in �S(0) can be rewritten in terms of the Weyl tensor of the bulk
metric, using the Gauss-Codazzi equation (A.10),

R
ij

kl
= ij

kl
− 2K

i

[k
K
j

l]
, (2.118)

and the definition of the Weyl tensor, which to the lowest order in z yields

W
ij
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= R
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+
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. (2.119)

These two expressions can be combined in the form
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The first parenthesis in �S(0), taking into account the prefactor �i1i2i3i4
j1j2j3j4

can now be rewritten
as
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and since W ij

kl
∼ z

4 and K i
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= �
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/L +  (z
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), we see that to the lowest order
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In the second parenthesis of �S(0) in Eq. (2.113) we have
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Therefore, the whole integrand starts at order z4, and when integrated with d4x
√

−ℎ it
produces a term that is constant and thus non-divergent when z → 0.

• Performing a naive power counting in the term �S
(∇̃), we could find that it produces a

constant at the boundary z → 0. Indeed, as was shown in D = 4, ∇̃lK
j1

i2
∼ z

2. Therefore,
one might be tempted to think that

√
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K
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∼ 1 . (2.124)
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However, this expression vanishes if we impose the boundary to be conformally flat.
Indeed, since we can expand K i

j
in terms of the Schouten tensor as in Eq. (2.101), to

leading order in z we can write
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j3
K
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j3

i1)
+ … ,

(2.125)

where quantities with the superscript (0) correspond to the boundary metric g (0)
ij
, and

their indices are raised using that instead of ℎij , thus the extra z2 factor in the second step.
To get to the last line we used the fact that this quantity is contracted with a generalized
Kronecker delta, and hence it is antisymmetrized in the indices j1 and j3. We can now
use the definition of the Cotton tensor,
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k
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in order to rewrite the expression above as
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But the Cotton tensor of g (0) is related to its Weyl tensor as [230]
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which is zero if we impose the metric to be conformally flat,  (0)
ij

kl
= 0. Therefore, the

term of order z4 in ∇̃i2
∇̃
j3
K
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i1
vanishes, and ∇̃i2
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6, which means that the total
integrand in �S(∇̃) is zero in D = 5, since
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vanishes at the boundary z → 0.

Gathering everything up, we find that the boundary term of the variation of the regularized
action in 5 bulk dimensions is

�Sreg = ∫
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which again corresponds to a well-posed Dirichlet variational problem. The last term between
brackets contains the contributions of order z4

0
appearing in the original variation (2.109), as

well as those coming from �S
(0).

2.6 Discussion

In this Chapter, we have proposed a renormalization procedure that can be applied to arbitrary
higher-curvature gravity theories, evaluated on asymptotically locally AdS manifolds and with
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up to 5 bulk dimensions.11 This method uses the counterterms proposed in [18, 19], whose
expressions involve the extrinsic curvature of the boundary, but with a theory dependent
coupling constant, as given in Eqs. (2.57) and (2.62).

In order to show the universality of the method, first we decompose the equations of motion
of an arbitrary higher-curvature theory into their components normal and tangential to the
boundary, and expand them in powers of the holographic Poincare coordinate. By means of
these, we are able to argue that in general the relevant odd coefficients of the Fefferman-Graham
expansion of the bulk metric, g (1)

ij
and g (3)

ij
, are zero. Furthermore, requiring symmetry under

the PBH transformations [217] we argue that g (2)
ij

is constrained to have the universal form
given in Eq. (2.15b). Then, considering these general features of the FG expansion, we verify
that the proposed procedure is enough to ensure the cancellation of divergences on the on-shell
action (Section 2.4) and the well-posedness of the variational principle (Section 2.5).

The argument presented fails for particular theories (discussed in Section 2.2.1 and Appendix
B), for which the equations of motion do not constrain the form of the coefficients g (1)

ij
and/or

g
(3)

ij
of the expansion. Even though these theories correspond to zero-measure submanifolds in

the theory space spanned by the couplings of the higher-curvature terms, they are interesting
on their own, since they include theories displaying degenerate AdS vacua and modified AdS
asymptotics. While one usually wants to avoid such behaviors, it can be interesting to use the
conditions obtained in Section 2.2.1 to look for new exotic theories of gravity.

Expanding the method to higher dimensions would be a natural continuation of this work,
but this entails some additional difficulties. Besides the need to extend further the FG expansion
(2.14), in D > 5 one would need to consider also the divergent terms of  (z

4−D

) and higher in
Eq. (2.71), which would become relevant. However, with our analysis we have no reason to
think that these will be proportional to (0), as required for the current approach to work. In
any case, we can not make any claim in this respect, and an explicit study would be needed for
larger dimensions.

Finally, while the study presented here is very abstract, in the sense that we only propose
and show the validity of the method, it can be considered for more practical purposes such as
obtaining finite asymptotic charges for black hole solutions in higher-curvature theories. Also,
in the context of the AdS/CFT correspondence, one would use the method for renormalizing
holographic entanglement entropies, as in [224,227–229,231]. In fact, our prescription has been
used to compute entanglement entropies and some related quantities, as anomaly coefficients
and central charges, for general cubic theories in [232, 233].

11 In the case D = 5, one needs to explicitly require Asymptotic Conformal Flatness, which is equivalent to the
boundary being conformally flat [224]. This is needed to guarantee that g (2)

ij
has the universal form given in Eq.

(2.45) and for the variational principle to be well-posed, as discussed in Section 2.5.2.3.
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3
Holographic superconductor in
Einsteinian cubic gravity

The holographic duality relates the dynamics of a strongly-coupled QFT in its large N limit to
those of a classical gravitational system [12], much easier to treat. Therefore, it can be regarded
as a tool to study strongly correlated quantum systems, that are untractable by conventional
methods. Although it was originally formulated in the realm of high-energy physics, the
AdS/CFT correspondence has been applied also to different condensed matter setups, the
resulting branch of research being known as AdS/CMT, for condensed matter theory [234].

The simplest example of one such system is the “holographic superconductor,” whose
existence was first established in [20, 21] (see also [22]). This is a (2 + 1)-dimensional system
with a U(1) symmetry, which is spontaneously broken below a critical temperature by the
condensation of a scalar operator , thus giving rise to a transition into the superconducting
phase [235]. At the other side of the duality, this corresponds to a planar black hole in
(3 + 1)-dimensional AdS spacetime, with a scalar field which develops an instability below
the critical temperature. This holographic setup reproduces several known features of high-Tc
superconductors [236], which are not described by the usual BPS theory, and whose physical
mechanism is not known. The crystalline structure of these materials is often layered, with a
strong coupling inside each of them, so it is reasonable to study them as this (2+1)-dimensional
holographic model.

As mentioned before, the classical regime of the gravity system corresponds strictly to
the infinite N limit of the QFT. However, this is not realistic enough, and one would try to
improve this description by introducing 1/N corrections into the boundary setup. A subset
of these diagrams —which also include 1/

√

� effects, being � the ’t Hooft coupling— can be
resummed producing higher-curvature terms in the bulk action [72]. So classical holography
in the higher-order gravity background would take into account some such corrections to the
dual field theory.

In a top-down approach it could in principle be possible to find the form of these higher-
curvature terms, provided we know the D-brane configuration, field content and regularization
scheme at hand. This however is not feasible in general, so we will stick to the bottom-up
construction that we always follow in this thesis, choosing our gravitational Lagrangian based
on generic physical requirements alone. As always, we want a theory that admits black hole
solutions with a single function, does not propagate any modes other than the massless graviton
and is non-trivial in 4 dimensions, in particular for an AdS background. The lowest order
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theory fulfilling these conditions that we know of is Einsteinian cubic gravity, introduced in
Section 1.1.3. In particular, the gravitational part of the action will be

SGravity = SEH + S
(3)

GQG =

1

16�GN
∫

d
4
x
√
−g

[

R − 2Λ −

̃
�L

4

54

( − 8)
]

, (3.1)

where GN is Newton’s constant, L the AdS length scale and ̃
� the coupling parameter of the

cubic terms, normalized in a convenient way for this Chapter.  and  are the cubic Lagrangian
densities, whose form is given in Eqs. (1.24) and (1.33), and the combination  − 8 allows
the theory to have also a well posed cosmological scenario [76]. Although this construction
could be generalized to any higher order in the curvature [78], for simplicity we will stick to
the cubic case, which should be enough to identify some features of generic corrected models.

This gravitational action can be used to describe a dual CFT with a non-zero value for the
stress tensor three-point function t4 —which is a function of the coupling ̃

� [119]—, but it can
also produce causality issues [103, 104, 237, 238] for relatively large values of the coupling. If
we further required the positivity of energy fluxes as in [183], we would need |t4| < 4, which
results in a bound on the coupling as restrictive as 0 ≤ ̃

� ≤ 0.0211 [119]. However, this would
lead to very small corrections on the system and we did not find any noticeable effect when
this bound is violated. Therefore, since our aim is to explore the effect of the cubic terms we
will ignore this constraint.

The Coleman-Mermin-Wagner theorem rules out the spontaneous breaking of a continuous
symmetry in (2 + 1)-dimensional systems at finite temperature, due to the presence of long-
wavelength fluctuations that prevent the order parameter from having a non-zero expectation
value [239, 240]. In a holographic setting, these fluctuations would be suppressed in the large
N limit [241], since the Goldstone fluctuations only show up at subleading order. Said regime
corresponds to Einstein gravity in the holographic framework, and this is the reason why the
scalar field is able to condense during a phase transition.

In order to restore the Coleman-Mermin-Wagner theorem, one could naively think that
it is enough to consider corrections away from the large N limit. However, since it is a large
distance effect it is not restored by simply adding these 1/N contributions, and it would indeed
require the calculation of Witten loops in the bulk [242] (see also [236]). In spite of this, it
has been observed that different higher-curvature corrections make the scalar condensation
more difficult, delaying the superconducting phase transition to lower temperatures [243–246].
However, in all these cases the system is higher-dimensional, and thus the theorem cannot be
directly applied. The interest of studying the superconductor in Einsteinian cubic gravity resides
in the fact that it is the first theory that allows us to explore the effects of such higher-curvature
corrections on a (2 + 1) dimensional boundary theory.

The contents of the current Chapter have been publised in [25]. The details of that article
can be found in page 211 of this document.

3.1 The model

Let us start the study by defining the setting of our problem. We want to describe a (2 + 1)-
dimensional s-wave superconductor,1 so we consider a holographic model in (3+1) dimensions.
1 A superconductor system in condensed matter physics is characterized by an order parameter, which is typically

the wavefunction that determines the density of superconducting charge carriers. For the s-wave models that
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The boundary has a global U(1) symmetry, which we extend into the bulk by adding a U(1)
gauge field, and a charged scalar that will correspond to the condensate that will break the
symmetry in the superconducting phase transition. The entire action of our bulk system is

S = SGravity + SMaxwell + SScalar , (3.2)

where SGravity is the gravitational action given by Eq. (3.1), and the other terms correspond to
the electromagnetic and charged scalar fields,

SMaxwell + SScalar = −
∫

d
4
x
√
−g

(

1

4

F��F
��
+ |) − iqA |

2
+ m

2
| |

2

)
. (3.3)

Here, m and q are respectively the mass and the electric charge of the scalar.
The action has a well-defined probe limit, in which the scalar and electromagnetic fields

do not curve the background geometry. This corresponds to the regime in which the fields  
and A and their derivatives are small, since the energy momentum tensor is quadratic in those
fields, while their equations of motion contain linear terms. However, in order to keep some
interaction between the two fields in this limit, one should take also q → ∞ while keeping the
products qA and q finite. In this work we will consider both this probe limit and the fully
backreacting regime.

We are interested in describing a spatially infinite system at equilibrium at the boundary, so
we look for solutions that are static and have AdS asymptotics, and with a (2 + 1)-dimensional
boundary. This is realized by the planar ansatz

ds
2
= −N

2
(r)f (r)dt

2
+

dr
2

f (r)

+

r
2

L
2
(dx

2
+ dy

2

) , (3.4)

 =  (r) , A = �(r)dt , (3.5)

which requires the cosmological constant appearing in Eq. (3.1) to take the value

Λ = −

3

L
2
. (3.6)

In these expressions, L is a constant with units of length, usually referred to as the AdS length
scale.

The equations of motion for the coupled fields can be obtained by using the reduced action
approach described in Section 1.1.3, which consists on evaluating the action with the ansatz
and then computing the functional derivative with respect to each of the functions in the fields.
After setting 16�GN = 1, which we will keep for the entire Chapter, we end up with
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we are interested on this carries no angular momentum and is spherically symmetric, so it can be considered a
scalar function.
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Near the AdS boundary, which corresponds to r → ∞ with our choice of coordinates, the
functions in the metric can be expanded as

f (r) =

r
2

L
2
f∞ +  (r

−1

) , (3.8)

N(r) = N∞ +  (r
−2

) , (3.9)

where f∞ and N∞ are constants. By simple inspection of Eq. (3.4), one can notice that if we
rescale the bulk time coordinate t in such a way that N 2

∞
f∞ = 1, then it also measures the

boundary time. On the other hand, a horizon at a finite r = rℎ will provide a finite temperature
to both the bulk and boundary systems. The metric functions can be expanded around that
point as

f (r) =

4�T

Nℎ

(r − rℎ) +  ((r − rℎ)
2

) , (3.10)

N(r) = Nℎ + (r − rℎ) , (3.11)

where Nℎ is a constant that sets the time unit at the horizon and T is the Hawking temperature
of the black hole. These expressions, supplemented by suitable expansions of the fields  (r)
and �(r), can be plugged into the equations of motion to relate the different constants and
obtain the subleading terms. This computation will be performed numerically in what follows,
for the different phases and limits.

3.2 The normal phase

In order to study this system we must first introduce the normal, or non-superconducting,
phase. This is the vacuum configuration, corresponding to a zero value of the condensate and
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the electrostatic potential,  = � = 0. In this case the equations of motion (3.7c) and (3.7d) are
simplified and can be partially integrated as for any Generalized Quasitopological theory of
gravity, obtaining

r
3

L
2
− rf +

L
4

27

̃
�
(
3f f

′
f
′′
− f

′3
+

6

r
2
f
2

(f
′
− rf

′′

)
)

= M , (3.12)

N(r) = N , (3.13)

where we introduced the integration constants M , which is proportional to the mass of the
black hole [119], and N , which sets the time units.

Plugging the asymptotic expansions (3.8) and (3.9) into these equations of motion we obtain
the relation

4

27

̃
�f

3

∞
− f∞ + 1 = 0 , (3.14)

and as said before we choose N = N∞ = 1/

√

f∞ in order for t to correspond to the time
coordinate of the boundary.

Notice that Eq. (3.14) is solved by up to three different values of f∞ for a given ̃
�. However,

in order for the metric to have the correct signature we need f∞ > 0, which is only possible for
̃
� ≤ 1. Besides, imposing that the terms of higher order in the asymptotic expansion of f (r) are
well-behaved, so that black hole solutions exist, requires ̃

� ≥ 0 [119]. Thus, we are left with

0 ≤
̃
� ≤ 1 . (3.15)

In this range the equation still has two possible roots, but only one of them produces a positive
effective Newton constant for the gravitational perturbations. That solution flows into Einstein
AdS when ̃

� goes to zero [97], namely lim ̃
�→0

f∞ = 1. This can be solved analytically, finding

f∞ (
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�) =

3

√
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�

sin
[

1

3

arcsin
(

√

̃
�
)]

, (3.16)

which takes values in the range f∞ ∈ [1, 3/2], the largest value corresponding to ̃
� = 1.2 In

consequence, the form of the metric is completely determined by the integration constant M
and the cubic coupling ̃

�.
We should now turn to the behavior of the metric at the horizon. Plugging the expansions

(3.10) and (3.11) in the equation of motion (3.12), separating terms with different powers of
r − rℎ and imposing them to vanish independently, we find the temperature and radius of the
horizon,

T =

3rℎ

4�L
2

√

f∞

, rℎ =
(

ML
2

1 −
̃
�)

1/3

. (3.18)

2 The effect of the higher-curvature terms at the boundary can be interpreted as a rescaling of the AdS radius.
Indeed, by looking at the asymptotic expansion (3.8) we see that it is natural to absorb f∞ in a redefinition

L ⟶ L̃ =

L

√

f∞

, (3.17)

and since f∞ ≤ 1 we conclude that the cubic terms decrease the effective AdS radius. This is completely
analogous to what we find in Section 4.2, when studying the effect of the Gauss-Bonnet term on the AdS
asymptotics.
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By looking at these expressions, we see that the limit ̃
� = 1 is of particular interest. Even

though the horizon radius seems to diverge, one can easily check that Eq. (3.12) with M = 0 is
solved by the analytical function

f (r) =

3

2L
2
(r

2
− r

2

ℎ) , (3.19)

for any value of rℎ. Therefore, in this limit the sense of scale of the solution is somewhat
lost, since neither the horizon radius nor the temperature are determined by the equations
of motion. For simplicity, in the numerical computations we will set rℎ = 1 when using this
critical solution.

We still need to obtain the form of f (r) for general values of ̃� inside the allowed range
(3.15). In the GR limit ̃� = 0, it takes the form

f (r) =

r
2

L
2 (

1 −

ML
2

r
3 )

, (3.20)

while in the critical one ̃
� = 1 it is given by Eq. (3.19). However, for any other value of

the coupling we need to solve Eq. (3.12) numerically. In principle this could be achieved by
implementing the numerical shooting procedure described in [5,119]. While this method is able
to produce numerically accurate solutions, the calculation becomes too complex when trying
to obtain the backreacted solution. In that case  (r) ≠ 0 and �(r) ≠ 0, so we need to consider
the entire higher-order set of equations of motion (3.7), and in general N(r) ≠ constant.

In this work we instead employ a numerical relaxation method [247], described in Appendix
C. The main advantage of this approach is that it is able to naturally implement boundary
conditions at both ends of the integration interval, which makes it very appealing for our
purposes. It requires a discretization of the space of values of the independent variable, so the
first step is to make the range r ∈ [rℎ, ∞) finite by introducing the inverse coordinate z = L

2
/r .

Then we need to specify a seed for the unknown function, which is iteratively modified until it
converges to the solution. In practice we solve for L2f (r)/r2, and choose the seed to be a linear
function in z, equal to 0 at the horizon and to f∞ at the boundary.

The solutions found with the relaxation method for several values of ̃� are shown in Figure
3.1. The numerical accuracy of this procedure was checked by plugging the solution back into
the equation of motion, and it was found to yield significantly lower errors than the shooting
procedure, at least for the first few derivatives of f (r), which are enough for our purposes. The
numerical solution also matches the exact forms known for the cases ̃

� = 0 and ̃
� = 1.

3.3 The superconducting phase

At low enough temperatures, the near horizon region of the 4-dimensional AdS black hole
metric (3.4) is equal to an AdS2 geometry. As in the standard holographic superconductor, a
choice of the mass of the scalar field that is stable in the asymptotic AdS4 regime can violate the
two-dimensional Breitenlohner-Freedman (BF) bound in the near horizon region [22], leading
to an instability that results in the development of a charged scalar hair, which represents the
superconducting phase.
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Figure 3.1: Function f (r) of the black hole metric, for different values of ̃�
and rℎ = 1.5L. This was obtained by solving numerically Eq. (3.12) in terms
of the coordinate z = L

2
/r , using the relaxation method with 40 points in

the range z ∈ [0, L
2
/rℎ].

3.3.1 Instability of the scalar field at low temperature

In this Section we will review the procedure that allows the scalar field to develop a non-
zero value at low enough temperatures, which is nothing but the mechanism of spontaneous
symmetry breaking that produces the superconducting phase. We will also take into account
the role of the cubic terms in this phenomenon.

Let us consider the scalar field  to have a mass m and a vanishing value initially, with
an electrostatic potential �(r) that modifies the spacetime metric, now corresponding to an
AdS Reissner-Nordström black hole. Since  = 0, the equation of motion of the potential (3.7b)
becomes

d

dr (

r
2
�
′
(r)

N (r) )
= 0 , (3.21)

which is solved by

�
′
(r) = Q

L
2

r
2
N(r) , (3.22)

where Q is a constant proportional to the electric charge of the black hole. This ansatz also
admits a single-function solution in our cubic theory, so we can set N(r) = N∞, whose value
will be fixed later. Then, the equation of motion for the function f (r) (3.7c) reduces to

r
3

L
2
− rf +

4�GL
4
Q

2

r

+

L
4

27

̃
�
(
3f f

′
f
′′
− f

′3
+

6

r
2
f
2

(f
′
− rf

′′

)
)

= M . (3.23)

The asymptotic limit of this equation also corresponds to the same expansion as before, Eq.
(3.8), with f∞ given by (3.16), so we fix N∞ = 1/

√

f∞. Let us now expand f (r) near the horizon
as

f (r) =

4�T

N∞

(r − rℎ) +

1

�
2
(r − rℎ)

2
+  ((r − rℎ)

3

) , (3.24)
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where � is a constant with units of length. Plugging this in Eq. (3.23) we find

T =

3r
4

ℎ
− 4�GNL

6
Q

2

4�L
2
r
3

ℎ

√

f∞

, M =

r
3

ℎ

L
2
+

4�GNL
4
Q

2

rℎ

−

̃
�

L
2 (

3r
4

ℎ
− 4�GNL

6
Q

2

3r
3

ℎ
)

3

. (3.25)

Since we are interested on the behavior of the system at very low temperatures, we will take
the extremal limit T = 0, which corresponds to

Q
2
=

3r
4

ℎ

4�GNL
6
, rℎ =

(

ML
2

4 )

1/3

. (3.26)

In this case it is easy to obtain the value of � in the expansion (3.24), by replacing it again in Eq.
(3.23) and taking into account the values of Q and rℎ above. One finds

�
2
=

L
2

6

, (3.27)

independently of the value of ̃�.
Let us now introduce the coordinates � and �, through the relations

r − rℎ = �

�
2

L
2
� , t =

L
2

�
2

�

�N∞

, (3.28)

where � is a small parameter. These are chosen in such a way that the near-horizon metric
becomes, to first order in �,

ds
2
≃ −

�
2

�
2
d�

2
+

�
2

�
2
d�

2
+ r

2

ℎ (dx
2
+ dy

2

) , (3.29)

which corresponds to the product of AdS2 with the real plane. The electrostatic potential � is
also modified, and it reads3

��(�) ≃ Q

L
2

r
2

ℎ

� . (3.30)

The equation of motion of a scalar field  (�) of mass m in this background is

 
′′
+

2

�

 
′
+

�
2

�
2 (

�
2

�
�
2

�
2

− m
2

)
 = 0 , (3.31)

so it has an effective mass (squared) given by the second parenthesis In the extremal limit (3.26)
it becomes

m
2

eff = m
2
−

3�
2

4�GNL
2
, (3.32)

which is independent of ̃�, since �2 is given by Eq. (3.27). In order for the scalar field to become
unstable and condense at these low temperatures it would need to violate the BF bound, which
in the AdS2 spacetime of the near-horizon region reads [167]

m
2

eff ≥ −

1

4�
2
. (3.33)

3 This can be seen by writing the potential as a differential form A = �dt = ��d�. The coordinates t and � are
related as in Eq. (3.28), and �(r) can be expanded near r = rℎ as �(r) ≃ �

′
(rℎ)(r − rℎ).
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Equivalently, for the original mass m this bound implies

m
2
≥

3�
2

4�GNL
2
−

1

4�
2
. (3.34)

This effective BF bound is independent of the coupling of the cubic terms ̃
�. However, the mass

should be taken with respect to some scale, and since the cubic terms modify the effective AdS
scale it is natural to measure it with respect to L/

√

f∞, so we should formulate this inequality
in terms of m2

L
2
/f∞. If we set L = 16�GN = 1, as in the upcoming numerical computations, it

reads
m

2

f∞

≥

1

2f∞

. (3.35)

Later we will fix the value of m2
/f∞ in such a way that this inequality is violated, so the

field becomes unstable at the horizon and the superconducting phase appears. But since f∞
increases monotonically with the coupling of the cubic terms, for a given value of m2

/f∞ the
violation of the inequality becomes smaller as ̃

� grows. Therefore, we can expect that the
higher-curvature terms in the gravity action will make the condensation harder, and decrease
the critical temperature at which the phase transition takes place.

3.3.2 Probe limit

Let us now turn to the numerical study of the system, first in the probe limit in which the
matter fields do not backreact on the metric. This is the regime in which the scalar field  and
the electrostatic potential �, as well as their derivatives, are small enough that they can be
discarded in the equations of f (r) and N(r), (3.7c) and (3.7d) respectively, where they appear
squared. The gravitational background is thus the vacuum black hole studied in Section 3.2,
on which the equations for the scalar (3.7a) and gauge potential (3.7b) need to be solved. As
mentioned before, in order to keep a non-trivial coupling between the gauge and scalar fields
we need to take the limit q → ∞, while keeping q , q� ≈ constant.

In order to perform the numerical computation, we must first understand the expansion of
the matter fields at the limits of the integration interval. At the horizon we impose regularity
conditions in such a way that A�A

� does not diverge. It can be checked with the equations of
motion (3.7a) and (3.7b) that this implies

� = (r − rℎ) , (3.36)
 =  ℎ + (r − rℎ) , (3.37)

where  ℎ is a constant. On the other hand, at large r we find from the same equations the
asymptotic expansions

� = � +

�

r

+  (r
−2

) , (3.38)

 =  + (1 +  (r
−1

)) r
−Δ+

+  − (1 +  (r
−1

)) r
−Δ−

, (3.39)

where �, � and  ± are constants, and the exponents Δ± are given by

Δ± =

3

2

±

√

9

4

+

L
2
m

2

f∞

. (3.40)
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In order for the solution to be stable near the boundary, the discriminant inside this square
root needs to be positive, resulting in the well known Breitenlohner-Freedman bound on the
scalar mass. Also, since f∞ increases with the coupling ̃

�, the bound is lowered by the cubic
curvature terms, this is, the field can have a larger tachyonic mass while still being stable.

In what follows we will fix the mass of the scalar field as m2
= −2f∞/L

2, producing the
convenient values Δ+ = 2 and Δ− = 1 in order to make contact with the standard literature.
This value fulfills the Breitenlohner-Freedman bound in 4 dimensions, but violates the effective
near-horizon bound given in Eq. (3.34), thus allowing the superconducting phase transition to
take place. It also renders both terms in the expansion (3.39) normalizable [167], and any of its
coefficients  ± is proportional to the expectation value of a boundary operator ⟨±⟩, which we
define as

⟨±⟩ =

√

2 ± . (3.41)

The other coefficient can be identified with the corresponding source ∓, but since we are
interested in spontaneous symmetry breaking we will set such source to zero.

3.3.2.1 Numerical method and boundary conditions

For the numerical computations we employ again the relaxation method explained in Appendix
C. This requires the range of the independent variable to be finite, so in practice we work with
the coordinate z = L

2
/r , which satisfies 0 < z < L

2
/rℎ. Besides, we also solve for the function

P(r) ≡ r (r), which goes to either 0 or a finite value at large r , depending on the dimension of
the condensate that is turned on.

This procedure has the advantage that it lets us apply boundary conditions at both ends
of the interval in a natural way, so we will take advantage of this feature. In all cases, at the
horizon z = zℎ ≡ L

2
/rℎ we fix the values

�(zℎ) = 0 , P(zℎ) = Pℎ , P
′
(zℎ) =

m
2
L
2
− zf

′
(zℎ)

z
2
f
′
(zℎ)

, (3.42)

where Pℎ is a constant that will ultimately determine the temperature of the system, and the
last expression can be obtained by studying the equation of motion (3.7a) near the horizon,
taking into account the other two conditions. Furthermore, we will impose one condition at the
boundary z = 0, depending on the condensate that we want to study. Since P(z) ∼  − + z +,
these are

P
′
(0) = 0 such that ⟨−⟩ =

√

2 − ≠ 0 ,

P(0) = 0 such that ⟨+⟩ =

√

2 + ≠ 0 .

(3.43)

The relaxation method also requires an initial seed for the fields that we want to compute,
which we choose to be a linear function interpolating from the known conditions at the horizon,
and some values at the boundary that will change as the algorithm converges. For the field P(z)
this last number can either be zero (if we want ⟨+⟩ ≠ 0) or a constant (for ⟨−⟩ ≠ 0), which we
take to be equal to Pℎ. On the other hand, for the Maxwell potential we take �(0) = −�czℎ/L

2,
where �c is the critical value of the charge density at which the condensation begins.

This critical charge density can be estimated by solving a Sturm-Liouville eigenvalue
problem, as explained in [248]. Let us review this computation here for our case.
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The equation of motion for the scalar field (3.7a) can be rewritten in terms of the coordinate
z and the fields

̃
f (z) =

z
2

L
2
f (z) , F(z) =

√

2

⟨±⟩ (

L
2

z )

Δ±

 (z) , (3.44)

resulting in

F
′′
+

(

̃
f
′

̃
f

+

2(Δ± − 1)

z )

F
′
+

(

Δ±
̃
f
′

z
̃
f

+

Δ±(Δ± − 3)

z
2

−

m
2
L
2

z
2 ̃
f )

F +

f∞q
2
�
2

̃
f
2

F = 0 . (3.45)

Since we want to study the onset of the superconducting phase transition, we can consider
F ≈ 0, so the Maxwell potential is equal to its background value �(z) ≈ �c(z −zℎ). Plugging this
into the equation, we see that it now takes the form of a Sturm-Liouville eigenvalue problem

d

dz [
k(z)

dy

dz ]
− q(z)y(z) + ��(z)y(z) = 0 , K(z)y(z)y

′
(z)

|
|

z1

z0

, (3.46)

where the eigenvalue � and the rest of the functions are identified as

� = �
2

c
, k(z) =

̃
f z

2Δ±−2
, q(z) = −z

2Δ±−2

(

Δ±
̃
f
′

z

+

Δ±(Δ± − 3)
̃
f

z
2

−

m
2
L
2

z
2

)

,

�(z) = z
2Δ±−2

f∞q
2
(z − zℎ)

2

̃
f

, y(z) = F(z) ,

(3.47)

and the limits of the interval are z0 = 0 and z1 = zℎ. The eigenvalue of the differential equation,
which in our case will give us the value of the critical charge density, can be obtained by solving
the following minimization problem [248]

� =

∫
z1

z0

dz [k(z)y
′
(z)

2
+ q(z)y(z)

2

]

∫
z1

z0

dz�(z)y(z)
2

|
|
|
|
|y=ymin

. (3.48)

In order to minimize the quotient of integrals with respect to the function y(z) = F(z), we
introduce the relatively simple ansatz F(z) = 1 − az

2
+ bz

3
+ cz

4. Then, the problem reduces to
finding numerically the values of the constants a, b and c that minimize that quantity.

Finally, we should comment on how temperatures are treated in this problem. Notice that
the Hawking temperature of the black hole is constant, given in Eq. (3.18), but the numerical
results will be displayed as functions of the temperature of the system. The way to do this is
by finding another energy scale to compare it with, in this case the charge density � that can
be read from the asymptotic expansion of �(z), given in Eq. (3.38). In the numerical procedure,
we solve the system for one value of the constant P(zℎ) = Pℎ each time, as said before. This
will produce a profile for both P(z) and �(z), from where we can read the expectation value of
the condensate ⟨±⟩ and the corresponding charge density �, which we use to measure the
critical temperature as

Tc =

3rℎ

4�L
2

√

f∞

√

�

�c

. (3.49)

Here �c is the critical charge density, obtained from the results of the onset of the superconduc-
tivity. Therefore, even though the temperature of the black hole does not change, since there is
another energy scale involved we can obtain results corresponding to different temperatures.
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3.3.2.2 Results for the condensation

Let us now show the numerical results for the expectation value of the two condensates ⟨±⟩

as a function of the temperature, obtained as explained above. Let us remind the reader that in
the numerical computations we always set L = 16�GN = 1, for simplicity.

We checked in each case that the solution found for  (r) does not have nodes, this is,
points where  (r) = 0, although it is possible to achieve profiles with these features using our
numerical procedure and different boundary conditions. Such solutions correspond to excited
states of the condensate [249–252], whose study can be interesting on its own, but lies outside
the scope of the present work.
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(a) Condensate ⟨−⟩.
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(b) Condensate ⟨+⟩.

Figure 3.2: Condensation of the operators of dimensions 1 and 2 with
respect to the temperature in the probe limit, q → ∞, for different values of
̃
�.

In Figure 3.2 we see how the condensate value ⟨±⟩ in each of the possible quantizations
changes as a function of the temperature. In general, we observe that increasing values of
the cubic coupling ̃

� leads to larger condensates at low temperatures, when normalized by
the critical temperature. This is analogous to what was previously reported in other higher-
curvature theories in higher dimensions [243, 245]. As in the standard GR case, there is a
divergence on the condensate ⟨−⟩ as T goes to zero, which spoils the decoupling limit but
disappears when backreaction on the metric is considered, as we will see later.

In Figure 3.3 we see the effect of the cubic-curvature terms in the critical temperature
for the superconducting phase transition. It decreases monotonically as a function of the
cubic coupling, until values close to its upper bound ̃

� = 1 are approached, where there is a
qualitative difference between the two quantizations that can be understood as follows. In this
limit the function f (r) is given exactly by Eq. (3.19), where the radius of the horizon can take
any positive value. On the other hand, the asymptotic form of �(r) and  (r) is still given by Eqs.
(3.38) and (3.39). However, if we look at the condensate ⟨−⟩, this is, we set  (r) =  −/r and
�(r) = � + �/r , the equations of motion (3.7a) and (3.7b) imply that  − = � = 0, which means
that both fields are equal to zero in this case. Thus, it makes sense that the critical temperature
diverges as seen in Figure 3.3, since the energy scale with respect to which it is measured, √�,
vanishes. This does not happen if one studies the other condensate, ⟨+⟩, in which case  +,
� and � are not determined analytically by the equations of motion and the entire numerical

62



Chapter 3. Holographic superconductor in Einsteinian cubic gravity

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 3.3: Dependence of the critical temperature of the two operators
with the coupling ̃

�, in the probe limit. Obtained from the critical charge
density �c as given in Eq. (3.49). The divergence on the blue curve at ̃� → 1

is due to the vanishing of � in that limit.

computation needs to be carried out, finding a non-vanishing value of the condensate as shown
in Figure 3.2.

3.3.2.3 Electric conductivity

It is possible to evaluate the electric conductivity of the dual theory using standard holographic
methods. To that end, we turn on a perturbation on the spatial component of the gauge field,
such that the Maxwell potential is

A = �(r)dt + e
−i!t

�Ax(r)dx , (3.50)

and the equation of motion of this perturbation reads

�A
′′

x
+
(

f
′

f

+

N
′

N )
�A

′

x
+

1

f (

!
2

N
2
f

− 2q
2
 
2

)
�Ax = 0 . (3.51)

This would excite a perturbation in the tx component of the metric, e−i!t�gtx , but in the probe
limit it is safe to turn it off. By expanding this equation for r → ∞ we find that, near the
boundary, �Ax behaves as

�Ax(r) = �A
(0)

x
+

�A
(1)

x

r

+  (r
−2

) . (3.52)

If we now look at the behavior of Eq. (3.51) near the horizon, and plug in the previous expansions
for the different fields, we find

�Ax(r) ≃ �Aout(r − rℎ)
i!/4�T

+ �Ain(r − rℎ)
−i!/4�T

, (3.53)

where �Aout and �Ain are outgoing and ingoing modes at the horizon, respectively. Then, in
order for the propagation of the perturbations to respect causality we need to impose �Aout = 0,
while the actual value of �Ain is not relevant as long as it is finite, and in practice we set it to 1.
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Now that we know the form of �Ax at the horizon, it is straightforward to solve the equation
of motion (3.51) for any given value of !, plugging in also the value of the field  (r) obtained
previously which we assume to be unchanged by the perturbation. The equation can be
integrated with a standard numerical procedure, starting from the horizon and towards the
boundary, in order to read the values of the coefficients in the expansion (3.52). Following
the usual holographic procedure we can identify the leading term with a perturbation of the
electric potential, �A(0)

x
= �Ex

√

f∞/i!, and the subleading one with its linear response on the
electric current, �A(1)

x
= �Jx . Then, the conductivity can be obtained according to the Kubo

formula

� =

�Jx

�Ex

=

√

f∞

i!

�A
(1)

x

�A
(0)

x

. (3.54)

0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

(a) Condensate ⟨−⟩.
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Figure 3.4: Real and imaginary parts of the conductivity as a function of the
frequency, for different values of ̃� and T/Tc = 0.2, in the probe limit. One
can observe that the gap becomes larger as ̃

� increases, while the asymptotic
value of � is independent of this coupling.

Plots of the resulting conductivities as functions of the frequency in the superconducting
phase are shown in Figure 3.4, where one can observe two main features that are shared
with the results from Einstein gravity. First of all, there is a frequency gap above which
the conductivity goes to a constant. This could be a hint of the existence of a microscopic
mechanism that is responsible for the creation of superconducting charge carriers, which would
be broken by external excitations with large enough energy, resulting in a finite conductivity
that corresponds to a normal phase.
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The other important feature is a delta in Re(�) for ! = 0. While this is not observed directly
in the plots, due to the finite resolution of the numerics, it can be inferred from the divergence
of Im(�) and the Kramers-Kronig relation

Im [�(!)] = −

1

�


∫

∞

−∞

Re [�(!′
)]

!
′
− !

d!
′
, (3.55)

which follows from causality [21]. In this probe limit the delta implies an infinite DC conduc-
tivity [21, 22], which is a defining feature of a superconducting system.
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(a) Condensate ⟨−⟩.
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Figure 3.5: Plots of the conductivity with respect to a rescaled frequency
for T/Tc = 0.2, in the probe limit. The dependence on the coupling ̃

� is
mostly due to the change in the value of the condensate, with a residual
contribution that is larger in the dimension-2 case.

In the same Figure 3.4 we see that the main effect of the cubic terms is to make the energy
gap larger. However, the dependence of this gap on ̃

� mimics almost completely that of
the condensate found in Section 3.3.2.2. This is confirmed by rescaling the frequency with
the appropriate power of the condensate value, as can be seen in Figure 3.5. The residual
dependence can be attributed to f∞ in Eq. (3.54), and it is stronger in the ⟨+⟩ case. This could
have been expected on the grounds of the larger conformal dimension of the operator, as in
Eq. (3.51) the rescaling of ! makes the condensate appear linearly as ⟨+⟩/f

2
∼ ⟨+⟩/f

2

∞
, as

compared to the quadratic behavior ⟨−⟩
2
/f

2

∞
for the other quantization. In both cases, the

asymptotic value for large frequencies is independent of the cubic coupling.
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3.3.3 Backreaction

As the final part of this Chapter, let us turn to the fully backreacted case. As before, we will
analyze the dependence of the condensation of the two operators ⟨±⟩ on the parameter of
the cubic terms ̃

�, but also the electromagnetic coupling q. As explained in Section 3.1, the
probe limit already studied corresponds to q → ∞, so now we will consider finite values of this
coupling, the smaller ones corresponding to a stronger backreaction of the fields on the metric.

However, we will not study the electric conductivity with backreaction. Introducing a
perturbation �Ax in the gauge field would require turning on also a perturbation �gtx in the
metric, whose equation of motion should be considered. In GR this equation is simple and
can be replaced in that of �Ax , so in the end one does not need to actually solve for �gtx . On
the contrary, in the cubic gravity case its equation of motion is modified, and therefore one
would need to actually solve for this perturbation, providing an appropriate set of boundary
conditions. This is an interesting problem on its own, but lies outside the scope of this work.

3.3.3.1 Numerical method and boundary conditions

The main challenge that we are faced with is the complexity of the full system of equations of
motion (3.7), since now the metric is not simply the one studied in Section 3.2 but will depend
on the values of the matter fields. These have a total of ten derivatives, so a naive power
counting would result in ten constants being required to fully determine the solution. However,
several constraints can be found in the system, thus reducing such number.

In the standard GR case the equations of motion for the metric are first order, as can be
seen by setting ̃

� = 0 in Eqs. (3.7c) and (3.7d), so solving the entire system would require 6
constants. Two of the remaining constants are fixed by demanding N 2

∞
f∞ = 1 and f (rℎ) = 0,

and another one setting �(rℎ) = 0 to avoid a singularity in the norm of the potential. One
further reduction is obtained by evaluating at the horizon the equation of motion for  (r),
which fixes the value of  ′

(rℎ) in terms of known quantities. The remaining two constants can
be identified with the charge density � in the expansion (3.38) and the value of the condensate
⟨+⟩ ∝  + or ⟨−⟩ ∝  −. We reduce the number of required constants to one by imposing
the value of the boundary source − ∝  − or + ∝  + in (3.39) to zero, in order to study the
spontaneous condensation of the corresponding operator. Finally, by considering different
values of this remaining constant, we obtain a functional relation between ⟨±⟩ and �, or more
precisely the dimensionless combination T/√�.

A similar counting holds in the probe limit studied before, in which the function N(r) is a
constant and the equation for f (r) reduces to (3.12), which was solved independently of the
rest of the system. In the end, the solutions for  (r) and �(r) where characterized by a single
constant (Pℎ in Section 3.3.2.1), and by varying this number we obtained relations between the
condensates ⟨±⟩ and the ratio T/√�.

The cubic curvature case is more complex, since the equations that govern the dynamics
of the spacetime, (3.7c) and (3.7d), have up to six derivatives of the functions of the metric.
However, by expanding the functions in a power series close to the horizon one can find three
relations between these terms, reducing to a total of seven the number of constants required
by the system. There are three more conditions that we can impose in the metric functions:
N

2

∞
f∞ = 1, f (rℎ) = 0 and regularity of f (r) at infinity, which further reduce the number of
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integration constants to four. Finally, we need to impose the same boundary and regularity
conditions on  (r) and �(r) as in the other cases, and in the end we are led to the usual relation
between ⟨±⟩ and

√
�/T .

For the numerical computations, we resort again to the relaxation method explained in
Appendix C. As in the non-backreacted case we work in practice with the inverse coordinate
z = L

2
/r , and we need to specify some initial seeds for the functions to compute. For the

matter fields �(r) and  (r) we do exactly the same as before, described in Section 3.3.2.1. For
the function f (r) we use the solution obtained in vacuum, computed in Section 3.2, while we
set initially n(r) = 1/

√

f∞ in the entire range of the radial coordinate.
Finally, as explained in Section 3.3.2.1 for the probe limit, we always plot the temperature

divided by the energy scale of the system in each case, which we take to be √�, where � is the
charge density obtained in the numerical procedure. Also, since now the form of the metric
depends on the field content the temperature is not given by Eq. (3.18), but instead we need to
compute it from the solutions of f (r) and N(r) as

T =

f
′
(rℎ)N (rℎ)

4�

. (3.56)

3.3.3.2 Results for the condensation

Let us show now the numerical results for the condensation in the backreacted case, computed
as explained above.
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(b) Condensate ⟨+⟩.

Figure 3.6: Condensation of the operators of dimensions 1 and 2 with
respect to the temperature in the backreacted case, with q = 3 and different
values of ̃�.

In the plots, one can see the profiles of the condensates ⟨±⟩ as a function of the temperature
for the backreacted case. First we show the results for different values of the cubic coupling in
Figure 3.6, where we observe that a large cubic coupling leads again to a larger condensate, as
in the probe limit. Then, in Figure 3.7 we compare the condensation curves for different values
of the charge q, which controls the strength of the backreaction. Similarly to what is found in
the Einstein gravity case [22], the condensate ⟨+⟩ gets larger due to backreaction, while ⟨−⟩

gets smaller. As advanced, the divergence of ⟨−⟩ at low temperatures disappears.
Finally, in Figure 3.8 we show the dependence of the critical temperature on the two param-

eters. It again decreases monotonically as a function of the cubic coupling, which resembles the
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(a) Condensate ⟨−⟩.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

(b) Condensate ⟨+⟩.

Figure 3.7: Condensation of the operators with dimensions 1 and 2 with
respect to the temperature, for ̃

� = 0.9 and different strengths of the backre-
action, controlled by the parameter q.

behavior of other models of higher-curvature superconductors in higher dimensions [243, 245].
Like in the standard Einstein case [22], the critical temperature is reduced as backreaction
becomes more important.

3.4 Discussion

The main goal of this Chapter has been to study a condensed matter system using the tools
of holography, and with higher-curvature corrections to the gravity action. In particular we
investigated the already known holographic superconductor in 2 + 1 dimensions, with the
gravity side of the duality being governed by the action of Einsteinian cubic gravity given in Eq.
(3.1), aiming to explore the effects of finite N and ’t Hooft coupling corrections in the physics
of the boundary. We focused on the dependence of the critical temperature and the strength of
the resulting condensate on the coupling of the cubic terms, and computed also the electric
conductivity.

We found that, as previously reported in the higher-dimensional Gauss-Bonnet and Qua-
sitopological cases [243–246], the presence of higher-curvature corrections to the bulk action
makes the condensation of the scalars more difficult, lowering the critical temperature both
in the non-backreacting and backreacting cases (see Figures 3.3 and 3.8). When the critical
temperature is reached and the phase transition occurs, the resulting condensate grows with
the cubic coupling ̃

� in both cases. We also studied the response to electric perturbations in
the probe limit, finding like in the Einstein gravity case that there is a gap in the conductivity
as a function of the frequency, whose size is compatible with the value of the condensate. A
residual dependence of the conductivity gap on ̃

� can be attributed to the asymptotic value of
the black hole radial function, given by the constant f∞. Besides, a delta for zero frequency
perturbations is found in the real part of the conductivity, which corresponds to the infinite
DC conductivity that is characteristic of a superconducting phase.

An interesting point about the results found is the following. The decrease of the critical
temperature as the higher-curvature coupling is increased could be naively attributed to a
gradual restoration of the validity of the Coleman-Mermin-Wagner theorem, as the higher-
curvature terms correspond to 1/N corrections in the boundary theory. In fact, in contrast
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Figure 3.8: Critical temperature for the superconducting transition with
respect to the cubic coupling ̃

�, for different values of the parameter q which
controls the strength of the backreaction. These were chosen differently
for each plot, in order to make the differences between the curves more
noticeable.

with the previously known higher-curvature superconductors [243–246, 253], in our case the
boundary theory is (2 + 1)-dimensional, satisfying one of the main hypotheses of the theorem.
However, higher-curvature corrections to the gravitational action arise from bulk loop diagrams
which are finite in the IR, while the Coleman-Mermin-Wagner result is due to an IR divergence
on the Goldstone boson correlator [254], which can only be captured via the calculation of
loop diagrams in the bulk as done in [242]. Thus, the decrease of the critical temperature as
higher-curvature corrections are added must be attributed to different physics. However, since
this seems to be a generic behavior found for different dimensions and corrections, it deserves
further investigation.

The present result could be straightforwardly expanded by including terms of higher order
in the bulk action, both in the curvature tensors and the Maxwell field. This would allow us to
study richer dual theories in the boundary, and based on the results presented here one would
expect the behavior to be qualitatively similar.
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Holography with a non-minimally
coupled chemical potential
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4
Electromagnetic Quasitopological
gravities in any dimension

As already argued in Chapters 1 and 3, the interest of considering higher-derivative gravity
theories in the context of the AdS/CFT correspondence resides in the fact that they could
capture finite N and ’t Hooft coupling effects in the boundary CFT. In addition, they serve as
toy models to describe a wider range of dual field theories, which may exhibit features that differ
from those of CFTs dual to Einstein gravity. This can also be useful to explore whether known
relations of holographic CFTs are universal or exclusive to those dual to general relativity.

However, these analyses are usually performed perturbatively in 1/N and 1/�, since the
higher-order corrections in the gravity action are taken to be small. In this second Part of the
thesis we will consider theories that allow us to go past this regime, and in particular we are
interested in higher-derivative theories that contain not only the metric, but also a vector field,
which according to the holographic dictionary couples to a current operator J i in the boundary.
As in the case of the  (R

��

��) theories considered up until now, these higher-derivative terms
will allow us to study more general classes of dual CFTs. An important quantity in this regard
is the 3-point correlator ⟨T J J ⟩, whose form is fixed in Einstein-Maxwell theory, but can contain
an additional structure for a general CFT. This is encoded in the energy-flux parameter a2 as
written in [183], which can acquire a non-vanishing value for higher-derivative theories with
non-minimal couplings. It is interesting to note that for QCD a2 ≈ −3/2 [255–257], so if one
wanted to provide a holographic approximation to this theory it would be necessary to consider
higher-derivative operators with couplings of order one.

This vector field in the gravity theory will allow us to explore the effect of a chemical
potential in the CFT, again by means of the holographic duality. It is then interesting to
study how the predictions for certain properties of the CFT, such as the hydrodynamics of
charged plasmas [258–260] or entanglement and Rényi entropies [261], change depending on
the couplings of the higher-order terms. Some of these questions have already been explored in
the literature, but most of the analyses so far have followed a perturbative approach [262–267],
or have stuck to particular models [194, 268, 269]. The goal of the current study is to perform
a non-perturbative analysis of this type of theories, taking into account a wider range of
interactions between gravity and electromagnetism, in particular including higher-derivative
contractions of the schematic form RF

2. We will see that these are interesting additions to the
Einstein-Maxwell action, due to their effects on the dual CFT.
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Besides the non-minimal couplings of the Maxwell field and the geometry, in order to build
a general theory to the given order we will need to consider also contractions of curvature
tensors. Since we are interested in carrying an exact exploration rather than a perturbative
one, we require these pure gravity corrections to be amenable to analytic computations, which
is typically not the case when higher derivatives are involved. Of course, we want the theory
to have other desirable features, such as admitting single-function black hole solutions and
propagating only a massless graviton on maximally symmetric backgrounds, as explained in
Chapter 1. Among these, if we further require the corrections to the black hole function f (r) to
be analytic we are restricted to the families of Lovelock and Quasitopological gravity theories.

The mentioned theories can be minimally coupled to a Maxwell field while keeping all
of their properties. However, this is not a sufficiently general theory, as it misses higher-
derivative terms involving the vector field. For this reason, the family of Electromagnetic
Quasitopological gravities (EQGs) was introduced for D = 4 in [23], as extensions of the
Generalized Quasitopological gravity theories with a vector field that can be coupled to gravity
in many forms. These theories were also recently studied in D = 3 in [139], and among their
features is the fact that they are able to provide black hole solutions without singularities
[23, 134, 270].

In this Chapter we generalize this construction to an arbitrary dimension D = d + 1, by
writing them in terms of a (d − 2)-form B and requiring the existence of black hole solutions
magnetically charged under this field, whose metric depends on a single function that can
be computed analytically. The differential form B can then be dualized into a vector field, in
terms of which the solutions are electrically charged. Most of the time we will focus on the
lowest order theory, which contains four-derivative corrections, but expressions for EQGs at
any order in the field strength and the curvature will also be provided.

After that we will establish several basic entries of the holographic dictionary for the
resulting theories. We start by computing different 2- and 3-point functions, obtaining in
particular the central charge CJ of ⟨J J ⟩, as well as the parameter a2 that controls the angular
distribution of energy radiated after a local insertion of the current operator J . Then we will
obtain constraints for the couplings of the theory from arguments of causality and positivity
of the energy fluxes, as well as other requirements derived from the mild form of the weak
gravity conjecture [271–273].

Finally, the main interest of these EQGs is the fact that they can be used to learn different
aspects about holography in the presence of a chemical potential, beyond the Einstein-Maxwell
regime. In this line, we will study the thermodynamic properties of the dual CFT, finding a
richer phase structure as a function of the chemical potential � that can even allow for zeroth
order transitions. However, these additional phases are disfavored by the previous constraints
on the couplings. Another interesting quantity to compute is the ratio of the shear viscosity
to the entropy density, and we will find that its behavior with � is different depending on the
sign of the parameter a2. Interestingly, for a2 > 0 one can get �/s = 0 for a sufficiently large
chemical potential, even if all the constraints are fulfilled.

The study of Rényi and entanglement entropies in these EQG theories is very interesting
on its own, and for this reason it is left for the following Chapter.

The research presented in this Chapter is published in [26], and its detailed information
can be found in page 212.
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4.1 Construction of the theories

4.1.1 Gravity, (d − 2)-forms and their electromagnetic dual

In this Chapter we consider (d + 1)-dimensional theories of gravity with a (d − 2)-form field B,
whose action is given in general by1

I =
∫

d
d+1
x

√

|g| (g��, R����, H�1…�d−1)
, (4.1)

where R���� is the Riemann tensor of the metric g��, and the (d − 1)-form H is the field strength
of B, H = dB. The Lagrangian must be a scalar function built with contractions of these tensors,
and we implicitly assume that it can be written or expanded as a polynomial in these. In
particular, we are interested in theories that reduce to the standard Einstein-(d −2)-form theory
for small curvatures and field strengths,

 =

1

16�GN [
R +

d(d − 1)

L
2

−

2

(d − 1)!

H�1…�d−1
H

�1…�d−1
+ …

]
. (4.2)

Such a theory is invariant under diffeomorphisms and gauge transformations B → B + dΛ,
where Λ is a (d − 3)-form. The equations of motion can be obtained by varying the action with
respect to the fields g�� and H , and they read in general

�� = P
��


(�
R
�)��


−

1

2

g�� + 2∇
�
∇
�
P
(�|�|�)�

− (d − 1) �1…�d−2

(�
H
�)�1…�d−2

= 0 , (4.3)

 �1…�d−2
= ∇���1…�d−2

= 0 , (4.4)

where
P
��
�

=

)
)R��
�

, �1…�d−1
= −

1

2

)
)H�1…�d−1

. (4.5)

Notice that the equation of motion obtained by varying the metric, Eq. (4.3), is equal to the
Padmanabhan equation presented before (see Eqs. (1.9) and (2.8)) supplemented by an additional
term, which is due to the field H .

Our interest in these theories lies on the fact that they allow for black hole solutions
magnetically charged under the differential form B, as explained below. Furthermore, the
(d − 2)-form can be related to a 1-form (a vector field) by means of a duality transformation.
This means that it is possible to map any of these models to a higher-derivative extension of
Einstein-Maxwell, which is the interpretation that we are most interested in.

Let us quickly review this process of dualization. Starting from the theory (4.1), we can
dualize the (d − 2)-form B into a 1-form by introducing the Bianchi identity dH = 0 explicitly
in the action,2

Ĩ =
∫

d
d+1
x

√

|g|
[
 (g��, R����, H�1…�d−1)

+

1

4�GN(d − 1)!

A�1
)�2
H�3…�d+1

�
�1…�d+1

]
. (4.6)

1 A gravity action such as (4.1) needs to be supplemented with Gibbons-Hawking-York boundary terms in order
to make the variational problem well posed [274, 275]. This was actually the problem treated in Chapter 2 of
this thesis, where it is argued that the counterterms should be the same as those of Einstein gravity multiplied
by an overall constant, as long as we restrict to asymptotically AdS spacetimes. We will addressed this again in
Section 4.5.1.

2 The factor 1/(4�GN) is introduced taking into account that the Lagrangian density  will contain an overall
normalization 1/(16�GN).
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Here A� is introduced as a Lagrange multiplier, whose variation yields the Bianchi identity of
H , and is now a considered a fundamental variable instead of B. We can integrate this dual
action by parts, to express it as

Ĩ =
∫

d
d+1
x

√

|g|
[
 (g��, R����, H�1…�d−1)

+

1

4�GN(d − 1)!

(⋆F)�1…�d−1
H

�1…�d−1

]

+

1

4�GN
∫
)

d
d
x

√

|ℎ|n
�
A
�
(⋆H)�� ,

(4.7)

where we have defined the field strength F = dA. The variation with respect to A� still yields
the Bianchi identity ofH , but now it becomes clear that the variation with respect toH produces
an algebraic relation between this field and F , namely

F = 4�GN(d − 1)! ⋆

)
)H

. (4.8)

This should be inverted in order to get H(F), and inserting it back in the action Ĩ we would get
the dual theory for the vector A�. Note that this process also produces a boundary contribution,
which is precisely the term needed for making the variational principle for A� well posed,
and that corresponds to working in the canonical ensemble (with fixed electric charge) when
computing the Euclidean action.

The dual Lagrangian ̃ is the Legendre transform of  with respect to H . Then, by means
of the properties of this transform and Eq. (14) with s = 1, one can write the inverse relation
between H and F as

H = −8�GN ⋆
)̃
)F

. (4.9)

This relation is useful since it allows us to identity the electric and magnetic charges in both
descriptions. In the frame of the (d − 2)-form we will have solutions with magnetic charge,
which in the frame of the vector field correspond to electrostatic solutions. This charge can be
defined in either frame as

q =

1

4�GN
∫
d−1

H = −2
∫
d−1

⋆

)̃
)F

, (4.10)

where the integral is performed over any spacelike hypersurface of codimension 1 that encloses
the charge source. In the case of black hole solutions, d−1 can be any surface that encloses the
black hole horizon.

It is not possible in general to invert Eq. (4.8) in order to write the dual Lagrangian. However,
an important type of theories that will be considered in this work are those quadratic in H ,
which can be written as

I =

1

16�GN
∫

d
d+1
x

√

|g|
[
grav −

2

(d − 1)!
(H

2

)

��

��

Q
��

��
]
, (4.11)

where grav = R − 2Λ + … only depends on the geometry, Q��

��
can depend on the curvature

tensors and is antisymmetric in both pairs of indices, and we are introducing the notation3

(H
2

)

�1…�n

�1…�n

≡ H
�1…�n�n+1…�d−1

H�1…�n�n+1…�d−1
. (4.12)

3 It is possible to prove that the most general quadratic Lagrangian can be written using only the object (H 2

)

��

��
,

this is, with only four free indices, by expressing it first in terms of ⋆H .
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In this case, it is possible to find the dual theory explicitly. The relation (4.8) can be written as

(⋆F)�1…�d−1
= Q

��

[�1�2
H
�3…�d−1]��

. (4.13)

In order to invert this, let us first introduce the tensor

Q̃
��

��
=

12

(d − 1)(d − 2)

Q
[��

��
�
�

�
�
�]

�
, (4.14)

and its inverse, that we denote by (Q̃
−1

)

��

��

, and which is defined by means of the equation

(Q̃
−1

)

��

��

Q̃
��

��
= �

[�

[�
�
�]

�]
. (4.15)

With this, one can check that Eq. (4.13) is inverted by

H�1…�d−1
=

1

2

��1…�d−2��(
Q̃

−1

)

��

��

F
��
, (4.16)

and therefore the dual action takes the form

Ĩ =

1

16�GN
∫

d
d+1
x

√

|g|
[
grav − F��F

��

(Q̃
−1

)
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+
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d
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(Q̃
−1

)

��

��

F�� .

(4.17)

If the Lagrangian contained terms beyond quadratic order in H , such as (H 2

)

2

, Eq. (4.8)
would become a tensorial polynomial equation, whose resolution is more involved. One could
nevertheless find an approximate solution by considering a series expansion in terms of F ,
which would be valid as long as these fields take small values.

4.1.2 General definition of EQGs

Since we are interested in constructing theories of the form (4.1) suitable for holography, we
need them to admit charged static solutions with spherical, planar or hyperbolic sections. A
general metric ansatz for these configurations reads

ds
2

N , f
= −N

2
(r)f (r)dt

2
+

dr
2

f (r)

+ r
2
dΣ

2

k, (d−1)
, (4.18)

where the metric dΣ2

k, (d−1)
of the submanifold normal to the radial direction is given by4

dΣ
2

k, (d−1)
=

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

dΩ
2

(d−1)
for k = 1 (spherical),

1

L
2
dx

2

(d−1)
for k = 0 (flat),

dΞ
2

(d−1)
for k = −1 (hyperbolic).

(4.20)

4 This can be written in a more general manner as

dΣ
2

k, (d−1)
=

d�
2

1 − k�
2
/L

2
+ �

2
dΩ

2

(d−2)
, (4.19)

but in practice we don’t need it, as the package xAct used for the computations is able to deal with symmetric
submanifolds in a natively.
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In addition, we assume the magnetic ansatz for the field H ,

HQ = Q!k, (d−1) , (4.21)

where Q is a constant related to the magnetic charge, and !k, (d−1) is the volume form of dΣ2

k, (d−1)
.

This is given explicitly by

!k, (d−1) =

1

(d − 1)!

√

|ℎ|�̃a1…ad−1
dx

a1
∧ ⋯ ∧ dx

ad−1
, (4.22)

where �̃ is the Levi-Civita symbol defined in Eq. (4), ℎ is the determinant of the metric dΣ2

k, (d−1)

and the indices a1, … , ad−1 label these tangent directions. The integral of this object yields the
volume of the corresponding submanifold, which we denote by Vk, d−1 = ∫ !k, (d−1).

Clearly, the form of H given in Eq. (4.21) satisfies the Bianchi identity dH = 0, but one can
also check that, for any theory of the form (4.1), it also solves the equations of motion (4.4)
when the metric takes the form (4.18).5 Since we do not have to worry about the “modified
Maxwell equation” anymore, the problem of finding the solutions becomes simpler. Indeed,
we only have to solve the equations for the metric functions N(r) and f (r) that, as shown in
Section 1.1.3, can be obtained by means of the reduced Lagrangian

LN , f =

√

|g||
ds

2

N , f
, HQ

. (4.24)

The desired equations of motion can be obtained simply by varying this Lagrangian with
respect to the functions in the metric,

N =

�LN , f

�N

, f =
�LN , f

�f

. (4.25)

As shown in Section 1.1.3, N = f = 0 imply that the field equations (4.3) are satisfied, taking
into account that HQ solved its own equations (4.4).

So far the analysis is completely general, but typically one would not be able to solve these
equations for a generic Lagrangian. For this reason, we will restrict to a subset of theories,
introduced as Electromagnetic Quasitopological gravities in [23] for d + 1 = 4, that make it
possible to perform analytic computations. These are characterized by the condition that

�LN , f

�f

|
|
|
|N=const.

= 0 ∀ f (r) , (4.26)

which means that for these theories the reduced Lagrangian LN , f is a total derivative when
N(r) = constant. As already known, in the purely gravitational case this definition gives
rise to the Generalized Quasitopological gravities [3, 6–8, 10], which include Quasitopological
[107–110] and Lovelock gravities [1, 2, 91] as particular cases. The construction presented here
extends the definition of those theories to include a (d − 2)-form (or equivalently, a vector

5 This can be checked by following the reasoning of Section 3.1 of [23], with the generalized magnetic ansatz

H = �
′
(�)!k, (d−1) , (4.23)

where � is one of the coordinates tangent to the boundary. As in the reference, the equation of motion for �(�)
can be obtained with the reduced action approach, and one finds � ′

(�) = constant, which matches our form
for H given in Eq. (4.21).
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field upon dualization), allowing one to study charged black hole solutions with corrections
in the action of the Maxwell field. Let us note that the standard two-derivative theory (4.2)
satisfies the condition (4.26), and therefore belongs to the EQG class. In general, all theories in
this family satisfy a number of properties, which are the same as for their four-dimensional
counterparts [23] and similar to those explained in Section 1.1.3 for GQGs. Let us summarize
them here:

1. They propagate the same degrees of freedom in maximally symmetric backgrounds
as the two-derivative theory. This is relevant in particular in the gravity sector, since
general higher-curvature gravities typically have a massive ghost-like graviton and a
scalar mode in their spectrum, along with the standard massless graviton. The condition
(4.26) guarantees that these modes are absent on MSS vacua.

2. The theory allows for charged solutions of the form (4.18) and (4.21), with N(r) = Nk =

constant, i.e, characterized by a single function f (r).

3. The equation for f (r), obtained from N |N=Nk
= 0, can be integrated once, with an

integration constant that is proportional to the total mass of the spacetime.

4. For some theories the integrated equation for f (r) is algebraic and can be solved trivially,
and in this case the theory if of the “Quasitopological” subclass. Other times the integrated
equation is a second order ODE for f (r), meaning that the theory is of the “Generalized
Quasitopological” subclass.

5. The thermodynamic properties of charged black holes can be studied analytically.

In this work we are only interested on dealing with the Quasitopological class of Lagrangians,
whose solution for f (r) can be obtained analytically, thus leading to exact results.

4.1.3 Four-derivative EQGs

Now that we know the features that define the EQG family of theories, let us obtain their explicit
form. The first non-trivial corrections will contain four derivatives, and at this order there
are four types of terms, schematically R2, RH 2, H 4 and (∇H)

2, although we will be interested
mostly on the first two. Regarding the pure gravity Lagrangian, the most general form of the
quadratic-curvature corrections is

R
2

= �1R
2
+ �2R��R

��
+ �3R����R

����
, (4.27)

although there exists only one such combination that satisfies the condition given by Eq. (4.26):
the Gauss-Bonnet, or quadratic Lovelock, density,

�4 = R
2
− 4R��R

��
+ R����R

����
. (4.28)

It is well known that Lovelock theories possess single-function solutions of the form (4.18)
[94, 96–98], so let us turn our attention to the terms coupling the (d − 2)-field H to gravity.

There exist three independent scalars of the form RH
2, which can be written as6

RH
2 = �1H

2
R + �2(H

2

)

�

�

R
�

�
+ �3(H

2

)

��

��

R
��

��
, (4.29)

6 There exists a four contraction of the form (H
2

)

��

��
R

� �

� � , but this is related to the term multiplied by �3 in Eq.
(4.29), as can be checked using the Bianchi identity of the Riemann tensor.
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where again we are using the notation introduced in Eq. (4.12). Evaluating this Lagrangian on
the ansatz given by Eqs. (4.18) and (4.21) with N(r) equal to a constant value Nk, we obtain

r
d−1RH

2
|
|Nk , f

= −

Q
2
(d − 1)!

r
d+1 [(

2�3 + �1(d − 1)(d − 2) + �2(d − 2))(f − k)

+ f
′

(2�1(d − 1)r + �2r) + �1r
2
f
′′

]
,

(4.30)

where we included the factor rd−1 that comes from the volume element
√

|g|. In order for this
Lagrangian to belong to the EQG family we need to apply the condition (4.26), which implies
that the quantity above should be a total derivative. Computing the functional derivative of this
reduced Lagrangian with respect to f , we find that there is a single relation for the couplings
that make it vanish identically, and it can be expressed as

�3 = −(2d − 1)(d − 1)�1 − (d − 1)�2 . (4.31)

Therefore, there are two independent contractions of the form RH
2 that can be added to the

two-derivative Lagrangian while maintaining single-function solutions.
Moving to the next kind of terms, in general dimensions there are two operators of the

form H
4 that do not violate parity, which can be chosen as7

H
4 = �1(H

2

)

2

+ �2(H
2

)

�

�
(H

2

)

�

�

. (4.32)

When evaluated on the ansatz (4.18) and (4.21) we see that both on-shell densities are indepen-
dent of f (r), so they both belong to the EQG class independently. However, since both terms
contribute to the black hole solutions with any k in the same way, it will be enough for our
purposes to keep only one of them, and for simplicity we choose the (H 2

)

2

operator. Finally,
we checked explicitly that there are no terms of the form (∇H)

2 that belong to the EQG class.8

Therefore, introducing some normalization factors for convenience, we can write the
general four-derivative EQG theory that we will consider in most of this Chapter as

IEQG, 4 =
1

16�GN
∫

d
d+1
x

√

|g|
[
R +

d(d − 1)

L
2

−

2

(d − 1)!

H
2
+

�L
2

(d − 2)(d − 3)

�4

+

2�1L
2

(d − 1)!
(
H

2
R − (d − 1)(2d − 1)R

��

��(H
2

)

��

��)

+

2�2L
2

(d − 1)!
(
R
�

�(H
2

)

�

�

− (d − 1)R
��

��(H
2

)

��

��)

+

�L
2

(d − 1)!
2
(H

2

)

2

]
.

(4.33)

Notice that we included also different powers of the length scale L, in such a way that the
couplings �, �1, �2 and � are dimensionless.

This theory with four independent parameters should be enough from the point of view of
effective field theory. As shown in [262,265], an EFT extension of Einstein-Maxwell theory only

7 This is easier to see if one works in terms of the 2-form G = ⋆H . Indeed, it is possible to write only two
inequivalent quartic contractions of this form: (G��G��

)

2

and G �

�
G

�

�
G

�

� G
�

�
.

8 This might be connected to the fact that there are no well-behaved theories with terms of the form (∇Riemann)2,
as we showed in [29]. However, a rigorous exploration should be performed before making such claim.
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requires four independent parity-preserving terms, and the rest of higher-derivative operators
can be removed via field redefinitions. We have checked that our Lagrangian above indeed
spans the basis of four independent operators in the references, which means that we can
capture any parity-preserving four-derivative correction to Einstein-Maxwell theory. This
is not the case for the parity-breaking Chern-Simons term that appears in five dimensional
supergravity theories [276–278], but we would not expect it to modify the results presented in
this Chapter.

However, as opposed to what is common in the EFT approach, our theory will allow us to
perform a fully non-perturbative analysis, since we will obtain quantities that are exact in the
couplings of the action (4.33). Of course, one can always produce perturbative expressions by
expanding linearly in the couplings, but the exact result is more interesting and can serve as
an educated guess for the behavior of these theories and their holographic duals beyond the
perturbative regime.

Let us close this Section by discussing the electromagnetic dual theory of (4.33). The fact that
we have an H 4 term makes it difficult to invert Eq. (4.8) explicitly using the procedure explained
in Section 4.1.1. However, it is easy to obtain the dual action by performing a expansion in
the order of derivatives. In that case, we can write H(F) = H0(F) + L

2
H2(F) +  (L

4

), and the
inversion of Eq. (4.8) at each order in L is straightforward. We find that the dual theory to
fourth order in derivatives reads

ĨEQG, 4 =
1

16�GN
∫

d
d+1
x

√

|g|
[
R +

d(d − 1)

L
2

− F
2
+

�L
2

(d − 2)(d − 3)

�4

+

L
2

d − 2

RF
2

(
3d�1 +

d�2

d − 1)

−

2L
2

d − 2

F��F
�

�
R
��

(
4(2d − 1)�1 +

(3d − 2)�2

d − 1 )

+

2L
2

d − 2

F��F��R
����

((2d − 1)�1 + �2) +

�

4
(F

2

)

2

+  (L
4

)
]
,

(4.34)
where (L4) denotes an infinite series of terms that could in principle be computed in the same
manner.

In Section 4.2 we study the black hole solutions of the theory (4.33), but let us first show
how analogous versions of this theory can be written at higher orders in the derivatives.

4.1.4 EQGs at all orders

Although in this Chapter we are mostly interested in the four-derivative EQG theory given
in Eq. (4.33), it is possible to use the same procedure to construct theories of this family at
arbitrary order in the curvature tensor and the field strength, in any spacetime dimension
D = d + 1. In the case of pure gravity, Quasitopological and Generalized Quasitopological
theories at all orders have been obtained in [10], so we focus on the case of non-minimally
coupled theories. In analogy with the four-dimensional theories identified in [23], we have
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been able to find an infinite family of EQGs with the Lagrangian densities

(a)

d, s, m
=
(
sR (R

s−1

)

��

��

+ �d, s, m (R
s

)
��

��
+ 2s(s − 1)R

�



R
�

� (R
s−2

)


�

��)
(H

2

)

��

��
(H

2

)

m−1

,

(b)

d, s, m
=

1

2
(2sR

�

�
�
�

�
+ gd, s, mR

��

��) (R
s−1

)

��

��
(H

2

)

��

��
(H

2

)

m−1

,

(4.35)
where

gd, s, m = −d(s − 1) − 2(d − 1)m , �d, s, m =

1

2

gd, s, m (1 − gd, s, m) . (4.36)

Here, (H 2

)

��

��

is the contraction given in Eq. (4.12), and we have introduced the notation

(R
n

)
��

��
≡ R

��

�1�1
R
�1�1

�2�2
⋯R

�n−1�n−1

��
. (4.37)

Evaluating the previous Lagrangian densities on the ansatz given by Eqs. (4.18) and (4.21), we
find

(a)

d, s, m
=

2
s−2
Q

2m

((d − 1)!)

m

r
2(d−1)m

 
s−2

k [4�d, s, m 
2

k
− 2s((d − 1)k, d + d) + 2s(s − 1)2

s, d] ,

(b)

d, s, m
=

2
s−1
Q

2m

((d − 1)!)

m

r
2(d−1)m

 
s−1

k [−sk, d + gd, s, m k] ,

(4.38)

where we defined the scalar functions

 k =

k − f

r
2

, (4.39)

k, d =

(d − 2)f − (d − 2)k + rf
′

r
2

+

f N
′

rN

, (4.40)

d =
2(d − 1)f N

′
+ 4rf N

′′
+ 6rf

′
N

′
+ N(2(d − 1)f

′
+ 2rf

′′

)

2N r

. (4.41)

Since these theories belong to the EQG class, the reduced Lagrangians (this is, taking into
account the volume element) become a total derivative when evaluated on N(r) = constant.
Indeed, by computing these explicitly we find

r
d−1(a)

d, s, m
|
ds

2

1, f
, HQ

=

d

dr

(a)

d, s, m
,

r
d−1(b)

d, s, m
|
ds

2

1, f
, HQ

=

d

dr

(b)

d, s, m
,

(4.42)

where

(a)

d, s, m
= 2

s−1
Q

2m

((d − 1)!)

m

r
d−2m(d−1)

 
s−1

k [(1 − 2m + d(2m + 2n − 1)) k + sr 
′

k] ,

(b)

d, s, m
= 2

s−1
Q

2m

((d − 1)!)

m

r
d−2m(d−1)

 
s

k
.

(4.43)

Therefore, it is possible to construct infinite examples of EQGs at any order in the curvature
and the field strength by considering linear combinations of (a)

d, s, m
and (b)

d, s, m
. In general, these

can be written as

IEQG, gen =
1

16�GN
∫

d
d+1
x

√

|g|
[
R +

d(d − 1)

L
2

−

2

(d − 1)!

H
2
+ EQG

]
, (4.44)
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where

EQG
=

2

(d − 1)!

∞

∑

s=0

∞

∑

m=1

L
2(s+m−1)

(�1, s, m(a)

d, s, m
+ �2, s, m(b)

d, s, m)
. (4.45)

Of course, one could add to this action that of the pure (Generalized) Quasitopological gravities
found in [10]. As an example, the four-derivative theory given in Eq. (4.33) corresponds to

IEQG, 4 =
1

16�GN
∫

d
d+1
x

√

|g|
[
R +

d(d − 1)

L
2

−

2

(d − 1)!

H
2
+

�L
2

(d − 2)(d − 3)

�4

+

2L
2
�1

(d − 1)!

(a)

d, 1, 1
+

2L
2
�2

(d − 1)!

(b)

d, 1, 1
−

2L
2
�

(3d − 4)(d − 1)!

(b)

d, 0, 2
]
.

(4.46)
Since by construction the theory (4.44) is an EQG, it has solutions of the form (4.18) and

(4.21) with N(r) = N0 = constant. The dynamics in this case is only determined by the equation
of motion for f (r), which after integrating in the radial variable reads

k − f −

m

(d − 1)r
d−2

+

2Q
2

(d − 1)(d − 2)r
2(d−2)

+

r
2

L
2

+

∞

∑

s, p=1

2
s
L
2(s+p−1)

Q
2p

((d − 1)!)

p−1

 
s−1

k

(d − 1)r
2(d−1)p

(�s, pk + 
s, p) = 0 ,

(4.47)

where m is an integration constant proportional to the mass of the black hole that we have
already defined, and

�s, p = (d − 1)(2s + 2p − 1)�1, s, p + �2, s, p ,


s, p = (d − 1 − (4d − 2)s + 2ds
2
+ 2p(d − 1)(2s − 1))�1, s, p + (s − 1)�2, s, p .

(4.48)

Notice that the equation of motion (4.47) is algebraic in f (r), and therefore these theories
do in fact belong to the Quasitopological subclass. However, theories of the Generalized
Quasitopological type are expected to exist as well, although their study lies outside the scope
of the present work.

During the rest of this Chapter we will focus on the four-derivative model given by Eq.
(4.33). The more general theories considered in this Section, however, will be revisited in
Chapter 5, where we will show that the entanglement entropy of their dual CFTs fulfill a
universal relation that will be proposed.

4.2 AdS vacua and black hole solutions

Let us now move to discussing the solutions for the four-derivative theory (4.33), and we start
by determining its anti-de Sitter vacua. As usual, the higher-derivative terms modify the AdS
length scale, which no longer coincides with the scale L appearing in the cosmological constant.
This is often written as

L̃
2
=

L
2

f∞

, (4.49)

for a dimensionless constant f∞, so that the Riemann tensor of pure AdS takes the form

R
��

��
= −

2f∞

L
2
�
[�

[�
�
�]

�]
. (4.50)
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Plugging this into the equations of motion for the metric (4.3), one finds that f∞ must satisfy

1 − f∞ + �f
2

∞
= 0 , (4.51)

where we also setH = 0, since we are computing the vacuum solution. The polynomial equation
(4.51) is due entirely to the Gauss-Bonnet contribution and well known in the literature [117].
It has two real roots if � ≤ 1/4, but only one of them is continuously connected to the Einstein
gravity vacuum when � → 0, and it reads

f∞ =

1

2�
(1 −

√

1 − 4�) . (4.52)

There are no solutions with � > 1/4, so this is the maximum value that this coupling can take.
As corresponding to Lovelock gravity, and also to the family of Generalized Quasitopological
gravities, the linearized gravitational equations around this vacuum are identical to the lin-
earized Einstein equations with an effective Newton’s constant that determines the coupling to
matter [86]. For GB gravity, this effective Newton’s constant is

Geff =
GN

1 − 2�f∞

. (4.53)

The denominator in this expression is the slope of the AdS vacuum equation (4.51), as happens
for all theories with an Einstein-like spectrum [121, 279] . Also, Geff is divergent in the limit
� → 1/4, which is known as the critical theory [280, 281] and is one of the singular theories
mentioned in Section 2.2.

Let us now obtain the symmetric solutions of the theory (4.33) with different topologies.
This theory belongs to the EQG class by construction, so it allows for solutions of the form
(4.18) and (4.21) with N(r) = Nk = constant. In fact, the equation �LN , f /�f = 0 implies that
N

′
(r) = 0, so these are the only possible solutions, and we only need to solve for f (r) by

considering the equation �LN , f /�N |N=Nk
= 0. This takes the form of a total derivative, as

expected based on [7], and it reads explicitly

�LN , f

�N

=

d

dr [
(d − 1)

r
d

L
2 (

1 −

L
2

r
2
(f (r) − k) + �

L
4

r
4
(f (r) − k)

2

)

+

2Q
2

d − 2

1

r
d(
r
2
+ (d − 1)(d − 2)L

2
�1f (r) + k(d − 2)L

2

(3(d − 1)�1 + �2))]
= 0 .

(4.54)
As anticipated, this integrated equation is algebraic in f (r) instead of differential, which
characterizes this theory as belonging to the Quasitopological subclass. Let us remark that in
d = 3we should take � = 0 in this equation, as in that case the GB invariant does not contribute
to the equations of motion. Equating the argument of the derivative to a constant m, which
will be proportional to the physical mass of the black hole, and introducing

X ≡

L
2

r
2
(f (r) − k) , (4.55)

we can rewrite the equation as

�X
2
− Γ(r)X + 1 + Υ(r) = 0 , (4.56)
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where we defined

Γ(r) = 1 −

2�1L
2
Q

2

r
2(d−1)

, (4.57)

Υ(r) = −

mL
2

(d − 1)r
d
+

2L
2
Q

2

(d − 1)(d − 2)r
2(d−1) (

1 + k(d − 2)

L
2

r
2
(4(d − 1)�1 + �2)

)

−

�L
4
Q

4

(3d − 4)(d − 1)r
4(d−1)

.

(4.58)

Written in this form, Eq. (4.56) is simply a quadratic polynomial in X , which can be straight-
forwardly solved obtaining

f (r) = k +

r
2

2�L
2 [
Γ(r) ±

√

Γ
2
(r) − 4� (1 + Υ(r))

]
. (4.59)

The two roots found correspond to two solutions connected to different AdS vacua at r → ∞,
but if we want the one that reduces to the Einstein gravity result in the limit � → 0 we should
choose the “−” sign. When � = 0, which is always the case for d ≤ 3, this solution simply
becomes

f (r) = k +

r
2
(1 + Υ(r))

L
2
Γ(r)

. (4.60)

Let us now identify the physical features of this solution. For r → ∞, f (r) can be expanded as

f (r) = f∞

r
2

L
2
+ k −

m

(d − 1)(1 − 2�f∞)r
d−2

+ 
(

1

r
2(d−2))

+ … , (4.61)

where f∞ is given by Eq. (4.51). Therefore, it approaches asypmtotically the AdS vacuum that
we have determined above, with the Riemann tensor given by Eq. (4.50). On the other hand, the
mass M can be identified by looking at the next term in the expansion of f (r) [114, 282–285],

−

16�GeffM

(d − 1)NkVk, d−1

1

r
d−2

∈ f (r) , (4.62)

where Geff is the effective Newton’s constant and Nk takes into account the normalization of
the time coordinate at infinity, which sets the units of the problem. Note also that, in the cases
in which the volume of the transverse section Vk, d−1 is infinite, one would instead define a mass
density � ≡ M/Vk, d−1.

Taking into account the value of Geff given in Eq. (4.53), we get that the physical mass of
the black hole in this solution is

M =

NkVk, d−1

16�GN
m , (4.63)

proportional to the integration constant m, as mentioned before. On the other hand, as given
in Eq. (4.10), the magnetic charge of the (d − 2)-form B is defined as

q =

1

4�GN
∫
d−1

H , (4.64)

where the integral is performed over any spacelike codimension-two hypersurface d−1 that
encloses the origin r = 0. As we discussed around Eq. (4.10), this quantity is also the electric
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charge of the dual theory. With the form of H given in Eq. (4.21), it is straightforward to
compute

q =

Vk, d−1

4�GN
Q , (4.65)

and again in the cases k = 0 and −1 one should define instead a charge density q/Vk, d−1.
Later on, it will be important to know the electrostatic potential of the dual theory. The field

strength of the dual vector A� is obtained according to Eq. (4.8), and evaluating that expression
on the forms of the metric and H given by Eqs. (4.18) and (4.21) we find that it corresponds to
a pure electric field,

F = dt ∧ drNkQ
[
−

1

r
d−1

−

L
2
�1

r
d+1

(3d(d − 1)k − 3d(d − 1)f (r) + 2(d − 1)rf
′
(r) + r

2
f
′′
(r))

−

L
2
�2

r
d+1

(dk − df (r) + rf
′
(r)) +

L
2
Q

2
�

r
3(d−1) ]

.

(4.66)
This can be written explicitly as a total derivative, Ftr = −Φ

′
(r), from where we can identify

the electrostatic potential of the dual theory,

Φ(r) = −NkQ
[

1

(d − 2)r
d−2

+

L
2
�1

r
d
(3(d − 1)k − 3(d − 1)f (r) − rf

′
(r))

+

L
2
�2

r
d
(k − f (r)) −

L
2
Q

2
�

(3d − 4)r
3d−4 ]

+ Φ∞ .

(4.67)

In this expression we added an integration constant Φ∞, which represents the value of this
potential at infinity.

The solution given by Eq. (4.59) represents a black hole if the function f (r) has a zero,
f (r+) = 0, which is smoothly connected to infinity (this is, there are no singularities between
r = r+ and r → ∞). The point r = r+ corresponds to the event horizon, and it is easier to look
for its position by inspecting Eq. (4.56). In fact, at the horizon we have X(r+) = −kL

2
/r

2

+
, and

hence we get the equation

�

k
2
L
4

r
4

+

+ Γ(r+)

kL
2

r
2

+

+ 1 + Υ(r+) = 0 . (4.68)

We can not obtain the value of r+ explicitly from this, but it will prove useful to express instead
different quantities associated to the solution as functions of r+ and Q. In particular, the mass
of the black hole is given by

M =

NkVk, d−1

16�GN [
(d − 1)

(
kr

d−2

+
+

r
d

+

L
2
+ �k

2
L
2
r
d−4

+
)

+

2Q
2

(d − 2)r
d−2

+
(
1 + k(d − 2)

L
2

r
2

+

(3(d − 1)�1 + �2)
)
−

�L
2
Q

4

(3d − 4)r
3d−4

+
]
.

(4.69)

The Hawking temperature of the black hole can be computed as T = Nkf
′
(r+)/4�. This can

be easily evaluated by differentiating Eq. (4.56) with respect to r and evaluating at r+, which
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yields

T =

Nk

4�r+ (1 − 2L
2
Q

2
�1r

−2(d−1)

+ + 2kL
2
�r

−2

+ )
[(

(d − 2)k + d

r
2

+

L
2
+ (d − 4)k

2
�

L
2

r
2

+
)

−

2Q
2

(d − 1)r
2(d−1)

+

[r
2

+
+ dkL

2

(3(d − 1)�1 + �2)] +

�L
2
Q

4

(d − 1)r
2(2d−3)

+
]
.

(4.70)

On the other hand, the electrostatic potential given by Eq. (4.67) must vanish at the horizon.9

This is achieved by fixing the integration constant Φ∞, which is the asymptotic value of the
potential, to the value

Φ∞ = NkQ
[

1

(d − 2)r
d−2

+

+

L
2
�1

r
d

+
(
3(d − 1)k − r+

4�T

Nk
)
+

L
2
�2k

r
d

+

−

L
2
Q

2
�

(3d − 4)r
3d−4

+
]
. (4.71)

Finally, we will need the value of the entropy of the black hole. For a general theory of
gravity, this is given by the Iyer-Wald formula [150, 154] that we introduced in Section 1.2.2,

S = −2�
∫
Σ+

d
d−1
x

√

ℎ

)
)R����

������ , (4.72)

where ℎ is the determinant of the induced metric at the horizon Σ+, and ��� is the binormal,
normalized as ������ = −2. Evaluating this expression, one finds the value of the entropy

S =

r
d−1

+
Vk, d−1

4GN (
1 +

2L
2
Q

2
�1

r
2d−2

+

+

2kL
2
(d − 1)�

(d − 3)r
2

+
)
. (4.73)

The thermodynamic properties of these black holes will be further discussed in Section 4.5.

4.3 Holographic dictionary

The family of Electromagnetic Quasitopological gravity theories introduced in Section 4.1.2
is most naturally written in terms of a (d − 2)-form field. However, as explained in Section
4.1.1, the differential form can be dualized into a vector field making these theories equivalent
to higher-derivative extensions of Einstein-Maxwell. Therefore, while most computations
presented here are performed in the frame of the (d − 2)-form, their holographic aspects are
better understood in the “Maxwell frame.”

A vector field in the bulk of AdS couples to a current in the boundary theory. In our case
we are working with a dimensionless10 gauge field A�, but the holographic dictionary requires
that the vector has dimensions of energy. Thus, the field that couples to the dual current J a is
not A�, but rather

Ã� =

1

�∗

A� , (4.74)

where �∗ is a length scale that should be fixed in each particular case. This implies that, for
instance, the chemical potential in the dual CFT is identified as

� = lim
r→∞

Ãt = lim
r→∞

1

�∗

At . (4.75)

9 This is a regularity condition, which avoids the divergence of the norm
√

A�A
� at the horizon.

10 The fact that A� is dimensionless can be seen, for example, from a simple dimensional analysis of the dual
action (4.34).
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The goal of this Section is to compute other entries of the holographic dictionary of the
theory (4.33). In particular, we will compute the 2-point function ⟨J J ⟩ and the energy flux after
an insertion of J a, which is equivalent to the 3-point function ⟨T J J ⟩. We will also review the
form of the correlators ⟨T T ⟩ and ⟨T T T ⟩, which depend entirely on the purely gravitational part
of the action.

The term H
4 will not play any role in these computations, since in order to compute ⟨J J ⟩

and ⟨T J J ⟩ we only need the quadratic contributions. Thus, we can ignore this term for now,
which is equivalent to setting � = 0. In addition, in this Section we do not really need to stick
to the EQG family, so for generality we can consider the action

I =

1

16�GN
∫

d
d+1
x

√

|g|
[
R +

d(d − 1)

L
2

+

�L
2

(d − 2)(d − 3)

�4 −

2

(d − 1)!
(H

2

)

��

��

Q
��

��
]
, (4.76)

where Q��

��
contains the three possible couplings at linear order in the curvature,

Q
��

��
= �

[�

[�
�
�]

�] (
1 − �1L

2
R) − �2L

2
R
[�

[�
�
�]

�]
− �3L

2
R
��

��
. (4.77)

The tensor Q̃ defined in Eq. (4.14) can be easily computed from the form of Q��

��
, finding

Q̃
��

��
=

[
1 − L

2
R
(
�1 +

�2

d − 1

+

2�3

(d − 1)(d − 2))]
�
[�

[�
�
�]

�]

+ 2
(

�2

d − 1

+

4�3

(d − 1)(d − 2))
R
[�

[�
�
�]

�]
−

2�3

(d − 1)(d − 2)

L
2
R
��

��
,

(4.78)

and we can write the dual theory using the inverse of this tensor as

Ĩ =

1

16�GN
∫

d
d+1
x

√

|g|
[
R +

d(d − 1)

L
2

+

�L
2

(d − 2)(d − 3)

�4 − (Q̃
−1

)

����

F��F��
]
. (4.79)

The quantities corresponding to the EQG action given in Eq. (4.33) are then obtained by setting

�3 = −(2d − 1)(d − 1)�1 − (d − 1)�2 . (4.80)

4.3.1 Stress tensor 2- and 3-point functions

It is well known that higher-curvature corrections in the gravity action modify the structure of
the correlators of the dual stress-energy tensor. For our action (4.79) only the Gauss-Bonnet
scalar �4 will contribute to this quantity, and its effect has been extensively studied in the
literature [100–102].

The form of the 2-point function of the stress-energy tensor for any CFT is fixed by the
constraints that arise from conformal symmetry and energy conservation [101, 286, 287]. It
reads

⟨Tab(x)Tcd(0)⟩ =

CT

|x|
2d
ab,cd(x) , (4.81)

where we introduced the tensorial structures

ab,cd =
1

2
(Iac(x)Ibd(x) + Iad(x)Ibc(x)) −

1

d

gabgcd , (4.82)
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and
Iab(x) = gab − 2

xaxb

x
2
, (4.83)

with the Latin indices corresponding to the boundary submanifold, and gab being the metric
there, which is typically flat. The constant CT in Eq. (4.81) is known as the central charge, and
it is the only part that depends on the theory at hand. Holographically, this is determined
by studying linearized gravitational fluctuations around the AdS vacuum and evaluating the
action on this solution. But since the linearized equations of GB gravity are identical to those of
Einstein gravity with a renormalization of Newton’s constant, the value of CT can be obtained
from the one in GR replacing GN by Geff given in Eq. (4.53). Therefore, it reads

CT =

(1 − 2�f∞)Γ(d + 2)

8(d − 1)Γ(d/2)�
(d+2)/2

L̃
d−1

GN
, (4.84)

where we also included the effective AdS radius L̃ = L/

√

f∞, with f∞ given by Eq. (4.52).
The next quantity that we are interested in is the 3-point function ⟨T T T ⟩ which is character-

ized by only three constants in theories that preserve parity, usually denoted,  and  [286].
The Ward identity of the stress-energy tensor provides a relation between one of these and the
central charge CT , so only two additional parameters are necessary, and these can be chosen
to be the coefficients t2 and t4 that measure the energy fluxes at infinity after an insertion of
the stress tensor [183]. The explicit relation between those sets of parameters has been found
in [101], but it is not important for our computations.

In Einstein gravity one finds t2 = t4 = 0, while higher-order gravities allow us to explore
more general universality classes of dual CFTs. In particular, in Gauss-Bonnet gravity the
coefficient t2 is non-vanishing for d > 3, and it reads [101]

t2 =

4�f∞

1 − 2�f∞

d(d − 1)

(d − 2)(d − 3)

, (4.85)

while t4 = 0. A non-vanishing t4 can be achieved by introducing other higher-derivative terms
such as Quasitopological [117] and Generalized Quasitopological gravity [119, 128], or more
general theories with and Einstein-like spectrum [288]. However, since the focus of this Chapter
is the presence of non-minimal coupled gauge fields, it will be enough to stick to the case of
the Gauss-Bonnet correction.

4.3.2 Current 2-point function

Let us now turn to correlators involving the current operator J a, which will be modified by
the non-minimal couplings of our theory (4.79). In a CFT, the 2-point function of any pair of
operators is constrained by conformal symmetry up to a proportionality constant. In the case
of a vector current, we have

⟨Ja(x)Jb(y)⟩ =

CJ

|x − y|
2(d−1)

Iab(x − y) , (4.86)

where the quantity Iab(x) has already been introduced in Eq. (4.83), and the constant CJ is the
central charge of the current J .
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As a first example, let us compute this quantity for a CFT dual to the theory

Iexample =
1

16�GN
∫

d
d+1
x

√

|g|
[
R +

d(d − 1)

L
2

− F
2
+ �1L

2
RF

2
+ �2L

2
R��F

��
F
�

�

+ �3L
2
R����F

��
F
��

]
.

(4.87)

In terms of Ã� = A�/�∗, the Maxwell term in the action can be written as −F̃ 2
/(4g

2
), from

where we identify the gauge coupling constant g ,

g
−2

=

�
2

∗

4�GN
. (4.88)

In order to compute CJ we have to consider a small perturbation of A� around pure AdS space,
and evaluate the action in the corresponding solution with appropriate boundary conditions.
Since in this example we do not consider a GB term in the action (if we did, we should simply
change L → L̃), the AdS curvature is

R
��

��
= −

2

L
2
�
[�

[�
�
�]

�]
, (4.89)

and the quantity appearing in the action is

[F
2
− �1L

2
RF

2
− �2L

2
R��F

��
F
�

� − �3L
2
R����F

��
F
��

]AdS
= (1+ d(d + 1)�1 + d�2 + 2�3)F

2
. (4.90)

Then, around pure AdS spacetime the only effect of the non-minimal couplings is to rescale
the gauge coupling constant to an effective one, which in this case reads

g
−2

eff = g
−2

(1 + d(d + 1)�1 + d�2 + 2�3) . (4.91)

Therefore, the central charge CJ in the example theory (4.87) is the same one as in Einstein-
Maxwell theory, replacing g by geff. This yields

C
example
J

= (1 + d(d + 1)�1 + d�2 + 2�3)C
EM
J

, (4.92)

where the Einstein-Maxwell central charge CEM
J

reads11

C
EM
J

=

Γ(d)

Γ(d/2 − 1)

�
2

∗
L̃
d−3

4�
d/2+1

GN
, (4.93)

and in this case L̃ = L. Note also that unitarity requires CJ > 0, which sets a bound in the
couplings �i. This constraint will be exploited later for our theory.

Let us now turn to the case that we are interested in, the theory for the (d − 2)-form written
in Eq. (4.76), which is expressed in the Maxwell frame in Eq. (4.79). The most difficult part
of the treatment is that it involves computing the inverse of the tensor Q̃��

��
, but this becomes

trivial when working on a vacuum AdS background. Due to the GB term, the AdS radius in

11 This charge is that of [261] multiplied by 4, to account for the different normalization of the vector field in the
action.
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this case is L̃ = L/

√

f∞, and when evaluated on the curvature given in Eq. (4.50) the tensor
(4.78) takes the form

Q̃
��

��
= �eff�

[�

[�
�
�]

�]
, (4.94)

where
�eff = 1 + d(d + 1)f∞�1 + df∞�2 + 2f∞�3 . (4.95)

Thus, the inverse of Q̃ is simply

(Q̃
−1

)

��

��

=

1

�eff
�
[�

[�
�
�]

�]
, (4.96)

and around the AdS vacuum the quadratic term of the field Ã� = A�/�∗ in the action (4.79) is
given by


F̃
2 = −

1

4g
2

eff
F̃
2
, g

2

eff =
4�GN

�
2

∗

�eff . (4.97)

Following the same logic as in the previous example, we conclude that the central charge CJ is
the same as for Einstein-Maxwell theory, but rescaled by the constant �eff,

CJ =

C
EM
J

�eff
, (4.98)

with CEM
J

given in Eq. (4.93). Notice that, since the duality transformation has the effect of
inverting the effective gauge coupling, the combination �eff appears in the denominator instead
of the numerator of CJ . This means that the 2-point function ⟨J J ⟩ can diverge for finite values
of the couplings �i, while it vanishes if we take any of these to infinity. In any case, due to
unitarity we have to impose the constraint

�eff > 0 , (4.99)

which will later be used to set bounds on the parameters �i.
The Electromagnetic Quasitopological gravity (4.33) is a particular case of the theory

considered here, with the couplings related according to Eq. (4.31). This means that the
effective coupling takes the value

�
EQG
eff = 1 − (3d

2
− 7d + 2)f∞�1 − (d − 2)f∞�2 , (4.100)

and the central charge is given similarly in terms of this through Eq. (4.98).

4.3.3 Energy fluxes

We now want to perform the conformal collider thought experiment introduced for the first
time in [183], and eventually compute the value of the parameter a2 that characterizes the
energy flux after the insertion of a current operator for our theory.

Let us consider a d-dimensional CFT in flat space ds2 = −(dx
0
)
2
+ �ijdx

i
dx

j and in its
vacuum state, that we denote by |0⟩. The bulk geometry dual to this CFT is pure AdS in the
Poincare patch, expressed as

ds
2
=

L̃
2

z
2
[−(dx

0
)
2
+ �ijdx

i
dx

j
+ dz

2

] , (4.101)
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with x0 = t. We want to perform an insertion of a current operator of the form �iJ
i, where �i is

a constant polarization tensor, and obtain the energy flux measured at infinity. More precisely,
we consider an operator of the form

E = ∫
d
d
x�iJ

i
e
−iEx

0

 (x/�) , (4.102)

where  (x/�) is a distribution function that localizes the insertion at xa = 0 for � → 0, and E
is the energy. In terms of the cartesian coordinates xa, the operator for the energy flux in the
direction n⃗ is given by

(n⃗) = lim
r→∞

r
d−2

∫

∞

−∞

dx
0
T
0

i (x
0
, r n⃗) n

i
, (4.103)

where r2 ≡ �ijx
i
x
j . We are interested in the expectation value for the energy flux after the

insertion of the operator E,

⟨(n⃗)⟩ =
⟨0|†

E
(n⃗)E|0⟩

⟨0|†

E
E|0⟩

. (4.104)

Taking advantage of the O(d − 1) symmetry of the problem, one can see that the expectation
value of this energy flux takes the form12 [183]

⟨(n⃗)⟩J =
E

Ω(d−2)
[
1 + a2

(

|� ⋅ n|
2

|�|
2

−

1

d − 1)]
, (4.106)

where Ω(d−2) is the volume of the (d − 2)-sphere of unit radius and a2 is a constant depending
on the theory.

By construction, it is clear that ⟨(n⃗)⟩ involves an integrated ⟨T J J ⟩ correlator over an
integrated 2-point function ⟨J J ⟩. The 3-point function ⟨T J J ⟩ is constrained by conformal
symmetry up to two constants, so the parameter a2 must be a function of these. The Ward
symmetry of the stress-energy tensor provides an additional relation between these constants
and CJ , so it is clear that the correlator ⟨T J J ⟩ is fully determined by the central charge CJ and
the parameter a2. This relation will be shown explicitly in the next Section.

Holographically, the energy fluxes can be obtained by evaluating the gravitational action
on the background of a shock wave, given by the metric

ds
2
=

L̃
2

u
2
[

�(y
+
) (y

i
, u) (dy

+
)
2
− dy

+
dy

−
+

d−2

∑

i=1

(dy
i
)
2
+ du

2

]

. (4.107)

The coordinates (ya, u) introduced here are not the same as the original cartesian coordinates
(x

a
, z) of Eq. (4.101), but they are related as

y
+
= −

1

x
+
, y

−
= x

−
−

∑
d−2

i=1
(x

i
)
2

x
+

−

z
2

x
+
, y

i
=

x
i

x
+
, u =

z

x
+
, (4.108)

12 Eq. (4.106) is a generalization for arbitrary dimensions of the expression given for d = 4 in [183]. The factor
multiplying a2 ensures that the energy flux integrated over the entire solid angle is equal to E. Indeed, it can be
checked that for a vector perturbation,

∫

|� ⋅ n|
2

|�|
2
dΩ(d−2) =

Ω(d−2)

d − 1

. (4.105)
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for i = 1, 2, … , d − 2, and where x± = x
0
± x

d−1. Additional details on this construction can be
found in [117, 183]. This metric is a solution of the gravitational field equations if  satisfies
the equation

)
2

u
 −

d − 1

u

)u +

d−2

∑

i=1

)
2

i
 = 0 , (4.109)

which holds for Einstein gravity and general higher-derivative extensions of it [237, 289]. The
solution of the previous equation that we are interested in reads

(y
i
, u) =

0u
d

(u
2
+∑

d−2

i=1
(y

i
− y

i

0
)
2

)

d−1
, (4.110)

where0 is a normalization constant and y i
0
= n

i
/(1 + n

d−1
), being ni the components of the

vector n⃗ in the system of coordinates x i. This solution is localized at u = 0 and y i = y
i

0
, and

also at y+ = 0 due to the �(y+) in the metric.
Since we want to measure energy fluxes of an excited state, we must consider a perturbation

of the vector field A� on top of this background. In particular, an insertion of the operator
(4.102) at the boundary is dual to a non-normalizable perturbation of the vector field, and if
we choose for instance a constant polarization in the direction x1 this means that we must
consider a vector determined by the boundary condition Ax

1 ∝ z
0
e
−iEx

0

when z → 0. When
extended into the bulk and expressed in the (y i, u) coordinate system, this kind of perturbation
behaves near y+ = 0 as [183]

Ay
1(y

+
≈ 0, y

−
, y

i
, u) ∼ e

iEy
−
/2
�(y

1
)⋯ �(y

d−2
)�(u − 1) . (4.111)

This is important, since as mentioned the shockwave is localized at y+ = 0, and we will
eventually have to evaluate A� at that point.

Working directly in the coordinates (ya, u), we may simply consider a perturbation of the
form

A = Ay
1dy

1
+ Ay

+dy
+
, (4.112)

where we included a component Ay
+ , which will prove to be necessary shortly. The non-

vanishing components of its field strength tensor are

F�� = 2)[�|Ay
1�

1

|�]
+ 2)[�|Ay

+�
+

|�]
. (4.113)

The dynamics of the field A is determined in principle by the action with higher-order correc-
tions, in the background (4.107). However, if we ignore contact terms (this is, terms of the form
A) in its equations of motion, they reduce simply to Maxwell’s equations

∇�F
��
= 0 . (4.114)

This is equivalent to the dual Lagrangian on vacuumAdS being equal to theMaxwell Lagrangian
with amodified coupling constant, as we saw in Section 4.3.1. We can now impose the transverse
gauge condition, ∇�A�

= 0, which in our system of coordinates implies that

)−Ay
+ =

1

2

)y1Ay
1 . (4.115)
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Then, the Maxwell equations are reduced to

−4)+)−Ay
1 + )

2

u
Ay

1 −

d − 3

u

)uAy
1 +

d−2

∑

i=1

)
2

i
Ay

1 = 0 . (4.116)

The component Ay
+ included in Eq. (4.112) was necessary to arrive to this equation, as it allows

us to enforce the transverse gauge condition. The solution to this equation with the boundary
conditions discussed above develops the behavior given in Eq. (4.111).13

In order to compute the energy flux, we have to evaluate the on-shell action and extract
the part proportional to A

2, since this is the piece that couples to T J J . For our theory (4.79),
this requires that we evaluate first the tensor Q̃��

��
and then compute the components of its

inverse (Q̃−1

)

��

��

using the relation (4.15). The former is given by Eq. (4.78), and taking into
account the fact that the shockwave background (4.107) is an Einstein space that satisfies

R�� = −

df∞

L
2
g�� , (4.117)

we find that
Q̃
��

��
= �eff�

[�

[�
�
�]

�]
−

2�3

(d − 1)(d − 2)

L
2
W

��

��
. (4.118)

Here, the constant �eff is given by Eq. (4.100), andW ��

��
is theWeyl tensor, whose non-vanishing

components in this metric read

W
−i

+j
= �(y

+
)

f∞u

L
2
[u)i)j − �

i

j
)u] ,

W
−i

u+
= W

u−

+i
= −�(y

+
)

f∞

L
2
u
2
)i)u ,

W
u−

u+
= −�(y

+
)

f∞u

L
2
[u)i)i − (d − 2))u] ,

(4.119)

plus those obtained interchanging indices. These expressions have been simplified using the
equation of motion (4.109), since they will be employed to evaluate the on-shell action. Also,
we note that this Weyl tensor satisfies

W
��

��
W

��

��
= 0 , (4.120)

and therefore the inverse of Q̃ simply reads

(Q̃
−1

)

��

��

=

1

�eff
�
[�

[�
�
�]

�]
+

2�3

(d − 1)(d − 2)�
2

eff
L
2
W

��

��
. (4.121)

The next step is to evaluate the dual action (4.79) on-shell. The only relevant terms are those
of the form A

2, which come from

ĨA
2 = −

1

16�GN
∫

d
d+1
x

√

|g|(Q̃
−1

)

����

F��F��

= −

1

16�GN
∫

d
d+1
x

√

|g|
[

1

�eff
F
2
+

2�3L
2

(d − 1)(d − 2)�
2

eff
W

����
F��F��

]
.

(4.122)

13 The reasoning behind this is very similar to the one leading to Eq. (4.26) in [117]. The main difference is that
we consider a perturbation of the Maxwell field, which behaves as Ax

1 ∼ z
0 near the boundary, as fixed by

Eq. (4.116), while the authors of the reference have a perturbation of the metric with asymptotic behavior
ℎx1x2 ∼ z

−2.
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Since the only component of the inverse metric that depends on  is g−−, we have

F
2
= 2(F−1)

2
g
−−
g
11
+ … = −

8f
2

∞
u
4
�(y+)
L
4

()−Ay
1)

2
+ … , (4.123)

where the ellipsis denotes contributions that do not depend on  , and therefore are irrelevant
for our computation. On the other hand, for the second term we have

W
����

F��F�� = 4W
−1−1

(F−1)
2
= −�(y

+
)

8f
3

∞
u
6

L
6 [

)
2

1
 −

1

u

)u
]
()−Ay1

)
2
, (4.124)

plus again other contributions that are unimportant. Then, putting everything together, replac-
ing also the determinant

√

|g| = L̃
d−1

/(2u
d+1

) and integrating by parts, we find

ĨA
2 = −

1

4�GN�eff
∫

du d
d
y

L̃
d−3

u
d−3

�(y
+
)Ay

1)
2

−
Ay1

[
1 +

2f∞�3

(d − 1)(d − 2)�eff
T2
]
, (4.125)

where we defined

T2 =

u (u)1)1 − )u)


. (4.126)

The shockwave localizes the integral to y+ = 0, where Ay
1 behaves as (4.111), so we have to

evaluate the integrand at u = 1 and y i = 0. This can be done in a straightforward manner
by plugging in the solution for  given in Eq. (4.110), and taking into account that the
perturbation in Eq. (4.112) has a polarization � = (�1, 0, … , 0) we find

T2
|
|u=1, y i=0

= d(d − 1)
(
n
2

1
−

1

d − 1)
= d(d − 1)

(

|� ⋅ n|
2

|�|
2

−

1

d − 1)
. (4.127)

Therefore, comparing the expressions of the energy flux (4.106) and the on-shell action (4.125),
with the value of T2 written above, we can read off the coefficient a2,

a2 =

2df∞�3

(d − 2)�eff
=

2df∞�3

(d − 2)(1 + d(d + 1)f∞�1 + df∞�2 + 2f∞�3)

, (4.128)

where we replaced �eff using Eq. (4.95). If the theory belongs to the EQG class, in which case
the couplings are related by Eq. (4.31), this result reduces to

a
EQG
2

= −

2d(d − 1)f∞((2d − 1)�1 + �2)

(d − 2)(1 − (3d
2
− 7d + 2)f∞�1 − (d − 2)f∞�2)

. (4.129)

4.3.4 3-point functions ⟨T J J ⟩

Let us finish this Section by discussing the 3-point correlator ⟨T J J ⟩. In a CFT, its form in
position space is constrained to be [286, 287]

⟨Tab(x1)Jc(x2)Jd(x3)⟩ =

tabef (X23)g
eg
g
f ℎ
Icg(x21)Idℎ(x31)

|x12|
d
|x13|

d
|x23|

d−2
, (4.130)
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where Iab(x) is the structure introduced in Eq. (4.83), and

tabcd(X
a
) = âℎ

(1)
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(X̂

a
)gcd +

̂
bℎ

(1)
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a
) = 4X̂(agb)(dX̂c) −

4

d

X̂aX̂bgcd −

4
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4
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2
gabgcd ,

ℎ
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abcd
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2
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(4.131)

Here we also introducd

x
a

12
= x

a

1
− x

a

2
, X

a

12
=

x
a

13

|x13|
2
−

x
a

23

|x23|
2
, X̂

a

12
=

X
a

12

|X12|

, (4.132)

and so on with their corresponding permutations.
The expression for ⟨T J J ⟩ is thus determined by four theory-dependent constants, â, ̂b, ĉ

and ê. However, requiring current conservation imposes the constraints

dâ − 2
̂
b + 2(d − 2)ĉ = 0 ,

̂
b − d(d − 2)ê = 0 , (4.133)

so only two of them are free parameters. Following [261], we will work in terms of ĉ and ê. In
addition, there is a Ward identity that relates the central charge CJ to these coefficients as

CJ =

2�
d/2

Γ (d/2 + 1)

(ĉ + ê) . (4.134)

This reduces the number of independent parameters to just one, which can be related to the
coefficient a2 entering into the expectation value of the energy flux, Eq. (4.106). As is clear from
Eq. (4.103), this flux involves an integrated ⟨T J J ⟩ correlator, and therefore it is possible to obtain
the desired relationship by means of a somewhat straightforward field theory computation.
This was performed for general dimensions in [290], finding

a2 =

(d − 1)(d(d − 2)ê − ĉ)

(d − 2) (ĉ + ê)

. (4.135)

With these two expressions, we can fully determine the 3-point function ⟨T J J ⟩ in terms of CJ
and a2. Inverting the two equations, it is possible to write

ĉ =

CJ (d − 2)Γ (d/2 + 1)

2�
d/2

(d − 1)
3

(d(d − 1) − a2) , (4.136)

ê =

CJΓ (d/2 + 1)

2�
d/2

(d − 1)
3
(d − 1 + (d − 2)a2) . (4.137)

Finally, replacing the values of a2 and CJ found for our four-derivative EQG theory, these
coefficients read

ĉ
EQG

=

d(d − 2)d!L
d−3

�
2

∗[d − 2 − (d − 1)(3d
2
− 10d + 2)f∞�1 − (d

2
− 4d + 2)f∞�2]

32(d − 1)
2
�
d+1
f
(d−3)/2

∞ GN[1 − (d − 2)f∞((3d − 1)�1 + �2)]

, (4.138)

ê
EQG

=

d(d − 2)(d − 2)!L
d−3

�
2

∗[1 − (d − 1)(7d − 2)f∞�1 − (3d − 2)f∞�2]

32(d + 1)�
d+1
f
(d−3)/2

∞ GN[1 − (d − 2)f∞((3d − 1)�1 + �2)]

. (4.139)

This result will be important for us in the next Chapter, particularly in Section 5.1.2.
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4.4 Causality, unitarity and weak-gravity-conjecture
constraints

The four-derivative theory (4.33), which is the focus of the holographic explorations performed
in this Chapter, depends on four coupling constants. These are free parameters which, as seen
in the previous Section, modify several entries of the holographic dictionary allowing us to
study CFTs belonging to more general universality classes than those dual to Einstein-Maxwell
theory. However, if we want to obtain sensible answers from holography we must demand
that the dual theory satisfies reasonable physical properties, such as unitarity and causality,
which in the end will constrain the values of these couplings.

Before considering these, there is one more fundamental condition that our theory must
meet: the existence of an AdS vacuum. The effective AdS length scale is L̃ = L/

√

f∞, with
f∞ given by Eq. (4.52). Requiring that L̃ is real thus provides a bound in the Gauss-Bonnet
coupling �, namely

� ≤

1

4

, for d > 3 , (4.140)

which we take into account from now on.

4.4.1 Unitarity and positivity of energy flux in the boundary

Several constraints can be found by demanding that the different correlators and energy fluxes
of the boundary theory, defined in the previous Section, respect unitarity. We will explore
these in what follows.

4.4.1.1 Constraints from ⟨T T ⟩ and ⟨T T T ⟩

We start by considering the correlators ⟨T T ⟩ and ⟨T T T ⟩, which are determined exclusively by
the purely gravitational terms of the action. Hence, by studying those we expect to find bounds
only on the GB coupling �. The constraints explained here are not new, and have been known
for some time [100–102].

The first condition can be obtained from demanding that the central charge of the stress-
energy tensor 2-point function is positive, CT > 0, as this sets the norm of the states in the
CFT created by T��. This can also be interpreted as a unitarity condition in the bulk, since it is
equivalent to imposing Geff > 0, which prevents the graviton from having a negative energy.
This central charge is modified by the Gauss-Bonnet term, and is given by Eq. (4.84). Imposing
it to be positive produces the condition

1 − 2�f∞ > 0 , (4.141)

and this also ensures that Geff > 0, as given by Eq. (4.53). By considering the value of f∞ written
in Eq. (4.52), it is easy to see that the inequality above is always fulfilled for the allowed values
of �, and thus this condition does not provide any additional constraint.

A stronger bound can be achieved by demanding positivity of the energy 1-point function.
Analogously to what we explained in Section 4.3.3, the expectation value of the energy flux
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produced after an insertion of the stress-energy tensor of the form �ijT
ij in general reads [183]

⟨(n⃗)⟩T =
E

Ω(d−2)
[
1 + t2

(

�
∗

ij
�iln

j
n
l

�
∗

ij
�ij

−

1

d − 1)
+ t4

(

|�ijn
i
n
j
|

�
∗

ij
�ij

−

2

d
2
− 1)]

. (4.142)

As explained in Section 4.3.1, for holographic CFTs dual to our theory (4.33) we have t4 = 0,
while t2 is given by Eq. (4.85). This energy flux must be positive in any direction n⃗ and for any
choice of the polarization tensor �ij . The resulting conditions are clearly analyzed in general
dimensions first in [102] and then in Section 3.3 of [101], finding that the value of � must be in
the interval

−

(3d + 2)(d − 2)

4(d + 2)
2

≤ � ≤

(d − 2)(d − 3)(d
2
− d + 6)

4(d
2
− 3d + 6)

2
. (4.143)

Note that � = 1/4 is not allowed by the upper bound in any dimension (that quantity indeed
tends to 1/4 for d → ∞), while the lower bound prevents � from becoming too negative.

4.4.1.2 Constraints from ⟨J J ⟩ and ⟨T J J ⟩

Let us turn now to the correlators involving the current operator J , which should provide
constraints on the parameters of the non-minimally coupled terms in the action, �1 and �2. The
arguments are very similar to the ones of the gravitational case, and are based on the unitarity
of ⟨J J ⟩ and the positivity of the energy 1-point function ⟨(n⃗)⟩J .

The central charge of the current 2-point function, CJ , is given by Eq. (4.98), and its
positivity implies that

�
EQG
eff = 1 − (3d

2
− 7d + 2)f∞�1 − (d − 2)f∞�2 > 0 . (4.144)

This quantity is, up to a constant, the coupling of the Maxwell field in vacuum. Therefore, its
positivity is equivalent to demanding that photons in the bulk carry positive energy.

More interesting bounds can be obtained from the energy flux created after an insertion of
the current operator, given by Eq. (4.106). By demanding that the energy flux is positive in any
direction, we find that the parameter a2 must satisfy14

−

d − 1

d − 2

≤ a2 ≤ d − 1 . (4.145)

Plugging in the value of a2 for the four-derivative Electromagnetic Quasitopological theory,
given by Eq. (4.129), this translates into

−1 ≤ −

2df∞((2d − 1)�1 + �2)

1 − (3d
2
− 7d + 2)f∞�1 − (d − 2)f∞�2

≤ d − 2 . (4.146)

But notice that the denominator of this expression is precisely �EQG
eff , which is assumed to be

positive. Then, if we multiply the whole inequality by �EQG
eff , the two constraints can be written

as

1 − (7d
2
− 9d + 2)f∞�1 − (3d − 2)f∞�2 ≥ 0 , (4.147)

14 In order to find the bounds in a2, we need to consider the different types of perturbations possible for the
vector field J . For this, the simplest approach is to choose a system of coordinates in which only �1 ≠ 0 and
n⃗ = (n1, 0, … , 0, nd−1), normalized as n⃗ ⋅ n⃗ = 1. Then, the lower bound in Eq. (4.145) is obtained from scalar
perturbations (n1 = 1, nd−1 = 0), while the upper bound comes from vector perturbations (n1 = 0, nd−1 = 1).
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1 −

(d − 1)(3d
2
− 14d + 4)

d − 2

f∞�1 −

d
2
− 6d + 4

d − 2

f∞�2 ≥ 0 , (4.148)

Again, these constraints are only true once (4.144) is imposed, so it is important to consider
also that one.

The second inequality, Eq. (4.148), has a different character depending on the dimension:
the coefficient multiplying �1 is positive for d = 3 and 4, and negative for d ≥ 5, while that of
�2 is positive for d = 3, 4 and 5, and changes sign for d ≥ 6. For instance, if �2 = 0 we find that
�1 must be in the interval

d − 2

(d − 1)(3d
2
− 14d + 4)

≤ f∞�1 ≤

1

7d
2
− 9d + 2

, for d = 3, 4, �2 = 0 , (4.149)

but the lower bound disappears for d ≥ 5.
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Figure 4.1: Bounds in the couplings �̃1 = f∞�1 and �̃2 = f∞�2 obtained
from imposing unitarity and positivity of energy fluxes, as given in Eqs.
(4.144), (4.147) and (4.148). The allowed region is shaded in each case, and it
is infinite. For d > 6 this region looks qualitatively very similar to the one
shown for d = 6.

Note that the bounds are imposed directly on the “renormalized” couplings f∞�i rather than
on the original ones. However, the value of f∞ is always close to one for the allowed values of
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� in Eq. (4.143), and f∞ = 1 always in d = 3. The different constraints are shown in Figure 4.1,
where we can see that the allowed region in the plane (f∞�1, f∞�2) becomes bigger for larger
dimensions. Also, for d = 3, 4 and 5 there is an absolute upper bound for �1, regardless of �2.
This is found at the intersection of the three constraints, and it reads

f∞�1 ≤

1

d(d − 2)

, for d = 3, 4, 5. (4.150)

Similarly, there is an absolute lower bound for �2 in d = 3 and 4,

f∞�2 ≥ −

2d − 1

d(d − 2)

, for d = 3, 4. (4.151)

For higher dimensions the two parameters can take values in the entire real line, but they
cannot both be too positive at the same time. In fact, only small values are allowed in that case,
as can be seen in Figure 4.1d.

4.4.2 Causality in the bulk

It is reasonable to expect physically consistent bulk theories to give rise to consistent dual
CFTs, and vice versa. Therefore, the unitarity constraints discussed above should have a
counterpart in the bulk. For the constraints coming from the 2-point functions ⟨T T ⟩ and ⟨J J ⟩

the interpretation is direct, as the positivity of the central charges is related to that of the energy
of gravitational and electromagnetic waves in the bulk. However, the bulk interpretation of
the constraints arising from the positivity of the energy 1-point function is more subtle. At
least for Lovelock gravity, it is known that demanding ⟨(n⃗)⟩T ≥ 0 is equivalent to imposing
the bulk theory to respect causality [102, 104, 106, 291], by avoiding superluminal propagation
of gravitational waves [191, 193, 268, 291].15 Here we investigate the analogous connection
between causality of electromagnetic waves and the positivity of the energy flux ⟨(n⃗)⟩J , given
by Eq. (4.106).

We start with the neutral planar black hole (or black brane) solution of the theory (4.33).
The form of the metric is

ds
2
= −

f (r)

f∞

dt
2
+

dr
2

f (r)

+

r
2

L
2
dx

2

(d−1)
, (4.152)

and the function f (r) is given by

f (r) =

r
2

2�L
2
(

1 −

√

1 − 4� +

4�L
2
m

(d − 1)r
d
)

. (4.153)

This is nothing but the metric (4.18) with k = 0, and we have set N 2

0
= 1/f∞ so that the speed

of light at the boundary is one. Also, the solution for f (r) is the one studied in Section 4.2 with
Q = 0, since we are interested in the propagation of perturbations over the neutral background.

In order to study the speed of electromagnetic waves in our EQG theory (4.33), we can
either use its formulation in terms of the (d − 2)-form B or in terms of the dual vector field A.
The results obtained in both frames must hold simultaneously.

15 This connection is not that well understood in other theories not belonging to the Lovelock family [117, 237].
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Let us consider first a perturbation of the (d − 2)-form in this black hole background. At
linear order, the equation for B can be written as

∇�1 (
Q̃

[��

��
H

�1…�d−1]

) = 0 , (4.154)

where Q̃��

��
takes the value (4.78). Particularizing it to the EQG case, which requires replacing

�3 by its value given in Eq. (4.31), this tensor becomes
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(4.155)
When evaluated on the metric (4.152), it takes the form
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are the projectors in the (t, r) and transverse spatial directions, respectively, and 
i are the
functions
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(4.158)

Let us now consider a fluctuation of the field B with a polarization orthogonal to the
direction x1,

B =  (r)e
−i!t+ikx

1

dx
2
∧ ⋯ ∧ dx

d−1
. (4.159)

Its field strength H = dB is

H = e
−i!t+ikx

1

( 
′
(r)dr ∧ dx

2
∧ ⋯ ∧ dx

d−1
− i! (r)dt ∧ dx

2
∧ ⋯ ∧ dx

d−1

+ ik (r)dx
1
∧ dx

2
∧ ⋯ ∧ dx

d−1

) ,

(4.160)

and with this ansatz the equations of motion (4.154) are reduced to a single component, corre-
sponding to the indices �2…�d−1 = x

2
…x

d−1, so it is not necessary to activate other components
of B. We want to study the small wavelength limit !, k → ∞, so we only need to keep the
derivatives with respect to t and x1. With this approximation, we get

∇�
(
Q̃

[��

��
H

�x
2
…x

d−1
]

)
∝

L
2(d−2)

r
2(d−2) (

−

f∞

f (r)

(i!)
2

2 +

L
2

r
2
(ik)

2

1
)
B
x
2
…x

d−1

, (4.161)
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and equating this to zero we obtain the dispersion relation

!
2

k
2
=

L
2
f (r)
1

r
2
f∞
2

. (4.162)

By plugging in the value of f (r) in Eq. (4.153) and expanding near the boundary, it becomes

!
2

k
2
= 1 −

L
2
m(1 − (7d

2
− 9d + 2)f∞�1 − (3d − 2)f∞�2)

(d − 1)(2 − f∞)�
EQG
eff r

d

+ 
(

1

r
2d)

. (4.163)

This quantity is the square of the phase velocity of the wave front, and consistency with
causality requires it to be smaller than the speed of light, !/k ≤ 1. Since f∞ < 2 and we take
�
EQG
eff > 0, this condition implies

1 − (7d
2
− 9d + 2)f∞�1 − (3d − 2)f∞�2 ≥ 0 , (4.164)

which matches exactly the constraint (4.147) computed from the lower bound in the allowed
range of values of a2, Eq. (4.145).

Obtaining the exact value of the dispersion relation (4.163) would require to consider all
terms of higher order in 1/r , which become important when going further into the bulk.
However, we have tried different values of the couplings satisfying this constraint, and found
that in all cases !/k ≤ 1 everywhere inside the bulk. So the bound in Eq. (4.164) appears to be
enough to ensure causality in the propagation of these perturbations everywhere, but a more
in-depth analysis would be required in order to make such a claim.

A different constraint in the couplings can be obtained by choosing inequivalent polariza-
tions of the B field, and in particular this means that we need to study a perturbation polarized
along the r direction. However, instead of this it is easier to consider a perturbation of the dual
vector A� of the form

A = �(r)e
−i!t+ikx

2

dx
1
. (4.165)

Indeed, it can be seen that the H field obtained from the dualization of this vector is not of the
form (4.160), but instead has a term ∼ kdt ∧ dr ∧ dx

3
∧…∧dx

d−1, corresponding to a polarization
of B along the r direction. The linearized equations of motion for this field read

∇�
((
Q̃

−1

)

��

��

F
��

)
= 0 , (4.166)

where (Q̃−1

)

��

��

is the inverse of the tensor given in Eq. (4.156). With that form of Q̃��
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inverse is simply
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The linearized Maxwell equations for the perturbation written in Eq. (4.165) are reduced to a
single component � = x

1, which reads

(
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2
f∞

r
2
f 
2

−
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2
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4
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4

3 )

+

(d − 1)f L
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�
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+
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f L
2
�
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2

2 )

= 0 . (4.168)

In the short-wavelength limit !, k → ∞ this becomes

!
2

k
2
=

L
2
f (r)
2

r
2
f∞
3

, (4.169)
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and expanding near infinity we get

!
2

k
2
= 1 −

L
2
m(d − 2 − (d − 1)(3d

2
− 14d + 4)f∞�1 − (d

2
− 6d + 4)f∞�2)

(d − 1)(d − 2)(2 − f∞)�
EQG
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d
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(

1

r
2d)

, (4.170)

where we plugged in the values of 
2 and 
3 given in Eq. (4.158), and the function f (r) in Eq.
(4.153). In order for this perturbation to respect causality, it is necessary that !2

/k
2
≤ 1 as we

move away from the boundary, which results in the constraint

d − 2 − (d − 1)(3d
2
− 14d + 4)f∞�1 − (d

2
− 6d + 4)f∞�2 ≥ 0 . (4.171)

This is precisely the condition (4.148), obtained from the upper bound in the value of a2 given
in Eq. (4.145). Again, we checked that !/k ≤ 1 in the entire bulk for different sets of values of
the couplings that respect this constraint.

While the analysis performed is relatively simple, we can argue that it is the most general.
Indeed, one can be convinced that there are no other inequivalent polarizations by counting
the number of them captured by the perturbations (4.159) and (4.165). For a fixed direction of
propagation, (4.159) is the only possible form of the field B that is orthogonal to the propagation
and with no t or r components, while there are d − 2 polarizations of the type (4.165) for A
obtained by exchanging dx1 with dx i, i ≠ 2. So in total we can describe d − 1 = D − 2 different
polarizations, which is the number of degrees of freedom of a massless vector field (and of a
(D − 3)-form) in D dimensions. Therefore, we conclude that there are no additional constraints
that can be found from the study of causality in the background of a neutral black brane.

Another interesting problem would be the study of perturbations around charged black
branes, which would be relevant if one wishes to perform holography in such backgrounds. In
that case gravitational and electromagnetic perturbations would be linearly coupled, making
the analysis of the speed of propagation more complex. However, this could perhaps lead to
stronger constraints than the ones found here.

To conclude this discussion, let us mention that there are other types of causality violations,
like the ones involving the graviton 3-point vertex found in [238]. Indeed, one of the implications
of that study in the holographic context is that the Gauss-Bonnet coupling (in units of the
AdS scale) must be very small, |�| ≪ 1. These bounds would be applicable, in principle, to any
theory of gravity that modifies the 3-point function structure of Einstein gravity. There exist,
however, non-trivial higher-curvature terms that do not modify this 3-point function, and one
can not apply these results to them. In any case, we do not know of similar constraints for the
terms RH 2 and H 4 of our theory (4.33). In fact, there are theories that have a large value of
a2, such as QCD, and in order to capture these holographically one needs bulk models with
non-minimal higher-derivative terms with  (1) couplings [183].

4.4.3 WGC and positivity of entropy corrections

So far we have obtained constraints for three of the four coupling constants of the EQG theory
(4.33) by imposing unitarity of the boundary theory, whichwe found to be equivalent to causality
in the bulk theory. However, the parameter � multiplying the term H

4 is still unconstrained, as
it does not affect any 2- or 3-point function. Also, while the existing constraints prevent the
couplings from being too large, they do not say anything about the sign of these parameters.
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In this Section we will find additional bounds by applying the mild form of the weak gravity
conjecture (WGC) [271, 272], which has recently received some attention in the context of
higher-derivative theories of gravity [292–302]. For an AdS spacetime, the implications of the
WGC were studied in [273] (see also [303–305]). One of the heuristic ideas behind it is that
extremal black holes should be able to decay, which can happen if there exists a particle whose
charge-to-mass ratio is larger than the one of an extremal black hole. This is the standard form
of the WGC [306, 307]. The mild form, however, involves only black holes and claims that the
decay of an extremal black hole into a set of smaller black holes should be possible, at least
from the point of view of energy and charge conservation. Since an extremal black hole has a
fixed mass for a given value of the charge, Mext(Q), such decay process is only possible if

Mext(Q1 + Q2) ≥ Mext(Q1) + Mext(Q2) . (4.172)

For asymptotically flat black holes in Einstein-Maxwell theory we have Mext(Q) ∝ |Q|, so the
inequality is saturated. However, higher-derivative corrections modify the charge-to-mass
relation, and by demanding that the deviations respect the property (4.172) we should obtain a
constraint on the coefficients of the higher-derivative terms. In all cases, it is clear that in order
to preserve (4.172) the corrections to the extremal mass must be negative, �Mext < 0 [308].

The reasoning above does not carry on directly to an asymptotically anti-de Sitter spacetime.
As noted in [273], the bound (4.172) is no longer saturated for extremal black holes, since
the relation Mext(Q) is not linear, and hence perturbative (arbitrary small) higher-derivative
corrections cannot violate it.16 Instead, that reference makes use of the proposal of [271], which
claims that the corrections to the entropy of black holes of arbitrary charge and mass should
be positive as long as these are thermodynamically stable. It is known [309, 310] that, when
applied to near-extremal black holes, the positivity of corrections to the entropy is connected
to the negativity of the corrections to the extremal mass. Therefore, one can still apply the
condition �Mext < 0 to bound the higher-order couplings, just like in the asymptotically flat
case. However, the conditions studied in [273] are more ambitious, as they demand �S > 0 for
arbitrary charge and mass not only for near-extremal black holes, as long as the specific heats
are positive. Let us apply these requirements to our theory (4.33).

The Wald entropy of static black holes is given in Eq. (4.73), and we repeat its value here
for convenience,

S =

r
d−1

+
Vk, d−1

4GN (
1 +

2L
2
Q

2
�1

r
2d−2

+

+

2kL
2
(d − 1)�

(d − 3)r
2

+
)
. (4.173)

This expression, together with the relation M(r+, Q) given in Eq. (4.69), can be used to obtain
the exact value of the entropy S(M, Q). Here however we only need the perturbative correction
to the entropy at fixed charge and mass. In order to simplify the analysis let us introduce the
variable

x =

r
(0)

+

L

, (4.174)

where r (0)+ is the zeroth-order value of the horizon radius, which can be obtained from Eq. (4.69)
by setting the higher-order couplings to zero. Also, the extremal value of the charge in the two
derivative theory reads

Q
(0)

ext = (Lx)
d−2

√

d − 1

2

√

k(d − 2) + dx
2
, (4.175)

16 In the small size limit AdS black holes behave as asymptotically flat ones, and in this case the inequality (4.172)
could still be applied to constrain the higher-derivative terms.
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so it is also convenient to define the variable

� =

Q

Q
(0)

ext

, (4.176)

which takes values in the range from 0 to 1. Since we are working at fixed M and Q, we can
use Eq. (4.69) to obtain the correction to the horizon radius as a series

r+ = r
(0)

+
+ r

(1)

+
+ … , (4.177)

with the first term being
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(4.178)
Inserting this into the expression for the entropy (4.173), we get the correction at linear order
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(4.179)

Following [273], we should demand this to be positive for any black hole that is thermodynam-
ically stable at zeroth order. We will focus on spherically symmetric black holes, with k = 1.
The case k = 0 is obtained as the limit of large size of these spherical black holes, while the
case k = −1 is somewhat different and we will comment on it at the end of the Section.

Let us consider first neutral black holes, � = 0, for which only the Gauss-Bonnet term is
relevant. The correction to the entropy is thus

�S(M, Q)
|
|�=0

=

(d − 1)L
d−1
x
d−3
V1, d−1

4GN
�
(
−

1

d − 2 + dx
2
+

2

d − 3)
. (4.180)

The variable x defined in Eq. (4.174) can range from 0 to infinity, and for any of these values
the quantity in the parenthesis is positive if d ≥ 3.17 Neutral large black holes are known to be
stable in AdS, and therefore the WGC would imply that the GB coupling must be non-negative,

� ≥ 0 . (4.181)

This makes sense, as the Gauss-Bonnet coupling arises explicitly from string theory effective
actions and in many instances18 it indeed has a positive coupling [311–314] (see also [315] and
Appendix B of [189]).

17 For d = 3 one should define ̂� = �/(d − 3) and take the limit d → 3 with fixed ̂
�. The correction to the entropy

found is topological, and identical for any spherical black hole.
18 It was shown in [277] that a negative � can also be achieved, indicating that this coupling can actually have

different signs depending on the setup.
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Next we can look at the case of near-extremal black holes, which are also stable in the two-
derivative theory. This corresponds to the limit � → 1, and hence the dominant contribution in
Eq. (4.179) is

�S(M, Q)
|
|�→1

=

(d − 1)L
d−1
x
d−3
V1, d−1

4GN(1 − �
2
) [

−

�

d − 2 + dx
2
− 3(d − 1)�1 − �2

+

�(d − 1)(d − 2 + dx
2
)

4(3d − 4) ]
.

(4.182)

This has a non-trivial dependence on the radius of the black hole through the variable x , and
therefore we can find several constraints on the couplings by imposing it to be positive. For
large black holes x ≫ 1 the correction proportional to � dominates, and �S ≥ 0 implies

� ≥ 0 . (4.183)

On the other hand, in the limit of small black holes x → 0 we obtain

−

�

d − 2

− 3(d − 1)�1 − �2 +

�(d − 1)(d − 2)

4(3d − 4)

≥ 0 . (4.184)

This may be the most reliable constraint that we can produce from theWGC arguments of [273],
since small black holes behave as asymptotically flat ones, for which the inequality (4.172)
must hold. The condition above implies that the shift in the extremal mass is negative, hence
ensuring that Eq. (4.172) is satisfied for black holes much smaller than the AdS scale.

Finally, another condition comes from studying large black holes (or equivalently black
branes, with k = 0) of arbitrary charge. This corresponds to x → ∞, and therefore the shift in
the entropy is

�S(M, Q)
|
|x→∞

=

d(d − 1)L
d−1
x
d−1
V1, d−1

4GN (
�1�

2
+

�(d − 1)�
4

4(3d − 4)(1 − �
2
))

. (4.185)

In order for this quantity to remain positive for any value � ∈ [0, 1) we must impose not only
� ≥ 0 as found in Eq. (4.183), but also

�1 ≥ 0 . (4.186)

This is a very strong constraint since, when combined with the bounds from unitarity shown in
Figure 4.1, it implies that �1 and �2 can only lie in a small compact set of the plane for d = 3, 4

and 5. The Gauss-Bonnet coupling � must also lie in a small interval given by Eqs. (4.143) and
(4.181), so only � can take arbitrarily high values with the constraints that we have found. It
would be interesting to explore whether different constraints could impose an upper bound on
�, and indeed the results of the next Section suggest that this coupling should not be too large.

To close this Section, let us discuss what happens if one attempts to apply the WGC bounds
to hyperbolic black holes, for which k = −1. We will consider them neutral for simplicity, � = 0.
One can check that all these solutions are thermodynamically stable in the two-derivative
theory, and therefore we should impose �S ≥ 0. From Eq. (4.179) we obtain in this case

�S(M, Q)
|
|k=−1, �=0

=

(d − 1)L
d−1
x
d−3
V−1, d−1

4GN
(−�)

(

1

dx
2
− (d − 2)

+

2

d − 3)
, (4.187)
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and since for hyperbolic black holes dx2 − (d − 2) ≥ 0,19 the positivity of �S in this case implies
that � ≤ 0, which is the opposite to what we found for spherical and planar black holes in
Eq. (4.181). If these two bounds were to hold at the same time for any choice of the boundary
geometry, we would be led to the conclusion that � = 0, which seems an unreasonably strong
claim. Likewise, if we combine the results for the cases k = 1 and k = −1 it is possible to
find similarly stringent constraints for the other constants. Although it is not clear how to
solve this issue, we are more inclined to trust the constraints for spherical black holes and
ignore those for k = −1 for a couple of reasons. On the one hand, spherical black holes make
direct connection with the original motivation of the WGC regarding black hole evaporation,
while the evaporation of a hyperbolic black hole is not a well-defined problem, as they are
always stable [316]. On the other, as mentioned above, a positive Gauss-Bonnet coupling is
actually realized in many explicit string models. This suggests that the positivity-of-entropy
bounds might not be applicable directly to hyperbolic black holes, but it would be interesting
to understand why. Based on these arguments, for the rest of this work we will only make use
of the constraints found for k = 1.

4.5 Thermodynamic phase space

In Section 4.2 we studied charged black hole solutions of the four-derivative theory (4.33).
These can be used to describe, in the context of the AdS/CFT correspondence, CFT plasmas at
finite temperature and chemical potential, and have different properties and interpretations
depending on the geometry of the horizon. The form of the metric and the (d − 1)-form field
H in these solutions is

ds
2
= −N

2

k
f (r)dt

2
+

dr
2

f (r)

+ r
2
dΣ

2

k, (d−1)
,

H = Q!k, (d−1) ,

(4.188)

where Nk is a constant, f (r) is the function whose solution is written in Eq. (4.59) and !k, (d−1)

is the volume form of the metric tangent to the boundary dΣ2

k, (d−1)
, given for the different

topologies in Eq. (4.20).
On the other hand, in the electromagnetic dual frame we have a Maxwell field strength

that can be computed through Eq. (4.8), which leads to the vector potential

A = Φ(r)dt , (4.189)

where the electrostatic potential Φ(r) is given by Eq. (4.67).
We already computed some thermodynamic quantities associated to these solutions in

Section 4.2, such as the temperature and the Wald entropy, but in order to make contact with
the dual CFT we must first obtain the free energy from the on-shell Euclidean action, which is
done in what follows.

19 This is required for the temperature of the neutral black hole in the two-derivative theory, given by Eq. (4.70)
with all higher-order couplings set to zero and Q = 0, to be non-negative.
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4.5.1 Euclidean action and free energy

Let us work in the frame of the (d − 2)-form B. We first perform a Wick rotation of the black
hole solutions by writing t = i�, and the Euclidean time � has a periodicity � ∼ �T + �, where
�T = 1/T , the inverse of the temperature given by Eq. (4.70). In order to compute the free
energy we must first evaluate the Euclidean action, whose bulk part reads

I
bulk
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1

16�GN
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d
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(4.190)

On top of this, we need to add the generalized Gibbons-Hawking-York boundary term to make
the variational problem in the gravity sector well posed [274, 275], as well as counterterms
to make the action finite [207]. The generalized GHY term for the Gauss-Bonnet density is
known [92, 93], as well as the appropriate counterterms [210]. However, for simplicity we will
consider the effective boundary terms proposed in [119], which match the renormalization
prescription described in Chapter 2,

I
bdry
E = −2C

∫
)

d
d
x

√

ℎ
(
K −

d − 1

L̃

−

L̃Θ(d − 3)

2(d − 2)

 + …
)
. (4.191)

Here, K is the trace of the extrinsic curvature and the Ricci scalar of the boundary metric,
while Θ(d − 3) = 1 for d ≥ 3 and 0 otherwise. Additional  (n

) terms appear for d ≥ 5. These
terms are simply the same as those necessary for Einstein gravity, but with a proportionality
constant given by (see Eq. (2.12))

C = −

L̃
2

2d

|AdS , (4.192)

where |AdS is the Lagrangian evaluated on the AdS vacuum to which the solution asymptotes.
For our Lagrangian, this takes the value

C =

1

16�GN (
1 −

2(d − 1)

d − 3

f∞�
)
. (4.193)

On the other hand, the variation of the terms RH 2 with respect to the metric decays very
fast at infinity, so one does not need to include additional boundary terms to ensure the well-
posedness of the variational problem. Also, they behave near the boundary as the H 2 term, so
no counterterms are needed either.

In order to compute the Euclidean action, we note that the Lagrangian becomes an explicit
total derivative when evaluated on the solution (4.192), which is indeed the defining property
of the family of Electromagnetic Quasitopological theories. We find explicitly

16�GN|on-shell =
1

r
d−1

d(r)
dr

, (4.194)
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where
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Therefore, the bulk part of the Euclidean action is computed by integrating this, and reads

I
bulk
E = −�TNkVk, d−1 ∫
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d−1 =

�TNkVk, d−1

16�GN
[(r+) − (r → ∞)] , (4.196)

where the inverse of the temperature �T appears due to the integration over the Euclidean time.
The evaluation (r → ∞) is infinite, but one can check that all these divergences are exactly
cancelled by the boundary contribution (4.191), which do not introduce any meaningful finite
terms to the on-shell action.20 Hence, we get for the total Euclidean action

IE = I
bulk
E + I

bdry
E =

�TNkVk, d−1

16�GN
(r+) . (4.197)

The fact that we are computing this in the frame of the field B has a non-trivial effect.
Indeed, when varying the action we must fix the value of this field at the boundary, which
for its holographic dual corresponds to working at fixed charge. This implies that the CFT
is described by the canonical ensemble, and the gravitational Euclidean action we computed
is equal to the Helmholtz free energy of the system, as F = T IE, which is a function of the
temperature and the charge. From the result above, we have
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(4.198)

where the temperature is given in terms of Q and r+ by Eq. (4.70). It can be checked that this
quantity fulfills the definition of the Helmholtz free energy,

F = M − TS , (4.199)

where M , T and S are given respectively by Eqs. (4.69), (4.70) and (4.73). We also introduce the
chemical potential � = limr→∞ At/�∗, which from Eq. (4.71) reads

� =

NkQ

�∗ [

1

(d − 2)r
d−2

+

+

�1L
2

r
d

+
(
3(d − 1)k −

4�T r+

Nk
)
+

�2L
2
k

r
d

+

−

�L
2
Q

2

(3d − 4)r
3d−4

+
]
. (4.200)

20 In odd d some counterterms can introduce contributions of the form IE → IE + c�T , for some constant c. But
this simply represents a global shift in the free energy, and we will assume that these finite counterterms have
been chosen in such a way that pure AdS has zero free energy.
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The free energy (4.198) satisfies the usual first law of thermodynamics,

dF = −SdT + �d , (4.201)

where = q�∗ represents the number of charged particles under the current J in the boundary
theory, and it reads (replacing the physical charge q by its value in Eq. (4.65))

 =

Vk, d−1�∗Q

4�GN
. (4.202)

We wish to work in the grand canonical ensemble, which corresponds to fixed chemical
potential, so instead of F we are interested in the grand potential (or grand free energy). This
is defined as

Ω = F − � , (4.203)

and it can also be obtained directly from the Euclidean action by adding or removing the
appropriate boundary terms, depending on whether we are in the Maxwell or B-field frames.
By construction, this quantity satisfies

dΩ = −SdT − d� , (4.204)

so Ω is to be understood as a function of T and �. Its explicit form is

Ω =

NkVk, d−1
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(4.205)

In the next Section we study the properties of these thermal states in the case of a flat boundary.
The hyperbolic case will be considered in Section 5.1, in the context of the computation of
Rényi entropies.

4.5.2 Flat boundary: black branes

We will perform now a thorough study of the thermodynamic phase structure of planar black
holes, k = 0. The geometry of the boundary is Minkowski spacetime, and therefore these
solutions are useful to probe the properties of thermal CFTs in flat space. More precisely, the
boundary metric is conformal to

ds
2

bdry = −N
2

0
f∞dt

2
+ dx

2

(d−1)
, (4.206)

so it is natural to set
N0 =

1

√

f∞

, (4.207)

which is equivalent to working in units such that the speed of light at the boundary is one. Note
also that, taking into account the definition of the transverse space in Eq. (4.20), the volume is

V0, d−1 =

VRd−1

L
d−1

, (4.208)
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where now VRd−1 is the volume of the constant-t spatial slices of the boundary metric (4.206),
which can be infinite. Therefore, it makes sense to work in terms of the grand potential, entropy,
mass and number densities, defined as

! =

Ω

VRd−1

, s =

S

VRd−1

, � =

M

VRd−1

, N =


VRd−1

. (4.209)

It will also be useful to replace the charge parameter Q by a new dimensionless variable p, as

Q = p

r
d−1

+

L

. (4.210)

With this, the expressions for the grand potential density, entropy density, temperature and
chemical potential read

! = −

r
d

+

16�GNL
d+1

√

f∞(d − 1) (

d
2
− 3d + 2 + 2p

2

d − 2

−

�p
4

3d − 4)
, (4.211)

s =

r
d−1

+

4L
d−1
GN

(1 + 2�1p
2

) , (4.212)

T =

r+

4�

√

f∞L
2

d(d − 1) − 2p
2
+ �p

4

(d − 1)(1 − 2�1p
2
)

, (4.213)
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4
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(4.214)

and they are all independent of � and �2 in this planar case.21 Each of these quantities scale in
a definite way with r+, and in particular T ∝ r+. In the neutral limit p = 0, this gives rise to the
well-known relation

s|�=0 = CST
d−1

, (4.215)

where CS is the thermal entropy charge, which in our case reads

CS =
(4�L

√

f∞)

d−1

4GNd
d−1

. (4.216)

It is known that for holographic Gauss-Bonnet gravity, and Lovelock gravity in general, this
charge is not modified with respect to its value in Einstein gravity, besides the appearance
of the factor f∞. But other theories, such as Einsteinian cubic gravity [119] and Generalized
Quasitopological gravities [7, 122, 123], do introduce non-trivial corrections to CS .

Using this constant, and replacing r+ in terms of T and p, we can write

! = −

CS

d

T
d

(

1 − 2�1p
2

1 −
2p

2
−�p

4

d(d−1)

)

d

(
1 +

2p
2

(d − 1)(d − 2)

−

�p
4

(d − 1)(3d − 4))
, (4.217)

21 There is an implicit dependence of � through f∞, but it only produces a trivial rescaling of some thermodynamic
potentials.
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s = CST
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) . (4.218)

The variable p can be considered to be a function of the dimensionless ratio between the
chemical potential and the temperature, given implicitly by the relation

�̂ ≡

�∗�
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(4.219)

Note the appearance in this expression of the ratio �∗/L, whose value is an input of the particular
holographic duality. As mentioned, the expression above defines p implicitly as a function of �̂,
which means that the quantity

!̂ ≡

!

T
d

(4.220)

is only a function of this variable. Therefore, studying the dependence of !̂ on �̂ is the same as
analyzing how the grand free energy varies as we change the chemical potential and keep the
temperature fixed, or equivalently, studying the free energy as a function of the temperature
at fixed chemical potential. In fact, due to the scaling properties of the problem (�, T ∼ r+),
only the ratio �̂ is relevant, and we can explore in particular the monotonicity of the grand
canonical potential or the existence of phase transitions in terms of it.

Let us remark a few points before performing a more in-depth analysis. First, in most cases
we will not be able to invert Eq. (4.219) explicitly, so it is useful to use p in order to obtain the
curves (�̂, !̂) parametrically. Second, note that the temperature (4.213) must be non-negative
in order to have black hole solutions. The extremal limit is thus reached for

d(d − 1) − 2p
2
+ �p

4
= 0 , (4.221)

which is a second order equation for p2, and has real solutions only for � ≤ 1/(d(d − 1)). We
can argue also that black hole solutions only exist if 1 − 2�1p

2
≥ 0. Even though we could have

T > 0 with 1 − 2�1p
2
< 0, it turns out that this implies the existence of a naked singularity for

some r > r+, as can be seen by studying explicitly the solution for f (r) given in Eq. (4.59), so
this case must be ruled out.

For Einstein-Maxwell theory, it is possible to invert Eq. (4.219) explicitly to obtain22

p =

1

4�̂ [

−

d − 1

d − 2

+

√

(

d − 1

d − 2)

2

+ 8d(d − 1)�̂
2

]

. (4.222)

This is a one-to-one relation p(�̂), with p(� → ±∞) = ±

√

d(d − 1)/2, and it is possible to check
that the relation !̂(�̂) is also monotonic. Therefore, in holographic Einstein-Maxwell theory
there are no phase transitions for charged plasmas.

For the full four-derivative EQG considered here, the thermodynamic phase space will
depend on the values of the parameters � and �1 in a non-trivial manner. Therefore, in order to
simplify the exploration, in the following Sections we consider separately the cases � = 0 and
�1 = 0, and after that we will study a particular case in which both couplings take non-vanishing
values.
22 There is one additional solution with a negative square root, but this would result in p and �̂ having opposite

signs.
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4.5.2.1 Phase space with �1 ≠ 0 and � = 0

First we want to isolate the contribution of �1 to the phase space of the system, so we set � = 0.
A negative �1 is ruled out by the weak gravity conjecture as discussed in Section 4.4.3, so we
consider only �1 ≥ 0. As argued above, in order to obtain meaningful solutions we must have
T > 0 and 1 − 2�1p

2
≥ 0, so the range of allowed values of p is

|p| ≤ min

{

pext,
1

√

2�1

}

, where pext =

√

d(d − 1)

2

. (4.223)

pext is the value of the parameter p that makes the black hole extremal, T = 0, and the transition
between both bounds happens for �1 = 1/(d(d − 1)). We have to distinguish four different
cases.

-2 -1 0 1 2

-0.4

-0.2

0.0

0.2

0.4

Figure 4.2: Dimensionless chemical potential �̂ as a function of p for differ-
ent values of the coupling �1, with � = 0 and d = 4. In this case, the range
where �̂(p) becomes non-invertible is �1 ∈ (1/12, 1/8) ≈ (0.0833, 0.125), as
given in Eq. (4.226).

1. For �1 < 1/(d(d − 1)), the relation �̂(p) is one-to-one and �̂ takes values in the entire
real line, as shown in Figure 4.2. It diverges to ±∞ for p = ±pext, which corresponds
to the extremal limit. The curves for !̂(�̂) are shown in Figure 4.3a, and they behave
qualitatively as those in Einstein-Maxwell theory.

2. The particular case �1 = 1/(d(d − 1)) is special, in the sense that here the relation �̂(p)
becomes linear, and the temperature is independent of p,

�̂ =

p

d(d − 1)(d − 2)

, T =

r+d

4�

√

f∞L
2

. (4.224)

Thus, there exist solutions for arbitrary values of �̂, but no extremal limit. The expression
for the grand potential density also simplifies in this case, and it reads

! = −

CS

d

T
d
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1 + 2d
2
(d − 1)(d − 2)

(

�∗�

4�TL)

2

)

. (4.225)
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(a) �1 outside the range (4.226).
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(b) �1 inside the range (4.226).

Figure 4.3: Grand canonical potential !̂ as a function of �̂, for � = 0 and
d = 4. In the left plot we take �1 < 1/12, so there is only one phase for
each value of �̂. In the right plot �1 is inside the interval (4.226), so there
are three phases with different values of p, the dominant one being denoted
with a dashed black line. We can observe the zeroth-order phase transition
mentioned in the main text, and there are no solutions for |�̂| > �max =
√

�1/2.

3. A new and interesting behavior appears for �1 > 1/(d(d − 1)). Since the extremal value
pext cannot be reached in this case, we see from Eq. (4.219) that only a finite range of
values of �̂ is allowed, and in particular it can be seen that |�̂| <

√

�1/2, which is reached
for p = ±1/

√

2�1.

Besides, we find that, if �1 is within the interval

�1 ∈
(

1

d(d − 1)

,

1

d(d − 2))
, (4.226)

then the relation �̂(p) becomes non-invertible. In this case the function �̂(p) develops
a local maximum and minimum (see Figure 4.2), and some values of �̂ correspond to
three distinct values of p, meaning that there are three different phases with either small,
intermediate or large values of p.

To explore the existence of phase transitions, we must look at the diagram of !̂ vs �̂
for all the branches of solutions. This is shown in Figure 4.3b in the case of d = 4 for a
representative value of �1 inside the interval (4.226). For small �̂ there are three phases,
and the one with the smallest p has the lowest free energy and hence dominates, while
also presenting the usual quadratic behavior )2!/)�2 < 0, as can be seen in the plot.
However, at a certain value �̂crit this phase and the one with intermediate values of p
merge, and cease to exist for larger �̂. At that point, a zeroth-order phase transition
takes place towards the solution with large p, as illustrated in Figure 4.3b. The new
phase is somewhat exotic, since it has N = −)!/)� < 0 for �̂ > 0, so a positive chemical
potential generates a negative number density, and vice versa, although it still satisfies
)N/)� = −)

2
!/)�

2
> 0. This phase disappears at |�̂| = �̂max =

√

�1/2, and no solutions
exist beyond that point.
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4. If we set �1 = 1/(d(d − 2)), the upper bound in the range (4.226), the maximum and the
minimum of �̂(p) collapse at p = 0. Therefore, for �1 ≥ 1/(d(d − 2)) there exists a single
phase, and it always has N < 0 for �̂ > 0, but )N/)� > 0. Also, this only exists for a
limited range of values of �̂, due to the bounds for the value of p in Eq. (4.223).

While this theory seems to allow for a more complex phase space than Einstein-Maxwell,
we need to ask ourselves whether these new phases, and the special features that happen for
�1 > 1/(d(d − 1)), are allowed by the physical constraints derived in Section 4.4. If only �1 is
active, i.e., �2 = � = 0, then according to Eq. (4.149) we have

�1 ≤

1

7d
2
− 9d + 2

, (4.227)

which is smaller than 1/(d(d − 1)) for d ≥ 3, thus disallowing these phase transitions.
However, it is reasonable to wonder what happens if we consider non-vanishing �2 and �,

which do not affect directly the thermodynamic quantities for the planar black hole, but change
the allowed range of values for �1. In d = 3, 4 and 5, the unitarity constraints impose an upper
bound in �1 given by Eq. (4.150), which still allows for the phase transition to take place. A
stronger bound can be found by taking into account the constraint (4.184) obtained from the
WGC. In d = 3, in which case � = 0, combining Eq. (4.184) with Eqs. (4.147) and (4.148) one
can see that �1 is bound from above by

�1|d=3, �=0 ≤

1

8

, (4.228)

while phase transitions can take place above �1 = 1/(d(d − 1)) = 1/6, so these are forbidden.
The d = 4 case is more involved, as now the Gauss-Bonnet term must be taken into account.

The upper bound in �1 can be found from the intersection of (4.148) and (4.184) at saturation,
and it yields

�1|d=4, �=0 ≤

1 − f∞�

12f∞

. (4.229)

But since � ≥ 0 due to the WGC, this value is always smaller or equal to 1/12, which is
precisely the threshold value to produce phase transitions given by Eq. (4.226). Thus, the
different physical constraints seem to conspire to forbid the existence of phase transitions, at
least in the most relevant cases d = 3 and 4. This also avoids the non-physical situation of
absence of solutions for large �̂.

In d = 5, the same constraints lead to an absolute maximum �1|d=5, �=0 ≤ 1/16, which is not
enough to rule out the phase transition, whose threshold value is �1 = 1/20. For d ≥ 6 the
value of �1 can be arbitrarily large, as long as �2 takes a large negative value, so these exotic
phase transitions can not be avoided for large dimensions given our current constraints.

4.5.2.2 Phase space with �1 = 0 and � ≠ 0

Let us now study the effects of the term H
4 in the structure of the phase space, which we isolate

by setting �1 = 0. We also consider � ≥ 0, as implied by the WGC constraints obtained in
Section 4.4.3. We distinguish two main scenarios depending on the roots of the polynomial

d(d − 1) − 2p
2
+ �p

4
= 0 , (4.230)
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which determine extremality, as can be seen in Eq. (4.213). There are four different solutions
for this equation, p = ±p

±

ext (the two signs are independent), where

p
±

ext =

√

1

�
(
1 ±

√

1 − d(d − 1)�
)
. (4.231)

There are different possible scenarios similarly to the previous case, now depending on the
value of �, which we treat separately.
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Figure 4.4: Dimensionless chemical potential �̂ with respect to p for dif-
ferent values of the coupling �, with �1 = 0 and d = 4. In this case, �̂(p) is
non-invertible for � > 1/(d(d − 1)) ≈ 0.0833.

1. If � ≤ 1/(d(d − 1)) the two roots in Eq. (4.231) are real, and there are three families of
solutions. The first of them has |p| ≤ p

−

ext and is connected to the solutions of Einstein-
Maxwell theory. It exists for arbitrary values of �̂ and reaches the extremal limit for
p = p

−

ext. The temperature is negative for p−

ext < |p| < p
+

ext, and a second branch with
T ≥ 0 happens for

p
+

ext ≤ |p| ≤

√

3d − 4

(d − 2)�

, (4.232)

the upper limit corresponding to �̂ = 0 while keeping T ≠ 0. This one also exists for
arbitrary �̂ and has an extremal limit for p = p

+

ext. However, it can be seen that it is
not possible to find a value of p such that �̂′(p) = 0 in this range, and hence there
is only one thermodynamic phase. Finally, there is the third type of solutions with
|p| >

√

(3d − 4)/((d − 2)�), which only exist for very small values of �̂. However, these
do not produce phase transitions either, as the solution in the Einstein-Maxwell branch
always has the smallest grand-canonical free energy.

2. For � > 1/(d(d − 1)) the roots p±

ext become complex, implying that the extremal limit
does not exist. In this case, as shown in Figure 4.4, the relation �̂(p) has a maximum
and a minimum for p > 0 and vice versa for p < 0, instead of the divergence found
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Figure 4.5: Grand canonical potential !̂ with respect to �̂ for � = 0.433 >

�thr, with �1 = 0 and d = 4. One can see that there is a region where four
phases coexist with different values of p, and the dominant one is outlined
with a black dashed line. There exists a zeroth-order phase transition, and a
maximum value of |�̂| beyond which no solutions exist.

for smaller �. This means that there are up to four different phases for small �̂, and it
is also clear that there exists a maximum value of �̂ for which any phase exists. If we
keep increasing � we find that there is a point where the maximum value of �̂ for p > 0

becomes smaller than the maximum for p < 0 (and respectively with the minima). This
happens when � takes the value

�thr ≡
(3d − 4)

2

d(d − 1)(d − 2)
2
. (4.233)

If 1/(d(d − 1)) < � < �thr there are no phase transitions, and the dominant phase exists
up to a certain �̂max, beyond which simply there are no solutions. But when � > �thr, on
the other hand, there is another solution that extends beyond the dominant phase, and
hence when the latter finds its endpoint there is a zeroth-order phase transition. This is
illustrated in Figure 4.5 for d = 4, where one can see also that the phase with large |p| is
always subdominant.

Although it is the most interesting one, the scenario with � > 1/(d(d − 1)) looks rather
unphysical, as we would expect the theory to allow for solutions of arbitrary �̂. However,
unlike in the case of �1, we have no additional constraints on � that could rule out this case
from basic principles. In fact, the coupling � is the least constrained one in our theory, since
it does not affect the linearized equations on neutral backgrounds or the correlators ⟨J J ⟩ and
⟨T J J ⟩. Its first appearance will take place at ⟨J J J J ⟩, and it should provide non-trivial corrections
when studying the propagation of electromagnetic waves on charged backgrounds. It would
be interesting to study those cases and investigate possible unitarity or causality constraints
on �, to see whether these could forbid the unwanted values � > 1/(d(d − 1)).
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4.5.2.3 Phase space with �1 ≠ 0 and � ≠ 0

As we have seen in the previous two Sections, the couplings �1 and � separately have similar
effects: they produce simultaneous phases that can lead to zeroth-order transitions for certain
values of the couplings. However, the most undesirable feature is the fact that, whenever this
happens, there exist no solutions beyond a maximum value of |�̂|.

When � = 0 this situation is forbidden in d = 3 and 4 by the physical constraints found in
Section 4.4, and if one further assumes �2 = 0 then this behavior is ruled out in every dimension.
However, when � ≠ 0 we can not avoid it, as this coupling can in principle be arbitrarily large,
although we have argued that it is likely that there are other constraints that will bound the
possible values of � to a finite interval.

If both � and �1 are allowed to be non-zero we find again these exotic situations, and even
more involved ones. However, in view of our previous discussion, we are interested in the
cases in which �̂ can take arbitrarily large values. Let us first determine the values of �1 and �
that satisfy this property. For that, note that p has a maximum value whenever �1 > 0, since
we must fulfill 1 − 2�1p

2
≤ 0, as we argued below Eq. (4.221). Then, from Eqs. (4.213) and

(4.219) it follows that, in order for �̂ to take arbitrarily high values, the extremal limit must
exist. This means that the roots (4.231) must be real, which requires

� ≤

1

d(d − 1)

. (4.234)

In addition, in order for 1 − 2�1p
2
≥ 0 to hold we must demand

�1 ≤

1

2(p
−

ext)
2
. (4.235)

Whenever these two conditions are satisfied, it is guaranteed that there exist solutions for any
value of �̂. So the question we want to answer now is whether there are any special features in
the phase space within this reasonable set of couplings.

First, note that the solutions with |p| ≤ p
−

ext always exist, and that for these �̂ takes values in
the entire real line. In order to see whether there can be multiple phases, we need to find out if
there exist points for which �̂′(p) = 0 within this interval. However, it is possible to check that
this never happens as long as � and �1 are constrained by Eqs. (4.234) and (4.235), respectively.
Therefore, |p| ≤ p

−

ext generates a unique phase for which �̂ ranges from −∞ to +∞. Furthermore,
this phase has the same qualitative behavior as the one found for Einstein-Maxwell theory,
shown in Figure 4.3a.

However, there can be other phases if �1 is small enough. This happens for �1 ≤ 1/(2(p
+

ext)
2
),

in which case there exist additional solutions for

p
+

ext ≤ |p| ≤

1

2
√
�1

. (4.236)

In general, these have a quite similar profile to those in the interval |p| ≤ p
−

ext, but they
never dominate. The conclusion seems to be that, whenever we have the reasonable situation
that �̂ is unbounded, then no phase transition can take place and everything is qualitatively
similar to what is found for Einstein-Maxwell theory in the interval |p| ≤ p

−

ext, but they never
dominate. The conclusion seems to be that, whenever we have the reasonable situation that
�̂ is unbounded, then no phase transition can take place and everything is similar to what is
found for Einstein-Maxwell theory.
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4.6 Holographic hydrodynamics: shear viscosity

In Section 4.5.2 above we have explored the thermodynamic properties of charged flat black
holes (or black branes), which describe holographic CFTs at finite temperature and chemical
potential. In this state the theory behaves as a plasma, and in the hydrodynamic regime, which
corresponds to low momentum, it can be studied as a fluid [184, 317–319]. Then, we can ask
ourselves about the propagation of sound waves or different transport coefficients, which
determine the response of the plasma under perturbations.

In this respect, one of the quantities that attracted more attention from the early times of
holographic hydrodynamics was the shear viscosity �. The ratio between this quantity and the
entropy density takes a constant value in Einstein gravity [184–186],

�

s

|
|
|
|GR

=

1

4�

, (4.237)

which holds also in the presence of a chemical potential [258–260,320]. This led to the conjecture
that it is an universal result in holographic conformal field theories, and to conjecturing the
Kovtun-Son-Starinets (KSS) bound [186], which claims that �/s ≤ 1/(4�) for any fluid in nature.

But this holographic prediction is modified if one considers higher-curvature corrections
in the bulk theory, showing that it might not be a truly universal result [187–192]. The
ratio �/s has even been computed in a non-perturbative manner in theories such as Gauss-
Bonnet [100, 191, 193], Lovelock gravity [105, 194, 195], cubic and quartic Quasitopological
gravity [117, 196] and Generalized Quasitopological gravities [119, 122, 123], among others.
Those examples showed that, even when the theory is constrained by physical requirements,
the KSS bound can be lowered, although without reaching zero.23 Nevertheless, the status of
the question of how much this bound can be consistently lowered is not clear, since there are
arguments, such as those in [238], that constrain the higher-order couplings to be perturbatively
small. However, the arguments of this reference can not be directly applied to all types of
higher-derivative interactions, and the common belief is that there exists a bound for �/s lower
than the KSS one [321].

The effect of a chemical potential on the shear viscosity to entropy density ratio has been
less explored. As we mentioned, �/s is independent of � in holographic Einstein-Maxwell
theory, but this is no longer true if one introduces higher-derivative corrections. The effect of
perturbative corrections on the viscosity was computed in [264,265] forN = 2 supergravity, and
in a general d = 4 EFT (see also [267]). Regarding the non-perturbative calculations, the case
of Lovelock gravity minimally coupled to a vector field has been considered in [194, 268, 269].

However, a more general analysis has not yet been performed, and in particular the effect of
non-minimally coupled operators has not been studied at the non-perturbative level. Here we
perform the first exact and analytic computation of �/s with a chemical potential in a higher-
derivative theory, with non-minimal interactions. The goal is to get a broader perspective on
the effect of the higher-derivative terms on this ratio, and investigate how much the KSS bound
can be lowered while satisfying the physical constraints found in Section 4.4.

Let us start by writing the charged planar black hole solutions, which are given by

ds
2
= −

f (r)

f∞

dt
2
+

dr
2

f (r)

+

r
2

L
2
dx

2

(d−1)
, (4.238)

23 In Lovelock gravity it can be made arbitrarily small by taking d → ∞ [105].
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H =

Q

L
d−1

dx
1
∧ ⋯ ∧ dx

d−1
, (4.239)

where we fixed the value of the constant N0 = 1/

√

f∞ so that the speed of light at the conformal
boundary is one, and where f (r) is given by Eq. (4.59) with k = 0. Let us introduce the new
radial coordinate

z = 1 −

r
2

+

r
2
, (4.240)

defined in such a way that the horizon is located at z = 0 and the boundary at z = 1. Also, we
rescale the radial function to ̃

f (r), defined by

f (r) =

r
2

L
2

̃
f (r) , lim

r→∞

̃
f (r) = f∞ . (4.241)

Using these, the metric (4.238) can be expressed as

ds
2
=

r
2

+

L
2
(1 − z) (

−

̃
f (z)

f∞

dt
2
+ dx

2

(d−1)

)

+

L
2

4
̃
f (z)

dz
2

(1 − z)
2
. (4.242)

Since the horizon is located at z = 0, the function ̃
f (z) can be expanded around that point as

̃
f (z) =

̃
f
′

+
z +

1

2

̃
f
′′

+
z
2
+

1

6

̃
f
′′′

+
z
3
+ … , (4.243)

which will prove useful shortly.
The shear viscosity can be computed from the Kubo formula

� = − lim
!→0

1

!

G
R
12,12

(!,
⃗
k = 0) , (4.244)

where GR
12,12

(!,
⃗
k = 0) is a component of the retarded Green function of the stress-energy

tensor, given at zero momentum by

G
R
ab,cd

(!,
⃗
k = 0) = −i

∫
dt d

d−1
x e

i!t
Θ(t)⟨[Tab(x⃗), Tcd(0)]⟩ . (4.245)

This correlator can be computed holographically by considering a perturbation of the metric
g�� → g�� + ℎ��, with ℎ12 ≠ 0 [317, 322]. A rigorous computation of this quantity for higher-
derivative theories at perturbative order can be found, for instance, in [265]. However, the
method can be summarized in the much simpler procedure explained in [323], which has been
applied to several cases [117,119,122,123,196]. Nonetheless, we will compare our results in the
perturbative limit with those in [265].

According to [323], it is enough to consider a metric perturbation obtained by performing

dx
2
→ dx

2
+ "e

−i!t
dx

1
, (4.246)

where " is a small parameter, on the background (4.242). By evaluating the Lagrangian
√

|g|
with this perturbed metric and expanding to second order in ", one finds that a pole appears at
the horizon z = 0. Then, the shear viscosity can be read off from the residue of this pole,

� = −8�T lim
!, "→0

Res [
√

|g|, z = 0]

!
2
"
2

. (4.247)
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The computation for our theory (4.33) is more or less straightforward, and one obtains

� =

1

16�GN(d − 2)L
d−1
r
d+1

+

[r
2d

+ (d − 2 − 4
̃
f
′

+
�) + 2L

2
Q

2
r
2

+((5d − 4)�1 + 2�2)] . (4.248)

Here we find explicitly the coefficient ̃
f
′

+
of the expansion (4.243). This is related to the

temperature in Eq. (4.70), and it reads

̃
f
′

+
=

2�

√

f∞L
2

r+

T =

d(d − 1)r
4d

+
− 2L

2
Q

2
r
2(d+1)

+ + L
4
Q

4
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4

+
�

2(d − 1)r
2d

+ (r
2d

+
− 2L

2
Q

2
r
2

+
�1)

. (4.249)

On the other hand, the entropy density in the boundary theory has already been computed,
and is given in Eq. (4.212). Therefore, gathering everything together and simplifying, the ratio
of the shear viscosity to the entropy density can be written as

�

s

=

1

4� [

1 +

4p
2

((2d − 1)�1 + �2)

(d − 1)(1 + 2�1p
2
)

− �

2(d(d − 1) − 2p
2
+ �p

4

)

(d − 1)(d − 2)(1 − 4�
2

1
p
4
)]

, (4.250)

where we replaced Q by the parameter p introduced in Eq. (4.210). This is a function of the
radio between the chemical potential and the temperature, �̂ = ��∗/(4�LT ), which is related to
p through Eq. (4.219).

Let us first compare our result with that of [265]. Working at linear order in the couplings,
it is enough to invert Eq. (4.219) at zeroth order, and with this we get, in d = 4,

�

s

|
|
|
|d=4

=

1

4� [

1 − 4� +

8(8�̂)
2

(1 +

√

1 + 2(8�̂)
2
/2)

2
(
7�1 + �2 +

�

3)
+ …

]

. (4.251)

Now we have to take into account that our �̂ is related to �̄ in the reference by �̄ = 8�̂, one
factor of 4 coming from our definition as �̂ = ��∗/(4�LT ) and the remaining factor of 2 being
due to the different normalization of the vector field in the action. In addition, � is related to
c1 in [265] as � = 2c1, since these are the coefficients of the Riemann square term. We also
see, by inspecting the action in the Maxwell frame given by Eq. (4.34), that the coefficient
of the term R����F

��
F
��, called c2 in [265], is precisely 4c2 = 7�1 + �2, where again the factor

of 4 accounts for the different normalization of the vector field. Therefore, we reproduce Eq.
(3.25) of [265], which serves as a consistency check of the pole method that we have employed.
Now that this is settled, we can move on to discussing the properties of the ratio �/s in a fully
non-perturbative level.

From Eq. (4.250), it is clear that there are two contributions to �/s: one proportional to �
and another one proportional to the combination (2d − 1)�1 + �2, which is also the quantity
that appears in the numerator of a2 in Eq. (4.129). The Gauss-Bonnet coupling also determines
the energy flux parameter t2 as given in Eq. (4.85), and therefore for these theories it follows
that

a2 = t2 = 0 ⟹

�

s

=

1

4�

. (4.252)

One could speculate about a possible relation between having “trivial” 3-point functions ⟨T T T ⟩
and ⟨T J J ⟩, and the absence of corrections to �/s for more general CFTs. However, this could
be just an accident due to the fact that our theory has only a few parameters. In fact, note that
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the combination (2d − 1)�1 + �2 is the coupling of the term (H
2

)

��

��

R
��

��
in the action (4.33),

so it makes sense that it controls both a2 and the corrections to �/s. Then, one would expect
additional higher-order terms to spoil this connection, but it is quite remarkable nevertheless
that Eq. (4.252) holds non-perturbatively for our theories. Note also that in the extremal limit,
d(d − 1)− 2p

2
+�p

4
= 0, the GB contribution to �/s vanishes and only the contribution coming

from the non-minimal couplings remains, as was already noticed in [265, 269].
Let us study now the dependence on the chemical potential of the shear viscosity to entropy

density ratio. We focus on the values of the parameters �1 and � that give rise to a single
phase with an extremal limit, as studied in Section 4.5.2.3, while taking into account also the
constraints in the parameters found in Section 4.4. For convenience, we rewrite Eq. (4.250) as

�

s

=

1

4�
[1 + ((2d − 1)�1 + �2)f1(p) − �f2(p)] , (4.253)

where the dependence on p is encoded in the functions

f1(p) =

4p
2

(d − 1)(1 + 2�1p
2
)

, f2(p) =

2(d(d − 1) − 2p
2
+ �p

4

)

(d − 1)(d − 2)(1 − 4�
2

1
p
4
)

. (4.254)

Since �1 ≥ 0, it is straightforward to see that f1(p) grows monotonically with |p|, ranging from
f1(0) = 0 to its maximum value at extremality p = ±pext. On the other hand, f2(p) has the
opposite behavior, since it takes its maximum value at p = 0 and then it decreases to zero at
extremality.24

As a consequence of the WGC we have � ≥ 0, meaning that the GB contribution to �/s is
always negative but monotonically increasing with the chemical potential. Then, the global
behavior of the ratio �/s will depend strongly on the sign of a2, and we have to distinguish the
two possible cases.

4.6.0.1 Case 1: a2 ≤ 0

Whenever a2 ≤ 0, so that (2d − 1)�1 + �2 ≥ 0, the shear viscosity to entropy ratio is a growing
function of �̂. It therefore reaches its minimum value for �̂ = 0,

�

s

|
|
|
|�̂=0

=

1

4� [
1 − �

2d(d − 1)

(d − 1)(d − 2)]
. (4.255)

The largest value of � is given by the upper bound in Eq. (4.143), and therefore we find that
the absolute minimum value of �/s that can be reached with a2 ≤ 0 is

min
[

�

s
]
=

1

4� [
1 −

d(d − 3)(d
2
− d + 6)

2(d
2
− 3d + 6)

2 ]
. (4.256)

This is the lower bound for GB gravity [100, 101, 191, 193], and one can see that �/s never
reaches zero, but its minimum value takes place in d = 8, giving 4��/s ≥

219

529
≈ 0.41399.

The maximum value of �/s as a function of the chemical potential for a2 ≤ 0 is reached at
extremality, which corresponds to

pext =

√

1

�
(
1 −

√

1 − d(d − 1)�
)
. (4.257)

24We recall that we always take �1 to satisfy 1 − 2�2p
2

ext > 0.
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Figure 4.6: Ratio of the shear viscosity over the entropy density as a function
of the chemical potential, with a2 < 0. We set d = 4 and � = 0.02 in all
cases, and from blue to red the different curves correspond to {�1, �2, �} =

{0.0024, −0.016, 0.082} , {0.0019, −0.012, 0.08} , {0.0006, −0.0023, 0.077} and
{0, 0.0038, 0.083}, which satisfy all the physical constraints studied in Section
4.4. In general, �/s is grows with �̂, and its value does not depart much from
1/(4�).

This gives
�

s

|
|
|
|ext

=

1

4�
[1 + ((2d − 1)�1 + �2)f1(pext)] , (4.258)

and since f1(p) is a growing function, this value will be larger if p is larger. Now, pext always
grows with �, and its maximum value is reached for � = 1/(d(d − 1)), after which the extremal
limit can not exist. In this case we obtain p2

ext = d(d − 1), and plugging it in the expression for
�/s above we get an upper bound for that ratio in our theories,

�

s

≤

1

4� [

1 +

4d(d − 1)((2d − 1)�1 + �2)

(d − 2)(1 + 2d(d − 1)�1) ]

. (4.259)

We can now explore the values of �1 and �2 that maximize this quantity while being compatible
with the constraints found in Section 4.4. We have first the unitarity constraints (4.147) and
(4.148), that involve the rescaled couplings f∞�1,2. Since Eq. (4.259) has no local maximum
inside the region delimited by these inequalities, the maximum must occur at the boundary,
this is, where the constraints are saturated. By studying what happens for a few values of d,
we are drawn to the conclusion that the maximum is reached at the intersection of �1 = 0 and
the boundary given by Eq. (4.147). We therefore obtain

(2d − 1)�1 + �2

1 + 2d(d − 1)�1

|
|
|
|(4.147)

≤

1

(3d − 2)f∞

, (4.260)

and the maximum happens for �2 = 1

(3d−2)f∞

. Since f∞ ≥ 1, this value is larger when � = 0, in
which case f∞ = 1. On the other hand, we can consider theWGC constraint given by Eq. (4.184).
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The looser bound on �1 and �2 is reached precisely for � = 0 and the maximum allowable value
of �, � = 1/(d(d − 1)). This yields

3(d − 1)�1 + �2 ≤

d − 2

4d(3d − 4)

, (4.261)

and when we combine this together with �1 ≥ 0 we find

(2d − 1)�1 + �2

1 + 2d(d − 1)�1

|
|
|
|(4.262)

≤

d − 2

3d(3d − 4)

, (4.262)

the maximum being reached for �1 = 0 and �2 = d−2

4d(3d−4)
. We can see that, in every dimension

d ≤ 3, the bound (4.262) is stronger than (4.260), so the former is the relevant one. Therefore,
we conclude that the maximum possible value of �/s is

max
[

�

s
]
=

1

4� [
1 +

d − 1

3d − 4]
, (4.263)

and among these the largest value happens for d = 3, which gives 4��/s ≤ 7/5.
In conclusion, in the case a2 ≤ 0 the shear viscosity to entropy density ratio is a growing

function of the dimensionless chemical potential, and it has absolute lower and upper bounds
given by

219

529

≤ 4�

�

s

≤ 75 . (4.264)

As shown, these constraints hold in any dimension, for arbitrary chemical potential and for
any value of the higher-derivative couplings that satisfy the physical conditions discussed in
Section 4.4. Thus, whenever a2 ≤ 0, the ratio �/s cannot depart a lot from the Einstein-Maxwell
prediction 1/(4�). This is illustrated in Figure 4.6, where we show the profile of �/s as a
function of �̂ for several values of the parameters compatible with all the physical constraints.

4.6.0.2 Case 2: a2 > 0

The situation becomes very different when one considers a2 > 0, this is, (2d − 1)�1 + �2 < 0.
This means that both corrections to �/s are negative, so this quantity is always smaller than
1/(4�). On the other hand, the a2 contribution to �/s is now a decreasing function of �̂, but the
GB contribution is still growing, so the overall character of �/s will depend on the particular
case. By expanding Eq. (4.253) near p = 0, one can see that this becomes a decreasing function
of the chemical potential, at least for small �̂, if

(2d − 1)�1 + �2 +

�

d − 1

< 0 . (4.265)

Since the GB correction is already able to lower the KSS bound, whenever the inequality above
is satisfied we may obtain an even lower bound by turning on the chemical potential. In order
to answer how much the value of �/s can be diminished we need to take into account all
physical constraints on the higher-derivative couplings. However, a general analysis would be
more complicated than before, since we do not know anymore for which value of �̂ the ratio
�/s reaches its minimum.
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Figure 4.7: Ratio of the shear viscosity over the entropy density as a
function of the chemical potential, with a2 > 0. For this plot we chose d = 4

dimensions and the values of the couplings � = �1 = � = 0. Even though
these respect all the physical constraints that we found, it is possible to
obtain �/s = 0 for a sufficiently large chemical potential.

In spite of this, it is enough to consider a simple example to show that we can lower the
value of �/s, and therefore also that of �, all the way down to zero and below. Let us take
�1 = � = � = 0, so the only active coupling is �2. Due to the WGC bound (4.184), this parameter
has to be negative, �2 ≤ 0. In that case the shear viscosity to entropy ratio reads simply

�

s

=

1

4� [
1 +

4p
2

d − 2

�2
]
, (4.266)

and we show it as a function of �̂ in Figure 4.7. The parameter |p| ranges from 0 to pext =√

d(d − 1)/2 when �̂ goes from 0 to infinity, and therefore the minimum value of �/s is reached
at extremality,

�

s

|
|
|
|ext

=

1

4� [
1 +

2d(d − 1)

d − 2

�2
]
. (4.267)

So now we have to look at the bounds on �2, given by Eqs. (4.147) and (4.148), besides Eq.
(4.184) which we are already taking into account. Eq. (4.147) does not impose any additional
constraint, since it is always satisfied for �2 ≤ 0, while Eq. (4.148) sets a lower bound only for
d = 3, 4 and 5, reading

�2 ≥ −

d − 2

6d − d
2
− 4

, for d = 3, 4, 5. (4.268)

In higher dimensions there is no limit on how negative �2 can be, so �/s can certainly be taken
to zero. Focusing on these lower dimensions, which are usually the most relevant, we see that
the minimum value of �/s in this example is

min
[

�

s
]
=

1

4� [
1 −

2d(d − 1)

6d − d
2
− 4]

, (4.269)
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which is in fact negative for d = 3, 4 and 5. A negative � is meaningless, and it indicates that
the plasma is unstable, so we can define a critical value of �̂ at which the viscosity vanishes and
above which it makes no sense to talk about hydrodynamics. Taking into account Eq. (4.219),
we see that this is

�̂crit = −

(d − 1)

√

−(d − 2)�2

(d − 2)(d − 2 + 2d(d − 1)�2)

, (4.270)

and its minimum value is precisely reached for the smallest �2 in Eq. (4.268),

�̂
min
crit =

(d − 1)

√

6d − d
2
− 4

(d − 2)
2
(3d − 2)

, for d = 3, 4, 5. (4.271)

This result can probably be lowered by considering other couplings besides �2, the only non-
zero one in our simple example. In any case, this result means that the viscosity cannot vanish
as long as �̂ < �̂

min
crit for any choice of parameters satisfying the physical constraints. For d ≥ 6

we have �̂min
crit = 0 as �2 is in principle allowed to be arbitrarily negative, so it is possible to

achieve a vanishing � with an arbitrarily small chemical potential.
These results found for a2 > 0 are certainly surprinsing, and possibly pathological. There-

fore, it would be interesting to investigate whether other types of constraints, such as those
coming from plasma instabilities [1, 268, 324] or causality deep into the bulk [105], could be
used to rule out values of �/s very close to zero.

4.7 Discussion

In this Chapter of the thesis we have extended the construction of Electromagnetic Quasitopo-
logical gravity theories, originally proposed in D = 4 by [23], to general dimensions. These
are models containing a (d − 2)-form field H non-minimally coupled to gravity, which can be
dualized into theories with vector fields, thus providing an appealing setup for studies of holog-
raphy with a chemical potential. The interaction between this generalized Maxwell field and
gravity is encoded in higher-derivative corrections to the gravity action, made of contractions
of H and the curvature tensors, which are chosen in such a way that single function black hole
solutions of the form (4.18), with H given by Eq. (4.21) and N(r) = constant, are allowed.

The non-minimal couplings in these theories affect the central charge of the 2-point function
⟨J J ⟩, and give rise to a non-vanishing parameter a2 (see Eq. (4.129)) that controls the angular
distribution of the energy 1-point function according to Eq. (4.106). This in turn means that
the boundary theory has a more general ⟨T J J ⟩ correlator, and in the end implies that the EQG
models allow us to probe holographic CFTs beyond the universality class dual to Einstein-
Maxwell theory. In addition, the special properties of these gravity theories allow us to carry
out a fully analytic and exact study of many of their holographic aspects, so we do not need to
restrict to the perturbative regime.

Most of the analysis presented here is focused on the four-derivative theory whose action is
given in Eq. (4.33), and which contains couplings of the form RH

2 and H 4. However, in Section
4.1.4 we also provide expressions for EQG theories at any higher order in the curvature and
the (d − 2)-field H , which will be considered in the following Chapter.

One of the main questions we tried to answer is that of how the physics of the dual CFT
can change while satisfying physically reasonable conditions. Thus, in Section 4.4 we have
constrained the couplings of our bulk theory by demanding that the boundary CFT respect
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unitarity, which in turn means that the central charges CT and CJ , as well as the energy fluxes
⟨(n⃗)⟩J and ⟨(n⃗)⟩T (see respectively Eqs. (4.106) and (4.142)), have to remain positive. We also
studied the constraints coming from demanding causality in the bulk on the background of
a planar neutral black hole. In the case of gravitational fluctuations, it is known that these
causality constraints imply the positivity of the energy flux ⟨(n⃗)⟩T [102, 104, 106, 291], and
here we have shown that demanding that electromagnetic waves do not propagate faster than
light is equivalent to constraining ⟨(n⃗)⟩J to be positive. These causality bounds follow from
looking at the phase velocity of waves close to the AdS boundary, and while we have not
observed additional constraints when extending these conditions away from the boundary, a
more thorough search of causality bounds inside the bulk as in [105] would be needed.

Besides these, in our analysis we include constraints derived from the weak gravity conjec-
ture. As proposed by [271] and recently explored by [273] in the case of AdS, the so-called mild
form of the WGC demands that the corrections to the entropy of thermally stable black holes
be positive in the microcanonical ensemble. In particular, this implies that the charge-to-mass
ratio of extremal black holes should be corrected positively [309], which is the most familiar
form of the WGC for asymptotically flat black holes [272, 308]. However, demanding the
entropy corrections to be positive is a more general condition than that, and is amenable to
the AdS case. When applied to spherical and planar black holes we obtain constraints on the
couplings, which become powerful when combined with unitarity/causality bounds. In fact,
taking all these into account we find that the couplings �1, �2 and � of the theory (4.33) can
only lie in a very small compact set of R3 in d = 3, 4 and 5. The only parameter that can take
arbitrarily large values is �, which is simply required to be positive. However, we suspect that
additional causality or unitarity conditions, involving higher order correlators, should provide
an upper limit for this coupling.

When the positivity-of-entropy bounds are considered instead for hyperbolic black holes
we find something quite remarkable: some bounds become incompatible with those coming
from spherical black holes. For example, this would require that the Gauss-Bonnet coupling
is vanishing, � = 0, which seems an unreasonably strong constraint, since a positive GB
coupling (compatible with the WGC bounds imposed by spherical black holes) is explicitly
realized in string theory effective actions [311, 312]. This calls into question the validity of
the WGC bounds for hyperbolic black holes, so we decided to trust only those imposed by the
spherical case. As we will see in the next Chapter, this leads also to reasonable physics even
with hyperbolic black holes involved, in particular when computing Rényi entropies. In any
case, this discussion would require further investigations.

Next, in Section 4.5 we studied the thermodynamics of charged plasmas for these holo-
graphic models. Knowing that a single phase exists for any value of the temperature and
chemical potential for Einstein-Maxwell, we focused on the question of whether new phases
could appear in our higher-derivative theory (4.33). We have seen that several branches of solu-
tions could appear, and for large enough couplings we even find zeroth-order phase transitions
from the usual Einstein-Maxwell-like branch to a new exotic phase.

However, this behavior always comes accompanied by the quite unphysical phenomenon
of not having a large � regime, this is, no black hole solutions exist if � is too large. It is thus
natural to ask ourselves whether this scenario can be ruled out by the physical constraints for
the couplings obtained before. Since the coupling � is poorly constrained by our analysis, we
focused first on the case � = 0. In this situation, we were able to show that the exotic absence-
of-solutions behavior (as well as the existence of phase transitions) is ruled out in d = 3 and 4
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dimensions, due in particular to the WGC bounds, but not in d ≥ 5. When � ≠ 0 this phase
transition is not ruled out by our constraints, but as we argued this coupling is not properly
constrained. In general, we tend to think that these exotic phase transitions are unphysical,
and it would be interesting to investigate whether additional consistency requirements could
rule all of them out.

Finally, in Section 4.6 we studied the shear viscosity of these plasmas, focusing on the
case where a phase exists for arbitrary values of the chemical potential. Our result for the
shear viscosity to entropy density ratio, �/s, provides a non-perturbative and d-dimensional
generalization of the computation of [265]. This ratio is in general a function of the chemical
potential, as given by Eq. (4.253), and the departure from the value 1/(4�) is controlled by two
terms that are proportional, respectively, to the GB coupling � and to the parameter a2.

Taking into account the unitarity and WGC bounds, we find that the behavior is quite
different depending on the sign of a2. A negative value a2 ≤ 0 leads to very reasonable results:
the shear viscosity to entropy ratio is always a growing function of �, and it has absolute
minimum and maximum values given by Eq. (4.264). It is worth mentioning that QCD belongs
to this class, aQCD

2
< 0, so it would be interesting to study if the quark-gluon plasma in QCD

shares any of the qualitative properties observed in our holographic models. On the other
hand, we have seen that a2 > 0 can lead to � = 0 for large enough values of the chemical
potential, without violating any of the available physical conditions, and in fact we were
able to achieve this in a simple model with only �2 ≠ 0. However, it would be interesting
to understand if other mechanisms could prevent the vanishing of the shear viscosity. A
typical argument to rule out large corrections to �/s in holographic higher-order gravities
is that of [238]. However, this is based on corrections to the graviton 3-point function, and
it is clear that the terms with �2 in the action (4.33) cannot modify this quantity, so we do
not have a concrete argument by which this coupling should be perturbatively small. Still,
it would be convenient to investigate other constraints that might avoid reaching too small
values of �, such as causality on charged backgrounds in the bulk interior, or the existence of
plasma instabilities [194, 268, 324]. Otherwise, the example that we found could indicate that in
certain CFTs it would be possible to reach an arbitrarily low viscosity by turning on a chemical
potential.

Besides those points already mentioned above, there are some holographic aspects and
applications of these theories that we did not address here and could be worth pursuing. In
particular, this includes studying the thermodynamic phase space of CFTs in a sphere or carrying
out a more general hydrodynamic analysis, including for instance the study of conductivities. Of
course, it would be natural to consider these EQG corrections in the holographic superconductor
of Chapter 3. Indeed, the basic ingredients of that model are gravity, a Maxwell field and a
charged scalar field, as given by the action (3.2), so one would expect the dynamics of the
system to change if one included non-minimal couplings as proposed in this Chapter.

Let us close this discussion by commenting on some new results that appeared based on the
theories proposed here and in [23]. In Ref. [325], the construction presented here is generalized
by allowing the function f (r) that characterizes single-function black hole solutions to be
determined by a second order ODE, rather than a strictly algebraic equation. This leads to
finding theories that belong to the family of “Electromagnetic Generalized Quasitopological
gravities,” particularly in 3 bulk dimensions and at any order in the curvature. Also, Ref.
[326] proves some universal properties of charge transport for generic CFTs described by
4-dimensional theories of the type treated here, but that satisfy the property of self-duality.
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In the upcoming Chapter, we extend the holographic study of EQGs performed here by
computing Rényi and entanglement entropies. This will serve to characterize further these
theories, and we will be able to derive one universal relation for the entanglement entropy in
the presence of a chemical potential.
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5
Charged Rényi and entanglement
entropies

Entanglement entropy [327] and Rényi entropies [328, 329], as well as their holographic coun-
terparts [174, 175, 330], constitute a very useful way to probe the amount of entanglement
between a region and its complementary in a quantum field theory [331, 332]. These quantities
are able to capture interesting universal information from the vacuum state of a CFT, such as
the Virasoro central charge c for two-dimensional theories [327, 333], the Euclidean partition
function on the sphere in odd dimensions [334,335], the coefficients of the trace anomaly in even
dimensions [336–339], the stress-energy tensor 2-point function charge CT [199, 201, 340, 341],
and the thermal entropy coefficient CS [119, 342, 343], among others [344–346]. It has also been
suggested that the full CFT data might be accessible from a long-distance expansion of the
mutual N -partite information [347–353].

For a bipartition of the Hilbert space of a quantum system in two subspaces A and B, the
Rényi entropies are defined as

Sn(A) =

1

1 − n

logTr �n
A
, (5.1)

where �A ≡ TrB� is the reduced density matrix of the subsystem A, obtained by taking the
partial trace over the complementary B of the total density matrix �. For a QFT, we are
interested in the case in which the subsystems A and B correspond to two spatial regions, at a
fixed time and separated by an entangling surface Σ.

The Rényi index n is usually considered an integer, which allows one to compute these
entropies by using the replica trick [327]. However, if one is able to continue n to an arbitrary
real number, then it is possible to recover the entanglement entropy as the limit n → 1,

SEE(A) = −Tr [�A log �A] = lim
n→1

Sn(A) . (5.2)

In this Chapter we will study these quantities for quantum field theories charged under a
global symmetry, which as argued can be described using the Electromagnetic Quasitopological
gravities studied in Chapter 4, by means of the holographic duality. However, the usual
definition for the Rényi entropy given in Eq. (5.1) is not enough when a chemical potential is
involved, so it needs to be extended. The appropriate generalization is proposed in [261], and
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it reads

Sn(�) =

1

1 − n

logTr [�̄A(�)]
n

, �̄A(�) =

�Ae
�QA

Tr [�Ae�QA]
, (5.3)

where QA is the charge conjugate to � that is enclosed in the region A. It is clear from this
definition that Sn(�) reduces to Sn given by Eq. (5.1) in the limit � → 0.

A very important feature of Sn(�) is that, for spherical entangling surfaces Σ, it admits
a generalization of the conformal map of [330, 334], which provides a way to evaluate this
quantity from the thermal entropy in the hyperbolic cylinder [261]. This allows one to perform
explicit holographic calculations, as will be explained below, and it is a fundamental point in
our analysis. Some additional studies of charged Rényi entropies and closely related notions
can be found in [354–362].

Regarding the work presented here, in Section 5.1 we continue the study of the four-
derivative EQG given by Eq. (4.33), by computing the charged Rényi entropies Sn(�) and the
generalized twist operators. We will see that, as long as the physical constraints considered
before are met, a small chemical potential always increases the amount of entanglement. Also,
the Rényi entropies satisfy a set of standard inequalities as a function of the index n, as long
as the WGC bounds are also respected. Finally, we will compute the scaling dimension of the
generalized twist operators defined in [261], and check that several relations to 2- and 3-point
functions shown in that reference also hold for our theory.

Afterwards, in Section 5.2, building upon the results of the four-derivative EQG studied
before, we identify a relation between the expansion of the entanglement entropy for small
chemical potential and the coefficients CJ and a2 of the theory. We conjecture that this might
be a universal identity for CFTs with a spherical entangling region, and show that it holds true
given the known relations for the generalized twist operators. This claim will be supported by
an explicit computation of these quantities for the arbitrary-order EQGs introduced in Section
4.1.4.

In this Chapter we include contents from two publications, [26] and [27], whose detailed
information can be found in pages 212 and 213 of this thesis, respectively.

5.1 Rényi entropies and twist operators in the four-derivative
EQG

The goal of this Section is to compute the charged Rényi entropies (5.3) for the four-derivative
Electromagnetic Quasitopological gravity theories studied in the previous Chapter, whose
action is given by Eq. (4.33). After that we will also analyze a couple of related quantities: the
scaling dimension and the magnetic response of generalized twist operators [261], which will
be introduced later on.

In the case of interest the quantum field theory is defined in flat space, and the entangling
surface Σ is a sphere of radius R, namely Σ = Sd−2(R). For a CFT one can prove, by using
the Casini-Huerta-Myers map [334], that these Rényi entropies are related to the thermal
entropy of the same theory placed on a hyperbolic cylinder, S1 ×Hd−1

(R). The precise relation
reads [261, 330]

Sn(�) =

n

n − 1

1

T0
∫

T0

T0/n

Sthermal(T , �) dT , (5.4)
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where
T0 =

1

2�R

. (5.5)

While this is formulated in the frame of the CFT, it is also clear how to compute the Rényi entropy
holographically from it. Indeed, the thermal entropy of a holographic CFT on S1 ×Hd−1

(R) is
nothing but the Wald’s entropy of a black hole with a hyperbolic horizon in the dual gravity
theory.

5.1.1 Rényi entropies

As argued above, in order to compute the charged Rényi entropies for the holographic CFTs dual
to (4.33), we have to consider charged black hole solutions with hyperbolic horizon topology.
For our theory, these take the form

ds
2
= −N

2

−1
f (r)dt

2
+

dr
2

f (r)

+ r
2
dΞ

2

(d−1)
, (5.6)

where N−1 is a constant, dΞ2

(d−1)
is the line element of the hyperbolic space of unit radius and

f (r) is given by Eq. (4.59) with k = −1. This function behaves asymptotically as f (r) ∼ r
2
f∞/L

2,
so we set the constant N−1 to

N−1 =

L

√

f∞R

. (5.7)

This is a rescaling of the time coordinate, which makes the boundary metric conformal to

ds
2

bdry = −dt
2
+ R

2
dΞ

2

(d−1)
, (5.8)

whose spatial slices are hyperbolic spaces of radius R, as intended. The Rényi entropies across
a spherical entangling region are then computed through the integral (5.4), where Sthermal is
the Wald entropy of the black hole, given by Eq. (4.73). Notice that it is important that Sthermal

is considered as a function of T and �, so that the integration is carried out at constant �.
Although this integration seems tricky at first sight, it can be greatly simplified by taking into
account the first law of thermodynamics (4.204), which implies

S = −

)Ω(T , �)

)T

. (5.9)

Therefore, plugging this in Eq. (5.4) we obtain

Sn(�) =

n

n − 1

1

T0

[Ω(T0/n, �) − Ω(T0, �)] . (5.10)

The form the grand canonical potential Ω in terms of the horizon radius and the charge was
given before in Eq. (4.205). Setting k = −1 in that expression, introducing the parameters x
and p defined by

x =

r+

L

, Q = px
d−1
L
d−2

, (5.11)
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and replacing T = T0/n = 1/(2�Rn), the expression for Ω(T0/n, �) becomes

Ω =

L
d−1
V−1, d−1

16�GN

√

f∞R[

(d − 1)x
d
−

2p
2
x
d

d − 2

− x
d−2

(

d − 1 +

2x

√

f∞

n )

+

3�p
4
x
d

3d − 4

+ 2�1p
2
x
d−2

(

3(d − 1) +

2x

√

f∞

n )

+ 2�2p
2
x
d−2

+ (d − 1)�x
d−4

(

1 +

4x

√

f∞

n(d − 3)) ]

.

(5.12)
However, in order to replace this in Eq. (5.10) it needs to be written in terms of n and �, so
we have to find the relations x = x(n, �) and p = p(n, �). For that, it is convenient to present
the expressions of n and � in terms of x and p, which follow from Eqs. (4.70) and (4.200) after
setting k = −1,

1

n

=

1

2x

√

f∞(1 − 2�1p
2
− 2�x

−2
)[

− (d − 2) + dx
2
+ (d − 4)�x

−2

−

2p
2

d − 1
(x

2
− 3d(d − 1)�1 − d�2) +

�x
2
p
4

d − 1 ]
,

(5.13)

� =

Lp

�∗

√

f∞R [

x

d − 2

−

�1

x (

3(d − 1) +

2x

√

f∞

n )

−

�2

x

−

xp
2
�

3d − 4]

. (5.14)

In practice, it does not seem possible to invert these equations analytically to obtain explicit
expressions for x(n, �) and p(n, �). Therefore, to circumvent this in the next Sections we focus
on two limiting regimes, namely, small � and � → ∞.

Before getting on to the actual computations, let us introduce the notation

�̄ =

�∗R

√

f∞

L

� , (5.15)

as this combination will appear repeatedly in our expressions. Notice also that this is a
dimensionless quantity.

5.1.1.1 Small �

Here we consider the case in which �̄ ≪ 1, so that it is enough to carry out the inversion
procedure of Eqs. (5.13) and (5.14) perturbatively in �̄. Furthermore, as an attempt to make
explicit computations and capture the effects produced by the non-minimal couplings we are
going to set � = 0, or equivalently f∞ = 1. This makes sense, since the effect of the GB coupling
on (uncharged) Rényi entropies is already known [330] — see also [119, 363–365] for other
studies of holographic RE in higher-order gravities.

We therefore expand x(n, �) and p(n, �) in this regime as

x(n, �) = x̂n + �x̂n�̄
2
+  (�̄

4

) , p(n, �) = �pn�̄ +  (�̄
3

) . (5.16)

By plugging these into Eqs. (5.13) and (5.14) we find the values of the coefficients, which are

x̂n =

n
−1

+

√

n
−2

+ d(d − 2)

d

, (5.17)
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�x̂n = −

2(d − 2)
2
x̂
3

n[2(d
2
− 1)�1 + x̂

2

n(d(d − 1)�1 − 1) + d�2]

(d − 1)(d(x̂
2

n
+ 1) − 2)[x̂

2

n(d(d − 2)�1 − 1) + (d − 2)((2d − 1)�1 + �2)]

2
, (5.18)

�pn =

(d − 2)x̂n

�
EQG
eff − (x̂

2

n
− 1)(d(d − 2)�1 − 1)

. (5.19)

We recall that �EQG
eff , given in Eq. (4.100), is the combination that appears in the denominator of

the central charge CJ in Eq. (4.98). Taking this perturbative expansion into account, the grand
canonical potential for given values of n and � takes the form

Ωn(�) = −

L
d−1
V−1, d−1

16�GNR [

x̂
d−2

n
(x̂

2

n
+ 1) +

2(d − 2)x̂
d

n

�
EQG
eff − (x̂

2

n
− 1)(d(d − 2)�1 − 1)

�̄
2

]

+  (�̄
4

) . (5.20)

Now, noting that x̂1 = 1, we can take the limit n → 1 of this quantity to obtain

Ωn(�) = −

L
d−1
V−1, d−1

8�GNR [

1 +

d − 2

�
EQG
eff

�̄
2

]

+  (�̄
4

) , (5.21)

and replacing this in Eq. (5.10) we find the form of the n-th Rényi entropy for small �,

Sn =

nL
d−1
V−1, d−1

4(n − 1)GN [

2 − x̂
d−2

n
(x̂

2

n
+ 1)

2

+

d − 2

�
EQG
eff (

1 −

x̂
d

n

1 − (x̂
2

n
− 1)(d(d − 2)�1 − 1)/�

EQG
eff )

�̄
2

]

+  (�̄
4

) .

(5.22)
Let us remark at this point that the volume V−1, d−1 is a divergent function of the ratio

between the radius of the entangling surface R and a cutoff �. In fact, the leading term gives an
area law,

V−1, d−1 =

VSd−2

d − 2

R
d−2

�
d−2

+ … , where VSd−2 =
2�

(d−1)/2

Γ[(d − 1)/2]

, (5.23)

since the quantity VSd−2Rd−2 is indeed the area of the spherical entangling surface.
It is interesting to keep only the universal part in this expansion, which can be extracted

from the subleading terms and will provide us with the regularized RE [334]. The form of this
universal part depends on the dimension: for even d it is logarithmic in the cutoff, while for
odd d it is simply a constant. In any case, it reads [334]

V
universal
−1, d−1

=

�d−1

4�

VSd−1 , where �d−1 =

{

(−1)
(d−2)/2

4 log(R/�) for d even,

(−1)
(d−1)/2

2� for d odd,
(5.24)

and we will use this regularized volume from now on. It is also useful to introduce the quantity

a
∗
=

L
d−1

8GN

�
(d−2)/2

Γ(d/2)

, (5.25)

which represents the universal contribution to the regularized EE in theories dual to Einstein
gravity. This parameter can also be easily computed for higher-curvature gravities [197, 198],
and in general it coincides with the a-type trace-anomaly charge for even d, while in odd
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dimensions it is proportional to the free energy of the corresponding theory evaluated on
Sd [334]. In terms of this parameter, we can write the holographic Rényi entropies as

Sn =

na
∗
�d−1

n − 1 [

2 − x̂
d−2

n
(x̂

2

n
+ 1)

2

+

d − 2

�
EQG
eff (

1 −

x̂
d

n

1 − (x̂
2

n
− 1)(d(d − 2)�1 − 1)/�

EQG
eff )

�̄
2

]

+  (�̄
4

) .

(5.26)

Let us now explore the properties of these entropies, starting with the most relevant one:
the entanglement entropy, corresponding to n → 1. This limit yields

SEE = lim
n→1

Sn = a
∗
�d−1

[

1 +

(d − 2)
2

(1 − 3d(d − 1)�1 − d�2)

(d − 1) (�
EQG
eff )

2
�̄
2

]

+  (�̄
4

) . (5.27)

It is interesting to think about the sign of the coefficient multiplying �̄2 in this expression, or
more precisely the quantity

)
2

�̄
SEE

SEE

|
|
|
|�=0

=

2(d − 2)
2

(1 − 3d(d − 1)�1 − d�2)

(d − 1) (�
EQG
eff )

2
. (5.28)

In Einstein-Maxwell theory this is clearly positive, so that the holographic entanglement grows
when we turn on a chemical potential, but we should check if this is also true in our family of
theories. For doing so we need to take into account the physical constraints on the parameters
derived in Section 4.4, and in fact it is enough to consider only the unitarity constraints. Let us
first note that the bound (4.147) can be expressed as

−

2

d − 2

+ 2d�1 +

3d − 2

d(d − 2)

�
EQG
eff ≥ 0 . (5.29)

Then, we have

1−3d(d−1)�1−d�2 = −

2

d − 2

+2d�1+

d

d − 2

�
EQG
eff > −

2

d − 2

+2d�1+

3d − 2

d(d − 2)

�
EQG
eff ≥ 0 , (5.30)

where we took into account that �EQG
eff > 0 and 3d−2

d(d−2)
<

d

d−2
for d ≥ 3. Note that the result we

obtain is strictly an inequality, since �EQG
eff = 0 is not allowed, and thus it implies that, for all

unitary CFTs dual to our theories,
)
2

�̄
SEE

SEE

|
|
|
|�=0

> 0 . (5.31)

Given the robustness of this result, it is tempting to conjecture that the entanglement entropy
should always grow with the chemical potential for any unitary CFT at zero temperature.1

It is possible to extend this result to prove that the coefficient of �2 for all Rényi entropies
(5.26) with n ≥ 1 is strictly positive. For that, let us note that for n > 1 we have

√

(d − 2)/d <

xn < 1, and also the inequality

1 −

3d − 2

2d
(1 − x̂

2

n) > x̂
d

n
, for d ≥ 3, n > 1, (5.32)

1 This is in line with the results of [366] for the holographic EE of an infinite rectangular strip in the case � ≠ 0

and T = 0.
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which can be checked by plugging in the value of x̂n given in Eq. (5.17). From these we observe
that, defining � = d(d − 2)�1 − 1, for n > 1 we have

1 −

x̂
d

n

1 − (x̂
2

n
− 1)�/�

EQG
eff

> 1 −

1 −
3d−2

2d
(1 − x̂

2

n
)

1 − (x̂
2

n
− 1)�/�

EQG
eff

=

3d−2

2d
(1 − x̂

2

n
)�

EQG
eff + (1 − x̂

2

n
)�

�
EQG
eff + (1 − x̂

2

n
)�

≥ 0 . (5.33)

The last inequality here follows from the fact that both the numerator and the denominator are
positive, as can be checked explicitly,

3d − 2

2d

(1 − x̂
2

n
)�

EQG
eff + (1 − x̂

2

n
)� =

(1 − x̂
2

n
)(d − 2)

2 (

3d − 2

d(d − 2)

�
EQG
eff + 2d�1 −

2

d − 2)
≥ 0 ,

�
EQG
eff + (1 − x̂

2

n
)� >

3d − 2

2d

(1 − x̂
2

n
)�

EQG
eff + (1 − x̂

2

n
)� ≥ 0 ,

(5.34)
where we have used the inequality (5.29) and taken into account that 1 > 1 − x̂

2

n
≥ 0 and

3d−2

2d
(1 − x̂

2

n
) < 1 for every d ≥ 3. Therefore, by applying (5.33) in Eq. (5.26) while also taking

into account (5.31), it follows that

)
2

�̄
Sn

Sn

|
|
|
|�=0

> 0 , for n ≥ 1 . (5.35)

Therefore we have proven that, as long as unitarity is respected, the Rényi entropies with n ≥ 1

always grow when a chemical potential is turned on.
We can now study the dependence of the Rényi entropies on the index n. It is known that

standard REs, this is, at zero chemical potential, must satisfy the inequalities [330]

)

)n

Sn ≤ 0 ,

)

)n (

n − 1

n

Sn
)

≥ 0 ,

)

)n
((n − 1)Sn) ≥ 0 ,

)
2

)n
2
((n − 1)Sn) ≤ 0 .

(5.36)

It was shown in [261] that these are also fulfilled by the holographic charged Rényi entropies
in Einstein-Maxwell theory. Therefore, it is interesting to check whether they still hold for
our holographic higher-derivative theories, assuming that the values of the couplings satisfy
the constraints found in Section 4.4. Since the uncharged Rényi entropies for Holographic
Einstein gravity, obtained by setting �̄ = 0 in Eq. (5.26), already satisfy such inequalities [330],
it is enough to check that the coefficient multiplying �̄ in Eq. (5.26) fulfills them. This will
guarantee that the charged REs also satisfy them, at least in the regime where the (�4) terms
are subleading. To this aim, we show in Figure 5.1 the profile of )2

�̄
Sn/S1|�=0 for a few values of

�1 and �2 allowed by the physical constraints, in d = 3 and 4. We check that all the previous
inequalities seem to hold for our EQG theories, at least in this small � regime.

This result is indeed quite impressive, as all the properties one expects to find for Rényi
entropies are satisfied whenever the parameters of the bulk theory are taken to satisfy a minimal
set of physical requirements. In fact, we have been able to observe that choosing values of the
couplings that do not verify all the constraints obtained might lead to different behaviors, and
even divergences, in the REs. Instead, for the physically sensible values of these parameters
the chemical potential always increases the amount of entanglement, and the REs have the
same qualitative features found for Einstein-Maxwell theory.
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Figure 5.1: Coefficient of �̂2 in the Rényi entropies as a function of
n, represented in such a way that allows to check that the inequal-
ities (5.36) are fulfilled. The curves for d = 3 correspond, from
blue to red, to {�1, �2} =

{
1

24
, −

19

60

}

,

{
1

32
, −

21

80

}

,

{
1

48
, −

5

24

}

,

{
1

96
, −

37

240

}

.
In the same way, the curves for d = 4 correspond to {�1, �2} =
{

1

24
, −

1

2

}

,

{
1

32
, −

7

16

}

,

{
1

48
, −

3

8

}

,

{
1

96
, −

5

16

}

. In all cases, � = � = 0, and
the different constraints on the couplings imposed by unitarity and theWGC
are fulfilled.

5.1.1.2 Large �

Let us now study the opposite limit, � → ∞. For this it is convenient to revise this limit first in
the case of Einstein-Maxwell theory [261], and later generalize the study for our four-derivative
theory (4.33).
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In this particular case, Eqs. (5.13) and (5.14) reduce to

1

n

|
|
|
|EM

=

1

2x [
dx

2
− (d − 2) −

2p
2
x
2

d − 1 ]
, �̄|EM =

px

d − 2

. (5.37)

These equations can be solved for x , finding

x|EM =

1

nd [

1 +

√

1 + d(d − 2)n
2
+

2d(d − 2)
2
n
2

d − 1

�̄
2

]

. (5.38)

In the limit that we are interested in now, �̄ → ∞, we get

x|EM = (d − 2)

√

2

d(d − 1)

�̄ +

1

nd

+ 
(

1

�̄)
,

p|EM =

√

d(d − 1)

2

−

d − 1

2n(d − 2)�̄

+ 
(

1

�̄
2)

.

(5.39)

Given this structure for the perturbative expansions of x and p as �̄ → ∞ in Einstein-Maxwell
theory, it is reasonable to expect them to look similar for our four-derivative EQG. Therefore,
we try the ansatzes,

x = x1�̄ + x0 + 
(

1

�̄)
, p = p0 +

p−1

�̄

+ 
(

1

�̄
2)

, (5.40)

and after plugging these into Eqs. (5.13) and (5.14) we find

x0 =
((3d − 8)p

2

0
− 3d(d − 1)(d − 2))p−1x1 + 2(3d − 4)(d − 2)

√

f∞p
3

0
�1/n

dp0(p
2

0
+ d(d − 3) + 2)

,

x1 =

(d − 2)(3d − 4)p0

d(p
2

0
+ (d − 1)(d − 2))

,

p0 = ±

√

1 −

√

1 − d(d − 1)�

�

, p−1 = −

(d − 1)

√

f∞(1 − 2�1p
2

0
)p0

2nx1(d(d − 1) − p
2

0)

,

(5.41)

where the sign of p0 matches that of �̄. Plugging these expansions in Eq. (5.12) and replacing
that in Eq. (5.10), the Rényi entropy for large � turns out to be

lim
�→∞

Sn = �d−1

(�∗R�)
d−1
�
(d−2)/2

8GNΓ(d/2)
(1 + 2�1p

2

0
)

(

(d − 2)(3d − 4)p0

√

f∞

d(p
2

0
+ (d − 1)(d − 2)))

d−1

. (5.42)

Similarly to what is found in the Einstein-Maxwell case [261], we observe that Rényi entropies
are independent of n as � → ∞, and they scale with �d−1. Also, since the dependence on n
becomes trivial for large �, it is likely that the standard inequalities (5.36), that we showed to
hold for small �, are actually satisfied for every �.

Regarding the sign of the corrections, we note that it is not definite. Since �1 > 0 due to the
WGC, this coupling always has the effect of increasing the value of the Rényi entropy. But on
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the other hand, we see that x1 is a decreasing function of � (which must also be non-negative)
for d = 3 and 4, and non-monotonic for d ≥ 5. Hence, the higher-derivative corrections can
either decrease or increase the value of the RE, depending on the dimension and the values of
these couplings. In spite of this, we notice that this quantity is always positive provided that
the WGC is respected. Otherwise, if one were not to impose the WGC bounds, then �1 could
get arbitrarily negative, which would allow the RE to become negative for large enough values
of the chemical potential.

5.1.1.3 An exact example in connection to the WGC

To finish off the study of the Rényi entropies, let us look at an illustrative example for some
particular values of the couplings. We start by setting d = 4, since this is the most interesting
case. Then, for a given choice of the couplings {�, �1, �2, �} we need to solve Eqs. (5.13) and
(5.14) in order to obtain Sn(�) according to Eq. (5.10). However, it can happen that these
equations have several admissible solutions for the same n and �. If this is the case, it denotes
the existence of multiple phases and we should choose the one with the smallest value of Ω, as
that is the dominant one. Therefore, we wish to study the profile of Sn(�) when we take into
account the physical constraints found in Section 4.4, as well as those in Section 4.5.2.3 that
ensure the existence of a large � limit. For this, we choose two sets of random values of the
couplings: one that does satisfy both the WGC and unitarity constraints, and a second one that
only satisfies unitarity. Then we study the properties of the Rényi entropy for each set.

The actual values of the Rényi entropies depend on the particular choice of the couplings,
but an illustrative example is shown in Figure 5.2. In the left column we represent Sn/S1 and
related quantities as a function of n, for several values of �̄ and for a set of couplings that do not
satisfy the WGC but do respect unitarity. In the right column we show the same quantities for
a different choice of couplings that satisfy all the constraints considered. We find that, while in
the latter case Sn is always positive and respects the inequalities (5.36), the RE for the theory
that breaks the WGC violates the second and third of them when �̄ becomes large enough, and
can even become negative.

Of course, this is only an example, but looking at randomly generated couplings we have
not found any instance of a theory that satisfies the WGC and unitarity and behaves as that in
the left column of Figure 5.2. In fact, in all those cases we obtain plots similar to those in the
right column of the Figure. Thus, these results are one additional argument pointing towards
the fact that the WGC bounds might be key to produce a sensible CFT.

5.1.2 Generalized twist operators

A very interesting notion in the context of the Rényi entropies is that of twist operators, which
possess a great deal of information about the CFT.

The Rényi entropy for some spatial region A can be computed using the replica trick [327],
which requires evaluating the partition function Zn of an n-fold cover of Euclidean flat space,
with cuts introduced on the region A. The k-th geometry is glued to the (k + 1)-th copy along
these cuts, with the entangling surface Σ being the branch point. From this construction, the
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Figure 5.2: Rényi entropies as a function of n for two choices of the cou-
plings that satisfy or not the WGC constraints. The different curves corre-
spond, from blue to red, to �̄/

√

f∞ = 0, 2, 4, 6, 8 and 10. In both cases we
work in d = 4 dimensions, and the values of the couplings for the plot on the
left are {�1, �2, �, �} = {0.005, −0.1, 0.8, 0.005}, while for those on the right
{�1, �2, �, �} = {0.08, 0.05, −0.6, 0.02}. It is clear that the general relations
(5.36) are only fulfilled in the case where the couplings fulfill the constraints
arising from the WGC.

quantity Tr �n
A
needed for the Rényi entropy (5.1) is then computed, for integer values of n, as

Tr �n
A
=

Zn

Z1

. (5.43)
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In order to glue together two consecutive copies of the geometry at the cuts one needs to
implement some appropriate boundary conditions, and an alternative way to achieve this is by
introducing some (d − 2)-dimensional operators �n that extend over the replicated geometry,
known as the “twist operators” [327, 330, 340, 367]. In the presence of a chemical potential,
however, one should consider instead the generalized twist operators �n(�) defined in [261], and
which are constructed by attaching a Dirac sheet carrying a “magnetic flux” −in� to the original
operators �n. With these, the path integral over the replicated geometry can be replaced by a
path integral for the symmetric product of n copies of the theory, with the �n inserted, on a
single copy of the geometry. Then the trace of �n

A
can be obtained as the expectation value of

these twist operators, Tr �n
A
= ⟨�n⟩, computed in the n-fold symmetric product CFT.

It is possible to define a notion of conformal dimension for these twist operators by per-
forming an insertion of the stress-energy tensor Tab at a small distance y from Σ. In particular,
the leading singularity of the correlator ⟨Tab�n(�)⟩ takes the form [330, 340]

⟨Tab�n(�)⟩ = −

ℎn(�)

2�

bab

y
d
, (5.44)

where ℎn(�) is the conformal dimension of �n and bab is a fixed tensorial structure given,
e.g., in [261, 340]. In the case of a spherical entangling surface and with a finite chemical
potential, the conformal mapping from flat space to the hyperbolic cylinder allows one to show
that [261, 330]

ℎn(�) =

2�n

d − 1

R
d

((T0, � = 0) − (T0/n, �)) , (5.45)

where (T , �) is the thermal energy density of the theory placed on 1
×d−1

(R).
Similarly, when a chemical potential is present we also have at hand its associated current

J
a, and one can therefore study the correlator ⟨Ja�n(�)⟩. In this case, the leading singularity
takes the form [261]

⟨Ja�n(�)⟩ =

ikn(�)

2�

�abn
b

y
d−1

, (5.46)

where nb is a unit vector normal to Ja, and �ab is the volume form of the two-dimensional space
orthogonal to the entangling surface. The coefficient kn(�) is the magnetic response of the
generalized twist operators, and for a spherical entangling surface it can be computed as

kn(�) = 2�nR
d−1
�(n, �) , (5.47)

where �(n, �) is the charge density of the theory on S1 ×Hd−1
(R), at temperature T = T0/n and

with chemical potential �.
We will be more interested in the expansions of ℎn(�) and kn(�) around n = 1 and � = 0,

which can be written as

ℎn(�) =

∞

∑

l=0

∞

∑

m=0

1

l!m!

ℎlm(n − 1)
l
�
m
, (5.48)

kn(�) =

∞

∑

l=0

∞

∑

m=0

1

l!m!

klm(n − 1)
l
�
m
, (5.49)

where the coefficients of the expansion are obtained as

ℎlm = ()n)
l
()�)

m
ℎn(�)|n=1, �=0 , klm = ()n)

l
()�)

m
kn(�)|n=1, �=0 . (5.50)

142



Chapter 5. Charged Rényi and entanglement entropies

As shown in [261] (and in [203, 330, 340] in the case of ℎn for � = 0), these coefficients involve
integrated correlators of the form ⟨T ⋯ T J ⋯ J ⟩. In particular, the first few coefficients are
related to 2- or 3-point functions of T and J , and therefore have a universal form for any CFT.
These relations were derived in [261, 330, 340] from first principles, but here we will see that
they can also be obtained by using holography with higher-derivative terms.

5.1.2.1 Conformal dimension of generalized twist operators

We start by studying the conformal dimension of the generalized twist operators, given by
Eq. (5.45). The energy density  can be computed holographically as the mass of a hyperbolic
black hole over the volume of the boundary,

(T , �) =
M(T , �)

V−1, d−1R
d−1

. (5.51)

This can be obtained from Eq. (4.69) by setting k = −1, and replacing this together with
M(T0, � = 0) = 0 in Eq. (5.45) we have

ℎn(�) = −

nL
d−1

8(d − 1)GN

√

f∞
[
(d − 1) (x

d
− x

d−2
+ �x

d−4

)

+

2p
2
x
d

d − 2 (
1 −

d − 2

x
2

(3(d − 1)�1 + �2)
)
−

�p
4
x
d

3d − 4]
,

(5.52)

where as usual we introduced the variables x = r+/L and p = QL/r
d−1

+
, which depend on n and

� through Eqs. (5.13) and (5.14). These are solved for n = 1 and � = 0 by x = 1/

√

f∞ and p = 0,
so we perform an expansion around these values to find

x =

1

√

f∞

−

n − 1

(d − 1)

√

f∞

+
(

��∗R

L )

2

(d − 2)
2
f
3/2

∞ (1 − (3d + 2)(d − 1)f∞�1 − df∞�2)

(d − 1)(2 − f∞) (�
EQG
eff )

2
+ … ,

p =
(

��∗R

L )[

(d − 2)f∞

�
EQG
eff

+ (n − 1)

(d − 2)f∞(1 + (d − 1)(d − 2)f∞�1 + (d − 2)f∞�2)

(d − 1) (�
EQG
eff )

2
+ …

]

+ … ,

(5.53)
where we only show the terms that will be relevant for our computations. From these expres-
sions it is straightforward to obtain the expansion of ℎn in Eq. (5.48) and read off the values of
the derivatives. In the first place, we find

ℎ10 =

1 − 2�f∞

4(d − 1)GN (

L

√

f∞)

d−1

. (5.54)

Comparing this with the value of the central charge CT for our theory written in Eq. (4.84), it
can be written as

ℎ10 = 2�
d/2+1

Γ(d/2)

Γ(d + 2)

CT , (5.55)

which is precisely the relation found in [330]. In a similar way, the second derivative of ℎn
at vanishing �, that is, ℎ20, is completely determined in terms of CT and the 3-point function
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coefficients t2 and t4 [203, 340], and those relations have been shown to be identically satisfied
for holographic higher-curvature gravities [119, 128, 203].

Let us turn our attention now to the derivatives of ℎn with respect to �. From Eqs. (5.52)
and (5.53) we find

ℎ02 = −

(d − 2)�
2

∗
R
2

2(d − 1)
2
GN (

L

√

f∞)

d−3

2d − 3 − (d − 2)f∞((6d − 1)(d − 1)�1 + (2d − 1)�2)

(�
EQG
eff )

2
. (5.56)

Now, looking at Eqs. (4.98), (4.100) and (4.129), we see that this expression can be written in
terms of the central charge CJ and the flux parameter a2 as

ℎ02 = −(2�R)
2
CJ�

d/2−1
Γ(d/2)

(d − 1)
3
Γ(d + 1)

(d(d − 1)(2d − 3) + a2(d − 2)
2

) . (5.57)

Finally, we can write this in terms of the coefficient of ⟨T J J ⟩, ĉ and ê, using the relations (4.134)
and (4.135),

ℎ02 = −(2�R)
2
4�

d−1

Γ(d + 1) (

2

d

ĉ + ê
)
, (5.58)

which is precisely the result in Eq. (2.45) of [261], and which applies to any CFT.2

5.1.2.2 Magnetic response of generalized twist operators

Let us now take a look at the magnetic response of the same twist operators, kn(�), which can
be computed using Eq. (5.47). For this we need the charge density of the boundary theory,
which is simply

�(n, �) =

�∗q

R
d−1
V−1, d−1

, (5.59)

with q given by Eq. (4.65). Using this, we get for the magnetic response

kn(�) =

n�∗Q

2GN
=

�∗L
d−2

2GN
npx

d−1
. (5.60)

Again, we should replace both x and p in terms of n and �, which can be done in an approximate
manner around n = 1 and � = 0 using the expansions (5.53). This is enough to read off the first
derivatives close to this point, and in particular the first derivative with respect to � ends up
being

k01 =

(d − 2)�
2

∗
R

2GN�
EQG
eff (

L

√

f∞)

d−3

= 8�
d/2+1

R

Γ(d/2 + 1)

Γ(d + 1)

CJ , (5.61)

where in the second equality we used Eq. (4.98). This can also be written in terms of the
coefficients of the ⟨T J J ⟩ correlator, ĉ and ê, related to CJ through Eq. (4.134), as

k01 =

16�
d+1
R

Γ(d + 1)

(ĉ + ê) . (5.62)

2 Note that we have an additional factor of (2�R)2 with respect to the expression in [261], which comes from the
fact that they normalize the chemical potential with a factor 1/(2�R) with respect to our convention.
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Again, up to a factor of 2�R arising from the different normalization conventions, this matches
Eq. (2.57) of [261].

In the same manner, we can compute the mixed derivative k11, which reads

k11 =

(d − 2)�
2

∗
R[1 + (d − 2)((d − 1)�1 + �2)f∞]

4(d − 1)GN (�
EQG
eff )

2

(

L

√

f∞)

d−3

. (5.63)

This can be written in terms of CJ and a2, given respectively by Eqs. (4.98) and (4.129), in the
form

k11 =

4R�
d/2+1

Γ(d/2)

(d − 1)
2
Γ(d + 1)

CJ(d(d − 1) − a2(d − 2)
2

) , (5.64)

or in terms of the coefficients of ⟨T J J ⟩, given for our theory in Eqs. (4.138) and (4.139), as

k11 =

16�
d+1
R

dΓ(d + 1)
(2ĉ − d(d − 3)ê) . (5.65)

So in this case we also reproduce the result of [261], in particular their Eq. (2.56). Let us
remark that the authors of the reference check that these relations hold for holographic
Einstein-Maxwell theory, which is a more restricted case, as the dual theory has a2 = 0. In
our computation, on the other hand, we were able to show these universal relationships for a
theory with a general 3-point function ⟨T J J ⟩.

5.2 A universal feature of charged entanglement entropy

In this second part of the Chapter we will conjecture and prove a universal relation for the
charged entanglement entropy with a spherical entangling region. More explicitly, we will see
that for a general d-dimensional CFT, this quantity is, to the lowest order in �,

SEE(�)

�d−1

= a
∗
+

�
d
CJ

(d − 1)
2
Γ(d − 2) [

1 +

(d − 2)a2

d(d − 1) ]
(�R)

2
, (5.66)

where �d−1 is proportional to the non-divergent part of the volume, as given in Eq. (5.24), and
a
∗ is the value of this entanglement entropy in the uncharged case. Alternatively, this relation
can be formulated as a statement involving the first two derivatives of the Rényi entropy Sn(�)
with respect to � evaluated at n = 1 and � = 0.

Notice that all the information regarding the boundary theory in the first correction with
respect to the uncharged entanglement entropy is encoded in the constants CJ and a2. We
recall that CJ appears in the correlator of the current associated to the global symmetry, given
by Eq. (4.86), and it is the only part of that object that is theory-dependent and not fixed by
conformal symmetry. As for a2, it is the parameter controlling the effect of the non-minimal
couplings on the energy flux measured at infinity after the insertion of a current operator �iJ i,
given in general by Eq. (4.106). Furthermore, as discussed in Section 4.3.4, the 3-point function
⟨T J J ⟩ for a CFT has a fixed form up to two theory-dependent coefficients, which can indeed be
taken to be CJ and a2. Therefore, these two parameters carry a great deal of information about
the particular CFT, and it makes sense that they play a role in certain universal identities.

The relation (5.66) was found in the first place from the results shown in Section 5.1.1.1 for
the four-derivative theory (4.33), in particular by looking at Eq. (5.27). While that corresponds
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to � = 0, it is straightforward to repeat the computation allowing for a non-vanishing Gauss-
Bonnet coupling. In that case, the entanglement entropy across a spherical entangling region
reads

S
EQG
EE

�d−1

= a
∗

GB +
(d − 2)

2
�
(d−2)/2

(1 − 3d(d − 1)f∞�1 − df∞�2)

8(d − 1)Γ(d/2) (�
EQG
eff )

2

L̃
d−3

�
2

∗

GN
(�R)

2
+  (�

4

) , (5.67)

where �EQG
eff is given in terms of �1 and �2 by Eq. (4.100). The constant term a

∗

GB also corresponds
to the same entanglement entropy without a chemical potential, but it is now modified by the
Gauss-Bonnet terms and it reads [198]

a
∗

GB =

L̃
d−1

8GN

�
(d−2)/2

Γ(d/2) [
1 −

2(d − 1)

d − 3

f∞�
]
. (5.68)

The leading correction to Eq. (5.67) has a complicated non-polynomial dependence on the
gravitational couplings �1 and �2. However, this conspires to produce a linear combination of
the charges CEQG

J
and CEQG

J
⋅ a

EQG
2

, as can be checked using Eqs. (4.98) and (4.129), thus obtaining
the relation proposed in Eq. (5.66).

5.2.1 Charged EE in EQGs of any order

We will now extend the previous result and show that the conjectured universal relation
(5.66) indeed holds for the arbitrary-order family of Electromagnetic Quasitopological theories
proposed in Section 4.1.4. For this, we consider the general action

IEQG, gen =
1

16�GN
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
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]
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(5.69)
where �4 is the Gauss-Bonnet scalar in Eq. (4.28), and (a)

d, s, m
and (b)

d, s, m
are the densities written

in Eq. (4.35).
In order to check the relation (5.66) we need to compute separately the parameters a2 and

CJ of the theory, as well as the entanglement entropy across an spherical region. But first we
need to discuss the hyperbolic black hole solutions of this general theory.

5.2.1.1 Hyperbolic black hole solutions

By construction, the theories (5.69) admit charged black hole solutions with spherical, planar or
hyperbolic horizons, described by a single function f (r) which fulfills the equation of motion
(4.47). Here we are interested only in solutions with hyperbolic sections, so we restrict ourselves
to that case. The line element of such a spacetime can be written as

ds
2
= −

L
2

f∞R
2 (

r
2

L
2
ℎ(r) − 1

)
dt

2
+
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2
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2
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2
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2
+ r

2
dΞ

2

(d−1)
, H = Q!−1, (d−1) , (5.70)

where dΞ2

(d−1)
corresponds to the unit hyperbolic space Hd−1, !−1, (d−1) is the associated volume

form and f∞ is given in terms of the Gauss-Bonnet coupling by Eq. (4.52). The constant
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multiplying the term dt
2 has been chosen in such a way that the metric at the boundary r → ∞

becomes conformally equivalent to the hyperbolic cylinder with radius R.
The equation of motion for the function ℎ(r) in the metric can be obtained with the usual

reduced Lagrangian approach, or simply performing a change of variables in Eq. (4.47), yielding
the algebraic equation
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r
2

L
2
(1 − ℎ) −

16�R

√

f∞GNM

(d − 1)LV−1, d−1r
d−2

+

2Q
2

(d − 1)(d − 2)r
2(d−2)

+

�r
2

L
2
ℎ
2

+∑

s, m

(−2)
s
Q

2m
L
2m
Γ(d)

m−1

r
2m(d−1)

ℎ
s−1

[

−

2s

d − 1
((1 − 2m)(d − 1) + 1 − ds)�1, s, m +

s�2, s, m

d − 1

−

((
1 − 2m − 4s + 4ms +

2s(ds − 1)

d − 1 )
�1, s, m +

s − 1

d − 1

�2, s, m

)

r
2

L
2
ℎ

]

,

(5.71)

where M is an integration constant that should be identified with the mass of the solution, as
explained in Section 4.2, and ∑

s, m
≡ ∑

∞

s=0
∑

∞

m=1
.

Even though this equation is algebraic, it is not possible to find the exact form of ℎ(r) in
general. We can, however, study the thermodynamic properties of the spacetime. For that,
let us assume that gtt has some zero along the positive real axis, and let us denote the one
corresponding to the horizon by r+ = max{r ∈ +

| ℎ(r) = L
2
/r

2
}. Defining x ≡ r+/L and

p ≡ QL
2−d
x
1−d as several times before, and evaluating Eq. (5.71) at r = r+, the mass of the black

hole solution can be seen to be
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(5.72)

Similarly, taking into account that the Hawking temperature is given by
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, (5.73)

we find
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(5.74)

where the constants �s, m and 
s, m are given by

�s, m = (d − 1)(2s + 2m − 1)�1, s, m + �2, s, m ,


s, m = (d − 1 − (4d − 2)s + 2ds
2
+ 2m(d − 1)(2s − 1))�1, s, m + (s − 1)�2, s, m .

(5.75)

The computation of the black hole entropy S is carried out as before using the Iyer-Wald
formula written in Eq. (4.72). It can be applied to the general theory (5.69) on the black hole
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metric (5.70) in a somewhat straightforward manner, finding

S =
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Interestingly, the entropy does not receive any corrections from the densities (b)

d, s, m
.

As explained in Section 4.3, the chemical potential � is defined as the asymptotic value of
the electrostatic potential At , � = limr→∞ At/�∗, after demanding that At |r=r+

= 0. This is the
only active component of the dual vector field A for the magnetic configuration (5.70), whose
field strength tensor F = dA is given by

F = 4�GN(d − 1)! ⋆

)
)H

. (5.77)

However, an easier way to compute this chemical potential is by means of the first law of black
hole thermodynamics,

dM = TdS + �d , where  =

V−1, d−1�∗Q

4�GN
. (5.78)

Indeed, this equation is equivalent to

V−1, d−1�∗L
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x
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4�GN
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)p

− T

)S

)p

, (5.79)

and by plugging in the values of M and T given respectively by Eqs. (5.72) and (5.74) one can
obtain the form of the chemical potential for the theories (5.69). It can be checked that this
value and the one obtained by means of Eq. (5.77) are actually the same, thus confirming the
validity of the first law for our black hole solutions.

5.2.1.2 Parameters CJ and a2 of the dual CFT

Our ultimate goal is to express the entanglement entropy corresponding to an spherical region
in terms of the charges CJ and a2 of the CFT dual to the theories (5.69), as written in Eq. (5.66).
Therefore, we need to compute both the entropy and these parameters in an independent
manner. Let us begin with the latter.

If we denote by F the dual field strength of H , then CJ is obtained by working out the
effective gauge coupling of F 2 when evaluating the action on a pure AdS background [261], as
done in Section 4.3.2 for the four-derivative theory. For this computation (and also for a2) it
is enough to restrict ourselves to terms quadratic in H in the action (5.69), this is, those with
m = 1. Following the procedure described in Section 4.1.1 we find the relevant part of the dual
action to be
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As before, Q̃−1 is defined as the inverse of Q̃,
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which is given in this case by
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(5.82)
Here we are introducing the shorthand notation for the couplings

�1, s ≡ �1, s, 1 , �2, s ≡ �2, s, 1 . (5.83)

Finding the inverse Q̃−1 is in general a rather challenging task, but it becomes manageable
when we restrict ourselves to backgrounds with enough symmetry. In the case at hand, since
the spacetime is pure AdS space with
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we have simply
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where the effective coupling constant takes the value
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Consequently, the coefficient of F 2 in Eq. (5.80) turns out to be 1/�eff. This implies that the net
effect of the higher-derivative terms is the renormalization of the gauge coupling constant,
producing in turn the central charge
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being CEM
J

the Einstein-Maxwell central charge, although with the effective AdS length scale L̃
due to the Gauss-Bonnet coupling.

The computation of a2, on the other hand, requires the knowledge of the inverse tensor Q̃−1

on a shock-wave background given by the metric (see Section 4.3.3 for a detailed computation)
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This satisfies R�� = −d/L̃
2
g�� and W����W

����
= 0, being W���� the corresponding Weyl tensor.

Taking these properties into account one can compute
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where �eff is the combination of the couplings given by

�eff =
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∑

s=0

(−2f∞)
2
(d − 1)s((2ds − 1)�1, s + �2, s) . (5.90)

This is formally equivalent to the same tensor evaluated for the four-derivative EQG, given in
Eq. (4.121), upon exchange of 2�3 = −2[2(2d − 1)(d − 1)�1 + 2(d − 1)�2] → �eff/f∞. Therefore,
the coefficient a2 associated to the general theory (5.69) will be equal to that given in Eq. (4.129)
after making the same substitution, namely

a
EQG
2

=

d�eff

(d − 2)�eff
. (5.91)

5.2.1.3 Entanglement entropy with a spherical entangling surface

Let us finally get to the ultimate goal of this Section: computing the entanglement entropy
for the boundary theory dual to (5.69) across a spherical entangling surface of radius R, and
checking that it fulfills the conjectured relation given in Eq. (5.66). This quantity can be
obtained as the n → 1 limit of the Rényi entropy, which results in

SEE(�) = S(T0, �) , where T0 =

1

2�R

, (5.92)

as can be seen by computing explicitly the limit of Eq. (5.10), and taking into account the first law
of thermodynamics in the form of Eq. (4.204). In this equation, S(T0, �) is the thermal entropy
of the same theory placed on the hyperbolic cylinder S1 ×Hd−1

(R), which for a holographic
theory is given by the Wald entropy of the dual black hole. In this case that is given in Eq. (5.76)
as S = S(x, p), so we need to find the inverse functions x = x(T0, �) and p = p(T0, �). Since
we are interested only in the correction to leading order in �, we can carry out this procedure
perturbatively from the temperature and chemical potential given by Eqs. (5.74) and (5.79),
respectively. We find an expansion of the form

x = x̂ + �x2(�∗�)
2
+  (�

4

) , p = �p1(�∗�) +  (�
3

) , (5.93)
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with the different coefficients given by
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Plugging these perturbative expressions into Eq. (5.76), we find that the entanglement entropy
to quadratic order in � reads
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with the parameters �eff and �eff given respectively by Eqs. (5.86) and (5.90). If we now take
into account the values of CJ and a2 that we computed for these theories, given in Eqs. (5.87)
and (5.91), we see that this can be rewritten as
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Since we are interested in the universal part of this entropy, we should consider only the
regularized volume of the unit hyperbolic space, which is given by Eq. (5.24). Thus, we arrive
at the final result
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where the charge a∗ of the Gauss-Bonnet theory is given in Eq. (5.68). We see therefore that
this is equal to Eq. (5.66), so the conjectured universal relation is fulfilled for our infinite family
of Electromagnetic Quasitopological theories of gravity.

As a final comment, one may wonder about the effect of adding arbitrary pure-gravity
higher-order terms belonging to the Quasitopological class [8, 10, 107–110] to the action (5.69).
Given the structure and the derivation of Eq. (5.97), we expect such terms to produce a
renormalization of the constant f∞, while leaving the result (5.97) invariant.

5.2.2 Proof for general CFTs

All the results obtained until now, first for the four-derivative theory (4.33) and then for the
generalizations of these proposed in Section 4.1.4, point towards the validity of the relation (5.66)
for general CFTs. However, this is by no means a proof of that conjecture, and a more generic
analysis involving known universal relations fulfilled by any theory should be performed. This
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is actually the goal of the current Section, and for that we will use a combination of the results
presented in [261] with some thermodynamic identities.

Let us consider once again the generalized twist operators that we studied in Section 5.1.2.
The leading divergence of the correlator ⟨Ja�n(�)⟩ is determined by the magnetic response
kn(�), as given in Eq. (5.46). This quantity can be computed using Eq. (5.47), which we repeat
here for convenience,

kn(�) = 2�nR
d−1
�(n, �) . (5.98)

We recall that �(n, �) is the charge density of the CFT on the hyperbolic cylinder, at temperature
T = T0/n, with T0 given by Eq. (5.5). The magnetic response also has a universal expansion
around n = 1 and � = 0, whose leading coefficients can be expressed in terms of those
characterizing the ⟨T J J ⟩ correlator. Namely, we have [261]

kn
|
|n=1, �=0

= )nkn
|
|n=1, �=0

= 0 ,

)�kn
|
|n=1, �=0

=

16�
d+1
R

Γ(d + 1)
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(2ĉ − d(d − 3)ê) ,

(5.99)

where the charges ĉ and ê are related to CJ and a2 by Eqs. (4.136) and (4.137). In fact, we verified
that the four-derivative EQG satisfies these relations (5.99) in Section 5.1.2.2.

Let us now consider the vacuum thermal entropy of the CFT on the hyperbolic cylinder at
temperature T = T0/n, which is equal to the entanglement entropy with a spherical entangling
surface, see Eq. (5.92). In the grand canonical ensemble, the first law of thermodynamics reads

dΩ = −SdT − d� , (5.100)

where S is that thermal entropy, Ω is the grand canonical potential and  = V−1, d−1R
d−1
� is

the total charge. From this form of the first law we can obtain the thermodynamic relation

)�S = −)�)TΩ = −)T)�Ω = )T . (5.101)

Writing now  in terms of the magnetic response kn(�), and using that )T = −
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T
2
)n, we have
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We can now expand the derivatives and evaluate for n = 1 (which corresponds to T = T0) and
� = 0 using Eq. (5.99). In particular, taking into account Eq. (5.92) it follows that the first
derivative of the entanglement entropy with respect to � vanishes,

)�SEE
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= 0 . (5.103)

Taking a second derivative with respect to � in Eq. (5.102), we find
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Evaluating again for n = 1 and � = 0, we have
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and using Eq. (5.99) this can be written as
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which, using Eqs. (4.136) and (4.137) to replace the values of ĉ and ê and Eq. (5.24) for the
volume V−1,/,d−1, reduces to Eq. (5.66). This therefore completes the proof that such relation is
universally valid for a CFT in the presence of a chemical potential.

5.3 Discussion

In this Chapter we continued the study of the Electromagnetic Quasitopological theories
of gravity initiated in Chapter 4. We focused in particular on the holographic Rényi and
entanglement entropies for spherical entangling regions, and their associated twist operators.

First we computed the Rényi entropy in different limits and observed that, provided that
the dual CFT respects unitarity, a non-zero chemical potential always increases the Rényi
entropies with n ≥ 1, and also the entanglement entropy as a particular case. Furthermore,
standard Rényi entropies are known to satisfy some inequalities when considered as a function
of the index n, which are written in Eq. (5.36), so we wondered whether these also held in
our higher-derivative theories. As it turns out, they seem to be satisfied if one assumes all
the physical constraints found in Section 4.4, while if one gives up the WGC bounds some of
them can be violated, and the RE can even become negative (see Figure 5.2). This is another
observation pointing towards the importance of the constraints derived from the WGC in
obtaining a sensible boundary theory.

Afterwards, we computed the scaling dimension ℎn(�) and the magnetic response kn(�) of
the generalized twist operators, as introduced in [261]. By using the entries for the holographic
dictionary of the four-derivative theory (4.44), we have obtained a series of relationships
between the derivatives of ℎn(�) and kn(�) at n = 1 and � = 0, and CT , CJ and the coefficients
of ⟨T J J ⟩ (see Eqs. (5.55), (5.58), (5.62) and (5.65)). These are actually universal relations that
hold for any CFT, and they were derived from first principles in [261, 330]. Therefore, the fact
that one can independently obtain them by using holographic higher-derivative theories is a
proof of the power of this approach to learn about universality in CFTs.

The previous results served as a motivation to conjecture, and then prove, a universal
relation involving the entanglement entropy for a spherical entangling region. This is written
in Eq. (5.66), and implies that the leading correction to that entanglement entropy for a non-
zero chemical potential depends only on the charges CJ and a2 of the field theory. We have
checked that this formula holds for CFTs dual to the general EQGs proposed in Section 4.1.4,
and then provided a general proof based on the aforementioned universal relations involving
the magnetic response kn(�) of the twist operators, derived in [261].

An additional check of our conjecture involving free fields can be found in [27]. There, the
entanglement entropy across a spherical entangling surface is computed for a theory of free
scalars or fermions in d = 4 by means of heat-kernel techniques, as done previously in [261]. It
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is found that Eq. (5.66) is also verified in this case, thus confirming the validity of that universal
relation through an independent non-holographic computation.

Let us remark that we showed that universal relation (5.66) holds for d ≥ 3, but in d = 2

there are various reasons to expect a different situation. First, notice that both the coefficients
CJ and a2 are pathological in that limit (see Eqs. (5.87) and (5.91)). The free field results reported
in [261] also suggest a different structure in that case, including possible linear terms in � or
jumps in Sn(�) as n and � vary. It would be interesting to investigate these features further,
and the three-dimensional holographic EQGs proposed in [139] would be natural candidates
for this.

Finally, we would like to emphasize the importance of the result presented here, as it
allows us to obtain predictions regarding the entanglement entropy of a CFT knowing only
its parameters CJ and a2. Understanding the extent and applications of this, however, would
require further investigations.
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6
Black hole accretion in Einsteinian
cubic gravity

Higher-derivative corrections are expected to appear in the low-energy dynamics of a hypo-
thetical UV completion of general relativity, and if we assume that there exists such a theory
that describes our universe, then these corrections should produce some sort of potentially
observable behavior. With this motivation in mind, in this last Part of the thesis we continue
the study of higher-derivative theories of gravity, focusing now on astrophysical scenarios.

General relativity has stood as a remarkably successful theory since its proposal, offering
robust predictions and passing all precision tests within the weak field regime commonly
explored in astrophysics. Nevertheless, it still faces several challenges, such as the need to
introduce additional entities like dark matter and a non-zero cosmological constant, in order
to accommodate observations that can not be accounted for by known matter and energy
distributions. In fact, an alternative solution to these problems could possibly be achieved by
considering certain corrected theories of gravity (see [368] for a review of these developments).

The expected higher-derivative terms in the action would be suppressed by powers of
a (presumably small) length scale, and therefore should have an appreciable effect only in
regions or regimes with very large curvatures, such as the first instants of our universe or the
vicinity of very massive objects like black holes and neutron stars. Therefore, it also makes
sense to consider HDGs for studies of cosmology, and indeed they could be able to produce an
inflationary era. A review of these topics can be found in [369].

Provided diffeomorphism and Lorentz invariance hold, one would expect that the afore-
mentioned higher-derivative corrections come in the form of contractions of the curvature
tensors in the action. Among these higher-curvature gravities, the simplest known non-trivial
theory in 4 dimensions is Einsteinian cubic gravity, which we introduced back in Section 1.1.3,
and its cosmological version  − 8 is of particular interest. This combination, besides sharing
the desirable features that define the QTG family, also produces second order equations of
motion when evaluated in an FLRW background, which when solved lead to an inflationary
behavior without needing an additional scalar field, the hypothetical inflation.

As mentioned, these corrections are expected to have some importance close to a compact
massive object, such as a black hole, and in order to detect any deviations from general
relativity one would need to investigate the effects of gravity on the surrounding matter,
including particles, gas, plasma and their interactions with radiation [368]. This interplay is
nowhere else more dramatic than in an accretion scenario, where external matter continuously
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falls towards a gravitational potential well. The development of accretion theory over the last
few decades has contributed to our understanding of astrophysical black holes and their role
as central engines behind high-energy astronomical sources, such as active galactic nuclei,
gamma ray bursts, tidal disruption events and some types of X-ray binaries [370].

The basic principles of non-relativistic accretion theory were established in the seminal
works by Hoyle & Lyttleton [371] and Bondi & Hoyle [372]. They studied the problem now
known as wind accretion, in which a massive gravitational object accretes matter as it moves
through a cloud of gas at supersonic speeds. The other regime of interest is that where the
relative motion between the cloud of external matter and the accretor can be neglected, known
as spherical accretion and first studied by Bondi in [373]. Accretion theory has been further
developed by incorporating the physics of rotating systems [374, 375], the role of turbulent
motions and magnetic fields [376, 377], and the complex interplay between gas particles and
radiation [378]. Additionally, infalling matter with non-zero angular momentum into an
accretor may lead to the formation of an accretion disk [379, 380], a phenomenon that is
expected to take place e.g. in gravitational binary systems in which matter ejected from one of
its components gradually flows into the other.

The goal of this last Chapter of the thesis is to study the effect of higher-curvature corrections
in the action on the problem of accretion. We will start by constructing the simplest possible
spherically symmetric solution of Einsteinian cubic gravity: the Schwarzschild black hole.
Similarly to the asymptotically AdS black hole studied in Chapter 3, this needs to be obtained
numerically, which determines how the rest of the computations need to be performed. Then,
as a warm-up, in Section 6.2 we will compute the radius of the flyby and the innermost stable
circular orbit (these will be defined properly later), which will give us a hint of what can be
expected from the study of accretion.

Afterwards we will consider the scenario of wind accretion, in which a cloud of dust moves
towards the black hole (or alternatively the black hole moves inside the cloud) in Section 6.3.
For this, we consider the relativistic model introduced in [381] and perform those computations
with our solution for f (r). The results for the accretion rate will then be compared with those
obtained from simulations of relativistic hydrodynamics performed using the open source
software aztekas [31, 32].

Finally, in Section 6.4 we delve deeper into the study of accretion by considering the
scenario in which the black hole and the cloud of gas are at rest with respect to each other. As
mentioned before, this is known as spherical accretion, and following [382] we will compute
the accretion rate assuming first that the fluid satisfies a polytropic equation of state and then
a fully relativistic one.

In all cases we find that the higher-derivative terms tend to increase the rate of accretion.
While it was already known that they also increase the horizon radius for a given mass, this
effect turns out to not be enough to account for the change in the accretion rate, and the effects
of the higher-curvature coupling outside the black hole are also relevant.

6.1 Schwarzschild black hole in Einsteinian cubic gravity

Let us first introduce the black hole solution that we will consider throughout this Chapter. We
choose the simplest higher-curvature theory that is non-trivial in 4 dimensions, Einsteinian
cubic gravity, as a representative model to study the role of this kind of corrections, and in
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order for the theory to have a well-behaved cosmological scenario we work with the version
introduced in [76].1 The gravitational action is therefore given by

S =

1

16�GN
∫

d
4
x
√
−g [R − 2Λ0 − 2�L

4

∗
( − 8)] , (6.1)

where Λ0 is a cosmological constant,  and  are the cubic Lagrangian densities introduced
in Eqs. (1.24) and (1.33), � is the corresponding (dimensionless) coupling constant and L∗ is a
length scale. We will assume that � ≥ 0,2 and since we are interested in asymptotically flat
spacetimes we fix Λ0 = 0. Also, for simplicity we set GN = 1.

For more detailed studies of accretion one would ideally consider rotating black holes, as
are most of them in the universe. However, these metrics are typically very difficult to find for
higher-curvature gravities, and in fact no analytic solutions with arbitrary rotation have been
found even for Lovelock theories. The same thing happens with Einsteinian cubic gravity, for
which rotating black holes could only be obtained in certain regimes such as slow rotation,
near extremality or a perturbative coupling constant [125, 127, 131]. Because of this we settle
with the simplest black hole solution that we are able to compute, the Schwarzschild black
hole, which will be enough for our purposes.

6.1.1 Black hole ansatz and equations of motion

Let us consider the ansatz for the metric in spherical coordinates

ds
2
= −N

2
(r)f (r)dt

2
+

dr
2

f (r)

+ r
2

(d�
2
+ sin

2
�d�

2

) , (6.2)

where N(r) and f (r) are for now unknown functions. In order to find the equations of motion,
we follow the reduced action approach introduced in Section 1.1.3. For this, we plug the metric
ansatz (6.2) into the action (6.1), and vary the evaluated action with respect to f (r) and N(r).
The first of these variations implies that N(r) = 1, as corresponds to any theory of the GQG
class, and after setting this we find from the second one the equation of motion for f (r),

−

1

3

Λ0r
3
− (f − 1)r − 4�L

4

∗
[
f
′3
+ 3

f
′2

r

− 6f (f − 1)

f
′

r
2
− 3f f

′′

(
f
′
−

2(f − 1)

r )]
= 2M . (6.3)

Here, M is an integration constant with dimensions of mass, and it is equal to the ADM mass
of the black hole in the flat case Λ0 = 0,3 which we will consider from now on.

This 4-dimensional black hole solution was already studied in [5], where its explicit ther-
modynamic properties were also found. In particular, the radius of the horizon rℎ is computed

1 Strictly speaking, the Lagrangian density  does not modify the equations of motion for a MSS such as the
Schwarzschild black hole, but we include it for consistency with the results from cosmology.

2 If � < 0 the black hole solution would not be asymptotically flat, as it would present non-decaying oscillations
at infinity [115].

3 The ADM mass for a static and spherically symmetric spacetime can be computed using the same formula as in
GR [111–114, 279], which for a metric of the form (6.2) reads

MADM =

(D − 2)Ω(D−2)

16�GN
lim
r→∞(

1

f (r)

− 1
)
. (6.4)
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by solving the implicit equation

2M

rℎ

= 1 −

16�L
4

∗

r
4

ℎ

5 + 3

√

1 + 48�L
4

∗
/r

4

ℎ

(1 +

√

1 + 48�L
4

∗
/r

4

ℎ)

3
, (6.5)

which can be obtained by expanding the equation of motion (6.3) near the horizon. The actual
form for f (r) needs to be found numerically, and while this was done also in [5], here we will
obtain it by applying again the relaxation method explained in Appendix C. This was already
employed in Chapter 3 to obtain the asymptotically AdS solution, so the implementation in
this flat case is straightforward.

As before, this method requires the integration range to be finite, and since we are interested
in the exterior of the black hole, instead of the radial coordinate r ∈ [rℎ, +∞) it is natural to
introduce Z = 2M/r , such that Z ∈ [0, 2M/rℎ]. We also need to specify an initial seed
for the function f (Z), which we take to be a linear interpolation from f (Z = 0) = 1 to
f (Z = 2M/rℎ) = 0. With this setup, the numerical relaxation algorithm is able to produce the
solution for the function in the metric for any value of �.

6.1.2 Dimensionality and observational constraints

For the remaining of this Chapter, we will replace the coupling of the cubic terms in Eq. (6.1),
�, by the combination

� = �

L
4

∗

M
4
. (6.6)

While both � and � are dimensionless, this change and the fact that we work in terms of the
ratio r/M make all our computations independent of the black hole mass M .

In principle we don’t know what values these constants could have, as they are not fixed
when constructing the higher-curvature corrections. However, if we expect ECG to make
predictions about our universe we should find bounds on the values of the coupling so that
the theory is compatible with currently available observations. To the best of our knowledge,
the best classical constraint found at the moment is that proposed in [118], which relies on
the experimental bound for the Shapiro time delay reviewed in [383]. In our conventions, this
amounts to

�L
4

∗
= �M

4
< 2.212 × 10

35 m4
, (6.7)

where we assumed that � ∼ 1. The constraint imposed on �M
4 is rather loose, since the

higher-curvature terms acquire relevance in regions where the spacetime curvature becomes
drastic, e.g. in the neighborhood of a black hole, so the classical tests of GR are not that useful
for constraining ECG. That being said, we should always keep in mind that these theories
are formulated in the context of EFT, in which case the dimensionless couplings should be
of  (1), and we can not say anything about their validity beyond that [141]. Therefore, the
extrapolation that we perform here applying these theories to the study of our universe with
a relatively large coupling constant should be regarded more as an academic, and perhaps
speculative, exploration.

Now, given that the best constraint for the coupling that we know of is that written in
Eq. (6.7), we can allow for a large � by considering black holes of small mass. This makes the
model more appealing for the study of smaller objects, such as the hypothetical primordial
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black holes, which are theorized to have formed due to density fluctuations in the early stages
of the universe and would have masses smaller than that of the Sun [43].

Of course, it is also possible that more restrictive bounds could be obtained from experi-
mental setups currently out of reach, so this discussion should be taken with a grain of salt.
However, for the remaining of this Chapter we will allow � to be modestly large, and the results
obtained should be interpreted as an illustration of the effects that higher-curvature terms can
produce in astrophysical setups.

Before closing this discussion, let us mention that one might think of constraining the
higher-curvature terms using measurements of the gravitational interaction between two test
masses, as those performed in [384–388]. The authors of these references consider modifications
of the Newtonian potential, obtained from the weak-field expansion of the Schwarzschild metric
in GR, due to the exchange of additional hypothetical modes. For the higher-curvature theory
studied here the first terms in the expansion of the metric components are the same as those in
GR, so one must include higher powers of r/M to find some differences. However, this makes
it impossible to find the gravitational potential in the usual way, from the tt component of the
metric, and therefore the results of those references are not directly applicable to our case. In
fact, the modifications expected on the Newtonian potential would be due to the appearance of
additional propagating modes in the metric, which do not exist in Einsteinian cubic gravity or
any other GQG (this is indeed one of the defining features of these theories), so this is not the
correct interpretation for the modifications of the metric that we find. A discussion on this
point can be found in Section 2.5.1 of [279].

6.1.3 Generalized Kerr-Schild coordinates

The procedure explained above allows us to obtain the form of f (r) outside the horizon for
any value of the cubic coupling. While this is enough for most of our computations, in order to
perform the hydrodynamic simulations with the software aztekas presented in Section 6.3.3.1
we will need to extend the solution to some point behind the horizon, so we must find a system
of coordinates that is regular at r = rℎ. The natural candidate for a Schwarzschild black hole in
GR are the Kerr-Schild coordinates (see e.g. Section 1.15 of [389]), which we generalize now
for our f (r).

Let us start by writing the metric in Eddington-Finkelstein coordinates. For this, we must
find the radial null geodesics by imposing d� = d� = 0 and ds2 = 0 in the metric (6.2). These
curves are therefore given by

t = ±r
∗
+ const, where dr

∗
=

dr

f (r)

. (6.8)

Here r∗ is the tortoise coordinate, which by definition is singular at the horizon. If we define
the new coordinate Ṽ = t + r

∗, the metric becomes

ds
2
= −f (r)dṼ

2
+ 2dṼ dr + r

2
dΩ

2

(2)
, (6.9)

and we see clearly that the ingoing radial null geodesics are given by Ṽ = constant. A further
transformation of coordinates t̃ = Ṽ − r brings the metric to the Kerr-Schild form

ds
2
= −f (r)dt̃

2
− 2(f (r) − 1)dt̃dr + (2 − f (r))dr

2
+ r

2
dΩ

2

(2)
, (6.10)
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which is regular at the horizon. This entire change of coordinates amounts to a single transfor-
mation of the time coordinate, as

dt ⟶ dt̃ = dt −
(
1 −

1

f (r))
dr , (6.11)

which is equal to the original one asymptotically, since in any case limr→∞ f (r) = 1. Note also
that the spatial coordinates have not been changed at any point.

For the actual numerical computations we will need the 3 + 1 decomposition of the metric
(6.10). This is given in general by

ds
2
= −�

2
dt̃

2
+ 
ij (dx

i
+ �

i
dt̃) (dx

j
+ �

j
dt̃) , (6.12)

and in this case the lapse function � and the components of the shift vector �i and the 3-metric

ij take the values
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√

1

2 − f (r)
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r
=

f (r) − 1

f (r) − 2

, �
�
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�
= 0 ,


rr = 2 − f (r) , 
�� = r
2
, 
�� = r

2
sin

2
� ,

(6.13)

while the off-diagonal components of 
ij vanish. These functions are all regular and non-zero at
the horizon, and thus allow us to continue the computation behind it. The numerical solution
for f (r) obtained using the relaxation method is only valid in the range r ∈ [rℎ, ∞), but it is easy
to integrate Eq. (6.3) inside the horizon taking the exterior solution for f (r) as initial conditions.
In practice, since the equation of motion (6.3) is stiff at the horizon, we use an extrapolation
of the exterior solution obtained with the relaxation method to compute the values of f (r)
and f ′

(r) a short distance inside the horizon. From these, we continue the solution for r < rℎ,
employing standard numerical methods for stiff equations.

The numerical solution continued inside the horizon for different values of the cubic
coupling is shown in Figure 6.1. Notice that the singularity of f (r) at r = 0 disappears when
the cubic terms are turned on. However, as explained in [5], there is still a curvature singularity
at the origin. This can be seen by explicitly evaluating the Kretschmann scalar, which behaves
as R����R���� ∼ 1/r

4, so it diverges at the origin, although the strength of this singularity
decreases with respect to the result in Einstein gravity, R����R���� ∼ 1/r

6. This can be taken
as a hint to the fact that these higher-curvature terms might improve the behavior of these
spacetime singularities, as would be expected from a UV complete quantum theory of gravity.

6.2 Preliminary studies: black hole flyby and ISCO

Before getting into the study of accretion by a black hole in ECG, let us consider the simpler
problem of a massive particle moving in the background of such an object. We will contemplate
two different scenarios, that we describe now.

In the first one, the probe particle is non-relativistic for distant observers, that is, it has
zero kinetic energy at r → ∞. We are interested in computing the minimal distance from the
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Figure 6.1: Numerical solution for the function f (r) in the Schwarzschild
metric (6.2), for different values of the cubic coupling � introduced in Eq.
(6.6). Notice that the singularity at r = 0 disappears for � ≠ 0.

black hole that it can reach before flying away to infinity without being powered by external
sources of energy, which is known as the flyby radius. The corresponding trajectory is also
named “marginally bound orbit”. This problem was treated in general relativity in [390], and
here we will extend their results to our theory with cubic corrections.

The second case that we will consider has a setup somewhat similar to the previous one,
but now the particle is allowed to have a non-zero kinetic energy at the asymptotic region.
We are interested in computing the radius of the innermost stable circular orbit (ISCO), this is,
the smallest circular orbit that the particle can follow without falling into the black hole. The
radius of the ISCO has been computed before in ECG in [118] for perturbatively small values
of the cubic coupling �, but our solution described in Section 6.1 allows us to go beyond that
regime.

In general relativity the function f (r) has a simple form, so both problems can be solved
in an analytic manner. In the cubic case, however, we will need to resort to some numerical
root-finding methods to obtain the solutions. We are interested on the dependence of rflyby and
rISCO on the higher-curvature coupling, in order to gain some intuition about what we might
find when studying the accretion scenario.

The initial setting in both cases is the same: we want to study the trajectory of a massive
particle in the Schwarzschild metric (6.2), with N(r) = 1 and a generic form of the function
f (r). Without loss of generality, since the entire movement takes place in a plane we fix for
simplicity � = �/2. Also, the components of the metric do not depend on t or �, so we can
construct the Killing vectors  = )t and = )�. Denoting by u the 4-velocity of the particle,
we find the associated conserved quantities

u ⋅  = ut ≡ −E , u ⋅ = u� ≡ L , (6.14)

which are related to the energy and angular momentum of the particle, respectively. Then,
we can write the components of the 4-velocity as u� = (−E, grr ṙ , 0, L). Since the particle is
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massive, it must fulfill u ⋅ u = −1 (assuming for simplicity that it has unit mass), which leads to

ṙ
2
= −f (r) + E

2
−

f (r)

r
2
L
2
. (6.15)

This can be recast as a 1-dimensional problem in classical orbital mechanics, of the form

Ẽ =

1

2

ṙ
2
+ Veff(r) , (6.16)

where we defined
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1

2

+

f (r)

2

+

f (r)
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2
L
2
, Ẽ ≡

E
2
− 1

2

. (6.17)

As mentioned before, the constant E introduced in Eq. (6.14) is related to the energy of the
particle at infinity. In order to find out how we expand Eq. (6.15) for r → ∞, which results in

ṙ
2|
|r→∞

= −1 + E
2
, (6.18)

where we took into account that limr→∞ f (r) = 1. If the particle has a radial velocity at r → ∞,
then in this region

ṙ
|
|r→∞

=

)r

)t

)t

)�

|
|
|
|r→∞

= v∞E , (6.19)

and plugging this above we can read off the value of the constant E,

E =

1

√

1 − v
2

∞

= 
∞ . (6.20)

So we see that, since the mass of the particle is 1, the conserved quantity E is equal to the total
energy of the particle at infinity.

6.2.1 Black hole flyby

As explained above, the flyby radius is defined for a particle that is at rest at infinity, this is,
v∞ = 0. This implies, taking into account Eqs. (6.17) and (6.20), that Ẽ = 0 in the differential
equation (6.16). The flyby radius is then defined as the minimum radius that this particle can
reach in the orbit before escaping back to infinity. Therefore, the effective potential introduced
in Eq. (6.17) must have an extremum at that point,

V
′

eff(rflyby) = 0 . (6.21)

Combining this with Eq. (6.16) we arrive at

f (rfb) − 1 −

f (rfb)f
′
(rfb)

f
′
(rfb) − 2f (rfb)/rfb

= 0 , (6.22)

where we replaced rfb ≡ rflyby for ease of notation. This equation can be solved analytically in
general relativity [390], where f (r) = 1 − 2M/r , finding rflyby = 2rℎ = 4M . For the cubic theory,
however, the solution has to be found numerically for a given form of f (r).

The results for rflyby compared with the horizon radius are shown in Figure 6.2. We see
that both quantities increase with the cubic coupling �, and indeed by dividing rflyby by rℎ we
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Figure 6.2: Flyby radius and horizon radius with respect to the coupling of
the cubic terms �, in the range � ∈ [0, 500].
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Figure 6.3: Flyby radius and horizon radius with respect to the coupling of
the cubic terms �, in the range � ∈ [0, 0.8].

observe that the former increases faster, meaning that the change of the flyby radius is not due
entirely to the larger radius of the horizon, but also to the effects of the higher-curvature terms
outside the black hole. We were able to confirm this tendency by considering much larger
values of the coupling, going up to � ∼ 4000, above which our procedure presents numerical
errors and should not be trusted.

For very small values of the cubic coupling, however, the effect is the opposite: the ratio
rflyby/rℎ decreases with respect to its value of 2 found in GR. This is illustrated in Figure 6.3,
where we can observe a dip in that ratio below � ≈ 0.1. At the moment we have no satisfactory
explanation for this effect, but it seems to imply that in this regime the effect of the cubic terms
is greater at the horizon than in the region outside, in the sense that they enlarge the black
hole horizon more than the radius of these geodesics.

6.2.2 Innermost stable circular orbit

Let us now turn to the second problem: finding the radius of the smallest circular and stable
orbit that a massive particle can describe around our black hole. The setting of the problem
is the same as before, but now we relax the condition that the probe particle is at rest at
infinity. For a problem written in the form (6.16), finding rISCO and the corresponding angular
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momentum LISCO reduces to obtaining the solution of the system of equations

V
′

eff(rISCO) = 0 , V
′′

eff(rISCO) = 0 . (6.23)

The first of these ensures that the trajectory is circular, since the radius must be constant ṙ = 0,
and this condition has to be kept during the evolution of the system. The second equation
means that rISCO is an inflection point of the effective potential, which corresponds to the point
at which the inequality V ′′

eff(r) ≤ 0, needed for the orbit to be stable, is saturated.
Therefore, by plugging the form of the effective potential (6.17) into Eq. (6.23) we get a

system of equations involving the function f (r), whose solution yields the values of both
the rISCO and LISCO. Again, for GR the solution for these can be found easily, and they read
rISCO = 3rℎ = 6M and LISCO =

√

12M ≈ 3.46M . For Einsteinian cubic gravity, on the other hand,
these equations need to be solved numerically resorting to some root-finding algorithm.

The quantities rISCO and LISCO for a black hole in ECG have already been computed in [118].
However, the authors consider an analytic approximation for the form of f (r), which is valid
only for small values of the coupling constant, in particular � ≤ 1/12 ≈ 0.083 in our conventions.
The solution obtained here allows us to go beyond that perturbative regime, and we checked
that our results are consistent with those in the reference.
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Figure 6.4: Radius of the ISCO with respect to the cubic coupling � in the
range � ∈ [0, 500], compared with the flyby and horizon radii. The dips that
appear for certian values of � seem to be due to numerical inaccuracies, and
should not be taken into consideration.

The numerical results for the radio of the ISCO for a wide range of values of the cubic
coupling are shown in Figure 6.4, where we compare them with the flyby radius computed
in Section 6.2.1. We see that rISCO also increases with � faster than the horizon radius, but
slower than rflyby. Also, for the sake of completeness we show the dependence of the angular
momentum LISCO with � in Figure 6.5, which although it is not as relevant for our work, it can
be if one wants to study accretion disks produced by such black holes [379, 380].

Finally, in Figure 6.6 we plot the behavior of rISCO for small values of the cubic coupling.
We observe the same initial dip in the ratio rISCO/rℎ that was found in Figure 6.3 for rflyby/rℎ,
but again we could not come up with a convincing interpretation. In any case, these findings
imply that the geodesics are distorted in a non-trivial manner by the cubic terms.

The results for both the radius of the ISCO and the flyby radius imply that the corrected
black hole will absorb matter from a larger region than its equivalent in GR, at least in the
non-perturbative regime of � that we are interested in. This strongly suggests that the rate
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Figure 6.5: Angular momentum of the ISCO with respect to the cubic
coupling � in the range � ∈ [0, 500].
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Figure 6.6: Radius of the ISCO with respect to the cubic coupling � in the
range � ∈ [0, 0.8], compared with the flyby and horizon radii.

at which it accretes matter should increase with �, and the goal of the next two Sections is to
check this in different scenarios.

6.3 Accretion of wind

Let us turn now to the more complex problem of the accretion of wind by a static black hole.
This has first been studied using classical gravitational physics by Hoyle and Lyttleton [391],
and later refined by Bondi and Hoyle [392] (see [393] for a pedagogical introduction to these
models). In this work we are interested in the relativistic extension of the setup, which was
first proposed in [381], and the implications that the higher-curvature terms in the gravity
action can have in the process. However, in order to get a better understanding of the scenario
let us first review the classical approach.

6.3.1 Classical Hoyle-Lyttleton model

In its original form, the Hoyle-Lyttleton model [391] attempts to describe the absorption of
matter by a massive object (originally a star) moving at a constant non-relativistic velocity
through an infinite cloud of gas or dust. The external matter is initially at rest, and made of
massive particles that are influenced only by the gravitational potential of the central attractor.
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This is known as the ballistic approximation, and implies that the interaction among the
particles of the gas is negligible.

Equivalently, we will consider the central object to be at rest and the external matter to be a
non-relativistic “wind,” characterized at infinity by a constant velocity v∞ and density �∞. Due
to the symmetry of the problem, it is easier to work in spherical coordinates, and for simplicity
we set the polar angle � = �/2. The system of equations obtained from studying the movement
of a test particle in the background of the massive object can be solved analytically, finding in
particular the trajectory and velocity of the particle [394]

r(�) =

b
2
v
2

∞

GNM (1 + cos �) + bv
2

∞
sin �

,

ṙ(�) = −

√

v
2

∞
+

2GNM

r

−

b
2
v
2

∞

r
2
,

̇
�(�) =

bv∞

r
2
,

(6.24)

where M is the mass of the central accretor and we recovered Newton’s constant. Notice that
the solution is characterized only by b, which is the impact parameter of the particle. This
setup is represented in Figure 6.7.

Figure 6.7: Two-dimensional representation of the accretion of wind by a
massive object. The particles of matter come from the left of the diagram
(� = �) with an asymptotic velocity v∞, and their trajectory is characterized
only by the impact parameter b and given by Eq. (6.24). The absorbed
particles are those with b < bc, which is represented by the shaded region in
the plot.

The condition for accretion can be obtained in a simple manner by working in terms of
energies. At infinity, the particle has only a kinetic energy E∞ = mv

2

∞
/2, and from the analytic

solution (6.24) we see that it reaches the downstream axis � = 0 at a distance r(� = 0) =

b
2
v
2

∞
/(2GNM), and with a radial velocity ṙ (� = 0) = v∞. Here, streams of particles coming from

above will collide with those coming from below, thus losing the angular component of their
velocity, which is assumed to be radiated away. Then, after the collision each particle is left
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with a total energy

E
′
=

1

2

mṙ(0) −

GNMm

r(0)

=

1

2

mv
2

∞
−

2m(GNM)
2

b
2
v
2

∞

. (6.25)

The particles with negative E′ become bound to the central object, and thus eventually accreted.
Therefore, we can find the critical impact parameter bc by equating this to zero, finding

bc =

2GNM

v
2

∞

. (6.26)

As depicted in Figure 6.7, the material inside the asymptotic cylinder b < bc is absorbed. Then,
we can compute the flow of accreted matter, defined as the incoming volume per unit of time
in this region, and multiply it by the density �∞ to obtain the mass accretion rate,

ṀHL = �b
2

c
�∞v∞ = 4��∞

(GNM)
2

v
3

∞

. (6.27)

We will compare our results for general relativity and Einsteinian cubic gravity against this
quantity later on.

The Bondi-Hoyle model [392] is a refinement of the one presented here, in which the
accreted matter spreads out in a column or cone around the offstream axis � = 0. While this is
a more realistic setup, the actual change of the accretion rate is of  (1), and therefore not very
relevant for our purposes. Therefore, for ease of computations in the following we consider a
relativistic extension of the simpler Hoyle-Lyttleton reviewed here.

6.3.2 Relativistic extension of the model

Let us now consider a relativistic extension of the Hoyle-Lyttleton model for accretion of wind,
proposed in [381]. As before, we consider a “wind” made of massive particles that only interact
with a central attractor, which now will be a Schwarzschild black hole. Its metric is given by

ds
2
= −f (r)dt

2
+

dr
2

f (r)

+ r
2

(d�
2
+ sin

2
�d�

2

) , (6.28)

where the exact form of the function f (r) depends on the theory at hand. Also, taking advantage
of the spherical symmetry of the problem we will work in the plane � = �/2.

The movement of a massive particle in this background is described by the geodesic
equations obtained in Section 6.2, which we rewrite here in a more convenient manner,

dt

d�

=

E

f (r)

,

d�

d�

=

L

r
2
,

dr

d�

= ±
[
E
2
− f (r)

(
1 +

L
2

r
2 )]

1/2

.

(6.29)

Again, E and L are conserved quantities proportional respectively to the energy and angular
momentum of the particle at infinity. In fact, the constant E is related to the asymptotic velocity
v∞ as given in Eq. (6.20). The last of these equations follows from u ⋅ u = −1, and since the
particles studied follow infalling trajectories we will choose the minus sign.
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We can define the impact parameter b in an intuitive manner as the distance of closest
approach of the particle to the origin if the spacetime were flat. In this case we would have
f (r) = 1, and at this point Eq. (6.29) implies

dr

d�

|
|
|
|f (r)=1, r=b

= 0 = −
[
E
2
− 1 −

L
2

b
2 ]

⟹ L = bV∞ , (6.30)

where we replaced the value of E using Eq. (6.20), and we defined

V∞ ≡

v∞
√

1 − v
2

∞

= 
∞v∞ . (6.31)

So in what follows we write everything in terms of the parameters b and v∞ or V∞.
Since we want to study the trajectory of the probe particles in the plane (r, �) it is natural

to compute the function r(�), this is, taking the angular coordinate to be the independent
variable. Using Eqs. (6.20), (6.29), (6.30) and (6.31), we can obtain the differential equation for
this function,

dr

d�

= ±

√

(r)

bV∞

, where (r) ≡ r [r
2

(1 + V
2

∞) − r
3
f (r) − rf (r)b

2
V
2

∞] . (6.32)

Of course, this equation is generic for any theory of gravity that admits a solution of the form
(6.28). The authors of [381] present exact analytical solutions for the trajectories r(�) in GR,
first derived in [395]. However, since we want to plug in the numerical solutions for f (r)
obtained in Section 6.1.1, these geodesic need to be computed also by means of numerical
methods.4

There is one subtlety that needs to be taken into account when integrating Eq. (6.32):
the sign of the square root must be chosen in a consistent manner. Clearly, the minus sign
corresponds to infalling trajectories, while the positive sign means that the particle moves
away from the central object. While all trajectories are infalling at the beginning of evolution
(this is, for r → ∞), implying that the integration starts with the negative sign, depending on
the value of b they can reach a minimum and then go away. This minimum happens where
dr/d� = 0, or equivalently(r) = 0, so if a point is reached where(r) ≤ 0, the integration
algorithm must go back to the value of r in the previous step, and choose the positive branch
of the square root to continue the integration.

Once we know how to compute the streamlines of the wind particles for given values
of v∞ and b, we need to find which of those will be absorbed by the black hole in order to
compute the accretion rate. The procedure considered is equal to what was explained for the
Hoyle-Lyttleton model in Section 6.3.1: streams of particles that are symmetric to each other
along the axis � = 0 collide, losing energy in such a way that some become energetically bound
to the black hole. We are interested in computing the critical impact parameter, bc, below which
all the particles are eventually absorbed by the black hole.

Let us consider a unit-mass particle with constant energy E and angular momentum L

before the collision, given in terms of v∞ by Eqs. (6.20) and (6.30) respectively. When both
streams meet at � = 0, the component u� of their velocities becomes zero, while ur = dr/d� is

4 In practice we work with the inverse coordinate z = 1/r , so that the range rℎ < r < ∞ becomes finite, making
the numerical treatment more amenable. The transformation of all the equations is rather straightforward, so
we discuss the entire procedure in terms of the original coordinate r .
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conserved. Thus, if we denote with primes the constants after the collision we have L′ = 0,
and using Eq. (6.29) in both cases,

(

dr

d�)

2

�=0

= E
2
−f (r(0))

(
1 +

L
2

r(0)
2)

= E
′2
−f (r(0)) ⟹ E

′2
= E

2
−f (r(0))

L
2

r(0)
2
. (6.33)

As in the classical case, the value of this relativistic energy determines whether the particle
will escape to infinity after the collision (E′

> 1), or if instead it will be bound to the black hole
and accreted by it (E′

< 1). The critical parameter bc determines the limiting case E′
= 1, which

yields the simple equation
r(0)

2
− f (r(0))b

2

c
= 0 , (6.34)

where we replaced E2
= 1 + L

2
/b

2, as can easily be checked using Eqs. (6.20) and (6.30).
In order to compute bc numerically from Eq. (6.34) we had to implement a root-finding

algorithm that we outline now. For some given v∞, the program picks a value of b, solves Eq.
(6.32) for the trajectory r(�) and checks whether Eq. (6.34) is verified or not to some desired
accuracy. If it is not fulfilled, it moves to a different value of b as given by a bisection algorithm,
and repeats the process until the solution is found.

Once the critical impact parameter is known, it is straightforward to compute the accretion
rate Ṁ = dM/d� as the mass per unit of proper time that enters the cylinder of radius bc at
r → ∞,

Ṁ = �b
2

c
�∞u

r |
|r→∞

= �b
2

c
�∞v∞
∞ , (6.35)

where we wrote the radial velocity at infinity as

u
r
=

dr

d�

=


∞

f (r)

dr

dt

⟹ u
r |
|r→∞

= 
∞v∞ . (6.36)

Notice that the only difference between the relativistic formula for Ṁ and the classical one
given in Eq. (6.27), besides the value of bc, is the multiplicative factor 
∞. This is due to the
Lorentz contraction, which compresses the volume elements of the fluid along the direction of
the wind, and will change the behavior drastically for large v∞.

6.3.3 Numerical results with cubic corrections

In what follows we the numerical results for the model of accretion of wind explained in the
previous Section, considering the function f (r) that corresponds to the Schwarzschild black
hole with cubic corrections obtained in Section 6.1.1. Also, one should recall that in Section 6.2
we found that the flyby radius increases with the coupling of the higher-curvature terms, and
we argued that the same would be expected to happen for the accretion rate.

The results obtained for the critical impact parameter bc are shown in Figure 6.8, where it is
possible to see the behavior of this quantity with respect to the asymptotic velocity of the wind
v∞. We show curves for different values of �, all of them resembling the one that corresponds
to Einstein gravity, � = 0, which we have checked that matches the results in [381]. Also, bc
increases with the coupling of the cubic terms, and this effect is accentuated for large values
of v∞. This is shown in Figure 6.9, where we plot similar data now with � in the horizontal
axis. This tendency resembles the increase of rflyby and rISCO that we had seen in Section 6.2,
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Figure 6.8: Critical impact parameter for accretion of wind with respect to
v∞ for different values of the coupling of the cubic terms �.
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Figure 6.9: Critical impact parameter for accretion of wind with respect to
�, for different values of the asymptotic velocity v∞.

although we were not able to observe a decrease in bc/rℎ for small � values as we did for the
other two quantities.

In Figure 6.10 we plot the critical impact parameter bc divided, respectively, by the horizon
radius and the flyby radius. By simple inspection, it is possible to conclude that the increase
in these two quantities alone is not enough to explain the growth of bc, and the effects of the
cubic terms in the spacetime outside the horizon are important.

From the results for the critical impact parameter we can compute the mass accretion
rate employing Eq. (6.35). We plot these results in Figure 6.11, also comparing them with the
Hoyle-Lyttleton value given in Eq. (6.27). As expected, the increase of bc is translated into an
increase of the accretion rate, which becomes much more important for large values of the
velocity v∞. Note however that the scale of the vertical axis in the plot is logarithmic, which
suppresses the small deviations with respect to the GR value for low v∞.
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Figure 6.10: Critical impact parameter divided by the horizon radius or the
flyby radius with respect to v∞, for different values of the higher-curvature
coupling �.
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Figure 6.11: Mass accretion rate, normalized by Ṁ0 = 4�M
2
�∞, with re-

spect to v∞ for different values of the cubic coupling �. We also show the
result computed with the Hoyle-Lyttleton formula (6.27), obtained using
Newtonian gravity.

As mentioned before, we can also observe that the accretion rate always blows up for
v∞ → 1. This is due to the Lorentz factor 
∞ in Eq. (6.35), which takes into account the
relativistic contraction of the spacetime along the direction of movement of the fluid, so it is
obviously not present in the non-relativistic Hoyle-Lyttleton approximation that we also plot
in Figure 6.11.

Finally, in Figure 6.12 we show results for the same mass accretion rate, now with respect
to the cubic coupling � and fixing the asymptotic velocity v∞. In this way, it becomes clearer
that the effect of the cubic corrections becomes more important as the velocity v∞ increases,
which makes sense, as one would expect the higher-curvature terms to become more relevant
as one approaches the ultra-relativistic regime. Also, notice that the effects are in general much
more dramatic for small values of �.
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Figure 6.12: Mass accretion rate, normalized by its value in GR, with respect
to �. Each curve corresponds to a different value of the asymptotic velocity
v∞.

6.3.3.1 Comparisons with simulations using aztekas

To finish our explorations of accretion of wind in Einsteinian cubic gravity, let us compare
the results of the previous model with those obtained from a full numerical simulation of
the problem in the framework of relativistic hydrodynamics, which are performed using the
software aztekas [31,32]. This is written in C under the GPL license,5 and uses a high resolution
shock-capturing scheme to solve hyperbolic partial equations in conservative form. It is able
to solve the hydrodynamic equations for both non-relativistic and relativistic perfect fluids on
a fixed background, and has been used extensively in the literature for different astrophysical
problems, see e.g. [381, 382, 396, 397].

In order to accommodate the numerical solution for f (r) computed in Section 6.1, certain
aspects of the code had to be modified. In particular, we implemented a new solution for
the metric which admits a general form for f (r) constructed as a polynomial by parts, that
interpolates between the discrete points in the solution found using the relaxation method and
then continued to the interior, as previously described.

We ran simulations for � = 0, 5, 20, and 500, and values of v∞ ranging from 0.2 to 0.8 in
units of the speed of light. In each case, we consider a grid of 200 × 200 points6 in the (r, �)
plane, where as always we took advantage of the spherical symmetry and fixed � = �/2. These
two coordinates take values in the ranges

r ∈ [0.5racc, 10racc] , � ∈ [0, �] , (6.37)

where we defined, following [381],

racc =
rℎ

2v
2

∞
(1 + 1/2

)

. (6.38)

5 The original source code can be downloaded from the repository https://github.com/aztekas-code/aztekas-main,
while the forked version used in this project is located at https://github.com/AlbertoRivadulla/aztekas-main.

6 For v∞ = 0.8 the resolution of the grid had to be increased in order for the simulation to converge. However, as
shown in Appendix D, the results do not change in a significant manner with this.
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In this expression  is the Mach number, related to the speed of sound at infinity, and we
always take = 5. In Appendix D we perform some numerical tests in which we increase the
size of the range (6.37), and we argue that this does not result in a relevant improvement in the
simulations. Notice that for large enough values of v∞, the minimum value of r in the range,
0.5racc, lies inside the horizon. This means that we need to work with coordinates that are
regular at r = rℎ, so we employ the generalized Kerr-Schild system introduced in Section 6.1.3.
Besides, we choose the fluid to follow a polytropic equation of state, and in all the simulations
we fix the adiabatic index 
 = 5/3. Finally, each integration takes place in constant time steps
of size Δt = C min(Δr, rΔ�), where C is known as the Courant factor, and its value ranges from
C = 0.4 for v∞ = 0.2 to C = 0.1 for v∞ = 0.8, although in some cases it needed to be reduced
even more to achieve convergence.
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Figure 6.13: Streamlines and density on the spatial domain of the simulation,
computed with aztekas, for representative values of v∞ and �. We see that the
cubic terms tend to increase the contrast in density, while also decreasing the
aperture angle of the shock cone. The width of the flow lines is proportional
to the norm of the spatial velocity, |v⃗| =

√

viv
i.

We show the state of the fluid after some time of evolution and for different values of the
parameters in Figure 6.13.7 The incoming matter arrives from the left with an asymptotic

7 As already mentioned, the simulations are performed in the generalized Kerr-Schild coordinate system intro-
duced in Section 6.1.3. This means that we must convert the quantities to the usual spherical coordinates for
the representations, and this is relevant in particular for the radial component of the velocity, which is given by

v
r
= 


rr
ṽr −

�
r

�

, (6.39)

where ṽr is the velocity in Kerr-Schild coordinates computed in aztekas.

175



Alberto Rivadulla Sánchez

velocity v∞, similarly to the models presented in Sections 6.3.1 and 6.3.2, and with an initial
density �0 whose value is not relevant for our computations. The mass accretion rate can be
computed from these results at each step of the simulation and for any value of r , evaluating
the integral [381, 398]

Ṁ = 2�
∫

�

0

D
(
v
r
−

�
r

� )
r
2
sin � d� , (6.40)

where � and �
� are respectively the lapse function and the shift vector in our system of

coordinates given in Eq. (6.13), v� is the velocity of the fluid, and we introduced the combination

D = � (1 − 
ijv
i
v
j

) . (6.41)

Due to the conservation of the stress-energy tensor, the mass accretion rate should be the same
when evaluated at any value of r outside the horizon. In the numerical computations this is not
exactly true, due to the finiteness of the integration domain (see Appendix D), and in practice
we compute Ṁ at each value of r and then take their average as our result.

We run the simulation for each pair of values of � and v∞ until it reaches an stationary state,
for which we monitor the mass accretion rate in each step. This stabilization takes place at
around t ≈ racc/v∞, so simulations with larger values of the asymptotic velocity of the fluid
converge in less time, although the size of the time steps needs to be reduced in order to produce
sensible results. The diagrams of the flow shown in Figure 6.13 correspond to this stationary
state, and this is the regime that the simplified model studied earlier in this Section should be
compared with.
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Figure 6.14: Mass accretion rate Ṁ , normalized by ṀHL given in Eq. (6.27)
(with GN = 1), with respect to v∞ and for different values of �. The lines
correspond to the results obtained with the ballistic model presented above,
while the dots are computed from the stationary flow state of each simulation
performed with aztekas.

The results for the mass accretion rate obtained from the two models are compared in
Figures 6.14 and 6.15, which show the same data in linear and logarithmic scale. Recall that for
the simulations with aztekas we chose arbitrarily the values of the Mach number and the
adiabatic index 
 , which do not appear in the simplified ballistic model introduced before. This
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Figure 6.15: Mass accretion rate Ṁ , normalized by Ṁ0 = 4�M
2
�∞., with

respect to v∞ and for different values of �. The lines are the results obtained
with the ballistic model presented above, already shown in Figure 6.11, while
the dots are computed from the stationary flow state of each simulation
performed with aztekas.

might be a source of disagreement between the two sets of results, as one would expect Ṁ to
depend on those, so taking this into account we can conclude that the ballistic approximation
is good enough for our purposes. Therefore, these hydrodynamic simulations provide a more
robust evidence to the fact that the higher-curvature corrections, parameterized by the coupling
�, tend to increase the accretion rate of a black hole.

Looking at Figure 6.13, we can also notice that the cubic terms decrease the aperture angle
of the shock cone, while also increasing the change in density of the accreting material. This
could play a role, for example, in the mechanism of supernovae triggering due to collisions of
primordial black holes with white dwarves, proposed in [399], which can give a bound on the
presence of primordial black holes in the current universe.

6.4 Spherical accretion

Let us expand the study of accretion by a black hole with cubic corrections, considering now the
scenario in which the black hole is immersed in an ideal gas cloud that is at rest at infinity. This
is commonly referred to as “spherical accretion,” and can be thought of as the v∞ → 0 limit of
the previous setup, which means that we need to move away from the ballistic approximation
and study explicitly the behavior of an ideal gas on the black hole background. The gas will be
characterized by its asymptotic density �∞ and a dimensionless temperature Θ∞, defined as

Θ =

kBT

m̄

=

P

�

, (6.42)

where m̄ is the average mass of particles in the gas, and T , P and � are its temperature, pressure
and density, respectively. The second equality follows trivially from the classical ideal gas law.

In this Section we follow closely the treatment of [382], which considered a general rela-
tivistic extension of the Bondi model for spherical accretion, known as the Michel model [400].
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First, we will consider our ideal fluid to follow a polytropic relation, which is only correct
in the non-relativistic and ultra-relativistic regimes assuming we chose the correct value of
the polytropic parameter. Therefore, later we will generalize the study by employing a fully
relativistic equation of state, which is valid in the entire range of temperatures.

However, prior to that we review Bondi’s classical model for spherical accretion of a gas to
get an idea of what we should expect.

6.4.1 Bondi (classical) accretion of a polytropic fluid

The non-relativistic treatment for accretion of an ideal gas by a massive object at rest was first
proposed by Bondi in [373]. The fluid is considered to follow a polytropic relation,

P = K�


, (6.43)

where K is a constant and 
 is known as the adiabatic index, which is lies in the range 1 ≤ 
 ≤ 2.
Also, the gas is assumed to be in a spherically symmetric and steady-state flow, which means
that its properties, such as temperature and density, do not change with time. This cloud
of matter is gradually absorbed by a central attractor of mass M , due to the gravitational
interaction described entirely by Newtonian gravity.

The detailed computation of the mass accretion rate in this model can be found in [382],
and involves solving simultaneously the mass and momentum conservation equations of the
fluid. The final result is

ṀB = 4��B(GM)
2
�∞

3

∞

, where �B =

1

4 (

2

5 − 3
)

5−3


2(
−1)

, (6.44)

so the dependence on the adiabatic index 
 is encoded entirely in the multiplicative factor
�B. Notice that this expression is only valid for 
 ≤ 5/3. Above this �B acquires a non-zero
imaginary part, implying that the Bondi treatment is not valid in that regime. The quantity ∞

is the adiabatic speed of sound at infinity, and is defined in the classical case as

 ≡

√

)P

)�

= 


P

�

= 
Θ , (6.45)

where we employed the polytropic relation (6.43). Therefore, it is clear that the only free
parameter in the accretion rate ṀB is the asymptotic temperature of the gas, Θ∞, once the value
of the adiabatic index 
 is fixed and the asymptotic density �∞ is factored out.

Of course, this result is an approximation obtained with a great simplification of the gas
dynamics, and should only be valid in the non-relativistic regime Θ∞ ≪ 1. This will be checked
explicitly later, by comparing it with the mass accretion rate obtained with the relativistic
model described in the next Section.

6.4.2 Michel accretion of a polytropic fluid

We want to consider the previous problem of spherical accretion on the background a black
hole with the geometry (6.28), where in principle f (r) can be an unknown function. For this,
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we consider the Michel model of accretion, first proposed in [400], and studied in detail in [382].
A discussion of this model can also be found in Appendix G of [401].

Let us consider again an ideal gas that obeys the polytropic relation given in Eq. (6.43). The
dynamics of the fluid is governed by the relativistic conservation equations

∇� (� u
�

) = 0 ,

∇�T
��
= 0 .

(6.46)

Here, u� and T �� are respectively the 4-velocity and the stress-energy tensor of the fluid. Since
it is ideal, the latter takes the usual form

T
��
= �ℎu

�
u
�
+ Pg

��
, (6.47)

where
ℎ = 1 +





 − 1

P

�

= 1 +





 − 1

Θ (6.48)

is the specific enthalpy of the fluid.8 In this relativistic setting, the speed of sound can be
defined as

2
=

�

ℎ

)ℎ

)�

=




ℎ

P

�

=




ℎ

Θ , (6.51)

where we used Eqs. (6.43) and (6.48). Notice that combining Eqs. (6.48) and (6.51) we can get a
relation between the speed of sound and the specific enthalpy,

ℎ =

1

1 − 2
/(
 − 1)

, (6.52)

which will be useful later on. With these definitions and the polytropic relation (6.43) we can
write the mass density of the gas, �, as a function of  and ℎ. Indeed, plugging Eq. (6.43) into
Eq. (6.51) and solving for � we find

�(, ℎ) = �∞
(

2
ℎ

2

∞
ℎ∞)

1/(
−1)

, (6.53)

where we also imposed �(∞ , ℎ) = �∞.
At this point, all ingredients necessary to tackle the problem are available. As said before, we

consider the spacetime metric to be given by Eq. (6.2) and the flow to be spherically symmetric
and steady. Then, the 4-velocity only has the components

u = u
t
)t + u

r
)r , (6.54)

8 The equation of conservation of the stress-energy tensor written in Eq. (6.46), with T �� given by Eq. (6.47), is
equivalent to the relativistic version of the Euler equation. This can be expressed as [401, 402]

(� +  ′
+ p) u

�
∇�u

�
= −g

��
)�P − u

�
u
�
)�P , (6.49)

where  ′ is the internal energy density of the gas. Since it obeys the polytropic relation (6.43), this is given
by [401]

 ′
=

P


 − 1

, (6.50)

and the enthalpy density is �ℎ = � + P +  ′.
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and depends only on the coordinate r . Evaluating explicitly the components of the conservation
equations (6.46) we find

d

dr
(r

2
� u

r

) = 0 , (6.55)

d

dr
(r

2
� ℎ ut u

r

) = 0 . (6.56)

The second of these can be expanded in two terms using the Leibniz rule,

d

dr
(r

2
� ℎ ut u

r

) =

d

dr
(r

2
� u

r

) ℎ ut + r
2
� u

r
d

dr

(ℎ ut) = 0 , (6.57)

the first one being zero due to Eq. (6.55). Therefore, this implies

d

dr

(ℎ ut) = 0 . (6.58)

Since the particles that compose the gas are massive, the two components of the velocity are
related as

u�u
�
= −1 = −

1

f (r)
((ut)

2
− (u

r
)
2

) , (6.59)

where we plugged in the form of the metric (6.2). This allows us to write

ut =

√

u
2
+ f (r) , where u ≡ |u

r
| . (6.60)

Using this and integrating once, the conservation equations (6.55) and (6.58) become

4�r
2
�u = Ṁ = const., (6.61)

ℎ

√

u
2
+ f (r) = ℎ∞ = const. (6.62)

We are interested in a flow that is at rest asymptotically far away and regular at the black
hole horizon, which implies that at some point the radial velocity of the fluid must become
larger than the speed of sound. In general relativity, it is known [403, 404] that there exists a
unique solution with these features, and this was shown to be true also for a broader class of
metrics of the form (6.2) in [403]. However, the black hole metric that we will consider in this
work, obtained by solving the equations of motion of Einsteinian cubic gravity, does not fulfill
the conditions required for the proof in that article to work, in particular the condition (M4)
proposed by the authors. But this does not mean that such flow does not exist in our case, and
indeed we have been able to solve the equations numerically, as we will show later.

The point where the velocity of the fluid is equal to the speed of sound is known as the
sonic point, and is relatively easy to identify. The mass accretion rate must be the same for any
value of r , as given in Eq. (6.61), and therefore it makes sense to evaluate it at this point. Let us
start by combining Eqs. (6.61) and (6.62), resulting in the expression

[
1 −

2

u
2
(f + u

2

)
]
uu

′
= −

f
′

2

+ 2

2

r
(f + u

2

) . (6.63)
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At the sonic point r = rs both sides of this equation must vanish simultaneously.9 Thus,
equating them to zero and combining the resulting equations we find

2

s

1 − 2

s

f (rs) − rs

f
′
(rs)

4

= 0 , (6.65)

u
2

s
−

2

s

1 − 2

s

f (rs) = 0 . (6.66)

These can be solved analytically in general relativity (see Section 2.2 of [382]), but for more
general theories they need to be treated numerically, given a form of f (r). In any case, with
these we are able to find rs and us as functions of s, which can then be plugged into Eq. (6.62)
evaluated at the sonic point to find a relation 2

s
= 2

s
(ℎs, ℎ∞). Since 2

s
and ℎs are also related

through Eq. (6.52), in the end we can find a relation ℎs(ℎ∞), where ℎ∞ is given in terms of the
asymptotic temperature Θ∞ as

ℎ∞ = 1 +





 − 1

Θ∞ . (6.67)

Therefore, for given values of Θ∞ and 
 , and a solution for the function f (r) in the metric, we
can obtain numerically the values of ℎs, s, us and rs.

Once we know these, it is trivial to evaluate the mass accretion rate (6.61), as

ṀM = 4�r
2

s
�sus . (6.68)

The mass density �s can be written in terms of  and ℎ at the sonic point using Eq. (6.53), so
replacing this we find

ṀM = 4�M
2
�M

�∞

3

∞

, (6.69)

where we introduced the dimensionless combination10

�M = 3

∞
us

r
2

s

M
2 (

2

s
ℎs

2

∞
ℎ∞)

1/(
−1)

. (6.70)

Therefore, this mass accretion rate ṀM is determined entirely by the value of Θ∞ (for a given
adiabatic index 
), with the rest of the quantities appearing in the expressions computed
numerically as explained above.

9 In order to see why this must happen, let us consider the factor multiplying u′ in the LHS of Eq. (6.63) multiplied
by u,

u
2
− 2

(f + u
2
) . (6.64)

At r → ∞ this is equal to −2

∞
, since u → 0 and f → 1, whereas at r → rℎ this goes to u2ℎ(1 − 2

ℎ
), which is

positive provided C2

ℎ
< 1 as required by causality. Then, there must be a critical radius outside the horizon

where this quantity is zero: the sonic point rs . However, in order for u and u′ to be regular there, we must
impose the RHS of Eq. (6.63) to vanish too.

10 Notice that the constant �M does not depend on the black hole mass M , since the sonic radius rs will be
proportional to this. In practice, the numerical computations are always performed in terms of the coordinate
r/M , or rather its inverse, so this scale is naturally taken out.
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6.4.2.1 Numerical results with cubic corrections

In Figure 6.16 we plot the mass accretion rate for different values of the adiabatic index 
 , com-
paring the result predicted by the classical Bondi model, with those obtained numerically from
the relativistic computation presented above, varying also the cubic coupling �. As mentioned
below Eq. (6.44), the Bondi computation is not valid for 
 > 5/3, so the corresponding value is
not shown in the plot with 
 = 2.

Notice that for both ṀB and ṀM, given respectively by Eqs. (6.44) and (6.69), we are able to
factor out the scalesM and �∞ dividing the accretion rate byM2

�∞. However, while the classical
result ṀB depends trivially on the speed of sound at infinity ∞, the relativistic result does
not. Indeed, the quantities appearing in �M in Eq. (6.70) depend on this, which is ultimately
due to the fact that in the relativistic case there exists one additional scale: the speed of light.
Therefore, the mass accretion rate is plotted in Figure 6.16 with respect to Θ∞, directly related
to ∞ through Eqs. (6.48) and (6.51).

In all cases it is observed that the relativistic treatment results in a larger value for the
accretion rate, which increases even further when the higher-curvature terms are turned on.
As expected, both models produce essentially the same result in the non-relativistic regime
Θ∞ ≪ 1. However, as the temperature increases the relativistic (and higher-curvature) effects
become more relevant, and can indeed change the value of the mass accretion rate by more
than one order of magnitude.

We can also comment on the small bump that appears at Θ∞ ∼ 0.1 when the cubic coupling
increases, which becomes more noticeable for larger values of 
 . It seems to be a numerical
artifact carrying no physical meaning, and indeed one should note that the polytropic relation
(6.43) is only valid on a certain range of temperatures, depending on the value of 
 . This feature
is not present when considering the fully-relativistic equation of state, which is valid for any
Θ∞, as we will see in the following Section.

6.4.3 Michel accretion with a relativistic EoS

Until now, in this Section we studied the problem of a black hole accreting some ideal fluid
that fulfills the polytropic relation given in Eq. (6.43). This is a simple equation of state
characterized by the adiabatic index 
 , whose value modifies the dynamics of the system. If the
gas is monoatomic, that relation is only accurate in two relevant limits,

• non-relativistic limit Θ∞ ≪ 1, described by 
 = 5/3, and

• ultra-relativistic limit Θ∞ ≫ 1, described by 
 = 4/3,

while for intermediate values of Θ∞ the polytropic EoS is not valid [405]. The goal of this
Section is to extend the previous study of accretion to find results that are sensible in the entire
range of temperatures, by replacing the polytropic relation (6.43).

The relativistic equation of state for an ideal monoatomic gas has been derived from
relativistic kinetic theory, and it reads [406–408]

ℎ =

K3(1/Θ)

K2(1/Θ)

, (6.71)
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Figure 6.16: Mass accretion rate with respect to the asymptotic temperature
Θ∞, in the setup of spherical accretion of a fluid that follows the polytropic
relation (6.43), for selected values of the adiabatic index 
 . In each plot, we
compare the result of the non-relativistic (Bondi) model with those obtained
from a relativistic treatment, with each curve corresponding to a different
value of the cubic coupling �.

where Kn(x) is the n-th order modified Bessel function of the second kind. Imposing the
adiabatic condition to the flow, it is possible to obtain the expression for the density at a given
temperature,11

�

�∞

=

f (Θ)

f (Θ∞)

, f (Θ) = ΘK2(1/Θ) exp

{

1

Θ

K1(1/Θ)

K2(1/Θ)

}

. (6.72)

The speed of sound is defined as in the previous case, and it reads

2
=

�

ℎ

)ℎ

)�

=


̄

ℎ

Θ , (6.73)

11 A derivation of Eq. (6.72) can be found at Appendix B of [409].

183



Alberto Rivadulla Sánchez

which can be checked using Eqs. (6.71) and (6.72), as well as some properties of the Bessel
functions. By analogy to Eq. (6.51) we defined the effective adiabatic index 
̄ , given by


̄ =

ℎ
′

ℎ
′
+ Θ

2
, ℎ

′
≡

d

dx [

K3(x)

K2(x)]
. (6.74)

From these definitions one can find that

lim
Θ→0


̄ =

5

3

, lim
Θ→∞


̄ =

4

3

, (6.75)

thus recovering the conditions for the validity of the polytropic equation of state, mentioned
above.

The procedure to compute the accretion rate is the same as that described in Section 6.4.2:
we need to identify the sonic point, where the velocity of the fluid and the local speed of sound
match, and evaluate Ṁ there. This is still found by solving Eqs. (6.65) and (6.66), which were
obtained from relativistic fluid dynamics alone. The EoS (6.71) will only modify the relations
between the thermodynamic quantities, namely ℎ = ℎ(Θ) and  = (Θ), but the computation
carries on similarly. In fact, the problem becomes simpler as the adiabatic index is no longer a
degree of freedom.

In practice, for given values of Θ∞ and the cubic coupling � we use Eqs. (6.65) and (6.66),
together with the conservation equation (6.62), to find numerically the values of the different
variables at the sonic point: Θs, rs and us. Finally, we compute the mass accretion rate as before,
evaluating Eq. (6.61) at that radius,

ṀM = 4�r
2

s
�sus , (6.76)

where �s is obtained by setting Θ = Θs in Eq. (6.72).

6.4.3.1 Numerical results with cubic corrections

Let us finally show and discuss the numerical results for spherical accretion of a gas with a
relativistic EoS in our cubic theory. As explained in Section 6.4.2.1, the natural way to plot
the results is with respect to the temperature at infinity Θ∞, while the black hole mass M and
asymptotic density �∞ can be easily factored out from Ṁ .

First, we compare the results for ṀM with a fluid that obeys either the polytropic relation
(6.43) or the relativistic equation of state (6.71) in Figure 6.17. This confirms the fact that an
adiabatic index 
 = 5/3 is accurate for describing the fluid for low temperatures, while 
 = 4/3

corresponds to higher temperatures. The relativistic EoS given in Eq. (6.48) is valid in the
entire range of temperatures, and we see that its results connect smoothly those obtained in
the two limiting regimes.

Next we focus on the computations corresponding to a gas whose dynamics is governed by
the relativistic equation of state. First, in Figure 6.18 we plot ṀM with respect to the temperature
Θ∞ for different values of �. We observe a similar behavior to that found in the different setups
studied throughout this Chapter: the higher-curvature corrections in the action tend to increase
the rate of accretion for any given temperature.

This dependence can be observed perhaps more clearly in Figure 6.19, where we plot the
same data for ṀM now with the cubic coupling in the horizontal axis, for different values of
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Figure 6.17: Comparison between the spherical mass accretion rate of an
ideal gas described by either a polytropic or a relativistic equation of state,
for two values of the cubic coupling �. We can see clearly that the polytropic
relation with 
 = 5/3 is valid for low temperatures, while that EoS with

 = 4/3 is accurate in the ultra-relativistic regime.

Θ∞. Notice that these curves are very similar to those shown in Figure 6.12 for accretion of
wind, each corresponding to one value of the asymptotic velocity v∞. In both cases the effect of
the cubic terms becomes larger in the more relativistic regimes, corresponding respectively to
higher values of Θ∞ or v∞.

6.5 Discussion

This last Part of the thesis is a continuation of our studies of higher-curvatures theories
of gravity, but now we treated a radically different problem: the accretion of matter by an
astrophysical black hole. Since we only intended to explore the implications that these higher-
order corrections can have in this scenario, we chose to consider the action of cosmological
Einsteinian cubic gravity, given in Eq. (6.1), as this is the simplest non-trivial modification of
Einstein gravity in 4 dimensions. Also, in order to accurately describe a realistic black hole, one
should allow it to have a non-zero angular momentum. However, such a solution does not exist
in general for our theory, so we settled for a Schwarzschild black hole, whose construction is
discussed extensively in Section 6.1.

Before delving into the problem of accretion, in Section 6.2 we took a detour to treat a
couple of problems of orbital mechanics in the background of our corrected black hole. First
we computed the flyby radius which, as described in [390] in the context of GR, corresponds to
the minimum distance from the black hole that a probe mass initially at rest at r → ∞ can reach
before escaping again all the way to infinity. Then we studied the radius of the ISCO, which is
the smallest stable circular orbit that a particle can describe around the black hole. This second
problem had already been studied in [118] for Einsteinian cubic gravity, but here we extended
their treatment to larger values of the higher-curvature coupling. The results are similar in
the two cases, as both quantities tend to increase when the cubic terms are turned on. In fact,
they grow with � faster than the horizon radius, pointing to the relevance of higher-curvature
effects outside the black hole.
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Figure 6.18: Mass accretion rate with respect to the temperature, computed
with the Michel model for spherical accretion of an ideal gas that fulfills
a relativistic EoS, for different values of the coupling of the cubic terms.
As opposed to the results shown in Figure 6.16, obtained by considering a
gas that follows a polytropic relation, the ones plotted here are valid in the
entire range of temperatures.

After this discussion, we focused properly on the problem of accretion of matter. First, in
Section 6.3 we considered the setup in which a black hole moves at a constant speed inside
an infinite cloud of gas or dust (or equivalently, the cloud of matter moves with respect to the
central object). This is usually known as accretion of wind, and we treated it by considering
the simplified model of ballistic accretion, which assumes the massive particles in the gas to be
subject only to the gravitational interaction, and not collide with each other. This lead us to a
numerical procedure to compute the rate of accretion, which depends on the relative velocity
v∞, and the validity of the results obtained was contrasted with simulations of relativistic
hydrodynamics using the software aztekas.

Finally, in Section 6.4 we continued the study of accretion, but now set the black hole and
cloud of matter at rest with respect to each other, thus posing the scenario known as spherical
accretion. We considered the exterior matter to be an ideal gas that follows a certain equation
of state, and whose dynamics is determined by the asymptotic (dimensionless) temperature
Θ∞. This EoS was first taken to be a polytropic relation, which is valid only in certain regimes
depending on the adiabatic index 
 , and then a fully-relativistic equation of state that is correct
in any case. The computation requires that there is a transonic flow solution, in which the
velocity of the infalling gas reaches and surpasses the local sound speed at some point. While
the existence and uniqueness of such a solution is guaranteed in GR, for a more general theory
it is not, and a proof along the lines of that presented in [403] would be desired. Nonetheless,
we were able to find solutions for these equations numerically in our case (although we should
emphasize that the solution is not guaranteed to be unique), and from them we computed the
mass accretion rate.

The results found in these last two cases are consistent with each other: the mass accretion
rate increases with the magnitude of the higher-curvature corrections, controlled by the
coupling constant �. They also match what can be naively expected from the study of the radii
of the flyby and ISCO, since one can think that increasing these would result in more matter
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Figure 6.19: Mass accretion rate with respect to the cubic coupling, for
different values of the asymptotic temperature, computed with the Michel
model for an ideal gas obeying a relativistic equation of state. Notice that
dependence on � becomes more important as the temperature increases, and
the curves for large temperatures (Θ∞ = 1, 10 and 100) are almost identical.

being absorbed by the black hole. Besides, the effect is more relevant in the ultra-relativistic
limit, corresponding to having either a large v∞ for the wind or large Θ∞ for the spherical setup.

In order to have a noticeable deviation from the results in Einstein gravity, we need to
have a large higher-curvature coupling. Although the known bounds, reviewed in Section
6.1.2, are somewhat permissive, we expect more restrictive constraints to be obtained from
future experimental results. In any case, this bound is expressed in terms of the dimensionful
combination �M4, and therefore one could in principle increase the allowed value of the coupling
� by considering a smaller mass. Therefore, the study presented here is not expected to be
relevant for supermassive black holes, such as those located at the centers of galaxies, but
rather for smaller ones. In particular, it could be interesting to apply these results to the study
of prevalence of primordial black holes, which have been theorized to contribute to the dark
matter content in our universe.

Finally, a natural expansion of this study would involve adding corrections of higher orders
in derivatives to the gravity action. Indeed, it has been shown in [115] that the Einstein action
supplemented by an infinite series of ghost-free higher-curvature terms admits 4-dimensional
black hole solutions, which actually become stable below a certain mass, as opposed to what
happens in pure GR. However, we should emphasize the fact that these theories are well
formulated in the EFT regime [141], and all results beyond that must be taken with caution.
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Summary and conclusions

This work is mainly an exploration of the effects that certain corrections added to the the gravity
action can have when considered in various physical scenarios. Throughout the Chapters that
compose the main body of the thesis we have presented the different computations that have
been conducted, and thoroughly commented on the results obtained. The current Chapter
intends to serve as a point of convergence, summarizing those findings and offering a broader
view of the presented research. This serves not only to highlight the value that this work might
have, but also acknowledge its limitations, as there are some question that remain open and
could be worth exploring.

It is clear that the central topic of study are higher-derivative theories of gravity. These
can be constructed in different ways, but here we focused primarily on those obtained from a
bottom up approach, which consists on adding general corrections to the Lagrangian and later
restricting them through different physical requirements. In Chapter 1 we provided a review
of theories containing contractions of the Riemann tensor that fulfill such constraints, with
special emphasis on the family of Generalized Quasitopological gravities.

After that introduction, Part I focuses on applications in holography of theories with the
schematic form (Riemann). First, in Chapter 2 we proposed a renormalization procedure that
is able to regularize and provide a well-posed variational problem for any theory of this kind
in an asymptotically AdS background. This is interesting, as the cancellation of divergences
is necessary in order to compute quantities such as finite asymptotic charges of black holes
or holographic entanglement entropies. However, we have only confirmed our prescription
to be valid in up to 5 bulk dimensions since, although the construction of the counterterms is
very systematic, the computations become technically complex beyond that and we have no
guarantee that the undesired divergences will be cancelled out. In any case, this is something
that should be considered in order to extend the range of applicability of our proposal.

Continuing the exploration of higher-curvature gravities in the context of the AdS/CFT
correspondence, in Chapter 3 we studied the holographic superconductor as an illustrative
example of a problem of condensed matter physics that can be treated by means of these tools.
We chose the gravity action to be that of Einsteinian cubic gravity, which is the lowest-order
GQG that is non-trivial in 4 dimensions. The main finding that we would like to highlight
is the fact that the behavior of the system is similar to that obtained with Einstein gravity
alone, which can not be taken for granted in general given the order of the equations of motion.
By inspecting the results of the computations we have identified some effects of the higher-
curvature terms in the system, such as the decrease in the critical temperature and the growth
in the magnitude of the condensate after the phase transition. However, it is not clear what can
be the actual meaning of these corrections from the point of view of the dual field theory. One
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could naively attribute it to a gradual restauration of the Coleman-Mermin-Wagner theorem,
but this is in fact an IR effect, which would require the calculation of loops in the bulk [236,242],
and thus is not captured by the 1/N contributions dual to the higher-curvature terms. In any
case, the study performed here should be taken as a first step towards a better understanding
of such corrections in holographic condensed matter systems.

In Part II we also treat the topic of holography with higher-derivative corrections, but
besides the contractions of curvature tensors considered before we now introduce a non-
minimally coupled chemical potential in the dual theory. In the gravity action, this is accounted
for by including contractions of a (d − 2)-form with the curvature, as done in Chapter 4. The
actual form and combination of these terms has to be restricted in order for the gravity theory to
have sensible physics, and this lead us to finding the so-called Electromagnetic Quasitopological
gravities. Comparing these models with the usual Einstein-Maxwell theory, we saw that they
are able to describe a wider range of dual QFTs which can have modified correlators and a
richer phase space, and even violate the KSS bound for the ratio of shear viscosity to density
entropy. Therefore, these theories provide an interesting playground to explore different setups
in holographic condensed matter physics.

The study of these theories was extended in Chapter 5, where we focused on certain
holographic Rényi and entanglement entropies, and their corresponding twist operators. As
a sanity check, we were able to confirm explicitly that our proposed theories fulfill certain
known universal relations involving the mentioned quantities. Based on those results, we also
conjectured a universal relation for the holographic entanglement entropy across a spherical
entangling region in the presence of a chemical potential. We were able to test this on the
general-order EQGs found in the previous Chapter, and then proved it to be true for any charged
CFT. Of course, it would be interesting to compute the EE across different entangling surfaces,
such as cylinders, squashed shapes or regions with corners, with these higher-order EQGs,
hoping that this might help us understand better the corresponding dual CFTs.

Finally, in Part III of this thesis we departed from the domain of holography and explored a
rather different scenario in the realm of astrphysics. In particular, we studied the accretion of
matter by a black hole described by a gravitational action with higher-curvature terms. These
hypothetical corrections would modify the dynamics of gravity most importantly in regions of
very high curvature, such as near the horizon of a black hole, so it makes sense to analyze the
behavior of matter in the vicinity of such an object. By proposing and treating numerically
different scenarios in Chapter 6, we confirmed that higher-curvature corrections have a non-
negligible impact in the process of accretion. In particular they always tend to increase the
mass accretion rate, and this is more noticeable in the relativistic regimes. Even though this
should affect any astrophysical massive object, due to the constraints on the higher-derivative
couplings the effect is only expected to be relevant for smaller black holes, and particularly
interesting for primordial ones. These are hypothetical objects that would have been formed
due to density fluctuations in the early stages of the universe, and have been considered as dark
matter candidates. Therefore, a corrected rate of accretion would affect the evolution of such
black holes in time, thus modifying the prevalence that they might have in the current density
of dark matter. In fact, one could think about combining existing bounds on their formation,
which arise from the fact that they have not been observed, to provide some further constraints
on the couplings of the higher-curvature terms.

To sum up, this thesis demonstrates the viability of certain higher-derivative theories in
studying different physical scenarios of interest, ranging from holography to astrophysics.
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While many unknowns still remain, we expect that this work can contribute to a deeper
understanding of these models, with the ultimate goal to learn about an UV complete theory of
gravity.
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A
Extrinsic geometry and the
Gauss-Codazzi equations

In Chapter 2 we need to split our coordinate system into those normal and tangent to a given
hypersurface (in this case the AdS boundary). This requires that we perform a consistent
decomposition of the metric, and we must be able to write curvatures of the global manifold in
terms of quantities defined on the lower-dimensional submanifold.

The formalism presented in this Appendix is very well explained in the textbooks [410]
and [411]. The first of these introduces it in the context of the 3 + 1 decomposition, which
is suitable for numerics as it splits the metric in its temporal and spatial parts, this is, the
hypersurface is spacelike and has codimension 1. Another classical reference is [412], which
can serve as a guide to extend this to hypersurfaces of larger codimension, although this will
not be necessary for the purposes of this thesis. Our conventions differ from those in the
references, but they are consistently taken into account in the computations shown in the main
text.

Let us consider a hypersurface Γ embedded in a D-dimensional Lorentzian manifold ,
with coordinates x� and metric g��. The worldvolume of Γ is parameterized by some coordinates
y
i, with i = 1, 2, … , d, being d < D is the dimension of the submanifold. We will consider
d = D − 1, this is, Γ has codimension 1 with respect to. The embedding can be described by
a set of relations of the form x

�
= x

�
(y

i
), and the vectors that form a basis of the space tangent

to Γ are given as

e
�

i
=

)x
�

)y
i
, (A.1)

which has an index in the target space and another one in the submanifold Γ. With these
we can compute the induced metric as the projection of g�� on the hypersurface,

ℎij = e
�

i
e
�

j
g�� , (A.2)

and the inverse induced metric is defined such that ℎikℎkj = �
j

i
. This can also be used to compute

the inverse of the basis vectors as ei
�
= ℎ

ij
g��e

�

j
. In order to span the full target manifold  we

need to find also a normal vector n�,1 which fulfills

e
i

�
n
�
= 0 , n�n

�
= � = ±1 . (A.3)

1 If the codimension of the submanifold Γ were larger than 1 there would be more than one normal direction,
and thus we would have to introduce indices for these, labeling the normal vectors as for example n�

A
.
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Once we know the form of all these vectors, the metric of the global manifold can be separated
in the normal and tangent parts as

g�� = n�n� + e
i

�
e
j

�
ℎij , (A.4)

and similarly for the inverse metric g��.
Let us consider a vector fieldA� defined on the globalmanifold, but that only has components

in the directions parallel to Γ, this is, it can be decomposed as A�
= e

�

i
A
i and also A�

n� = 0. We
can define the intrinsic covariant derivative as the projection of the covariant derivative ∇�A�

on Γ [411],
∇̃iAj = e

�

i
e
�

j
∇�A� , (A.5)

and with the ingredients that we have it can be shown that ∇̃i is the covariant derivative
compatible with the induced metric, ∇̃iℎjk = 0. If we instead look at the normal components of
the vector e�

i
∇�A

� we find [411]

e
�

i
∇�A

�
= e

�

j
∇̃iA

j
+ A

j
Kijn

�
, (A.6)

where we defined the extrinsic curvature, or second fundamental form of Γ,2

Kij = −e
�

i
e
�

j
∇�n� = n�e

�

i
∇�e

�

j
, (A.7)

where the second expression comes from the orthogonality condition n�e
�

j
= 0. It can be proved

that this tensor is symmetric, Kij = Kji, and in the coordinates of the global manifold it is
given by

K�� = −∇�n� + n�a� , (A.8)

where a� = n
�
∇�n� is the “acceleration” tensor. From this last expression one can also show

that
Kij = −

1

2

nℎij , (A.9)

where n is the Lie derivative with respect to the normal vector field n�. For simplicity, in
Chapter 2 we will compute the extrinsic curvature as given in Eq. (A.9). For completion, since
Kij is a tensor on the hypersurface Γ, its indices have to be raised with the induced metric, and
in particular its trace is given by K = ℎ

ij
Kij .

Using the definitions introduced until now, we can obtain the Gauss-Codazzi equations.
These relate the different components of the Riemann tensor of the global metric, R����(g��), to
those of the curvature of the induced metric, ijkl(ℎij), and they read

e
�

i
e
�

j
e
�

k
e
�

l
R���� = ijkl + � (KilKjk − KikKj l) , (A.10)

n
�
e
�

i
e
�

j
e
�

k
R���� = ∇̃jKki − ∇̃kKji . (A.11)

Apart from these, by considering a projection with two normal and two tangent vectors one
obtains the so-called Ricci equation,

n
�
e
�

i
n
�
e
�

j
R���� = nKij + KikK

k

j
− aiaj + ∇̃jai . (A.12)

2 Notice that the sign of Kij differs from that in [411], but it is the same as in [410]. As already emphasized, the
conventions used in Chapter 2 match those presented here.
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A detailed derivation for each of these expressions can be found in [410].
Let us finish by writing the contracted form of the Gauss-Codazzi equations, which are

straightforward to derive from Eqs. (A.10) an (A.11) using the machinery presented here,

Rij = ij + n
�
n
�
Ri�j� + � (KikK

k

j
− KKij) , (A.13)

R =  + 2n
�
n
�
R�� + � (K

ij
Kij − K

2

) , (A.14)

n
�
R�i = ∇̃iK − ∇̃jK

j

i
. (A.15)

While this review is not exhaustive by any means, the relations presented here should be
enough to understand the computations in Chapter 2 of this thesis.
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B
Conditions to leave g(1)

ij
and g(3)

ij

undetermined

The universal renormalization procedure proposed in Chapter 2 requires certain assumptions
about the AdS asymptotics of the bulk. In particular, it can only work provided the odd terms
in the Fefferman-Graham expansion of the induced metric (2.14) vanish, this is,

g
(1)

ij
(x) = 0 , g

(3)

ij
(x) = 0 . (B.1)

In Section 2.2 it is shown that this is indeed the case in general, except for a measure-zero
subset of theories that can be of interest in some particular scenarios. Some quadratic-curvature
theories that admit g (1)

ij
≠ 0 are mentioned at the end of Section 2.2.1, but in this Appendix

we extend that discussion to cubic theories. Afterwards we do a similar analysis for finding
Lagrangians that admit g (3)

ij
≠ 0.

B.1 Conditions to have g (1)
ij

undetermined in cubic theories

Let us consider the most general cubic theory constructed from the Einstein-Hilbert action
supplemented by all independent terms that are cubic in the curvature, each of them multiplied
by its own (for the moment arbitrary) coupling constant �i,

S =
∫
M

d
d
X

√

−G
(

1

16�GN
(R − 2Λ0) + �1R

� �


 �
R

� �

� �
R


 �

� �
+ �2R


�

��
R
����

R��
�

+ �3R
��
R

��


�
R���
 + �4RR����R

����
+ �5R

��
R
��
R����

+ �6R
��
R��R

�

�
+ �7R��R

��
R + �8R

3

)
.

(B.2)

The value of the constant C(L) that appears in the asymptotic behavior of P��
��

can be computed
using Eq. (2.12),

C(L) =

1

16�GN
+

3(D − 1)

L
4 (

D − 2

D − 1

�1 +

4

D − 1

�2 + 2�3 + 2D�4 + (D − 1)�5

+ (D − 1)�6 + D(D − 1)�7 + D
2
(D − 1)�8

)
,

(B.3)
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where L is the effective AdS radius, defined through the near-boundary behavior of the Riemann
tensor (2.10), and depends on the couplings �i and the cosmological constant Λ0. The equations
of motion at order z (2.27), (2.28) and (2.29) are determined by the constants a(1)(L) and b(1)(L),
which in this case are given by

a
(1)
(L) =

1

16�GN
+

1

L
4
(6(D − 3)�1 + 36�2 + 2(7D − 9)�3 + 10D(D − 1)�4 + (5D

2
− 13D + 9)�5

+ (6D
2
− 15D + 9)�6 + D(4D

2
− 9D + 5)�7 + 3D

2
(D − 1)

2
�8) ,

b
(1)
(L) = −

1

16�GN
+

1

L
4
(6�1 + 12�2 + 2(D + 5)�3 − 2(D

2
− 17D + 16)�4 − (D

2
− 15D + 17)�5

+ 9(D − 1)�6 − (2D
3
− 23D

2
+ 37D − 16)�7 − 3D(D − 1)

2
(D − 8)�8) .

As explained in Section 2.2.1, the equations of motion imply g (1)
ij

= 0 unless one of the conditions
discussed below Eq. (2.31) is met. Thus, only for both a

(1)
(L) = b

(1)
(L) = 0, g (1)

ij
is fully

unconstrained by the equations of motion, which happens only in a zero measure region of
the space of parameters �i. Besides, as what was found for quadratic theories of gravity, the
conditions a(1)(L) = b

(1)
(L) = 0 end up implying that the corresponding cubic theory has

degenerate AdS vacua.
In the case of cubic curvature gravity, let us quote two examples of usually well-behaved

theories which have the above properties:

• Cubic Lovelock theory in general dimensions [2], which is non-trivial only for D ≥ 7.
This corresponds to setting in the action (B.2) the values of the couplings to

�1 = −8� , �2 = 4� , �3 = −24� , �4 = 3� , �5 = 24� ,

�6 = 16� , �7 = −12� , �8 = � .

(B.4)

The particular value of � that results in a(1)(L) = b
(1)
(L) = 0 is

� = −

1

16�GN

L
4

3(D − 3)(D − 4)(D − 5)(D − 6)

, (B.5)

which corresponds to the critical value [104].

• Einsteinian cubic gravity, first proposed in [3]. We could consider the Einstein-Hilbert
Lagrangian supplemented by the term � , where  is given by Eq. (1.24). This amounts
to setting

�1 = 12� , �2 = � , �5 = −12� , �6 = 8� , (B.6)

while the remaining couplings are equal to zero. The coefficient g (1)
ij

becomes undeter-
mined at the critical value of the coupling

� =

1

16�GN

L
4

12(D − 3)(D − 6)

, (B.7)

which corresponds to the critical value found in [119] when studying the AdS vacua of
the theory in 4 dimensions. This regime is explored in Section 3.2 of this work, in the
context of the holographic superconductor with a higher-curvature gravity action.
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and g (3)
ij

undetermined

One could also consider the Lagrangian density , defined in [6]. In particular, the
combination  − 8 in D = 4, introduced in [76, 78] due to its interesting cosmological
properties, also leaves the coefficient g (1)

ij
undetermined for the value of the coupling

(B.7). This is totally expected, since it is known that  does not modify the AdS vacuum
in four dimensions.

Apart from these particular cases that we were able to find, it would be interesting to explore
whether the condition a(1)(L) = b

(1)
(L) = 0 can be used to look for new theories in higher

dimensions and of higher orders in the curvature, with analogous behavior to the examples
discussed here.

B.2 Conditions to have g (3)
ij

undetermined in quadratic and
cubic theories

In what follows we simply give the values of the constants a(3)(L) and b(3)(L) introduced in
Section 2.2.3 for different families of theories. These appear in the projected equations of
motion at third order in z, Eqs. (2.51) and (2.52).

First let us consider the general quadratic gravity action as introduced in Eq. (2.32). These
constants are expressions of the AdS radius L and the couplings in the Lagrangian, and read

a
(3)
(L) =

3

16�GN
+

1

L
2
( − 3(5D − 14)�1 − 6D(D − 1)�2 − 6(D − 3)(D − 4)�3) ,

b
(3)
(L) =

3

16�GN
+

1

L
2
( − 3(D − 6)�1 + 6(D

2
− 9D + 24)�2 + 6(D − 3)(D − 4)�3) .

(B.8)

For the general theory that contains cubic contractions of the curvature tensors, whose action
is written in Eq. (B.2), these constants take the values

a
(3)
(L) =

3

16�GN
+

1

L
4
(36�1 + 36(4D − 17)�2 + 6(4D

2
− 13D − 9)�3

+ 6D(D − 1)(4D − 15)�4 + 9(3D
2
− 13D + 13)�5

+ 9(D − 1)(4D − 13)�6 + 9D(D − 1)(2D − 5)�7 + 9D
2
(D − 1)

2
�8) ,

b
(3)
(L) = −

3

16�GN
+

1

L
4
(18(D − 4)�1 + 36�2 + 30(D − 3)�3 − 6(D

2
− 33D + 96)�4

+ 9(D
2
− D − 9)�5 + 9(D − 1)(2D − 7)�6

+ 9(D − 1)(9D − 32)�7 − 9D(D − 1)(D
2
− 17D + 48)�8) .

(B.9)
Studying the particular points where these constants vanish, implying that g (3)

ij
could be non-

zero, might lead us to theories whose dynamics differs from that of Einstein gravity. However,
such thorough study is out of the scope of the current work.
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C
Numerical relaxation method for
differential equations

Let us explain the basics of the numerical relaxation method [247], used for computing the
different fields in the holographic superconductor in Chapter 3 and to obtain the function
f (r) in the metric for Chapter 6. The basic goal of this procedure is to convert an arbitrarily
complicated system of differential equations into a single matrix equation, which can be solved
more or less easily using methods of linear algebra.

Suppose a linear differential equation of the form

L [y(x)] = J (x) , with x ∈ [a, b] . (C.1)

The interval of values of the independent variable, [a, b], must be finite, and therefore can be
discretized in N points xi, with i = 1, … , N + 1. Then we can construct a vector y⃗ such that
yi ≡ y(xi), and similarly for the source terms J (x). In this discrete form, derivative operators
of any order n, )n

x
, are expressed as (N + 1) × (N + 1) matrices1 Dn, but it is also possible to

replace a derivative operator of order n by the product of n first-derivative matrices,

)
n

x
⟶ Dn = (D1)

n
. (C.2)

If the operator L [y(x)] contains a term of the form f (x)y(x), this f (x) should be replaced also
by a discrete version F , given by the matrix

F = diag (f (x1), … , f (xN+1)) . (C.3)

If this appears as f (x))n
x
y(x), it should be replaced by the matrix product FDn, and so on. After

performing all the substitutions, the total operator L is transformed into a matrix M by adding
together each of the individual terms of the differential equation. Then, the final system to
solve takes the form

M ⋅ y⃗ = J⃗ . (C.4)

We need to apply also the boundary conditions of the system. As mentioned in the main text,
one advantage of this method is that it is very natural to impose conditions at any point of
the interval, since one only needs to modify some components of M and J⃗ . Let us see how to
enforce them explicitly:
1 These operators are constructed automatically by a function in the softwareMathematica, which yields a matrix

that computes the order n derivative at each point using an arbitrary number of nearby points. Their form can
also be computed algorithmically from the coefficients of the Taylor expansion.
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1. If there is a condition of the form y(xj) = A, set

Mij = 0 if i ≠ j , Mjj = 1 , Jj = A . (C.5)

2. If the condition is of the form )
n

x
y(xj) = B, set

Mj = (Dn)j , Jj = B . (C.6)

Once the system is formulated in the form (C.4), it is straightforward to solve it for y⃗ using any
standard method for linear equations.

The described implementation works for linear differential equations, as it relies on the use
of linear operators. The generalization to non-linear ODEs is slightly more involved, but also
possible. In order to show how, let us start by considering a non-linear differential equation

E [y(x)] = J (x) . (C.7)

The solution can be found iteratively starting from an initial seed y0, by expanding the solution
as y(x) = y0(x) + �y(x), where �y(x) is the change on the solution after one iteration. After
replacing this in Eq. (C.7) and expanding to first order in �y(x), it becomes

E [y0(x)] + �E [�y(x)] = J (x) , (C.8)

where �E [�y(x)] is a linear differential operator acting on �y(x), and E [y0(x)] can be con-
sidered part of the inhomogeneous term. Then, �y(x) can be computed using the method
described above for linear equations, and at the end one updates the total solution y(x), which
becomes the seed for the next iteration. This process is repeated until the solution converges,
this is, �y(x) becomes sufficiently small at every point.

The method can be straightforwardly extended for coupled differential equations. For this,
it is enough to concatenate the vectors formed by discretizing every function y(a)(x) that we
need to solve in one single vector,

y⃗ = (y
(1)
(x), y

(2)
(x), … , y

(n)
(x)) . (C.9)

The matrix M also becomes more complex, since now each differential equation can depend on
all the functions involved. It can be constructed by blocks, with each corresponding to one of
the equations of the system, following the same procedure as before, and once this is done the
rest of the computation carries on as usual.

Finally, one can also generalize the method for solving partial differential equations. How-
ever, since this is not necessary for the present work we do not explain it here, and we refer
the reader to [247].
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D
Tests of the numerical simulations
with aztekas

In this Appendix we explore the consequences of changing different parameters of the numerical
simulations performed in Section 6.3.3.1. This is intended to support the previous results, since
as we will show extending the integration domain or changing its resolution after some point
does not produce any effect of relevant magnitude.

The data shown in the following plots were obtained in simulations with � = 20 and
v∞ = 0.5, and an integration region of 200 × 200 points, except those parameters whose value is
explicitly stated. Also, as in the main text we set the Mach number to = 5 and the polytropic
index 
 = 5/3. In some Figures we plot the mass accretion rate with respect to the time t,
which is the variable that keeps track of the progress of the simulation. This allows us to see
explicitly how Ṁ stabilizes and fluctuates around a constant value for large t. In order to obtain
the results in Section 6.3.3.1 we allowed it to evolve for a while after it had stabilized, and then
computed an average over a small period of time.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
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0.6

0.8
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1.2

Figure D.1: Accretion rate measured over the entire domain of the radial
coordinate, for v∞ = 0.5 and in the stationary regime of the simulation.

First, in Figure D.1 we show that the accretion rate computed with Eq. (6.40) is not entirely
constant for all values of r . As mentioned in the main text, this can be understood as a
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consequence of the finiteness of the integration domain, which means that there can be some
matter that goes outside this, which the simulation cannot account for. Therefore, for the
actual results presented in the main text we opted for computing the average of the value of Ṁ
in the entire domain.
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Figure D.2: Change of the accretion rate with the value of rmin, for v∞ = 0.5

and � = 20. The values plotted are always measured at r = rℎ.
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Figure D.3: Change of the accretion rate with the value of rmax, for v∞ = 0.5

and � = 20. The values plotted are always measured at r = rℎ. Although the
curves separate as the simulation converges, the actual change in Ṁ is very
small, so in general this effect is irrelevant.

In Figures D.2 and D.3 we show the variation of Ṁ when we change the size of the domain
of integration, by moving the lower and upper limits of the range (6.37). Although the accretion
rate changes more when increasing rmax, in practice both effects are almost negligible for our
purposes.

Finally, in Figure D.4 we study the change of the accretion rate with the amount of points in
the domain of integration. Of course, we expect to obtain better results with a higher resolution
of this spatial grid, but again by inspecting the plot we see that these are very irrelevant overall.
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Figure D.4: Change of the accretion rate with the resolution of the numeri-
cal domain, for v∞ = 0.5 and � = 20. In each case, the grid has N × N points
in the coordinate system (r, �).
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This thesis investigates the role of higher-derivative corrections 
in the gravity action across various scenarios. The first part 
focuses on the domain of holography, and in this context we 
propose a method for holographic renormalization valid for 
general theories in up to 5 dimensions. Subsequently, we 
employ the framework of AdS/CFT to examine the effect of 
cubic-curvature terms in a system known as the holographic 
superconductor. Besides the curvature tensors, it is possible to 
construct corrections with contractions of other fields. In 
particular, we consider theories that are dual to a CFT with a 
non-minimally coupled chemical potential. Finally, the thesis 
transitions into the field of astrophysics, and we study the 
impact of higher-curvature terms in processes of accretion of 
matter by black holes.
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